
6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 1/15

Compile and Tune a Vision Transformer Model
using HyperParameter Tuner on a Single
Node

1. SageMaker Training Compiler Overview
A. Introduction

2. Working with the Caltech-256 dataset
A. Installation
B. SageMaker environment

3. How effective is SageMaker Training Compiler ?
A. SageMaker Training Job
B. Training Setup
C. Experimenting with Native TensorFlow
D. Experimenting with Optimized TensorFlow
E. Wait for tuning jobs to complete
F. Fastest Training Job

4. Further tuning with SageMaker Training Compiler
A. Wait for tuning jobs to complete
B. Fastest Convergence

5. Conclusion
6. Clean up

SageMaker Training Compiler Overview
SageMaker Training Compiler is a capability of SageMaker that makes hard-to-implement
optimizations to reduce training time on GPU instances. The compiler optimizes DL models to
accelerate training by more efficiently using SageMaker machine learning (ML) GPU instances.
SageMaker Training Compiler is available at no additional charge within SageMaker and can help
reduce total billable time as it accelerates training.

SageMaker Training Compiler is integrated into the AWS Deep Learning Containers (DLCs). Using
the SageMaker Training Compiler enabled AWS DLCs, you can compile and optimize training jobs
on GPU instances with minimal changes to your code. Bring your deep learning models to
SageMaker and enable SageMaker Training Compiler to accelerate the speed of your training job
on SageMaker ML instances for accelerated computing.

For more information, see SageMaker Training Compiler
(https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html) in the Amazon
SageMaker Developer Guide.

Introduction
In this demo, you'll use SageMaker Training Compiler and SageMaker Hyperparameter Tuner to
speed up training the Vision Transformer model on the Caltech-256 dataset. To get
started, we need to set up the environment with a few prerequisite steps, for permissions,

https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 2/15

, p p q p , p ,
configurations, and so on.

NOTE: You can run this demo in SageMaker Studio, SageMaker notebook instances, or your local
machine with AWS CLI set up. If using SageMaker Studio or SageMaker notebook instances, make
sure you choose one of the TensorFlow-based kernels, Python 3 (TensorFlow x.y Python
3.x CPU Optimized) or conda_tensorflow_p39 respectively.

NOTE: This notebook uses 20 ml.p3.2xlarge instances, each with a single GPU. However, it
can easily be extended to multiple GPUs on a single node. If you don't have enough quota, see
Request a service quota increase for SageMaker resources
(https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-
request-procedure).

Development Environment

Installation
This example notebook requires SageMaker Python SDK v2.95.0 or later

https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 3/15

In [1]:

Looking in indexes: https://pypi.org/simple, (https://pypi.org/simple,) h
ttps://pip.repos.neuron.amazonaws.com (https://pip.repos.neuron.amazonaw
s.com)
Requirement already satisfied: pip in /home/ec2-user/anaconda3/envs/tenso
rflow2_p38/lib/python3.8/site-packages (22.1.2)
Looking in indexes: https://pypi.org/simple, (https://pypi.org/simple,) h
ttps://pip.repos.neuron.amazonaws.com (https://pip.repos.neuron.amazonaw
s.com)
Requirement already satisfied: sagemaker>=2.95.0 in /home/ec2-user/anacon
da3/envs/tensorflow2_p38/lib/python3.8/site-packages (2.96.0)
Requirement already satisfied: botocore in /home/ec2-user/anaconda3/envs/
tensorflow2_p38/lib/python3.8/site-packages (1.27.15)
Requirement already satisfied: boto3 in /home/ec2-user/anaconda3/envs/ten
sorflow2_p38/lib/python3.8/site-packages (1.24.15)
Requirement already satisfied: awscli in /home/ec2-user/anaconda3/envs/te
nsorflow2_p38/lib/python3.8/site-packages (1.25.15)
Requirement already satisfied: protobuf3-to-dict<1.0,>=0.1.5 in /home/ec2
-user/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sa
gemaker>=2.95.0) (0.1.5)
Requirement already satisfied: numpy<2.0,>=1.9.0 in /home/ec2-user/anacon
da3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.9
5.0) (1.20.3)
Requirement already satisfied: importlib-metadata<5.0,>=1.4.0 in /home/ec
2-user/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from s
agemaker>=2.95.0) (1.7.0)
Requirement already satisfied: pandas in /home/ec2-user/anaconda3/envs/te
nsorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.95.0) (1.3.
4)
Requirement already satisfied: google-pasta in /home/ec2-user/anaconda3/e
nvs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.95.0)
 (0.2.0)
Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda
3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.95.
0) (21.0)
Requirement already satisfied: smdebug-rulesconfig==1.0.1 in /home/ec2-us
er/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagem
aker>=2.95.0) (1.0.1)
Requirement already satisfied: protobuf<4.0,>=3.1 in /home/ec2-user/anaco
nda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.
95.0) (3.19.1)
Requirement already satisfied: pathos in /home/ec2-user/anaconda3/envs/te
nsorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.95.0) (0.2.
8)
Requirement already satisfied: attrs==20.3.0 in /home/ec2-user/anaconda3/
envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.95.0)
(20.3.0)
Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/ec2-user/a
naconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from botocore)
(0.10.0)
Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/an
aconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from botocore)
 (1.26.8)
Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-u
ser/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from boto

