From ddc1ca9d8d6333105beadc95b6dee875c378dfd9 Mon Sep 17 00:00:00 2001 From: Gibraan Rahman Date: Thu, 27 May 2021 08:59:13 -0700 Subject: [PATCH] Update custom model docs page Also addresses #41. --- docs/custom_model.rst | 42 +++++++++++++++++++++++++----------------- 1 file changed, 25 insertions(+), 17 deletions(-) diff --git a/docs/custom_model.rst b/docs/custom_model.rst index 995799c..5deb347 100644 --- a/docs/custom_model.rst +++ b/docs/custom_model.rst @@ -14,8 +14,8 @@ First we will download the BIOM table and metadata from Qiita. .. code-block:: bash - wget -O data.zip "https://qiita.ucsd.edu/public_artifact_download/?artifact_id=44773" - wget -O metadata.zip "https://qiita.ucsd.edu/public_download/?data=sample_information&study_id=107" + wget -O data.zip "https://qiita.ucsd.edu/public_artifact_download/?artifact_id=94270" + wget -O metadata.zip "https://qiita.ucsd.edu/public_download/?data=sample_information&study_id=11913" unzip data.zip unzip metadata.zip @@ -265,20 +265,6 @@ Now we can add all the necessary parameters to BIRDMAn with the ``add_parameters } nb_lme.add_parameters(param_dict) -Finally, we compile and fit the model. - -.. note:: - - Fitting this model took approximately 6 minutes on my laptop. - -.. code-block:: python - - nb_lme.compile_model() - nb_lme.fit_model() - -Converting to ``InferenceData`` -------------------------------- - With a custom model there is a bit more legwork involved in converting to the ``arviz.InferenceData`` data structure. We will step through each of the parameters in this example. * ``params``: List of parameters you want to include in the posterior draws (must match Stan code). @@ -289,9 +275,11 @@ With a custom model there is a bit more legwork involved in converting to the `` * ``log_likelihood``: Name of variable holding log likelihood values (optional). * ``include_observed_data``: Whether to include the original feature table as a group. This is useful for certain diagnostics. +We pass all these arguments into the ``specify_model`` method of the ``Model`` object. + .. code-block:: python - inference = nb_lme.to_inference_object( + nb_lme.specify_model( params=["beta", "phi", "subj_int"], dims={ "beta": ["covariate", "feature"], @@ -312,4 +300,24 @@ With a custom model there is a bit more legwork involved in converting to the `` include_observed_data=True ) +Finally, we compile and fit the model. + +.. note:: + + Fitting this model took approximately 6 minutes on my laptop. + +.. code-block:: python + + nb_lme.compile_model() + nb_lme.fit_model() + +Converting to ``InferenceData`` +------------------------------- + +When the model has finished fitting, you can convert to an inference data assuming you have specified your model previously. + +.. code-block:: python + + inference = nb_lme.to_inference_object() + With this you can use the rest of the BIRDMAn suite as usual or directly interact with the ``arviz`` library!