diff --git a/src/ecmult_const_impl.h b/src/ecmult_const_impl.h index b79787506b..3d198dcede 100644 --- a/src/ecmult_const_impl.h +++ b/src/ecmult_const_impl.h @@ -56,7 +56,6 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \ } while(0) - /** Convert a number to WNAF notation. * The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val. * It has the following guarantees: @@ -72,7 +71,7 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p */ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w, int size) { int global_sign; - int skew = 0; + int skew; int word = 0; /* 1 2 3 */ @@ -80,9 +79,7 @@ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w int u; int flip; - int bit; - secp256k1_scalar s; - int not_neg_one; + secp256k1_scalar s = *scalar; VERIFY_CHECK(w > 0); VERIFY_CHECK(size > 0); @@ -90,33 +87,19 @@ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w /* Note that we cannot handle even numbers by negating them to be odd, as is * done in other implementations, since if our scalars were specified to have * width < 256 for performance reasons, their negations would have width 256 - * and we'd lose any performance benefit. Instead, we use a technique from - * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even) - * or 2 (for odd) to the number we are encoding, returning a skew value indicating + * and we'd lose any performance benefit. Instead, we use a variation of a + * technique from Section 4.2 of the Okeya/Tagaki paper, which is to add 1 to the + * number we are encoding when it is even, returning a skew value indicating * this, and having the caller compensate after doing the multiplication. * * In fact, we _do_ want to negate numbers to minimize their bit-lengths (and in * particular, to ensure that the outputs from the endomorphism-split fit into - * 128 bits). If we negate, the parity of our number flips, inverting which of - * {1, 2} we want to add to the scalar when ensuring that it's odd. Further - * complicating things, -1 interacts badly with `secp256k1_scalar_cadd_bit` and - * we need to special-case it in this logic. */ - flip = secp256k1_scalar_is_high(scalar); - /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */ - bit = flip ^ !secp256k1_scalar_is_even(scalar); - /* We check for negative one, since adding 2 to it will cause an overflow */ - secp256k1_scalar_negate(&s, scalar); - not_neg_one = !secp256k1_scalar_is_one(&s); - s = *scalar; - secp256k1_scalar_cadd_bit(&s, bit, not_neg_one); - /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects - * that we added two to it and flipped it. In fact for -1 these operations are - * identical. We only flipped, but since skewing is required (in the sense that - * the skew must be 1 or 2, never zero) and flipping is not, we need to change - * our flags to claim that we only skewed. */ + * 128 bits). If we negate, the parity of our number flips, affecting whether + * we want to add to the scalar to ensure that it's odd. */ + flip = secp256k1_scalar_is_high(&s); + skew = flip ^ secp256k1_scalar_is_even(&s); + secp256k1_scalar_cadd_bit(&s, 0, skew); global_sign = secp256k1_scalar_cond_negate(&s, flip); - global_sign *= not_neg_one * 2 - 1; - skew = 1 << bit; /* 4 */ u_last = secp256k1_scalar_shr_int(&s, w); @@ -230,42 +213,22 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons } } - secp256k1_fe_mul(&r->z, &r->z, &Z); - { /* Correct for wNAF skew */ - secp256k1_ge correction = *a; - secp256k1_ge_storage correction_1_stor; - secp256k1_ge_storage correction_lam_stor; - secp256k1_ge_storage a2_stor; secp256k1_gej tmpj; - secp256k1_gej_set_ge(&tmpj, &correction); - secp256k1_gej_double_var(&tmpj, &tmpj, NULL); - secp256k1_ge_set_gej(&correction, &tmpj); - secp256k1_ge_to_storage(&correction_1_stor, a); - if (size > 128) { - secp256k1_ge_to_storage(&correction_lam_stor, a); - } - secp256k1_ge_to_storage(&a2_stor, &correction); - /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */ - secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2); - if (size > 128) { - secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2); - } - - /* Apply the correction */ - secp256k1_ge_from_storage(&correction, &correction_1_stor); - secp256k1_ge_neg(&correction, &correction); - secp256k1_gej_add_ge(r, r, &correction); + secp256k1_ge_neg(&tmpa, &pre_a[0]); + secp256k1_gej_add_ge(&tmpj, r, &tmpa); + secp256k1_gej_cmov(r, &tmpj, skew_1); if (size > 128) { - secp256k1_ge_from_storage(&correction, &correction_lam_stor); - secp256k1_ge_neg(&correction, &correction); - secp256k1_ge_mul_lambda(&correction, &correction); - secp256k1_gej_add_ge(r, r, &correction); + secp256k1_ge_neg(&tmpa, &pre_a_lam[0]); + secp256k1_gej_add_ge(&tmpj, r, &tmpa); + secp256k1_gej_cmov(r, &tmpj, skew_lam); } } + + secp256k1_fe_mul(&r->z, &r->z, &Z); } #endif /* SECP256K1_ECMULT_CONST_IMPL_H */ diff --git a/src/group.h b/src/group.h index b9cd334dae..0b55ad73c6 100644 --- a/src/group.h +++ b/src/group.h @@ -124,6 +124,9 @@ static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge /** Convert a group element back from the storage type. */ static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a); +/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ +static void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag); + /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag); diff --git a/src/group_impl.h b/src/group_impl.h index bce9fbdad5..f02891de77 100644 --- a/src/group_impl.h +++ b/src/group_impl.h @@ -642,6 +642,14 @@ static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storag r->infinity = 0; } +static SECP256K1_INLINE void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag) { + secp256k1_fe_cmov(&r->x, &a->x, flag); + secp256k1_fe_cmov(&r->y, &a->y, flag); + secp256k1_fe_cmov(&r->z, &a->z, flag); + + r->infinity ^= (r->infinity ^ a->infinity) & flag; +} + static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { secp256k1_fe_storage_cmov(&r->x, &a->x, flag); secp256k1_fe_storage_cmov(&r->y, &a->y, flag); diff --git a/src/tests.c b/src/tests.c index fd5e1eb7d2..a7474994a5 100644 --- a/src/tests.c +++ b/src/tests.c @@ -100,6 +100,12 @@ void random_group_element_jacobian_test(secp256k1_gej *gej, const secp256k1_ge * gej->infinity = ge->infinity; } +void random_gej_test(secp256k1_gej *gej) { + secp256k1_ge ge; + random_group_element_test(&ge); + random_group_element_jacobian_test(gej, &ge); +} + void random_scalar_order_test(secp256k1_scalar *num) { do { unsigned char b32[32]; @@ -3341,6 +3347,37 @@ void run_ge(void) { test_intialized_inf(); } +void test_gej_cmov(const secp256k1_gej *a, const secp256k1_gej *b) { + secp256k1_gej t = *a; + secp256k1_gej_cmov(&t, b, 0); + CHECK(gej_xyz_equals_gej(&t, a)); + secp256k1_gej_cmov(&t, b, 1); + CHECK(gej_xyz_equals_gej(&t, b)); +} + +void run_gej(void) { + int i; + secp256k1_gej a, b; + + /* Tests for secp256k1_gej_cmov */ + for (i = 0; i < count; i++) { + secp256k1_gej_set_infinity(&a); + secp256k1_gej_set_infinity(&b); + test_gej_cmov(&a, &b); + + random_gej_test(&a); + test_gej_cmov(&a, &b); + test_gej_cmov(&b, &a); + + b = a; + test_gej_cmov(&a, &b); + + random_gej_test(&b); + test_gej_cmov(&a, &b); + test_gej_cmov(&b, &a); + } +} + void test_ec_combine(void) { secp256k1_scalar sum = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); secp256k1_pubkey data[6]; @@ -4522,7 +4559,7 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) { secp256k1_scalar_add(&x, &x, &t); } /* Skew num because when encoding numbers as odd we use an offset */ - secp256k1_scalar_set_int(&scalar_skew, 1 << (skew == 2)); + secp256k1_scalar_set_int(&scalar_skew, skew); secp256k1_scalar_add(&num, &num, &scalar_skew); CHECK(secp256k1_scalar_eq(&x, &num)); } @@ -6808,6 +6845,7 @@ int main(int argc, char **argv) { /* group tests */ run_ge(); + run_gej(); run_group_decompress(); /* ecmult tests */