-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
236 lines (216 loc) · 7.13 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
const defaultEpsilon = 0.0000000001 // precision from affineplane
const options = {
epsilon: defaultEpsilon // keep epsilon modifiable
}
const bitangent = (c1, c2) => {
// Find a circle that is externally tangent to the circles c1, c2.
// If the circles overlap, will return a circle with radius 0.
// If there is gap between the two circles, will return a circle with the diameter equal to the gap.
// If the two circles are concentric and have equal radius,
// will return a zero diameter circle at the shared circumference.
// Else retuns null.
//
// Return:
// a circle2 or null
//
const dx = c2.x - c1.x
const dy = c2.y - c1.y
const d = Math.sqrt(dx * dx + dy * dy)
const epsilon = options.epsilon
if (d < epsilon) {
// The circles are concentric.
if (Math.abs(c1.r - c2.r) < epsilon) {
// The circles share radius.
const x = c1.x + c1.r
const y = c1.y
const r = 0
return { x, y, r }
}
// Else the circles are nested
return null
}
if (c1.r + c2.r <= d) {
// There is a gap. We can find the target circle there.
const gap = d - c1.r - c2.r
const r = gap / 2
const x = c1.x + (c1.r + r) * dx / d
const y = c1.y + (c1.r + r) * dy / d
return { x, y, r }
}
// No gap, only two intersecting points.
// Solve in local coordinates where c1 = (0, 0, r1).
const r1 = c1.r / d
const r2 = c2.r / d
const r12 = r1 + r2
const dr12 = r2 - r1
const xhat = (r1 * r1 - r2 * r2 + 1) / 2
const yhat = Math.sqrt(-(dr12 - 1) * (dr12 + 1) * (r12 - 1) * (r12 + 1)) / 2
const x = c1.x + xhat * dx - yhat * dy
const y = c1.y + xhat * dy + yhat * dx
const r = 0
return { x, y, r }
}
const dependent = (c1, c2, c3) => {
// The circle centers are linearly dependent.
//
// Parameters:
// c1
// a circle2
// c2
// a circle2
// c3
// a circle2
//
// Return:
// a circle2 or null
//
// Circle differences
const dx12 = c2.x - c1.x
const dx23 = c3.x - c2.x
const dx31 = c1.x - c3.x
const dy12 = c2.y - c1.y
const dy23 = c3.y - c2.y
const dy31 = c1.y - c3.y
const epsilon = options.epsilon
// First we handle the cases where the circle centers are equal.
// In these case a solution can be found only when the radii of the circles are equal.
if (Math.abs(dx12) + Math.abs(dy12) < epsilon) {
if (Math.abs(c1.r - c2.r) < epsilon) {
return bitangent(c3, c1)
}
return null
} else if (Math.abs(dx23) + Math.abs(dy23) < epsilon) {
if (Math.abs(c2.r - c3.r) < epsilon) {
return bitangent(c1, c2)
}
return null
} else if (Math.abs(dx31) + Math.abs(dy31) < epsilon) {
if (Math.abs(c3.r - c1.r) < epsilon) {
return bitangent(c2, c3)
}
return null
}
// We notice that the point c3 = c1 + b * v12.
// Let solve the target circle center x,y first in normalized coordinates
// where c1 is at origin and c2 at (1,0).
let b = 0
if (Math.abs(dx12) >= epsilon) {
b = -dx31 / dx12
} else if (Math.abs(dy12) >= epsilon) {
b = -dy31 / dy12
} else {
// Points likely the same.
return null
}
// Radii too must be mapped to this normalized scale.
const scale2 = 1 / (dx12 * dx12 + dy12 * dy12)
const scale = Math.sqrt(scale2)
// Radius differences:
const dr12 = (c2.r - c1.r) * scale
const dr23 = (c3.r - c2.r) * scale
const dr31 = (c1.r - c3.r) * scale
// Denominator
const D = -2 * (b * dr12 + dr31)
// Special case: denominator zero. Maybe equal radius => infinite target circle radius.
