-
Notifications
You must be signed in to change notification settings - Fork 1k
/
scalar_4x64_impl.h
1000 lines (906 loc) · 32.1 KB
/
scalar_4x64_impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_IMPL_H
#define SECP256K1_SCALAR_REPR_IMPL_H
#include "checkmem.h"
#include "int128.h"
#include "modinv64_impl.h"
#include "util.h"
/* Limbs of the secp256k1 order. */
#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
#define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
#define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
#define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
/* Limbs of 2^256 minus the secp256k1 order. */
#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
#define SECP256K1_N_C_1 (~SECP256K1_N_1)
#define SECP256K1_N_C_2 (1)
/* Limbs of half the secp256k1 order. */
#define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
#define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
r->d[0] = v;
r->d[1] = 0;
r->d[2] = 0;
r->d[3] = 0;
SECP256K1_SCALAR_VERIFY(r);
}
SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
VERIFY_CHECK(count > 0 && count <= 32);
VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
return (a->d[offset >> 6] >> (offset & 0x3F)) & (0xFFFFFFFF >> (32 - count));
}
SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
VERIFY_CHECK(count > 0 && count <= 32);
VERIFY_CHECK(offset + count <= 256);
if ((offset + count - 1) >> 6 == offset >> 6) {
return secp256k1_scalar_get_bits_limb32(a, offset, count);
} else {
VERIFY_CHECK((offset >> 6) + 1 < 4);
return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & (0xFFFFFFFF >> (32 - count));
}
}
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
no |= (a->d[2] < SECP256K1_N_2);
yes |= (a->d[2] > SECP256K1_N_2) & ~no;
no |= (a->d[1] < SECP256K1_N_1);
yes |= (a->d[1] > SECP256K1_N_1) & ~no;
yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
return yes;
}
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) {
secp256k1_uint128 t;
VERIFY_CHECK(overflow <= 1);
secp256k1_u128_from_u64(&t, r->d[0]);
secp256k1_u128_accum_u64(&t, overflow * SECP256K1_N_C_0);
r->d[0] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, r->d[1]);
secp256k1_u128_accum_u64(&t, overflow * SECP256K1_N_C_1);
r->d[1] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, r->d[2]);
secp256k1_u128_accum_u64(&t, overflow * SECP256K1_N_C_2);
r->d[2] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, r->d[3]);
r->d[3] = secp256k1_u128_to_u64(&t);
SECP256K1_SCALAR_VERIFY(r);
return overflow;
}
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
int overflow;
secp256k1_uint128 t;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
secp256k1_u128_from_u64(&t, a->d[0]);
secp256k1_u128_accum_u64(&t, b->d[0]);
r->d[0] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, a->d[1]);
secp256k1_u128_accum_u64(&t, b->d[1]);
r->d[1] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, a->d[2]);
secp256k1_u128_accum_u64(&t, b->d[2]);
r->d[2] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, a->d[3]);
secp256k1_u128_accum_u64(&t, b->d[3]);
r->d[3] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