!pip install pip --upgrade
!pip install "sagemaker>=2.95.0" botocore boto3 awscli --upgrade

https://pypi.org/simple,
https://pip.repos.neuron.amazonaws.com/
https://pypi.org/simple,
https://pip.repos.neuron.amazonaws.com/

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 4/15

In [2]:

core) (2.8.2)
Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/ec2-use
r/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from boto3)
(0.6.0)
Requirement already satisfied: docutils<0.17,>=0.10 in /home/ec2-user/ana
conda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from awscli) (0.
15.2)
Requirement already satisfied: rsa<4.8,>=3.1.2 in /home/ec2-user/anaconda
3/envs/tensorflow2_p38/lib/python3.8/site-packages (from awscli) (4.7.2)
Requirement already satisfied: PyYAML<5.5,>=3.10 in /home/ec2-user/anacon
da3/envs/tensorflow2_p38/lib/python3.8/site-packages (from awscli) (5.4.
1)
Requirement already satisfied: colorama<0.4.5,>=0.2.5 in /home/ec2-user/a
naconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from awscli)
 (0.4.3)
Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/env
s/tensorflow2_p38/lib/python3.8/site-packages (from importlib-metadata<5.
0,>=1.4.0->sagemaker>=2.95.0) (3.6.0)
Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anacond
a3/envs/tensorflow2_p38/lib/python3.8/site-packages (from packaging>=20.0
->sagemaker>=2.95.0) (3.0.6)
Requirement already satisfied: six in /home/ec2-user/anaconda3/envs/tenso
rflow2_p38/lib/python3.8/site-packages (from protobuf3-to-dict<1.0,>=0.1.
5->sagemaker>=2.95.0) (1.16.0)
Requirement already satisfied: pyasn1>=0.1.3 in /home/ec2-user/anaconda3/
envs/tensorflow2_p38/lib/python3.8/site-packages (from rsa<4.8,>=3.1.2->a
wscli) (0.4.8)
Requirement already satisfied: pytz>=2017.3 in /home/ec2-user/anaconda3/e
nvs/tensorflow2_p38/lib/python3.8/site-packages (from pandas->sagemaker>=
2.95.0) (2021.3)
Requirement already satisfied: dill>=0.3.4 in /home/ec2-user/anaconda3/en
vs/tensorflow2_p38/lib/python3.8/site-packages (from pathos->sagemaker>=
2.95.0) (0.3.4)
Requirement already satisfied: multiprocess>=0.70.12 in /home/ec2-user/an
aconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from pathos->sa
gemaker>=2.95.0) (0.70.12.2)
Requirement already satisfied: ppft>=1.6.6.4 in /home/ec2-user/anaconda3/
envs/tensorflow2_p38/lib/python3.8/site-packages (from pathos->sagemaker>
=2.95.0) (1.6.6.4)
Requirement already satisfied: pox>=0.3.0 in /home/ec2-user/anaconda3/env
s/tensorflow2_p38/lib/python3.8/site-packages (from pathos->sagemaker>=2.
95.0) (0.3.0)

botocore: 1.27.15
boto3: 1.24.15
sagemaker: 2.96.0

import botocore
import boto3
import sagemaker

print(f"botocore: {botocore.__version__}")
print(f"boto3: {boto3.__version__}")
print(f"sagemaker: {sagemaker.__version__}")

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 5/15

SageMaker environment

In [3]:

Working with the Caltech-256 dataset
We have hosted the Caltech-256 (https://authors.library.caltech.edu/7694/) dataset in S3 in us-
west-2. We will transfer this dataset to your account and region for use with SageMaker Training.

