-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclassify_ms_data.py
155 lines (125 loc) · 5.36 KB
/
classify_ms_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import protease_activity_analysis as paa
import pandas as pd
import argparse
import numpy as np
args = paa.parsing.parse_ms_args()
# supply a list of pkl files containing the data to train the classifier
if args.files is not None:
files = args.files
else: # one file generated from reading in single excel file
""" Load data. """
syneos_dataset = paa.syneos.SyneosDataset(
save_dir=args.save_dir, save_name=args.save_name)
syneos_dataset.read_syneos_data(
args.data_path, args.type_path, args.stock_path, args.sheets)
# read plex/reporter file
features, renamed = syneos_dataset.set_feature_mapping(args.plex_path)
# if only want to use a subset of the features to construct the data matrix
if args.features_include != None:
features = args.features_include
""" Process and normalizations. """
syneos_dataset.process_syneos_data(
features,
args.stock,
args.type_include,
args.ID_include,
args.ID_exclude
)
syneos_dataset.mean_scale_matrix()
syneos_dataset.standard_scale_matrix()
# write data to pickle files
syneos_dataset.data_to_pkl(args.save_name)
if args.normalization == 'mean':
files = [f"{args.save_name}_mean.pkl"]
else:
files = [f"{args.save_name}.pkl"]
data_for_class = paa.syneos.SyneosDataset(
save_dir=args.save_dir, save_name=args.save_name, file_list=files)
independent_test = (args.test_files is not None) or (args.test_types is not None)
""" classification. """
if args.multi_class is not None:
X, Y, df, X_test, Y_test, df_test = data_for_class.make_multiclass_dataset(
args.multi_class, args.test_types
)
if args.test_files is not None:
test_data = paa.syneos.SyneosDataset(
save_dir=args.save_dir,
save_name=f"{args.save_name}_test",
file_list=args.test_files
)
X_test, Y_test, df_test, _, _, _ = test_data.make_multiclass_dataset(
args.multi_class, args.test_types
)
for classifier in args.class_type:
for kernel in args.kernel:
classifier_name = classifier
if classifier == 'svm':
classifier_name = classifier_name + "_" + kernel
file_name = args.save_name + "_" + classifier_name
save_name = os.path.join(args.save_dir, file_name)
# set evaluation w/ cross-validation
val_class_dict, val_df, test_class_dict, test_df = \
paa.classify.multiclass_classify(
X, Y, classifier, kernel, args.num_folds, save_name,
args.scale, args.seed, X_test, Y_test
)
classes = np.unique(Y)
# plot confusion matrix
save_name_val = args.save_name + "_crossval_" + classifier_name
paa.vis.plot_confusion_matrix(val_df, classes, classes, args.save_dir,
save_name_val, cmap='Purples')
if independent_test:
test_classes = np.unique(Y_test)
save_name_test = args.save_name + "_test_" + classifier_name
paa.vis.plot_confusion_matrix(test_df, classes, test_classes,
args.save_dir, save_name_test, cmap='Greens')
else: # Binary classification with k fold cross validation
X, Y, df, X_test, Y_test, df_test = data_for_class.make_class_dataset(
args.pos_classes,
args.pos_class,
args.neg_classes,
args.neg_class,
args.test_types
)
if args.test_files is not None:
test_data = paa.syneos.SyneosDataset(
save_dir=args.save_dir,
save_name=f"{args.save_name}_test",
file_list=args.test_files
)
X_test, Y_test, df_test, _, _, _ = test_data.make_class_dataset(
args.pos_classes,
args.pos_class,
args.neg_classes,
args.neg_class,
args.test_types
)
for classifier in args.class_type:
for kernel in args.kernel:
classifier_name = classifier
if classifier == 'svm':
classifier_name = classifier_name + "_" + kernel
# evaluation w/ cross-validation
val_class_dict, test_class_dict = paa.classify.classify_kfold_roc(
X, Y, classifier, kernel, args.num_folds, args.pos_class,
args.scale, args.seed,
X_test, Y_test)
# cross-validation performance
tprs_val = val_class_dict["tprs"]
aucs_val = val_class_dict["aucs"]
save_name_val = args.save_name + "_crossval_" + classifier_name
paa.vis.plot_kfold_roc(tprs_val, aucs_val,
args.save_dir, save_name_val, show_sd=True)
# independent test set performance
if independent_test:
tprs_test = test_class_dict["tprs"]
aucs_test = test_class_dict["aucs"]
save_name_test = args.save_name + "_test_" + classifier_name
paa.vis.plot_kfold_roc(tprs_test, aucs_test,
args.save_dir, save_name_test, show_sd=True)
# recursive feature elimination -- ONLY with rf, lr, svm linear!
if classifier == 'svm' and kernel != 'linear':
break
paa.classify.rfe_cv(X, Y, classifier, args.num_folds,
args.save_dir, save_name_val)