-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil.py
667 lines (561 loc) · 27.8 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
__author__ = 'aymgal'
import os
import math
import numpy as np
# from astropy.coordinates import SkyCoord
from skimage import measure
from coolest.template.json import JSONSerializer
def convert_image_to_data_units(image, mag_tot, mag_zero_point=None, coolest_object=None):
"""
Rescale an image such that it has units of electrons per second (e/s),
given a total magnitude and a magnitude zero-point.
After rescaling, the total magnitude of the image_rescaled should corresponds to
`-2.5 * np.log10(image_rescaled.sum()) + mag_zero_point = mag_tot`
where `mag_zero_point` corresponds to the magnitude of 1 e/s.
:param image: input image, as a 2D array.
:param mag_tot: target total magnitude, integrated over the whole image
:param mag_zero_point: magnitude zero point of the observation (that corresponds to 1 e/s). If coolest_object is not None, mag_zero_point is ignored.
:param coolest_object: if given, will be used to retrieve the zero-point magnitude of the observation.
"""
if coolest_object is None and mag_zero_point is None:
raise ValueError("Either a COOLEST object or a zero-point magnitude should be provided.")
flux_tot = np.sum(image)
image_unit_flux = image / flux_tot
if coolest_object is not None:
mag_zp = coolest.observation.mag_zero_point
else:
mag_zp = mag_zero_point
delta_mag = mag_tot - mag_zp
flux_unit_mag = 10 ** ( - delta_mag / 2.5 )
image_rescaled = image_unit_flux * flux_unit_mag
return image_rescaled
def get_coolest_object(file_path, verbose=False, **kwargs_serializer):
if not os.path.isabs(file_path):
file_path = os.path.abspath(file_path)
serializer = JSONSerializer(file_path, **kwargs_serializer)
return serializer.load(verbose=verbose)
def get_coordinates(coolest_object, offset_x=0., offset_y=0.):
from coolest.api.coordinates import Coordinates # prevents circular import errors
nx, ny = coolest_object.observation.pixels.shape
pix_scl = coolest_object.instrument.pixel_size
half_size_x, half_size_y = nx * pix_scl / 2., ny * pix_scl / 2.
x_at_ij_0 = - half_size_x + pix_scl / 2. # position of x=0 with respect to bottom left pixel
y_at_ij_0 = - half_size_y + pix_scl / 2. # position of y=0 with respect to bottom left pixel
matrix_pix2ang = pix_scl * np.eye(2) # transformation matrix pixel <-> angle
return Coordinates(nx, ny, matrix_ij_to_xy=matrix_pix2ang,
x_at_ij_0=x_at_ij_0 + offset_x,
y_at_ij_0=y_at_ij_0 + offset_y)
def get_coordinates_from_regular_grid(field_of_view_x, field_of_view_y, num_pix_x, num_pix_y):
from coolest.api.coordinates import Coordinates # prevents circular import errors
pix_scl_x = np.abs(field_of_view_x[0] - field_of_view_x[1]) / num_pix_x
pix_scl_y = np.abs(field_of_view_y[0] - field_of_view_y[1]) / num_pix_y
matrix_pix2ang = np.array([[pix_scl_x, 0.], [0., pix_scl_y]])
x_at_ij_0 = field_of_view_x[0] + pix_scl_x / 2.
y_at_ij_0 = field_of_view_y[0] + pix_scl_y / 2.
return Coordinates(
num_pix_x, num_pix_y, matrix_ij_to_xy=matrix_pix2ang,
x_at_ij_0=x_at_ij_0, y_at_ij_0=y_at_ij_0,
)
def get_coordinates_set(coolest_file_list, reference=0):
coordinates_list = []
for coolest_file in coolest_file_list:
# TODO: compute correct offsets when each file has
# obs = self.coolest.observation
# sky_coord = SkyCoord(obs.ra, obs.dec, frame='icrs')
# ra, dec = sky_coord.to_string(style='hmsdms').split(' ')
coordinates = get_coordinates(coolest_file)
coordinates_list.append(coordinates)
return coordinates_list
def array2image(array, nx=0, ny=0):
"""Convert a 1d array into a 2d array.
