-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
208 lines (164 loc) · 9.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
from ogb.graphproppred import Evaluator as Evaluator_
from ogb.graphproppred import PygGraphPropPredDataset
from ogb.graphproppred.mol_encoder import AtomEncoder
from torch_geometric.data import DataLoader
from torch_geometric.datasets import ZINC
from torch_geometric.nn import GraphConv
from torch_geometric.transforms import OneHotDegree
from conv import GINConv, OriginalGINConv, GCNConv, ZINCGINConv
from csl_data import MyGNNBenchmarkDataset
# noinspection PyUnresolvedReferences
from data import policy2transform, preprocess, SubgraphData, TUDataset, PTCDataset, Sampler
from gnn_rni_data import PlanarSATPairsDataset
from models import GNN, GNNComplete, DSnetwork, DSSnetwork, EgoEncoder, ZincAtomEncoder
def get_data(args, fold_idx):
if args.model == 'gnn': assert args.policy == 'original'
transform = Sampler(args.fraction)
# automatic dataloading and splitting
if 'ogb' in args.dataset:
dataset = PygGraphPropPredDataset(root="dataset/" + args.policy,
name=args.dataset,
pre_transform=policy2transform(policy=args.policy, num_hops=args.num_hops),
)
if args.fraction != 1.:
dataset = preprocess(dataset, transform)
split_idx = dataset.get_idx_split()
elif args.dataset == 'PTC':
dataset = PTCDataset(root="dataset/" + args.policy,
name=args.dataset,
pre_transform=policy2transform(policy=args.policy, num_hops=args.num_hops),
)
if args.fraction != 1.:
dataset = preprocess(dataset, transform)
split_idx = dataset.separate_data(args.seed, fold_idx=fold_idx)
elif args.dataset == 'CSL':
dataset = MyGNNBenchmarkDataset(root="dataset/" + args.policy,
name=args.dataset,
pre_transform=policy2transform(policy=args.policy, num_hops=args.num_hops,
process_subgraphs=OneHotDegree(5)
))
if args.fraction != 1.:
dataset = preprocess(dataset, transform)
split_idx = dataset.separate_data(args.seed, fold_idx=fold_idx)
elif args.dataset == 'ZINC':
dataset = ZINC(root="dataset/" + args.policy, subset=True, split="train")
val_dataset = ZINC(root="dataset/" + args.policy, subset=True, split="val")
test_dataset = ZINC(root="dataset/" + args.policy, subset=True, split="test")
elif args.dataset in ['CEXP', 'EXP']:
dataset = PlanarSATPairsDataset(root="dataset/" + args.policy,
name=args.dataset,
pre_transform=policy2transform(policy=args.policy, num_hops=args.num_hops))
if args.fraction != 1.:
dataset = preprocess(dataset, transform)
split_idx = dataset.separate_data(args.seed, fold_idx=fold_idx)
else:
dataset = TUDataset(root="dataset/" + args.policy,
name=args.dataset,
pre_transform=policy2transform(policy=args.policy, num_hops=args.num_hops),
)
if args.fraction != 1.:
dataset = preprocess(dataset, transform)
# ensure edge_attr is not considered
dataset.data.edge_attr = None
split_idx = dataset.separate_data(args.seed, fold_idx=fold_idx)
train_loader = DataLoader(dataset[split_idx["train"]] if args.dataset != 'ZINC' else dataset,
batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, follow_batch=['subgraph_idx'])
train_loader_eval = DataLoader(dataset[split_idx["train"]] if args.dataset != 'ZINC' else dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, follow_batch=['subgraph_idx'])
valid_loader = DataLoader(dataset[split_idx["valid"]] if args.dataset != 'ZINC' else val_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, follow_batch=['subgraph_idx'])
test_loader = DataLoader(dataset[split_idx["test"]] if args.dataset != 'ZINC' else test_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, follow_batch=['subgraph_idx'])
if 'ogb' in args.dataset or 'ZINC' in args.dataset:
in_dim = args.emb_dim if args.policy != "ego_nets_plus" else args.emb_dim + 2
elif args.dataset == 'CSL':
