From dd0e9350d85ae1d6df8b457cde8fcd3ec287f716 Mon Sep 17 00:00:00 2001
From: Chirag Nagpal
+Inherited from:
+ This method is used to train an instance of the DSM model. Returns the estimated risk of an event occuring before time t
- \widehat{\mathbb{P}}(T\leq t|X) for some input data x … Returns the estimated risk of an event occuring before time t
+ \widehat{\mathbb{P}}(T\leq t|X) for some input data x . Returns the estimated survival probability at time t ,
- \widehat{\mathbb{P}}(T > t|X) for some input data x … Returns the estimated survival probability at time t ,
+ \widehat{\mathbb{P}}(T > t|X) for some input data x . The Deep Recurrent Survival Machines model to handle data with
time-dependent covariates.
+Inherited from:
+ This method is used to train an instance of the DSM model. Returns the estimated risk of an event occuring before time t
- \widehat{\mathbb{P}}(T\leq t|X) for some input data x … Returns the estimated risk of an event occuring before time t
+ \widehat{\mathbb{P}}(T\leq t|X) for some input data x . Returns the estimated survival probability at time t ,
- \widehat{\mathbb{P}}(T > t|X) for some input data x … Returns the estimated survival probability at time t ,
+ \widehat{\mathbb{P}}(T > t|X) for some input data x . Warning: Not Implemented This method is used to train an instance of the DSM model … This method is used to train an instance of the DSM model. Returns the estimated risk of an event occuring before time t
- \widehat{\mathbb{P}}(T\leq t|X) for some input data x … Returns the estimated risk of an event occuring before time t
+ \widehat{\mathbb{P}}(T\leq t|X) for some input data x . Returns the estimated survival probability at time t ,
- \widehat{\mathbb{P}}(T > t|X) for some input data x … Returns the estimated survival probability at time t ,
+ \widehat{\mathbb{P}}(T > t|X) for some input data x . Initializes internal Module state, shared by both nn.Module and ScriptModule. Initializes internal Module state, shared by both nn.Module and ScriptModule.Example
>>> model = DeepSurvivalMachines()
>>> model.fit(x, t, e)
-Ancestors
-
-
Methods
def fit(self, x, t, e, vsize=0.15, iters=1, learning_rate=0.001, batch_size=100, elbo=True, optimizer='Adam', random_state=100)
DSMBase
.fit
+Parameters
@@ -123,8 +123,21 @@
@@ -146,20 +172,16 @@ Parameters
Inherited from:
DSMBase
.predict_risk
-Parameters
+
+
+x
: np.ndarray
t
: list
or float
Returns
+
+
np.array
def predict_survival(self, x, t)
@@ -134,8 +147,21 @@
Parameters
Inherited from:
DSMBase
.predict_survival
-Parameters
+
+
+x
: np.ndarray
t
: list
or float
Returns
+
+
np.array
Parameters
Ancestors
-
-
-Subclasses
-
Methods
def fit(self, x, t, e, vsize=0.15, iters=1, learning_rate=0.001, batch_size=100, elbo=True, optimizer='Adam', random_state=100)
DSMBase
.fit
+Parameters
@@ -197,8 +219,21 @@
@@ -221,11 +269,6 @@ Parameters
Inherited from:
DSMBase
.predict_risk
-Parameters
+
+
+x
: np.ndarray
t
: list
or float
Returns
+
+
np.array
def predict_survival(self, x, t)
@@ -208,8 +243,21 @@
Parameters
Inherited from:
DSMBase
.predict_survival
-Parameters
+
+
+x
: np.ndarray
t
: list
or float
Returns
+
+
np.array
Parameters
Ancestors
-
-
Methods
diff --git a/docs/dsm_torch.html b/docs/dsm_torch.html
index 238ac0e..5133bf4 100644
--- a/docs/dsm_torch.html
+++ b/docs/dsm_torch.html
@@ -112,21 +112,6 @@
@@ -236,7 +279,34 @@
Methods
Inherited from:
DeepRecurrentSurvivalMachines
.fit
-Parameters
+
+
x
: np.ndarray
t
: np.ndarray
e
: np.ndarray
vsize
: float
iters
: int
learning_rate
: float
Adam
optimizer.batch_size
: int
elbo
: bool
optimizer
: str
random_state
: float
def predict_risk(self, x, t)
@@ -246,8 +316,21 @@
Methods
Inherited from:
DeepRecurrentSurvivalMachines
.predict_risk
-Parameters
+
+
+x
: np.ndarray
t
: list
or float
Returns
+
+
np.array
def predict_survival(self, x, t)
@@ -257,8 +340,21 @@
Methods
Inherited from:
DeepRecurrentSurvivalMachines
.predict_survival
-Parameters
+
+
+x
: np.ndarray
t
: list
or float
Returns
+
+
np.array
Parameters
Default is 1.
Ancestors
-
-
-Class variables
-
-
var dump_patches : bool
var training : bool
Methods
@@ -189,21 +174,6 @@
Parameters
Default is 1.Ancestors
-
-
-Class variables
-
-
var dump_patches : bool
var training : bool
Methods
@@ -252,8 +222,6 @@
forward
get_shape_scale
dump_patches
training
forward
get_shape_scale
dump_patches
training
Deep Recurrent Survival Machines
data like vital signs, degradation monitoring signals in predictive
maintainance. DRSM allows the learnt representations at each time step to
involve historical context from previous time steps. DRSM implementation in
-dsm
is carried out through an easy to use API that accepts lists of data
-streams and corresponding failure times. The module automatically takes care of
-appropriate batching and padding of variable length sequences.
dsm
is carried out through an easy to use API,
+DeepRecurrentSurvivalMachines
that accepts lists of data streams and
+corresponding failure times. The module automatically takes care of appropriate
+batching and padding of variable length sequences.
Warning: Not Implemented Yet!
dsm.dsm_torch
Torch model definitons for the Deep Survival Machines model …
Torch model definitons for the Deep Survival Machines model
+This includes definitons for the Torch Deep Survival Machines module. +The main interface is the DeepSurvivalMachines class which inherits +from torch.nn.Module.
+Note: NOT DESIGNED TO BE CALLED DIRECTLY!!!
dsm.losses
Loss function definitions for the Deep Survival Machines model …
Loss function definitions for the Deep Survival Machines model
+In this module we define the various losses for the censored and uncensored +instances of data corresponding to Weibull and LogNormal distributions. +These losses are optimized when training DSM.
+TODO
+Use torch.distributions
+Warning
+NOT DESIGNED TO BE CALLED DIRECTLY!!!
+dsm.utilities