-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathgenerate.py
187 lines (153 loc) · 6.01 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
import os
import shutil
import argparse
from tqdm import tqdm
import time
from collections import defaultdict
import pandas as pd
from im2mesh import config
from im2mesh.checkpoints import CheckpointIO
from im2mesh.utils.io import export_pointcloud
parser = argparse.ArgumentParser(
description='Extract meshes from a 4D model.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
out_dir = cfg['training']['out_dir']
generation_dir = os.path.join(out_dir, cfg['generation']['generation_dir'])
out_time_file = os.path.join(generation_dir, 'time_generation_full.pkl')
out_time_file_class = os.path.join(generation_dir, 'time_generation.pkl')
batch_size = cfg['generation']['batch_size']
input_type = cfg['data']['input_type']
vis_n_outputs = cfg['generation']['vis_n_outputs']
if vis_n_outputs is None:
vis_n_outputs = -1
# Dataset
dataset = config.get_dataset('test', cfg, return_idx=True)
# Model
model = config.get_model(cfg, device=device, dataset=dataset)
checkpoint_io = CheckpointIO(out_dir, model=model)
checkpoint_io.load(cfg['test']['model_file'])
# Generator
generator = config.get_generator(model, cfg, device=device)
# Determine what to generate
generate_mesh = cfg['generation']['generate_mesh']
generate_pointcloud = cfg['generation']['generate_pointcloud']
# Loader
torch.manual_seed(cfg['generation']['rand_seed'])
test_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=1,
shuffle=cfg['generation']['shuffle_generation'])
# Statistics
time_dicts = []
# Generate
model.eval()
# Count how many models already created
model_counter = defaultdict(int)
for it, data in enumerate(tqdm(test_loader)):
# Output folders
mesh_dir = os.path.join(generation_dir, 'meshes')
pointcloud_dir = os.path.join(generation_dir, 'pointcloud')
in_dir = os.path.join(generation_dir, 'input')
generation_vis_dir = os.path.join(generation_dir, 'vis', )
# Get index etc.
idx = data['idx'].item()
try:
model_dict = dataset.get_model_dict(idx)
except AttributeError:
model_dict = {'model': str(idx), 'category': 'n/a'}
modelname = model_dict['model']
category_id = model_dict['category']
start_idx = model_dict.get('start_idx', 0)
try:
category_name = dataset.metadata[category_id].get('name', 'n/a')
except AttributeError:
category_name = 'n/a'
if category_id != 'n/a':
mesh_dir = os.path.join(mesh_dir, str(category_id))
pointcloud_dir = os.path.join(pointcloud_dir, str(category_id))
in_dir = os.path.join(in_dir, str(category_id))
folder_name = str(category_id)
if category_name != 'n/a':
folder_name = str(folder_name) + '_' + category_name.split(',')[0]
generation_vis_dir = os.path.join(generation_vis_dir, folder_name)
# Create directories if necessary
if vis_n_outputs >= 0 and not os.path.exists(generation_vis_dir):
os.makedirs(generation_vis_dir)
if generate_mesh and not os.path.exists(mesh_dir):
os.makedirs(mesh_dir)
if generate_pointcloud and not os.path.exists(pointcloud_dir):
os.makedirs(pointcloud_dir)
if not os.path.exists(in_dir) and cfg['generation']['copy_input']:
os.makedirs(in_dir)
# Timing dict
time_dict = {
'idx': idx,
'class id': category_id,
'class name': category_name,
'modelname': modelname,
}
time_dicts.append(time_dict)
# Generate outputs
out_file_dict = {}
if generate_mesh:
t0 = time.time()
out = generator.generate(data)
time_dict['mesh'] = time.time() - t0
# Get statistics
try:
mesh, stats_dict = out
except TypeError:
mesh, stats_dict = out, {}
time_dict.update(stats_dict)
# Save files
out_files = generator.export(mesh, mesh_dir, modelname, start_idx)
for nf, f in enumerate(out_files):
out_file_dict['mesh_%03d' % nf] = f
if generate_pointcloud:
t0 = time.time()
pointcloud = generator.generate(data)
time_dict['pcl'] = time.time() - t0
out_files = generator.export(
pointcloud, pointcloud_dir, modelname, start_idx)
# Copy to visualization directory for first vis_n_output samples
c_it = model_counter[category_id]
if c_it < vis_n_outputs:
# Save inputs
if cfg['generation']['copy_input']:
if input_type == 'pcl_seq':
inputs = data['inputs'][0]
L = inputs.shape[0]
inputs_base_path = os.path.join(
in_dir, modelname, '%04d' % start_idx)
if not os.path.exists(inputs_base_path):
os.makedirs(inputs_base_path)
inputs_path = [os.path.join(
inputs_base_path, '%04d.ply' % i) for i in range(L)]
for i in range(L):
export_pointcloud(
inputs[i].cpu().numpy(), inputs_path[i], False)
out_file_dict['in_%d' % i] = inputs_path[i]
# Save output files
for k, filepath in out_file_dict.items():
ext = os.path.splitext(filepath)[1]
out_file = os.path.join(generation_vis_dir, '%02d_%s%s'
% (c_it, k, ext))
shutil.copyfile(filepath, out_file)
model_counter[category_id] += 1
# Create pandas dataframe and save
time_df = pd.DataFrame(time_dicts)
time_df.set_index(['idx'], inplace=True)
time_df.to_pickle(out_time_file)
# Create pickle files with main statistics
time_df_class = time_df.groupby(by=['class name']).mean()
time_df_class.to_pickle(out_time_file_class)
# Print results
time_df_class.loc['mean'] = time_df_class.mean()
print('Timings [s]:')
print(time_df_class)