-
Notifications
You must be signed in to change notification settings - Fork 121
/
evp.h
1180 lines (998 loc) · 54.2 KB
/
evp.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (C) 1995-1998 Eric Young ([email protected])
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young ([email protected]).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson ([email protected]).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young ([email protected])"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson ([email protected])"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#ifndef OPENSSL_HEADER_EVP_H
#define OPENSSL_HEADER_EVP_H
#include <openssl/base.h>
#include <openssl/evp_errors.h>
#include <openssl/thread.h>
// OpenSSL included digest and cipher functions in this header so we include
// them for users that still expect that.
//
// TODO(fork): clean up callers so that they include what they use.
#include <openssl/aead.h>
#include <openssl/base64.h>
#include <openssl/cipher.h>
#include <openssl/digest.h>
#include <openssl/nid.h>
#if defined(__cplusplus)
extern "C" {
#endif
// EVP abstracts over public/private key algorithms.
// Public key objects.
//
// An |EVP_PKEY| object represents a public or private key. A given object may
// be used concurrently on multiple threads by non-mutating functions, provided
// no other thread is concurrently calling a mutating function. Unless otherwise
// documented, functions which take a |const| pointer are non-mutating and
// functions which take a non-|const| pointer are mutating.
// EVP_PKEY_new creates a new, empty public-key object and returns it or NULL
// on allocation failure.
OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new(void);
// EVP_PKEY_free frees all data referenced by |pkey| and then frees |pkey|
// itself.
OPENSSL_EXPORT void EVP_PKEY_free(EVP_PKEY *pkey);
// EVP_PKEY_up_ref increments the reference count of |pkey| and returns one. It
// does not mutate |pkey| for thread-safety purposes and may be used
// concurrently.
OPENSSL_EXPORT int EVP_PKEY_up_ref(EVP_PKEY *pkey);
// EVP_PKEY_is_opaque returns one if |pkey| is opaque. Opaque keys are backed by
// custom implementations which do not expose key material and parameters. It is
// an error to attempt to duplicate, export, or compare an opaque key.
OPENSSL_EXPORT int EVP_PKEY_is_opaque(const EVP_PKEY *pkey);
// EVP_PKEY_cmp compares |a| and |b| and returns one if they are equal, zero if
// not and a negative number on error.
//
// WARNING: this differs from the traditional return value of a "cmp"
// function.
OPENSSL_EXPORT int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b);
// EVP_PKEY_copy_parameters sets the parameters of |to| to equal the parameters
// of |from|. It returns one on success and zero on error.
OPENSSL_EXPORT int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from);
// EVP_PKEY_missing_parameters returns one if |pkey| is missing needed
// parameters or zero if not, or if the algorithm doesn't take parameters.
OPENSSL_EXPORT int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey);
// EVP_PKEY_size returns the maximum size, in bytes, of a signature signed by
// |pkey|. For an RSA key, this returns the number of bytes needed to represent
// the modulus. For an EC key, this returns the maximum size of a DER-encoded
// ECDSA signature. For a KEM key, this returns the sum of the size of the
// public key and the secret key.
OPENSSL_EXPORT int EVP_PKEY_size(const EVP_PKEY *pkey);
// EVP_PKEY_bits returns the "size", in bits, of |pkey|. For an RSA key, this
// returns the bit length of the modulus. For an EC key, this returns the bit
// length of the group order. For a KEM, this returns the the sum of the size
// of the public key and the secret key.
OPENSSL_EXPORT int EVP_PKEY_bits(const EVP_PKEY *pkey);
// EVP_PKEY_id returns the type of |pkey|, which is one of the |EVP_PKEY_*|
// values.
OPENSSL_EXPORT int EVP_PKEY_id(const EVP_PKEY *pkey);
// EVP_PKEY_type returns |nid| if |nid| is a known key type and |NID_undef|
// otherwise.
OPENSSL_EXPORT int EVP_PKEY_type(int nid);
// Getting and setting concrete public key types.
//
// The following functions get and set the underlying public key in an
// |EVP_PKEY| object. The |set1| functions take an additional reference to the
// underlying key and return one on success or zero if |key| is NULL. The
// |assign| functions adopt the caller's reference and return one on success or
// zero if |key| is NULL. The |get1| functions return a fresh reference to the
// underlying object or NULL if |pkey| is not of the correct type. The |get0|
// functions behave the same but return a non-owning pointer.
//
// The |get0| and |get1| functions take |const| pointers and are thus
// non-mutating for thread-safety purposes, but mutating functions on the
// returned lower-level objects are considered to also mutate the |EVP_PKEY| and
// may not be called concurrently with other operations on the |EVP_PKEY|.
