-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpoem-lstm.py
145 lines (103 loc) · 4.93 KB
/
poem-lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import tensorflow as tf
import numpy as np
from tensorflow.keras import Model
from preprocess import get_data
class Model(tf.keras.Model):
def __init__(self, vocab_size):
super(Model, self).__init__()
self.vocab_size = vocab_size
self.window_size = 20 # DO NOT CHANGE!
self.embedding_size = 64
self.batch_size = 512
self.lstm_size = 32
self.dense_1_size = 16384
self.optimizer = tf.keras.optimizers.Adam(learning_rate=0.02)
self._loss = tf.keras.losses.SparseCategoricalCrossentropy(
reduction = tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE)
self.embedding = tf.Variable(tf.random.truncated_normal(
[self.vocab_size, self.embedding_size], stddev=0.1))
self.lstm = tf.keras.layers.LSTM(
self.lstm_size, return_sequences=True, return_state=True)
self.dense_1 = tf.keras.layers.Dense(512, activation="relu")
self.dense_2 = tf.keras.layers.Dense(self.vocab_size)
def call(self, inputs, initial_state):
embeds = tf.nn.embedding_lookup(self.embedding, inputs)
seqs, final_mem, final_carry = self.lstm(embeds, initial_state=initial_state)
logits = self.dense_2(self.dense_1(seqs))
probs = tf.nn.softmax(logits)
return probs, (final_mem, final_carry)
def loss(self, probs, labels):
return self._loss(labels, probs)
def train(model, train_inputs, train_labels):
num_ids = train_inputs.shape[0]
window_groups = [model.window_size] * (num_ids // model.window_size) + [num_ids % model.window_size]
input_windows = tf.convert_to_tensor(tf.split(train_inputs, window_groups)[:-1])
label_windows = tf.convert_to_tensor(tf.split(train_labels, window_groups)[:-1])
num_inputs = input_windows.shape[0]
batch_sizes = [model.batch_size] * (num_inputs // model.batch_size) + [num_inputs % model.batch_size]
input_batches = tf.split(input_windows, batch_sizes)[:-1]
label_batches = tf.split(label_windows, batch_sizes)[:-1]
all_batches = list(zip(input_batches, label_batches))
np.random.shuffle(all_batches)
for (inputs, labels) in all_batches:
with tf.GradientTape() as tape:
out, _ = model.call(inputs, None)
loss = model.loss(out, labels)
gradients = tape.gradient(loss, model.trainable_variables)
model.optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return
def test(model, test_inputs, test_labels):
num_ids = test_inputs.shape[0]
window_groups = [model.window_size] * (num_ids // model.window_size) + [num_ids % model.window_size]
input_windows = tf.convert_to_tensor(tf.split(test_inputs, window_groups)[:-1])
label_windows = tf.convert_to_tensor(tf.split(test_labels, window_groups)[:-1])
num_inputs = input_windows.shape[0]
batch_sizes = [model.batch_size] * (num_inputs // model.batch_size) + [num_inputs % model.batch_size]
input_batches = tf.split(input_windows, batch_sizes)[:-1]
label_batches = tf.split(label_windows, batch_sizes)[:-1]
all_batches = list(zip(input_batches, label_batches))
total_loss = 0
for inp, label in all_batches:
out, _ = model.call(inp, None)
total_loss += model.loss(out, label)
return tf.math.exp(total_loss / len(all_batches))
def generate_sentence(word1, length, vocab, model, sample_n=10):
reverse_vocab = {idx: word for word, idx in vocab.items()}
previous_state = None
first_string = word1
first_word_index = vocab[word1]
next_input = [[first_word_index]]
text = [first_string]
for i in range(length):
logits, previous_state = model.call(next_input, previous_state)
logits = np.array(logits[0,0,:])
top_n = np.argsort(logits)[-sample_n:]
n_logits = np.exp(logits[top_n])/np.exp(logits[top_n]).sum()
out_index = np.random.choice(top_n,p=n_logits)
text.append(reverse_vocab[out_index])
next_input = [[out_index]]
print(" ".join(text))
def main():
train_ids, test_ids, vocab = get_data("../../data/train.txt", "../../data/test.txt")
model = Model(len(vocab))
print("model initialized")
train_inputs = train_ids[:-1]
train_labels = train_ids[1:]
test_inputs = test_ids[:-1]
test_labels = test_ids[1:]
for epoch in range(1):
train(model, train_inputs, train_labels)
print("training complete")
checkpoint = tf.train.Checkpoint(
optimizer=model.optimizer,
embedding=model.embedding,
lstm=model.lstm,
dense_1=model.dense_1,
dense_2=model.dense_2)
manager = tf.train.CheckpointManager(checkpoint, './ckpts', max_to_keep=10)
manager.save()
print("Train perplexity: " + str(test(model, train_inputs, train_labels)))
print("Test perplexity: " + str(test(model, test_inputs, test_labels)))
return
if __name__ == '__main__':
main()