-
Notifications
You must be signed in to change notification settings - Fork 192
/
sistine.py
442 lines (384 loc) · 15.3 KB
/
sistine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import cv2
import numpy as np
import sys, pdb
import pickle
import simulate
# dont change parameters
COMP_DIMENSION_X = 1440
COMP_DIMENSION_Y = 900
# parameters
MIDPOINT_DETECTION_SKIP_ZONE = 0.08
MIDPOINT_DETECTION_IGNORE_ZONE = 0.1
FINGER_COLOR_LOW = 90 # b in Lab space
FINGER_COLOR_HIGH = 110 # b in Lab space
MIN_FINGER_SIZE = 7000 # pixels
REFLECTION_MIN_RATIO = 0.1
FINGER_WIDTH_LOCATION_RATIO = 0.5 # percent of way down from point to dead space
MOVING_AVERAGE_WEIGHT = 0.5
CAPTURE_DIMENSION_X = 1280
CAPTURE_DIMENSION_Y = 720
WINDOW_SHIFT_X = (COMP_DIMENSION_X - CAPTURE_DIMENSION_X)/2
WINDOW_SHIFT_Y = (COMP_DIMENSION_Y - CAPTURE_DIMENSION_Y)/2
CALIBRATION_X_COORDS = [.3,.5,.7]
CALIBRATION_Y_COORDS = [.5,.7,.9]
VERT_STAGE_SETUP_TIME = 3
VERT_STAGE_TIME = 6
# unimportant parameters
LINE_WIDTH = 2
LINE_HEIGHT = 100
CIRCLE_RADIUS = 6
FINGER_RADIUS = 40
PURPLE = (255, 0, 255)
CYAN = (255, 255, 0)
BLUE = (255, 0, 0)
GREEN = (0, 255, 0)
YELLOW = (0, 255, 255)
RED = (0, 0, 255)
CALIB_CIRCLE_RADIUS = 10
def segmentImage(image):
# this is kinda wrong cause image is actually BGR
# but apparently it works??
image = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
image = cv2.inRange(image[:,:,2], FINGER_COLOR_LOW, FINGER_COLOR_HIGH)
return image
def opencv2system(ox, oy):
return (ox + WINDOW_SHIFT_X, oy + WINDOW_SHIFT_Y)
def findTouchPoint(contour, x, y, w, h):
buf = np.zeros((h, w))
cv2.drawContours(buf, [contour], -1, 255, 1, offset=(-x, -y))
thiny, thinx, width = None, None, float('inf')
topstart = int(round(h * MIDPOINT_DETECTION_SKIP_ZONE))
bottomstop = int(round(h * (1 - MIDPOINT_DETECTION_SKIP_ZONE)))
for row in range(topstart, bottomstop + 1):
left = 0
for i in range(w):
if buf[row][i] == 255:
left = i
break
right = w-1
for i in range(w-1, -1, -1):
if buf[row][i] == 255:
right = i
break
diff = right - left
if diff < width:
width = diff
thiny = row
thinx = int(left + diff / 2.0)
cv2.circle(buf, (thinx, thiny), CIRCLE_RADIUS, PURPLE, -1)
validstart = int(round(h * MIDPOINT_DETECTION_IGNORE_ZONE))
validstop = int(round(h * (1 - MIDPOINT_DETECTION_IGNORE_ZONE)))
if not (validstart < thiny < validstop):
return None, None, None, None
width_row = int(thiny + FINGER_WIDTH_LOCATION_RATIO * (validstop - thiny))
left = 0
for i in range(w):
if buf[width_row][i] == 255:
left = i
break
right = w-1
for i in range(w-1, -1, -1):
if buf[width_row][i] == 255:
right = i
break
widthloc = x + left
width = right - left
return thinx + x, thiny + y, widthloc, width
def findHoverPoint(
contour_big,
x1,
y1,
w1,
h1,
contour_small,
x2,
y2,
w2,
h2):
