forked from ryancdotorg/storybits
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombinadic.js
executable file
·822 lines (731 loc) · 21.7 KB
/
combinadic.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
(function(exports){
// A somewhat stripped down version of Leemon Baird's BigInt.js
///////////////////////////////////
// //
// BEGIN BIGINT IMPLEMENTATION //
// //
///////////////////////////////////
bpe=0; //bits stored per array element
mask=0; //AND this with an array element to chop it down to bpe bits
radix=mask+1; //equals 2^bpe. A single 1 bit to the left of the last bit of mask.
//the digits for converting to different bases
digitsStr='0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-';
//initialize the global variables
for (bpe=0; (1<<(bpe+1)) > (1<<bpe); bpe++) {}; //bpe=number of bits in the mantissa on this platform
bpe>>=1; //bpe=number of bits in one element of the array representing the bigInt
mask=(1<<bpe)-1; //AND the mask with an integer to get its bpe least significant bits
radix=mask+1; //2^bpe. a single 1 bit to the left of the first bit of mask
//the following global variables are scratchpad memory to
//reduce dynamic memory allocation in the inner loop
t=new Array(0);
ss=t; //used in mult_()
s4=t; s5=t; //used in mod_()
s6=t; //used in bigInt2str()
md_q1=t; md_q2=t; md_q3=t; md_r=t; md_r1=t; md_r2=t; md_tt=t; //used in mod_()
////////////////////////////////////////////////////////////////////////////////////////
//returns how many bits long the bigInt is, not counting leading zeros.
function bitSize(x) {
var j,z,w;
for (j=x.length-1; (x[j]==0) && (j>0); j--) {};
for (z=0,w=x[j]; w; (w>>=1),z++) {};
z+=bpe*j;
return z;
}
//return a copy of x with at least n elements, adding leading zeros if needed
function expand(x,n) {
var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0);
copy_(ans,x);
return ans;
}
//return a new bigInt equal to (x mod n) for bigInts x and n.
function mod(x,n) {
var ans=dup(x);
mod_(ans,n);
return trim(ans,1);
}
//return (x+n) where x is a bigInt and n is an integer.
function addInt(x,n) {
var ans=expand(x,x.length+1);
addInt_(ans,n);
return trim(ans,1);
}
//return x*y for bigInts x and y. This is faster when y<x.
function mult(x,y) {
var ans=expand(x,x.length+y.length);
mult_(ans,y);
return trim(ans,1);
}
//return (x-y) for bigInts x and y. Negative answers will be 2s complement
function sub(x,y) {
var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1));
sub_(ans,y);
return trim(ans,1);
}
//return (x+y) for bigInts x and y.
function add(x,y) {
var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1));
add_(ans,y);
return trim(ans,1);
}
//return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x.
function multMod(x,y,n) {
var ans=expand(x,n.length);
multMod_(ans,y,n);
return trim(ans,1);
}
//is bigInt x negative?
function negative(x) {
return ((x[x.length-1]>>(bpe-1))&1);
}
//is (x << (shift*bpe)) > y?
//x and y are nonnegative bigInts
//shift is a nonnegative integer
function greaterShift(x,y,shift) {
var i, kx=x.length, ky=y.length;
k=((kx+shift)<ky) ? (kx+shift) : ky;
for (i=ky-1-shift; i<kx && i>=0; i++)
if (x[i]>0)
return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger
for (i=kx-1+shift; i<ky; i++)
if (y[i]>0)
return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger
for (i=k-1; i>=shift; i--)
if (x[i-shift]>y[i]) return 1;
else if (x[i-shift]<y[i]) return 0;
return 0;
}
//is x > y? (x and y both nonnegative)
function greater(x,y) {
var i;
var k=(x.length<y.length) ? x.length : y.length;
for (i=x.length;i<y.length;i++)
if (y[i])
return 0; //y has more digits
for (i=y.length;i<x.length;i++)
if (x[i])
return 1; //x has more digits
for (i=k-1;i>=0;i--)
if (x[i]>y[i])
return 1;
else if (x[i]<y[i])
return 0;
return 0;
}
//divide x by y giving quotient q and remainder r. (q=floor(x/y), r=x mod y). All 4 are bigints.
//x must have at least one leading zero element.
//y must be nonzero.
//q and r must be arrays that are exactly the same length as x. (Or q can have more).
