generated from GTMeijer/Optimalisatie_Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate.h
652 lines (604 loc) · 20.5 KB
/
template.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
// Template, UU version
// IGAD/NHTV/UU - Jacco Bikker - 2006-2019
#pragma once
#define TEMPLATE_VERSION "Template_v2019.01"
typedef unsigned char uchar;
typedef unsigned char byte;
typedef int64_t int64;
typedef uint64_t uint64;
typedef unsigned int uint;
#ifdef _MSC_VER
#define ALIGN(x) __declspec(align(x))
#define MALLOC64(x) _aligned_malloc(x, 64)
#define FREE64(x) _aligned_free(x)
#else
#define ALIGN(x) __attribute__((aligned(x)))
#define MALLOC64(x) aligned_alloc(64, x)
#define FREE64(x) free(x)
#define __inline __attribute__((__always_inline__))
#endif
#define clamp(v, a, b) ((std::min)((b), (std::max)((v), (a))))
#define PI 3.14159265358979323846264338327950288419716939937510582097494459072381640628620899862803482534211706798f
#define PREFETCH(x) _mm_prefetch((const char*)(x), _MM_HINT_T0)
#define PREFETCH_ONCE(x) _mm_prefetch((const char*)(x), _MM_HINT_NTA)
#define PREFETCH_WRITE(x) _m_prefetchw((const char*)(x))
#define loadss(mem) _mm_load_ss((const float* const)(mem))
#define broadcastps(ps) _mm_shuffle_ps((ps), (ps), 0)
#define broadcastss(ss) broadcastps(loadss((ss)))
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
#define likely(expr) (expr)
#define unlikely(expr) (expr)
#else
#define likely(expr) __builtin_expect((expr), true)
#define unlikely(expr) __builtin_expect((expr), false)
#endif
// deterministic rng
static uint seed = 0x12345678;
inline uint random_uint()
{
seed ^= seed << 13;
seed ^= seed >> 17;
seed ^= seed << 5;
return seed;
}
inline float random_float() { return random_uint() * 2.3283064365387e-10f; }
inline float rand(float range) { return random_float() * range; }
namespace Tmpl8
{
struct timer
{
typedef std::chrono::high_resolution_clock Clock;
typedef Clock::time_point TimePoint;
typedef std::chrono::microseconds MicroSeconds;
TimePoint start;
inline timer() : start(get()) {}
/// Returns the elapsed time, in milliseconds.
inline float elapsed() const
{
auto diff = get() - start;
auto duration_us = std::chrono::duration_cast<MicroSeconds>(diff);
return static_cast<float>(duration_us.count()) / 1000.0f;
}
static inline TimePoint get()
{
return Clock::now();
}
inline void reset() { start = get(); }
};
// vectors
class vec2 // adapted from https://github.com/dcow/RayTracer
{
public:
union {
struct
{
float x, y;
};
float cell[2];
};
vec2() = default;
vec2(float v) : x(v), y(v) {}
vec2(float x, float y) : x(x), y(y) {}
vec2 operator-() const { return vec2(-x, -y); }
vec2 operator+(const vec2& addOperand) const { return vec2(x + addOperand.x, y + addOperand.y); }
vec2 operator-(const vec2& operand) const { return vec2(x - operand.x, y - operand.y); }
vec2 operator*(const vec2& operand) const { return vec2(x * operand.x, y * operand.y); }
vec2 operator*(float operand) const { return vec2(x * operand, y * operand); }