overflow = secp256k1_u128_to_u64(&t) + secp256k1_scalar_check_overflow(r);
VERIFY_CHECK(overflow == 0 || overflow == 1);
secp256k1_scalar_reduce(r, overflow);
SECP256K1_SCALAR_VERIFY(r);
return overflow;
}
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
secp256k1_uint128 t;
volatile int vflag = flag;
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(bit < 256);
bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
secp256k1_u128_from_u64(&t, r->d[0]);
secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
r->d[0] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, r->d[1]);
secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
r->d[1] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, r->d[2]);
secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F));
r->d[2] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, r->d[3]);
secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
r->d[3] = secp256k1_u128_to_u64(&t);
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(secp256k1_u128_hi_u64(&t) == 0);
}
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
int over;
r->d[0] = secp256k1_read_be64(&b32[24]);
r->d[1] = secp256k1_read_be64(&b32[16]);
r->d[2] = secp256k1_read_be64(&b32[8]);
r->d[3] = secp256k1_read_be64(&b32[0]);
over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
if (overflow) {
*overflow = over;
}
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
SECP256K1_SCALAR_VERIFY(a);
secp256k1_write_be64(&bin[0], a->d[3]);
secp256k1_write_be64(&bin[8], a->d[2]);
secp256k1_write_be64(&bin[16], a->d[1]);
secp256k1_write_be64(&bin[24], a->d[0]);
}
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
}
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
secp256k1_uint128 t;
SECP256K1_SCALAR_VERIFY(a);
secp256k1_u128_from_u64(&t, ~a->d[0]);
secp256k1_u128_accum_u64(&t, SECP256K1_N_0 + 1);
r->d[0] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, ~a->d[1]);
secp256k1_u128_accum_u64(&t, SECP256K1_N_1);
r->d[1] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, ~a->d[2]);
secp256k1_u128_accum_u64(&t, SECP256K1_N_2);
r->d[2] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, ~a->d[3]);
secp256k1_u128_accum_u64(&t, SECP256K1_N_3);
r->d[3] = secp256k1_u128_to_u64(&t) & nonzero;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a) {
/* Writing `/` for field division and `//` for integer division, we compute
*
* a/2 = (a - (a&1))/2 + (a&1)/2
* = (a >> 1) + (a&1 ? 1/2 : 0)
* = (a >> 1) + (a&1 ? n//2+1 : 0),
*
* where n is the group order and in the last equality we have used 1/2 = n//2+1 (mod n).
* For n//2, we have the constants SECP256K1_N_H_0, ...
*
* This sum does not overflow. The most extreme case is a = -2, the largest odd scalar. Here:
* - the left summand is: a >> 1 = (a - a&1)/2 = (n-2-1)//2 = (n-3)//2
* - the right summand is: a&1 ? n//2+1 : 0 = n//2+1 = (n-1)//2 + 2//2 = (n+1)//2
* Together they sum to (n-3)//2 + (n+1)//2 = (2n-2)//2 = n - 1, which is less than n.
*/
uint64_t mask = -(uint64_t)(a->d[0] & 1U);
secp256k1_uint128 t;
SECP256K1_SCALAR_VERIFY(a);
secp256k1_u128_from_u64(&t, (a->d[0] >> 1) | (a->d[1] << 63));
secp256k1_u128_accum_u64(&t, (SECP256K1_N_H_0 + 1U) & mask);
