-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dataset.h
436 lines (381 loc) · 12.6 KB
/
Dataset.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
============================================================================
Name : Dataset.h
Author : Bart³omiej Jañczak
Date : 2012-09-05
Version : 1.0
Copyright : Your copyright notice
Description : Declaration of Dataset class holding dataset elements.
============================================================================
*/
#ifndef _DATASET_H_
#define _DATASET_H_
#include "Points.h"
#include "Properties.h"
#include <string>
#include <vector>
using namespace std;
/**
* Dataset class.
*/
class Dataset{
public:
bool isDense;
unsigned long dimension;
unsigned long size;
string algorithmGroup;
string algorithmType;
string algorithmName;
string filePath;
/**
* Minimal Eps calculated from K-NEIGHBORHOOD algorithms results.
*/
double minEps;
/**
* Maximal Eps calculated from K-NEIGHBORHOOD algorithms results.
*/
double maxEps;
/**
* Average Eps calculated from K-NEIGHBORHOOD algorithms results.
*/
double avgEps;
/**
* One of following vectors will be used by algorithms group.
*/
vector<Point> datasetPoint;
vector<DbscanPoint> datasetDbscanPoint;
vector<KNeighborhoodPoint> datasetKNeighborhoodPoint;
/**
* Classification dataset
*/
vector<pair<Point, Point*>> classificationDataset;
vector<KNeighborhoodPoint> classificationKNeighborhoodDataset;
/**
* Classification result.
*/
vector<pair<pair<Point*, double>, list<Point*>>> classificationResult;
/**
* Vps-tree index.
*/
VpsPoint* vpsTree;
~Dataset();
static Dataset& getInstance(){
static Dataset instance;
return instance;
}
/**
* Sets object properties.
*
* @properties Application properties.
*/
void setProperties(const Properties& properties);
/**
* Clears all the data.
*/
void clear();
/**
* Reads elements data from dataset.
*
* @properties Application properties.
*/
void readData(const Properties& properties);
/**
* Calculates projection dimensions based on properties.
*
* @properties Application properties.
*
*/
void readProjectionDimensions(Properties& properties);
/**
* Returns number of widest dimension in dataset.
*/
unsigned long getMaxDimension();
/**
* Returns number of narrowest dimension in dataset.
*/
unsigned long getMinDimension();
/**
* Generates vector of reference points defined in given properties.
*
* @properties Application properties.
*
* @return Reference points as vector of Point objects.
*/
vector<Point> getReferencePoints(const Properties& properties);
/**
* Normalizes dataset.
* Every dimension value becomes a result of division of the value
* by distance of a point from the begining of the scale.
*/
void normalize(double alfa);
/**
* Prints clustering sum up int given os output stream.
*
* @os Output stream to which report is written.
*/
void printClusteringSumUp(ofstream& os);
/**
* Finds most similar point in datasetKNeighborhoodPoint by
* given criteria, which are compared to point's distance.
* Uses binary search.
*
* @point Point to find nearest neighbor.
*
* @return Iterator pointing to the point most similar to
* criteria given.
*/
vector<KNeighborhoodPoint>::iterator getPlacementBinary(const Point& point);
/**
* Finds most similar point in datasetKNeighborhoodPoint by
* given criteria, which are compared to point's distance.
* Uses lineary search.
*
* @point Point to find nearest neighbor.
*
* @return Iterator pointing to the point most similar to
* criteria given.
*/
vector<KNeighborhoodPoint>::iterator getPlacementLineary(const Point& point);
/**
* Finds most similar point in datasetKNeighborhoodPoint by
* given criteria, which are compared to point's distance.
* Uses binary search.
*
* @datasetIndex Vector of indexes pointing on dataset.
* @point Point to find nearest neighbor.
*
* @return Iterator pointing to the point most similar to
* criteria given.
*/
static vector<vector<KNeighborhoodPoint>::iterator>::iterator indexGetPlacementBinary(vector<vector<KNeighborhoodPoint>::iterator>& datasetIndex, const Point& point, unsigned long& comparisonCounter);
static vector<KNeighborhoodPoint>::iterator getPlacementBinary(vector<KNeighborhoodPoint>& datasetIndex, const Point& point, unsigned long& comparisonCounter);
/**
* Finds most similar point in datasetKNeighborhoodPoint by
* given criteria, which are compared to point's distance.
* Uses lineary search.
*
* @datasetIndex Vector of indexes pointing on dataset.
* @point Point to find nearest neighbor.
*
* @return Iterator pointing to the point most similar to
* criteria given.
*/
static vector<vector<KNeighborhoodPoint>::iterator>::iterator indexGetPlacementLineary(vector<vector<KNeighborhoodPoint>::iterator>& datasetIndex, const Point& point);
static vector<KNeighborhoodPoint>::iterator getPlacementLineary(vector<KNeighborhoodPoint>& datasetIndex, const Point& point);
/**
* Copies dataset to result.
*
* @result Vector to be filled with points from dataset.
* @dataset Dataset from which points are to be copied.
* @isDense Flag indicating whether dataset is in dense or sparse format.
*/
static void fillKNeighborhoodPointVector(vector<KNeighborhoodPoint>& result, const vector<Point>& dataset);
// TODO bjanczak delete
//static void fillKNeighborhoodPointVectorPoint(vector<KNeighborhoodPoint>* result, const vector<Point*>& dataset, const bool isDense);
static void fillDbscanPointVector(vector<DbscanPoint>& result, const vector<Point>& dataset);
static void fillVpsPointVector(vector<VpsPoint>& result, const vector<Point>& dataset, const bool isDense);
/**
* Copies dataset to result.
