From f0cda958e2316892b2afd06e21bdac71d90400de Mon Sep 17 00:00:00 2001 From: vishalseshagiri Date: Wed, 15 Jun 2022 10:21:49 -0700 Subject: [PATCH] Fixes a typo (#3454) --- .../tensorflow_script_mode_horovod.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sagemaker-python-sdk/tensorflow_script_mode_horovod/tensorflow_script_mode_horovod.ipynb b/sagemaker-python-sdk/tensorflow_script_mode_horovod/tensorflow_script_mode_horovod.ipynb index 4fd51cb650..2e9e0eec8b 100644 --- a/sagemaker-python-sdk/tensorflow_script_mode_horovod/tensorflow_script_mode_horovod.ipynb +++ b/sagemaker-python-sdk/tensorflow_script_mode_horovod/tensorflow_script_mode_horovod.ipynb @@ -11,7 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Horovod is a distributed training framework based on Message Passing Interfae (MPI). For information about Horovod, see [Horovod README](https://github.com/uber/horovod).\n", + "Horovod is a distributed training framework based on Message Passing Interface (MPI). For information about Horovod, see [Horovod README](https://github.com/uber/horovod).\n", "\n", "You can perform distributed training with Horovod on SageMaker by using the SageMaker Tensorflow container. If MPI is enabled when you create the training job, SageMaker creates the MPI environment and executes the `mpirun` command to execute the training script. Details on how to configure mpi settings in training job are described later in this example.\n", "\n",