
6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 1/16

Compile and Train a Vision Transformer Model on
the Caltech-256 Dataset using a Single Node

1. Introduction
2. Development Environment and Permissions

A. Installation
B. SageMaker environment

3. Working with the Caltech-256 dataset
4. SageMaker Training Job

A. Training Setup
B. Training with Native TensorFlow
C. Training with Optimized TensorFlow

5. Analysis
A. Savings from Training Compiler
B. Convergence of Training

6. Clean up

SageMaker Training Compiler Overview
SageMaker Training Compiler is a capability of SageMaker that makes hard-to-implement
optimizations to reduce training time on GPU instances. The compiler optimizes Deep Learning (DL)
models to accelerate training by more efficiently using SageMaker machine learning (ML) GPU
instances. SageMaker Training Compiler is available at no additional charge within SageMaker and
can help reduce total billable time as it accelerates training.

SageMaker Training Compiler is integrated into the AWS Deep Learning Containers (DLCs). Using
the SageMaker Training Compiler enabled AWS DLCs, you can compile and optimize training jobs
on GPU instances with minimal changes to your code. Bring your deep learning models to
SageMaker and enable SageMaker Training Compiler to accelerate the speed of your training job
on SageMaker ML instances for accelerated computing.

For more information, see SageMaker Training Compiler
(https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html) in the Amazon
SageMaker Developer Guide.

Introduction
In this demo, you'll use Amazon SageMaker Training Compiler to train the Vision
Transformer model on the Caltech-256 dataset. To get started, we need to set up the
environment with a few prerequisite steps, for permissions, configurations, and so on.

NOTE: You can run this demo in SageMaker Studio, SageMaker notebook instances, or your local
machine with AWS CLI set up. If using SageMaker Studio or SageMaker notebook instances, make
sure you choose one of the TensorFlow-based kernels, Python 3 (TensorFlow x.y Python
3.x CPU Optimized) or conda_tensorflow_p39 respectively.

https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 2/16

NOTE: This notebook uses a ml.p3.2xlarge instance with a single GPU. However, it can easily
be extended to multiple GPUs on a single node. If you don't have enough quota, see Request a
service quota increase for SageMaker resources
(https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-
request-procedure).

Development Environment

Installation
This example notebook requires SageMaker Python SDK v2.95.0 or later

https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 3/16

In [31]:

Looking in indexes: https://pypi.org/simple, (https://pypi.org/simple,) h
ttps://pip.repos.neuron.amazonaws.com (https://pip.repos.neuron.amazonaw
s.com)

Requirement already satisfied: sagemaker>=2.92 in /home/ec2-user/anaconda
3/envs/tensorflow2_p38/lib/python3.8/site-packages (2.94.0)
Requirement already satisfied: botocore in /home/ec2-user/anaconda3/envs/
tensorflow2_p38/lib/python3.8/site-packages (1.27.9)

Collecting botocore

 Downloading botocore-1.27.10-py3-none-any.whl (8.9 MB)

 ━━ 8.9/8.9 MB 55.6 MB/s eta 0:
00:0000:0100:01

Requirement already satisfied: boto3 in /home/ec2-user/anaconda3/envs/ten
sorflow2_p38/lib/python3.8/site-packages (1.24.9)

Collecting boto3

 Downloading boto3-1.24.10-py3-none-any.whl (132 kB)

 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.5/132.5 KB 41.3 MB/s eta
0:00:00

Requirement already satisfied: awscli in /home/ec2-user/anaconda3/envs/te
nsorflow2_p38/lib/python3.8/site-packages (1.25.9)

Collecting awscli

 Downloading awscli-1.25.10-py3-none-any.whl (3.9 MB)
 ━━ 3.9/3.9 MB 136.2 MB/s eta
0:00:00

Requirement already satisfied: matplotlib in /home/ec2-user/anaconda3/env
s/tensorflow2_p38/lib/python3.8/site-packages (3.5.2)

Requirement already satisfied: pandas in /home/ec2-user/anaconda3/envs/te
nsorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.92) (1.3.4)

Requirement already satisfied: pathos in /home/ec2-user/anaconda3/envs/te
nsorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.92) (0.2.8)

