-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorlfow_test_client2.py
165 lines (137 loc) · 4.98 KB
/
tensorlfow_test_client2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
import cv2
import time
import threading
import os
import queue
import imagiz
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
# -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
# System call
os.system("")
# Class of different styles
class style():
BLACK = '\033[30m'
RED = '\033[31m'
GREEN = '\033[32m'
YELLOW = '\033[33m'
BLUE = '\033[34m'
MAGENTA = '\033[35m'
CYAN = '\033[36m'
WHITE = '\033[37m'
UNDERLINE = '\033[4m'
RESET = '\033[0m'
# -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
# Pix2Pix variables declaration
# <==================================================================>
generator = tf.saved_model.load("./model/pix2pixTF-TRT512")
# <==================================================================>
# -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
client1 = imagiz.TCP_Client(
server_ip='10.42.0.1', server_port=5550, client_name='cc2')
SIZE = 512
NORM = 255.5
# -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
class WebcamVideoStream:
def __init__(self, src=0, device=None):
# initialize the video camera stream and read the first frame
# from the stream
self.stream = cv2.VideoCapture(src, device)
(self.grabbed, self.frame) = self.stream.read()
# initialize the variable used to indicate if the thread should
# be stopped
self.stopped = False
def start(self):
# start the thread to read frames from the video stream
threading.Thread(target=self.update, args=()).start()
return self
def update(self):
# keep looping infinitely until the thread is stopped
while True:
# if the thread indicator variable is set, stop the thread
if self.stopped:
return
# otherwise, read the next frame from the stream
(self.grabbed, self.frame) = self.stream.read()
def read(self):
# return the frame most recently read
return self.frame
def stop(self):
# indicate that the thread should be stopped
self.stopped = True
def gstreamer_pipeline(
sensor_id=0,
capture_width=3840,
capture_height=2160,
display_width=1920, # 2560
display_height=1080, # 1440
framerate=60,
flip_method=0,
):
return (
"nvarguscamerasrc sensor-id=%d ! "
"video/x-raw(memory:NVMM), "
"width=(int)%d, height=(int)%d, "
"format=(string)NV12, framerate=(fraction)%d/1 ! "
"nvvidconv flip-method=%d ! "
"video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! "
"videoconvert ! "
"video/x-raw, format=(string)BGR ! appsink"
% (
sensor_id,
capture_width,
capture_height,
framerate,
flip_method,
display_width,
display_height,
)
)
# -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
def get_from_model(image):
input_image = tf.cast(image, tf.float32)
input_image = tf.image.resize(input_image, [SIZE, SIZE],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
input_image = (input_image / NORM) - 1
# input_image = load_from_video(image)
ext_image = tf.expand_dims(input_image, axis=0)
prediction = generator(ext_image, training=True)
# generated_image = generate_images(generator, ext_image)
# pil_image = tf.keras.preprocessing.image.array_to_img(
# generated_image)
pil_image = tf.keras.preprocessing.image.array_to_img(
prediction[0])
return pil_image
def main():
cameras = []
cap1 = WebcamVideoStream(src=gstreamer_pipeline(
sensor_id=1), device=cv2.CAP_GSTREAMER).start()
cameras.append(cap1)
try:
while True:
frame1 = cap1.read()
result_image = get_from_model(frame1)
client1.send(result_image)
except Exception as e:
print(style.RED + str(e))
for c in cameras:
c.stop()
except KeyboardInterrupt:
for c in cameras:
c.stop()
for c in cameras:
c.stop()
print(style.GREEN + "Exiting Main Thread")
if __name__ == "__main__":
main()