-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path_io.pyx
398 lines (325 loc) · 11.7 KB
/
_io.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# encoding: utf-8
# cython: profile=False, boundscheck=False, wraparound=False
from ._bp cimport BP
import time
import numpy as np
import pandas as pd
import json
cimport numpy as np
cimport cython
np.import_array()
cdef inline np.double_t length_from_edge(unicode token):
cdef:
Py_ssize_t split_idx
# 0.12345{0123} -> 0.12345
# OR 0.12345[0123] -> 0.12345
split_idx_curly = token.find('{')
split_idx_square = token.find('[')
split_idx = max(split_idx_curly, split_idx_square)
if split_idx == -1:
return np.double(token)
else:
return np.double(token[:split_idx])
cdef inline np.int32_t number_from_edge(unicode token):
cdef:
Py_ssize_t split_idx
Py_ssize_t end
# 0.12345{0123} -> 0123
# OR 0.12345[0123] -> 0123
split_idx_curly = token.find('{')
split_idx_square = token.find('[')
split_idx = max(split_idx_curly, split_idx_square)
if split_idx == -1:
return 0
else:
end = len(token)
return np.int32(token[split_idx + 1:end - 1])
cdef void _set_node_metadata(np.uint32_t ptr, unicode token,
np.ndarray[object, ndim=1] names,
np.ndarray[np.double_t, ndim=1] lengths,
np.ndarray[np.int32_t, ndim=1] edges):
"""Inplace update of names and lengths given token details"""
cdef:
np.double_t length
np.int32_t edge
Py_ssize_t split_idx, i, end
unicode name, token_parsed
name = None
length = 0.0
edge = 0
# NOTE: there is likely some fat to trim in this method. we do a lot
# of work per token, we could probably do that work smarter. as is,
# the changes to support edge numbers increase parsing ~20%, which
# is annoying but probably not a critical
if token[0] == u':':
token_parsed = token[1:]
length = length_from_edge(token_parsed)
edge = number_from_edge(token_parsed)
elif u':' in token:
split_idx = token.rfind(':')
name = token[:split_idx]
token_parsed = token[split_idx + 1:]
length = length_from_edge(token_parsed)
edge = number_from_edge(token_parsed)
name = name.strip("'").strip()
elif u'{' in token or u'[' in token:
# strip as " {123}" is valid?
token = token.strip()
end = len(token)
edge = np.int32(token.strip()[1:end - 1])
else:
name = token.replace("'", "").replace('"', "").strip()
names[ptr] = name
lengths[ptr] = length
edges[ptr] = edge
def write_newick(BP tree, object output, bint include_edge):
cdef:
list name_stack
list edge_stack
list length_stack
list open_paren_stack
object name
np.npy_float64 length
Py_ssize_t idx
np.npy_uint8 v
Py_ssize_t root_close
length_stack = []
name_stack = []
edge_stack = []
open_paren_stack = []
root_close = tree.close(0)
for idx, v in enumerate(tree.B):
if v:
if not tree.isleaf(idx):
output.write('(')
name_stack.append(tree.name(idx))
length_stack.append(tree.length(idx))
edge_stack.append(tree.edge(idx))
open_paren_stack.append(idx)
else:
name = name_stack.pop()
length = length_stack.pop()
edge = edge_stack.pop()
if name is not None:
# if we have magical characters, make sure we quote
if set(name) & {';', ',', '(', ')', ':', '_'}:
output.write("'%s'" % name)
else:
output.write(name)
if include_edge:
output.write(':%f{%d}' % (length, edge))
else:
output.write(':%f' % length)
if tree.nsibling(open_paren_stack.pop()) == 0:
if idx != root_close:
output.write(')')
else:
output.write(',')
output.write(';')
cpdef parse_newick(unicode data):
cdef:
np.uint32_t ptr, open_ptr
Py_ssize_t token_ptr, tmp, lag, datalen
BP topology
unicode token, last_token
np.ndarray[object, ndim=1] names
np.ndarray[np.double_t, ndim=1] lengths
np.ndarray[np.int32_t, ndim=1] edges
if data.count(',') == 0:
raise ValueError("Only trees with more than 1 node supported")
data = data.strip()
if not data.endswith(';'):
raise ValueError("Newick does not appear terminated with a semicolon")
datalen = len(data)
topology = _newick_to_bp(data)
names = np.full(len(topology.B), None, dtype=object)
lengths = np.zeros(len(topology.B), dtype=np.double)
edges = np.full(len(topology.B), 0, dtype=np.int32)
ptr = 0
token_ptr = _ctoken(data, datalen, 0)
token = data[0:token_ptr]
last_token = None
# lag reflects the scenario where ((x))y, where the label y gets may end
# up being associated with an earlier unnamed vertex. lag represents the
# offset between the topology pointer and the token pointer effectively.
lag = 0
while token != ';':
if token == '(':
# an open parenthesis never has metadata associated with it
ptr += 1
if (token == ')' or token == ',') and last_token == ')':
# determine if there are unnamed/unlengthed nodes
lag += 1
elif token not in '(),:;':
ptr += lag
lag = 0
open_ptr = topology.open(ptr)
_set_node_metadata(open_ptr, token, names, lengths, edges)
if topology.isleaf(ptr):
ptr += 2
else:
ptr += 1
last_token = token
tmp = _ctoken(data, datalen, token_ptr)
token = data[token_ptr:tmp]
token_ptr = tmp
topology.set_names(names)
topology.set_lengths(lengths)
topology.set_edges(edges)
return topology
cdef object _newick_to_bp(unicode data):
"""Convert newick to balanced parentheses
Newick is _similar_ to BP, but differs notably at the tips of the tree.