Requirement already satisfied: numpy<2.0,>=1.9.0 in /home/ec2-user/anacon
da3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.9
2) (1.20.3)

Requirement already satisfied: google-pasta in /home/ec2-user/anaconda3/e
nvs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.92)
 (0.2.0)

Requirement already satisfied: attrs==20.3.0 in /home/ec2-user/anaconda3/
envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.92)
 (20.3.0)

Requirement already satisfied: protobuf<4.0,>=3.1 in /home/ec2-user/anaco
nda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.
92) (3.19.1)

Requirement already satisfied: protobuf3-to-dict<1.0,>=0.1.5 in /home/ec2
-user/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sa
gemaker>=2.92) (0.1.5)

Requirement already satisfied: importlib-metadata<5.0,>=1.4.0 in /home/ec
2-user/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from s
agemaker>=2.92) (1.7.0)

Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda
3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.92)
(21.0)

Requirement already satisfied: smdebug-rulesconfig==1.0.1 in /home/ec2-us
er/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagem
aker>=2.92) (1.0.1)

Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/ec2-user/a
naconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from botocore)

!pip install "sagemaker>=2.95" botocore boto3 awscli matplotlib --upgrade

https://pypi.org/simple,
https://pip.repos.neuron.amazonaws.com/

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 4/16

(0.10.0)

Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-u
ser/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from boto
core) (2.8.2)

Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/an
aconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from botocore)
 (1.26.8)

Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/ec2-use
r/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from boto3)
(0.6.0)

Requirement already satisfied: rsa<4.8,>=3.1.2 in /home/ec2-user/anaconda
3/envs/tensorflow2_p38/lib/python3.8/site-packages (from awscli) (4.7.2)

Requirement already satisfied: PyYAML<5.5,>=3.10 in /home/ec2-user/anacon
da3/envs/tensorflow2_p38/lib/python3.8/site-packages (from awscli) (5.4.
1)

Requirement already satisfied: docutils<0.17,>=0.10 in /home/ec2-user/ana
conda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from awscli) (0.
15.2)

Requirement already satisfied: colorama<0.4.5,>=0.2.5 in /home/ec2-user/a
naconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from awscli)
 (0.4.3)

Requirement already satisfied: kiwisolver>=1.0.1 in /home/ec2-user/anacon
da3/envs/tensorflow2_p38/lib/python3.8/site-packages (from matplotlib)
 (1.3.2)

Requirement already satisfied: cycler>=0.10 in /home/ec2-user/anaconda3/e
nvs/tensorflow2_p38/lib/python3.8/site-packages (from matplotlib) (0.11.
0)

Requirement already satisfied: pyparsing>=2.2.1 in /home/ec2-user/anacond
a3/envs/tensorflow2_p38/lib/python3.8/site-packages (from matplotlib) (3.
0.6)

Requirement already satisfied: fonttools>=4.22.0 in /home/ec2-user/anacon
da3/envs/tensorflow2_p38/lib/python3.8/site-packages (from matplotlib)
 (4.33.3)

Requirement already satisfied: pillow>=6.2.0 in /home/ec2-user/anaconda3/
envs/tensorflow2_p38/lib/python3.8/site-packages (from matplotlib) (9.0.
1)

Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/env
s/tensorflow2_p38/lib/python3.8/site-packages (from importlib-metadata<5.
0,>=1.4.0->sagemaker>=2.92) (3.6.0)

Requirement already satisfied: six in /home/ec2-user/anaconda3/envs/tenso
rflow2_p38/lib/python3.8/site-packages (from protobuf3-to-dict<1.0,>=0.1.
5->sagemaker>=2.92) (1.16.0)

Requirement already satisfied: pyasn1>=0.1.3 in /home/ec2-user/anaconda3/
envs/tensorflow2_p38/lib/python3.8/site-packages (from rsa<4.8,>=3.1.2->a
wscli) (0.4.8)

Requirement already satisfied: pytz>=2017.3 in /home/ec2-user/anaconda3/e
nvs/tensorflow2_p38/lib/python3.8/site-packages (from pandas->sagemaker>=
2.92) (2021.3)