The dataset consists of JPEG images organized into directories with each directory representing an
object cateogory.

In [4]:

How effective is SageMaker Training Compiler ?
The effectiveness of SageMaker Training Compiler depends on the model architecture, model size,
input shape, and the training loop. Please refer to our Best Practices
(https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-tips-pitfalls.html)
documentation to understand how to get the most out of your training job using SageMaker
Training Compiler. In this section, we will compare and contrast a training job with and without
SageMaker Training Compiler.

sagemaker role arn: arn:aws:iam::875423407011:role/SageMakerRole
sagemaker bucket: sagemaker-us-west-2-875423407011
sagemaker session region: us-west-2

Out[4]: 0

import sagemaker

sess = sagemaker.Session()

SageMaker session bucket -> used for uploading data, models and logs
SageMaker will automatically create this bucket if it does not exist
sagemaker_session_bucket = None
if sagemaker_session_bucket is None and sess is not None:
 # set to default bucket if a bucket name is not given
 sagemaker_session_bucket = sess.default_bucket()

role = sagemaker.get_execution_role()
sess = sagemaker.Session(default_bucket=sagemaker_session_bucket)

print(f"sagemaker role arn: {role}")
print(f"sagemaker bucket: {sagemaker_session_bucket}")
print(f"sagemaker session region: {sess.boto_region_name}")

import os

source = "s3://sagemaker-sample-files/datasets/image/caltech-256/256_Object
destn = f"s3://{sagemaker_session_bucket}/caltech-256"
local = "caltech-256"

os.system(f"aws s3 sync {source} {local}")
os.system(f"aws s3 sync {local} {destn}")

https://authors.library.caltech.edu/7694/
https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-tips-pitfalls.html

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 6/15

SageMaker Training Job
To create a SageMaker training job, we use a TensorFlow estimator. Using the estimator, you
can define which training script should SageMaker use through entry_point , which
instance_type to use for training, which hyperparameters to pass, and so on.

When a SageMaker training job starts, SageMaker takes care of starting and managing all the
required machine learning instances, picks up the TensorFlow Deep Learning Container,
uploads your training script, and downloads the data from sagemaker_session_bucket into
the container at /opt/ml/input/data .

In the following section, you learn how to set up two versions of the SageMaker TensorFlow
estimator, a native one without the compiler and an optimized one with the compiler.

Training Setup
In this section, we set our hyperparameters to a naive first guess. Notice the low value for
EPOCHS - this is because we are just experimenting with our hyperparameters to find the best

setting that will lead to the fastest training. The effectiveness of SageMaker Training Compiler is
often apparent within the first few steps. In the example below we will inspect the speed of the
training job after every epoch.

In [5]:

Experimenting with Native TensorFlow
We attempt to find the largest BATCH_SIZE that can fit into the memory of an ml.p3.2xlarge
instance. This will consequently give us the fastest training speed.

EPOCHS = 3
LEARNING_RATE = 1e-3
WEIGHT_DECAY = 1e-4

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 7/15

In [6]:

SageMaker Hyperparameter Tuning Job
We use the sagemaker.tuner.HyperparameterTuner object to define a Hyperparameter
Tuning Job. It will import the training job configuration specified in the estimator . We
additionally specify some metric_definitions to extract training metrics from the training
logs. From these metric_definitions we select a single metric as the
objective_metric_name and configure the tuning job to Minimize or Maximize it. We

further provide a constrained search space through the hyperparameter_ranges argument.

We can limit the number of training jobs spawned concurrently in the max_parallel_jobs
argument and limit the total number of training jobs spawned in the max_jobs argument.