*
* @result List to be filled with points from dataset.
* @dataset Dataset from which points are to be copied.
* @isDense Flag indicating whether dataset is in dense or sparse format.
*/
static void fillVpsPointList(list<VpsPoint>& result, const vector<Point>& dataset, const bool isDense);
/**
* Generates subset of dataset.
*
* @dataset Dataset from which points are to be copied.
* @properties Application properties.
*
* @return Subset of dataset as vector of Point objects.
*/
static vector<Point> generateSample(const vector<Point>& dataset, const Properties& properties);
/**
* Calculates aggregation values for K-NEIGHBORHOOD algorithms results eps, stores them in internal values as well as in parameters.
*/
void calculateKNeighborhoodEps(double& minEps, double& avgEps, double& maxEps);
/**
* Calculates aggregation values for VP_TREE algorithms results eps, stores them in internal values as well as in parameters.
*/
void calculateClassificationResultEps(double& minEps, double& avgEps, double& maxEps);
/**
* Generates Point object that has zero value for each
* dimension.
*
* @dataset Dataset of elements.
*
* @return Generated point as Point object.
*/
static Point getZeroPoint(const Dataset& dataset);
private:
Dataset();
/**
* Creates dense point from string representation.
*
* @line String defining dense point.
* @properties Application properties.
*
* @return Created dense point as vector of doubles.
*/
vector<double> getDensePoint(string line, const Properties& properties);
/**
* Creates sprase point from string representation.
*
* @line String defining sparse point.
* @properties Application properties.
*
* @return Created sparse point as vector of SparsePoint objects.
*/
vector<SparsePoint> getSparsePoint(string line, const Properties& properties);
/**
* Generates new string without white characters.
*
* @str Case string.
*
* @return Generated string.
*/
static string deleteWhiteChars(const string& str);
/**
* Generates new string without multiple space characters.
*
* @str Case string.
*
* @return Generated string.
*/
static string deleteMultipleSpaceCharacters(const string& str);
/**
* Generates vector of instructions from custom point definition.
* Definition is a vector of pairs <dimension, value selector>.
* Value selector can have values: min, max, 0.
* Value selector chooses value for given dimension from dataset.
*
* @definition String definition of the point.
* @isDense flag describing whether definition has dense
* or sparse format.
*
* @return Vector of instructions as vector of pairs <dimension, value selector>.
*/
static vector<pair<unsigned long, string>> customPointDefinitionToInstructionVector(const string& definition, bool isDense);
/**
* Generates unsigned long value from string definition.
*
* @definition Value definition.
*
* @return Generated value.
*/
static unsigned long generateNFromDefinition(const string definition);
/**
* Generates Point object that has n value for each
* dimension.
*
* @dataset Dataset of elements.
* @n Every dimension value.
*
* @return Generated point as Point object.
*/
static Point getNPoint(const Dataset& dataset, const unsigned int n);
/**
* Verifies, whether point definition pointDefinition is
* function point definition or not.
*
* @pointDefinition Point definition.
*
* @returns True is pointDefinition indicates that point
* is function point, or false otherwise.
*/
static bool isFunctionReferencePoint(const string pointDefinition);
/**
* Verifies, whether point definition pointDefinition is
* custom point definition or not.
*
* @pointDefinition Point definition.
*
* @returns True is pointDefinition indicates that point
* is custom point, or false otherwise.
*/
static bool isCustomReferencePoint(const string pointDefinition);
/**
* Verifies, whether point definition pointDefinition is
* pattern point definition or not.
*
* @pointDefinition Point definition.
*
* @returns True is pointDefinition indicates that point
* is pattern point, or false otherwise.
*/
static bool isPatternReferencePoint(const string pointDefinition);
/**
* Generates Point object of properties defined by definition string.
*
* @definition String definition of the point.
*
* @return Generated point as Point object.
*/
Point getCustomPoint(string definition);
/**
* Generates Point object of properties defined by definition string.
*
* @definition String definition of the point.
*
* @return Generated point as Point object.
*/
Point getReferenceCustomPoint(string definition);
/**
* Generates Point object of properties defined by definition string.
*
* @definition String definition of the point.
* @isDense flag describing whether definition has dense
* or sparse format.
* @dimension Number of dimensions.
*
* @return Generated point as Point object.
*/
static Point getPatternReferenceCustomPoint(string definition, bool isDense, unsigned long dimension);
/**
* Generates Point object that has random dimension value for each
* dimension in dataset not greater tham maximal value in each dimension.
*
* @return Generated point as Point object.
*/
Point getRandomPoint();
/**
* Generates Point object that has maxium dimension value for each
* dimension in dataset.
*
* @return Generated point as Point object.
*/
Point getMaxPoint();
/**
* Generates Point object that has maxium dimension value for each
* odd dimension in dataset and minimum dimension value for each even
* dimension value.
*
* @return Generated point as Point object.
*/
Point getMaxMinPoint();
/**
* Calculates maximum dimension value for given dimension.
*
* @dimension Dimension fof which maximal value will be found.
*
* @return Calculated value as double.
*/
double maxDimensionValue(const unsigned long dimension);
/**
* Generates Point object that has minimum dimension value for each
* dimension in dataset.
*
* @return Generated point as Point object.
*/
Point getMinPoint();
/**
* Calculates minimum dimension value for given dimension.
*
* @dimension Dimension fof which minimal value will be found.
*
* @return Calculated value as double.
*/
double minDimensionValue(const unsigned long dimension);
};
#endif /*_DATASET_H_*/