Requirement already satisfied: multiprocess>=0.70.12 in /home/ec2-user/an
aconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from pathos->sa
gemaker>=2.92) (0.70.12.2)

Requirement already satisfied: dill>=0.3.4 in /home/ec2-user/anaconda3/en
vs/tensorflow2_p38/lib/python3.8/site-packages (from pathos->sagemaker>=
2.92) (0.3.4)

Requirement already satisfied: pox>=0.3.0 in /home/ec2-user/anaconda3/env
s/tensorflow2_p38/lib/python3.8/site-packages (from pathos->sagemaker>=2.
92) (0.3.0)

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 5/16

In [32]:

SageMaker environment

Requirement already satisfied: ppft>=1.6.6.4 in /home/ec2-user/anaconda3/
envs/tensorflow2_p38/lib/python3.8/site-packages (from pathos->sagemaker>
=2.92) (1.6.6.4)

Installing collected packages: botocore, boto3, awscli
 Attempting uninstall: botocore

 Found existing installation: botocore 1.27.9

 Uninstalling botocore-1.27.9:

 Successfully uninstalled botocore-1.27.9

 Attempting uninstall: boto3

 Found existing installation: boto3 1.24.9

 Uninstalling boto3-1.24.9:

 Successfully uninstalled boto3-1.24.9

 Attempting uninstall: awscli

 Found existing installation: awscli 1.25.9

 Uninstalling awscli-1.25.9:

 Successfully uninstalled awscli-1.25.9

ERROR: pip's dependency resolver does not currently take into account all
the packages that are installed. This behaviour is the source of the foll
owing dependency conflicts.

aiobotocore 2.0.1 requires botocore<1.22.9,>=1.22.8, but you have botocor
e 1.27.10 which is incompatible.

Successfully installed awscli-1.25.10 boto3-1.24.10 botocore-1.27.10

WARNING: You are using pip version 22.0.4; however, version 22.1.2 is ava
ilable.

You should consider upgrading via the '/home/ec2-user/anaconda3/envs/tens
orflow2_p38/bin/python -m pip install --upgrade pip' command.

botocore: 1.27.7

boto3: 1.24.7

sagemaker: 2.94.0

import botocore
import boto3
import sagemaker
​
print(f"botocore: {botocore.__version__}")
print(f"boto3: {boto3.__version__}")
print(f"sagemaker: {sagemaker.__version__}")

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 6/16

In [33]:

Working with the Caltech-256 dataset
We have hosted the Caltech-256 (https://authors.library.caltech.edu/7694/) dataset in S3 in us-
east-1. We will transfer this dataset to your account and region for use with SageMaker Training.

The dataset consists of JPEG images organized into directories with each directory representing an
object category.

In [34]:

SageMaker Training Job
To create a SageMaker training job, we use a TensorFlow estimator. Using the estimator, you
can define which training script should SageMaker use through entry_point , which
instance_type to use for training, which hyperparameters to pass, and so on.

When a SageMaker training job starts, SageMaker takes care of starting and managing all the
required machine learning instances, picks up the TensorFlow Deep Learning Container,
uploads your training script, and downloads the data from sagemaker_session_bucket into
the container at /opt/ml/input/data .

sagemaker role arn: arn:aws:iam::875423407011:role/SageMakerRole

sagemaker bucket: sagemaker-us-west-2-875423407011

sagemaker session region: us-west-2

Out[34]: 0

import sagemaker
​
sess = sagemaker.Session()
​
SageMaker session bucket -> used for uploading data, models and logs
SageMaker will automatically create this bucket if it does not exist
sagemaker_session_bucket = None
if sagemaker_session_bucket is None and sess is not None:
 # set to default bucket if a bucket name is not given
 sagemaker_session_bucket = sess.default_bucket()
​
role = sagemaker.get_execution_role()
sess = sagemaker.Session(default_bucket=sagemaker_session_bucket)
​
print(f"sagemaker role arn: {role}")
print(f"sagemaker bucket: {sagemaker_session_bucket}")
print(f"sagemaker session region: {sess.boto_region_name}")

import os
​
source = "s3://sagemaker-sample-files/datasets/image/caltech-256/256_Object
destn = f"s3://{sagemaker_session_bucket}/caltech-256"
local = "caltech-256"
​
os.system(f"aws s3 sync {source} {local}")
os.system(f"aws s3 sync {local} {destn}")

https://authors.library.caltech.edu/7694/

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 7/16

In the following section, you learn how to set up two versions of the SageMaker TensorFlow
estimator, a native one without the compiler and an optimized one with the compiler.