For more information regarding SageMaker Hyperparameter Tuner refer to the documentation ()

In the example below, we are trying to find the best batch size between 32 and 80 that will result in
the smallest possible epoch latency, by launching 40 training jobs, 10 at a time. The range for batch
sizes is our best guess. You can always reuse and restart a tuning job with an extended range
(https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-warm-start.html).

from sagemaker.tensorflow import TensorFlow

estimator_args = dict(
 source_dir="scripts",
 entry_point="vit.py",
 model_dir=False,
 instance_type="ml.p3.2xlarge",
 instance_count=1,
 framework_version="2.9.1",
 py_version="py39",
 debugger_hook_config=None,
 disable_profiler=True,
 max_run=60 * 20, # 20 minutes
 role=role,
)

Configure the training job
native_estimator = TensorFlow(
 hyperparameters={
 "EPOCHS": EPOCHS,
 "LEARNING_RATE": LEARNING_RATE,
 "WEIGHT_DECAY": WEIGHT_DECAY,
 },
 **estimator_args,
)

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_single_node/hyper-parameter-tuning.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-warm-start.html

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 8/15

In [7]:

Tip: You can reduce the cost of tuning by restricting the batch size to be multiple of 8. Refer to
Nvidia's article on the significance of the number 8 (https://developer.nvidia.com/blog/optimizing-
gpu-performance-tensor-cores/) when training with Automatic Mixed Precision.

from sagemaker.tuner import CategoricalParameter
hyperparameter_ranges={
 'BATCH_SIZE': CategoricalParameter(list(ran
ge(32, 80, 8))),
 }

This can restrict the search space to just 6 training jobs as opposed to 40 !

Experimenting with Optimized TensorFlow

No finished training job found associated with this estimator. Please mak
e sure this estimator is only used for building workflow config

Out[7]: 'native-tf29-vit-220623-1523'

from sagemaker.tuner import HyperparameterTuner, IntegerParameter

tuner_args = dict(
 objective_metric_name="training_latency_per_epoch",
 objective_type="Minimize",
 metric_definitions=[
 {"Name": "training_loss", "Regex": "loss: ([0-9.]*?) "},
 {"Name": "training_accuracy", "Regex": "accuracy: ([0-9.]*?) "},
 {"Name": "training_latency_per_epoch", "Regex": "- ([0-9.]*?)s/epoc
 {"Name": "training_avg_latency_per_step", "Regex": "- ([0-9.]*?)ms/
 {"Name": "training_avg_latency_per_step", "Regex": "- ([0-9.]*?)s/s
],
 max_jobs=40,
 max_parallel_jobs=10,
 early_stopping_type="Auto",
)

Define a Hyperparameter Tuning Job
native_tuner = HyperparameterTuner(
 estimator=native_estimator,
 hyperparameter_ranges={
 "BATCH_SIZE": IntegerParameter(32, 80, "Linear"),
 },
 base_tuning_job_name="native-tf29-vit",
 **tuner_args
)

Start the tuning job with the specified input da
native_tuner.fit(inputs=destn, wait=False)

Save the name of the tuning job
native_tuner.latest_tuning_job.name

https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 9/15

Compilation through SageMaker Training Compiler changes the memory footprint of the model.
Most commonly, this manifests as a reduction in memory utilization and a consequent increase in
the largest batch size that can fit on the GPU. In the example below we will find the new batch size
with SageMaker Training Compiler enabled and the resultant latency per epoch.

Note: We recommend you to turn the SageMaker Debugger's profiling and debugging tools off
when you use compilation to avoid additional overheads.

In [8]:

In [9]:

Wait for tuning jobs to complete
The tuning jobs described above typically take around 50 mins to complete

Note: If the tuner object is no longer available due to a kernel break or refresh, you need to directly
use the training job name and manually attach the tuning job to a new tuner. For example:

native_tuner = HyperparameterTuner.attach("<your_tuning_job_name>")

No finished training job found associated with this estimator. Please mak
e sure this estimator is only used for building workflow config

