-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSelfConnectEval2.dfy
646 lines (624 loc) · 26.9 KB
/
SelfConnectEval2.dfy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
module SelfConnectEval2 {
import opened Circ
import opened Scuf
import opened SelfConnect
import opened MapFunction
import opened Eval
import opened Utils
import opened Subcircuit
import opened ConservedSubcircuit
import opened Path
import opened Path2
// At the toplevel we're trying to prove that when we connect some outputs to some inputs we the resulting
// circuit is consistent with the updated UpdateFunction.
// The new update function does:
// 1) Set all the recycled inputs to 0.
// 2) Run the old update function to get the outputs. The output values from this are correct for the connected outputs
// because there are no connections from the inputs to the outputs internally.
// 3) Set the recycles inputs to the proper values from the outputs.
// 4) Run the old update function again.
// Proof steps.
// 1) Prove that Evaluation using fi_actual matches Evaluation using fi.
// Evaluate(new_c, np, fi) == Evaluate(new_c, np, fi_with_real_outputs)
// 2) Prove that the result for c and new_c will be the same if all the connections are in fi
// Evaluate(new_c, np, fi_with_real_outputs) == Evaluate(c, np, fi_with_real_outputs)
// 2) Prove that Evaluation using fi_actual matches old_update(fi_actual)
// Evaluate(c, np, fi_with_real_outputs) == EvalOk(UFOld(fi_with_real_outputs))
// 3) Prove that old_update(fi_actual) == new_update(fi)
// EvalOk(UFOld(fi_with_real_outputs)) == EvalOk(UFNew(fi))
//
// Thus we get Evaluate(new_c, np, fi) == EvalOk(UFNew(fi))
// (1) is probably going to be the hardest.
// Having a different FI is only going to have an effect when we're at an INP that is in fi_with_real_inputs
// but not in fi.
// At this point we know that EvaluateINP(new, path, fi_with_real_outputs) is just EvalOk(fi_with_real_outputs[inp])
// however we need to prove this is the same with fi.
// It will be EvaluateONP(new, path + corresponding_onp, fi). We need to be able to prove that if onp is in the connected outputs
// that
// a) EvaluateONP(new_c, path, fi) == EvaluateONP(new_c, path, fi_with_fake_outputs)
// b) EvaluateONP(new_c, path, fi_with_fake_outputs) == EvaluateONP(c, path, fi_with_fake_outputs)
// c) EvaluateONP(c, path, fi_with_fake_outputs) == EvalOk(UFOld(fi_with_fake_outputs))
// d) EvalOK(UFOld(fi_with_real_outputs)) == EvalOK(UFOld(fi_with_fake_outputs))) if onp is in connected outputs.
lemma EvaluateSelfConnectOldONP(c: Circuit, s: Scuf, conn: InternalConnection, np: NP, fi: FI)
//
// Here we need to prove that when we take a circuit and connect some of the input points to
// other nodes it doesn't effect the evaluation.
// This is because at the input points the evaluation is terminated.
