-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathprep_data.R
117 lines (101 loc) · 3.42 KB
/
prep_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# code borrowed from https://github.com/bbest/rmarkdown-example/blob/master/test.Rmd
# extract data ----
suppressPackageStartupMessages({
require(dplyr)
require(knitr)
require(RColorBrewer)
require(stringr)
suppressWarnings(require(ohicore)) # devtools::install_github('ohi-science/ohicore')
})
# variables
yr = 2014
url_scores = sprintf('https://raw.githubusercontent.com/OHI-Science/ohi-global/master/eez%d/scores.csv', yr)
url_labels = sprintf('https://raw.githubusercontent.com/OHI-Science/ohi-global/master/eez%d/layers/rgn_labels.csv', yr)
url_goals = sprintf('https://raw.githubusercontent.com/OHI-Science/ohi-global/master/eez%d/conf/goals.csv', yr)
csv_d = 'data/scores.csv'
csv_g = 'data/goals.csv'
csv_p = 'data/aster_data.csv'
flower_png = 'flower.png'
refresh_data = F
dir.create('data', showWarnings=F)
# get data
if (!file.exists(csv_d) | refresh_data){
# get scores
tmp_scores = tempfile(fileext='.csv')
download.file(url_scores, tmp_scores, method='curl')
scores = read.csv(tmp_scores)
# get labels
tmp_labels = tempfile(fileext='.csv')
download.file(url_labels, tmp_labels, method='curl')
labels = read.csv(tmp_labels)
# explore
# head(scores)
# head(labels)
# select(scores, goal, dimension) %>% table()
# merge
d = scores %>%
inner_join(
labels %>%
select(
region_id = rgn_id,
region_label = label) %>%
rbind(data.frame(
region_id = 0,
region_label = 'GLOBAL')),
by='region_id') %>%
filter(dimension=='score')
# write and cleanup
write.csv(d, csv_d, row.names=F, na='')
unlink(c(tmp_scores, tmp_labels))
}
d = read.csv(csv_d) %>%
arrange(desc(score))
# get goals
if (!file.exists(csv_g) | refresh_data){
tmp_goals = tempfile(fileext='.csv')
download.file(url_goals, tmp_goals, method='curl')
g = read.csv(tmp_goals)
g = g %>%
filter(!goal %in% g$parent) %>%
select(goal, weight, order_color, name_flower)
write.csv(g, csv_g, row.names=F, na='')
unlink(c(tmp_goals))
}
g = read.csv(csv_g) %>%
arrange(order_color)
# plot static flower plot ----
# combine goals with scores
x = g %>%
inner_join(
d %>%
filter(region_label=='GLOBAL' & goal!='Index') %>%
select(goal, score),
by='goal') %>%
arrange(order_color)
# plot
png(flower_png, width=800, height=800, res=150)
PlotFlower(
main = '',
lengths = x$score,
widths = x$weight,
fill.col = colorRampPalette(brewer.pal(10, 'Spectral'), space='Lab')(nrow(x)),
labels = paste(gsub('\\\\n','\\\n', x$name_flower), round(x$score), sep='\n'),
center = round(d %>% filter(region_label=='GLOBAL' & goal=='Index') %>% select(score)),
disk = 0.4,
max.length = 100, cex=2, label.cex=0.5, label.offset=0.13)
dev.off()
system(sprintf('open %s', flower_png))
# aggregate data into single csv for d3 rendering
p = data.frame(
id = x$goal,
order = x$order_color,
score = round(x$score),
weight = x$weight,
color = colorRampPalette(brewer.pal(10, 'Spectral'), space='Lab')(nrow(x)),
label = str_trim(gsub('\\\\n',' ', x$name_flower))
)
write.csv(p, csv_p, row.names=F)
cat(paste('Extracted weighted average score :', round(d %>% filter(region_label=='GLOBAL' & goal=='Index') %>% select(center=score)), '\n'))
cat(paste('Calculated weighted average score:', round(weighted.mean(x$score, x$weight)), '\n'))
# Extracted weighted average score : 71
# Calculated weighted average score: 69