vec2 operator/(float operand) const { return vec2(x / operand, y / operand); }
bool operator==(const vec2& operand) const { return (x == operand.x && y == operand.y); }
bool operator!=(const vec2& operand) const { return !(*this == operand); }
void operator-=(const vec2& a)
{
x -= a.x;
y -= a.y;
}
void operator+=(const vec2& a)
{
x += a.x;
y += a.y;
}
void operator*=(const vec2& a)
{
x *= a.x;
y *= a.y;
}
void operator*=(float a)
{
x *= a;
y *= a;
}
void operator/=(float a)
{
x /= a;
y /= a;
}
float& operator[](const int idx) { return cell[idx]; }
float length() { return sqrtf(x * x + y * y); }
float sqr_length() { return x * x + y * y; }
vec2 normalized()
{
float r = 1.0f / length();
return vec2(x * r, y * r);
}
void normalize()
{
float r = 1.0f / length();
x *= r;
y *= r;
}
static vec2 normalize(vec2 v) { return v.normalized(); }
float dot(const vec2& operand) const { return x * operand.x + y * operand.y; }
};
class Rectangle2D
{
public:
Rectangle2D() = default;
Rectangle2D(vec2 min, vec2 max) : min(min), max(max){};
bool intersects_circle(const vec2& pos, const float radius) const
{
float deltaX = pos.x - clamp(pos.x, min.x, max.x);
float deltaY = pos.y - clamp(pos.y, min.y, max.y);
return ((deltaX * deltaX) + (deltaY * deltaY)) <= (radius * radius);
}
bool intersects(const Rectangle2D& rect) const
{
if (min.x > rect.max.x || rect.min.x > max.x) return false;
if (min.y < rect.max.y || rect.min.y < max.y) return false;
return true;
}
vec2 min;
vec2 max;
};
class vec3
{
public:
union {
struct
{
float x, y, z, dummy;
};
float cell[4];
};
vec3() = default;
vec3(float v) : x(v), y(v), z(v) {}
vec3(float x, float y, float z) : x(x), y(y), z(z) {}
vec3 operator-() const { return vec3(-x, -y, -z); }
vec3 operator+(const vec3& addOperand) const { return vec3(x + addOperand.x, y + addOperand.y, z + addOperand.z); }
vec3 operator-(const vec3& operand) const { return vec3(x - operand.x, y - operand.y, z - operand.z); }
vec3 operator*(const vec3& operand) const { return vec3(x * operand.x, y * operand.y, z * operand.z); }
void operator-=(const vec3& a)
{
x -= a.x;
y -= a.y;
z -= a.z;
}
void operator+=(const vec3& a)
{
x += a.x;
y += a.y;
z += a.z;
}
void operator*=(const vec3& a)
{
x *= a.x;
y *= a.y;
z *= a.z;
}
void operator*=(const float a)
{
x *= a;
y *= a;
z *= a;
}
float operator[](const uint& idx) const { return cell[idx]; }
float& operator[](const uint& idx) { return cell[idx]; }
float length() const { return sqrtf(x * x + y * y + z * z); }
float sqr_length() const { return x * x + y * y + z * z; }
vec3 normalized() const
{
float r = 1.0f / length();
return vec3(x * r, y * r, z * r);
}
void normalize()
{
float r = 1.0f / length();
x *= r;
y *= r;
z *= r;
}
static vec3 normalize(const vec3 v) { return v.normalized(); }
vec3 cross(const vec3& operand) const
{
return vec3(y * operand.z - z * operand.y, z * operand.x - x * operand.z, x * operand.y - y * operand.x);
}
