-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathlaunch_nasbench201_simulated.py
66 lines (59 loc) · 2.36 KB
/
launch_nasbench201_simulated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
Example for running the simulator backend on a tabulated benchmark
"""
import logging
from syne_tune.experiments.benchmark_definitions.nas201 import nas201_benchmark
from syne_tune.blackbox_repository import BlackboxRepositoryBackend
from syne_tune.backend.simulator_backend.simulator_callback import SimulatorCallback
from syne_tune.optimizer.baselines import ASHA
from syne_tune import Tuner, StoppingCriterion
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
random_seed = 31415927
n_workers = 4
dataset_name = "cifar100"
benchmark = nas201_benchmark(dataset_name)
# Simulator backend specialized to tabulated blackboxes
max_resource_attr = benchmark.max_resource_attr
trial_backend = BlackboxRepositoryBackend(
elapsed_time_attr=benchmark.elapsed_time_attr,
max_resource_attr=max_resource_attr,
blackbox_name=benchmark.blackbox_name,
dataset=dataset_name,
)
# Asynchronous successive halving (ASHA)
blackbox = trial_backend.blackbox
scheduler = ASHA(
config_space=blackbox.configuration_space_with_max_resource_attr(
max_resource_attr
),
max_resource_attr=max_resource_attr,
resource_attr=blackbox.fidelity_name(),
mode=benchmark.mode,
metric=benchmark.metric,
search_options={"debug_log": False},
random_seed=random_seed,
)
max_wallclock_time = 3600
stop_criterion = StoppingCriterion(max_wallclock_time=max_wallclock_time)
# Printing the status during tuning takes a lot of time, and so does
# storing results.
print_update_interval = 700
results_update_interval = 300
# It is important to set ``sleep_time`` to 0 here (mandatory for simulator
# backend)
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
stop_criterion=stop_criterion,
n_workers=n_workers,
sleep_time=0,
results_update_interval=results_update_interval,
print_update_interval=print_update_interval,
# This callback is required in order to make things work with the
# simulator callback. It makes sure that results are stored with
# simulated time (rather than real time), and that the time_keeper
# is advanced properly whenever the tuner loop sleeps
callbacks=[SimulatorCallback()],
)
tuner.run()