OPENSSL_EXPORT int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key);
OPENSSL_EXPORT int EVP_PKEY_assign_RSA(EVP_PKEY *pkey, RSA *key);
OPENSSL_EXPORT RSA *EVP_PKEY_get0_RSA(const EVP_PKEY *pkey);
OPENSSL_EXPORT RSA *EVP_PKEY_get1_RSA(const EVP_PKEY *pkey);
OPENSSL_EXPORT int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, DSA *key);
OPENSSL_EXPORT int EVP_PKEY_assign_DSA(EVP_PKEY *pkey, DSA *key);
OPENSSL_EXPORT DSA *EVP_PKEY_get0_DSA(const EVP_PKEY *pkey);
OPENSSL_EXPORT DSA *EVP_PKEY_get1_DSA(const EVP_PKEY *pkey);
OPENSSL_EXPORT int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, EC_KEY *key);
OPENSSL_EXPORT int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey, EC_KEY *key);
OPENSSL_EXPORT EC_KEY *EVP_PKEY_get0_EC_KEY(const EVP_PKEY *pkey);
OPENSSL_EXPORT EC_KEY *EVP_PKEY_get1_EC_KEY(const EVP_PKEY *pkey);
#define EVP_PKEY_NONE NID_undef
#define EVP_PKEY_RSA NID_rsaEncryption
#define EVP_PKEY_RSA_PSS NID_rsassaPss
#define EVP_PKEY_DSA NID_dsa
#define EVP_PKEY_EC NID_X9_62_id_ecPublicKey
#define EVP_PKEY_ED25519 NID_ED25519
#define EVP_PKEY_X25519 NID_X25519
// TODO(awslc): delete Kyber define
#define EVP_PKEY_KYBER512 NID_KYBER512
#define EVP_PKEY_HKDF NID_hkdf
#define EVP_PKEY_KEM NID_kem
// EVP_PKEY_assign sets the underlying key of |pkey| to |key|, which must be of
// the given type. It returns one if successful or zero if the |type| argument
// is not one of the |EVP_PKEY_*| values or if |key| is NULL.
OPENSSL_EXPORT int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key);
// EVP_PKEY_set_type sets the type of |pkey| to |type|. It returns one if
// successful or zero if the |type| argument is not one of the |EVP_PKEY_*|
// values. If |pkey| is NULL, it simply reports whether the type is known.
OPENSSL_EXPORT int EVP_PKEY_set_type(EVP_PKEY *pkey, int type);
// EVP_PKEY_cmp_parameters compares the parameters of |a| and |b|. It returns
// one if they match, zero if not, or a negative number of on error.
//
// WARNING: the return value differs from the usual return value convention.
OPENSSL_EXPORT int EVP_PKEY_cmp_parameters(const EVP_PKEY *a,
const EVP_PKEY *b);
// ASN.1 functions
// EVP_parse_public_key decodes a DER-encoded SubjectPublicKeyInfo structure
// (RFC 5280) from |cbs| and advances |cbs|. It returns a newly-allocated
// |EVP_PKEY| or NULL on error. If the key is an EC key, the curve is guaranteed
// to be set.
//
// The caller must check the type of the parsed public key to ensure it is
// suitable and validate other desired key properties such as RSA modulus size
// or EC curve.
OPENSSL_EXPORT EVP_PKEY *EVP_parse_public_key(CBS *cbs);
// EVP_marshal_public_key marshals |key| as a DER-encoded SubjectPublicKeyInfo
// structure (RFC 5280) and appends the result to |cbb|. It returns one on
// success and zero on error.
OPENSSL_EXPORT int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key);
// EVP_parse_private_key decodes a DER-encoded PrivateKeyInfo structure (RFC
// 5208) from |cbs| and advances |cbs|. It returns a newly-allocated |EVP_PKEY|
// or NULL on error.
//
// The caller must check the type of the parsed private key to ensure it is
// suitable and validate other desired key properties such as RSA modulus size
// or EC curve. In particular, RSA private key operations scale cubicly, so
// applications accepting RSA private keys from external sources may need to
// bound key sizes (use |EVP_PKEY_bits| or |RSA_bits|) to avoid a DoS vector.
//
// A PrivateKeyInfo ends with an optional set of attributes. These are not
// processed and so this function will silently ignore any trailing data in the
// structure.
OPENSSL_EXPORT EVP_PKEY *EVP_parse_private_key(CBS *cbs);
// EVP_marshal_private_key marshals |key| as a DER-encoded PrivateKeyInfo
// structure (RFC 5208) and appends the result to |cbb|. It returns one on
// success and zero on error.
OPENSSL_EXPORT int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key);
// Raw keys
//
// Some keys types support a "raw" serialization. Currently the only supported
// raw format is Ed25519, where the public key and private key formats are those
// specified in RFC 8032. Note the RFC 8032 private key format is the 32-byte
// prefix of |ED25519_sign|'s 64-byte private key.
// EVP_PKEY_new_raw_private_key returns a newly allocated |EVP_PKEY| wrapping a
// private key of the specified type. It returns NULL on error.
OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_raw_private_key(int type, ENGINE *unused,
const uint8_t *in,
size_t len);
// EVP_PKEY_new_raw_public_key returns a newly allocated |EVP_PKEY| wrapping a
// public key of the specified type. It returns NULL on error.
OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_raw_public_key(int type, ENGINE *unused,
const uint8_t *in,
size_t len);
// EVP_PKEY_get_raw_private_key outputs the private key for |pkey| in raw form.