//
requires c.Valid()
requires s.Valid(c)
requires conn.Valid()
requires ScufConnectionConsistent(c, s, conn)
requires FIValid(fi, s.mp.inputs, s.mp.state)
requires NPValid(c, np)
requires np in s.mp.outputs || np in StateINPs(s.mp.state)
ensures
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
&& FICircuitValid(new_c, FItoKeys(fi))
&& FICircuitValid(c, FItoKeys(fi))
&& (Evaluate(new_c, np, fi) == Evaluate(c, np, fi))
{
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
assert ConservedValid(c, new_c, s, FItoKeys(fi)) by {
assert c.Valid();
assert new_c.Valid();
assert s.Valid(c);
assert SubcircuitWeaklyConserved(c, new_c, s.sc);
assert (Seq.ToSet(s.mp.inputs) == fi.inputs.Keys);
assert (Seq.ToSet(s.mp.state) == fi.state.Keys);
assert OutputsInFOutputs(new_c, s) by {
reveal Scuf.SomewhatValidRelaxInputs();
assert OutputsInFOutputs(c, s);
reveal ConnOutputs();
assert NoNewExternalConnections(c, new_c, s.sc);
reveal NoNewExternalConnections();
assert ConnOutputs(c, s.sc) == ConnOutputs(new_c, s.sc);
}
}
assert np.n in s.sc by {
reveal NPsInSc();
FOutputsInSc(c, s);
reveal Seq.ToSet();
if np in s.mp.outputs {
assert np.n in s.sc;
}
if np in StateINPs(s.mp.state) {
assert np.n in s.sc;
}
}
EvaluateConserved(c, new_c, s, np, fi);
}
lemma EvaluateWithActual(c: Circuit, s: Scuf, conn: InternalConnection, np: NP, fi: FI)
requires c.Valid()
requires s.Valid(c)
requires conn.Valid()
requires ScufConnectionConsistent(c, s, conn)
requires
&& var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
&& FIValid(fi, new_s.mp.inputs, new_s.mp.state)
&& var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& (np in s.mp.outputs || np in StateINPs(s.mp.state))
&& var conn_outputs := conn.GetConnectedOutputs(s.mp);
&& var conn_inputs := conn.GetConnectedInputs(s.mp);
&& !PathExistsBetweenNPSets(new_c, conn_outputs, conn_inputs)
ensures
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& NPValid(new_c, np)
&& FICircuitValid(new_c, FItoKeys(fi_second_pass)) && FICircuitValid(new_c, FItoKeys(fi))
&& (Evaluate(new_c, np, fi_second_pass) == Evaluate(new_c, np, fi))
{
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
assert NPValid(new_c, np) by {
ScufFOutputsAreValid(c, s);
}
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
assert FICircuitValid(c, FItoKeys(fi)) && FICircuitValid(new_c, FItoKeys(fi_second_pass)) && FICircuitValid(new_c, FItoKeys(fi)) by {
reveal FICircuitValid();
ScufFInputsAreValid(c, s);
reveal Seq.ToSet();
reveal Circuit.Valid();
reveal AllSeq();
StateIsSeq(c, s);
}
assert FICircuitValid(new_c, FItoKeys(fi));
reveal Seq.HasNoDuplicates();
reveal PathValid();
if ONPValid(c, np) {
EvaluateONPInnerSelfConnect(c, s, conn, [np], fi);
} else {
EvaluateINPInnerSelfConnect(c, s, conn, [np], fi);
}
}
lemma EvaluateONPInnerConnectedOutputs(c: Circuit, s: Scuf, conn: InternalConnection, path: seq<NP>, fi: FI, outputs: seq<bool>)
//
// Here we prove that if when we evaluate one of the outputs that we have connected to an input,
// the result of the evaluation is not effected is we remove the connected inputs from the
// termination points.
// This is true because we enforce that there are not paths from the connected outputs to the connected
// inputs.
//
requires c.Valid()
requires s.Valid(c)
requires conn.Valid()
requires ScufConnectionConsistent(c, s, conn)
requires
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
&& FIValid(fi, new_s.mp.inputs, new_s.mp.state)
&& (|outputs| == |s.mp.outputs|)
&& var fi_pass := conn.FIFromOutputs(s.mp, fi, outputs);
&& EvaluateONPInnerRequirements(new_c, path, FItoKeys(fi))
&& EvaluateONPInnerRequirements(new_c, path, FItoKeys(fi_pass))
&& PathValid(new_c, path)
&& NPValid(new_c, Seq.Last(path))
&& (|path| > 1 ==> !PathExists(new_c, Seq.Last(path), path[|path|-2]))
&& (Seq.Last(path) in conn.GetConnectedOutputs(s.mp))
ensures
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var fi_pass := conn.FIFromOutputs(s.mp, fi, outputs);
reveal FICircuitValid();
&& (EvaluateONPInner(new_c, path, fi_pass) == EvaluateONPInner(new_c, path, fi))