Note: this only works when length of array is a perfect square, or else if
nx and ny are provided
:param array: image values
:type array: array of size n**2
:returns: 2d array
:raises: AttributeError, KeyError
"""
if nx == 0 or ny == 0:
# Avoid turning n into a JAX-traced object with jax.numpy.sqrt
n = int(np.sqrt(len(array)))
if n**2 != len(array):
err_msg = f"Input array size {len(array)} is not a perfect square."
raise ValueError(err_msg)
nx, ny = n, n
image = array.reshape(int(nx), int(ny))
return image
def image2array(image):
"""Convert a 2d array into a 1d array.
:param array: image values
:type array: array of size (n,n)
:returns: 1d array
:raises: AttributeError, KeyError
"""
# nx, ny = image.shape # find the size of the array
# imgh = np.reshape(image, nx * ny) # change the shape to be 1d
# return imgh
return image.ravel()
def downsampling(image, factor=1):
if factor < 1:
raise ValueError(f"Downscaling factor must be > 1")
if factor == 1:
return image
f = int(factor)
nx, ny = np.shape(image)
if int(nx/f) == nx/f and int(ny/f) == ny/f:
down = image.reshape([int(nx/f), f, int(ny/f), f]).mean(3).mean(1)
return down
else:
raise ValueError(f"Downscaling factor {factor} is not possible with shape ({nx}, {ny})")
def effective_radius(light_map, x, y, outer_radius=10, initial_guess=1, initial_delta_pix=10, n_iter=10):
"""Computes the effective radius of the 2D surface brightness profile,
based on a definition similar to the half-light radius.
NOTE: This functions assumes that the profile is centered on the grid.
Parameters
----------
light_map : ndarray
2D array of the light model
x : ndarray
x-coordinates associated to the light model
y : ndarray
y-coordinates associated to the light model
outer_radius : int, optional
outer limit of integration within which half the light is calculated to estimate the effective radius, by default 10
initial_guess : int, optional
Initial guess for effective radius in arcsecond, by default 1
initial_delta_pix : int, optional
Initial step size in pixels before shrinking in future iterations, by default 10
n_iter : int, optional
Number of iterations, by default 5
Returns
-------
(float, float)
Effective radius and spacing of the coordinates grid (approximate accuracy)
Raises
------
RuntimeError
If integration loop exceeds outer bound before convergence.
"""
#initialize
grid_res=np.abs(x[0,0]-x[0,1])
initial_delta=grid_res*initial_delta_pix #default inital step size is 10 pixels
r_grid=np.hypot(x, y)
total_light=np.sum(light_map[r_grid<outer_radius])
cumulative_light=np.sum(light_map[r_grid<initial_guess])
if cumulative_light < total_light/2: #move outward
direction=1
elif cumulative_light > total_light/2: #move inward
direction=-1
else:
return initial_guess
r_eff=initial_guess
delta=initial_delta
loopcount=0
for n in range(n_iter): #overshoots, turn around and backtrack at higher precision
while (total_light/2.-cumulative_light)*direction>0:
if loopcount > 100:
raise RuntimeError('Stuck in very long (possibly infinite) loop')
r_eff=r_eff+delta*direction
cumulative_light=np.sum(light_map[r_grid<r_eff])
loopcount+=1
direction=direction*-1
delta=delta/2.
return r_eff, grid_res
def ellipticity_from_moments(light_map, pixel_size):
# compute central momoments
try:
# scikit-image version 0.19.3 and older
mu = measure.moments_central(light_map, order=2, spacing=(pixel_size, pixel_size))
except IndexError:
# scikit-image version 0.20.0 and beyond
mu = measure.moments_central(light_map, order=2, spacing=pixel_size)
# use the moments to estimate orientation and ellipticity (https://en.wikipedia.org/wiki/Image_moment)
mu_20_ = mu[2, 0] / mu[0, 0]
mu_02_ = mu[0, 2] / mu[0, 0]
mu_11_ = mu[1, 1] / mu[0, 0]
lambda_1 = (mu_20_ + mu_02_) / 2. + np.sqrt(4*mu_11_**2 + (mu_20_ - mu_02_)**2) / 2.
