-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_classes.py
57 lines (41 loc) · 1.84 KB
/
my_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import keras
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, training_examples, labels, indices_word, word_indices, maxlen, batch_size=32, shuffle=True):
'Initialization'
self.batch_size = batch_size
self.labels = labels
self.indices_word = indices_word
self.training_examples = training_examples
self.shuffle = shuffle
self.word_indices = word_indices
self.maxlen = maxlen
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.training_examples) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
training_examples_temp = [self.training_examples[k] for k in indexes]
# Generate data
X, y = self.__data_generation(training_examples_temp, indexes)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.training_examples))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, training_examples_temp, indexes):
'Generates data containing batch_size samples'
# Initialization
X = np.zeros((self.batch_size, self.maxlen, len(self.indices_word)), dtype=np.bool)
Y = np.zeros(((self.batch_size), len(self.indices_word)), dtype=np.bool)
for i, sentence in enumerate(training_examples_temp):
for t, word in enumerate(sentence):
X[i, t, self.word_indices[word]] = 1
Y[i, self.word_indices[self.labels[indexes[i]]]] = 1
return X, Y