-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreader.py
313 lines (259 loc) · 10.3 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from PIL import Image
from PIL import ImageOps
import os
import math
import random
import tarfile
import functools
import numpy as np
from PIL import Image, ImageEnhance
import paddle
# for python2/python3 compatiablity
try:
import cPickle
except:
import _pickle as cPickle
IMAGE_SIZE = 32
IMAGE_DEPTH = 3
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
URL_PREFIX = 'https://www.cs.toronto.edu/~kriz/'
CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz'
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
paddle.dataset.common.DATA_HOME = "dataset/"
THREAD = 16
BUF_SIZE = 10240
IMAGENET_MEAN = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
IMAGENET_STD = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
IMAGENET_DIM = 224
def preprocess(sample, is_training, args):
image_array = sample.reshape(IMAGE_DEPTH, IMAGE_SIZE, IMAGE_SIZE)
rgb_array = np.transpose(image_array, (1, 2, 0))
img = Image.fromarray(rgb_array, 'RGB')
if is_training:
# pad, ramdom crop, random_flip_left_right
img = ImageOps.expand(img, (4, 4, 4, 4), fill=0)
left_top = np.random.randint(8, size=2)
img = img.crop((left_top[1], left_top[0], left_top[1] + IMAGE_SIZE,
left_top[0] + IMAGE_SIZE))
if np.random.randint(2):
img = img.transpose(Image.FLIP_LEFT_RIGHT)
img = np.array(img).astype(np.float32)
img_float = img / 255.0
img = (img_float - CIFAR_MEAN) / CIFAR_STD
if is_training and args.cutout:
center = np.random.randint(IMAGE_SIZE, size=2)
offset_width = max(0, center[0] - args.cutout_length // 2)
offset_height = max(0, center[1] - args.cutout_length // 2)
target_width = min(center[0] + args.cutout_length // 2, IMAGE_SIZE)
target_height = min(center[1] + args.cutout_length // 2, IMAGE_SIZE)
for i in range(offset_height, target_height):
for j in range(offset_width, target_width):
img[i][j][:] = 0.0
img = np.transpose(img, (2, 0, 1))
return img
def reader_generator(datasets, batch_size, is_training, is_shuffle, args):
def read_batch(datasets, args):
if is_shuffle:
random.shuffle(datasets)
for im, label in datasets:
im = preprocess(im, is_training, args)
yield im, [int(label)]
def reader():
batch_data = []
batch_label = []
for data in read_batch(datasets, args):
batch_data.append(data[0])
batch_label.append(data[1])
if len(batch_data) == batch_size:
batch_data = np.array(batch_data, dtype='float32')
batch_label = np.array(batch_label, dtype='int64')
batch_out = [batch_data, batch_label]
yield batch_out
batch_data = []
batch_label = []
return reader
def cifar10_reader(file_name, data_name, is_shuffle, args):
with tarfile.open(file_name, mode='r') as f:
names = [
each_item.name for each_item in f if data_name in each_item.name
]
names.sort()
datasets = []
for name in names:
print("Reading file " + name)
try:
batch = cPickle.load(f.extractfile(name), encoding='iso-8859-1')
except:
batch = cPickle.load(f.extractfile(name))
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
dataset = zip(data, labels)
datasets.extend(dataset)
if is_shuffle:
random.shuffle(datasets)
return datasets
def train_search(batch_size, train_portion, is_shuffle, args):
datasets = cifar10_reader(
paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
'data_batch', is_shuffle, args)
split_point = int(np.floor(train_portion * len(datasets)))
train_datasets = datasets[:split_point]
val_datasets = datasets[split_point:]
train_readers = []
val_readers = []
n = int(math.ceil(len(train_datasets) // args.num_workers)
) if args.use_multiprocess else len(train_datasets)
train_datasets_lists = [
train_datasets[i:i + n] for i in range(0, len(train_datasets), n)
]
val_datasets_lists = [
val_datasets[i:i + n] for i in range(0, len(val_datasets), n)
]
for pid in range(len(train_datasets_lists)):
train_readers.append(
reader_generator(train_datasets_lists[pid], batch_size, True, True,
args))
val_readers.append(
reader_generator(val_datasets_lists[pid], batch_size, True, True,
args))
if args.use_multiprocess:
reader = [
paddle.reader.multiprocess_reader(train_readers, False),
paddle.reader.multiprocess_reader(val_readers, False)
]
else:
reader = [train_readers[0], val_readers[0]]
return reader
def train_valid(batch_size, is_train, is_shuffle, args):
name = 'data_batch' if is_train else 'test_batch'
datasets = cifar10_reader(
paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5), name,
is_shuffle, args)
n = int(math.ceil(len(datasets) // args.
