-
Notifications
You must be signed in to change notification settings - Fork 176
/
Copy pathapp_gradio.py
204 lines (174 loc) · 9.62 KB
/
app_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
import sys
import io
import requests
import json
import base64
from PIL import Image
import numpy as np
import gradio as gr
sys.path.append('.')
def inference_mask1_sam(prompt,
img,
img_):
files = {
"useSam" : 1,
"pimage" : resizeImg(prompt["image"]),
"pmask" : resizeImg(prompt["mask"]),
"img" : resizeImg(img),
"img_" : resizeImg(img_)
}
r = requests.post("http://120.92.79.209/painter/run", json = files)
a = json.loads(r.text)
res = []
for i in range(len(a)):
#out = Image.open(io.BytesIO(base64.b64decode(a[i])))
#out = out.resize((224, 224))
#res.append(np.uint8(np.array(out)))
res.append(np.uint8(np.array(Image.open(io.BytesIO(base64.b64decode(a[i]))))))
return res[1:] # remove the prompt image
def inference_mask1(prompt,
img,
img_):
files = {
"pimage" : resizeImg(prompt["image"]),
"pmask" : resizeImg(prompt["mask"]),
"img" : resizeImg(img),
"img_" : resizeImg(img_)
}
r = requests.post("http://120.92.79.209/painter/run", json = files)
a = json.loads(r.text)
res = []
for i in range(len(a)):
#out = Image.open(io.BytesIO(base64.b64decode(a[i])))
#out = out.resize((224, 224))
#res.append(np.uint8(np.array(out)))
res.append(np.uint8(np.array(Image.open(io.BytesIO(base64.b64decode(a[i]))))))
return res
def inference_mask_video(
prompt,
vid,
request: gr.Request,
):
files = {
"pimage" : resizeImgIo(prompt["image"]),
"pmask" : resizeImgIo(prompt["mask"]),
"video" : open(vid, 'rb'),
}
r = requests.post("http://120.92.79.209/painter/runVideo", files = files)
'''
path = str(uuid.uuid4()) + "." + str(time.time())
fName = 'out.mp4'
file_out = "video/" + path + "." + fName
with open(file_out,"wb") as f:
f.write(r.content)
'''
a = json.loads(r.text)
return [np.uint8(np.array(Image.open(io.BytesIO(base64.b64decode(a["mask"]))))), a["url"]]
def resizeImg(img):
res, hres = 448, 448
img = Image.fromarray(img).convert("RGB")
img = img.resize((res, hres))
temp = io.BytesIO()
img.save(temp, format="WEBP")
return base64.b64encode(temp.getvalue()).decode('ascii')
def resizeImgIo(img):
res, hres = 448, 448
img = Image.fromarray(img).convert("RGB")
img = img.resize((res, hres))
temp = io.BytesIO()
img.save(temp, format="WEBP")
return io.BytesIO(temp.getvalue())
# define app features and run
examples = [
['./images/hmbb_1.jpg', './images/hmbb_2.jpg', './images/hmbb_3.jpg'],
['./images/rainbow_1.jpg', './images/rainbow_2.jpg', './images/rainbow_3.jpg'],
['./images/earth_1.jpg', './images/earth_2.jpg', './images/earth_3.jpg'],
['./images/obj_1.jpg', './images/obj_2.jpg', './images/obj_3.jpg'],
['./images/ydt_2.jpg', './images/ydt_1.jpg', './images/ydt_3.jpg'],
]
examples_sam = [
['./images/hmbb_1.jpg', './images/hmbb_2.jpg', './images/hmbb_3.jpg'],
['./images/street_1.jpg', './images/street_2.jpg', './images/street_3.jpg'],
['./images/tom_1.jpg', './images/tom_2.jpg', './images/tom_3.jpg'],
['./images/earth_1.jpg', './images/earth_2.jpg', './images/earth_3.jpg'],
['./images/ydt_2.jpg', './images/ydt_1.jpg', './images/ydt_3.jpg'],
]
examples_video = [
['./videos/horse-running.jpg', './videos/horse-running.mp4'],
['./videos/a_man_is_surfing_3_30.jpg', './videos/a_man_is_surfing_3_30.mp4'],
['./videos/a_car_is_moving_on_the_road_40.jpg', './videos/a_car_is_moving_on_the_road_40.mp4'],
['./videos/jeep-moving.jpg', './videos/jeep-moving.mp4'],
['./videos/child-riding_lego.jpg', './videos/child-riding_lego.mp4'],
['./videos/a_man_in_parkour_100.jpg', './videos/a_man_in_parkour_100.mp4'],
]
demo_mask = gr.Interface(fn=inference_mask1,
inputs=[gr.ImageMask(brush_radius=8, label="prompt (提示图)"), gr.Image(label="img1 (测试图1)"), gr.Image(label="img2 (测试图2)")],
#outputs=[gr.Image(shape=(448, 448), label="output1 (输出图1)"), gr.Image(shape=(448, 448), label="output2 (输出图2)")],
outputs=[gr.Image(label="output1 (输出图1)").style(height=256, width=256), gr.Image(label="output2 (输出图2)").style(height=256, width=256)],
#outputs=gr.Gallery(label="outputs (输出图)"),