//Must have x.length >= y.length >= 2.
function divide_(x,y,q,r) {
var kx, ky;
var i,j,y1,y2,c,a,b;
copy_(r,x);
for (ky=y.length;y[ky-1]==0;ky--) {}; //ky is number of elements in y, not including leading zeros
//normalize: ensure the most significant element of y has its highest bit set
b=y[ky-1];
for (a=0; b; a++)
b>>=1;
a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element
leftShift_(y,a); //multiply both by 1<<a now, then divide both by that at the end
leftShift_(r,a);
//Rob Visser discovered a bug: the following line was originally just before the normalization.
for (kx=r.length;r[kx-1]==0 && kx>ky;kx--) {}; //kx is number of elements in normalized x, not including leading zeros
copyInt_(q,0); // q=0
while (!greaterShift(y,r,kx-ky)) { // while (leftShift_(y,kx-ky) <= r) {
subShift_(r,y,kx-ky); // r=r-leftShift_(y,kx-ky)
q[kx-ky]++; // q[kx-ky]++;
} // }
for (i=kx-1; i>=ky; i--) {
if (r[i]==y[ky-1])
q[i-ky]=mask;
else
q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]);
//The following for(;;) loop is equivalent to the commented while loop,
//except that the uncommented version avoids overflow.
//The commented loop comes from HAC, which assumes r[-1]==y[-1]==0
// while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2])
// q[i-ky]--;
for (;;) {
y2=(ky>1 ? y[ky-2] : 0)*q[i-ky];
c=y2>>bpe;
y2=y2 & mask;
y1=c+q[i-ky]*y[ky-1];
c=y1>>bpe;
y1=y1 & mask;
if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i])
q[i-ky]--;
else
break;
}
linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky)
if (negative(r)) {
addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky)
q[i-ky]--;
}
}
rightShift_(y,a); //undo the normalization step
rightShift_(r,a); //undo the normalization step
}
//do carries and borrows so each element of the bigInt x fits in bpe bits.
function carry_(x) {
var i,k,c,b;
k=x.length;
c=0;
for (i=0;i<k;i++) {
c+=x[i];
b=0;
if (c<0) {
b=-(c>>bpe);
c+=b*radix;
}
x[i]=c & mask;
c=(c>>bpe)-b;
}
}
//return x mod n for bigInt x and integer n.
function modInt(x,n) {
var i,c=0;
for (i=x.length-1; i>=0; i--)
c=(c*radix+x[i])%n;
return c;
}
//convert the integer t into a bigInt with at least the given number of bits.
//the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word)
//Pad the array with leading zeros so that it has at least minSize elements.
//There will always be at least one leading 0 element.
function int2bigInt(t,bits,minSize) {
var i,k;
k=Math.ceil(bits/bpe)+1;
k=minSize>k ? minSize : k;
buff=new Array(k);
copyInt_(buff,t);
return buff;
}
//return the bigInt given a string representation in a given base.
//Pad the array with leading zeros so that it has at least minSize elements.
//If base=-1, then it reads in a space-separated list of array elements in decimal.
//The array will always have at least one leading zero, unless base=-1.
function str2bigInt(s,base,minSize) {
var d, i, j, x, y, kk;
var k=s.length;
if (base==-1) { //comma-separated list of array elements in decimal
x=new Array(0);
for (;;) {
y=new Array(x.length+1);
for (i=0;i<x.length;i++)
y[i+1]=x[i];
y[0]=parseInt(s,10);
x=y;
d=s.indexOf(',',0);
if (d<1)
break;
s=s.substring(d+1);
if (s.length==0)
break;
}
if (x.length<minSize) {
y=new Array(minSize);
copy_(y,x);
return y;
}
return x;
}
x=int2bigInt(0,base*k,0);
if (base<=36 && d>=36) //convert uppercase to lowercase if base<=36
s = s.toLowerCase();
for (i=0;i<k;i++) {
d=digitsStr.indexOf(s.substring(i,i+1),0);
if (d>=base || d<0) { //stop at first illegal character
break;
}
multInt_(x,base);
addInt_(x,d);
}
for (k=x.length;k>0 && !x[k-1];k--) {}; //strip off leading zeros
k=minSize>k+1 ? minSize : k+1;
y=new Array(k);
kk=k<x.length ? k : x.length;
for (i=0;i<kk;i++)
y[i]=x[i];
for (;i<k;i++)
y[i]=0;
return y;
}
//is bigint x equal to integer y?
