-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathSVC1V1.m
78 lines (72 loc) · 3.69 KB
/
SVC1V1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
classdef SVC1V1 < Algorithm
%SVC1V1 Support Vector Classifier using one-vs-one approach
%classification by predicting class labels as a regression problem.
%It uses libSVM-weight SVM implementation.
%
% SVC1V1 methods:
% fitpredict - runs the corresponding algorithm,
% fitting the model and testing it in a dataset.
% fit - Fits a model from training data
% predict - Performs label prediction
%
% References:
% [1] C.-W. Hsu and C.-J. Lin
% A comparison of methods for multi-class support vector machines
% IEEE Transaction on Neural Networks,vol. 13, no. 2, pp. 415–425, 2002.
% https://doi.org/10.1109/72.991427
% [2] P.A. Gutiérrez, M. Pérez-Ortiz, J. Sánchez-Monedero,
% F. Fernández-Navarro and C. Hervás-Martínez
% Ordinal regression methods: survey and experimental study
% IEEE Transactions on Knowledge and Data Engineering, Vol. 28. Issue 1
% 2016
% http://dx.doi.org/10.1109/TKDE.2015.2457911
% [3] LibSVM website: https://www.csie.ntu.edu.tw/~cjlin/libsvm
%
% This file is part of ORCA: https://github.com/ayrna/orca
% Original authors: Pedro Antonio Gutiérrez, María Pérez Ortiz, Javier Sánchez Monedero
% Citation: If you use this code, please cite the associated paper http://www.uco.es/grupos/ayrna/orreview
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
properties
description = 'Support Vector Machine Classifier with 1vs1 paradigm';
parameters = struct('C', 0.1, 'k', 0.1);
end
properties (Access = private)
algorithmMexPath = fullfile(fileparts(which('Algorithm.m')),'libsvm-weights-3.12','matlab');
end
methods
function obj = SVC1V1(varargin)
%SVC1V1 constructs an object of the class SVC1V1 and sets its default
% characteristics
% OBJ = SVC1V1(KERNEL) builds SVC1V1 with RBF as kernel function
obj.parseArgs(varargin);
end
function [projectedTrain, predictedTrain]= privfit( obj, train , param)
%PRIVFIT trains the model for the SVC1V1 method with TRAIN data and
%vector of parameters PARAMETERS.
if isempty(strfind(path,obj.algorithmMexPath))
addpath(obj.algorithmMexPath);
end
weights = ones(size(train.targets));
options = ['-t 2 -c ' num2str(param.C) ' -g ' num2str(param.k) ' -q'];
model.libsvmModel = svmtrain(weights, train.targets, train.patterns, options);
model.parameters = param;
obj.model = model;
[predictedTrain, acc, projectedTrain] = svmpredict(train.targets,train.patterns,model.libsvmModel, '');
if ~isempty(strfind(path,obj.algorithmMexPath))
rmpath(obj.algorithmMexPath);
end
end
function [projected, predicted]= privpredict(obj,test)
%PREDICT predicts labels of TEST patterns labels. The object needs to be fitted to the data first.
if isempty(strfind(path,obj.algorithmMexPath))
addpath(obj.algorithmMexPath);
end
[predicted, acc, projected] = svmpredict(ones(size(test,1),1),test,obj.model.libsvmModel, '');
if ~isempty(strfind(path,obj.algorithmMexPath))
rmpath(obj.algorithmMexPath);
end
end
end
end