You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
ejs is a popular JavaScript templating engine.
Affected versions of the package are vulnerable to Remote Code Execution by letting the attacker under certain conditions control the source folder from which the engine renders include files.
You can read more about this vulnerability on the Snyk blog.
ejs provides a few different options for you to render a template, two being very similar: ejs.render() and ejs.renderFile(). The only difference being that render expects a string to be used for the template and renderFile expects a path to a template file.
Both functions can be invoked in two ways. The first is calling them with template, data, and options:
If used with a variable list supplied by the user (e.g. by reading it from the URI with qs or equivalent), an attacker can control ejs options. This includes the root option, which allows changing the project root for includes with an absolute path.
By passing along the root directive in the line above, any includes would now be pulled from /bad/root instead of the path intended. This allows the attacker to take control of the root directory for included scripts and divert it to a library under his control, thus leading to remote code execution.
The fix introduced in version 2.5.3 blacklisted root options from options passed via the data object.
Disclosure Timeline
November 27th, 2016 - Reported the issue to package owner.
November 27th, 2016 - Issue acknowledged by package owner.
November 28th, 2016 - Issue fixed and version 2.5.3 released.
Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard from the command-line interface.
Otherwise, Upgrade ejs to version 2.5.3 or higher.
ejs is a popular JavaScript templating engine.
Affected versions of the package are vulnerable to Cross-site Scripting by letting the attacker under certain conditions control and override the filename option causing it to render the value as is, without escaping it.
You can read more about this vulnerability on the Snyk blog.
ejs provides a few different options for you to render a template, two being very similar: ejs.render() and ejs.renderFile(). The only difference being that render expects a string to be used for the template and renderFile expects a path to a template file.
Both functions can be invoked in two ways. The first is calling them with template, data, and options:
If used with a variable list supplied by the user (e.g. by reading it from the URI with qs or equivalent), an attacker can control ejs options. This includes the filename option, which will be rendered as is when an error occurs during rendering.
The fix introduced in version 2.5.3 blacklisted root options from options passed via the data object.
Disclosure Timeline
November 28th, 2016 - Reported the issue to package owner.
November 28th, 2016 - Issue acknowledged by package owner.
December 06th, 2016 - Issue fixed and version 2.5.5 released.
Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard from the command-line interface.
Otherwise, Upgrade ejs to version 2.5.5 or higher.
ejs is a popular JavaScript templating engine.
Affected versions of the package are vulnerable to Denial of Service by letting the attacker under certain conditions control and override the localNames option causing it to crash.
You can read more about this vulnerability on the Snyk blog.
ejs provides a few different options for you to render a template, two being very similar: ejs.render() and ejs.renderFile(). The only difference being that render expects a string to be used for the template and renderFile expects a path to a template file.
Both functions can be invoked in two ways. The first is calling them with template, data, and options:
If used with a variable list supplied by the user (e.g. by reading it from the URI with qs or equivalent), an attacker can control ejs options. This includes the localNames option, which will cause the renderer to crash.
The fix introduced in version 2.5.3 blacklisted root options from options passed via the data object.
Disclosure Timeline
November 28th, 2016 - Reported the issue to package owner.
November 28th, 2016 - Issue acknowledged by package owner.
December 06th, 2016 - Issue fixed and version 2.5.5 released.
Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard from the command-line interface.
Otherwise, Upgrade ejs to version 2.5.5 or higher.
Affected versions of this package are vulnerable to Arbitrary Code Injection via the render and renderFile. If external input is flowing into the options parameter, an attacker is able run arbitrary code. This include the filename, compileDebug, and client option.
debug is a JavaScript debugging utility modelled after Node.js core's debugging technique..
debug uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the %o formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.
Proof of concept
ms=require('ms');ms('1'.repeat(9998)+'Q')// Takes about ~0.3s
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author.
Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.
Disclosure Timeline
Feb 9th, 2017 - Reported the issue to package owner.
Feb 11th, 2017 - Issue acknowledged by package owner.
April 12th, 2017 - Fix PR opened by Snyk Security Team.
May 15th, 2017 - Vulnerability published.