//y must have less than bpe bits
function equalsInt(x,y) {
var i;
if (x[0]!=y)
return 0;
for (i=1;i<x.length;i++)
if (x[i])
return 0;
return 1;
}
//are bigints x and y equal?
//this works even if x and y are different lengths and have arbitrarily many leading zeros
function equals(x,y) {
var i;
var k=x.length<y.length ? x.length : y.length;
for (i=0;i<k;i++)
if (x[i]!=y[i])
return 0;
if (x.length>y.length) {
for (;i<x.length;i++)
if (x[i])
return 0;
} else {
for (;i<y.length;i++)
if (y[i])
return 0;
}
return 1;
}
//is the bigInt x equal to zero?
function isZero(x) {
var i;
for (i=0;i<x.length;i++)
if (x[i])
return 0;
return 1;
}
//convert a bigInt into a string in a given base, from base 2 up to base 95.
//Base -1 prints the contents of the array representing the number.
function bigInt2str(x,base) {
var i,t,s="";
if (s6.length!=x.length)
s6=dup(x);
else
copy_(s6,x);
if (base==-1) { //return the list of array contents
for (i=x.length-1;i>0;i--)
s+=x[i]+',';
s+=x[0];
}
else { //return it in the given base
while (!isZero(s6)) {
t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base);
s=digitsStr.substring(t,t+1)+s;
}
}
if (s.length==0)
s="0";
return s;
}
//returns a duplicate of bigInt x
function dup(x) {
var i;
buff=new Array(x.length);
copy_(buff,x);
return buff;
}
//do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y).
function copy_(x,y) {
var i;
var k=x.length<y.length ? x.length : y.length;
for (i=0;i<k;i++)
x[i]=y[i];
for (i=k;i<x.length;i++)
x[i]=0;
}
//do x=y on bigInt x and integer y.
function copyInt_(x,n) {
var i,c;
for (c=n,i=0;i<x.length;i++) {
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x+n where x is a bigInt and n is an integer.
//x must be large enough to hold the result.
function addInt_(x,n) {
var i,k,c,b;
x[0]+=n;
k=x.length;
c=0;
for (i=0;i<k;i++) {
c+=x[i];
b=0;
if (c<0) {
b=-(c>>bpe);
c+=b*radix;
}
x[i]=c & mask;
c=(c>>bpe)-b;
if (!c) return; //stop carrying as soon as the carry is zero
}
}
//right shift bigInt x by n bits. 0 <= n < bpe.
function rightShift_(x,n) {
var i;
var k=Math.floor(n/bpe);
if (k) {
for (i=0;i<x.length-k;i++) //right shift x by k elements
x[i]=x[i+k];
for (;i<x.length;i++)
x[i]=0;
n%=bpe;
}
for (i=0;i<x.length-1;i++) {
x[i]=mask & ((x[i+1]<<(bpe-n)) | (x[i]>>n));
}
x[i]>>=n;
}
//do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement
function halve_(x) {
var i;
for (i=0;i<x.length-1;i++) {
x[i]=mask & ((x[i+1]<<(bpe-1)) | (x[i]>>1));
}
x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same
}
//left shift bigInt x by n bits.
function leftShift_(x,n) {
var i;
var k=Math.floor(n/bpe);
if (k) {
for (i=x.length; i>=k; i--) //left shift x by k elements
x[i]=x[i-k];
for (;i>=0;i--)
x[i]=0;
n%=bpe;
}
if (!n)
return;
for (i=x.length-1;i>0;i--) {
x[i]=mask & ((x[i]<<n) | (x[i-1]>>(bpe-n)));
}
x[i]=mask & (x[i]<<n);
}
//do x=x*n where x is a bigInt and n is an integer.
//x must be large enough to hold the result.
function multInt_(x,n) {
var i,k,c,b;
if (!n)
return;
k=x.length;
c=0;
for (i=0;i<k;i++) {
c+=x[i]*n;
b=0;
if (c<0) {
b=-(c>>bpe);
c+=b*radix;
}
x[i]=c & mask;
c=(c>>bpe)-b;
}
}
//do x=floor(x/n) for bigInt x and integer n, and return the remainder
function divInt_(x,n) {
var i,r=0,s;
for (i=x.length-1;i>=0;i--) {
s=r*radix+x[i];
x[i]=Math.floor(s/n);
r=s%n;
}
return r;
}
//do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b.
