diff --git a/docs/cmhe/cmhe_api.html b/docs/cmhe/cmhe_api.html deleted file mode 100644 index aa44dc5..0000000 --- a/docs/cmhe/cmhe_api.html +++ /dev/null @@ -1,191 +0,0 @@ - - - - - - -auton_survival.models.cmhe.cmhe_api API documentation - - - - - - - - - - - - - -
-
-
-

Module auton_survival.models.cmhe.cmhe_api

-
-
- -
-
-
-
-
-
-
-
-

Classes

-
-
-class DeepCoxMixturesHeterogenousEffects -(k, g, layers=None) -
-
-

A Deep Cox Mixtures with Heterogenous Effects model.

-

This is the main interface to a Deep Cox Mixture with Heterogenous Effects. -A model is instantiated with approporiate set of hyperparameters and -fit on numpy arrays consisting of the features, event/censoring times -and the event/censoring indicators.

-

For full details on Deep Cox Mixture, refer to the paper [1].

-

References

-

[1] Nagpal, C., Goswami M., Dufendach K., and Artur Dubrawski. -"Counterfactual phenotyping for censored Time-to-Events" (2022).

-

Parameters

-
-
k : int
-
The number of underlying base survival phenotypes.
-
g : int
-
The number of underlying treatment effect phenotypes.
-
layers : list
-
A list of integers consisting of the number of neurons in each -hidden layer.
-
-

Example

-
>>> from auton_survival import DeepCoxMixturesHeterogenousEffects
->>> model = DeepCoxMixturesHeterogenousEffects(k=2, g=3)
->>> model.fit(x, t, e, a)
-
- -

Methods

-
-
-def fit(self, x, t, e, a, vsize=0.15, val_data=None, iters=1, learning_rate=0.001, batch_size=100, optimizer='Adam', random_state=100) -
-
-

This method is used to train an instance of the DSM model.

-

Parameters

-
-
x : np.ndarray
-
A numpy array of the input features, x .
-
t : np.ndarray
-
A numpy array of the event/censoring times, t .
-
e : np.ndarray
-
A numpy array of the event/censoring indicators, \delta . - \delta = 1 means the event took place.
-
a : np.ndarray
-
A numpy array of the treatment assignment indicators, a . - a = 1 means the individual was treated.
-
vsize : float
-
Amount of data to set aside as the validation set.
-
val_data : tuple
-
A tuple of the validation dataset. If passed vsize is ignored.
-
iters : int
-
The maximum number of training iterations on the training dataset.
-
learning_rate : float
-
The learning rate for the Adam optimizer.
-
batch_size : int
-
learning is performed on mini-batches of input data. this parameter -specifies the size of each mini-batch.
-
optimizer : str
-
The choice of the gradient based optimization method. One of -'Adam', 'RMSProp' or 'SGD'.
-
random_state : float
-
random seed that determines how the validation set is chosen.
-
- -
-
-def predict_risk(self, x, a, t=None) -
-
-
- -
-
-def predict_survival(self, x, a, t=None) -
-
-

Returns the estimated survival probability at time t , - \widehat{\mathbb{P}}(T > t|X) for some input data x .

-

Parameters

-
-
x : np.ndarray
-
A numpy array of the input features, x .
-
a : np.ndarray
-
A numpy array of the treatmeant assignment, a .
-
t : list or float
-
a list or float of the times at which survival probability is -to be computed
-
-

Returns

-
-
np.array
-
numpy array of the survival probabilites at each time in t.
-
- -
-
-def predict_latent_z(self, x) -
-
-

Returns the estimated latent base survival group z given the confounders x .

- -
-
-def predict_latent_phi(self, x) -
-
-

Returns the estimated latent treatment effect group \phi given the confounders x .

- -
-
-
-
-
-
- -
- - - \ No newline at end of file