r->d[0] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, (a->d[1] >> 1) | (a->d[2] << 63));
secp256k1_u128_accum_u64(&t, SECP256K1_N_H_1 & mask);
r->d[1] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, (a->d[2] >> 1) | (a->d[3] << 63));
secp256k1_u128_accum_u64(&t, SECP256K1_N_H_2 & mask);
r->d[2] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
r->d[3] = secp256k1_u128_to_u64(&t) + (a->d[3] >> 1) + (SECP256K1_N_H_3 & mask);
#ifdef VERIFY
/* The line above only computed the bottom 64 bits of r->d[3]; redo the computation
* in full 128 bits to make sure the top 64 bits are indeed zero. */
secp256k1_u128_accum_u64(&t, a->d[3] >> 1);
secp256k1_u128_accum_u64(&t, SECP256K1_N_H_3 & mask);
secp256k1_u128_rshift(&t, 64);
VERIFY_CHECK(secp256k1_u128_to_u64(&t) == 0);
SECP256K1_SCALAR_VERIFY(r);
#endif
}
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
}
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
SECP256K1_SCALAR_VERIFY(a);
no |= (a->d[3] < SECP256K1_N_H_3);
yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */
no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
return yes;
}
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
/* If we are flag = 0, mask = 00...00 and this is a no-op;
* if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
volatile int vflag = flag;
uint64_t mask = -vflag;
uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
secp256k1_uint128 t;
SECP256K1_SCALAR_VERIFY(r);
secp256k1_u128_from_u64(&t, r->d[0] ^ mask);
secp256k1_u128_accum_u64(&t, (SECP256K1_N_0 + 1) & mask);
r->d[0] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, r->d[1] ^ mask);
secp256k1_u128_accum_u64(&t, SECP256K1_N_1 & mask);
r->d[1] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, r->d[2] ^ mask);
secp256k1_u128_accum_u64(&t, SECP256K1_N_2 & mask);
r->d[2] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, r->d[3] ^ mask);
secp256k1_u128_accum_u64(&t, SECP256K1_N_3 & mask);
r->d[3] = secp256k1_u128_to_u64(&t) & nonzero;
SECP256K1_SCALAR_VERIFY(r);
return 2 * (mask == 0) - 1;
}
/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
#define muladd(a,b) { \
uint64_t tl, th; \
{ \
secp256k1_uint128 t; \
secp256k1_u128_mul(&t, a, b); \
th = secp256k1_u128_hi_u64(&t); /* at most 0xFFFFFFFFFFFFFFFE */ \
tl = secp256k1_u128_to_u64(&t); \
} \
c0 += tl; /* overflow is handled on the next line */ \
th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
c1 += th; /* overflow is handled on the next line */ \
c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
}
/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
#define muladd_fast(a,b) { \
uint64_t tl, th; \
{ \
secp256k1_uint128 t; \
secp256k1_u128_mul(&t, a, b); \
th = secp256k1_u128_hi_u64(&t); /* at most 0xFFFFFFFFFFFFFFFE */ \
tl = secp256k1_u128_to_u64(&t); \
} \
c0 += tl; /* overflow is handled on the next line */ \
th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
c1 += th; /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK(c1 >= th); \
}
/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
#define sumadd(a) { \
unsigned int over; \
c0 += (a); /* overflow is handled on the next line */ \