//x must be large enough to hold the answer.
function linComb_(x,y,a,b) {
var i,c,k,kk;
k=x.length<y.length ? x.length : y.length;
kk=x.length;
for (c=0,i=0;i<k;i++) {
c+=a*x[i]+b*y[i];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;i<kk;i++) {
c+=a*x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys.
//x must be large enough to hold the answer.
function linCombShift_(x,y,b,ys) {
var i,c,k,kk;
k=x.length<ys+y.length ? x.length : ys+y.length;
kk=x.length;
for (c=0,i=ys;i<k;i++) {
c+=x[i]+b*y[i-ys];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;c && i<kk;i++) {
c+=x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
//x must be large enough to hold the answer.
function addShift_(x,y,ys) {
var i,c,k,kk;
k=x.length<ys+y.length ? x.length : ys+y.length;
kk=x.length;
for (c=0,i=ys;i<k;i++) {
c+=x[i]+y[i-ys];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;c && i<kk;i++) {
c+=x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
//x must be large enough to hold the answer.
function subShift_(x,y,ys) {
var i,c,k,kk;
k=x.length<ys+y.length ? x.length : ys+y.length;
kk=x.length;
for (c=0,i=ys;i<k;i++) {
c+=x[i]-y[i-ys];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;c && i<kk;i++) {
c+=x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x-y for bigInts x and y.
//x must be large enough to hold the answer.
//negative answers will be 2s complement
function sub_(x,y) {
var i,c,k,kk;
k=x.length<y.length ? x.length : y.length;
for (c=0,i=0;i<k;i++) {
c+=x[i]-y[i];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;c && i<x.length;i++) {
c+=x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x+y for bigInts x and y.
//x must be large enough to hold the answer.
function add_(x,y) {
var i,c,k,kk;
k=x.length<y.length ? x.length : y.length;
for (c=0,i=0;i<k;i++) {
c+=x[i]+y[i];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;c && i<x.length;i++) {
c+=x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x*y for bigInts x and y. This is faster when y<x.
function mult_(x,y) {
var i;
if (ss.length!=2*x.length)
ss=new Array(2*x.length);
copyInt_(ss,0);
for (i=0;i<y.length;i++)
if (y[i])
linCombShift_(ss,x,y[i],i); //ss=1*ss+y[i]*(x<<(i*bpe))
copy_(x,ss);
}
//do x=x mod n for bigInts x and n.
function mod_(x,n) {
if (s4.length!=x.length)
s4=dup(x);
else
copy_(s4,x);
if (s5.length!=x.length)
s5=dup(x);
divide_(s4,n,s5,x); //x = remainder of s4 / n
}
//return x with exactly k leading zero elements
function trim(x,k) {
var i,y;
for (i=x.length; i>0 && !x[i-1]; i--) {};
y=new Array(i+k);
copy_(y,x);
return y;
}
/////////////////////////////////
// //
// END BIGINT IMPLEMENTATION //
// //
/////////////////////////////////
// Expects n and k as normal integers, returns a bigint object.
// Should be fairly easy to adapt to any bigint implementation.
function nCk(n, k, bits) {
if (!bits) bits = 256;
var m;
var quotient = int2bigInt(0, bits);
if (k > n) return quotient;
var remainder = int2bigInt(0, bits*2);
var numerator = int2bigInt(1, bits*2);
var denominator = int2bigInt(1, bits*2);
for (var i = 1; i <= k; i++) {
m = n - (k - i);
multInt_(numerator, m);
multInt_(denominator, i);
}
// The numerator is not guaranteed to be a multiple of the denominator
// until after the last iteration of the loop, so division happens here.