Training with Native TensorFlow
The BATCH_SIZE in the following code cell is the maximum batch that can fit into the memory of
a ml.p3.2xlarge instance while giving the best training speed. If you change the model,
instance type, and other parameters, you need to do some experiments to find the largest batch
size that will fit into GPU memory.

Set EPOCHS to the number of times you would like to loop over the training data.

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 8/16

In [36]:

Training with Optimized TensorFlow
Compilation through Training Compiler changes the memory footprint of the model. Most
commonly, this manifests as a reduction in memory utilization and a consequent increase in the
largest batch size that can fit on the GPU. But in some cases the compiler intelligently promotes
caching which leads to a decrease in the largest batch size that can fit on the GPU. Note that if you
want to change the batch size, you must adjust the learning rate appropriately.

Out[36]: 'native-tf29-vit-2022-06-15-23-47-24-579'

from sagemaker.tensorflow import TensorFlow
​
EPOCHS = 10
BATCH_SIZE = 64
LEARNING_RATE = 1e-3
WEIGHT_DECAY = 1e-4
​
kwargs = dict(
 source_dir="scripts",
 entry_point="vit.py",
 model_dir=False,
 instance_type="ml.p3.2xlarge",
 instance_count=1,
 framework_version='2.9.1',
 py_version='py39',
 debugger_hook_config=None,
 disable_profiler=True,
 max_run=60 * 60, # 60 minutes
 role=role,
 metric_definitions=[
 {"Name": "training_loss", "Regex": "loss: ([0-9.]*?) "},
 {"Name": "training_accuracy", "Regex": "accuracy: ([0-9.]*?) "},
 {"Name": "training_latency_per_epoch", "Regex": "- ([0-9.]*?)s/epoc
 {"Name": "training_avg_latency_per_step", "Regex": "- ([0-9.]*?)ms/
],
)
​
Configure the training job
native_estimator = TensorFlow(
 hyperparameters={
 "EPOCHS": EPOCHS,
 "BATCH_SIZE": BATCH_SIZE,
 "LEARNING_RATE": LEARNING_RATE,
 "WEIGHT_DECAY": WEIGHT_DECAY,
 },
 base_job_name="native-tf29-vit",
 **kwargs,
)
​
Start training with our uploaded datasets as input
native_estimator.fit(inputs=destn, wait=False)
​
The name of the training job.
native_estimator.latest_training_job.name

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_sin… 9/16

Note: We recommend you to turn the SageMaker Debugger's profiling and debugging tools off
when you use compilation to avoid additional overheads.

In [37]:

Wait for training jobs to complete
The training jobs described above typically take around 40 mins to complete

Note: If the estimator object is no longer available due to a kernel break or refresh, you need to
directly use the training job name and manually attach the training job to a new TensorFlow
estimator. For example:

native_estimator = TensorFlow.attach("<your_training_job_name>")

In [51]:

Out[37]: 'optimized-tf29-vit-2022-06-15-23-47-25-126'

from sagemaker.tensorflow import TensorFlow, TrainingCompilerConfig
​
OPTIMIZED_BATCH_SIZE = 48
LEARNING_RATE = LEARNING_RATE / BATCH_SIZE * OPTIMIZED_BATCH_SIZE
WEIGHT_DECAY = WEIGHT_DECAY * BATCH_SIZE / OPTIMIZED_BATCH_SIZE
​
Configure the training job
optimized_estimator = TensorFlow(
 hyperparameters={
 "EPOCHS": EPOCHS,
 "BATCH_SIZE": OPTIMIZED_BATCH_SIZE,
 "LEARNING_RATE": LEARNING_RATE,
 "WEIGHT_DECAY": WEIGHT_DECAY,
 },
 compiler_config = TrainingCompilerConfig(),
 base_job_name="optimized-tf29-vit",
 **kwargs,
)
​
Start training with our uploaded datasets as input
optimized_estimator.fit(inputs=destn, wait=False)
​
The name of the training job.
optimized_estimator.latest_training_job.name

waiter = sess.sagemaker_client.get_waiter("training_job_completed_or_stoppe
​
waiter.wait(TrainingJobName=native_estimator.latest_training_job.name)
waiter.wait(TrainingJobName=optimized_estimator.latest_training_job.name)