Out[9]: 'optimized-tf29-vit-220623-1523'

from sagemaker.tensorflow import TensorFlow, TrainingCompilerConfig

Configure the training job
optimized_estimator = TensorFlow(
 hyperparameters={
 "EPOCHS": EPOCHS,
 "LEARNING_RATE": LEARNING_RATE,
 "WEIGHT_DECAY": WEIGHT_DECAY,
 },
 compiler_config=TrainingCompilerConfig(),
 **estimator_args,
)

from sagemaker.tuner import HyperparameterTuner, IntegerParameter

Define the tunung job
optimized_tuner = HyperparameterTuner(
 estimator=optimized_estimator,
 hyperparameter_ranges={"BATCH_SIZE": IntegerParameter(20, 60, "Linear")
 base_tuning_job_name="optimized-tf29-vit",
 **tuner_args,
)

Start the tuning job with the specified input data
optimized_tuner.fit(inputs=destn, wait=False)

Save the name of the tuning job
optimized_tuner.latest_tuning_job.name

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 10/15

In [10]:

In [21]:

Fastest Training Job
Let us collate and analyze the results from the tuning jobs. The tuner provides the results as a
Pandas dataframe. We combine the results from both the tuners, sort them according to the epoch
latency and display the top 5 results.

..

!

!
!

native_tuner.wait()
optimized_tuner.wait()

from sagemaker.tuner import HyperparameterTuner

native_tuner = HyperparameterTuner.attach(native_tuner.latest_tuning_job.na
optimized_tuner = HyperparameterTuner.attach(optimized_tuner.latest_tuning_

native_tuner.wait()
optimized_tuner.wait()

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 11/15

In [22]:

In [23]:

Out[22]:
BATCH_SIZE TrainingJobName TrainingJobStatus FinalObjectiveValue TrainingStartTime Trainin

31 77.0
native-tf29-vit-

220616-1656-009-
b7ed5852

Completed 113.0 2022-06-16
16:59:06+00:00

2
17:12

22 75.0
native-tf29-vit-

220616-1656-018-
f5cd7d6e

Completed 113.0 2022-06-16
17:14:42+00:00

2
17:28

21 74.0
native-tf29-vit-

220616-1656-019-
3c4788ad

Completed 114.0 2022-06-16
17:15:09+00:00

2
17:28

30 56.0
optimized-tf29-vit-
220616-1656-010-

6aa056a0
Completed 64.0 2022-06-16

16:59:33+00:00
2

17:10

27 48.0
optimized-tf29-vit-
220616-1656-013-

f9746c55
Completed 66.0 2022-06-16

17:11:40+00:00
2

17:23

24 51.0
optimized-tf29-vit-
220616-1656-016-

2d1066f8
Completed 69.0 2022-06-16

17:11:57+00:00
2

17:24

Out[23]: 'With the SageMaker Training Compiler the epoch latency is 38.9% lower me
aning the training job could be upto 38.9% faster!'

import pandas as pd

pd.set_option("display.max_rows", None, "display.max_columns", None)

Collect the results from the tuners
native_results = native_tuner.analytics().dataframe()
optimized_results = optimized_tuner.analytics().dataframe()

Sort results according to Epoch Latency
native_results = native_results.sort_values(
 ["FinalObjectiveValue", "BATCH_SIZE"], ascending=[True, False]
)
optimized_results = optimized_results.sort_values(
 ["FinalObjectiveValue", "BATCH_SIZE"], ascending=[True, False]
)

Combine the top N results for viewing
N = 3
results = pd.concat([native_results.head(N), optimized_results.head(N)])
results

Calculating potential percentage Savings from Training Compiler
difference = (
 native_results.iloc[0]["FinalObjectiveValue"] - optimized_results.iloc[
)
percentage = difference * 100 / native_results.iloc[0]["FinalObjectiveValue

f"With the SageMaker Training Compiler the epoch latency is {percentage:.1f

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 12/15

Further tuning with SageMaker Training Compiler
Now that we have the fastest batch size and compiler configuration, we need to tune the
associated hyperparameters to get the fastest convergence.

Remember Total_Training_Time ~= Latency_per_epoch * Number_of_epochs

First, we tuned to reduce the Latency_per_epoch. Now we will tune to reduce the number of
epochs required for convergence. Since, hyperparamaters that directly affect convergence (like
learning rate, weight decay, learning schedule, etc.) are dependent on batch size, we decouple the
2 steps as described.

We now train for a higher number of epochs since we are testing the speed of convergence. Ideally,
you should tune learning rate and weight decay to minimize validation loss, but for the sake of
example let's minimize the training loss.