over = (c0 < (a)); \
c1 += over; /* overflow is handled on the next line */ \
c2 += (c1 < over); /* never overflows by contract */ \
}
/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
#define sumadd_fast(a) { \
c0 += (a); /* overflow is handled on the next line */ \
c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
VERIFY_CHECK(c2 == 0); \
}
/** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. */
#define extract(n) { \
(n) = c0; \
c0 = c1; \
c1 = c2; \
c2 = 0; \
}
/** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. c2 is required to be zero. */
#define extract_fast(n) { \
(n) = c0; \
c0 = c1; \
c1 = 0; \
VERIFY_CHECK(c2 == 0); \
}
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) {
#ifdef USE_ASM_X86_64
/* Reduce 512 bits into 385. */
uint64_t m0, m1, m2, m3, m4, m5, m6;
uint64_t p0, p1, p2, p3, p4;
uint64_t c;
__asm__ __volatile__(
/* Preload. */
"movq 32(%%rsi), %%r11\n"
"movq 40(%%rsi), %%r12\n"
"movq 48(%%rsi), %%r13\n"
"movq 56(%%rsi), %%r14\n"
/* Initialize r8,r9,r10 */
"movq 0(%%rsi), %%r8\n"
"xorq %%r9, %%r9\n"
"xorq %%r10, %%r10\n"
/* (r8,r9) += n0 * c0 */
"movq %8, %%rax\n"
"mulq %%r11\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
/* extract m0 */
"movq %%r8, %q0\n"
"xorq %%r8, %%r8\n"
/* (r9,r10) += l1 */
"addq 8(%%rsi), %%r9\n"
"adcq $0, %%r10\n"
/* (r9,r10,r8) += n1 * c0 */
"movq %8, %%rax\n"
"mulq %%r12\n"
"addq %%rax, %%r9\n"
"adcq %%rdx, %%r10\n"
"adcq $0, %%r8\n"
/* (r9,r10,r8) += n0 * c1 */
"movq %9, %%rax\n"
"mulq %%r11\n"
"addq %%rax, %%r9\n"
"adcq %%rdx, %%r10\n"
"adcq $0, %%r8\n"
/* extract m1 */
"movq %%r9, %q1\n"
"xorq %%r9, %%r9\n"
/* (r10,r8,r9) += l2 */
"addq 16(%%rsi), %%r10\n"
"adcq $0, %%r8\n"
"adcq $0, %%r9\n"
/* (r10,r8,r9) += n2 * c0 */
"movq %8, %%rax\n"
"mulq %%r13\n"
"addq %%rax, %%r10\n"
"adcq %%rdx, %%r8\n"
"adcq $0, %%r9\n"
/* (r10,r8,r9) += n1 * c1 */
"movq %9, %%rax\n"
"mulq %%r12\n"
"addq %%rax, %%r10\n"
"adcq %%rdx, %%r8\n"
"adcq $0, %%r9\n"
/* (r10,r8,r9) += n0 */
"addq %%r11, %%r10\n"
"adcq $0, %%r8\n"
"adcq $0, %%r9\n"
/* extract m2 */
"movq %%r10, %q2\n"
"xorq %%r10, %%r10\n"
/* (r8,r9,r10) += l3 */
"addq 24(%%rsi), %%r8\n"
"adcq $0, %%r9\n"
"adcq $0, %%r10\n"
/* (r8,r9,r10) += n3 * c0 */
"movq %8, %%rax\n"
"mulq %%r14\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
"adcq $0, %%r10\n"
/* (r8,r9,r10) += n2 * c1 */
"movq %9, %%rax\n"
"mulq %%r13\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
"adcq $0, %%r10\n"
/* (r8,r9,r10) += n1 */
"addq %%r12, %%r8\n"
"adcq $0, %%r9\n"
"adcq $0, %%r10\n"
/* extract m3 */
"movq %%r8, %q3\n"
"xorq %%r8, %%r8\n"
/* (r9,r10,r8) += n3 * c1 */
"movq %9, %%rax\n"
"mulq %%r14\n"
"addq %%rax, %%r9\n"
"adcq %%rdx, %%r10\n"
"adcq $0, %%r8\n"
/* (r9,r10,r8) += n2 */
"addq %%r13, %%r9\n"
"adcq $0, %%r10\n"
"adcq $0, %%r8\n"
/* extract m4 */
"movq %%r9, %q4\n"
/* (r10,r8) += n3 */
"addq %%r14, %%r10\n"
"adcq $0, %%r8\n"
/* extract m5 */
"movq %%r10, %q5\n"
/* extract m6 */
"movq %%r8, %q6\n"
: "=&g"(m0), "=&g"(m1), "=&g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6)
: "S"(l), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
: "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc");