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 10/16

In [52]:

Analysis
Here we view the training metrics from the training jobs as a Pandas dataframe

Native TensorFlow

2022-06-16 00:17:54 Starting - Preparing the instances for training

2022-06-16 00:17:54 Downloading - Downloading input data

2022-06-16 00:17:54 Training - Training image download completed. Trainin
g in progress.

2022-06-16 00:17:54 Uploading - Uploading generated training model

2022-06-16 00:17:54 Completed - Training job completed

2022-06-16 00:09:28 Starting - Preparing the instances for training

2022-06-16 00:09:28 Downloading - Downloading input data

2022-06-16 00:09:28 Training - Training image download completed. Trainin
g in progress.

2022-06-16 00:09:28 Uploading - Uploading generated training model

2022-06-16 00:09:28 Completed - Training job completed

native_estimator = TensorFlow.attach(native_estimator.latest_training_job.n
optimized_estimator = TensorFlow.attach(optimized_estimator.latest_training

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 11/16

In [53]:

Optimized TensorFlow

Out[53]:
training_loss training_accuracy training_latency_per_epoch training_avg_latency_per_step

epochs

1 5.8060 0.0195 152.0 533.0

2 5.7542 0.0228 117.0 409.0

3 5.7606 0.0213 116.0 406.0

4 5.7599 0.0208 116.0 405.0

5 5.7609 0.0244 116.0 406.0

6 5.7400 0.0203 116.0 405.0

7 5.7327 0.0233 116.0 406.0

8 5.7035 0.0227 116.0 406.0

9 5.4556 0.0284 116.0 406.0

10 5.3689 0.0309 116.0 406.0

import pandas as pd
​
Extract training metrics from the estimator
native_metrics = native_estimator.training_job_analytics.dataframe()
​
Restructure table for viewing
for metric in native_metrics["metric_name"].unique():
 native_metrics[metric] = native_metrics[native_metrics["metric_name"] =
native_metrics = native_metrics.drop(columns=["metric_name", "value"])
native_metrics = native_metrics.groupby("timestamp").max()
native_metrics["epochs"] = range(1, 11)
native_metrics = native_metrics.set_index("epochs")
​
native_metrics

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 12/16

In [54]:

Savings from Training Compiler
Let us calculate the actual savings on the training jobs above and the potential for savings for a
longer training job.

Actual Savings

To get the actual savings, we use the describe_training_job API to get the billable seconds for each
training job.

Out[54]:
training_loss training_accuracy training_latency_per_epoch training_avg_latency_per_step

epochs

1 5.7583 0.0198 120.0 313.0

2 5.7246 0.0217 67.0 174.0

3 5.7115 0.0226 66.0 174.0

4 5.7208 0.0215 67.0 175.0

5 5.6849 0.0226 66.0 174.0

6 5.4777 0.0292 67.0 174.0

7 5.3669 0.0300 66.0 174.0

8 5.2745 0.0383 67.0 174.0

9 5.0772 0.0486 66.0 174.0

10 4.9200 0.0625 66.0 174.0

import pandas as pd
​
Extract training metrics from the estimator
optimized_metrics = optimized_estimator.training_job_analytics.dataframe()
​
Restructure table for viewing
for metric in optimized_metrics["metric_name"].unique():
 optimized_metrics[metric] = optimized_metrics[optimized_metrics["metric
 "value"
]
optimized_metrics = optimized_metrics.drop(columns=["metric_name", "value"]
optimized_metrics = optimized_metrics.groupby("timestamp").max()
optimized_metrics["epochs"] = range(1, 11)
optimized_metrics = optimized_metrics.set_index("epochs")
​
optimized_metrics

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 13/16

In [55]:

In [56]:

In [57]:

Potential savings

The Training Compiler works by compiling the model graph once per input shape and reusing the
cached graph for subsequent steps. As a result the first few steps of training incur an increased
latency owing to compilation which we refer to as the compilation overhead. This overhead is
amortized over time thanks to the subsequent steps being much faster. We will demonstrate this
below.