lambda_2 = (mu_20_ + mu_02_) / 2. - np.sqrt(4*mu_11_**2 + (mu_20_ - mu_02_)**2) / 2.
q = np.sqrt(lambda_2 / lambda_1) # b/a, axis ratio
phi = np.arctan(2. * mu_11_ / (mu_20_ - mu_02_)) / 2. # position angle
if mu_02_ > mu_20_:
phi += np.pi / 2. # makes it consistent angles conventions in COOLEST
return phi, q
def azim_averaged_two_point_correlation(light_image, dpix, rmax, Nbins):
"""
The two point correlation function can be obtained from the covariance matrix of an image and the distances between its pixels.
By binning the covariance matrix entries in distance (or radial) bins, one can obtain the 1D correlation function.
There are two ways to obtain the covariance matrix:
1) it is equivalent to the inverse Fourier transform of the power spectrum, and
2) by calculating explicitly the covariance between any two pixels
Here we use the first way.
Parameters
----------
light_image : 2D ndarray
Pixels of the image to analyse.
dpix : float
Pixel size
Nbins : int, optional
The number of radial bins to use for converting the 2D covariance matrix into a 1D correlation function.
rmax : float, optional
A value for the maximum extent of the radial bins. If none is given then it is equal to half the diagonal of the provided image.
Returns
-------
(array, array, array, array)
The location, value, uncertainty and covariance matrix
The covariance matrix here is the inverse of fourier transform of power spectrum)
"""
# Fourier transform image
fouriertf = np.fft.fft2(light_image, norm='ortho')
# Power spectrum (the square of the signal)
absval2 = fouriertf.real**2 + fouriertf.imag**2
# Covariance matrix (the inverse fourier transform of the power spectrum)
complex_cov = np.fft.fftshift(np.fft.ifft2(absval2, norm='ortho'))
cov = complex_cov.real
# Bin the 2D covariance matrix into radial bins
rmin = 0.0
dr = (rmax-rmin)/Nbins
bins = np.arange(rmin,rmax,dr)
vals = [[] for _ in range(len(bins))]
# Ni = Nj = the total number of pixels in the image
Ni = cov.shape[1]
Nj = cov.shape[0]
for i in range(0,Ni):
for j in range(0,Nj):
r = np.hypot((j-Nj/2.0)*dpix,(i-Ni/2.0)*dpix)
if r < rmax and i != j:
index = int(np.floor(r/dr))
vals[index].append(cov[i][j])
means = np.zeros(len(bins))
sdevs = np.zeros(len(bins))
for i in range(0,len(bins)):
if len(vals[i]) > 0:
means[i] = np.mean(vals[i])
sdevs[i] = np.std(vals[i])
return bins, means, sdevs, cov
def lensing_information(data_lens_sub, x, y, theta_E, noise_map, center_x_lens=0, center_y_lens=0,
a=16, b=0, arc_mask=None):
"""
Computes the 'lensing information' defined in Tan et al. 2023, Equations (8) and (9).
https://ui.adsabs.harvard.edu/abs/2023arXiv231109307T/abstract
Parameters
----------
data_lens_sub : np.ndarray
Imaging data as a 2D array. It is assumed to contain no lens light.
x : np.ndarray
2D array of x coordinates, in arcsec.
y : np.ndarray
2D array of y coordinates, in arcsec.