float dot(const vec3& operand) const { return x * operand.x + y * operand.y + z * operand.z; }
};
class vec4
{
public:
union {
struct
{
float x, y, z, w;
};
vec3 xyz;
float cell[4];
};
vec4() = default;
vec4(float v) : x(v), y(v), z(v), w(v) {}
vec4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
vec4(vec3 a, float b) : x(a.x), y(a.y), z(a.z), w(b) {}
vec4 operator-() const { return vec4(-x, -y, -z, -w); }
vec4 operator+(const vec4& addOperand) const { return vec4(x + addOperand.x, y + addOperand.y, z + addOperand.z, w + addOperand.w); }
vec4 operator-(const vec4& operand) const { return vec4(x - operand.x, y - operand.y, z - operand.z, w - operand.w); }
vec4 operator*(const vec4& operand) const { return vec4(x * operand.x, y * operand.y, z * operand.z, w * operand.w); }
void operator-=(const vec4& a)
{
x -= a.x;
y -= a.y;
z -= a.z;
w -= a.w;
}
void operator+=(const vec4& a)
{
x += a.x;
y += a.y;
z += a.z;
w += a.w;
}
void operator*=(const vec4& a)
{
x *= a.x;
y *= a.y;
z *= a.z;
w *= a.w;
}
void operator*=(float a)
{
x *= a;
y *= a;
z *= a;
w *= a;
}
float& operator[](const int idx) { return cell[idx]; }
float operator[](const uint& idx) const { return cell[idx]; }
float length() { return sqrtf(x * x + y * y + z * z + w * w); }
float sqr_length() { return x * x + y * y + z * z + w * w; }
vec4 normalized()
{
float r = 1.0f / length();
return vec4(x * r, y * r, z * r, w * r);
}
void normalize()
{
float r = 1.0f / length();
x *= r;
y *= r;
z *= r;
w *= r;
}
static vec4 normalize(vec4 v) { return v.normalized(); }
float dot(const vec4& operand) const { return x * operand.x + y * operand.y + z * operand.z + w * operand.w; }
};
vec3 normalize(const vec3& v);
vec3 cross(const vec3& a, const vec3& b);
float dot(const vec3& a, const vec3& b);
vec3 operator*(const float& s, const vec3& v);
vec3 operator*(const vec3& v, const float& s);
vec4 operator*(const float& s, const vec4& v);
vec4 operator*(const vec4& v, const float& s);
class uint4
{
public:
union {
struct
{
uint x, y, z, w;
};
uint cell[4];
};
uint4() = default;
uint4(int v) : x(v), y(v), z(v), w(v) {}
uint4(int x, int y, int z, int w) : x(x), y(y), z(z), w(w) {}
uint4 operator+(const uint4& addOperand) const { return uint4(x + addOperand.x, y + addOperand.y, z + addOperand.z, w + addOperand.w); }
uint4 operator-(const uint4& operand) const { return uint4(x - operand.x, y - operand.y, z - operand.z, w - operand.w); }
uint4 operator*(const uint4& operand) const { return uint4(x * operand.x, y * operand.y, z * operand.z, w * operand.w); }
uint4 operator*(uint operand) const { return uint4(x * operand, y * operand, z * operand, w * operand); }
void operator-=(const uint4& a)
{
x -= a.x;
y -= a.y;
z -= a.z;
w -= a.w;
}
void operator+=(const uint4& a)
{
x += a.x;
y += a.y;
z += a.z;
w += a.w;
}
void operator*=(const uint4& a)
{
x *= a.x;
y *= a.y;
z *= a.z;
w *= a.w;
}
void operator*=(uint a)
{
x *= a;
y *= a;
z *= a;
w *= a;
}
uint& operator[](const int idx) { return cell[idx]; }
