-
Notifications
You must be signed in to change notification settings - Fork 1k
/
scalar_impl.h
297 lines (278 loc) · 11 KB
/
scalar_impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_SCALAR_IMPL_H
#define SECP256K1_SCALAR_IMPL_H
#ifdef VERIFY
#include <string.h>
#endif
#include "scalar.h"
#include "util.h"
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#if defined(EXHAUSTIVE_TEST_ORDER)
#include "scalar_low_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT128)
#include "scalar_4x64_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "scalar_8x32_impl.h"
#else
#error "Please select wide multiplication implementation"
#endif
static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) {
int overflow;
secp256k1_scalar_set_b32(r, bin, &overflow);
return (!overflow) & (!secp256k1_scalar_is_zero(r));
}
/* These parameters are generated using sage/gen_exhaustive_groups.sage. */
#if defined(EXHAUSTIVE_TEST_ORDER)
# if EXHAUSTIVE_TEST_ORDER == 13
# define EXHAUSTIVE_TEST_LAMBDA 9
# elif EXHAUSTIVE_TEST_ORDER == 199
# define EXHAUSTIVE_TEST_LAMBDA 92
# else
# error No known lambda for the specified exhaustive test group order.
# endif
/**
* Find r1 and r2 given k, such that r1 + r2 * lambda == k mod n; unlike in the
* full case we don't bother making r1 and r2 be small, we just want them to be
* nontrivial to get full test coverage for the exhaustive tests. We therefore
* (arbitrarily) set r2 = k + 5 (mod n) and r1 = k - r2 * lambda (mod n).
*/
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
*r2 = (*k + 5) % EXHAUSTIVE_TEST_ORDER;
*r1 = (*k + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
}
#else
/**
* The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
* lambda is: */
static const secp256k1_scalar secp256k1_const_lambda = SECP256K1_SCALAR_CONST(
0x5363AD4CUL, 0xC05C30E0UL, 0xA5261C02UL, 0x8812645AUL,
0x122E22EAUL, 0x20816678UL, 0xDF02967CUL, 0x1B23BD72UL
);
#ifdef VERIFY
static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k);
#endif
/*
* Both lambda and beta are primitive cube roots of unity. That is lamba^3 == 1 mod n and
* beta^3 == 1 mod p, where n is the curve order and p is the field order.
*
* Furthermore, because (X^3 - 1) = (X - 1)(X^2 + X + 1), the primitive cube roots of unity are
* roots of X^2 + X + 1. Therefore lambda^2 + lamba == -1 mod n and beta^2 + beta == -1 mod p.
* (The other primitive cube roots of unity are lambda^2 and beta^2 respectively.)
*
* Let l = -1/2 + i*sqrt(3)/2, the complex root of X^2 + X + 1. We can define a ring
* homomorphism phi : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. The kernel of phi
* is a lattice over Z[l] (considering Z[l] as a Z-module). This lattice is generated by a
* reduced basis {a1 + b1*l, a2 + b2*l} where
*
* - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
* - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
* - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
* - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
*
* "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
* (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
* and k2 are small in absolute value.
*
* The algorithm computes c1 = round(b2 * k / n) and c2 = round((-b1) * k / n), and gives
* k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
* compute r2 = k2 mod n, and r1 = k1 mod n = (k - r2 * lambda) mod n, avoiding the need for
* the constants a1 and a2.
*
* g1, g2 are precomputed constants used to replace division with a rounded multiplication
* when decomposing the scalar for an endomorphism-based point multiplication.
*
* The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
* Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
*
* The derivation is described in the paper "Efficient Software Implementation of Public-Key
* Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
* Section 4.3 (here we use a somewhat higher-precision estimate):
* d = a1*b2 - b1*a2
* g1 = round(2^384 * b2/d)
* g2 = round(2^384 * (-b1)/d)
*
* (Note that d is also equal to the curve order, n, here because [a1,b1] and [a2,b2]
* can be found as outputs of the Extended Euclidean Algorithm on inputs n and lambda).
*
* The function below splits k into r1 and r2, such that
* - r1 + lambda * r2 == k (mod n)
* - either r1 < 2^128 or -r1 mod n < 2^128
* - either r2 < 2^128 or -r2 mod n < 2^128
*
* See proof below.
*/
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
secp256k1_scalar c1, c2;
static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
);
static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
);
static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
0x3086D221UL, 0xA7D46BCDUL, 0xE86C90E4UL, 0x9284EB15UL,
0x3DAA8A14UL, 0x71E8CA7FUL, 0xE893209AUL, 0x45DBB031UL
);
static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL,
0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL
);
VERIFY_CHECK(r1 != k);
VERIFY_CHECK(r2 != k);
/* these _var calls are constant time since the shift amount is constant */
secp256k1_scalar_mul_shift_var(&c1, k, &g1, 384);
secp256k1_scalar_mul_shift_var(&c2, k, &g2, 384);
secp256k1_scalar_mul(&c1, &c1, &minus_b1);
secp256k1_scalar_mul(&c2, &c2, &minus_b2);
secp256k1_scalar_add(r2, &c1, &c2);
secp256k1_scalar_mul(r1, r2, &secp256k1_const_lambda);
secp256k1_scalar_negate(r1, r1);
secp256k1_scalar_add(r1, r1, k);
#ifdef VERIFY
secp256k1_scalar_split_lambda_verify(r1, r2, k);
#endif
}
#ifdef VERIFY
/*
* Proof for secp256k1_scalar_split_lambda's bounds.