May 16th, 2017 - Issue fixed and version 2.0.0 released.
May 21th, 2017 - Patches released for versions >=0.7.1, <=1.0.0.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
debug is a JavaScript debugging utility modelled after Node.js core's debugging technique..
debug uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the %o formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.
Proof of concept
ms=require('ms');ms('1'.repeat(9998)+'Q')// Takes about ~0.3s
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author.
Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.
Disclosure Timeline
Feb 9th, 2017 - Reported the issue to package owner.
Feb 11th, 2017 - Issue acknowledged by package owner.
April 12th, 2017 - Fix PR opened by Snyk Security Team.
May 15th, 2017 - Vulnerability published.
May 16th, 2017 - Issue fixed and version 2.0.0 released.
May 21th, 2017 - Patches released for versions >=0.7.1, <=1.0.0.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
debug is a JavaScript debugging utility modelled after Node.js core's debugging technique..
debug uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the %o formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.
Proof of concept
ms=require('ms');ms('1'.repeat(9998)+'Q')// Takes about ~0.3s
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author.
Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.
Disclosure Timeline
Feb 9th, 2017 - Reported the issue to package owner.
Feb 11th, 2017 - Issue acknowledged by package owner.
April 12th, 2017 - Fix PR opened by Snyk Security Team.
May 15th, 2017 - Vulnerability published.
May 16th, 2017 - Issue fixed and version 2.0.0 released.
May 21th, 2017 - Patches released for versions >=0.7.1, <=1.0.0.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Override Protection Bypass. By default qs protects against attacks that attempt to overwrite an object's existing prototype properties, such as toString(), hasOwnProperty(),etc.
By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use plainObjects as mentioned above, or set allowPrototypes to true which will allow user input to overwrite those properties. WARNING It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.
Overwriting these properties can impact application logic, potentially allowing attackers to work around security controls, modify data, make the application unstable and more.
In versions of the package affected by this vulnerability, it is possible to circumvent this protection and overwrite prototype properties and functions by prefixing the name of the parameter with [ or ]. e.g. qs.parse("]=toString") will return {toString = true}, as a result, calling toString() on the object will throw an exception.
debug is a JavaScript debugging utility modelled after Node.js core's debugging technique..
debug uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the %o formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (/ *, */) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
mime is a comprehensive, compact MIME type module.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/ in its lookup, which can cause a slowdown of 2 seconds for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.
Proof of concept
ms=require('ms');ms('1'.repeat(9998)+'Q')// Takes about ~0.3s
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author.
Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.
Disclosure Timeline
Feb 9th, 2017 - Reported the issue to package owner.
Feb 11th, 2017 - Issue acknowledged by package owner.
April 12th, 2017 - Fix PR opened by Snyk Security Team.
May 15th, 2017 - Vulnerability published.
May 16th, 2017 - Issue fixed and version 2.0.0 released.
May 21th, 2017 - Patches released for versions >=0.7.1, <=1.0.0.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
negotiator is an HTTP content negotiator for Node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS)
when parsing Accept-Language http header.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Override Protection Bypass. By default qs protects against attacks that attempt to overwrite an object's existing prototype properties, such as toString(), hasOwnProperty(),etc.
By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use plainObjects as mentioned above, or set allowPrototypes to true which will allow user input to overwrite those properties. WARNING It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.
Overwriting these properties can impact application logic, potentially allowing attackers to work around security controls, modify data, make the application unstable and more.
In versions of the package affected by this vulnerability, it is possible to circumvent this protection and overwrite prototype properties and functions by prefixing the name of the parameter with [ or ]. e.g. qs.parse("]=toString") will return {toString = true}, as a result, calling toString() on the object will throw an exception.
Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (/ *, */) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.
Proof of concept
ms=require('ms');ms('1'.repeat(9998)+'Q')// Takes about ~0.3s
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author.
Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.
Disclosure Timeline
Feb 9th, 2017 - Reported the issue to package owner.
Feb 11th, 2017 - Issue acknowledged by package owner.
April 12th, 2017 - Fix PR opened by Snyk Security Team.