theta_E : float
Einstein radius in arcsec, by default None
noise_map : np.ndarray
2D array with 1-sigma noise level per pixel (same units as `data_lens_sub`), by default None
center_x_lens : int, optional
x coordinates of the center of the lens, by default 0
center_y_lens : int, optional
y coordinates of the center of the lens, by default 0
a : int, optional
Exponent in Eq. (9) from Yi Tan et al. 2023, by default 16
b : int, optional
Exponent in Eq. (9) from Yi Tan et al. 2023, by default 0
arc_mask : np.ndarray, optional
Binary 2D array with 1s where there is are lensed arcs, by default None
Returns
-------
4-tuple
Lensing information I, Einstein radius, reference azimuthal angle, total mask used for computing I
"""
if arc_mask is None:
arc_mask = np.ones_like(data_lens_sub)
# estimate background noise from one corner of the noise map
sigma_bkg = np.mean(noise_map[:10, :10])
# build a mask to only consider pixels at least 3 times the background noise level
snr_mask = np.where(data_lens_sub > 3.*sigma_bkg, 1., 0.)
# combine user mask and SNR mask
arc_mask_tot = snr_mask * arc_mask
# shift coordinates so that lens is at (0, 0)
theta_x, theta_y = x - center_x_lens, y - center_y_lens
# compute polar coordinates centered on the lens
theta_r = np.hypot(theta_x, theta_y)
phi = np.arctan2(theta_y, theta_x)
# find index of the brightest pixel (within the arc mask)
max_idx = np.where(data_lens_sub == (data_lens_sub*arc_mask_tot).max())
# get azimuthal angle corresponding to the brightest pixel
phi_ref = float(np.arctan2(theta_y[max_idx], theta_x[max_idx]))
# compute the weights following Eq. (9) from Yi Tan et al. 2023
weights = ( 1. + np.abs(theta_r - theta_E) / theta_E * (1 + np.abs(phi - phi_ref) / phi_ref)**b )**a
# compute the weighted sum
numerator = np.sum(arc_mask_tot*weights*data_lens_sub)
denominator = np.sqrt(np.sum(arc_mask_tot*noise_map**2))
lens_I = numerator / denominator
return lens_I, theta_E, phi_ref, arc_mask_tot
def split_lens_source_params(coolest_list, name_list, lens_light=False):
"""
Read several json files already containing a model with the results of this model fitting
INPUT
-----
file_list: list, list of path or names of the file to read
name_list: list, list of shorter names to distinguish the files
lens_light: bool, if True, computes the lens light kwargs as well (not yet implemented)
OUTPUT
------
param_all_lens, param_all_source: organized dictionaries readable by plotting function
"""
param_all_lens = {}
param_all_source = {}
for idx_file, file_name in enumerate(name_list):
print(file_name)
coolest_obj = coolest_list[idx_file]
if coolest_obj.mode == 'MAP':
print('LENS COOLEST : ', coolest_obj.mode)
else:
print('LENS COOLEST IS NOT MAP, BUT IS ', coolest_obj.mode)
lensing_entities_list = coolest_obj.lensing_entities
param_lens = {}
param_source = {}
if lensing_entities_list is not None:
creation_lens_source_light = True
idx_lens = 0
idx_lens_light = 0
idx_source = 0
idx_ps = 0
min_red = 0
max_red = 5
creation_red_list = True
red_list = []
MultiPlane = False
for lensing_entity in lensing_entities_list:
red_list.append(lensing_entity.redshift)
min_red = np.min(red_list)
max_red = np.max(red_list)
for lensing_entity in lensing_entities_list:
if lensing_entity.type == "Galaxy":
galac = lensing_entity
if galac.redshift > min_red:
# SOURCE OF LIGHT
light_list = galac.light_model
for light in light_list:
if light.type == 'Sersic':
read_sersic(light, param_source)
idx_source += 1
else:
print('Light Type ', light.type, ' not yet implemented.')
if galac.redshift < max_red:
# LENSING GALAXY
if galac.redshift > min_red:
MultiPlane = True
print('Multiplane lensing to consider.')
mass_list = galac.mass_model
for mass in mass_list:
if mass.type == 'PEMD':
read_pemd(mass, param_lens)
idx_lens += 1
elif mass.type == 'SIE':
read_sie(mass, param_lens)
idx_lens += 1
else:
print('Mass Type ', mass.type, ' not yet implemented.')
