-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy patharguments.py
120 lines (100 loc) · 3.35 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from dataclasses import dataclass, field
from typing import Optional, List
import transformers
@dataclass
class DataTrainingArguments:
dataset_path: str = "dataset_path"
arbitrary_resolution: Optional[bool] = field(
default=False,
metadata={
"help": "If true, images will have arbitrary resolutions."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
one_minus_one_data_transform: Optional[bool] = field(
default=False,
metadata={
"help": "If true, the data will be scaled to [-1, 1] instead of [0, 1]."
},
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/image processor we are going to pre-train.
"""
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: "},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
image_size: Optional[int] = field(
default=None,
metadata={
"help": (
"The size (resolution) of each image. If not specified, will use `image_size` of the configuration."
)
},
)
fixed_image_size: Optional[bool] = field(
default=True,
)
patch_size: Optional[int] = field(
default=None,
metadata={
"help": (
"The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration."
)
},
)
tublet_size: Optional[List[int]] = field(
default_factory=lambda: [2, 16, 16],
metadata={
"help": (
"The size of each tubelet (3D patch size). If not specified, will use `tubelet_size` of the configuration."
)
},
)
cost_gradient_penalty: Optional[float] = field(
default=0, # 0.2
)
enable_flash: Optional[bool] = field(
default=False,
)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
multiple_optimizer_training: Optional[float] = field( default=False, metadata={ "help": "will become true if `gan_loss_weight` in `model_args` is set to allow multiple optimizers" } )
wandb_api_key: Optional[str] = field(
default=None,
metadata={
"help": "wandb api key"
}
)
train_steps: Optional[int] = field(default=1,)
visual_pattern: Optional[str] = field(default=None,)
clip_image_size: Optional[int] = field(default=224,)
metaclip_version: Optional[str] = field(default=None,)