num_workers)) if args.use_multiprocess else len(datasets)
datasets_lists = [datasets[i:i + n] for i in range(0, len(datasets), n)]
multi_readers = []
for pid in range(len(datasets_lists)):
multi_readers.append(
reader_generator(datasets_lists[pid], batch_size, is_train,
is_shuffle, args))
if args.use_multiprocess:
reader = paddle.reader.multiprocess_reader(multi_readers, False)
else:
reader = multi_readers[0]
return reader
def crop_image(img, target_size, center):
width, height = img.size
size = target_size
if center == True:
w_start = (width - size) / 2
h_start = (height - size) / 2
else:
w_start = np.random.randint(0, width - size + 1)
h_start = np.random.randint(0, height - size + 1)
w_end = w_start + size
h_end = h_start + size
img = img.crop((w_start, h_start, w_end, h_end))
return img
def resize_short(img, target_size):
percent = float(target_size) / min(img.size[0], img.size[1])
resized_width = int(round(img.size[0] * percent))
resized_height = int(round(img.size[1] * percent))
img = img.resize((resized_width, resized_height), Image.LANCZOS)
return img
def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]):
aspect_ratio = math.sqrt(np.random.uniform(*ratio))
w = 1. * aspect_ratio
h = 1. / aspect_ratio
bound = min((float(img.size[0]) / img.size[1]) / (w**2),
(float(img.size[1]) / img.size[0]) / (h**2))
scale_max = min(scale[1], bound)
scale_min = min(scale[0], bound)
target_area = img.size[0] * img.size[1] * np.random.uniform(scale_min,
scale_max)
target_size = math.sqrt(target_area)
w = int(target_size * w)
h = int(target_size * h)
i = np.random.randint(0, img.size[0] - w + 1)
j = np.random.randint(0, img.size[1] - h + 1)
img = img.crop((i, j, i + w, j + h))
img = img.resize((size, size), Image.BILINEAR)
return img
def distort_color(img):
def random_brightness(img, lower=0.5, upper=1.5):
e = np.random.uniform(lower, upper)
return ImageEnhance.Brightness(img).enhance(e)
def random_contrast(img, lower=0.5, upper=1.5):
e = np.random.uniform(lower, upper)
return ImageEnhance.Contrast(img).enhance(e)
def random_color(img, lower=0.5, upper=1.5):
e = np.random.uniform(lower, upper)
return ImageEnhance.Color(img).enhance(e)
ops = [random_brightness, random_contrast, random_color]
np.random.shuffle(ops)
img = ops[0](img)
img = ops[1](img)
img = ops[2](img)
return img
def process_image(sample, mode, color_jitter, rotate):
img_path = sample[0]
img = Image.open(img_path)
if mode == 'train':
img = random_crop(img, IMAGENET_DIM)
if np.random.randint(0, 2) == 1:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if color_jitter:
img = distort_color(img)
else:
img = resize_short(img, target_size=256)
img = crop_image(img, target_size=IMAGENET_DIM, center=True)
if img.mode != 'RGB':
img = img.convert('RGB')
img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
img -= IMAGENET_MEAN
img /= IMAGENET_STD
if mode == 'train' or mode == 'val':
return img, sample[1]
elif mode == 'test':
return [img]
def _reader_creator(file_list,
mode,
shuffle=False,
color_jitter=False,
rotate=False,
data_dir=None):
def reader():
try:
with open(file_list) as flist:
full_lines = [line.strip() for line in flist]
if shuffle:
np.random.shuffle(full_lines)
lines = full_lines
for line in lines:
if mode == 'train' or mode == 'val':
img_path, label = line.split()
img_path = os.path.join(data_dir, img_path)
yield img_path, int(label)
elif mode == 'test':
img_path = os.path.join(data_dir, line)
yield [img_path]
except Exception as e:
print("Reader failed!\n{}".format(str(e)))
os._exit(1)
mapper = functools.partial(
process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)
return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)
def imagenet_reader(data_dir, mode):
if mode is 'train':
shuffle = True
suffix = 'train_list.txt'
elif mode is 'val':
shuffle = False
suffix = 'val_list.txt'
file_list = os.path.join(data_dir, suffix)
return _reader_creator(file_list, mode, shuffle=shuffle, data_dir=data_dir)