&& reveal Seq.ToSet();
&& (EvaluateONPInner(new_c, path, fi_pass) == EvalOk(MFLookup(s, fi_pass, Seq.Last(path))))
{
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var np := Seq.Last(path);
var fi_pass := conn.FIFromOutputs(s.mp, fi, outputs);
var onps := conn.GetConnectedOutputs(s.mp);
var inps := conn.GetConnectedInputs(s.mp);
assert Seq.ToSet(new_s.mp.inputs) == Seq.ToSet(s.mp.inputs) - inps;
assert fi == FI(fi_pass.inputs - inps, fi_pass.state) by {
assert fi.state == fi_pass.state;
var output_width := |s.mp.outputs|;
var sni := new_s.mp.fi2si(fi);
conn.NIO2I2NI(sni.inputs, outputs);
assert fi.inputs.Keys == fi_pass.inputs.Keys - inps;
assert fi.inputs == fi_pass.inputs -inps by {
forall np | np in fi.inputs
ensures fi.inputs[np] == fi_pass.inputs[np]
{
conn.FIFromOutputsMatchingKeyMatchingValue(s.mp, s.uf, fi, outputs);
}
}
}
assert ONPsValid(c, onps) && ONPsValid(new_c, onps) by {
ScufFOutputsAreValid(c, s);
reveal Seq.ToSet();
reveal ONPsValid();
}
assert !PathExistsBetweenNPSets(new_c, onps, inps) by {
reveal ScufConnectionConsistent();
assert ONPsValid(c, onps);
StillNoPathExistsBetweenNPSets(c, new_c, onps, inps);
}
assert FICircuitValid(new_c, FItoKeys(fi_pass)) by {
reveal FICircuitValid();
}
NoPathExistsBetweenNPSetsToToNPSet(new_c, onps, inps, Seq.Last(path));
assert !PathExistsToNPSet(new_c, Seq.Last(path), StateONPsFromSet({})) by {
reveal PathExistsToNPSet();
}
EvaluateONPInnerReduceFI(new_c, path, fi_pass, inps, {});
assert fi == FI(fi_pass.inputs - inps, fi_pass.state - {});
assert EvaluateONPInner(new_c, path, fi) == EvaluateONPInner(new_c, path, fi_pass);
assert Seq.HasNoDuplicates([Seq.Last(path)]) && PathValid(new_c, [Seq.Last(path)]) by {
reveal Seq.HasNoDuplicates();
reveal PathValid();
}
calc {
EvaluateONPInner(new_c, path, fi_pass);
{
reveal Seq.HasNoDuplicates();
reveal PathValid();
var prefix := if |path| > 1 then ValidPathSegment(new_c, path, 0, |path|-1) else [];
EvaluateONPInnerPrepend(new_c, prefix, [Seq.Last(path)], fi_pass);
assert path == prefix + [Seq.Last(path)];
}
EvaluateONPInner(new_c, [Seq.Last(path)], fi_pass);
Evaluate(new_c, Seq.Last(path), fi_pass);
{
reveal InternalConnection.ConnectionsValid();
EvaluateSelfConnectOldONP(c, s, conn, Seq.Last(path), fi_pass);
}
Evaluate(c, Seq.Last(path), fi_pass);
{
assert s.Valid(c);
reveal InternalConnection.ConnectionsValid();
reveal Scuf.EvaluatesCorrectly();
}
EvalOk(MFLookup(s, fi_pass, Seq.Last(path)));
}
}
ghost predicate EvaluateINPInnerSelfConnectRequirements(
c: Circuit, s: Scuf, conn: InternalConnection, path: seq<NP>, fi: FI)
{
&& c.Valid()
&& s.Valid(c)
&& conn.Valid()
&& ScufConnectionConsistent(c, s, conn)
&& var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
&& FIValid(fi, new_s.mp.inputs, new_s.mp.state)
&& var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& EvaluateINPInnerRequirements(new_c, path, FItoKeys(fi_second_pass))
&& EvaluateINPInnerRequirements(new_c, path, FItoKeys(fi))
&& var conn_outputs := conn.GetConnectedOutputs(s.mp);
&& var conn_inputs := conn.GetConnectedInputs(s.mp);
&& !PathExistsBetweenNPSets(new_c, conn_outputs, conn_inputs)
}
lemma ONPNotInPath(c: Circuit, s: Scuf, conn: InternalConnection, path: seq<NP>, onp: NP)
requires
&& c.Valid()
&& s.Valid(c)
&& conn.Valid()
&& ScufConnectionConsistent(c, s, conn)
&& var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
&& PathValid(new_c, path)
&& (|path| > 0)
&& onp in conn.GetConnectedOutputs(s.mp)
&& var conn_outputs := conn.GetConnectedOutputs(s.mp);
&& var conn_inputs := conn.GetConnectedInputs(s.mp);
&& Seq.Last(path) in conn.GetConnectedInputs(s.mp)
&& !PathExistsBetweenNPSets(new_c, conn_outputs, conn_inputs)
ensures onp !in path
{
var conn_outputs := conn.GetConnectedOutputs(s.mp);
var conn_inputs := conn.GetConnectedInputs(s.mp);
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
assert onp !in path by {
// We know there are no paths from onp to Seq.Last(path) because onp is one of the connected outputs,
// and Seq.Last(path) is one of the connected inputs, and we know there are no pathes between.