// If |out| is NULL, it sets |*out_len| to the size of the raw private key.
// Otherwise, it writes at most |*out_len| bytes to |out| and sets |*out_len| to
// the number of bytes written.
//
// It returns one on success and zero if |pkey| has no private key, the key
// type does not support a raw format, or the buffer is too small.
OPENSSL_EXPORT int EVP_PKEY_get_raw_private_key(const EVP_PKEY *pkey,
uint8_t *out, size_t *out_len);
// EVP_PKEY_get_raw_public_key outputs the public key for |pkey| in raw form.
// If |out| is NULL, it sets |*out_len| to the size of the raw public key.
// Otherwise, it writes at most |*out_len| bytes to |out| and sets |*out_len| to
// the number of bytes written.
//
// It returns one on success and zero if |pkey| has no public key, the key
// type does not support a raw format, or the buffer is too small.
OPENSSL_EXPORT int EVP_PKEY_get_raw_public_key(const EVP_PKEY *pkey,
uint8_t *out, size_t *out_len);
// Signing
// EVP_DigestSignInit sets up |ctx| for a signing operation with |type| and
// |pkey|. The |ctx| argument must have been initialised with
// |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing
// operation will be written to |*pctx|; this can be used to set alternative
// signing options.
//
// For single-shot signing algorithms which do not use a pre-hash, such as
// Ed25519, |type| should be NULL. The |EVP_MD_CTX| itself is unused but is
// present so the API is uniform. See |EVP_DigestSign|.
//
// This function does not mutate |pkey| for thread-safety purposes and may be
// used concurrently with other non-mutating functions on |pkey|.
//
// It returns one on success, or zero on error.
OPENSSL_EXPORT int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
const EVP_MD *type, ENGINE *e,
EVP_PKEY *pkey);
// EVP_DigestSignUpdate appends |len| bytes from |data| to the data which will
// be signed in |EVP_DigestSignFinal|. It returns one.
//
// This function performs a streaming signing operation and will fail for
// signature algorithms which do not support this. Use |EVP_DigestSign| for a
// single-shot operation.
OPENSSL_EXPORT int EVP_DigestSignUpdate(EVP_MD_CTX *ctx, const void *data,
size_t len);
// EVP_DigestSignFinal signs the data that has been included by one or more
// calls to |EVP_DigestSignUpdate|. If |out_sig| is NULL then |*out_sig_len| is
// set to the maximum number of output bytes. Otherwise, on entry,
// |*out_sig_len| must contain the length of the |out_sig| buffer. If the call
// is successful, the signature is written to |out_sig| and |*out_sig_len| is
// set to its length.
//
// This function performs a streaming signing operation and will fail for
// signature algorithms which do not support this. Use |EVP_DigestSign| for a
// single-shot operation.
//
// It returns one on success, or zero on error.
OPENSSL_EXPORT int EVP_DigestSignFinal(EVP_MD_CTX *ctx, uint8_t *out_sig,
size_t *out_sig_len);
// EVP_DigestSign signs |data_len| bytes from |data| using |ctx|. If |out_sig|
// is NULL then |*out_sig_len| is set to the maximum number of output
// bytes. Otherwise, on entry, |*out_sig_len| must contain the length of the
// |out_sig| buffer. If the call is successful, the signature is written to
// |out_sig| and |*out_sig_len| is set to its length.
//
// It returns one on success and zero on error.
OPENSSL_EXPORT int EVP_DigestSign(EVP_MD_CTX *ctx, uint8_t *out_sig,
size_t *out_sig_len, const uint8_t *data,
size_t data_len);
// Verifying
// EVP_DigestVerifyInit sets up |ctx| for a signature verification operation
// with |type| and |pkey|. The |ctx| argument must have been initialised with
// |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing
// operation will be written to |*pctx|; this can be used to set alternative
// signing options.
//
// For single-shot signing algorithms which do not use a pre-hash, such as
// Ed25519, |type| should be NULL. The |EVP_MD_CTX| itself is unused but is
// present so the API is uniform. See |EVP_DigestVerify|.
//
// This function does not mutate |pkey| for thread-safety purposes and may be
// used concurrently with other non-mutating functions on |pkey|.
//
// It returns one on success, or zero on error.
OPENSSL_EXPORT int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
const EVP_MD *type, ENGINE *e,
EVP_PKEY *pkey);
// EVP_DigestVerifyUpdate appends |len| bytes from |data| to the data which
// will be verified by |EVP_DigestVerifyFinal|. It returns one.
//
// This function performs streaming signature verification and will fail for
// signature algorithms which do not support this. Use |EVP_PKEY_verify_message|
// for a single-shot verification.
OPENSSL_EXPORT int EVP_DigestVerifyUpdate(EVP_MD_CTX *ctx, const void *data,
size_t len);
// EVP_DigestVerifyFinal verifies that |sig_len| bytes of |sig| are a valid
// signature for the data that has been included by one or more calls to
// |EVP_DigestVerifyUpdate|. It returns one on success and zero otherwise.
//
// This function performs streaming signature verification and will fail for
// signature algorithms which do not support this. Use |EVP_PKEY_verify_message|
// for a single-shot verification.