divide_(numerator, denominator, quotient, remainder);
return quotient;
}
function minValues(max_x, cardinality) {
max_x = typeof max_x === 'number' ? int2bigInt(max_x, 53) : dup(max_x);
var bits = bitSize(max_x);
var c, n = 0;
var max_n = cardinality >> 1;
do {
if (n >= max_n) return null;
c = nCk(cardinality, ++n, bits);
} while (greater(max_x, c));
return n;
}
function findBestN(x, start_n, k) {
var last, incr, n, c, start_n, best_n, best_c;
last = incr = n = start_n;
best_n = best_c = 0;
while (last || incr) {
last = incr;
incr >>>= 1;
c = nCk(n, k);
if (!greater(c, x)) {
if (n > best_n) {
best_n = n;
best_c = c;
}
n += incr + 1;
} else {
n -= incr + 1;
}
}
return {n: best_n, c: best_c};
}
function int2cmb(x, cardinality, n_values) {
x = typeof x === 'number' ? int2bigInt(x, 53) : dup(x);
var best;
var k = n_values || minValues(x, cardinality);
var n = cardinality;
var values = [];
do {
best = findBestN(x, n, k);
n = best.n;
values.push(n);
sub_(x, best.c);
} while (--k);
return values;
}
function cmb2int(values, bits) {
if (!bits) bits = 256;
// get a sorted copy
values = values.slice().sort(function(a,b){return a-b;});
var c;
var x = int2bigInt(0, bits);
for (var _len = values.length, i = 0; i < _len; ++i) {
c = nCk(values[i], i + 1, bits);
add_(x, c);
}
return x;
}
exports['MultisetCodec'] = (function(sets) {
var __MultisetCodec = function(sets) {
if (this.constructor !== __MultisetCodec) throw new Error("missing 'new'");
var self = this;
self['sets'] = sets;
function neededItems(max_x) {
max_x = typeof max_x === 'number' ? int2bigInt(max_x, 53) : dup(max_x);
var k = 1, accum, _len, i, c, n, bits = bitSize(max_x);
while (1) {
accum = int2bigInt(1, bits);
for (_len = self['sets'].length, i = 0; i < _len; ++i) {
n = self['sets'][i];
c = nCk(n, k, bits);
mult_(accum, c);
}
// (accum >= max_x) == !(max_x > accum)
if (!(greater(max_x, accum))) {
return k;
}
++k;
}
}
function encode(x, max_x) {
x = typeof x === 'number' ? int2bigInt(x, 53) : dup(x);
if (typeof max_x === 'undefined') {
max_x = dup(x);
} else if (typeof max_x === 'number') {
max_x = int2bigInt(max_x, 53);
} else {
max_x = dup(max_x);
}
var bits = bitSize(max_x), cardinality, subcmb;
var needed = neededItems(max_x), result = [], i, j, _len, k, base;
var n = int2bigInt(0, bits), tmp = int2bigInt(0, bits);
for (_len = self['sets'].length, i = 0; i < _len; ++i) {
cardinality = self['sets'][i];
k = needed;
base = nCk(cardinality, k, bits);
divide_(x, base, tmp, n);
x = dup(tmp);
subcmb = int2cmb(n, cardinality, k);
for (j = 0; j < k; ++j) {
result.push([i, subcmb[j]]);
}
}
return result;
}
function decode(l, bits) {
if (!bits) bits = 256;
var sublists = {}, sublist, sublist_idx = [];
var i, _len, n, v, x, k, c;
for (_len = l.length, i = 0; i < _len; ++i) {
s = l[i][0], v = l[i][1];
sublists[s] = (sublists[s] || []);
sublists[s].push(v);
}
for (s in sublists) sublists[s].sort(function(a,b){return a-b;});
x = int2bigInt(0, bits);
for (i = sets.length; i--;) {
sublist = sublists[i];
if (!sublist) throw new Error("incomplete data to decode");
n = self['sets'][i];
k = sublist.length;
c = nCk(n, k, bits);
//var log = bigInt2str(x, 10) + ' ' + bigInt2str(c, 10)
mult_(x, c);
v = cmb2int(sublist, bits*2);
//log += ' ' + bigInt2str(v, 10) + ' ' + sublist
//console.log(log);
add_(x, v);
}
return x;
}
self['neededItems'] = neededItems;
self['encode'] = encode;
self['decode'] = decode;
}
return __MultisetCodec;
})();
// combinadic functions
exports['nCk'] = nCk;
exports['minValues'] = minValues;
exports['int2cmb'] = int2cmb;
exports['cmb2int'] = cmb2int;
// functions from BigInt.js
exports['bi2str'] = bigInt2str;
exports['str2bi'] = str2bigInt;
exports['int2bi'] = int2bigInt;
exports['equals'] = equals;
exports['equalsInt'] = equalsInt;
})(typeof exports === 'undefined' ? window['combinadic'] = {} : exports);