SECP256K1_CHECKMEM_MSAN_DEFINE(&m0, sizeof(m0));
SECP256K1_CHECKMEM_MSAN_DEFINE(&m1, sizeof(m1));
SECP256K1_CHECKMEM_MSAN_DEFINE(&m2, sizeof(m2));
SECP256K1_CHECKMEM_MSAN_DEFINE(&m3, sizeof(m3));
SECP256K1_CHECKMEM_MSAN_DEFINE(&m4, sizeof(m4));
SECP256K1_CHECKMEM_MSAN_DEFINE(&m5, sizeof(m5));
SECP256K1_CHECKMEM_MSAN_DEFINE(&m6, sizeof(m6));
/* Reduce 385 bits into 258. */
__asm__ __volatile__(
/* Preload */
"movq %q9, %%r11\n"
"movq %q10, %%r12\n"
"movq %q11, %%r13\n"
/* Initialize (r8,r9,r10) */
"movq %q5, %%r8\n"
"xorq %%r9, %%r9\n"
"xorq %%r10, %%r10\n"
/* (r8,r9) += m4 * c0 */
"movq %12, %%rax\n"
"mulq %%r11\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
/* extract p0 */
"movq %%r8, %q0\n"
"xorq %%r8, %%r8\n"
/* (r9,r10) += m1 */
"addq %q6, %%r9\n"
"adcq $0, %%r10\n"
/* (r9,r10,r8) += m5 * c0 */
"movq %12, %%rax\n"
"mulq %%r12\n"
"addq %%rax, %%r9\n"
"adcq %%rdx, %%r10\n"
"adcq $0, %%r8\n"
/* (r9,r10,r8) += m4 * c1 */
"movq %13, %%rax\n"
"mulq %%r11\n"
"addq %%rax, %%r9\n"
"adcq %%rdx, %%r10\n"
"adcq $0, %%r8\n"
/* extract p1 */
"movq %%r9, %q1\n"
"xorq %%r9, %%r9\n"
/* (r10,r8,r9) += m2 */
"addq %q7, %%r10\n"
"adcq $0, %%r8\n"
"adcq $0, %%r9\n"
/* (r10,r8,r9) += m6 * c0 */
"movq %12, %%rax\n"
"mulq %%r13\n"
"addq %%rax, %%r10\n"
"adcq %%rdx, %%r8\n"
"adcq $0, %%r9\n"
/* (r10,r8,r9) += m5 * c1 */
"movq %13, %%rax\n"
"mulq %%r12\n"
"addq %%rax, %%r10\n"
"adcq %%rdx, %%r8\n"
"adcq $0, %%r9\n"
/* (r10,r8,r9) += m4 */
"addq %%r11, %%r10\n"
"adcq $0, %%r8\n"
"adcq $0, %%r9\n"
/* extract p2 */
"movq %%r10, %q2\n"
/* (r8,r9) += m3 */
"addq %q8, %%r8\n"
"adcq $0, %%r9\n"
/* (r8,r9) += m6 * c1 */
"movq %13, %%rax\n"
"mulq %%r13\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
/* (r8,r9) += m5 */
"addq %%r12, %%r8\n"
"adcq $0, %%r9\n"
/* extract p3 */
"movq %%r8, %q3\n"
/* (r9) += m6 */
"addq %%r13, %%r9\n"
/* extract p4 */
"movq %%r9, %q4\n"
: "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4)
: "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
: "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc");
SECP256K1_CHECKMEM_MSAN_DEFINE(&p0, sizeof(p0));
SECP256K1_CHECKMEM_MSAN_DEFINE(&p1, sizeof(p1));
SECP256K1_CHECKMEM_MSAN_DEFINE(&p2, sizeof(p2));
SECP256K1_CHECKMEM_MSAN_DEFINE(&p3, sizeof(p3));
SECP256K1_CHECKMEM_MSAN_DEFINE(&p4, sizeof(p4));
/* Reduce 258 bits into 256. */
__asm__ __volatile__(
/* Preload */
"movq %q5, %%r10\n"
/* (rax,rdx) = p4 * c0 */
"movq %7, %%rax\n"
"mulq %%r10\n"
/* (rax,rdx) += p0 */
"addq %q1, %%rax\n"
"adcq $0, %%rdx\n"
/* extract r0 */
"movq %%rax, 0(%q6)\n"
/* Move to (r8,r9) */
"movq %%rdx, %%r8\n"
"xorq %%r9, %%r9\n"
/* (r8,r9) += p1 */
"addq %q2, %%r8\n"
"adcq $0, %%r9\n"
/* (r8,r9) += p4 * c1 */
"movq %8, %%rax\n"
"mulq %%r10\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
/* Extract r1 */
"movq %%r8, 8(%q6)\n"
"xorq %%r8, %%r8\n"
/* (r9,r8) += p4 */
"addq %%r10, %%r9\n"
"adcq $0, %%r8\n"
/* (r9,r8) += p2 */
"addq %q3, %%r9\n"
"adcq $0, %%r8\n"
/* Extract r2 */
"movq %%r9, 16(%q6)\n"
"xorq %%r9, %%r9\n"
/* (r8,r9) += p3 */
"addq %q4, %%r8\n"
"adcq $0, %%r9\n"
/* Extract r3 */
"movq %%r8, 24(%q6)\n"
/* Extract c */
"movq %%r9, %q0\n"