OPENSSL_EXPORT int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig,
size_t sig_len);
// EVP_DigestVerify verifies that |sig_len| bytes from |sig| are a valid
// signature for |data|. It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_DigestVerify(EVP_MD_CTX *ctx, const uint8_t *sig,
size_t sig_len, const uint8_t *data,
size_t len);
// Signing (old functions)
// EVP_SignInit_ex configures |ctx|, which must already have been initialised,
// for a fresh signing operation using the hash function |type|. It returns one
// on success and zero otherwise.
//
// (In order to initialise |ctx|, either obtain it initialised with
// |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.)
OPENSSL_EXPORT int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type,
ENGINE *impl);
// EVP_SignInit is a deprecated version of |EVP_SignInit_ex|.
//
// TODO(fork): remove.
OPENSSL_EXPORT int EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type);
// EVP_SignUpdate appends |len| bytes from |data| to the data which will be
// signed in |EVP_SignFinal|.
OPENSSL_EXPORT int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *data,
size_t len);
// EVP_SignFinal signs the data that has been included by one or more calls to
// |EVP_SignUpdate|, using the key |pkey|, and writes it to |sig|. On entry,
// |sig| must point to at least |EVP_PKEY_size(pkey)| bytes of space. The
// actual size of the signature is written to |*out_sig_len|.
//
// It returns one on success and zero otherwise.
//
// It does not modify |ctx|, thus it's possible to continue to use |ctx| in
// order to sign a longer message. It also does not mutate |pkey| for
// thread-safety purposes and may be used concurrently with other non-mutating
// functions on |pkey|.
OPENSSL_EXPORT int EVP_SignFinal(const EVP_MD_CTX *ctx, uint8_t *sig,
unsigned int *out_sig_len, EVP_PKEY *pkey);
// Verifying (old functions)
// EVP_VerifyInit_ex configures |ctx|, which must already have been
// initialised, for a fresh signature verification operation using the hash
// function |type|. It returns one on success and zero otherwise.
//
// (In order to initialise |ctx|, either obtain it initialised with
// |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.)
OPENSSL_EXPORT int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type,
ENGINE *impl);
// EVP_VerifyInit is a deprecated version of |EVP_VerifyInit_ex|.
//
// TODO(fork): remove.
OPENSSL_EXPORT int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type);
// EVP_VerifyUpdate appends |len| bytes from |data| to the data which will be
// signed in |EVP_VerifyFinal|.
OPENSSL_EXPORT int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *data,
size_t len);
// EVP_VerifyFinal verifies that |sig_len| bytes of |sig| are a valid
// signature, by |pkey|, for the data that has been included by one or more
// calls to |EVP_VerifyUpdate|.
//
// It returns one on success and zero otherwise.
//
// It does not modify |ctx|, thus it's possible to continue to use |ctx| in
// order to verify a longer message. It also does not mutate |pkey| for
// thread-safety purposes and may be used concurrently with other non-mutating
// functions on |pkey|.
OPENSSL_EXPORT int EVP_VerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig,
size_t sig_len, EVP_PKEY *pkey);
// Printing
// EVP_PKEY_print_public prints a textual representation of the public key in
// |pkey| to |out|. Returns one on success or zero otherwise.
OPENSSL_EXPORT int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey,
int indent, ASN1_PCTX *pctx);
// EVP_PKEY_print_private prints a textual representation of the private key in
// |pkey| to |out|. Returns one on success or zero otherwise.
OPENSSL_EXPORT int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey,
int indent, ASN1_PCTX *pctx);
// EVP_PKEY_print_params prints a textual representation of the parameters in
// |pkey| to |out|. Returns one on success or zero otherwise.
OPENSSL_EXPORT int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey,
int indent, ASN1_PCTX *pctx);
// Password stretching.
//
// Password stretching functions take a low-entropy password and apply a slow
// function that results in a key suitable for use in symmetric
// cryptography.
// PKCS5_PBKDF2_HMAC computes |iterations| iterations of PBKDF2 of |password|
// and |salt|, using |digest|, and outputs |key_len| bytes to |out_key|. It
// returns one on success and zero on allocation failure or if iterations is 0.
OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC(const char *password, size_t password_len,
const uint8_t *salt, size_t salt_len,
unsigned iterations, const EVP_MD *digest,
size_t key_len, uint8_t *out_key);
// PKCS5_PBKDF2_HMAC_SHA1 is the same as PKCS5_PBKDF2_HMAC, but with |digest|
// fixed to |EVP_sha1|.
OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC_SHA1(const char *password,
size_t password_len,
const uint8_t *salt, size_t salt_len,
unsigned iterations, size_t key_len,
uint8_t *out_key);
// EVP_PBE_scrypt expands |password| into a secret key of length |key_len| using
// scrypt, as described in RFC 7914, and writes the result to |out_key|. It
// returns one on success and zero on allocation failure, if the memory required
// for the operation exceeds |max_mem|, or if any of the parameters are invalid
// as described below.
