-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
264 lines (215 loc) · 9.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from exjobb.utils import load, dump, load_diff_data, categories
from transformers import AutoTokenizer, AutoModelForSequenceClassification, get_scheduler
from torch.utils.data import DataLoader
from torch.optim import AdamW
from datasets import Dataset, DatasetDict
from os import getcwd, path
from tqdm import tqdm
import statistics
import pickle
import torch
from tqdm.auto import tqdm
from datasets import load_metric
import os
import numpy as np
import time
class DiffTrainer:
def __init__(self, checkpoint, datafile, config={
'rmo': True,
'per_file': False,
'distill': True,
'max_length': 512,
'batch_size': 32,
'num_epochs': 10,
'split': 0.8,
'seed': 42,
'thaw': 0,
'lr': 1e-3,
}):
self.checkpoint = checkpoint
self.datafile = datafile
self.config = config
self.tokenizer = AutoTokenizer.from_pretrained(checkpoint)
self.train_dataloader, self.eval_dataloader = \
self.create_dataloaders(datafile)
self.model = AutoModelForSequenceClassification.from_pretrained(
checkpoint, num_labels=len(categories)
)
# Freeze all base layers, unfeeze thaw
self.shape_model(self.config['thaw'])
self.optimizer = AdamW(self.model.parameters())
self.lr_scheduler = get_scheduler(
name="linear", optimizer=self.optimizer, num_warmup_steps=0, num_training_steps=len(self.train_dataloader)
)
# Either load checkpoint or create a
# new path and initialized variables
self.PATH = self.load_checkpoint()
# Optimizer to cuda
for state in self.optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda()
def show_model(self):
for name, param in self.model.named_parameters():
print(name, param.requires_grad)
def shape_model(self, thaw):
if thaw != -1:
# Freeze all base model layers
for param in self.model.base_model.parameters():
param.requires_grad = False
# Thaw some encoder layers
for i in range(thaw):
try:
for param in self.model.base_model.transformer.layer[-(i+1)].parameters():
param.requires_grad = True
except:
for param in self.model.base_model.encoder.layer[-(i+1)].parameters():
param.requires_grad = False
def load_checkpoint(self):
thaw = self.config['thaw']
lr = self.config['lr']
per_file = self.config['per_file']
distill = self.config['distill']
state = "solid" if thaw == 0 else "liquid" if thaw == - \
1 else "thaw" + str(thaw)
rate = f'_{lr:.0e}' if lr != 1e-3 else ''
level = '_pf' if per_file else '_pp'
dis = '_dis' if distill else ''
try:
name = self.checkpoint.split('/')[1]
except:
name = self.checkpoint
PATH = f'out/{name}_diffs{level}{dis}{rate}_{state}.pt'
if path.isfile(PATH):
print(f'Loading checkpoint from: {PATH}')
cp = torch.load(PATH)
self.model.load_state_dict(cp['model_state_dict'])
self.optimizer.load_state_dict(cp['optimizer_state_dict'])
self.lr_scheduler.load_state_dict(cp['scheduler_state_dict'])
self.epoch_start = cp['epoch'] + 1
self.metrics = cp['metrics']
self.best_state = cp['best_state']
else:
self.metrics = []
self.epoch_start = 1
self.best_state = None
return PATH
def create_dataloaders(self, datafile):
inputs, labels = load_diff_data(
datafile, per_file=self.config['per_file'], dis=self.config['distill'])
split = round(len(inputs)*self.config['split'])
toolong = []
for i, diff in tqdm(enumerate(inputs[split:])):
tokens = self.tokenizer(
diff, padding='max_length', truncation=False)
length = sum(tokens['attention_mask'])
if length > self.config['max_length']:
toolong.append(i)
def remove_outliers(inputs, labels):
ri, rl = [], []
for i in range(len(inputs)):
if i not in toolong:
ri.append(inputs[i])
rl.append(labels[i])
return ri, rl
if self.config['rmo']:
print(f'Remvoing {len(toolong)} datapoint outliers...')
inputs, labels = remove_outliers(inputs, labels)
train_inputs = inputs[:split]
train_labels = labels[:split]
valid_inputs = inputs[split:]
valid_labels = labels[split:]
raw_datasets = DatasetDict({
'train': Dataset.from_dict({
'inputs': train_inputs,
'labels': [categories.index(c) for c in train_labels]
}),
'valid': Dataset.from_dict({
'inputs': valid_inputs,
'labels': [categories.index(c) for c in valid_labels]
})
})
def tokenize_function(examples):
return self.tokenizer(examples["inputs"], padding='max_length', max_length=self.config['max_length'], truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns(["inputs"])
tokenized_datasets.set_format("torch")
train_dataloader = DataLoader(
tokenized_datasets["train"].shuffle(seed=self.config['seed']), shuffle=True, batch_size=self.config['batch_size'])
eval_dataloader = DataLoader(
tokenized_datasets["valid"].shuffle(seed=self.config['seed']), batch_size=self.config['batch_size'])
return train_dataloader, eval_dataloader
def train(self):
device = torch.device("cuda")
self.model.to(device)
self.model.train()
for epoch in range(self.epoch_start, self.config['num_epochs'] + 1):
print(f"Starting epoch {epoch}/{self.config['num_epochs']}")
train_acc = load_metric('accuracy')
train_f1 = load_metric('f1')
val_acc = load_metric('accuracy')
val_f1 = load_metric('f1')
start_time = time.time()
train_loss = 0
val_loss = 0
# Training loop
for batch in tqdm(self.train_dataloader):
batch = {k: v.to(device) for k, v in batch.items()}
outputs = self.model(**batch)
loss = outputs.loss
train_loss += loss.item()
loss.backward()
self.optimizer.step()
self.lr_scheduler.step()
self.optimizer.zero_grad()
# Training metrics
logits = outputs.logits
labels = batch['labels']
preds = torch.argmax(logits, dim=-1)
train_acc.add_batch(predictions=preds, references=labels)
train_f1.add_batch(predictions=preds, references=labels)
# Validation metrics
with torch.no_grad():
for batch in self.eval_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = self.model(**batch)
val_loss += outputs.loss.item()
logits = outputs.logits
labels = batch['labels']
preds = torch.argmax(logits, dim=-1)
val_acc.add_batch(predictions=preds, references=labels)
val_f1.add_batch(predictions=preds, references=labels)
train_acc = train_acc.compute()
train_f1 = train_f1.compute(average='macro')
val_acc = val_acc.compute()
val_f1 = val_f1.compute(average='macro')
vpoint = {
'train_acc': train_acc,
'train_f1': train_f1,
'train_loss': train_loss / len(self.train_dataloader),
'val_acc': val_acc,
'val_f1': val_f1,
'val_loss': val_loss / len(self.eval_dataloader)
}
self.metrics.append(vpoint)
print(
f'train_loss: {vpoint["train_loss"]:.3f}, val_loss: {vpoint["val_loss"]:.3f}')
print(
f"Epoch time: {((time.time() - start_time) / 60):.3f} minutes")
curr_state = {
**vpoint,
'model_state_dict': self.model.state_dict()
}
if not self.best_state or self.best_state['val_loss'] > curr_state['val_loss']:
self.best_state = curr_state
torch.save({
'base': self.checkpoint,
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': self.lr_scheduler.state_dict(),
'best_state': self.best_state,
'metrics': self.metrics,
'max_length': self.config['max_length']
}, self.PATH)
print(f"{self.config['num_epochs']}/{self.config['num_epochs']} done")