: "=g"(c)
: "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
: "rax", "rdx", "r8", "r9", "r10", "cc", "memory");
SECP256K1_CHECKMEM_MSAN_DEFINE(r, sizeof(*r));
SECP256K1_CHECKMEM_MSAN_DEFINE(&c, sizeof(c));
#else
secp256k1_uint128 c128;
uint64_t c, c0, c1, c2;
uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
uint64_t m0, m1, m2, m3, m4, m5;
uint32_t m6;
uint64_t p0, p1, p2, p3;
uint32_t p4;
/* Reduce 512 bits into 385. */
/* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */
c0 = l[0]; c1 = 0; c2 = 0;
muladd_fast(n0, SECP256K1_N_C_0);
extract_fast(m0);
sumadd_fast(l[1]);
muladd(n1, SECP256K1_N_C_0);
muladd(n0, SECP256K1_N_C_1);
extract(m1);
sumadd(l[2]);
muladd(n2, SECP256K1_N_C_0);
muladd(n1, SECP256K1_N_C_1);
sumadd(n0);
extract(m2);
sumadd(l[3]);
muladd(n3, SECP256K1_N_C_0);
muladd(n2, SECP256K1_N_C_1);
sumadd(n1);
extract(m3);
muladd(n3, SECP256K1_N_C_1);
sumadd(n2);
extract(m4);
sumadd_fast(n3);
extract_fast(m5);
VERIFY_CHECK(c0 <= 1);
m6 = c0;
/* Reduce 385 bits into 258. */
/* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */
c0 = m0; c1 = 0; c2 = 0;
muladd_fast(m4, SECP256K1_N_C_0);
extract_fast(p0);
sumadd_fast(m1);
muladd(m5, SECP256K1_N_C_0);
muladd(m4, SECP256K1_N_C_1);
extract(p1);
sumadd(m2);
muladd(m6, SECP256K1_N_C_0);
muladd(m5, SECP256K1_N_C_1);
sumadd(m4);
extract(p2);
sumadd_fast(m3);
muladd_fast(m6, SECP256K1_N_C_1);
sumadd_fast(m5);
extract_fast(p3);
p4 = c0 + m6;
VERIFY_CHECK(p4 <= 2);
/* Reduce 258 bits into 256. */
/* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */
secp256k1_u128_from_u64(&c128, p0);
secp256k1_u128_accum_mul(&c128, SECP256K1_N_C_0, p4);
r->d[0] = secp256k1_u128_to_u64(&c128); secp256k1_u128_rshift(&c128, 64);
secp256k1_u128_accum_u64(&c128, p1);
secp256k1_u128_accum_mul(&c128, SECP256K1_N_C_1, p4);
r->d[1] = secp256k1_u128_to_u64(&c128); secp256k1_u128_rshift(&c128, 64);
secp256k1_u128_accum_u64(&c128, p2);
secp256k1_u128_accum_u64(&c128, p4);
r->d[2] = secp256k1_u128_to_u64(&c128); secp256k1_u128_rshift(&c128, 64);
secp256k1_u128_accum_u64(&c128, p3);
r->d[3] = secp256k1_u128_to_u64(&c128);
c = secp256k1_u128_hi_u64(&c128);
#endif
/* Final reduction of r. */
secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
}
static void secp256k1_scalar_mul_512(uint64_t *l8, const secp256k1_scalar *a, const secp256k1_scalar *b) {
#ifdef USE_ASM_X86_64
const uint64_t *pb = b->d;
__asm__ __volatile__(
/* Preload */
"movq 0(%%rdi), %%r15\n"
"movq 8(%%rdi), %%rbx\n"
"movq 16(%%rdi), %%rcx\n"
"movq 0(%%rdx), %%r11\n"
"movq 8(%%rdx), %%r12\n"
"movq 16(%%rdx), %%r13\n"
"movq 24(%%rdx), %%r14\n"
/* (rax,rdx) = a0 * b0 */
"movq %%r15, %%rax\n"
"mulq %%r11\n"
/* Extract l8[0] */
"movq %%rax, 0(%%rsi)\n"
/* (r8,r9,r10) = (rdx) */
"movq %%rdx, %%r8\n"
"xorq %%r9, %%r9\n"
"xorq %%r10, %%r10\n"
/* (r8,r9,r10) += a0 * b1 */
"movq %%r15, %%rax\n"
"mulq %%r12\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
"adcq $0, %%r10\n"
/* (r8,r9,r10) += a1 * b0 */
"movq %%rbx, %%rax\n"
"mulq %%r11\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
"adcq $0, %%r10\n"
/* Extract l8[1] */
"movq %%r8, 8(%%rsi)\n"
"xorq %%r8, %%r8\n"
/* (r9,r10,r8) += a0 * b2 */