if onp in path {
var index := Seq.IndexOf(path, onp);
var path_contradict := ValidPathSegment(new_c, path, index, |path|);
assert PathFromTo(new_c, path_contradict, onp, Seq.Last(path));
assert onp in conn.GetConnectedOutputs(s.mp);
assert Seq.Last(path) in conn.GetConnectedInputs(s.mp);
assert PathBetweenNPSets(new_c, path_contradict, conn_outputs, conn_inputs);
reveal PathExistsBetweenNPSets();
assert PathExistsBetweenNPSets(new_c, conn_outputs, conn_inputs);
assert false;
}
}
}
lemma EvaluateINPInnerSelfConnectHelperA(c: Circuit, s: Scuf, conn: InternalConnection, path: seq<NP>, fi: FI)
requires EvaluateINPInnerSelfConnectRequirements(c, s, conn, path, fi)
requires (Seq.Last(path) !in fi.inputs)
requires PathValid(c, path)
requires
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& (Seq.Last(path) in fi_second_pass.inputs)
ensures
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var onp: NP := new_c.PortSource[Seq.Last(path)];
&& PathValid(new_c, path + [onp])
&& Seq.HasNoDuplicates(path + [onp])
&& ONPValid(new_c, onp)
&& (onp !in path)
&& !PathExists(new_c, onp, Seq.Last(path))
{
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var onp: NP := new_c.PortSource[Seq.Last(path)];
conn.GetConnectionProperties(c, s);
var conn_outputs := conn.GetConnectedOutputs(s.mp);
var conn_inputs := conn.GetConnectedInputs(s.mp);
assert ONPValid(new_c, onp) by {
reveal Circuit.Valid();
}
ONPNotInPath(c, s, conn, path, onp);
assert !PathExists(new_c, onp, Seq.Last(path)) by {
reveal PathExists();
reveal PathExistsBetweenNPSets();
NoPathExistsBetweenNPSetsToNoPathExists(new_c, conn_outputs, conn_inputs, onp, Seq.Last(path));
}
StillHasNoDuplicates(path, onp);
AppendPathValid(new_c, path, onp);
}
lemma EvaluateINPInnerSelfConnectHelperB(c: Circuit, s: Scuf, conn: InternalConnection, path: seq<NP>, fi: FI)
requires EvaluateINPInnerSelfConnectRequirements(c, s, conn, path, fi)
requires PathValid(c, path)
requires
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& (Seq.Last(path) !in fi.inputs)
&& (Seq.Last(path) in fi_second_pass.inputs)
ensures
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var onp: NP := new_c.PortSource[Seq.Last(path)];
var fi_first_pass := conn.FIFirstPass(s.mp, fi);
var conn_outputs := conn.GetConnectedOutputs(s.mp);
reveal FICircuitValid();
&& PathValid(new_c, path + [onp])
&& Seq.HasNoDuplicates(path + [onp])
&& ONPValid(new_c, onp)
&& (onp in conn_outputs)
&& (EvaluateONPInner(new_c, path + [onp], fi) == EvaluateONPInner(new_c, path + [onp], fi_first_pass))
{
EvaluateINPInnerSelfConnectHelperA(c, s, conn, path, fi);
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var onp: NP := new_c.PortSource[Seq.Last(path)];
var fi_first_pass := conn.FIFirstPass(s.mp, fi);
conn.GetConnectionProperties(c, s);
EvaluateINPInnerSelfConnectHelperA(c, s, conn, path, fi);
var conn_outputs := conn.GetConnectedOutputs(s.mp);
var conn_inputs := conn.GetConnectedInputs(s.mp);
assert !PathExistsBetweenNPSets(new_c, conn_outputs, conn_inputs) by {
reveal ScufConnectionConsistent();
reveal ONPsValid();
StillNoPathExistsBetweenNPSets(c, new_c, conn_outputs, conn_inputs);
}
reveal FICircuitValid();
var output_width := |s.mp.outputs|;
var fake_output := seq(output_width, (index: nat) requires index < output_width => false);
