Skip to content

Commit

Permalink
Matthias Feurer: Update regression metadata (#1038)
Browse files Browse the repository at this point in the history
  • Loading branch information
Github Actions committed Dec 16, 2020
1 parent 6bd20b7 commit e34973a
Show file tree
Hide file tree
Showing 47 changed files with 3,389 additions and 2,021 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
124 changes: 114 additions & 10 deletions development/_sources/examples/20_basic/example_classification.rst.txt

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ problem. Details on multilabel classification can be found
.. code-block:: none
type_of_target=multilabel-indicator
[WARNING] [2020-12-11 17:25:12,368:AutoML(1):reuters] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[WARNING] [2020-12-16 15:43:26,831:AutoML(1):reuters] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[(1.000000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01},
dataset_properties={
'task': 3,
Expand Down Expand Up @@ -131,7 +131,7 @@ problem. Details on multilabel classification can be found
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 19.850 seconds)
**Total running time of the script:** ( 0 minutes 18.793 seconds)


.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:
Expand Down
63 changes: 34 additions & 29 deletions development/_sources/examples/20_basic/example_regression.rst.txt

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,12 @@

Computation times
=================
**04:19.749** total execution time for **examples_20_basic** files:
**04:16.506** total execution time for **examples_20_basic** files:

+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 02:04.422 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 01:59.910 | 0.0 MB |
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 01:55.477 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:57.803 | 0.0 MB |
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:19.850 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:18.793 | 0.0 MB |
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ types will be automatically inferred, as demonstrated in
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 15.510 seconds)
**Total running time of the script:** ( 0 minutes 15.363 seconds)


.. _sphx_glr_download_examples_40_advanced_example_feature_types.py:
Expand Down

Large diffs are not rendered by default.

58 changes: 33 additions & 25 deletions development/_sources/examples/40_advanced/example_metrics.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -274,40 +274,48 @@ Auto-sklearn. We also print the content of the module below with
*r2
################################################################################
Use predefined accuracy metric
[WARNING] [2020-12-11 17:25:40,044:AutoML(1):d6d58dae5b02e07797da6d4d126ac9b6] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
Accuracy score 0.944056 using accuracy
[WARNING] [2020-12-16 15:43:54,311:AutoML(1):d6d58dae5b02e07797da6d4d126ac9b6] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[WARNING] [2020-12-16 15:43:54,722:autosklearn.metalearning.optimizers.metalearn_optimizer.metalearner] Could not find runs for instance cifar_10
[WARNING] [2020-12-16 15:43:54,729:autosklearn.metalearning.optimizers.metalearn_optimizer.metalearner] Could not find runs for instance gtsrb-hog03
[WARNING] [2020-12-16 15:43:54,732:autosklearn.metalearning.optimizers.metalearn_optimizer.metalearner] Could not find runs for instance kuzushiji-49
[WARNING] [2020-12-16 15:43:54,742:autosklearn.metalearning.optimizers.metalearn_optimizer.metalearner] Could not find runs for instance svhn
[WARNING] [2020-12-16 15:43:54,829:autosklearn.metalearning.metalearning.kNearestDatasets.kND] Found no best configuration for instance cifar_10
[WARNING] [2020-12-16 15:43:54,829:autosklearn.metalearning.metalearning.kNearestDatasets.kND] Found no best configuration for instance svhn
[WARNING] [2020-12-16 15:43:54,829:autosklearn.metalearning.metalearning.kNearestDatasets.kND] Found no best configuration for instance gtsrb-hog03
[WARNING] [2020-12-16 15:43:54,829:autosklearn.metalearning.metalearning.kNearestDatasets.kND] Found no best configuration for instance kuzushiji-49
Accuracy score 0.951049 using accuracy
################################################################################
Use self defined accuracy metric
[WARNING] [2020-12-11 17:26:33,098:AutoML(1):d6d58dae5b02e07797da6d4d126ac9b6] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[WARNING] [2020-12-11 17:26:33,099:AutoMLSMBO(1)::d6d58dae5b02e07797da6d4d126ac9b6] Could not find meta-data directory /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/files/accu_binary.classification_dense
[WARNING] [2020-12-16 15:44:50,132:AutoML(1):d6d58dae5b02e07797da6d4d126ac9b6] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[WARNING] [2020-12-16 15:44:50,133:AutoMLSMBO(1)::d6d58dae5b02e07797da6d4d126ac9b6] Could not find meta-data directory /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/files/accu_binary.classification_dense
Accuracy score 0.958042 using accu
################################################################################
Use self defined error metric
[WARNING] [2020-12-11 17:27:29,188:AutoML(1):d6d58dae5b02e07797da6d4d126ac9b6] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[WARNING] [2020-12-11 17:27:29,189:AutoMLSMBO(1)::d6d58dae5b02e07797da6d4d126ac9b6] Could not find meta-data directory /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/files/error_binary.classification_dense
[WARNING] [2020-12-16 15:45:45,814:AutoML(1):d6d58dae5b02e07797da6d4d126ac9b6] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[WARNING] [2020-12-16 15:45:45,815:AutoMLSMBO(1)::d6d58dae5b02e07797da6d4d126ac9b6] Could not find meta-data directory /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/files/error_binary.classification_dense
Error rate -0.041958 using error
################################################################################
Use self defined accuracy with additional argument
[WARNING] [2020-12-11 17:28:28,708:AutoML(1):d6d58dae5b02e07797da6d4d126ac9b6] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[WARNING] [2020-12-11 17:28:28,709:AutoMLSMBO(1)::d6d58dae5b02e07797da6d4d126ac9b6] Could not find meta-data directory /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/files/accu_add_binary.classification_dense
Accuracy score 0.958042 using accu_add
[WARNING] [2020-12-16 15:46:47,618:AutoML(1):d6d58dae5b02e07797da6d4d126ac9b6] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[WARNING] [2020-12-16 15:46:47,619:AutoMLSMBO(1)::d6d58dae5b02e07797da6d4d126ac9b6] Could not find meta-data directory /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/files/accu_add_binary.classification_dense
Accuracy score 0.944056 using accu_add
################################################################################
Use self defined error with additional argument
[WARNING] [2020-12-11 17:29:23,901:AutoML(1):d6d58dae5b02e07797da6d4d126ac9b6] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[WARNING] [2020-12-11 17:29:23,901:AutoMLSMBO(1)::d6d58dae5b02e07797da6d4d126ac9b6] Could not find meta-data directory /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/files/error_add_binary.classification_dense
[WARNING] [2020-12-11 17:29:27,247:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:29:30,769:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:29:34,730:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:29:36,684:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:29:39,497:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:29:40,855:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:29:43,991:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:29:48,859:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:29:50,217:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:29:55,315:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:30:00,888:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:30:06,651:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-11 17:30:12,986:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:47:45,474:AutoML(1):d6d58dae5b02e07797da6d4d126ac9b6] Capping the per_run_time_limit to 29.0 to have time for a least 2 models in each process.
[WARNING] [2020-12-16 15:47:45,475:AutoMLSMBO(1)::d6d58dae5b02e07797da6d4d126ac9b6] Could not find meta-data directory /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/files/error_add_binary.classification_dense
[WARNING] [2020-12-16 15:47:48,900:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:47:52,752:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:47:56,752:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:47:58,794:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:48:01,699:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:48:03,057:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:48:06,223:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:48:11,151:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:48:12,536:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:48:17,856:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:48:23,564:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:48:29,355:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
[WARNING] [2020-12-16 15:48:35,684:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
Error rate 0.615385 using error_add
Expand All @@ -316,7 +324,7 @@ Auto-sklearn. We also print the content of the module below with
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 4 minutes 38.610 seconds)
**Total running time of the script:** ( 4 minutes 47.168 seconds)