"movq %%r15, %%rax\n"
"mulq %%r13\n"
"addq %%rax, %%r9\n"
"adcq %%rdx, %%r10\n"
"adcq $0, %%r8\n"
/* (r9,r10,r8) += a1 * b1 */
"movq %%rbx, %%rax\n"
"mulq %%r12\n"
"addq %%rax, %%r9\n"
"adcq %%rdx, %%r10\n"
"adcq $0, %%r8\n"
/* (r9,r10,r8) += a2 * b0 */
"movq %%rcx, %%rax\n"
"mulq %%r11\n"
"addq %%rax, %%r9\n"
"adcq %%rdx, %%r10\n"
"adcq $0, %%r8\n"
/* Extract l8[2] */
"movq %%r9, 16(%%rsi)\n"
"xorq %%r9, %%r9\n"
/* (r10,r8,r9) += a0 * b3 */
"movq %%r15, %%rax\n"
"mulq %%r14\n"
"addq %%rax, %%r10\n"
"adcq %%rdx, %%r8\n"
"adcq $0, %%r9\n"
/* Preload a3 */
"movq 24(%%rdi), %%r15\n"
/* (r10,r8,r9) += a1 * b2 */
"movq %%rbx, %%rax\n"
"mulq %%r13\n"
"addq %%rax, %%r10\n"
"adcq %%rdx, %%r8\n"
"adcq $0, %%r9\n"
/* (r10,r8,r9) += a2 * b1 */
"movq %%rcx, %%rax\n"
"mulq %%r12\n"
"addq %%rax, %%r10\n"
"adcq %%rdx, %%r8\n"
"adcq $0, %%r9\n"
/* (r10,r8,r9) += a3 * b0 */
"movq %%r15, %%rax\n"
"mulq %%r11\n"
"addq %%rax, %%r10\n"
"adcq %%rdx, %%r8\n"
"adcq $0, %%r9\n"
/* Extract l8[3] */
"movq %%r10, 24(%%rsi)\n"
"xorq %%r10, %%r10\n"
/* (r8,r9,r10) += a1 * b3 */
"movq %%rbx, %%rax\n"
"mulq %%r14\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
"adcq $0, %%r10\n"
/* (r8,r9,r10) += a2 * b2 */
"movq %%rcx, %%rax\n"
"mulq %%r13\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
"adcq $0, %%r10\n"
/* (r8,r9,r10) += a3 * b1 */
"movq %%r15, %%rax\n"
"mulq %%r12\n"
"addq %%rax, %%r8\n"
"adcq %%rdx, %%r9\n"
"adcq $0, %%r10\n"
/* Extract l8[4] */
"movq %%r8, 32(%%rsi)\n"
"xorq %%r8, %%r8\n"
/* (r9,r10,r8) += a2 * b3 */
"movq %%rcx, %%rax\n"
"mulq %%r14\n"
"addq %%rax, %%r9\n"
"adcq %%rdx, %%r10\n"
"adcq $0, %%r8\n"
/* (r9,r10,r8) += a3 * b2 */
"movq %%r15, %%rax\n"
"mulq %%r13\n"
"addq %%rax, %%r9\n"
"adcq %%rdx, %%r10\n"
"adcq $0, %%r8\n"
/* Extract l8[5] */
"movq %%r9, 40(%%rsi)\n"
/* (r10,r8) += a3 * b3 */
"movq %%r15, %%rax\n"
"mulq %%r14\n"
"addq %%rax, %%r10\n"
"adcq %%rdx, %%r8\n"
/* Extract l8[6] */
"movq %%r10, 48(%%rsi)\n"
/* Extract l8[7] */
"movq %%r8, 56(%%rsi)\n"
: "+d"(pb)
: "S"(l8), "D"(a->d)
: "rax", "rbx", "rcx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "cc", "memory");
SECP256K1_CHECKMEM_MSAN_DEFINE(l8, sizeof(*l8) * 8);
#else
/* 160 bit accumulator. */
uint64_t c0 = 0, c1 = 0;
uint32_t c2 = 0;
/* l8[0..7] = a[0..3] * b[0..3]. */
muladd_fast(a->d[0], b->d[0]);
extract_fast(l8[0]);
muladd(a->d[0], b->d[1]);
muladd(a->d[1], b->d[0]);
extract(l8[1]);
muladd(a->d[0], b->d[2]);
muladd(a->d[1], b->d[1]);
muladd(a->d[2], b->d[0]);
extract(l8[2]);
muladd(a->d[0], b->d[3]);
muladd(a->d[1], b->d[2]);
muladd(a->d[2], b->d[1]);
muladd(a->d[3], b->d[0]);
extract(l8[3]);
muladd(a->d[1], b->d[3]);
muladd(a->d[2], b->d[2]);
muladd(a->d[3], b->d[1]);
extract(l8[4]);
muladd(a->d[2], b->d[3]);
muladd(a->d[3], b->d[2]);
extract(l8[5]);
muladd_fast(a->d[3], b->d[3]);
extract_fast(l8[6]);
VERIFY_CHECK(c1 == 0);
l8[7] = c0;
#endif
}
#undef sumadd
#undef sumadd_fast
#undef muladd
#undef muladd_fast
#undef extract
#undef extract_fast
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
uint64_t l[8];
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
secp256k1_scalar_mul_512(l, a, b);
