-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
176 lines (150 loc) · 6.39 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import os
import json
import numpy as np
import tarfile
from PIL import Image
from torch.utils import data
from torchvision import datasets, transforms
from torchvision.datasets.folder import ImageFolder, default_loader
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
class INatDataset(ImageFolder):
def __init__(self, root, train=True, year=2018, transform=None, target_transform=None,
category='name', loader=default_loader):
self.transform = transform
self.loader = loader
self.target_transform = target_transform
self.year = year
# assert category in ['kingdom','phylum','class','order','supercategory','family','genus','name']
path_json = os.path.join(root, f'{"train" if train else "val"}{year}.json')
with open(path_json) as json_file:
data = json.load(json_file)
with open(os.path.join(root, 'categories.json')) as json_file:
data_catg = json.load(json_file)
path_json_for_targeter = os.path.join(root, f"train{year}.json")
with open(path_json_for_targeter) as json_file:
data_for_targeter = json.load(json_file)
targeter = {}
indexer = 0
for elem in data_for_targeter['annotations']:
king = []
king.append(data_catg[int(elem['category_id'])][category])
if king[0] not in targeter.keys():
targeter[king[0]] = indexer
indexer += 1
self.nb_classes = len(targeter)
self.samples = []
for elem in data['images']:
cut = elem['file_name'].split('/')
target_current = int(cut[2])
path_current = os.path.join(root, cut[0], cut[2], cut[3])
categors = data_catg[target_current]
target_current_true = targeter[categors[category]]
self.samples.append((path_current, target_current_true))
# __getitem__ and __len__ inherited from ImageFolder
class ImageTarDataset(data.Dataset):
def __init__(self, tar_file, return_labels=False, transform=transforms.ToTensor()):
'''
return_labels:
Whether to return labels with the samples
transform:
A function/transform that takes in an PIL image and returns a transformed version. E.g, transforms.RandomCrop
'''
self.tar_file = tar_file
self.tar_handle = None
categories_set = set()
self.tar_members = []
self.categories = {}
self.categories_to_examples = {}
with tarfile.open(tar_file, 'r:') as tar:
for index, tar_member in enumerate(tar.getmembers()):
if tar_member.name.count('/') != 2:
continue
category = self._get_category_from_filename(tar_member.name)
categories_set.add(category)
self.tar_members.append(tar_member)
cte = self.categories_to_examples.get(category, [])
cte.append(index)
self.categories_to_examples[category] = cte
categories_set = sorted(categories_set)
for index, category in enumerate(categories_set):
self.categories[category] = index
self.num_examples = len(self.tar_members)
self.indices = np.arange(self.num_examples)
self.num = self.__len__()
print("Loaded the dataset from {}. It contains {} samples.".format(tar_file, self.num))
self.return_labels = return_labels
self.transform = transform
def _get_category_from_filename(self, filename):
begin = filename.find('/')
begin += 1
end = filename.find('/', begin)
return filename[begin:end]
def __len__(self):
return self.num_examples
def __getitem__(self, index):
index = self.indices[index]
if self.tar_handle is None:
self.tar_handle = tarfile.open(self.tar_file, 'r:')
sample = self.tar_handle.extractfile(self.tar_members[index])
image = Image.open(sample).convert('RGB')
image = self.transform(image)
if self.return_labels:
category = self.categories[self._get_category_from_filename(
self.tar_members[index].name)]
return image, category
return image
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform)
nb_classes = 100
elif args.data_set == 'IMNET':
if args.data_type == 'tar':
root = os.path.join(args.data_path, 'train.tar' if is_train else 'val.tar')
dataset = ImageTarDataset(root, return_labels=True, transform=transform)
elif args.data_type == 'folder':
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == 'INAT':
dataset = INatDataset(args.data_path, train=is_train, year=2018,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
elif args.data_set == 'INAT19':
dataset = INatDataset(args.data_path, train=is_train, year=2019,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
return dataset, nb_classes
def build_transform(is_train, args):
resize_im = args.input_size > 32
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
size = int((256 / 224) * args.input_size)
t.append(
transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)