May 15th, 2017 - Vulnerability published.
May 16th, 2017 - Issue fixed and version 2.0.0 released.
May 21th, 2017 - Patches released for versions >=0.7.1, <=1.0.0.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex=/A(B|C+)+D/
This regular expression accomplishes the following:
A The string must start with the letter 'A'
(B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
D Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
CCC
CC+C
C+CC
C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String
Number of C's
Number of steps
ACCCX
3
38
ACCCCX
4
71
ACCCCCX
5
136
ACCCCCCCCCCCCCCX
14
65,553
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
pg is a non-blocking PostgreSQL client for node.js.
Affected versions of this package are vulnerable to Arbitrary Code Execution. When parsing results of a query, it goes through a form of eval, and with a specially crafted column name, an attacker can cause code to run remotely on the server.
PoC:
const{ Client }=require('pg')constclient=newClient()client.connect()constsql=`SELECT 1 AS "\\'/*", 2 AS "\\'*/\n + console.log(process.env)] = null;\n//"`client.query(sql,(err,res)=>{client.end()});
Remediation
Upgrade pg to version 2.11.2, 3.6.4, 4.5.7, 5.2.1, 6.0.5, 6.1.6, 6.2.5, 6.3.3, 6.4.2, 7.0.2, 7.1.2 or higher.
Overview
Snyk Open Source allows you to easily find, prioritize and fix vulnerabilities in the open source libraries used in your cloud native applications.
Summary of results
Upgradeable Vulnerable Packages
The following packages were identified as having vulnerabilities that can be remediated:
ejs-locals 1.0.2
Additional Details
All of the vulnerabilities are listed below
Detailed remediation guidance
Overview
ejs
is a popular JavaScript templating engine.Affected versions of the package are vulnerable to Remote Code Execution by letting the attacker under certain conditions control the source folder from which the engine renders include files.
You can read more about this vulnerability on the Snyk blog.
There's also a Cross-site Scripting & Denial of Service vulnerabilities caused by the same behaviour.
Details
ejs
provides a few different options for you to render a template, two being very similar:ejs.render()
andejs.renderFile()
. The only difference being thatrender
expects a string to be used for the template andrenderFile
expects a path to a template file.Both functions can be invoked in two ways. The first is calling them with
template
,data
, andoptions
:The second way would be by calling only the
template
anddata
, whileejs
lets theoptions
be passed as part of thedata
:If used with a variable list supplied by the user (e.g. by reading it from the URI with
qs
or equivalent), an attacker can controlejs
options. This includes theroot
option, which allows changing the project root for includes with an absolute path.By passing along the root directive in the line above, any includes would now be pulled from
/bad/root
instead of the path intended. This allows the attacker to take control of the root directory for included scripts and divert it to a library under his control, thus leading to remote code execution.The fix introduced in version
2.5.3
blacklistedroot
options from options passed via thedata
object.Disclosure Timeline
2.5.3
released.Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running
snyk wizard
from the command-line interface.Otherwise, Upgrade
ejs
to version2.5.3
or higher.References
Overview
ejs
is a popular JavaScript templating engine.Affected versions of the package are vulnerable to Cross-site Scripting by letting the attacker under certain conditions control and override the
filename
option causing it to render the value as is, without escaping it.You can read more about this vulnerability on the Snyk blog.
There's also a Remote Code Execution & Denial of Service vulnerabilities caused by the same behaviour.
Details
ejs
provides a few different options for you to render a template, two being very similar:ejs.render()
andejs.renderFile()
. The only difference being thatrender
expects a string to be used for the template andrenderFile
expects a path to a template file.Both functions can be invoked in two ways. The first is calling them with
template
,data
, andoptions
:The second way would be by calling only the
template
anddata
, whileejs
lets theoptions
be passed as part of thedata
:If used with a variable list supplied by the user (e.g. by reading it from the URI with
qs
or equivalent), an attacker can controlejs
options. This includes thefilename
option, which will be rendered as is when an error occurs during rendering.The fix introduced in version
2.5.3
blacklistedroot
options from options passed via thedata
object.Disclosure Timeline
2.5.5
released.Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running
snyk wizard
from the command-line interface.Otherwise, Upgrade
ejs
to version2.5.5
or higher.References
Overview
ejs
is a popular JavaScript templating engine.Affected versions of the package are vulnerable to Denial of Service by letting the attacker under certain conditions control and override the
localNames
option causing it to crash.You can read more about this vulnerability on the Snyk blog.