# this can probably be done more efficiently...
buf1 = np.zeros((h1, w1))
cv2.drawContours(buf1, [contour_big], -1, 255, 1, offset=(-x1, -y1))
left1 = 0
for i in range(w1):
if buf1[0][i] == 255:
left1 = i
break
right1 = w1 - 1
for i in range(w1-1, -1, -1):
if buf1[0][i] == 255:
right1 = i
break
mid1 = left1 + (right1 - left1) / 2.0
buf2 = np.zeros((h2, w2))
cv2.drawContours(buf2, [contour_big], -2, 255, 2, offset=(-x2, -y2))
left2 = 0
for i in range(w2):
if buf2[-1][i] == 255:
left2 = i
break
right2 = w2 - 1
for i in range(w2-1, -1, -1):
if buf2[-1][i] == 255:
right2 = i
break
mid2 = left2 + (right2 - left2) / 2.0
mid_y = ((y1) + (y2 + h2)) / 2.0
mid_x = ((x1 + mid1) + (x2 + mid2)) / 2.0
return int(mid_x), int(mid_y)
# find finger and touch / hover points in an image
# debugframe is the thing to draw on
# returns x, y, touch
# x and y and touch are none if nothing is found
# touch is true if it's a touch, otherwise it's false
def find(segmented_image, debugframe=None, options={}):
found_x, found_y, touch = None, None, None
if cv2.__version__.startswith('4'):
cnts, _ = cv2.findContours(segmented_image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
else:
_, cnts, _ = cv2.findContours(segmented_image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
byarea = []
for c in cnts:
area = cv2.contourArea(c)
byarea.append((area, c))
byarea.sort(key=lambda i: i[0])
if len(byarea) > 2:
# is there a finger?
largest_contour = byarea[-1][1]
x1, y1, w1, h1 = cv2.boundingRect(largest_contour)
largest_area = byarea[-1][0]
if largest_area > MIN_FINGER_SIZE:
# see if there's a reflection
smaller_contour = byarea[-2][1]
x2, y2, w2, h2 = cv2.boundingRect(smaller_contour)
smaller_area = byarea[-2][0]
# if they overlap in X and the smaller one is above the larger one
if (not (x1 + w1 < x2 or x2 + w2 < x1)) and y2 + h2 < y1 and \
smaller_area / largest_area >= REFLECTION_MIN_RATIO:
# hover
if debugframe is not None:
if not options['nocontour'] and not options['nodemodebug']:
cv2.drawContours(debugframe, [largest_contour], -1, GREEN, LINE_WIDTH)
cv2.drawContours(debugframe, [smaller_contour], -1, GREEN, LINE_WIDTH)
if not options['nobox'] and not options['nodemodebug']:
cv2.rectangle(debugframe, (x1, y1), (x1 + w1, y1 + h1), RED, LINE_WIDTH)
cv2.rectangle(debugframe, (x2, y2), (x2 + w2, y2 + h2), RED, LINE_WIDTH)
hover_x, hover_y = findHoverPoint(largest_contour, x1, y1, w1, h1,
smaller_contour, x2, y2, w2, h2)
return hover_x, hover_y, False
else:
# touch
# find the touch point height
touch_x, touch_y, wloc, width = findTouchPoint(largest_contour, x1, y1, w1, h1)
if touch_y is not None:
if debugframe is not None:
if not options['nocontour'] and not options['nodemodebug']:
cv2.drawContours(debugframe, [largest_contour], -1, GREEN, LINE_WIDTH)
if not options['nobox'] and not options['nodemodebug']:
cv2.rectangle(debugframe, (x1, y1), (x1 + w1, y1 + h1),
RED, LINE_WIDTH)
if not options['nowidth']:
cv2.line(debugframe, (wloc, touch_y + LINE_HEIGHT), (wloc, touch_y - LINE_HEIGHT),
BLUE, LINE_WIDTH)
cv2.line(debugframe, (wloc + width, touch_y + LINE_HEIGHT),
(wloc + width, touch_y - LINE_HEIGHT), BLUE, LINE_WIDTH)
return touch_x, touch_y, True
return None, None, None
def calibration(ind):
rows,cols,_ = (720, 1280, 3) # frame.shape
col = cols/2
pts = []
for i in range(len(CALIBRATION_X_COORDS)):
x_frac = CALIBRATION_X_COORDS[i]
for j in range(len(CALIBRATION_Y_COORDS)):
if j == 0 and i != 1:
continue
y_frac = CALIBRATION_Y_COORDS[j]
x = int(x_frac * CAPTURE_DIMENSION_X)
y = int(y_frac * CAPTURE_DIMENSION_Y)
pt = (x,y)
pts.append(pt)
pt = pts[ind]
x_calib, y_calib = pt
def _calibration(segmented, debugframe, options, ticks, drawframe, calib, state):
font = cv2.FONT_HERSHEY_SIMPLEX
if ticks > VERT_STAGE_SETUP_TIME:
cv2.putText(drawframe, 'Keep touching the dot', (10,50), font, 1, (255,255,255),2,cv2.LINE_AA)
cv2.circle(drawframe, (x_calib, y_calib), CALIB_CIRCLE_RADIUS, RED, -1)
x, y, touch = find(segmented, debugframe=drawframe, options=options)
if touch is not None:
cv2.circle(drawframe, (x,y), CIRCLE_RADIUS, PURPLE, -1)
calib['calibrationPts'][ind].append((x,y))
else:
cv2.putText(drawframe, 'Move your finger to the dot', (10,50), font, 1, (255,255,255),2,cv2.LINE_AA)
cv2.circle(drawframe, (x_calib, y_calib), CALIB_CIRCLE_RADIUS, GREEN, -1)
if ticks > VERT_STAGE_TIME:
# cleanup
calib['realPts'][ind] = pt
return False
return True
return _calibration
def mainLoop(segmented, debugframe, options, ticks, drawframe, calib, state):
if 'initialized' not in state:
nnn = (None, None, None)
state['last'] = [nnn, nnn, nnn] # last 3 results
state['last_drawn'] = None # a pair (x, y)
state['initialized'] = True
state['md'] = False
state['usemouse'] = False
x, y, touch = find(segmented, debugframe=drawframe, options=options)
state['last'].append((x, y, touch))
state['last'].pop(0)
if 'hom' not in calib:
webcam_points = calib['calibrationPts']
real_points = calib['realPts']
calib['orp'] = real_points
screen_points = []
for i in range(len(real_points)):
for _ in range(len(webcam_points[i])):
screen_points.append(real_points[i])
webcam_points = [i for s in webcam_points for i in s]
hom = findTransform(webcam_points, screen_points)
calib['hom'] = hom
if not ('nocalib' in sys.argv):
pickle.dump(calib, open('previous.pickle','w+'))
if not options['nocalib']:
for i, j in calib['orp']:
i_, j_ = applyTransform(i, j, np.linalg.inv(calib['hom']))
cv2.circle(drawframe, (i, j), CIRCLE_RADIUS, RED, -1)
cv2.line(drawframe, (i, j), (i_, j_), RED, LINE_WIDTH)
shouldMouse = state['usemouse']
font = cv2.FONT_HERSHEY_SIMPLEX
if shouldMouse:
cv2.putText(drawframe, 'Mouse on', (10,50), font, 1, (255,255,255),2,cv2.LINE_AA)
else:
cv2.putText(drawframe, 'Mouse off', (10,50), font, 1, (255,255,255),2,cv2.LINE_AA)
if touch is not None:
if not options['demo']:
cv2.circle(drawframe, (x, y), CIRCLE_RADIUS, PURPLE, -1)
x_, y_ = applyTransform(x, y, calib['hom'])
if state['last_drawn'] is not None:
x_ = int(x_ * MOVING_AVERAGE_WEIGHT + (1 - MOVING_AVERAGE_WEIGHT) * state['last_drawn'][0])
y_ = int(y_ * MOVING_AVERAGE_WEIGHT + (1 - MOVING_AVERAGE_WEIGHT) * state['last_drawn'][1])
state['last_drawn'] = (x_, y_)
cv2.circle(drawframe, (x_, y_), FINGER_RADIUS, CYAN, -1)
mx, my = opencv2system(x_,y_)
if shouldMouse:
simulate.mousemove(mx, my)
if touch:
if not state['md'] and shouldMouse:
simulate.mousedown(mx, my)
state['md'] = True
cv2.circle(drawframe, (x_, y_), FINGER_RADIUS, YELLOW, -1)
else:
if state['md'] and shouldMouse:
simulate.mouseup(mx, my)
state['md'] = False
cv2.circle(drawframe, (x_, y_), FINGER_RADIUS, CYAN, -1)
cv2.circle(drawframe, (x_, y_), CIRCLE_RADIUS, GREEN, -1)
else:
state['last_drawn'] = None
return True
# points are in the format [(x, y)]
def findTransform(webcam_points, screen_points):
print webcam_points
print screen_points
webcam_points = np.array(webcam_points).astype(np.float)
screen_points = np.array(screen_points).astype(np.float)
hom, mask = cv2.findHomography(webcam_points, screen_points, method=cv2.RANSAC)
return hom
# returns the transformed (x, y) as a pair
def applyTransform(x, y, homography):
inp = np.array([[[x, y]]], dtype=np.float)
res = cv2.perspectiveTransform(inp, homography)
x_, y_ = res[0,0]
return int(round(x_)), int(round(y_))
CALIBRATION_MESSAGE = """
During the calibration process, you will be
shown a series of 9 dots on your screen.
Touch the dot with your finger and hold your
finger at that position until the next dot
appears.
When the dot is green, it is not capturing
your finger position. When the dot is green,
it is recording information.
Enable/disable mouse control with "k" key.
When you are ready to begin, press space bar.
"""
def waitSetup(segmented, debugframe, options, ticks, drawframe, calib, state):
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(drawframe, 'Sistine Calibration', (10,50), font, 2, (255,255,255),2,cv2.LINE_AA)
for i, line in enumerate(CALIBRATION_MESSAGE.split('\n')):
cv2.putText(drawframe, line, (10,150 + i * 30), font, 1, (255,255,255),2,cv2.LINE_AA)
return True
def main():
cv2.ocl.setUseOpenCL(False) # some stuff dies if you don't do this
initialStageTicks = cv2.getTickCount()
calib = {
"calibrationPts":[[] for i in range(9)],
"realPts":[(0,0)] * 7
}
if 'nocalib' in sys.argv:
with open('previous.pickle') as f:
calib = pickle.load(f)
stages = [mainLoop]
else:
stages = [waitSetup] + [calibration(i) for i in range(7)] + [mainLoop]
currStage = stages.pop(0)
# settings
options = {}
if 'test' in sys.argv:
cap = cv2.VideoCapture('cv/fingers/fingers.mov')
else:
cap = cv2.VideoCapture(0)
options['orig'] = 'orig' in sys.argv
options['nobox'] = 'nobox' in sys.argv
options['nocontour'] = 'nocontour' in sys.argv
options['nowidth'] = 'nowidth' in sys.argv
options['nocalib'] = 'nocalib' in sys.argv
options['demo'] = 'demo' in sys.argv
options['nodemodebug'] = 'nodemodebug' in sys.argv
if options['demo']:
options['nocontour'] = True
options['nowidth'] = True
options['nobox'] = True
options['nocalib'] = True
debugframe = None
# main loop
state = {}
while True:
key = cv2.waitKey(1)
if key & 0xff == ord('q'):
break
elif key & 0xff == ord('k'):
state['usemouse'] = not state['usemouse']
elif key & 0xff == ord(' ') and currStage == waitSetup:
currStage = stages.pop(0)
initialStageTicks = cv2.getTickCount()
# frame by frame capture
# I think there's a callback-based way to do this as well, but I think
# this way works fine for us
ret, frame = cap.read()
if frame is None:
break
frame = cv2.flip(frame, 1) # unmirror left to right
segmented = segmentImage(frame)
# only matters for debugging
if options['orig']:
drawframe = frame
elif options['demo']:
drawframe = np.zeros_like(frame)
else:
drawframe = cv2.cvtColor(segmented, cv2.COLOR_GRAY2BGR)
ticks = (cv2.getTickCount() - initialStageTicks)/cv2.getTickFrequency()
if not currStage(segmented, debugframe, options, ticks, drawframe, calib, state):
currStage = stages.pop(0)
initialStageTicks = cv2.getTickCount()
cv2.imshow('drawframe', drawframe)
cv2.moveWindow('drawframe', WINDOW_SHIFT_X, WINDOW_SHIFT_Y)
# release everything
cap.release()
cv2.destroyAllWindows()
#if state['md']:
# simulate.mouseup(mx, my)
if __name__ == '__main__':
main()