*
* Let
* - epsilon1 = 2^256 * |g1/2^384 - b2/d|
* - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d|
* - c1 = round(k*g1/2^384)
* - c2 = round(k*g2/2^384)
*
* Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1
*
* |c1 - k*b2/d|
* =
* |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d|
* <= {triangle inequality}
* |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d|
* =
* |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d|
* < {rounding in c1 and 0 <= k < 2^256}
* 2^-1 + 2^256 * |g1/2^384 - b2/d|
* = {definition of epsilon1}
* 2^-1 + epsilon1
*
* Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2
*
* |c2 - k*(-b1)/d|
* =
* |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d|
* <= {triangle inequality}
* |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d|
* =
* |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d|
* < {rounding in c2 and 0 <= k < 2^256}
* 2^-1 + 2^256 * |g2/2^384 - (-b1)/d|
* = {definition of epsilon2}
* 2^-1 + epsilon2
*
* Let
* - k1 = k - c1*a1 - c2*a2
* - k2 = - c1*b1 - c2*b2
*
* Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128
*
* |k1|
* = {definition of k1}
* |k - c1*a1 - c2*a2|
* = {(a1*b2 - b1*a2)/n = 1}
* |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2|
* =
* |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)|
* <= {triangle inequality}
* a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2|
* < {Lemma 1 and Lemma 2}
* a1*(2^-1 + epslion1) + a2*(2^-1 + epsilon2)
* < {rounding up to an integer}
* (a1 + a2 + 1)/2
* < {rounding up to a power of 2}
* 2^128
*
* Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128
*
* |k2|
* = {definition of k2}
* |- c1*a1 - c2*a2|
* = {(b1*b2 - b1*b2)/n = 0}
* |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2|
* =
* |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)|
* <= {triangle inequality}
* (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2|
* < {Lemma 1 and Lemma 2}
* (-b1)*(2^-1 + epslion1) + b2*(2^-1 + epsilon2)
* < {rounding up to an integer}
* (-b1 + b2)/2 + 1
* < {rounding up to a power of 2}
* 2^128
*
* Let
* - r2 = k2 mod n
* - r1 = k - r2*lambda mod n.
*
* Notice that r1 is defined such that r1 + r2 * lambda == k (mod n).
*
* Lemma 5: r1 == k1 mod n.
*
* r1
* == {definition of r1 and r2}
* k - k2*lambda
* == {definition of k2}
* k - (- c1*b1 - c2*b2)*lambda
* ==
* k + c1*b1*lambda + c2*b2*lambda
* == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n}
* k - c1*a1 - c2*a2
* == {definition of k1}
* k1
*
* From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that
*
* - either r1 < 2^128 or -r1 mod n < 2^128
* - either r2 < 2^128 or -r2 mod n < 2^128.
*
* Q.E.D.
*/
static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k) {
secp256k1_scalar s;
unsigned char buf1[32];
unsigned char buf2[32];
/* (a1 + a2 + 1)/2 is 0xa2a8918ca85bafe22016d0b917e4dd77 */
static const unsigned char k1_bound[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xa2, 0xa8, 0x91, 0x8c, 0xa8, 0x5b, 0xaf, 0xe2, 0x20, 0x16, 0xd0, 0xb9, 0x17, 0xe4, 0xdd, 0x77
};
/* (-b1 + b2)/2 + 1 is 0x8a65287bd47179fb2be08846cea267ed */
static const unsigned char k2_bound[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x8a, 0x65, 0x28, 0x7b, 0xd4, 0x71, 0x79, 0xfb, 0x2b, 0xe0, 0x88, 0x46, 0xce, 0xa2, 0x67, 0xed
};
secp256k1_scalar_mul(&s, &secp256k1_const_lambda, r2);
secp256k1_scalar_add(&s, &s, r1);
VERIFY_CHECK(secp256k1_scalar_eq(&s, k));
secp256k1_scalar_negate(&s, r1);
secp256k1_scalar_get_b32(buf1, r1);
secp256k1_scalar_get_b32(buf2, &s);
VERIFY_CHECK(secp256k1_memcmp_var(buf1, k1_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k1_bound, 32) < 0);
secp256k1_scalar_negate(&s, r2);
secp256k1_scalar_get_b32(buf1, r2);
secp256k1_scalar_get_b32(buf2, &s);
VERIFY_CHECK(secp256k1_memcmp_var(buf1, k2_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k2_bound, 32) < 0);
}
#endif /* VERIFY */
#endif /* !defined(EXHAUSTIVE_TEST_ORDER) */
#endif /* SECP256K1_SCALAR_IMPL_H */