.. _sphx_glr_download_examples_40_advanced_example_metrics.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,15 @@ list or numpy arrays as there is no per-column dtype (further details in the exa
A13 float64
A14 float64
dtype: object
Accuracy score 0.881159420289855
[WARNING] [2020-12-16 15:48:41,976:autosklearn.metalearning.optimizers.metalearn_optimizer.metalearner] Could not find runs for instance cifar_10
[WARNING] [2020-12-16 15:48:41,982:autosklearn.metalearning.optimizers.metalearn_optimizer.metalearner] Could not find runs for instance gtsrb-hog03
[WARNING] [2020-12-16 15:48:41,985:autosklearn.metalearning.optimizers.metalearn_optimizer.metalearner] Could not find runs for instance kuzushiji-49
[WARNING] [2020-12-16 15:48:41,995:autosklearn.metalearning.optimizers.metalearn_optimizer.metalearner] Could not find runs for instance svhn
[WARNING] [2020-12-16 15:48:42,083:autosklearn.metalearning.metalearning.kNearestDatasets.kND] Found no best configuration for instance svhn
[WARNING] [2020-12-16 15:48:42,083:autosklearn.metalearning.metalearning.kNearestDatasets.kND] Found no best configuration for instance cifar_10
[WARNING] [2020-12-16 15:48:42,084:autosklearn.metalearning.metalearning.kNearestDatasets.kND] Found no best configuration for instance gtsrb-hog03
[WARNING] [2020-12-16 15:48:42,084:autosklearn.metalearning.metalearning.kNearestDatasets.kND] Found no best configuration for instance kuzushiji-49
Accuracy score 0.8753623188405797
Expand Down Expand Up @@ -206,7 +214,7 @@ list or numpy arrays as there is no per-column dtype (further details in the exa
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 1 minutes 51.911 seconds)
**Total running time of the script:** ( 1 minutes 56.272 seconds)


.. _sphx_glr_download_examples_40_advanced_example_pandas_train_test.py:
Expand Down
Loading

0 comments on commit e34973a

Please sign in to comment.