if (Math.abs(D) < epsilon) return null
// Radii squared
const rr1 = c1.r * c1.r * scale2
const rr2 = c2.r * c2.r * scale2
const rr3 = c3.r * c3.r * scale2
// Discriminant for coordinate Y
let disc = -(dr12 - 1) * (dr12 + 1) * (dr31 - b) * (dr31 + b) * (dr23 - b + 1) * (dr23 + b - 1)
// Special case: discriminant is negative
if (Math.abs(disc) < epsilon) disc = 0
if (disc < 0) return null
// Normalized coordinates
const bb = b * b
const xhat = (rr1 * dr23 + rr2 * dr31 + rr3 * dr12 - bb * dr12 - dr31) / D
const yhat = Math.sqrt(disc) / D
const rhat = -(rr3 - b * rr2 + (b - 1) * rr1 - bb + b) / D
// Map to global coordinates
const x = c1.x + xhat * dx12 - yhat * dy12
const y = c1.y + xhat * dy12 + yhat * dx12
const r = rhat / scale
return { x, y, r }
}
function apollonius (c1, c2, c3) {
// Find a circle that is externally tangent to the three circles c1,c2,c3.
// If no such circle exists on the real plane, return null.
// The result is one of the solutions to the problem of Apollonius.
//
// Parameters:
// c1
// a circle2
// c2
// a circle2
// c3
// a circle2
//
// Return:
// a circle2 or null
//
// Throws:
// if one or more of the given circles have missing or invalid properties.
//
const epsilon = options.epsilon
// Circle differences
const dx12 = c2.x - c1.x
const dx23 = c3.x - c2.x
const dx31 = c1.x - c3.x
const dy12 = c2.y - c1.y
const dy23 = c3.y - c2.y
const dy31 = c1.y - c3.y
// Circle expressions of form x^2 + y^2 - r^2
const g1 = c1.x * c1.x + c1.y * c1.y - c1.r * c1.r
const g2 = c2.x * c2.x + c2.y * c2.y - c2.r * c2.r
const g3 = c3.x * c3.x + c3.y * c3.y - c3.r * c3.r
// Validate: detect bad input circles.
if (isNaN(g1) || isNaN(g2) || isNaN(g3)) {
throw new Error('Invalid input circle was detected.')
}
// Special case: linearly dependent circles
// If the vector between circles are linearly dependent i.e. their centers are along the same line,
// we cannot solve the circle with the common method. We need to check their independency.
// For a triangle of vectors, it is enough to check independecy of any two vectors.
const det123 = dx12 * dy23 - dx23 * dy12
if (Math.abs(det123) < epsilon) {
// The circle centers are linearly dependent. We solve this separately.
return dependent(c1, c2, c3)
}
// Coefficients for the coordinates x=(a+b*r)/D, y=(c+d*r)/D
// Determinant (denominator)
const D = 2 * (c1.y * dx23 + c2.y * dx31 + c3.y * dx12)
// Special case: determinant is zero.
if (Math.abs(D) < epsilon) return null
const a = -(dy23 * g1 + dy31 * g2 + dy12 * g3)
const b = 2 * (c1.r * dy23 + c2.r * dy31 + c3.r * dy12)
const c = dx23 * g1 + dx31 * g2 + dx12 * g3
const d = -2 * (c1.r * dx23 + c2.r * dx31 + c3.r * dx12)
// We solve r via a quadratic formula r=(-Q±sqrt(Q^2-P*R))/P
// We use c1 as an anchor.
const dx = D * c1.x - a
const dy = D * c1.y - c
const dr = D * c1.r
// Coefficients
const P = b * b + d * d - D * D
const Q = b * dx + d * dy + D * dr
const R = dx * dx + dy * dy - dr * dr
// Special case: quadratic formula denominator is zero.
if (Math.abs(P) < epsilon) return null
// Discriminant
let disc = Q * Q - P * R
// Special case: discriminant is negative. Deal with floating point issues.
if (Math.abs(disc) < epsilon) disc = 0
if (disc < 0) return null
// Find the target radius
const r = (Q - Math.sqrt(disc)) / P
// Find the target circle center
const x = (a + b * r) / D
const y = (c + d * r) / D
// Return the circle
return { x, y, r }
}
// Aliases
const solve = apollonius
export { apollonius, solve, options }
export default solve