In [14]:

In [15]:

EPOCHS = 10
BATCH_SIZE = 56

estimator_args["max_run"] = 60 * 60 # 60 minutes

tuner_args["objective_metric_name"] = "training_loss"

from sagemaker.tensorflow import TensorFlow, TrainingCompilerConfig

Configure the training job
convergence_estimator = TensorFlow(
 hyperparameters={
 "EPOCHS": EPOCHS,
 "BATCH_SIZE": BATCH_SIZE,
 },
 compiler_config=TrainingCompilerConfig(),
 **estimator_args,
)

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 13/15

In [16]:

Wait for tuning jobs to complete
The tuning jobs described above typically take around 2 hours to complete

Note: If the tuner object is no longer available due to a kernel break or refresh, you need to directly
use the training job name and manually attach the tuning job to a new tuner. For example:

tuner = HyperparameterTuner.attach("<your_tuning_job_name>")

In [17]:

In [18]:

Fastest Convergence
Let us analyze the results from the tuning jobs. The tuner provides the results as a Pandas
dataframe. We sort by training loss and display the top 5 results.

No finished training job found associated with this estimator. Please mak
e sure this estimator is only used for building workflow config

Out[16]: 'optimized-tf29-vit-220623-1625'

..

!

from sagemaker.tuner import HyperparameterTuner, ContinuousParameter

Define the tunung job
convergence_tuner = HyperparameterTuner(
 estimator=convergence_estimator,
 hyperparameter_ranges={
 "LEARNING_RATE": ContinuousParameter(1e-6, 1e-3, "Logarithmic"),
 "WEIGHT_DECAY": ContinuousParameter(1e-6, 1e-3, "Logarithmic"),
 },
 base_tuning_job_name="optimized-tf29-vit",
 **tuner_args,
)

Start the tuning job with the specified input data
convergence_tuner.fit(inputs=destn, wait=False)

Save the name of the tuning job
convergence_tuner.latest_tuning_job.name

convergence_tuner.wait()

from sagemaker.tuner import HyperparameterTuner

convergence_tuner = HyperparameterTuner.attach(convergence_tuner.latest_tun

convergence_tuner.wait()

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 14/15

In [19]:

Having obtained the best configuration for your training job, you can now train to completion.
Please consider checkpointing (https://docs.aws.amazon.com/sagemaker/latest/dg/model-
checkpoints.html) in order to resume training from the best performing job indicated by the tuner.

Conclusion
In conclusion, we first arrived at the batch size and compiler configuration that leads to the highest
training throughput. Then, we tuned the associated hyperparameters to arrive at the configuration
that leads to the fastest convergence. The resultant combinations leads to maximum savings !

Clean up
Stop all tuning jobs launched if the jobs are still running.

In [20]:

Also, to find instructions on cleaning up resources, see Clean Up
(https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-cleanup.html) in the Amazon SageMaker

Out[19]: LEARNING_RATE WEIGHT_DECAY TrainingJobName TrainingJobStatus FinalObjectiveValue Tra

7 0.000086 0.000016
optimized-tf29-vit-
220623-1625-033-

150957a2
Completed 3.4129

2 0.000085 0.000011
optimized-tf29-vit-
220623-1625-038-

d0fa3d30
Completed 3.4508

13 0.000072 0.000010
optimized-tf29-vit-
220623-1625-027-

176f5cbb
Completed 3.4530

12 0.000066 0.000002
optimized-tf29-vit-
220623-1625-028-

e873cb35
Completed 3.5116

15 0.000042 0.000011
optimized-tf29-vit-
220623-1625-025-

de6dcfef
Completed 3.5155

import pandas as pd

pd.set_option("display.max_rows", None, "display.max_columns", None)

Gather results from the tuner
results = convergence_tuner.analytics().dataframe()

Sort according to Training Loss
results = results.sort_values(["FinalObjectiveValue"], ascending=[True])

Display the top 5 results
results.head(5)

native_tuner.stop_tuning_job()
optimized_tuner.stop_tuning_job()
convergence_tuner.stop_tuning_job()

https://docs.aws.amazon.com/sagemaker/latest/dg/model-checkpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-cleanup.html

6/23/22, 11:13 AM hyper-parameter-tuning - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 15/15

Developer Guide.