in_dim = 6 if args.policy != "ego_nets_plus" else 6 + 2 # used deg as node feature
else:
in_dim = dataset.num_features
out_dim = dataset.num_tasks if args.dataset != 'ZINC' else 1
task_type = 'regression' if args.dataset == 'ZINC' else dataset.task_type
eval_metric = 'mae' if args.dataset == 'ZINC' else dataset.eval_metric
return train_loader, train_loader_eval, valid_loader, test_loader, (in_dim, out_dim, task_type, eval_metric)
def get_model(args, in_dim, out_dim, device):
encoder = lambda x: x
if 'ogb' in args.dataset:
encoder = AtomEncoder(args.emb_dim) if args.policy != "ego_nets_plus" else EgoEncoder(AtomEncoder(args.emb_dim))
elif 'ZINC' in args.dataset:
encoder = ZincAtomEncoder(policy=args.policy, emb_dim=args.emb_dim)
if args.model == 'deepsets':
subgraph_gnn = GNN(gnn_type=args.gnn_type, num_tasks=out_dim, num_layer=args.num_layer, in_dim=in_dim,
emb_dim=args.emb_dim, drop_ratio=args.drop_ratio, JK=args.jk,
graph_pooling='sum' if args.gnn_type != 'gin' else 'mean', feature_encoder=encoder
).to(device)
model = DSnetwork(subgraph_gnn=subgraph_gnn, channels=args.channels, num_tasks=out_dim,
invariant=args.dataset == 'ZINC').to(device)
elif args.model == 'dss':
if args.gnn_type == 'gin':
GNNConv = GINConv
elif args.gnn_type == 'originalgin':
GNNConv = OriginalGINConv
elif args.gnn_type == 'graphconv':
GNNConv = GraphConv
elif args.gnn_type == 'gcn':
GNNConv = GCNConv
elif args.gnn_type == 'zincgin':
GNNConv = ZINCGINConv
else:
raise ValueError('Undefined GNN type called {}'.format(args.gnn_type))
model = DSSnetwork(num_layers=args.num_layer, in_dim=in_dim, emb_dim=args.emb_dim, num_tasks=out_dim,
feature_encoder=encoder, GNNConv=GNNConv).to(device)
elif args.model == 'gnn':
num_random_features = int(args.random_ratio * args.emb_dim)
model = GNNComplete(gnn_type=args.gnn_type, num_tasks=out_dim, num_layer=args.num_layer, in_dim=in_dim,
emb_dim=args.emb_dim, drop_ratio=args.drop_ratio, JK=args.jk,
graph_pooling='sum' if args.gnn_type != 'gin' else 'mean',
feature_encoder=encoder, num_random_features=num_random_features,
).to(device)
else:
raise ValueError('Undefined model type called {}'.format(args.model))
return model
class SimpleEvaluator():
def __init__(self, task_type):
self.task_type = task_type
def acc(self, input_dict):
y_true, y_pred = input_dict['y_true'], input_dict['y_pred']
y_pred = (np.concatenate(y_pred, axis=-1) > 0.).astype(int)
y_pred = (np.mean(y_pred, axis=-1) > 0.5).astype(int)
acc_list = []
for i in range(y_true.shape[1]):
is_labeled = y_true[:, i] == y_true[:, i]
correct = y_true[is_labeled, i] == y_pred[is_labeled, i]
acc_list.append(float(np.sum(correct)) / len(correct))
return {'acc': sum(acc_list) / len(acc_list)}
def mae(self, input_dict):
y_true, y_pred = input_dict['y_true'], input_dict['y_pred']
y_pred = np.concatenate(y_pred, axis=-1)
y_pred = np.mean(y_pred, axis=-1)
return {'mae': np.average(np.abs(y_true - y_pred))}
def eval(self, input_dict):
if self.task_type == 'classification': return self.acc(input_dict)
return self.mae(input_dict)
class NonBinaryEvaluator():
def __init__(self, num_tasks):
self.num_tasks = num_tasks
def eval(self, input_dict):
y_true, y_pred = input_dict['y_true'], input_dict['y_pred']
y_pred = np.concatenate(y_pred, axis=-1)
y_pred = y_pred.argmax(1)
y_pred = np.eye(self.num_tasks)[y_pred]
y_pred = y_pred.sum(1).argmax(1)
is_labeled = y_true == y_true
correct = y_true[is_labeled] == y_pred[is_labeled]
return {'acc': float(np.sum(correct)) / len(correct)}
class Evaluator(Evaluator_):
def eval(self, input_dict):
y_true, y_pred = input_dict['y_true'], input_dict['y_pred']
y_pred = np.concatenate(y_pred, axis=-1)
y_pred = np.mean(y_pred, axis=-1)
input_dict = {"y_true": y_true, "y_pred": y_pred}
return super().eval(input_dict)