There's also a Remote Code Execution & Cross-site Scripting vulnerabilities caused by the same behaviour.
Details
ejs
provides a few different options for you to render a template, two being very similar:ejs.render()
andejs.renderFile()
. The only difference being thatrender
expects a string to be used for the template andrenderFile
expects a path to a template file.Both functions can be invoked in two ways. The first is calling them with
template
,data
, andoptions
:The second way would be by calling only the
template
anddata
, whileejs
lets theoptions
be passed as part of thedata
:If used with a variable list supplied by the user (e.g. by reading it from the URI with
qs
or equivalent), an attacker can controlejs
options. This includes thelocalNames
option, which will cause the renderer to crash.The fix introduced in version
2.5.3
blacklistedroot
options from options passed via thedata
object.Disclosure Timeline
2.5.5
released.Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running
snyk wizard
from the command-line interface.Otherwise, Upgrade
ejs
to version2.5.5
or higher.References
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Arbitrary Code Injection via the
render
andrenderFile
. If external input is flowing into theoptions
parameter, an attacker is able run arbitrary code. This include thefilename
,compileDebug
, andclient
option.POC
Remediation
Upgrade
ejs
to version 3.1.6 or higher.References
morgan 1.6.1
Additional Details
All of the vulnerabilities are listed below
Detailed remediation guidance
Overview
debug
is a JavaScript debugging utility modelled after Node.js core's debugging technique..debug
uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the%o
formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g
) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
debug
to version 2.6.9, 3.1.0 or higher.References
Overview
ms
is a tiny millisecond conversion utility.Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to
ms()
function.Proof of concept
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author.
Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on
Regular Expression Denial of Service (ReDoS)
attacks, go to our blog.Disclosure Timeline
2.0.0
released.>=0.7.1, <=1.0.0
.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
ms
to version 2.0.0 or higher.References
Overview
morgan is a HTTP request logger middleware for node.js.
Affected versions of this package are vulnerable to Arbitrary Code Injection. An attacker could use the format parameter to inject arbitrary commands.
Remediation
Upgrade
morgan
to version 1.9.1 or higher.References
debug 2.2.0
Additional Details
All of the vulnerabilities are listed below
Detailed remediation guidance
Overview
debug
is a JavaScript debugging utility modelled after Node.js core's debugging technique..debug
uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the%o
formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g
) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
debug
to version 2.6.9, 3.1.0 or higher.References
Overview
ms
is a tiny millisecond conversion utility.Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to
ms()
function.Proof of concept
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author.
Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on
Regular Expression Denial of Service (ReDoS)
attacks, go to our blog.Disclosure Timeline
2.0.0
released.>=0.7.1, <=1.0.0
.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
ms
to version 2.0.0 or higher.References
body-parser 1.13.3
Additional Details
All of the vulnerabilities are listed below
Detailed remediation guidance
Overview
debug
is a JavaScript debugging utility modelled after Node.js core's debugging technique..debug
uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the%o
formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g
) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
debug
to version 2.6.9, 3.1.0 or higher.References
Overview
ms
is a tiny millisecond conversion utility.Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to
ms()
function.Proof of concept
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author.
Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on
Regular Expression Denial of Service (ReDoS)
attacks, go to our blog.Disclosure Timeline
2.0.0
released.>=0.7.1, <=1.0.0
.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
ms
to version 2.0.0 or higher.References
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Override Protection Bypass. By default
qs
protects against attacks that attempt to overwrite an object's existing prototype properties, such astoString()
,hasOwnProperty()
,etc.From
qs
documentation:Overwriting these properties can impact application logic, potentially allowing attackers to work around security controls, modify data, make the application unstable and more.