examples=examples,
#title="SegGPT for Any Segmentation<br>(Painter Inside)",
description="<p> \
Choose an example below 🔥 🔥 🔥 <br>\
Or, upload by yourself: <br>\
1. Upload images to be tested to 'img1' and/or 'img2'. <br>2. Upload a prompt image to 'prompt' and draw a mask. <br>\
<br> \
💎 The more accurate you annotate, the more accurate the model predicts. <br>\
💎 Examples below were never trained and are randomly selected for testing in the wild. <br>\
💎 Current UI interface only unleashes a small part of the capabilities of SegGPT, i.e., 1-shot case. \
</p>",
cache_examples=False,
allow_flagging="never",
)
demo_mask_sam = gr.Interface(fn=inference_mask1_sam,
inputs=[gr.ImageMask(brush_radius=4, label="prompt (提示图)"), gr.Image(label="img1 (测试图1)"), gr.Image(label="img2 (测试图2)")],
#outputs=[gr.Image(shape=(448, 448), label="output1 (输出图1)"), gr.Image(shape=(448, 448), label="output2 (输出图2)")],
# outputs=[gr.Image(label="output1 (输出图1)").style(height=256, width=256), gr.Image(label="output2 (输出图2)").style(height=256, width=256)],
#outputs=gr.Gallery(label="outputs (输出图)"),
outputs=[gr.Image(label="SAM output (mask)").style(height=256, width=256),gr.Image(label="output1 (输出图1)").style(height=256, width=256), gr.Image(label="output2 (输出图2)").style(height=256, width=256)],
# outputs=[gr.Image(label="output3 (输出图1)").style(height=256, width=256), gr.Image(label="output4 (输出图2)").style(height=256, width=256)],
examples=examples_sam,
#title="SegGPT for Any Segmentation<br>(Painter Inside)",
description="<p> \
<strong>SAM+SegGPT: One touch for segmentation in all images or videos.</strong> <br>\
Choose an example below 🔥 🔥 🔥 <br>\
Or, upload by yourself: <br>\
1. Upload images to be tested to 'img1' and 'img2'. <br>2. Upload a prompt image to 'prompt' and draw <strong>a point or line on the target</strong>. <br>\
<br> \
💎 SAM segments the target with any point or scribble, then SegGPT segments all other images. <br>\
💎 Examples below were never trained and are randomly selected for testing in the wild. <br>\
💎 Current UI interface only unleashes a small part of the capabilities of SegGPT, i.e., 1-shot case. \
</p>",
cache_examples=False,
allow_flagging="never",
)
demo_mask_video = gr.Interface(fn=inference_mask_video,
inputs=[gr.ImageMask(label="prompt (提示图)"), gr.Video(label="video (测试视频)").style(height=448, width=448)],
outputs=[gr.Image(label="SAM output (mask)").style(height=256, width=256), gr.Video().style(height=448, width=448)],
examples=examples_video,
description="<p> \
<strong>SegGPT+SAM: One touch for any segmentation in a video.</strong> <br>\
Choose an example below 🔥 🔥 🔥 <br>\
Or, upload by yourself: <br>\
1. Upload a video to be tested to 'video'. If failed, please check the codec, we recommend h.264 by default. <br>2. Upload a prompt image to 'prompt' and draw <strong>a point or line on the target</strong>. <br>\
<br> \
💎 SAM segments the target with any point or scribble, then SegGPT segments the whole video. <br>\
💎 Examples below were never trained and are randomly selected for testing in the wild. <br>\
💎 Current UI interface only unleashes a small part of the capabilities of SegGPT, i.e., 1-shot case. <br> \
Note: we only take the first 16 frames for the demo. \
</p>",
)
title = "SegGPT: Segmenting Everything In Context<br> \
<div align='center'> \
<h2><a href='https://arxiv.org/abs/2304.03284' target='_blank' rel='noopener'>[paper]</a> \
<a href='https://github.com/baaivision/Painter' target='_blank' rel='noopener'>[code]</a></h2> \
<br> \
<image src='file/rainbow.gif' width='720px' /> \
<h2>SegGPT performs arbitrary segmentation tasks in images or videos via in-context inference, such as object instance, stuff, part, contour, and text, with only one single model.</h2> \
</div> \
"
demo = gr.TabbedInterface([demo_mask_sam, demo_mask_video, demo_mask], ['SAM+SegGPT (一触百通)', '🎬Anything in a Video', 'General 1-shot'], title=title)
#demo.launch(share=True, auth=("baai", "vision"))
demo.launch(enable_queue=False)
#demo.launch(enable_queue=False, server_name="0.0.0.0", server_port=34311)