-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
97 lines (73 loc) · 2.53 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import math
from collections import OrderedDict
import numpy as np
from skimage.transform import resize
import torch
def post_process_brain(x_pred):
x_pred = resize(x_pred, (256-90,256-40,256-40), mode='constant', cval=0.)
x_canvas = np.zeros((256,256,256))
x_canvas[50:-40,20:-20,20:-20] = x_pred
x_canvas = np.flip(x_canvas,0)
return x_canvas
def _itensity_normalize(volume):
pixels = volume[volume > 0]
mean = pixels.mean()
std = pixels.std()
out = (volume - mean)/std
return out
class Flatten(torch.nn.Module):
def forward(self, inp):
return inp.view(inp.size(0), -1)
def calculate_nmse(img1, img2):
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2)**2)
mse0 = np.mean(img1**2)
if mse == 0:
return float('inf')
return mse / mse0 * 100.
def calculate_psnr(img1, img2):
# img1 and img2 have range [0, 1]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(1.0 / math.sqrt(mse))
class KLN01Loss(torch.nn.Module):
def __init__(self, direction, minimize):
super(KLN01Loss, self).__init__()
self.minimize = minimize
assert direction in ['pq', 'qp'], 'direction?'
self.direction = direction
def forward(self, samples):
assert samples.nelement() == samples.size(1) * samples.size(0), 'wtf?'
samples = samples.view(samples.size(0), -1)
self.samples_var = var(samples)
self.samples_mean = samples.mean(0)
samples_mean = self.samples_mean
samples_var = self.samples_var
if self.direction == 'pq':
# mu_1 = 0; sigma_1 = 1
t1 = (1 + samples_mean.pow(2)) / (2 * samples_var.pow(2))
t2 = samples_var.log()
KL = (t1 + t2 - 0.5).mean()
else:
# mu_2 = 0; sigma_2 = 1
t1 = (samples_var.pow(2) + samples_mean.pow(2)) / 2
t2 = -samples_var.log()
KL = (t1 + t2 - 0.5).mean()
if not self.minimize:
KL *= -1
return KL
def trim_state_dict_name(state_dict):
for k in list(state_dict.keys()):
if k.startswith('module.'):
# remove prefix
state_dict[k[len("module."):]] = state_dict[k]
del state_dict[k]
return state_dict
def inf_train_gen(data_loader):
while True:
for _,batch in enumerate(data_loader):
yield batch