-
Notifications
You must be signed in to change notification settings - Fork 0
/
app1.py
78 lines (60 loc) · 1.87 KB
/
app1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import pickle
import pandas as pd
import streamlit as st
from PIL import Image
pickle_in = open("classifiers.pkl","rb")
classifier=pickle.load(pickle_in)
#@app.route('/')
def welcome():
return "Welcome All"
#@app.route('/predict',methods=["Get"])
def predict_note_authentication(variance,skewness,curtosis,entropy):
"""Let's Authenticate the Banks Note
This is using docstrings for specifications.
---
parameters:
- name: variance
in: query
type: number
required: true
- name: skewness
in: query
type: number
required: true
- name: curtosis
in: query
type: number
required: true
- name: entropy
in: query
type: number
required: true
responses:
200:
description: The output values
"""
prediction=classifier.predict([[variance,skewness,curtosis,entropy]])
print(prediction)
return prediction
def main():
st.title("Bank Authenticator")
html_temp = """
<div style="background-color:tomato;padding:10px">
<h2 style="color:white;text-align:center;">Streamlit Bank Authenticator ML App </h2>
</div>
"""
st.markdown(html_temp,unsafe_allow_html=True)
variance = st.text_input("Variance","Type Here")
skewness = st.text_input("skewness","Type Here")
curtosis = st.text_input("curtosis","Type Here")
entropy = st.text_input("entropy","Type Here")
result=""
if st.button("Predict"):
result=predict_note_authentication(variance,skewness,curtosis,entropy)
st.success('The output is {}'.format(result))
if st.button("About"):
st.text("Lets LEarn")
st.text("Built with Streamlit")
if __name__=='__main__':
main()