//
// |N|, |r|, and |p| are as described in RFC 7914 section 6. They determine the
// cost of the operation. If |max_mem| is zero, a defult limit of 32MiB will be
// used.
//
// The parameters are considered invalid under any of the following conditions:
// - |r| or |p| are zero
// - |p| > (2^30 - 1) / |r|
// - |N| is not a power of two
// - |N| > 2^32
// - |N| > 2^(128 * |r| / 8)
OPENSSL_EXPORT int EVP_PBE_scrypt(const char *password, size_t password_len,
const uint8_t *salt, size_t salt_len,
uint64_t N, uint64_t r, uint64_t p,
size_t max_mem, uint8_t *out_key,
size_t key_len);
// Public key contexts.
//
// |EVP_PKEY_CTX| objects hold the context of an operation (e.g. signing or
// encrypting) that uses a public key.
// EVP_PKEY_CTX_new allocates a fresh |EVP_PKEY_CTX| for use with |pkey|. It
// returns the context or NULL on error.
OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e);
// EVP_PKEY_CTX_new_id allocates a fresh |EVP_PKEY_CTX| for a key of type |id|
// (e.g. |EVP_PKEY_HMAC|). This can be used for key generation where
// |EVP_PKEY_CTX_new| can't be used because there isn't an |EVP_PKEY| to pass
// it. It returns the context or NULL on error.
OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e);
// EVP_PKEY_CTX_free frees |ctx| and the data it owns.
OPENSSL_EXPORT void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx);
// EVP_PKEY_CTX_dup allocates a fresh |EVP_PKEY_CTX| and sets it equal to the
// state of |ctx|. It returns the fresh |EVP_PKEY_CTX| or NULL on error.
OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx);
// EVP_PKEY_CTX_get0_pkey returns the |EVP_PKEY| associated with |ctx|.
OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx);
// EVP_PKEY_sign_init initialises an |EVP_PKEY_CTX| for a signing operation. It
// should be called before |EVP_PKEY_sign|.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx);
// EVP_PKEY_sign signs |digest_len| bytes from |digest| using |ctx|. If |sig| is
// NULL, the maximum size of the signature is written to |out_sig_len|.
// Otherwise, |*sig_len| must contain the number of bytes of space available at
// |sig|. If sufficient, the signature will be written to |sig| and |*sig_len|
// updated with the true length. This function will fail for signature
// algorithms like Ed25519 that do not support signing pre-hashed inputs.
//
// WARNING: |digest| must be the output of some hash function on the data to be
// signed. Passing unhashed inputs will not result in a secure signature scheme.
// Use |EVP_DigestSignInit| to sign an unhashed input.
//
// WARNING: Setting |sig| to NULL only gives the maximum size of the
// signature. The actual signature may be smaller.
//
// It returns one on success or zero on error. (Note: this differs from
// OpenSSL, which can also return negative values to indicate an error. )
OPENSSL_EXPORT int EVP_PKEY_sign(EVP_PKEY_CTX *ctx, uint8_t *sig,
size_t *sig_len, const uint8_t *digest,
size_t digest_len);
// EVP_PKEY_verify_init initialises an |EVP_PKEY_CTX| for a signature
// verification operation. It should be called before |EVP_PKEY_verify|.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx);
// EVP_PKEY_verify verifies that |sig_len| bytes from |sig| are a valid
// signature for |digest|. This function will fail for signature
// algorithms like Ed25519 that do not support signing pre-hashed inputs.
//
// WARNING: |digest| must be the output of some hash function on the data to be
// verified. Passing unhashed inputs will not result in a secure signature
// scheme. Use |EVP_DigestVerifyInit| to verify a signature given the unhashed
// input.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig,
size_t sig_len, const uint8_t *digest,
size_t digest_len);
// EVP_PKEY_encrypt_init initialises an |EVP_PKEY_CTX| for an encryption
// operation. It should be called before |EVP_PKEY_encrypt|.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx);
// EVP_PKEY_encrypt encrypts |in_len| bytes from |in|. If |out| is NULL, the
// maximum size of the ciphertext is written to |out_len|. Otherwise, |*out_len|
// must contain the number of bytes of space available at |out|. If sufficient,
// the ciphertext will be written to |out| and |*out_len| updated with the true
// length.
//
// WARNING: Setting |out| to NULL only gives the maximum size of the
// ciphertext. The actual ciphertext may be smaller.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out,
size_t *out_len, const uint8_t *in,
size_t in_len);
// EVP_PKEY_decrypt_init initialises an |EVP_PKEY_CTX| for a decryption
// operation. It should be called before |EVP_PKEY_decrypt|.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx);
// EVP_PKEY_decrypt decrypts |in_len| bytes from |in|. If |out| is NULL, the
// maximum size of the plaintext is written to |out_len|. Otherwise, |*out_len|
// must contain the number of bytes of space available at |out|. If sufficient,
// the ciphertext will be written to |out| and |*out_len| updated with the true
// length.