assert Seq.Last(path) in conn_inputs;
assert onp in conn_outputs;
EvaluateONPInnerConnectedOutputs(c, s, conn, path + [onp], fi, fake_output);
assert EvaluateONPInner(new_c, path + [onp], fi) == EvaluateONPInner(new_c, path + [onp], fi_first_pass);
}
lemma EvaluateINPInnerSelfConnectHelper(c: Circuit, s: Scuf, conn: InternalConnection, path: seq<NP>, fi: FI)
requires EvaluateINPInnerSelfConnectRequirements(c, s, conn, path, fi)
requires PathValid(c, path)
requires
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& (Seq.Last(path) !in fi.inputs)
&& (Seq.Last(path) in fi_second_pass.inputs)
ensures
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& (EvaluateINPInner(new_c, path, fi_second_pass) == EvaluateINPInner(new_c, path, fi))
{
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var head := Seq.Last(path);
var onp: NP := new_c.PortSource[head];
var output_width := |s.mp.outputs|;
var fake_output := seq(output_width, (index: nat) requires index < output_width => false);
var si_first_pass := conn.SIFromOutputs(s.mp, fi, fake_output);
var fi_first_pass := s.mp.si2fi(si_first_pass);
s.mp.si2fi2si(si_first_pass);
assert si_first_pass == conn.SIFromOutputs(s.mp, fi, fake_output);
assert s.uf.sf.requires(si_first_pass) by {
reveal UpdateFunction.Valid();
}
var so_first_pass := s.uf.sf(si_first_pass);
assert so_first_pass == conn.SOFirstPass(s.mp, s.uf, fi);
assert s.mp.so2fo.requires(so_first_pass) by {
reveal UpdateFunction.Valid();
}
var fo_first_pass := s.mp.so2fo(so_first_pass);
assert fo_first_pass == conn.FOFirstPass(s.mp, s.uf, fi);
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
calc {
EvaluateINPInner(new_c, path, fi);
{
EvaluateINPInnerSelfConnectHelperA(c, s, conn, path, fi);
}
EvaluateONPInner(new_c, path + [onp], fi);
{
EvaluateINPInnerSelfConnectHelperB(c, s, conn, path, fi);
reveal FICircuitValid();
}
EvaluateONPInner(new_c, path + [onp], fi_first_pass);
{
var conn_outputs := conn.GetConnectedOutputs(s.mp);
assert onp in conn_outputs;
reveal Seq.ToSet();
assert onp in s.mp.outputs;
EvaluateINPInnerSelfConnectHelperA(c, s, conn, path, fi);
reveal PathValid();
EvaluateONPInnerConnectedOutputs(c, s, conn, path + [onp], fi, fake_output);
}
EvalOk(MFLookup(s, fi_first_pass, onp));
{
reveal Seq.ToSet();
EvaluateINPInnerSelfConnectHelperB(c, s, conn, path, fi);
assert onp in s.mp.outputs;
}
EvalOk(MFLookupOutput(s, fi_first_pass, onp));
EvalOk(fo_first_pass.outputs[onp]);
{
EvaluateINPInnerSelfConnectHelperB(c, s, conn, path, fi);
conn.FOFirstPassTOFISecondPass(s.mp, s.uf, fi, head);
}
EvalOk(fi_second_pass.inputs[head]);
EvaluateINPInner(new_c, path, fi_second_pass);
}
assert (EvaluateINPInner(new_c, path, fi_second_pass) == EvaluateINPInner(new_c, path, fi));
}
lemma EvaluateINPInnerSelfConnect(
c: Circuit, s: Scuf, conn: InternalConnection, path: seq<NP>, fi: FI)
requires EvaluateINPInnerSelfConnectRequirements(c, s, conn, path, fi)
requires PathValid(c, path)
ensures
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& (EvaluateINPInner(new_c, path, fi_second_pass) == EvaluateINPInner(new_c, path, fi))
decreases
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
|NodesNotInPath(new_c, path)|, 3
{
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var fi_first_pass := conn.FIFirstPass(s.mp, fi);