In versions of the package affected by this vulnerability, it is possible to circumvent this protection and overwrite prototype properties and functions by prefixing the name of the parameter with
[
or]
. e.g.qs.parse("]=toString")
will return{toString = true}
, as a result, callingtoString()
on the object will throw an exception.Example:
For more information, you can check out our blog.
Disclosure Timeline
6.0.3
,6.1.1
,6.2.2
,6.3.1
.6.4.0
,6.3.2
,6.2.3
,6.1.2
and6.0.4
Remediation
Upgrade
qs
to version 6.0.4, 6.1.2, 6.2.3, 6.3.2 or higher.References
express 4.13.4
Additional Details
All of the vulnerabilities are listed below
Detailed remediation guidance
Overview
debug
is a JavaScript debugging utility modelled after Node.js core's debugging technique..debug
uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the%o
formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g
) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
debug
to version 2.6.9, 3.1.0 or higher.References
Overview
fresh
is HTTP response freshness testing.Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (
/ *, */
) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
fresh
to version 0.5.2 or higher.References
Overview
mime is a comprehensive, compact MIME type module.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex
/.*[\.\/\\]/
in its lookup, which can cause a slowdown of 2 seconds for 50k characters.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
mime
to version 1.4.1, 2.0.3 or higher.References
Overview
ms
is a tiny millisecond conversion utility.Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to
ms()
function.Proof of concept
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author.
Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on
Regular Expression Denial of Service (ReDoS)
attacks, go to our blog.Disclosure Timeline
2.0.0
released.>=0.7.1, <=1.0.0
.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
ms
to version 2.0.0 or higher.References
Overview
negotiator is an HTTP content negotiator for Node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS)
when parsing
Accept-Language
http header.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
negotiator
to version 0.6.1 or higher.References
GitHub Commit
OSWAP Advisory
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Override Protection Bypass. By default
qs
protects against attacks that attempt to overwrite an object's existing prototype properties, such astoString()
,hasOwnProperty()
,etc.From
qs
documentation:Overwriting these properties can impact application logic, potentially allowing attackers to work around security controls, modify data, make the application unstable and more.
In versions of the package affected by this vulnerability, it is possible to circumvent this protection and overwrite prototype properties and functions by prefixing the name of the parameter with
[
or]
. e.g.qs.parse("]=toString")
will return{toString = true}
, as a result, callingtoString()
on the object will throw an exception.Example:
For more information, you can check out our blog.
Disclosure Timeline
6.0.3
,6.1.1
,6.2.2
,6.3.1
.6.4.0
,6.3.2
,6.2.3
,6.1.2
and6.0.4
Remediation
Upgrade
qs
to version 6.0.4, 6.1.2, 6.2.3, 6.3.2 or higher.References
serve-favicon 2.3.2
Additional Details
All of the vulnerabilities are listed below
Detailed remediation guidance
Overview
fresh
is HTTP response freshness testing.Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (
/ *, */
) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
fresh
to version 0.5.2 or higher.References
Overview
ms
is a tiny millisecond conversion utility.Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to
ms()
function.Proof of concept
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author.
Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on
Regular Expression Denial of Service (ReDoS)
attacks, go to our blog.Disclosure Timeline
2.0.0
released.>=0.7.1, <=1.0.0
.Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'The expression would match inputs such as
ABBD
,ABCCCCD
,ABCBCCCD
andACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade
ms
to version 2.0.0 or higher.References
pg-promise 4.8.1
Additional Details
All of the vulnerabilities are listed below
Detailed remediation guidance
Overview
pg is a non-blocking PostgreSQL client for node.js.
Affected versions of this package are vulnerable to Arbitrary Code Execution. When parsing results of a query, it goes through a form of
eval
, and with a specially crafted column name, an attacker can cause code to run remotely on the server.PoC:
Remediation
Upgrade
pg
to version 2.11.2, 3.6.4, 4.5.7, 5.2.1, 6.0.5, 6.1.6, 6.2.5, 6.3.3, 6.4.2, 7.0.2, 7.1.2 or higher.References
The text was updated successfully, but these errors were encountered: