
6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 1/12

Compile and Train a Vision Transformer Model
on the Caltech 256 Dataset using a Single
Node

1. Introduction

2. Development Environment and Permissions

A. Installation

B. SageMaker environment

3. Working with the Caltech-256 dataset

4. SageMaker Training Job

A. Training Setup

B. Training with Native TensorFlow

C. Training with Optimized TensorFlow

5. Analysis

A. Savings from Training Compiler

B. Convergence of Training

6. Clean up

SageMaker Training Compiler Overview

SageMaker Training Compiler is a capability of SageMaker that makes hard-to-implement

optimizations to reduce training time on GPU instances. The compiler optimizes DL models

to accelerate training by more efficiently using SageMaker machine learning (ML) GPU

instances. SageMaker Training Compiler is available at no additional charge within

SageMaker and can help reduce total billable time as it accelerates training.

SageMaker Training Compiler is integrated into the AWS Deep Learning Containers (DLCs).

Using the SageMaker Training Compiler enabled AWS DLCs, you can compile and optimize

training jobs on GPU instances with minimal changes to your code. Bring your deep learning

models to SageMaker and enable SageMaker Training Compiler to accelerate the speed of

your training job on SageMaker ML instances for accelerated computing.

For more information, see SageMaker Training Compiler in the Amazon SageMaker

Developer Guide.

Introduction

In this demo, you'll use Amazon SageMaker Training Compiler to train the Vision
Transformer model on the Caltech-256 dataset. To get started, we need to set up the

environment with a few prerequisite steps, for permissions, configurations, and so on.

https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 2/12

NOTE: You can run this demo in SageMaker Studio, SageMaker notebook instances, or your

local machine with AWS CLI set up. If using SageMaker Studio or SageMaker notebook

instances, make sure you choose one of the TensorFlow-based kernels, Python 3
(TensorFlow x.y Python 3.x CPU Optimized) or conda_tesorflow_p39
respectively.

NOTE: This notebook uses a ml.p3.2xlarge instance with a single GPU. However, it can

easily be extended to multiple GPUs on a single node. If you don't have enough quota, see

Request a service quota increase for SageMaker resources.

Development Environment

Installation

This example notebook requires SageMaker Python SDK v2.92.0

In [310… !pip install "sagemaker>=2.92" botocore boto3 awscli matplotlib --upgrade

https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 3/12

Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazonaw
s.com
Requirement already satisfied: sagemaker>=2.92 in /home/ec2-user/anaconda3/env
s/tensorflow2_p38/lib/python3.8/site-packages (2.94.0)

Requirement already satisfied: botocore in /home/ec2-user/anaconda3/envs/tenso
rflow2_p38/lib/python3.8/site-packages (1.27.7)

Requirement already satisfied: boto3 in /home/ec2-user/anaconda3/envs/tensorfl
ow2_p38/lib/python3.8/site-packages (1.24.7)

Requirement already satisfied: awscli in /home/ec2-user/anaconda3/envs/tensorf
low2_p38/lib/python3.8/site-packages (1.25.7)

Requirement already satisfied: matplotlib in /home/ec2-user/anaconda3/envs/ten
sorflow2_p38/lib/python3.8/site-packages (3.5.2)

Requirement already satisfied: pathos in /home/ec2-user/anaconda3/envs/tensorf
low2_p38/lib/python3.8/site-packages (from sagemaker>=2.92) (0.2.8)

Requirement already satisfied: attrs==20.3.0 in /home/ec2-user/anaconda3/envs/
tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.92) (20.3.0)

Requirement already satisfied: google-pasta in /home/ec2-user/anaconda3/envs/t
ensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.92) (0.2.0)

Requirement already satisfied: protobuf<4.0,>=3.1 in /home/ec2-user/anaconda3/
envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.92) (3.19.
1)

Requirement already satisfied: pandas in /home/ec2-user/anaconda3/envs/tensorf
low2_p38/lib/python3.8/site-packages (from sagemaker>=2.92) (1.3.4)

Requirement already satisfied: protobuf3-to-dict<1.0,>=0.1.5 in /home/ec2-use
r/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=
2.92) (0.1.5)

Requirement already satisfied: smdebug-rulesconfig==1.0.1 in /home/ec2-user/an
aconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.9
2) (1.0.1)
Requirement already satisfied: importlib-metadata<5.0,>=1.4.0 in /home/ec2-use
r/anaconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=
2.92) (1.7.0)

Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/env
s/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.92) (21.0)

Requirement already satisfied: numpy<2.0,>=1.9.0 in /home/ec2-user/anaconda3/e
nvs/tensorflow2_p38/lib/python3.8/site-packages (from sagemaker>=2.92) (1.20.
3)

Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/ec2-user/anacon
da3/envs/tensorflow2_p38/lib/python3.8/site-packages (from botocore) (0.10.0)

Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/a
naconda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from botocore) (2.
8.2)

Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anacond
a3/envs/tensorflow2_p38/lib/python3.8/site-packages (from botocore) (1.26.8)

Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/ec2-user/anac
onda3/envs/tensorflow2_p38/lib/python3.8/site-packages (from boto3) (0.6.0)

Requirement already satisfied: PyYAML<5.5,>=3.10 in /home/ec2-user/anaconda3/e
nvs/tensorflow2_p38/lib/python3.8/site-packages (from awscli) (5.4.1)

Requirement already satisfied: docutils<0.17,>=0.10 in /home/ec2-user/anaconda
3/envs/tensorflow2_p38/lib/python3.8/site-packages (from awscli) (0.15.2)

Requirement already satisfied: rsa<4.8,>=3.1.2 in /home/ec2-user/anaconda3/env
s/tensorflow2_p38/lib/python3.8/site-packages (from awscli) (4.7.2)

Requirement already satisfied: colorama<0.4.5,>=0.2.5 in /home/ec2-user/anacon
da3/envs/tensorflow2_p38/lib/python3.8/site-packages (from awscli) (0.4.3)

Requirement already satisfied: pillow>=6.2.0 in /home/ec2-user/anaconda3/envs/
tensorflow2_p38/lib/python3.8/site-packages (from matplotlib) (9.0.1)

Requirement already satisfied: fonttools>=4.22.0 in /home/ec2-user/anaconda3/e
nvs/tensorflow2_p38/lib/python3.8/site-packages (from matplotlib) (4.33.3)

Requirement already satisfied: pyparsing>=2.2.1 in /home/ec2-user/anaconda3/en
vs/tensorflow2_p38/lib/python3.8/site-packages (from matplotlib) (3.0.6)

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 4/12

Requirement already satisfied: kiwisolver>=1.0.1 in /home/ec2-user/anaconda3/e
nvs/tensorflow2_p38/lib/python3.8/site-packages (from matplotlib) (1.3.2)

Requirement already satisfied: cycler>=0.10 in /home/ec2-user/anaconda3/envs/t
ensorflow2_p38/lib/python3.8/site-packages (from matplotlib) (0.11.0)

Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/tens
orflow2_p38/lib/python3.8/site-packages (from importlib-metadata<5.0,>=1.4.0->
sagemaker>=2.92) (3.6.0)

Requirement already satisfied: six in /home/ec2-user/anaconda3/envs/tensorflow
2_p38/lib/python3.8/site-packages (from protobuf3-to-dict<1.0,>=0.1.5->sagemak
er>=2.92) (1.16.0)

Requirement already satisfied: pyasn1>=0.1.3 in /home/ec2-user/anaconda3/envs/
tensorflow2_p38/lib/python3.8/site-packages (from rsa<4.8,>=3.1.2->awscli) (0.
4.8)

Requirement already satisfied: pytz>=2017.3 in /home/ec2-user/anaconda3/envs/t
ensorflow2_p38/lib/python3.8/site-packages (from pandas->sagemaker>=2.92) (202
1.3)

Requirement already satisfied: ppft>=1.6.6.4 in /home/ec2-user/anaconda3/envs/
tensorflow2_p38/lib/python3.8/site-packages (from pathos->sagemaker>=2.92) (1.
6.6.4)

Requirement already satisfied: pox>=0.3.0 in /home/ec2-user/anaconda3/envs/ten
sorflow2_p38/lib/python3.8/site-packages (from pathos->sagemaker>=2.92) (0.3.
0)

Requirement already satisfied: dill>=0.3.4 in /home/ec2-user/anaconda3/envs/te
nsorflow2_p38/lib/python3.8/site-packages (from pathos->sagemaker>=2.92) (0.3.
4)

Requirement already satisfied: multiprocess>=0.70.12 in /home/ec2-user/anacond
a3/envs/tensorflow2_p38/lib/python3.8/site-packages (from pathos->sagemaker>=
2.92) (0.70.12.2)

WARNING: You are using pip version 22.0.4; however, version 22.1.2 is availabl
e.

You should consider upgrading via the '/home/ec2-user/anaconda3/envs/tensorflo
w2_p38/bin/python -m pip install --upgrade pip' command.

botocore: 1.27.7

boto3: 1.24.7

sagemaker: 2.94.0

SageMaker environment

In [311… import botocore

import boto3

import sagemaker

print(f"botocore: {botocore.__version__}")

print(f"boto3: {boto3.__version__}")

print(f"sagemaker: {sagemaker.__version__}")

In [312… import sagemaker

sess = sagemaker.Session()

SageMaker session bucket -> used for uploading data, models and logs

SageMaker will automatically create this bucket if it does not exist

sagemaker_session_bucket = None
if sagemaker_session_bucket is None and sess is not None:

 # set to default bucket if a bucket name is not given

 sagemaker_session_bucket = sess.default_bucket()

role = sagemaker.get_execution_role()

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 5/12

sagemaker role arn: arn:aws:iam::875423407011:role/SageMakerRole

sagemaker bucket: sagemaker-us-west-2-875423407011

sagemaker session region: us-west-2

Working with the Caltech-256 dataset

We have hosted the Caltech-256 dataset in S3 in us-west-2. We will transfer this dataset to

your account and region for use with SageMaker Training.

The dataset consists of JPEG images organized into directories with each directory

representing an object cateogory.

0

SageMaker Training Job

To create a SageMaker training job, we use a TensorFlow estimator. Using the estimator,

you can define which training script should SageMaker use through entry_point , which
instance_type to use for training, which hyperparameters to pass, and so on.

When a SageMaker training job starts, SageMaker takes care of starting and managing all

the required machine learning instances, picks up the TensorFlow Deep Learning

Container, uploads your training script, and downloads the data from

sagemaker_session_bucket into the container at /opt/ml/input/data .

In the following section, you learn how to set up two versions of the SageMaker

TensorFlow estimator, a native one without the compiler and an optimized one with the

compiler.

Training Setup

Set up the basic configuration for training. Set EPOCHS to the number of times you would

like to loop over the training data.

sess = sagemaker.Session(default_bucket=sagemaker_session_bucket)

print(f"sagemaker role arn: {role}")

print(f"sagemaker bucket: {sagemaker_session_bucket}")

print(f"sagemaker session region: {sess.boto_region_name}")

In [313… import os

source = 's3://sagemaker-sample-files/datasets/image/caltech-256/256_ObjectCate
destn = f's3://{sagemaker_session_bucket}/caltech-256'

os.system(f'aws s3 sync {source} {destn}')

Out[313]:

In [314… TRCOMP_IMAGE_URI='763104351884.dkr.ecr.us-west-2.amazonaws.com/tensorflow-train
EPOCHS = 10

https://authors.library.caltech.edu/7694/

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 6/12

Training with Native TensorFlow

The BATCH_SIZE in the following code cell is the maximum batch that can fit into the

memory of an ml.p3.2xlarge instance while giving the best training speed. If you

change the model, instance type, and other parameters, you need to do some experiments

to find the largest batch size that will fit into GPU memory.

'native-tf29-vit-2022-06-11-18-56-20-473'

Training with Optimized TensorFlow

Compilation through Training Compiler changes the memory footprint of the model. Most

commonly, this manifests as a reduction in memory utilization and a consequent increase in

In [315… from sagemaker.tensorflow import TensorFlow

BATCH_SIZE = 64

LEARNING_RATE = 1e-3

WEIGHT_DECAY = 1e-4

kwargs = dict(

 source_dir='scripts',

 entry_point='vit_b16_1.py',
 model_dir=False,

 instance_type='ml.p3.2xlarge',

 instance_count=1,

 image_uri=TRCOMP_IMAGE_URI,
 debugger_hook_config=None,

 disable_profiler=True,
 max_run=60*60, #60 minutes

 role = role,

 metric_definitions = [
 {'Name':'training_loss', 'Regex':'loss: ([0-9.]*?) '},

 {'Name':'training_accuracy', 'Regex':'accuracy: ([0-9.]*?) '},

 {'Name':'training_latency_per_epoch', 'Regex':'- ([0-9.]*?)s/epoch'},

 {'Name':'training_avg_latency_per_step', 'Regex':'- ([0-9.]*?)ms/step'}
]

)

Configure the training job

native_estimator = TensorFlow(

 hyperparameters={

 'EPOCHS': EPOCHS,
 'BATCH_SIZE' : BATCH_SIZE,

 'LEARNING_RATE' : LEARNING_RATE,

 'WEIGHT_DECAY' : WEIGHT_DECAY,

 },

 base_job_name='native-tf29-vit',

 **kwargs,

)

Start training with our uploaded datasets as input

native_estimator.fit(inputs=destn, wait=False)

The name of the training job.

native_estimator.latest_training_job.name

Out[315]:

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 7/12

the largest batch size that can fit on the GPU. But in some case the compiler intelligently

promotes caching which leads to a decrease in largest batch size that can fit on the GPU.

Note that if you want to change the batch size, you must adjust the learning rate

appropriately.

Note: We recommend you to turn the SageMaker Debugger's profiling and debugging tools

off when you use compilation to avoid additional overheads.

'optimized-tf29-vit-2022-06-11-18-56-21-596'

Wait for training jobs to complete

The training jobs described above typically take around 40 mins to complete

Note: If the estimator object is no longer available due to a kernel break or refresh, you

need to directly use the training job name and manually attach the training job to a new

TensorFlow estimator. For example:

native_estimator = TensorFlow.attach("<your_training_job_name>")

In [316… # TODO: Change how TrainingCompilerConfig is used after SDK release

from sagemaker.tensorflow import TensorFlow

from sagemaker.training_compiler.config import TrainingCompilerConfig

OPTIMIZED_BATCH_SIZE = 48

LEARNING_RATE = LEARNING_RATE / BATCH_SIZE * OPTIMIZED_BATCH_SIZE

WEIGHT_DECAY = WEIGHT_DECAY * BATCH_SIZE / OPTIMIZED_BATCH_SIZE

Configure the training job

optimized_estimator = TensorFlow(

 hyperparameters={

 TrainingCompilerConfig.HP_ENABLE_COMPILER : True,

 'EPOCHS': EPOCHS,

 'BATCH_SIZE' : OPTIMIZED_BATCH_SIZE,

 'LEARNING_RATE' : LEARNING_RATE,

 'WEIGHT_DECAY' : WEIGHT_DECAY,

 },
 base_job_name='optimized-tf29-vit',

 **kwargs,

)

Start training with our uploaded datasets as input

optimized_estimator.fit(inputs=destn, wait=False)

The name of the training job.

optimized_estimator.latest_training_job.name

Out[316]:

In [329… native_estimator = TensorFlow.attach(native_estimator.latest_training_job.name)
optimized_estimator = TensorFlow.attach(optimized_estimator.latest_training_job

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 8/12

2022-06-11 19:26:36 Starting - Preparing the instances for training

2022-06-11 19:26:36 Downloading - Downloading input data

2022-06-11 19:26:36 Training - Training image download completed. Training in
progress.

2022-06-11 19:26:36 Uploading - Uploading generated training model

2022-06-11 19:26:36 Completed - Training job completed

2022-06-11 19:17:39 Starting - Preparing the instances for training

2022-06-11 19:17:39 Downloading - Downloading input data

2022-06-11 19:17:39 Training - Training image download completed. Training in
progress.

2022-06-11 19:17:39 Uploading - Uploading generated training model

2022-06-11 19:17:39 Completed - Training job completed

Analysis

Here we view the training metrics from the training jobs as a Pandas dataframe

Native TensorFlow

training_loss training_accuracy training_latency_per_epoch training_avg_latency_per_

epochs

1 5.8042 0.0187 149.0

2 5.7577 0.0197 116.0

3 5.7547 0.0218 117.0

4 5.7739 0.0204 116.0

5 5.7613 0.0218 116.0

6 5.7600 0.0230 116.0

7 5.7640 0.0216 116.0

8 5.7234 0.0220 116.0

9 5.4523 0.0285 116.0

10 5.4006 0.0301 116.0

Optimized TensorFlow

In [330… import pandas as pd

Extract training metrics from the estimator

native_metrics = native_estimator.training_job_analytics.dataframe()

Restructure table for viewing

for metric in native_metrics['metric_name'].unique():

 native_metrics[metric] = native_metrics[native_metrics['metric_name']==metr
native_metrics = native_metrics.drop(columns=['metric_name', 'value'])

native_metrics = native_metrics.groupby('timestamp').max()

native_metrics['epochs'] = range(1,11)

native_metrics = native_metrics.set_index('epochs')

native_metrics

Out[330]:

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 9/12

training_loss training_accuracy training_latency_per_epoch training_avg_latency_per_

epochs

1 5.7542 0.0201 115.0

2 5.7203 0.0220 66.0

3 5.7126 0.0216 66.0

4 5.7175 0.0207 66.0

5 5.7053 0.0233 66.0

6 5.5634 0.0254 66.0

7 5.3941 0.0293 66.0

8 5.3260 0.0340 66.0

9 5.1929 0.0407 66.0

10 4.9748 0.0579 66.0

Savings from Training Compiler

Let us calculate the actual savings on the training jobs above and the potential for savings

for a longer training job.

Actual Savings

To get the actual savings, we use the describe_training_job API to get the billable seconds

for each training job.

1714

In [331… import pandas as pd

Extract training metrics from the estimator

optimized_metrics = optimized_estimator.training_job_analytics.dataframe()

Restructure table for viewing

for metric in optimized_metrics['metric_name'].unique():

 optimized_metrics[metric] = optimized_metrics[optimized_metrics['metric_na
optimized_metrics = optimized_metrics.drop(columns=['metric_name', 'value'])

optimized_metrics = optimized_metrics.groupby('timestamp').max()

optimized_metrics['epochs'] = range(1,11)

optimized_metrics = optimized_metrics.set_index('epochs')

optimized_metrics

Out[331]:

In [332… # Billable seconds for the Native TensorFlow Training job

details = sess.describe_training_job(job_name=native_estimator.latest_training_
native_secs = details['BillableTimeInSeconds']

native_secs

Out[332]:

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 10/12

1176

'Training Compiler yielded 31.39% savings in training cost.'

Potential savings

The Training Compiler works by compiling the model graph once per input shape and

reusing the cached graph for subsequent steps. As a result the first few steps of training

incur an increased latency owing to compilation which we refer to as the compilation

overhead. This overhead is amortized over time thanks to the subsequent steps being much

faster. We will demonstrate this below.

<matplotlib.legend.Legend at 0x7f38099a93a0>

We calculate the potential savings below from the difference in steady state epoch latency

between native TensorFlow and optimized TensorFlow

In [333… # Billable seconds for the Optimized TensorFlow Training job

details = sess.describe_training_job(job_name=optimized_estimator.latest_traini
optimized_secs = details['BillableTimeInSeconds']

optimized_secs

Out[333]:

In [334… # Calculating percentage Savings from Training Compiler

percentage = (native_secs-optimized_secs)*100/native_secs

f"Training Compiler yielded {percentage:.2f}% savings in training cost."

Out[334]:

In [335… import matplotlib.pyplot as plt

plt.plot(native_metrics['training_latency_per_epoch'], label='native_epoch_late
plt.plot(optimized_metrics['training_latency_per_epoch'], label='optimized_epoc
plt.legend()

Out[335]:

In [336… native_steady_state_latency = native_metrics['training_latency_per_epoch'].iloc

native_steady_state_latency

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 11/12

116.0

66.0

'Training Compiler can potentially yield 43.10% savings in training cost for
a longer training job.'

Convergence of Training

Training Compiler brings down total training time by intelligently choosing between memory

utilization and core utilization in the GPU. This does not have any effect on the model

arithmetic and consequently convergence of the model.

However, since we are working with a new batch size, hyperparameters like - learning rate,

learning rate schedule and weight decay might have to be scaled and tuned for the new

batch size

<matplotlib.legend.Legend at 0x7f3848c5c1f0>

We can see that the model's convergence behavior is similar with and without Training

Compiler. Here we have tuned the batch size specific hyperparameters - Learning Rate and

Weight Decay using a linear scaling.

Out[336]:

In [337… optimized_steady_state_latency = optimized_metrics['training_latency_per_epoch'

optimized_steady_state_latency

Out[337]:

In [338… # Calculating potential percentage Savings from Training Compiler

percentage = (native_steady_state_latency-optimized_steady_state_latency)*100/n

f"Training Compiler can potentially yield {percentage:.2f}% savings in training

Out[338]:

In [339… import matplotlib.pyplot as plt

plt.plot(native_metrics['training_loss'], label='native_loss')

plt.plot(optimized_metrics['training_loss'], label='optimized_loss')

plt.legend()

Out[339]:

6/11/22, 4:26 PM keras-vit-b16

file:///Users/lokravi/Downloads/keras-vit-b16-001.html 12/12

Learning rate is directly proportional to the batch size:

new_learning_rate = old_learning_rate * new_batch_size/old_batch_size

Weight decay is inversely proportional to the batch size:

new_weight_decay = old_weight_decay * old_batch_size/new_batch_size

Better results can be achieved with further tuning. Check out Automatic Model Tuning for

tuning.

Clean up

Stop all training jobs launched if the jobs are still running.

Also, to find instructions on cleaning up resources, see Clean Up in the Amazon SageMaker

Developer Guide.

In [340… def stop_training_job(name):

 status = sess.describe_training_job(name)["TrainingJobStatus"]
 if status == "InProgress":

 sm.stop_training_job(TrainingJobName=name)

stop_training_job(native_estimator.latest_training_job.name)

stop_training_job(optimized_estimator.latest_training_job.name)

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-cleanup.html