if (galac.redshift <= min_red) and (galac.redshift >= max_red):
print('REDSHIFT ', galac.redshift, ' is not in the range ]', min_red, ',', max_red, '[')
elif lensing_entity.type == "MassField":
shear_list = lensing_entity.mass_model
for shear_idx in shear_list:
if shear_idx.type == 'ExternalShear':
read_shear(shear_idx, param_lens)
idx_lens += 1
else:
print("type of Shear ", shear_idx.type, " not implemented")
else:
print("Lensing entity of type ", lensing_enity.type, " is unknown.")
param_all_lens[name_list[idx_file]] = param_lens
param_all_source[name_list[idx_file]] = param_source
return param_all_lens, param_all_source
def read_shear(mass, param={}, prefix='SHEAR_0_'):
"""
Reads the parameters of a coolest.template.classes.profiles.mass.ExternalShear object
INPUT
-----
mass : coolest.template.classes.profiles.mass.ExternalShear object
param : dict, already existing dictionnary with ordered parameters readable by plotting function
prefix : str, prefix to use in saving parameters names
OUTPUT
------
param : updated param
"""
for mass_name, mass_param in mass.parameters.items():
p = getattr(mass_param.point_estimate, 'value')
p_84 = getattr(mass_param.posterior_stats, 'percentile_84th')
p_16 = getattr(mass_param.posterior_stats, 'percentile_16th')
p_med = getattr(mass_param.posterior_stats, 'median')
p_mean = getattr(mass_param.posterior_stats, 'mean')
latex_name = getattr(mass_param, 'latex_str')
if mass_name == 'gamma_ext':
param[prefix + 'gamma_ext'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif mass_name == 'phi_ext':
param[prefix + 'phi_ext'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
else:
print(shear_name, " not known")
print('\t Shear correctly added')
return param
def read_pemd(mass, param={}, prefix='PEMD_0_'):
"""
Reads the parameters of a coolest.template.classes.profiles.mass.PEMD object
INPUT
-----
mass : coolest.template.classes.profiles.mass.PEMD object
param : dict, already existing dictionnary with ordered parameters readable by plotting function
prefix : str, prefix to use in saving parameters names
OUTPUT
------
param : updated param
"""
for mass_name, mass_param in mass.parameters.items():
p = getattr(mass_param.point_estimate, 'value')
p_84 = getattr(mass_param.posterior_stats, 'percentile_84th')
p_16 = getattr(mass_param.posterior_stats, 'percentile_16th')
p_med = getattr(mass_param.posterior_stats, 'median')
p_mean = getattr(mass_param.posterior_stats, 'mean')
latex_name = getattr(mass_param, 'latex_str')
if mass_name == 'theta_E':
param[prefix + 'theta_E'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif mass_name == 'q':
param[prefix + 'q'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif mass_name == 'phi':
param[prefix + 'phi'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif mass_name == 'center_x':
param[prefix + 'cx'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif mass_name == 'center_y':
param[prefix + 'cy'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif mass_name == 'gamma':
param[prefix + 'gamma'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
else:
print(mass_name, " not known")
print('\t PEMD correctly added')
return param
def read_sie(mass, param={}, prefix='SIE_0_'):
"""
Reads the parameters of a coolest.template.classes.profiles.mass.SIE object
INPUT
-----
mass : coolest.template.classes.profiles.mass.SIE object
param : dict, already existing dictionnary with ordered parameters readable by plotting function
prefix : str, prefix to use in saving parameters names
OUTPUT
------
param : updated param
"""
for mass_name, mass_param in mass.parameters.items():
p = getattr(mass_param.point_estimate, 'value')
p_84 = getattr(mass_param.posterior_stats, 'percentile_84th')
p_16 = getattr(mass_param.posterior_stats, 'percentile_16th')
p_med = getattr(mass_param.posterior_stats, 'median')
p_mean = getattr(mass_param.posterior_stats, 'mean')
latex_name = getattr(mass_param, 'latex_str')
if mass_name == 'theta_E':
param[prefix + 'theta_E'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif mass_name == 'q':
