-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
272 lines (230 loc) · 8.56 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import numpy as np
import re
import sys
import time
import collections
def generate_deletes(string, max_distance):
deletes = []
queue = [string]
for d in range(max_distance):
temp_queue = []
for word in queue:
if len(word) > 1:
for c in range(len(word)): # character index
word_minus_c = word[:c] + word[c + 1 :]
if word_minus_c not in deletes:
deletes.append(word_minus_c)
if word_minus_c not in temp_queue:
temp_queue.append(word_minus_c)
queue = temp_queue
return deletes
def levenshtein(string1, string2):
if len(string1) < len(string2):
return levenshtein(string2, string1)
if len(string2) == 0:
return len(string1)
arr_string1 = np.array(list(string1))
arr_string2 = np.array(list(string2))
last_row = np.arange(arr_string2.size + 1)
for s in arr_string1:
current_row = last_row + 1
current_row[1:] = np.minimum(
current_row[1:], np.add(last_row[:-1], arr_string2 != s)
)
# Deletion (string2 grows shorter than string1):
current_row[1:] = np.minimum(current_row[1:], current_row[0:-1] + 1)
last_row = current_row
return last_row[-1]
def read_corpus(path):
f = open(path, "r")
words = []
for w in f.readlines():
words.append(w.split()[0].lower())
f.close()
return words
def create_dictionary(fname):
dictionary = []
with open(fname) as file:
for line in file:
# separate by words by non-alphabetical characters
words = re.findall("[a-z]+", line.lower())
for word in words:
dictionary.append(word)
return dictionary
def tweet_words(tweets):
words = []
for tweet in tweets:
for w in re.findall("[a-z]+", tweet):
words.append(w)
return words
def correct_series(word, dict_corpus):
# print(word)
if word in dict_corpus:
return word, True
if len(word) == 0:
return "", True
i = 2
corrections = {}
order = 0
while i <= len(word):
# print(i)
if word[:i] in dict_corpus:
correct, possible = correct_series(word[i:], dict_corpus)
if possible:
corrections[word[:i] + " " + correct] = (
order,
len(word[:i] + " " + correct),
)
order += 1
i = i + 1
if len(corrections) == 0:
return "", False
else:
return (
sorted(corrections.items(), key=lambda term, val: (val[1], val[0]))[0][0],
True,
)
class Progbar(object):
"""Displays a progress bar.
# Arguments
target: Total number of steps expected, None if unknown.
width: Progress bar width on screen.
verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
stateful_metrics: Iterable of string names of metrics that
should *not* be averaged over time. Metrics in this list
will be displayed as-is. All others will be averaged
by the progbar before display.
interval: Minimum visual progress update interval (in seconds).
"""
def __init__(
self, target, width=30, verbose=1, interval=0.05, stateful_metrics=None
):
self.target = target
self.width = width
self.verbose = verbose
self.interval = interval
if stateful_metrics:
self.stateful_metrics = set(stateful_metrics)
else:
self.stateful_metrics = set()
self._dynamic_display = (
hasattr(sys.stdout, "isatty") and sys.stdout.isatty()
) or "ipykernel" in sys.modules
self._total_width = 0
self._seen_so_far = 0
self._values = collections.OrderedDict()
self._start = time.time()
self._last_update = 0
def update(self, current, values=None):
"""Updates the progress bar.
# Arguments
current: Index of current step.
values: List of tuples:
`(name, value_for_last_step)`.
If `name` is in `stateful_metrics`,
`value_for_last_step` will be displayed as-is.
Else, an average of the metric over time will be displayed.
"""
values = values or []
for k, v in values:
if k not in self.stateful_metrics:
if k not in self._values:
self._values[k] = [
v * (current - self._seen_so_far),
current - self._seen_so_far,
]
else:
self._values[k][0] += v * (current - self._seen_so_far)
self._values[k][1] += current - self._seen_so_far
else:
self._values[k] = v
self._seen_so_far = current
now = time.time()
info = " - %.0fs" % (now - self._start)
if self.verbose == 1:
if (
now - self._last_update < self.interval
and self.target is not None
and current < self.target
):
return
prev_total_width = self._total_width
if self._dynamic_display:
sys.stdout.write("\b" * prev_total_width)
sys.stdout.write("\r")
else:
sys.stdout.write("\n")
if self.target is not None:
numdigits = int(np.floor(np.log10(self.target))) + 1
barstr = "%%%dd/%d [" % (numdigits, self.target)
bar = barstr % current
prog = float(current) / self.target
prog_width = int(self.width * prog)
if prog_width > 0:
bar += "=" * (prog_width - 1)
if current < self.target:
bar += ">"
else:
bar += "="
bar += "." * (self.width - prog_width)
bar += "]"
else:
bar = "%7d/Unknown" % current
self._total_width = len(bar)
sys.stdout.write(bar)
if current:
time_per_unit = (now - self._start) / current
else:
time_per_unit = 0
if self.target is not None and current < self.target:
eta = time_per_unit * (self.target - current)
if eta > 3600:
eta_format = "%d:%02d:%02d" % (
eta // 3600,
(eta % 3600) // 60,
eta % 60,
)
elif eta > 60:
eta_format = "%d:%02d" % (eta // 60, eta % 60)
else:
eta_format = "%ds" % eta
info = " - ETA: %s" % eta_format
else:
if time_per_unit >= 1:
info += " %.0fs/step" % time_per_unit
elif time_per_unit >= 1e-3:
info += " %.0fms/step" % (time_per_unit * 1e3)
else:
info += " %.0fus/step" % (time_per_unit * 1e6)
for k in self._values:
info += " - %s:" % k
if isinstance(self._values[k], list):
avg = np.mean(self._values[k][0] / max(1, self._values[k][1]))
if abs(avg) > 1e-3:
info += " %.4f" % avg
else:
info += " %.4e" % avg
else:
info += " %s" % self._values[k]
self._total_width += len(info)
if prev_total_width > self._total_width:
info += " " * (prev_total_width - self._total_width)
if self.target is not None and current >= self.target:
info += "\n"
sys.stdout.write(info)
sys.stdout.flush()
elif self.verbose == 2:
if self.target is None or current >= self.target:
for k in self._values:
info += " - %s:" % k
avg = np.mean(self._values[k][0] / max(1, self._values[k][1]))
if avg > 1e-3:
info += " %.4f" % avg
else:
info += " %.4e" % avg
info += "\n"
sys.stdout.write(info)
sys.stdout.flush()
self._last_update = now
def add(self, n, values=None):
self.update(self._seen_so_far + n, values)