//
// WARNING: Setting |out| to NULL only gives the maximum size of the
// plaintext. The actual plaintext may be smaller.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out,
size_t *out_len, const uint8_t *in,
size_t in_len);
// EVP_PKEY_verify_recover_init initialises an |EVP_PKEY_CTX| for a public-key
// decryption operation. It should be called before |EVP_PKEY_verify_recover|.
//
// Public-key decryption is a very obscure operation that is only implemented
// by RSA keys. It is effectively a signature verification operation that
// returns the signed message directly. It is almost certainly not what you
// want.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx);
// EVP_PKEY_verify_recover decrypts |sig_len| bytes from |sig|. If |out| is
// NULL, the maximum size of the plaintext is written to |out_len|. Otherwise,
// |*out_len| must contain the number of bytes of space available at |out|. If
// sufficient, the ciphertext will be written to |out| and |*out_len| updated
// with the true length.
//
// WARNING: Setting |out| to NULL only gives the maximum size of the
// plaintext. The actual plaintext may be smaller.
//
// See the warning about this operation in |EVP_PKEY_verify_recover_init|. It
// is probably not what you want.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out,
size_t *out_len, const uint8_t *sig,
size_t siglen);
// EVP_PKEY_derive_init initialises an |EVP_PKEY_CTX| for a key derivation
// operation. It should be called before |EVP_PKEY_derive_set_peer| and
// |EVP_PKEY_derive|.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx);
// EVP_PKEY_derive_set_peer sets the peer's key to be used for key derivation
// by |ctx| to |peer|. It should be called after |EVP_PKEY_derive_init|. (For
// example, this is used to set the peer's key in (EC)DH.) It returns one on
// success and zero on error.
OPENSSL_EXPORT int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer);
// EVP_PKEY_derive derives a shared key from |ctx|. If |key| is non-NULL then,
// on entry, |out_key_len| must contain the amount of space at |key|. If
// sufficient then the shared key will be written to |key| and |*out_key_len|
// will be set to the length. If |key| is NULL then |out_key_len| will be set to
// the maximum length.
//
// WARNING: Setting |out| to NULL only gives the maximum size of the key. The
// actual key may be smaller.
//
// It returns one on success and zero on error.
OPENSSL_EXPORT int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, uint8_t *key,
size_t *out_key_len);
// EVP_PKEY_keygen_init initialises an |EVP_PKEY_CTX| for a key generation
// operation. It should be called before |EVP_PKEY_keygen|.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx);
// EVP_PKEY_keygen performs a key generation operation using the values from
// |ctx|. If |*out_pkey| is non-NULL, it overwrites |*out_pkey| with the
// resulting key. Otherwise, it sets |*out_pkey| to a newly-allocated |EVP_PKEY|
// containing the result. It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **out_pkey);
// EVP_PKEY_encapsulate is an operation defined for a KEM (Key Encapsulation
// Mechanism). For the KEM specified in |ctx|, the function:
// 1. generates a random value and writes it to |shared_secret|,
// 2. encapsulates the shared secret, producing the ciphertext, by using
// the public key in |ctx|, and writes the ciphertext to |ciphertext|,
// 3. writes the length of |ciphertext| and |shared_secret| to
// |ciphertext_len| and |shared_secret_len|.
//
// If the given |ciphertext| is NULL it is assumed that the caller is doing
// a size check: the function will write the size of the ciphertext and the
// shared secret in |ciphertext_len| and |shared_secret_len| and return 1.
// If |ciphertext| is non-NULL it is assumed that the caller is performing
// the actual operation, so it is checked if the lengths of the output buffers,
// |ciphertext_len| and |shared_secret_len|, are large enough for the KEM.
//
// NOTE: no allocation is done in the function, the caller is expected to
// provide large enough |ciphertext| and |shared_secret| buffers.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_encapsulate(EVP_PKEY_CTX *ctx /* IN */,
uint8_t *ciphertext /* OUT */,
size_t *ciphertext_len /* OUT */,
uint8_t *shared_secret /* OUT */,
size_t *shared_secret_len /* OUT */);
// EVP_PKEY_decapsulate is an operation defined for a KEM (Key Encapsulation
// Mechanism). For the KEM specified in |ctx|, the function:
// 1. decapsulates the shared secret from the given |ciphertext| using the
// secret key configured in |ctx| and writes it to |shared_secret|,
// 2. writes the length of |shared_secret| to |shared_secret_len|.
//
// If the given |shared_secret| is NULL it is assumed that the caller is doing
// a size check: the function will write the size of the shared secret in
// |shared_secret_len| and return 1.
// If |shared_secret| is non-NULL it is assumed that the caller is performing
// the actual operation, so it is checked if the length of the output buffer,
// |shared_secret_len|, is large enough for the KEM.
//
// NOTE: no allocation is done in the function, the caller is expected to
// provide large enough |shared_secret| buffer.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_decapsulate(EVP_PKEY_CTX *ctx /* IN */,
uint8_t *shared_secret /* OUT */,
size_t *shared_secret_len /* OUT */,
uint8_t *ciphertext /* IN */,
size_t ciphertext_len /* IN */);
// EVP_PKEY_paramgen_init initialises an |EVP_PKEY_CTX| for a parameter
// generation operation. It should be called before |EVP_PKEY_paramgen|.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_paramgen_init(EVP_PKEY_CTX *ctx);
// EVP_PKEY_paramgen performs a parameter generation using the values from
// |ctx|. If |*out_pkey| is non-NULL, it overwrites |*out_pkey| with the
// resulting parameters, but no key. Otherwise, it sets |*out_pkey| to a
// newly-allocated |EVP_PKEY| containing the result. It returns one on success
// or zero on error.
