-
Notifications
You must be signed in to change notification settings - Fork 116
/
mqp.py
171 lines (147 loc) · 5.83 KB
/
mqp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Medical Question Pairs dataset by McCreery et al (2020) contains pairs of medical questions and paraphrased versions of
the question prepared by medical professional.
"""
import csv
import os
from typing import Dict, Tuple
import datasets
from datasets import load_dataset
from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
author = {Krallinger, M., Rabal, O., Lourenço, A.},
title = {Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs},
journal = {KDD '20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining},
volume = {3458–3465},
year = {2020},
url = {https://github.com/curai/medical-question-pair-dataset},
doi = {},
biburl = {},
bibsource = {}
}
"""
_DATASETNAME = "mqp"
_DISPLAYNAME = "MQP"
_DESCRIPTION = """\
Medical Question Pairs dataset by McCreery et al (2020) contains pairs of medical questions and paraphrased versions of
the question prepared by medical professional. Paraphrased versions were labelled as similar (syntactically dissimilar
but contextually similar ) or dissimilar (syntactically may look similar but contextually dissimilar). Labels 1: similar, 0: dissimilar
"""
_HOMEPAGE = "https://github.com/curai/medical-question-pair-dataset"
_LICENSE = 'License information unavailable'
_URLs = {
_DATASETNAME: "https://raw.githubusercontent.com/curai/medical-question-pair-dataset/master/mqp.csv",
}
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class MQPDataset(datasets.GeneratorBasedBuilder):
"""Medical Question Pairing dataset"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="mqp_source",
version=SOURCE_VERSION,
description="MQP source schema",
schema="source",
subset_id="mqp",
),
BigBioConfig(
name="mqp_bigbio_pairs",
version=BIGBIO_VERSION,
description="MQP BigBio schema",
schema="bigbio_pairs",
subset_id="mqp",
),
]
DEFAULT_CONFIG_NAME = "mqp_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"text_1": datasets.Value("string"),
"text_2": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
# Using in pairs schema
elif self.config.schema == "bigbio_pairs":
features = pairs_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[_DATASETNAME]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
)
]
def _generate_examples(self, filepath, split):
"""Yields examples as (key, example) tuples."""
if split == "train": # There's only training dataset available atm
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(
csv_file,
quotechar='"',
delimiter=",",
quoting=csv.QUOTE_ALL,
skipinitialspace=True,
)
if self.config.schema == "source":
for id_, row in enumerate(csv_reader):
document_id, text_1, text_2, label = row
yield id_, {
"document_id": document_id,
"text_1": text_1,
"text_2": text_2,
"label": label,
}
elif self.config.schema == "bigbio_pairs":
# global id (uid) starts from 1
uid = 0
for id_, row in enumerate(csv_reader):
uid += 1
document_id, text_1, text_2, label = row
yield id_, {
"id": uid, # uid is an unique identifier for every record that starts from 1
"document_id": document_id,
"text_1": text_1,
"text_2": text_2,
"label": label,
}
else:
print("There's no test/val split available for the given dataset")
return