secp256k1_scalar_reduce_512(r, l);
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
SECP256K1_SCALAR_VERIFY(k);
r1->d[0] = k->d[0];
r1->d[1] = k->d[1];
r1->d[2] = 0;
r1->d[3] = 0;
r2->d[0] = k->d[2];
r2->d[1] = k->d[3];
r2->d[2] = 0;
r2->d[3] = 0;
SECP256K1_SCALAR_VERIFY(r1);
SECP256K1_SCALAR_VERIFY(r2);
}
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
}
SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
uint64_t l[8];
unsigned int shiftlimbs;
unsigned int shiftlow;
unsigned int shifthigh;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
VERIFY_CHECK(shift >= 256);
secp256k1_scalar_mul_512(l, a, b);
shiftlimbs = shift >> 6;
shiftlow = shift & 0x3F;
shifthigh = 64 - shiftlow;
r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
SECP256K1_SCALAR_VERIFY(r);
}
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) {
uint64_t mask0, mask1;
volatile int vflag = flag;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_CHECKMEM_CHECK_VERIFY(r->d, sizeof(r->d));
mask0 = vflag + ~((uint64_t)0);
mask1 = ~mask0;
r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1);
r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1);
r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1);
r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1);
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_modinv64_signed62 *a) {
const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
/* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
* have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
*/
VERIFY_CHECK(a0 >> 62 == 0);
VERIFY_CHECK(a1 >> 62 == 0);
VERIFY_CHECK(a2 >> 62 == 0);
VERIFY_CHECK(a3 >> 62 == 0);
VERIFY_CHECK(a4 >> 8 == 0);
r->d[0] = a0 | a1 << 62;
r->d[1] = a1 >> 2 | a2 << 60;
r->d[2] = a2 >> 4 | a3 << 58;
r->d[3] = a3 >> 6 | a4 << 56;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_scalar *a) {
const uint64_t M62 = UINT64_MAX >> 2;
const uint64_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3];
SECP256K1_SCALAR_VERIFY(a);
r->v[0] = a0 & M62;
r->v[1] = (a0 >> 62 | a1 << 2) & M62;
r->v[2] = (a1 >> 60 | a2 << 4) & M62;
r->v[3] = (a2 >> 58 | a3 << 6) & M62;
r->v[4] = a3 >> 56;
}
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_scalar = {
{{0x3FD25E8CD0364141LL, 0x2ABB739ABD2280EELL, -0x15LL, 0, 256}},
0x34F20099AA774EC1LL
};
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
secp256k1_modinv64_signed62 s;
#ifdef VERIFY
int zero_in = secp256k1_scalar_is_zero(x);
#endif
SECP256K1_SCALAR_VERIFY(x);
secp256k1_scalar_to_signed62(&s, x);
secp256k1_modinv64(&s, &secp256k1_const_modinfo_scalar);
secp256k1_scalar_from_signed62(r, &s);
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
}
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
secp256k1_modinv64_signed62 s;
#ifdef VERIFY
int zero_in = secp256k1_scalar_is_zero(x);
#endif
SECP256K1_SCALAR_VERIFY(x);
secp256k1_scalar_to_signed62(&s, x);
secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_scalar);
secp256k1_scalar_from_signed62(r, &s);
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
}
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return !(a->d[0] & 1);
}
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */