-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_sweeps.py
227 lines (193 loc) · 9.18 KB
/
main_sweeps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import json
import math
import multiprocessing
import os
import shutil
import sys
from typing import Any, Dict, Type
import numpy as np
import pandas as pd
from pyntcloud import PyntCloud
from pyquaternion import Quaternion
from argoverse.utils.json_utils import save_json_dict
from argoverse.utils.se3 import SE3
from argoverse.utils.transform import quat2rotmat
from main import get_calibration_info, round_to_micros, write_ply
from nuscenes.nuscenes import NuScenes
"""
Converts the nuScenes unannotated sweeps into Argoverse format.
In the nuScenes dataset, samples contain annotated data sampled at a frequency
of 2Hz, whereas sweeps contains all the unannotated data. The capture frequency
for camera is 12Hz and for LiDar it 20Hz. We also convert samples to unannotated
Argoverse format.
"""
# nuscenes sensor on the left, corresponding argoverse sensor on right
SENSOR_NAMES = {
"LIDAR_TOP": "lidar",
"CAM_FRONT": "ring_front_center",
"CAM_FRONT_LEFT": "ring_front_left",
"CAM_FRONT_RIGHT": "ring_front_right",
"CAM_BACK_LEFT": "ring_side_left",
"CAM_BACK_RIGHT": "ring_side_right",
}
# 3-letter abbreviation of nuScene city names
CITY_TO_ID = {
"singapore-onenorth": "SON",
"boston-seaport": "BSP",
"singapore-queenstown": "SQT",
"singapore-hollandvillage": "SHV",
}
def main(nusc: NuScenes,args: argparse.Namespace, start_index: int, end_index: int) -> None:
"""
Convert sweeps and samples into (unannotated) Argoverse format. Overview of algorithm:
1) Iterate over all scenes in the NuScenes dataset. For each scene, obtain first sample in the scene.
2) Get the sample_data corresponding to each of the channels from the sample, and convert it to argo format.
3) While the sample_data is not corresponding to a key_frame, get the next sample_data, and repeat step 2.
4) Go to the next sample while we are in the same scene.
"""
OUTPUT_ROOT = args.argo_dir
NUSCENES_ROOT = args.nuscenes_dir
NUSCENES_VERSION = args.nuscenes_version
if not os.path.exists(OUTPUT_ROOT):
os.makedirs(OUTPUT_ROOT)
tot_scenes = len(nusc.scene)
for scene in nusc.scene[start_index:min(end_index, tot_scenes)]:
scene_token = scene["token"]
sample_token = scene["first_sample_token"]
scene_path = os.path.join(OUTPUT_ROOT, scene_token)
if not os.path.exists(scene_path):
os.makedirs(scene_path)
log_token = scene["log_token"]
nusc_log = nusc.get("log", log_token)
nusc_city = nusc_log["location"]
save_json_dict(os.path.join(scene_path, f"city_info.json"), {"city_name": CITY_TO_ID[nusc_city]})
# Calibration info for all the sensors
calibration_info = get_calibration_info(nusc, scene)
calib_path = os.path.join(scene_path, f"vehicle_calibration_info.json")
save_json_dict(calib_path, calibration_info)
while sample_token != "":
sample = nusc.get("sample", sample_token)
timestamp = round_to_micros(sample["timestamp"])
tracked_labels = []
# city_SE3_vehicle pose
ego_pose = None
nsweeps_lidar = 10
nsweeps_cam = 6
# Save ego pose to json file
poses_path = os.path.join(scene_path, f"poses")
if not os.path.exists(poses_path):
os.makedirs(poses_path)
# Copy nuscenes sensor data into argoverse format and get the pose of the vehicle in the city frame
for sensor, sensor_token in sample["data"].items():
if sensor in SENSOR_NAMES:
argo_sensor = SENSOR_NAMES[sensor]
output_sensor_path = os.path.join(scene_path, argo_sensor)
if not os.path.exists(output_sensor_path):
os.makedirs(output_sensor_path)
sensor_data = nusc.get("sample_data", sensor_token)
file_path = os.path.join(NUSCENES_ROOT, sensor_data["filename"])
i = 0
if sensor == "LIDAR_TOP":
# nuscenes lidar data is stored as (x, y, z, intensity, ring index)
while i < nsweeps_lidar and sensor_token != "":
sensor_data = nusc.get("sample_data", sensor_token)
file_path = os.path.join(NUSCENES_ROOT, sensor_data["filename"])
timestamp = round_to_micros(sensor_data["timestamp"])
# Not always exactly 10
if (sensor_data["is_key_frame"] and i != 0) or sample_token == "":
break
scan = np.fromfile(file_path, dtype=np.float32)
points = scan.reshape((-1, 5))
# Transform lidar points from point sensor frame to egovehicle frame
calibration = nusc.get(
"calibrated_sensor",
sensor_data["calibrated_sensor_token"],
)
egovehicle_R_lidar = quat2rotmat(calibration["rotation"])
egovehicle_t_lidar = np.array(calibration["translation"])
egovehicle_SE3_lidar = SE3(
rotation=egovehicle_R_lidar,
translation=egovehicle_t_lidar,
)
points_egovehicle = egovehicle_SE3_lidar.transform_point_cloud(points[:, :3])
write_ply(points_egovehicle, points, output_sensor_path, timestamp)
if not os.path.isfile(os.path.join(poses_path, f"city_SE3_egovehicle_{timestamp}.json")):
ego_pose = nusc.get("ego_pose", sensor_data["ego_pose_token"])
ego_pose_dict = {
"rotation": ego_pose["rotation"],
"translation": ego_pose["translation"],
}
save_json_dict(
os.path.join(poses_path, f"city_SE3_egovehicle_{timestamp}.json"), ego_pose_dict
)
sensor_token = sensor_data["next"]
else:
while i < nsweeps_cam and sensor_token != "":
sensor_data = nusc.get("sample_data", sensor_token)
file_path = os.path.join(NUSCENES_ROOT, sensor_data["filename"])
timestamp = round_to_micros(sensor_data["timestamp"])
# Not always exactly 6
if sensor_data["is_key_frame"] and i != 0:
break
shutil.copy(
file_path,
os.path.join(output_sensor_path, f"{argo_sensor}_{timestamp}.jpg"),
)
sensor_token = sensor_data["next"]
if not os.path.isfile(os.path.join(poses_path, f"city_SE3_egovehicle_{timestamp}.json")):
ego_pose = nusc.get("ego_pose", sensor_data["ego_pose_token"])
ego_pose_dict = {
"rotation": ego_pose["rotation"],
"translation": ego_pose["translation"],
}
save_json_dict(
os.path.join(poses_path, f"city_SE3_egovehicle_{timestamp}.json"), ego_pose_dict
)
sample_token = sample["next"]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--nuscenes-dir",
default="nuscenes",
type=str,
help="the path to the directory where the NuScenes data is stored",
)
parser.add_argument(
"--nuscenes-version",
default="v1.0-mini",
type=str,
help="the version of the NuScenes data to convert",
)
parser.add_argument(
"--argo-dir",
default="nuscenes_to_argoverse/output",
type=str,
help="the path to the directory where the converted data should be written",
)
args = parser.parse_args()
jobs = []
NUSCENES_ROOT = args.nuscenes_dir
NUSCENES_VERSION = args.nuscenes_version
num_processes = 30
nusc = NuScenes(version=NUSCENES_VERSION, dataroot=NUSCENES_ROOT, verbose=True)
total_scenes = len(nusc.scene)
chunk_size = math.ceil(total_scenes / num_processes)
print(f"Will divide {total_scenes} items between {num_processes} processes")
for i in range(num_processes):
start_index = chunk_size * i
end_index = start_index + chunk_size
p = multiprocessing.Process(
target=main,
args=(
nusc,
args,
start_index,
end_index,
),
)
jobs.append(p)
p.start()
for job in jobs:
job.join()
print("Finished")