Out[55]: 1722

Out[56]: 1217

Out[57]: 'Training Compiler yielded 29.33% savings in training cost.'

Billable seconds for the Native TensorFlow Training job
​
details = sess.describe_training_job(job_name=native_estimator.latest_train
native_secs = details["BillableTimeInSeconds"]
​
native_secs

Billable seconds for the Optimized TensorFlow Training job
​
details = sess.describe_training_job(job_name=optimized_estimator.latest_tr
optimized_secs = details["BillableTimeInSeconds"]
​
optimized_secs

Calculating percentage Savings from Training Compiler
​
percentage = (native_secs - optimized_secs) * 100 / native_secs
​
f"Training Compiler yielded {percentage:.2f}% savings in training cost."

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 14/16

In [58]:

We calculate the potential savings below from the difference in steady state epoch latency between
native TensorFlow and optimized TensorFlow

In [59]:

In [60]:

In [61]:

Convergence of Training

Out[58]: <matplotlib.legend.Legend at 0x7f08cbe5cbb0>

Out[59]: 116.0

Out[60]: 66.0

Out[61]: 'Training Compiler can potentially yield 43.10% savings in training cost
for a longer training job.'

import matplotlib.pyplot as plt
​
plt.plot(native_metrics["training_latency_per_epoch"], label="native_epoch_
plt.plot(optimized_metrics["training_latency_per_epoch"], label="optimized_
plt.legend()

native_steady_state_latency = native_metrics["training_latency_per_epoch"].
​
native_steady_state_latency

optimized_steady_state_latency = optimized_metrics["training_latency_per_ep
​
optimized_steady_state_latency

Calculating potential percentage Savings from Training Compiler
​
percentage = (
 (native_steady_state_latency - optimized_steady_state_latency)
 * 100
 / native_steady_state_latency
)
​
f"Training Compiler can potentially yield {percentage:.2f}% savings in trai

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 15/16

Training Compiler brings down total training time by intelligently choosing between memory
utilization and core utilization in the GPU. This does not have any effect on the model arithmetic
and consequently convergence of the model.

However, since we are working with a new batch size, hyperparameters like - learning rate, learning
rate schedule and weight decay might have to be scaled and tuned for the new batch size

In [62]:

We can see that the model's convergence behavior is similar with and without Training Compiler.
Here we have tuned the batch size specific hyperparameters - Learning Rate and Weight Decay
using a linear scaling.

Learning rate is directly proportional to the batch size:

new_learning_rate = old_learning_rate * new_batch_size/old_batch_si
ze

Weight decay is inversely proportional to the batch size:

new_weight_decay = old_weight_decay * old_batch_size/new_batch_size

Better results can be achieved with further tuning. Check out Automatic Model Tuning
(https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html) for tuning.

Clean up
Stop all training jobs launched if the jobs are still running.

Out[62]: <matplotlib.legend.Legend at 0x7f08cbdbe250>

import matplotlib.pyplot as plt
​
plt.plot(native_metrics["training_loss"], label="native_loss")
plt.plot(optimized_metrics["training_loss"], label="optimized_loss")
plt.legend()

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html

6/16/22, 9:48 AM vision-transformer - Jupyter Notebook

https://loki-tf29-examples.notebook.us-west-2.sagemaker.aws/notebooks/ws2/amazon-sagemaker-examples/sagemaker-training-compiler/tensorflow/single_gpu_si… 16/16

In [63]:

Also, to find instructions on cleaning up resources, see Clean Up
(https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-cleanup.html) in the Amazon SageMaker
Developer Guide.

def stop_training_job(name):
 status = sess.describe_training_job(name)["TrainingJobStatus"]
 if status == "InProgress":
 sm.stop_training_job(TrainingJobName=name)
​
​
stop_training_job(native_estimator.latest_training_job.name)
stop_training_job(optimized_estimator.latest_training_job.name)

https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-cleanup.html