};
class int4
{
public:
union {
struct
{
int x, y, z, w;
};
int cell[4];
};
int4() = default;
int4(int v) : x(v), y(v), z(v), w(v) {}
int4(int x, int y, int z, int w) : x(x), y(y), z(z), w(w) {}
int4 operator-() const { return int4(-x, -y, -z, -w); }
int4 operator+(const int4& addOperand) const { return int4(x + addOperand.x, y + addOperand.y, z + addOperand.z, w + addOperand.w); }
int4 operator-(const int4& operand) const { return int4(x - operand.x, y - operand.y, z - operand.z, w - operand.w); }
int4 operator*(const int4& operand) const { return int4(x * operand.x, y * operand.y, z * operand.z, w * operand.w); }
int4 operator*(int operand) const { return int4(x * operand, y * operand, z * operand, w * operand); }
void operator-=(const int4& a)
{
x -= a.x;
y -= a.y;
z -= a.z;
w -= a.w;
}
void operator+=(const int4& a)
{
x += a.x;
y += a.y;
z += a.z;
w += a.w;
}
void operator*=(const int4& a)
{
x *= a.x;
y *= a.y;
z *= a.z;
w *= a.w;
}
void operator*=(int a)
{
x *= a;
y *= a;
z *= a;
w *= a;
}
int& operator[](const int idx) { return cell[idx]; }
};
class mat4
{
public:
mat4()
{
memset(cell, 0, 64);
cell[0] = cell[5] = cell[10] = cell[15] = 1;
}
float cell[16];
float& operator[](const int idx) { return cell[idx]; }
static mat4 identity()
{
mat4 r;
memset(r.cell, 0, 64);
r.cell[0] = r.cell[5] = r.cell[10] = r.cell[15] = 1.0f;
return r;
}
static mat4 rotate(vec3 v, float a);
static mat4 rotatex(const float a);
static mat4 rotatey(const float a);
static mat4 rotatez(const float a);
void invert()
{
// from MESA, via http://stackoverflow.com/questions/1148309/inverting-a-4x4-matrix
const float inv[16] = {
cell[5] * cell[10] * cell[15] - cell[5] * cell[11] * cell[14] - cell[9] * cell[6] * cell[15] +
cell[9] * cell[7] * cell[14] + cell[13] * cell[6] * cell[11] - cell[13] * cell[7] * cell[10],
-cell[1] * cell[10] * cell[15] + cell[1] * cell[11] * cell[14] + cell[9] * cell[2] * cell[15] -
cell[9] * cell[3] * cell[14] - cell[13] * cell[2] * cell[11] + cell[13] * cell[3] * cell[10],
cell[1] * cell[6] * cell[15] - cell[1] * cell[7] * cell[14] - cell[5] * cell[2] * cell[15] +
cell[5] * cell[3] * cell[14] + cell[13] * cell[2] * cell[7] - cell[13] * cell[3] * cell[6],
-cell[1] * cell[6] * cell[11] + cell[1] * cell[7] * cell[10] + cell[5] * cell[2] * cell[11] -
cell[5] * cell[3] * cell[10] - cell[9] * cell[2] * cell[7] + cell[9] * cell[3] * cell[6],
-cell[4] * cell[10] * cell[15] + cell[4] * cell[11] * cell[14] + cell[8] * cell[6] * cell[15] -
cell[8] * cell[7] * cell[14] - cell[12] * cell[6] * cell[11] + cell[12] * cell[7] * cell[10],
cell[0] * cell[10] * cell[15] - cell[0] * cell[11] * cell[14] - cell[8] * cell[2] * cell[15] +
cell[8] * cell[3] * cell[14] + cell[12] * cell[2] * cell[11] - cell[12] * cell[3] * cell[10],
-cell[0] * cell[6] * cell[15] + cell[0] * cell[7] * cell[14] + cell[4] * cell[2] * cell[15] -
cell[4] * cell[3] * cell[14] - cell[12] * cell[2] * cell[7] + cell[12] * cell[3] * cell[6],