var fo_first_pass := conn.FOFirstPass(s.mp, s.uf, fi);
var so_first_pass := conn.SOFirstPass(s.mp, s.uf, fi);
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
var head := path[|path|-1];
var tail := path[..|path|-1];
var connections := conn.GetConnection(s.mp);
var conn_outputs := conn.GetConnectedOutputs(s.mp);
var conn_inputs := conn.GetConnectedInputs(s.mp);
assert PathValid(new_c, path);
if head in fi.inputs {
assert head in fi.inputs;
assert head in fi_second_pass.inputs;
conn.FISecondPassMatchingKeyMatchingValue(s.mp, s.uf, fi);
assert fi.inputs[head] == fi_second_pass.inputs[head];
} else if head in fi_second_pass.inputs {
EvaluateINPInnerSelfConnectHelper(c, s, conn, path, fi);
} else if head in new_c.PortSource {
assert head !in Seq.ToSet(new_s.mp.inputs);
assert fi.inputs.Keys == Seq.ToSet(new_s.mp.inputs);
assert Seq.ToSet(new_s.mp.inputs) == Seq.ToSet(s.mp.inputs) - connections.Keys;
var onp: NP := new_c.PortSource[head];
if onp in path {
} else {
reveal Circuit.Valid();
NodesNotInPathDecreases(new_c, path, onp);
StillHasNoDuplicates(path, onp);
AppendPathValid(new_c, path, onp);
AppendPathValid(c, path, onp);
EvaluateONPInnerSelfConnect(c, s, conn, path + [onp], fi);
assert SubcircuitWeaklyConserved(c, new_c, s.sc);
assert new_c.PortSource[head] == c.PortSource[head] by {
reveal SubcircuitWeaklyConserved();
}
}
} else {
//EvalError({head}, {})
}
}
lemma EvaluateONPUnarySelfConnect(c: Circuit, s: Scuf, conn: InternalConnection, path: seq<NP>, fi: FI)
requires c.Valid()
requires s.Valid(c)
requires conn.Valid()
requires ScufConnectionConsistent(c, s, conn)
requires
&& var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
&& FIValid(fi, new_s.mp.inputs, new_s.mp.state)
&& var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& EvaluateONPUnaryRequirements(new_c, path, FItoKeys(fi_second_pass))
&& EvaluateONPUnaryRequirements(new_c, path, FItoKeys(fi))
&& var conn_outputs := conn.GetConnectedOutputs(s.mp);
&& var conn_inputs := conn.GetConnectedInputs(s.mp);
&& !PathExistsBetweenNPSets(new_c, conn_outputs, conn_inputs)
requires PathValid(c, path)
ensures
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& (EvaluateONPUnary(new_c, path, fi_second_pass) == EvaluateONPUnary(new_c, path, fi))
decreases
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
|NodesNotInPath(new_c, path)|, 3
{
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var head := Seq.Last(path);
var nk := c.NodeKind[head.n];
assert nk == new_c.NodeKind[head.n];
assert NodeValid(c, head.n);
var inp_0 := NP(head.n, INPUT_0);
if inp_0 in path {
} else {
NodesNotInPathDecreases(new_c, path, inp_0);
var new_path_0 := path + [inp_0];
assert PathValid(new_c, new_path_0);
assert |NodesNotInPath(new_c, path + [inp_0])| < |NodesNotInPath(new_c, path)|;
StillHasNoDuplicates(path, inp_0);
AppendPathValid(c, path, inp_0);
EvaluateINPInnerSelfConnect(c, s, conn, path + [inp_0], fi);
}
}
lemma EvaluateONPBinarySelfConnect(c: Circuit, s: Scuf, conn: InternalConnection, path: seq<NP>, fi: FI)
requires c.Valid()
requires s.Valid(c)
requires conn.Valid()
requires ScufConnectionConsistent(c, s, conn)
requires
&& var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
&& FIValid(fi, new_s.mp.inputs, new_s.mp.state)
