-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathv8.py
219 lines (183 loc) · 6.76 KB
/
v8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import torch.nn as nn
import torch.nn.functional as F
# hyperparameters
batch_size = 32 #64 # independent sequences to process in parallel
block_size = 256 # maximum context length for predictions
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = "cuda" if torch.cuda.is_available() else "cpu"
eval_iters = 200
n_embed = 128 #384
n_head = 4 #6
n_layer = 6
dropout = 0.2
torch.manual_seed(1337)
def readData(filename):
with open(filename, 'r', encoding='utf-8') as f:
text = f.read()
return text
def createVocab(text):
chars = sorted(list(set(text)))
vocab_size = len(chars)
return chars, vocab_size
def createCharMapping(chars):
stoi = {ch:i for i,ch in enumerate(chars)}
itos = {i:ch for i,ch in enumerate(chars)}
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
return encode, decode
def encodeData(text, encode):
data = torch.tensor(encode(text), dtype=torch.long)
return data
def trainValSplit(data, train_ratio = 0.9):
n = int(train_ratio * len(data))
train_data = data[:n]
val_data = data[n:]
return train_data, val_data
def getBatch(data):
ix = torch.randint(len(data) - block_size, (batch_size, ))
x = torch.stack([data[i:i+block_size] for i in ix]) # shape: ()
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x,y
class Head(nn.Module):
"""one head of self-attention"""
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embed, head_size, bias=False)
self.query = nn.Linear(n_embed, head_size, bias=False)
self.value = nn.Linear(n_embed, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x) # (B,T,C)
q = self.query(x) # (B,T,C)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2, -1) * (C ** -0.5) # (B, T, C) @ (B, C, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggrgaetion of the values
v = self.value(x) # (B, T, C)
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel"""
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embed, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.proj(out)
return out
class FeedForward(nn.Module):
""" simple linear layer followed by non-linearity"""
def __init__(self, n_embed):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed, 4 * n_embed),
nn.ReLU(),
nn.Linear(4 * n_embed, n_embed),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication folloed by computation"""
def __init__(self, n_embed, n_head):
# n_embed: embedding dimension, n_head: number of heads we like
super().__init__()
head_size = n_embed // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedForward(n_embed)
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class BigramLM(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.positon_embedding_table = nn.Embedding(block_size, n_embed)
self.blocks = nn.Sequential(*[Block(n_embed, n_head=n_head) for _ in range(n_layer)])
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx & targets are both (B,T) tensor
tok_emb = self.token_embedding_table(idx) # (B,T,n_embed)
pos_emb = self.positon_embedding_table(torch.arange(T, device=device)) # (T,n_embed)
x = tok_emb + pos_emb # (B,T,n_embed)
x = self.blocks(x) # (B,T,n_embed)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B,T,C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
@torch.no_grad()
def estimate_loss(self, train_data, val_data):
out = {}
dataDict = {
'train': train_data,
'val': val_data
}
self.eval()
for split in dataDict.keys():
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
x, y = getBatch(dataDict[split])
logits, loss = self.forward(x, y)
losses[k] = loss.item()
out[split] = losses.mean()
self.train()
return out
def generate(self, idx, max_new_toekns):
# idx is (B,T) array of indices in the current context
for _ in range(max_new_toekns):
idx_cond = idx[:, -block_size:] # crop index to last block_size tokens
logits, loss = self(idx_cond) # get predictions
logits = logits[:,-1,:] # focus only on last time step, becomes (B,C)
probs = F.softmax(logits, dim=1) # (B,C)
idx_next = torch.multinomial(probs, num_samples=1) # (B,1)
idx = torch.cat((idx, idx_next), dim=1) # (B,T+1)
return idx
def generate_text(self, max_new_toekns=400):
idx = torch.zeros((1, 1), dtype=torch.long, device=device)
result_idx = self.generate(idx, max_new_toekns)
return decode(result_idx[0].tolist())
def trainModel(self, train_data, val_data):
self.optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
for iter in range(max_iters):
xb, yb = getBatch(train_data)
logits, loss = self.forward(xb, yb)
self.optimizer.zero_grad(set_to_none=True)
loss.backward()
self.optimizer.step()
if iter % eval_interval == 0:
losses = self.estimate_loss(train_data, val_data)
print(f"Step:{iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
if __name__ == '__main__':
text = readData('data/input.txt')
chars, vocab_size = createVocab(text)
encode, decode = createCharMapping(chars)
data = encodeData(text, encode)
train_data, val_data = trainValSplit(data)
xb, yb = getBatch(train_data)
model = BigramLM()
m = model.to(device)
logits, loss = model(xb, yb)
print("---BEFORE TRAIN ---")
print(model.generate_text(max_new_toekns=400))
model.trainModel(train_data, val_data)
print("---AFTER TRAIN ---")
print(model.generate_text(max_new_toekns=400))