cell[0] * cell[6] * cell[11] - cell[0] * cell[7] * cell[10] - cell[4] * cell[2] * cell[11] +
cell[4] * cell[3] * cell[10] + cell[8] * cell[2] * cell[7] - cell[8] * cell[3] * cell[6],
cell[4] * cell[9] * cell[15] - cell[4] * cell[11] * cell[13] - cell[8] * cell[5] * cell[15] +
cell[8] * cell[7] * cell[13] + cell[12] * cell[5] * cell[11] - cell[12] * cell[7] * cell[9],
-cell[0] * cell[9] * cell[15] + cell[0] * cell[11] * cell[13] + cell[8] * cell[1] * cell[15] -
cell[8] * cell[3] * cell[13] - cell[12] * cell[1] * cell[11] + cell[12] * cell[3] * cell[9],
cell[0] * cell[5] * cell[15] - cell[0] * cell[7] * cell[13] - cell[4] * cell[1] * cell[15] +
cell[4] * cell[3] * cell[13] + cell[12] * cell[1] * cell[7] - cell[12] * cell[3] * cell[5],
-cell[0] * cell[5] * cell[11] + cell[0] * cell[7] * cell[9] + cell[4] * cell[1] * cell[11] -
cell[4] * cell[3] * cell[9] - cell[8] * cell[1] * cell[7] + cell[8] * cell[3] * cell[5],
-cell[4] * cell[9] * cell[14] + cell[4] * cell[10] * cell[13] + cell[8] * cell[5] * cell[14] -
cell[8] * cell[6] * cell[13] - cell[12] * cell[5] * cell[10] + cell[12] * cell[6] * cell[9],
cell[0] * cell[9] * cell[14] - cell[0] * cell[10] * cell[13] - cell[8] * cell[1] * cell[14] +
cell[8] * cell[2] * cell[13] + cell[12] * cell[1] * cell[10] - cell[12] * cell[2] * cell[9],
-cell[0] * cell[5] * cell[14] + cell[0] * cell[6] * cell[13] + cell[4] * cell[1] * cell[14] -
cell[4] * cell[2] * cell[13] - cell[12] * cell[1] * cell[6] + cell[12] * cell[2] * cell[5],
cell[0] * cell[5] * cell[10] - cell[0] * cell[6] * cell[9] - cell[4] * cell[1] * cell[10] +
cell[4] * cell[2] * cell[9] + cell[8] * cell[1] * cell[6] - cell[8] * cell[2] * cell[5]};
const float det = cell[0] * inv[0] + cell[1] * inv[4] + cell[2] * inv[8] + cell[3] * inv[12];
if (det != 0)
{
const float invdet = 1.0f / det;
for (int i = 0; i < 16; i++) cell[i] = inv[i] * invdet;
}
}
};
class aabb
{
public:
aabb() = default;
aabb(__m128 a, __m128 b)
{
bmin4 = a, bmax4 = b;
bmin[3] = bmax[3] = 0;
}
aabb(vec3 a, vec3 b) { bmin[0] = a.x, bmin[1] = a.y, bmin[2] = a.z, bmin[3] = 0, bmax[0] = b.x, bmax[1] = b.y, bmax[2] = b.z, bmax[3] = 0; }
__inline void reset() { bmin4 = _mm_set_ps1(1e34f), bmax4 = _mm_set_ps1(-1e34f); }
bool contains(const __m128& p) const
{
union {
__m128 va4;
float va[4];
};
union {
__m128 vb4;
float vb[4];
};
va4 = _mm_sub_ps(p, bmin4), vb4 = _mm_sub_ps(bmax4, p);
return ((va[0] >= 0) && (va[1] >= 0) && (va[2] >= 0) &&
(vb[0] >= 0) && (vb[1] >= 0) && (vb[2] >= 0));
}
__inline void grow(const aabb& bb)
{
bmin4 = _mm_min_ps(bmin4, bb.bmin4);
bmax4 = _mm_max_ps(bmax4, bb.bmax4);
}
__inline void grow(const __m128& p)
{
bmin4 = _mm_min_ps(bmin4, p);
bmax4 = _mm_max_ps(bmax4, p);
}
__inline void grow(const __m128 min4, const __m128 max4)
{
bmin4 = _mm_min_ps(bmin4, min4);
bmax4 = _mm_max_ps(bmax4, max4);
}
__inline void grow(const vec3& p)
{
__m128 p4 = _mm_setr_ps(p.x, p.y, p.z, 0);
grow(p4);
}
aabb aabb_union(const aabb& bb) const
{
aabb r;