&& var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& EvaluateONPBinaryRequirements(new_c, path, FItoKeys(fi_second_pass))
&& EvaluateONPBinaryRequirements(new_c, path, FItoKeys(fi))
&& var conn_outputs := conn.GetConnectedOutputs(s.mp);
&& var conn_inputs := conn.GetConnectedInputs(s.mp);
&& !PathExistsBetweenNPSets(new_c, conn_outputs, conn_inputs)
&& PathValid(c, path)
ensures
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& (EvaluateONPBinary(new_c, path, fi_second_pass) == EvaluateONPBinary(new_c, path, fi))
decreases
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
|NodesNotInPath(new_c, path)|, 3
{
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var head := Seq.Last(path);
var nk := c.NodeKind[head.n];
assert nk == new_c.NodeKind[head.n];
assert NodeValid(c, head.n);
var inp_0 := NP(head.n, INPUT_0);
var inp_1 := NP(head.n, INPUT_1);
if inp_0 in path {
} else if inp_1 in path {
} else {
NodesNotInPathDecreases(new_c, path, inp_0);
NodesNotInPathDecreases(new_c, path, inp_1);
var new_path_0 := path + [inp_0];
var new_path_1 := path + [inp_1];
assert PathValid(new_c, new_path_0);
assert PathValid(new_c, new_path_1);
assert |NodesNotInPath(new_c, path + [inp_0])| < |NodesNotInPath(new_c, path)|;
StillHasNoDuplicates(path, inp_0);
StillHasNoDuplicates(path, inp_1);
AppendPathValid(c, path, inp_0);
AppendPathValid(c, path, inp_1);
EvaluateINPInnerSelfConnect(c, s, conn, path + [inp_0], fi);
EvaluateINPInnerSelfConnect(c, s, conn, path + [inp_1], fi);
}
}
lemma EvaluateONPInnerSelfConnect(c: Circuit, s: Scuf, conn: InternalConnection, path: seq<NP>, fi: FI)
requires c.Valid()
requires s.Valid(c)
requires conn.Valid()
requires ScufConnectionConsistent(c, s, conn)
requires
&& var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
&& FIValid(fi, new_s.mp.inputs, new_s.mp.state)
&& var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& EvaluateONPInnerRequirements(new_c, path, FItoKeys(fi_second_pass))
&& EvaluateONPInnerRequirements(new_c, path, FItoKeys(fi))
&& var conn_outputs := conn.GetConnectedOutputs(s.mp);
&& var conn_inputs := conn.GetConnectedInputs(s.mp);
&& !PathExistsBetweenNPSets(new_c, conn_outputs, conn_inputs)
&& PathValid(c, path)
ensures
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
&& (EvaluateONPInner(new_c, path, fi_second_pass) == EvaluateONPInner(new_c, path, fi))
decreases
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
|NodesNotInPath(new_c, path)|, 4
{
var (new_c, new_s) := ConnectCircuitScufImpl(c, s, conn);
var fi_second_pass := conn.FISecondPass(s.mp, s.uf, fi);
var head := path[|path|-1];
var nk := c.NodeKind[head.n];
assert nk == new_c.NodeKind[head.n];
if head.n in fi.state {
assert nk.CSeq? by {
reveal FICircuitValid();
}
match nk
case CSeq() => {
assert fi.state[head.n] == fi_second_pass.state[head.n];
}
} else {
match nk
case CXor() => {
EvaluateONPBinarySelfConnect(c, s, conn, path, fi);
}
case CAnd() => {
EvaluateONPBinarySelfConnect(c, s, conn, path, fi);
}
case COr() => {
EvaluateONPBinarySelfConnect(c, s, conn, path, fi);
}
case CInv() => {
EvaluateONPUnarySelfConnect(c, s, conn, path, fi);
}
case CIden() => {
EvaluateONPUnarySelfConnect(c, s, conn, path, fi);
}
case CConst(b) => {
}
case CSeq() => {
}
}
}
}