The complexity of the parse below comes from handling tips, and single
descendents. Examples of situations that introduce this complexity are:
((a,b)) -> 11101000
(a) -> 1100
() -> 1100
((a,b),c) -> 1110100100
(a,(b,c)) -> 1101101000
Newick is not required to have node labels on tips, and the interpretation
of a comma is dependent on prior state.
The strategy undertaken is to reduce the newick string to only structural
components. From there, the string is interpreted into tokens of: {"1",
"0", "10", "100"}, which directly translate into the resulting balanced
parentheses topology.
It is very likely the case that this parser can be done better with
improved efficiency.
"""
cdef:
Py_ssize_t i, topology_ptr, single_descendent
Py_UCS4 c, last_c
np.ndarray[np.uint8_t, ndim=1] topology
potential_single_descendant = False
topology = np.empty(len(data), dtype=np.uint8)
topology_ptr = 0
last_c = u'x'
in_quote = False
for i in range(len(data)):
c = data[i]
if c == u"'":
in_quote = not in_quote
else:
if in_quote:
continue
elif c == u'(':
# opening of a node
topology[topology_ptr] = 1
topology_ptr += 1
last_c = c
potential_single_descendant = True
elif c == u')':
# closing of a node
if potential_single_descendant or last_c == u',':
# we have a single descendant or a last child (i.e., ",)")
topology[topology_ptr] = 1
topology[topology_ptr + 1] = 0
topology[topology_ptr + 2] = 0
topology_ptr += 3
potential_single_descendant = False
else:
# it is possible to still have a single descendant in the case
# of a multiple single descendant: (...()...)
topology[topology_ptr] = 0
topology_ptr += 1
last_c = c
elif c == u',':
if last_c != u')':
# we have a new tip
topology[topology_ptr] = 1
topology[topology_ptr + 1] = 0
topology_ptr += 2
potential_single_descendant = False
last_c = c
else:
# ignore non-structure
pass
return BP(topology[:topology_ptr])
cdef inline int _ccheck(Py_UCS4 c):
"""structure check"""
cdef:
Py_ssize_t i
if c == u'(':
return 1
elif c == u')':
return 1
elif c == u',':
return 1
elif c == u';':
return 1
else:
return 0
cdef inline int _is_quote(Py_UCS4 c):
if c == u'"':
return 1
elif c == u"'":
return 1
else:
return 0
cdef inline Py_ssize_t _ctoken(unicode data, Py_ssize_t datalen, Py_ssize_t start):
cdef:
Py_ssize_t idx, in_quote = 0
Py_UCS4 c
if start == (datalen - 1):
return start + 1
for idx in range(start, datalen):
c = data[idx]
if in_quote:
if _is_quote(c):
in_quote = 0
continue
else:
if _is_quote(c):
in_quote = 1
continue
if _ccheck(c):
if idx == start:
return idx + 1
else:
return idx
return idx + 1
def parse_jplace(object data):
"""Takes a jplace string, returns a DataFrame of placements and the tree
Implementation specific caveats:
1) we do not support multiplicities. placements are required to have an "n"
entry, and we ignore "nm"
2) Matsen et al (https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031009)
define [] for denoting edge labels and {} for denoting edge numbers. We
currently support either [] OR {}, we do not support edges with both.
In addition, we REQUIRE the edge labels if specified to be integer.
If either of these caveats are problems, then we need to modify the code.
"""
cdef:
dict as_json
list fields, placements, fragments, p, placement_data,
list placement_inner_data, pquery, entry
unicode frag, newick
Py_ssize_t placement_idx, placement_inner_idx, fragment_idx,
Py_ssize_t n_fragments
BP tree
object df
set edges
as_json = json.loads(data)
newick = as_json['tree']
placement_data = as_json['placements']
fields = as_json['fields']
fields = ['fragment', ] + fields
placements = []
for placement_idx in range(len(placement_data)):
placement = placement_data[placement_idx]
placement_inner_data = placement['p']
if 'n' not in placement:
raise KeyError("jplace parsing limited to entries with 'n' keys")
fragments = placement['n']
n_fragments = len(fragments)
for placement_inner_idx in range(len(placement_inner_data)):
pquery = placement_inner_data[placement_inner_idx]
for fragment_idx in range(n_fragments):
frag = fragments[fragment_idx]
entry = [frag, ] + pquery
placements.append(entry)
tree = parse_newick(newick)
edges = {tree.edge(i) for i, v in enumerate(tree.B) if v}
df = pd.DataFrame(placements, columns=fields)
df = df[df['edge_num'].isin(edges)]
return df, tree