r.bmin4 = _mm_min_ps(bmin4, bb.bmin4), r.bmax4 = _mm_max_ps(bmax4, bb.bmax4);
return r;
}
static aabb aabb_union(const aabb& a, const aabb& b)
{
aabb r;
r.bmin4 = _mm_min_ps(a.bmin4, b.bmin4), r.bmax4 = _mm_max_ps(a.bmax4, b.bmax4);
return r;
}
aabb intersection(const aabb& bb) const
{
aabb r;
r.bmin4 = _mm_max_ps(bmin4, bb.bmin4), r.bmax4 = _mm_min_ps(bmax4, bb.bmax4);
return r;
}
__inline float extend(const int axis) const { return bmax[axis] - bmin[axis]; }
__inline float minimum(const int axis) const { return bmin[axis]; }
__inline float maximum(const int axis) const { return bmax[axis]; }
float area() const
{
union {
__m128 e4;
float e[4];
};
e4 = _mm_sub_ps(bmax4, bmin4);
return max(0.0f, e[0] * e[1] + e[0] * e[2] + e[1] * e[2]);
}
int longest_axis() const
{
int a = 0;
if (extend(1) > extend(0)) a = 1;
if (extend(2) > extend(a)) a = 2;
return a;
}
// data members
union {
__m128 bmin4 = _mm_set_ps(1e34f, 1e34f, 1e34f, 0);
float bmin[4];
vec3 bmin3;
};
union {
__m128 bmax4 = _mm_set_ps(-1e34f, -1e34f, -1e34f, 0);
float bmax[4];
vec3 bmax3;
};
__inline void set_bounds(const __m128 min4, const __m128 max4)
{
bmin4 = min4;
bmax4 = max4;
}
__inline __m128 center() const { return _mm_mul_ps(_mm_add_ps(bmin4, bmax4), _mm_set_ps1(0.5f)); }
__inline float center(uint axis) const { return (bmin[axis] + bmax[axis]) * 0.5f; }
};
mat4 operator*(const mat4& a, const mat4& b);
bool operator==(const mat4& a, const mat4& b);
bool operator!=(const mat4& a, const mat4& b);
vec4 operator*(const mat4& a, const vec4& b);
vec4 operator*(const vec4& a, const mat4& b);
//From: https://stackoverflow.com/a/1084899
inline bool circle_segment_intersect(vec2 s1, vec2 s2, vec2 cp, float r)
{
vec2 d = s2 - s1; //Segment direction vector
vec2 f = s1 - cp; //Circle to segment start vector
float a = d.dot(d);
float b = 2 * f.dot(d);
float c = f.dot(f) - r * r;
float discriminant = b * b - 4 * a * c;
if (discriminant < 0)
{
// no intersection
return false;
}
else
{
// ray didn't totally miss sphere, so there is a solution to the equation.
discriminant = sqrt(discriminant);
// either solution may be on or off the ray so need to test both
// t1 is always the smaller value, because BOTH discriminant and
// a are nonnegative.
float t1 = (-b - discriminant) / (2 * a);
float t2 = (-b + discriminant) / (2 * a);
// 3x HIT cases:
// -o-> --|--> | | --|->
// Impale(t1 hit,t2 hit), Poke(t1 hit,t2>1), ExitWound(t1<0, t2 hit),
// 3x MISS cases:
// -> o o -> | -> |
// FallShort (t1>1,t2>1), Past (t1<0,t2<0), CompletelyInside(t1<0, t2>1)
if (t1 >= 0 && t1 <= 1)
{
// t1 is the intersection, and it's closer than t2
// (since t1 uses -b - discriminant)
// Impale, Poke
return true;
}
// here t1 didn't intersect so we are either started
// inside the sphere or completely past it
if (t2 >= 0 && t2 <= 1)
{
// ExitWound
return true;
}
// no intn: FallShort, Past, CompletelyInside
return false;
}
}
#define BADFLOAT(x) ((*(uint*)&x & 0x7f000000) == 0x7f000000)
}; // namespace Tmpl8