param[prefix + 'q'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif mass_name == 'phi':
param[prefix + 'phi'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif mass_name == 'center_x':
param[prefix + 'cx'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif mass_name == 'center_y':
param[prefix + 'cy'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
else:
print(mass_name, " not known")
print('\t SIE correctly added')
return param
def read_sersic(light, param={}, prefix='Sersic_0_'):
"""
Reads the parameters of a coolest.template.classes.profiles.light.Sersic object
INPUT
-----
mass : coolest.template.classes.profiles.light.Sersic object
param : dict, already existing dictionnary with ordered parameters readable by plotting function
prefix : str, prefix to use in saving parameters names
OUTPUT
------
param : updated param
"""
for light_name, light_param in light.parameters.items():
p = getattr(light_param.point_estimate, 'value')
p_84 = getattr(light_param.posterior_stats, 'percentile_84th')
p_16 = getattr(light_param.posterior_stats, 'percentile_16th')
p_med = getattr(light_param.posterior_stats, 'median')
p_mean = getattr(light_param.posterior_stats, 'mean')
latex_name = getattr(light_param, 'latex_str')
if light_name == 'I_eff':
param[prefix + 'A'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif light_name == 'n':
param[prefix + 'n_sersic'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif light_name == 'theta_eff':
param[prefix + 'R_sersic'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif light_name == 'q':
param[prefix + 'q'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif light_name == 'phi':
param[prefix + 'phi'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif light_name == 'center_x':
param[prefix + 'cx'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
elif light_name == 'center_y':
param[prefix + 'cy'] = {'point_estimate': p, 'percentile_84th': p_84, 'percentile_16th': p_16,
'median': p_med, 'mean': p_mean, 'latex_str': latex_name}
else:
print(light_name, " not known")
print('\t Sersic correctly added')
return param
def find_critical_lines(coordinates, mag_map):
# invert and find contours corresponding to infinite magnification (i.e., changing sign)
inv_mag = 1. / np.array(mag_map)
contours = measure.find_contours(inv_mag, 0.)
# convert to model coordinates
lines = []
for contour in contours:
curve_x, curve_y = coordinates.pixel_to_radec(contour[:, 1], contour[:, 0])
lines.append((np.array(curve_x), np.array(curve_y)))
return lines
def find_caustics(crit_lines, composable_lens):
"""`composable_lens` can be an instance of `ComposableLens` or `ComposableMass`"""
lines = []
for cline in crit_lines:
cl_src_x, cl_src_y = composable_lens.ray_shooting(cline[0], cline[1])
lines.append((np.array(cl_src_x), np.array(cl_src_y)))
return lines
def find_all_lens_lines(coordinates, composable_lens):
"""`composable_lens` can be an instance of `ComposableLens` or `ComposableMass`"""
from coolest.api.composable_models import ComposableLensModel, ComposableMassModel # avoiding circular imports
if isinstance(composable_lens, ComposableLensModel):
mag_fn = composable_lens.lens_mass.evaluate_magnification
elif isinstance(composable_lens, ComposableMassModel):
mag_fn = composable_lens.evaluate_magnification
else:
raise ValueError("`composable_lens` must be a ComposableLensModel or a ComposableMassModel.")
mag_map = mag_fn(*coordinates.pixel_coordinates)
crit_lines = find_critical_lines(coordinates, mag_map)
caustics = find_caustics(crit_lines, composable_lens)
return crit_lines, caustics
def resample_multivariate_normal(samples, num_samples=5_000, **kwargs_cov):
"""Resample following multi-variate normal distribution"""
mean = np.mean(samples, axis=0)
cov = np.cov(samples.T, **kwargs_cov)
num_params = samples.shape[1]
resampled = np.random.multivariate_normal(
mean=mean, cov=cov, size=(int(num_samples/num_params), num_params)).reshape((-1, num_params))
return resampled