-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
52 lines (43 loc) · 1.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from dotenv import load_dotenv
from cnnClassifier.pipeline.stage_01_data_ingestion import DataIngestionPipeline
from cnnClassifier.pipeline.stage_02_prepare_base_model import PrepareBaseModelPipeline
from cnnClassifier.pipeline.stage_03_model_training import ModelTrainingPipeline
from cnnClassifier import logger
from cnnClassifier.pipeline.stage_04_model_evaluation import ModelEvaluationPipeline
load_dotenv()
STAGE_NAME = "Data Ingestion Stage"
try:
logger.info(f">>>>> stage {STAGE_NAME} started <<<<<")
obj = DataIngestionPipeline()
obj.main()
logger.info(f">>>>> stage {STAGE_NAME} completed <<<<<")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Prepare Base Model"
try:
logger.info(f">>>>> stage {STAGE_NAME} started <<<<<")
obj = PrepareBaseModelPipeline()
obj.main()
logger.info(f">>>>> stage {STAGE_NAME} completed <<<<<")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Model Training"
try:
logger.info(f">>>>> stage {STAGE_NAME} started <<<<<")
obj = ModelTrainingPipeline()
obj.main()
logger.info(f">>>>> stage {STAGE_NAME} completed <<<<<")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Model Evaluation and MLFlow"
try:
logger.info(f">>>>> stage {STAGE_NAME} started <<<<<")
obj = ModelEvaluationPipeline()
obj.main()
logger.info(f">>>>> stage {STAGE_NAME} completed <<<<<")
except Exception as e:
logger.exception(e)
raise e