-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlsgradient.m
162 lines (137 loc) · 4.76 KB
/
lsgradient.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
function varargout = lsgradient(f,varargin)
%LSGRADIENT Approximate gradient by least-squares scheme.
% [FX,FY] = LSGRADIENT(F) returns the numerical gradient of the
% matrix F. FX corresponds to dF/dx, the differences in the
% x (column) direction. FY corresponds to dF/dy, the differences
% in the y (row) direction. The spacing between points in each
% direction is assumed to be one. When F is a vector, DF = GRADIENT(F)
% is the 1-D gradient.
%
% [FX,FY] = LSGRADIENT(F,H), where H is a scalar, uses H as the
% spacing between points in each direction.
%
% [FX,FY] = LSGRADIENT(F,HX,HY), when F is 2-D, uses the spacing
% specified by HX and HY. HX and HY can either be scalars to specify
% the spacing between coordinates or vectors to specify the
% coordinates of the points. If HX and HY are vectors, their length
% must match the cooresponding dimension of F.
%
% [FX,FY,FZ] = LSGRADIENT(F), when F is a 3-D array, returns the
% numerical gradient of F. FZ corresponds to dF/dz, the differences
% in the z direction. GRADIENT(F,H), where H is a scalar,
% uses H as the spacing between points in each direction.
%
% [FX,FY,FZ] = LSGRADIENT(F,HX,HY,HZ) uses the spacing given by
% HX, HY, HZ.
%
% [FX,FY,FZ,...] = LSGRADIENT(F,...) extends similarly when F is N-D
% and must be invoked with N outputs and either 2 or N+1 inputs.
%
% Examples:
% [x,y] = meshgrid(-2:.2:2, -2:.2:2);
% z = x .* exp(-x.^2 - y.^2);
% [px,py] = lsgradient(z,.2,.2);
% contour(z),hold on, quiver(px,py), hold off
%
% See also DIFF, DEL2, GRADIENT, GRADIENT5
% D. Chen, 16 March 95
% Copyright (c) 1984-98 by The MathWorks, Inc.
% $Revision: 5.12 $ $Date: 1997/11/21 23:23:47 $
% Modified by A. Liberzon, 17 April 2001
% $Revision: 6.01 $ $Date: 17-Apr-2001 23:20:00 $
[msg,f,ndim,loc,cflag] = parse_inputs(f,varargin);
if ~isempty(msg), error(msg); end
% Loop over each dimension. Permute so that the gradient is always taken along
% the columns.
if ndim == 1
perm = [1 2];
else
perm = [2:ndim 1]; % Cyclic permutation
end
for k = 1:ndim
[n,p] = size(f);
h = loc{k}(:);
g = zeros(size(f)); % case of singleton dimension
% Take forward differences on left and right edges
if n > 1
g(1,:) = (f(2,:) - f(1,:))/(h(2)-h(1));
g(2,:) = (f(3,:) - f(2,:))/(h(3)-h(2));
g(n-1,:) = (f(n-1,:) - f(n-2,:))/(h(end-1)-h(end-2));
g(n,:) = (f(n,:) - f(n-1,:))/(h(end)-h(end-1));
end
% Take centered LEAST SQUARES differences on interior points
% if n > 2
% h = h(3:n) - h(1:n-2);
% g(2:n-1,:) = (f(3:n,:)-f(1:n-2,:))./h(:,ones(p,1));
% end
if n > 3
h = (h(4:n-1) - h(2:n-3))/2;
z = 3:n-2;
g(z,:)=(2*f(z+2,:)+f(z+1,:)-1*f(z-1,:)-2*f(z-2,:))./(12*h(:,ones(p,1)));
end
varargout{k} = ipermute(g,[k:ndim 1:k-1]);
% Set up for next pass through the loop
f = permute(f,perm);
end
% Swap 1 and 2 since x is the second dimension and y is the first.
if ndim>1
tmp = varargout{1};
varargout{1} = varargout{2};
varargout{2} = tmp;
end
if cflag, varargout{1} = varargout{1}.'; end
%-------------------------------------------------------
function [msg,f,ndim,loc,cflag] = parse_inputs(f,v)
%PARSE_INPUTS
% [MSG,F,LOC,CFLAG] = PARSE_INPUTS(F,V) returns the spacing
% LOC along the x,y,z,... directions and a column vector
% flag CFLAG. MSG will be non-empty if there is an error.
msg = '';
nin = length(v)+1;
% Flag vector case and column vector case.
ndim = ndims(f);
vflag = 0; cflag = 0;
if ndims(f) == 2
if size(f,2) == 1
ndim = 1; vflag = 1; cflag = 1;
elseif size(f,1) == 1 % Treat row vector as a column vector
ndim = 1; vflag = 1; cflag = 0;
f = f.';
end;
end;
indx = size(f);
% Default step sizes: hx = hy = hz = 1
if nin == 1, % gradient(f)
for k = 1:ndims(f)
loc(k) = {1:indx(k)};
end;
elseif (nin == 2) % gradient(f,h)
% Expand scalar step size
if (length(v{1})==1)
for k = 1:ndims(f)
h = v{1};
loc(k) = {h*(1:indx(k))};
end;
% Check for vector case
elseif vflag
loc(1) = v(1);
else
msg = 'Invalid inputs to GRADIENT.';
end
elseif ndims(f) == prod(size(v)), % gradient(f,hx,hy,hz,...)
% Swap 1 and 2 since x is the second dimension and y is the first.
loc = v;
if ndim>1
tmp = loc{1};
loc{1} = loc{2};
loc{2} = tmp;
end
% replace any scalar step-size with corresponding position vector
for k = 1:ndims(f)
if length(loc{k})==1
loc{k} = loc{k}*(1:indx(k));
end;
end;
else
msg = 'Invalid inputs to GRADIENT.';
end