OPENSSL_EXPORT int EVP_PKEY_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY **out_pkey);
// Generic control functions.
// EVP_PKEY_CTX_set_signature_md sets |md| as the digest to be used in a
// signature operation. It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx,
const EVP_MD *md);
// EVP_PKEY_CTX_get_signature_md sets |*out_md| to the digest to be used in a
// signature operation. It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx,
const EVP_MD **out_md);
// RSA specific control functions.
// EVP_PKEY_CTX_set_rsa_padding sets the padding type to use. It should be one
// of the |RSA_*_PADDING| values. Returns one on success or zero on error. By
// default, the padding is |RSA_PKCS1_PADDING|.
OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding);
// EVP_PKEY_CTX_get_rsa_padding sets |*out_padding| to the current padding
// value, which is one of the |RSA_*_PADDING| values. Returns one on success or
// zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx,
int *out_padding);
// EVP_PKEY_CTX_set_rsa_pss_saltlen sets the length of the salt in a PSS-padded
// signature. A value of -1 cause the salt to be the same length as the digest
// in the signature. A value of -2 causes the salt to be the maximum length
// that will fit when signing and recovered from the signature when verifying.
// Otherwise the value gives the size of the salt in bytes.
//
// If unsure, use -1.
//
// Returns one on success or zero on error.
//
// TODO(davidben): The default is currently -2. Switch it to -1.
OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx,
int salt_len);
// EVP_PKEY_CTX_get_rsa_pss_saltlen sets |*out_salt_len| to the salt length of
// a PSS-padded signature. See the documentation for
// |EVP_PKEY_CTX_set_rsa_pss_saltlen| for details of the special values that it
// can take.
//
// Returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx,
int *out_salt_len);
// EVP_PKEY_CTX_set_rsa_keygen_bits sets the size of the desired RSA modulus,
// in bits, for key generation. Returns one on success or zero on
// error.
OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx,
int bits);
// EVP_PKEY_CTX_set_rsa_keygen_pubexp sets |e| as the public exponent for key
// generation. Returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx,
BIGNUM *e);
// EVP_PKEY_CTX_set_rsa_oaep_md sets |md| as the digest used in OAEP padding.
// Returns one on success or zero on error. If unset, the default is SHA-1.
// Callers are recommended to overwrite this default.
//
// TODO(davidben): Remove the default and require callers specify this.
OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx,
const EVP_MD *md);
// EVP_PKEY_CTX_get_rsa_oaep_md sets |*out_md| to the digest function used in
// OAEP padding. Returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx,
const EVP_MD **out_md);
// EVP_PKEY_CTX_set_rsa_mgf1_md sets |md| as the digest used in MGF1. Returns
// one on success or zero on error.
//
// If unset, the default is the signing hash for |RSA_PKCS1_PSS_PADDING| and the
// OAEP hash for |RSA_PKCS1_OAEP_PADDING|. Callers are recommended to use this
// default and not call this function.
OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx,
const EVP_MD *md);
// EVP_PKEY_CTX_get_rsa_mgf1_md sets |*out_md| to the digest function used in
// MGF1. Returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx,
const EVP_MD **out_md);
// EVP_PKEY_CTX_set0_rsa_oaep_label sets |label_len| bytes from |label| as the
// label used in OAEP. DANGER: On success, this call takes ownership of |label|
// and will call |OPENSSL_free| on it when |ctx| is destroyed.
//
// Returns one on success or zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx,
uint8_t *label,
size_t label_len);
// EVP_PKEY_CTX_get0_rsa_oaep_label sets |*out_label| to point to the internal
// buffer containing the OAEP label (which may be NULL) and returns the length
// of the label or a negative value on error.
//
// WARNING: the return value differs from the usual return value convention.
OPENSSL_EXPORT int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx,
const uint8_t **out_label);
// EC specific control functions.
// EVP_PKEY_CTX_set_ec_paramgen_curve_nid sets the curve used for
// |EVP_PKEY_keygen| or |EVP_PKEY_paramgen| operations to |nid|. It returns one
// on success and zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx,
int nid);
// KEM specific functions.
// EVP_PKEY_CTX_kem_set_params sets in |ctx| the parameters associated with the
// KEM defined by the given |nid|. It returns one on success and zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_kem_set_params(EVP_PKEY_CTX *ctx, int nid);
// EVP_PKEY_kem_new_raw_public_key generates a new EVP_PKEY object of type
// EVP_PKEY_KEM, initializes the KEM key based on |nid| and populates the
// public key part of the KEM key with the contents of |in|. It returns the
// pointer to the allocated PKEY on sucess and NULL on error.
OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_kem_new_raw_public_key(
int nid, const uint8_t *in, size_t len);
// EVP_PKEY_kem_new_raw_secret_key generates a new EVP_PKEY object of type
// EVP_PKEY_KEM, initializes the KEM key based on |nid| and populates the
// secret key part of the KEM key with the contents of |in|. It returns the
// pointer to the allocated PKEY on sucess and NULL on error.
OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_kem_new_raw_secret_key(
int nid, const uint8_t *in, size_t len);
// EVP_PKEY_kem_new_raw_key generates a new EVP_PKEY object of type
// EVP_PKEY_KEM, initializes the KEM key based on |nid| and populates the
// public and secret key parts of the KEM key with the contents of |in_public|
// and |in_secret|. It returns the pointer to the allocated PKEY on sucess and
// NULL on error.
OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_kem_new_raw_key(int nid,
const uint8_t *in_public,
size_t len_public,
const uint8_t *in_secret,
size_t len_secret);
// Deprecated functions.
// EVP_PKEY_DH is defined for compatibility, but it is impossible to create an
// |EVP_PKEY| of that type.
#define EVP_PKEY_DH NID_dhKeyAgreement
// EVP_PKEY_RSA2 was historically an alternate form for RSA public keys (OID
// 2.5.8.1.1), but is no longer accepted.
#define EVP_PKEY_RSA2 NID_rsa
// EVP_PKEY_X448 is defined for OpenSSL compatibility, but we do not support
// X448 and attempts to create keys will fail.
#define EVP_PKEY_X448 NID_X448
// EVP_PKEY_ED448 is defined for OpenSSL compatibility, but we do not support
// Ed448 and attempts to create keys will fail.
#define EVP_PKEY_ED448 NID_ED448
// EVP_PKEY_get0 returns NULL. This function is provided for compatibility with
// OpenSSL but does not return anything. Use the typed |EVP_PKEY_get0_*|
// functions instead.
OPENSSL_EXPORT void *EVP_PKEY_get0(const EVP_PKEY *pkey);
// OpenSSL_add_all_algorithms does nothing.
OPENSSL_EXPORT void OpenSSL_add_all_algorithms(void);
// OPENSSL_add_all_algorithms_conf does nothing.
OPENSSL_EXPORT void OPENSSL_add_all_algorithms_conf(void);
// OpenSSL_add_all_ciphers does nothing.
OPENSSL_EXPORT void OpenSSL_add_all_ciphers(void);
// OpenSSL_add_all_digests does nothing.
OPENSSL_EXPORT void OpenSSL_add_all_digests(void);
// EVP_cleanup does nothing.
OPENSSL_EXPORT void EVP_cleanup(void);
OPENSSL_EXPORT void EVP_CIPHER_do_all_sorted(
void (*callback)(const EVP_CIPHER *cipher, const char *name,
const char *unused, void *arg),
void *arg);
OPENSSL_EXPORT void EVP_MD_do_all_sorted(void (*callback)(const EVP_MD *cipher,
const char *name,
const char *unused,
void *arg),
void *arg);
// i2d_PrivateKey marshals a private key from |key| to type-specific format, as
// described in |i2d_SAMPLE|.
//
// RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 8017) structure.
// EC keys are serialized as a DER-encoded ECPrivateKey (RFC 5915) structure.
//
// Use |RSA_marshal_private_key| or |EC_KEY_marshal_private_key| instead.
OPENSSL_EXPORT int i2d_PrivateKey(const EVP_PKEY *key, uint8_t **outp);
// i2d_PublicKey marshals a public key from |key| to a type-specific format, as
// described in |i2d_SAMPLE|.
//
// RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 8017) structure.
// EC keys are serialized as an EC point per SEC 1.
//
// Use |RSA_marshal_public_key| or |EC_POINT_point2cbb| instead.
OPENSSL_EXPORT int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp);
// d2i_PrivateKey parses a DER-encoded private key from |len| bytes at |*inp|,
// as described in |d2i_SAMPLE|. The private key must have type |type|,
// otherwise it will be rejected.
//
// This function tries to detect one of several formats. Instead, use
// |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an
// RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey.
OPENSSL_EXPORT EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out,
const uint8_t **inp, long len);
// d2i_AutoPrivateKey acts the same as |d2i_PrivateKey|, but detects the type
// of the private key.
//
// This function tries to detect one of several formats. Instead, use
// |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an
// RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey.
OPENSSL_EXPORT EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp,
long len);
// d2i_PublicKey parses a public key from |len| bytes at |*inp| in a type-
// specific format specified by |type|, as described in |d2i_SAMPLE|.
//
// The only supported value for |type| is |EVP_PKEY_RSA|, which parses a
// DER-encoded RSAPublicKey (RFC 8017) structure. Parsing EC keys is not
// supported by this function.
//
// Use |RSA_parse_public_key| instead.
OPENSSL_EXPORT EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out,
const uint8_t **inp, long len);
// EVP_PKEY_get0_DH returns NULL.
OPENSSL_EXPORT DH *EVP_PKEY_get0_DH(const EVP_PKEY *pkey);