diff --git a/doc/safegcd_implementation.md b/doc/safegcd_implementation.md index 063aa8efae..c1cdd0cfe1 100644 --- a/doc/safegcd_implementation.md +++ b/doc/safegcd_implementation.md @@ -1,7 +1,7 @@ # The safegcd implementation in libsecp256k1 explained -This document explains the modular inverse implementation in the `src/modinv*.h` files. It is based -on the paper +This document explains the modular inverse and Jacobi symbol implementations in the `src/modinv*.h` files. +It is based on the paper ["Fast constant-time gcd computation and modular inversion"](https://gcd.cr.yp.to/papers.html#safegcd) by Daniel J. Bernstein and Bo-Yin Yang. The references below are for the Date: 2019.04.13 version. @@ -769,3 +769,30 @@ def modinv_var(M, Mi, x): d, e = update_de(d, e, t, M, Mi) return normalize(f, d, Mi) ``` + +## 8. From GCDs to Jacobi symbol + +We can also use a similar approach to calculate Jacobi symbol *(x | M)* by keeping track of an extra variable *j*, for which at every step *(x | M) = j (g | f)*. As we update *f* and *g*, we make corresponding updates to *j* using [properties of the Jacobi symbol](https://en.wikipedia.org/wiki/Jacobi_symbol#Properties). In particular, we update *j* whenever we divide *g* by *2* or swap *f* and *g*; these updates depend only on the values of *f* and *g* modulo *4* or *8*, and can thus be applied very quickly. Overall, this calculation is slightly simpler than the one for modular inverse because we no longer need to keep track of *d* and *e*. + +However, one difficulty of this approach is that the Jacobi symbol *(a | n)* is only defined for positive odd integers *n*, whereas in the original safegcd algorithm, *f, g* can take negative values. We resolve this by using the following modified steps: + +```python + # Before + if delta > 0 and g & 1: + delta, f, g = 1 - delta, g, (g - f) // 2 + + # After + if delta > 0 and g & 1: + delta, f, g = 1 - delta, g, (g + f) // 2 +``` + +The algorithm is still correct, since the changed divstep, called a "posdivstep" (see section 8.4 and E.5 in the paper) preserves *gcd(f, g)*. However, there's no proof that the modified algorithm will converge. The justification for posdivsteps is completely empirical: in practice, it appears that the vast majority of inputs converge to *f=g=gcd(f0, g0)* in a number of steps proportional to their logarithm. + +Note that: +- We require inputs to satisfy *gcd(x, M) = 1*. +- We need to update the termination condition from *g=0* to *f=1*. +- We deal with the case where *g=0* on input specially. + +We account for the possibility of nonconvergence by only performing a bounded number of posdivsteps, and then falling back to square-root based Jacobi calculation if a solution has not yet been found. + +The optimizations in sections 3-7 above are described in the context of the original divsteps, but in the C implementation we also adapt most of them (not including "avoiding modulus operations", since it's not necessary to track *d, e*, and "constant-time operation", since we never calculate Jacobi symbols for secret data) to the posdivsteps version.