From af48d057b9376dd49828ae2b7adb070cec98691f Mon Sep 17 00:00:00 2001 From: Github Actions Date: Fri, 10 Sep 2021 14:17:42 +0000 Subject: [PATCH] Eddie Bergman: Extends github action `pytest` to allow for tests to run for 60m (up from 45m) (#1239) --- .../examples_python.zip | Bin 110135 -> 110135 bytes .../examples_jupyter.zip | Bin 157609 -> 157609 bytes ...hx_glr_example_inspect_predictions_001.png | Bin 15433 -> 16636 bytes ...hx_glr_example_inspect_predictions_002.png | Bin 276893 -> 273139 bytes ...hx_glr_example_inspect_predictions_003.png | Bin 42004 -> 39282 bytes ..._glr_example_inspect_predictions_thumb.png | Bin 13887 -> 14774 bytes ...sphx_glr_example_pandas_train_test_001.png | Bin 43894 -> 43264 bytes ...hx_glr_example_pandas_train_test_thumb.png | Bin 34018 -> 32938 bytes .../20_basic/example_classification.rst.txt | 88 ++++------ .../example_multilabel_classification.rst.txt | 4 +- .../example_multioutput_regression.rst.txt | 12 +- .../20_basic/example_regression.rst.txt | 12 +- .../20_basic/sg_execution_times.rst.txt | 10 +- .../example_calc_multiple_metrics.rst.txt | 2 +- .../40_advanced/example_debug_logging.rst.txt | 8 +- .../40_advanced/example_feature_types.rst.txt | 2 +- .../example_get_pipeline_components.rst.txt | 34 ++-- .../example_inspect_predictions.rst.txt | 16 +- .../example_interpretable_models.rst.txt | 2 +- .../40_advanced/example_metrics.rst.txt | 52 +++--- .../example_pandas_train_test.rst.txt | 4 +- .../40_advanced/example_resampling.rst.txt | 4 +- .../example_single_configuration.rst.txt | 61 +++---- .../40_advanced/sg_execution_times.rst.txt | 22 +-- ...ample_parallel_manual_spawning_cli.rst.txt | 8 +- ...le_parallel_manual_spawning_python.rst.txt | 10 +- .../60_search/example_parallel_n_jobs.rst.txt | 6 +- .../60_search/example_random_search.rst.txt | 144 +++++------------ .../60_search/example_sequential.rst.txt | 60 ++++--- .../example_successive_halving.rst.txt | 152 +++++++++--------- .../60_search/sg_execution_times.rst.txt | 14 +- .../example_extending_classification.rst.txt | 8 +- ...xample_extending_data_preprocessor.rst.txt | 4 +- .../example_extending_preprocessor.rst.txt | 4 +- .../example_extending_regression.rst.txt | 4 +- ...restrict_number_of_hyperparameters.rst.txt | 2 +- .../80_extending/sg_execution_times.rst.txt | 12 +- .../20_basic/example_classification.html | 86 ++++------ .../example_multilabel_classification.html | 4 +- .../example_multioutput_regression.html | 10 +- .../examples/20_basic/example_regression.html | 12 +- .../examples/20_basic/sg_execution_times.html | 16 +- .../example_calc_multiple_metrics.html | 2 +- .../40_advanced/example_debug_logging.html | 8 +- .../40_advanced/example_feature_types.html | 2 +- .../example_get_pipeline_components.html | 34 ++-- .../example_inspect_predictions.html | 16 +- .../example_interpretable_models.html | 2 +- .../examples/40_advanced/example_metrics.html | 52 +++--- .../example_pandas_train_test.html | 4 +- .../40_advanced/example_resampling.html | 4 +- .../example_single_configuration.html | 61 +++---- .../40_advanced/sg_execution_times.html | 26 +-- .../example_parallel_manual_spawning_cli.html | 8 +- ...ample_parallel_manual_spawning_python.html | 10 +- .../60_search/example_parallel_n_jobs.html | 6 +- .../60_search/example_random_search.html | 144 +++++------------ .../60_search/example_sequential.html | 60 ++++--- .../60_search/example_successive_halving.html | 152 +++++++++--------- .../60_search/sg_execution_times.html | 14 +- .../example_extending_classification.html | 8 +- .../example_extending_data_preprocessor.html | 4 +- .../example_extending_preprocessor.html | 4 +- .../example_extending_regression.html | 4 +- ...le_restrict_number_of_hyperparameters.html | 2 +- .../80_extending/sg_execution_times.html | 18 +-- development/searchindex.js | 2 +- 67 files changed, 691 insertions(+), 845 deletions(-) diff --git a/development/_downloads/bc82bea3a5dd7bdba60b65220891d9e5/examples_python.zip b/development/_downloads/bc82bea3a5dd7bdba60b65220891d9e5/examples_python.zip index 540142f6fb62b979a091c51020524cf980adf608..0bb9bf6c1c3a55b68ad6734939a524daf1f4139a 100644 GIT binary patch delta 401 zcmW;HODIHP6bEqs4>QBnggZ>+v5|!=W;e5ttQcV$@)n8m9K)5B#$zKE79)#OQj*N$ z&K;#wzO^07!p_1%vLO~I3Jc#jyMLY6Pu|(&olOh2W#_oEGWB$-4QeoXLOaVBbs?@Q zowgywTNT%KM7g(SQO6ixdRHoiKg|A~MyJRM^VWD_k?_p%-qKng*13GOSH}VyI}SJA zc{vf#L_?Ub*yR+yIle!?aEN+?&8x5*w_Nrx>%cZ|JbUcIZLoZcRv{w&g?OzMO@{P( zQC*C0>a?KCnO0ajUZi^%^Tl|SoAcN&z^ANUVi*h82))G8X;uwQ4DLaNXg`i*z z0fguvhCW2;E0e~kIgTNPprbhY6oP)^=vD~oN+5`JI!dVKgd zNdy&yJ~Fx9pbitGxTO;l?bxOt6P*e|ffR-jAuFY}HW?%=b@ZPxfEP+x7{Vjj(`xdQ NrqY;H-_uPR6Mse=k6{1+ delta 401 zcmW;HJ4jn$6bEqspOQzfgqRz>v>08)!ATH_lY@f~v>}Rbu?T{i#^{YWNU1sn9Ssf# zYN3iWH;qGZ|DBz?MA78z<%)p~{#cH>(7}nDcBeQsSw8GFAt3v` zxNj9@QwD=*_Ti9*ZRqmr0BjveY0P5PhlJc&#m`zC$d>Qu@{3Gde%Zr7JuFK9#xx>S zox-3(P&kDU+UQpb6X>DmN^(=Lg&BpQV+#`sLH{j`Dg=$B5k@B+r&Y7DA5ZG!$)F1b z>dRnKLFg!hu!7KIB^OQloW&eAsF1}FI_NcvVFjU34zmc5ol{%OCJ9>|eP>J|NjV!c UNRTtHCJ$&Sk45!8UFWgz29q|EO#lD@ diff --git a/development/_downloads/fb625db3c50d423b1b7881136ffdeec8/examples_jupyter.zip b/development/_downloads/fb625db3c50d423b1b7881136ffdeec8/examples_jupyter.zip index 32c149bfcbc588987c88382c89db66d400319bc1..e26841b0373bd3fd66acde6857e8d549fe54674e 100644 GIT binary patch delta 413 zcmXBPJxE(&7{zhVQ41HpT5n2J6kHV1fDR6!7J4a`77EhDFZ@b!Z*n6o8WPtA>d;X% z(%~sBbm$=JRC$pXM6pweQ~bKFDh#<+r+Aj zdVh4-iWN0obG*sFYOHG^sfp0ZN!P*@bRpk zp`5yspi5nA zgTo^VA`WU6(Y};d#G+G4mu3+cg_agt3NC^;*u_^o<9|B8QpGA&teTObs%qbZyY1}N z4A|IG5&ON3fI975tV331dR7}?DZZR&hhI%QyWI$@x(|ImUgp%`#<8DQv&uT~8u%%v z=D!`aAgKC(m!I%rRzIvphs~Ru?)Ia@hh80hiqm@j@^s)iR@%7l>94QxqaJg5)5VKg ze)sg>Jfsr~`rR`AJwv-VE^S>XBi77PUZ4Mj+lp0roH2FmKMq?^)QwHNZp6B_y7;A) zDzD37K5D~`RAPLCt)+-n_PC6wZ{5y@JLDFc$KG>0)K(KKHfj%=ryz=BvV g$L}#w!;sG|r|uOo6vfLhg>^Z}@U3|-p&4dx0ma9Sxc~qF diff --git a/development/_images/sphx_glr_example_inspect_predictions_001.png b/development/_images/sphx_glr_example_inspect_predictions_001.png index 1cfb76358a8ebf954e6d06f2d5f3addaa2c5d277..c579442171b300f44c8980a6750bc3e284b34b4c 100644 GIT binary patch literal 16636 zcmd6ObzD~4y7dAKOl%|sQN%#O00|{bKqVvv35)Jl+73h%MU+;$6{OPw1?g@S2|+-l z`x_J8`|NY>zTZ9feE)ps_uEH(W4&w5`NVj}81uHAjKq?K%nK=sS|TNRSe~M2T_}pC zg?=7h;V*6Yia&&`j-0YmFx9cLJ!_#&NuRYcGcvU@(m%J}M%%(t-_&Fe4 zo}TGv47@U5-1Y03Eo+&dY`JqxEqKlCUYqsS3I&zhW1`fO*EFs;eqzVg1dZ&F?1s9Z z_f?ZLW7E5nUh%}_t}(cL^MsrQzch{P0@{Vbd$PsUbG47O?%We_RqR#A|BaVMO20lf^X4C@SXyy$fFA zIz-K(sGUr->+z+J%P1O(I&tIQ`^wF^Ih&3@-m+oCK_@4tW0I03NyhcDHMWgu)?L+c z0d>iyad=@H506Y==7?sD=w2V`Z{NNxT(U%|yDG->(WBruZw^X$F2c>JEnVPZSQUNJ zz#vkm*gqyCWB*WZLl=6-@kTk&QM>omMbIg zV@}l=|5>qlI< zdNt8u%))KmzF~>H1hp7pyTS0usj0TMw#rehrC7*kp7lV~zBV zz_c{A)YQ~t$B!o@U$VF7-nvyvNJvO*+|H*kR90+C(SD@2k~=PAgOspYi_0BXS1ibd zKE}0c!*Qc+U%yr`QBjeRib_h_Gh-hfZ0srxl2CBs$9^T-jQ%*Q;XF08#7W~JUCZs2 zn=iaPwThKhJxWAS@YLM7b5$HPaL>ZlUBQu&+r~ymJ7=b{XTtXNWhi(ks;e8Zw>sxV zU+Q(%zHmXW$XCcKkzLf`6b%i{l5sy=y+Kt~_34|pZ`=C%n!~FFgs8obv$L~pzSlha z`O`vMTYD=%zmi6}P33)#L(Ke|YHHr{3JN`9)hAAfi&G@1E(Yg16~=s|*|}wlq^PLq zwyj$uDmCThpWnZKpF69lzW(&dlP5ibQ&I%mIy$&FZaj48#^RURvBANIpFMk)n0wdN zHOg|omX_Ao`1s!bWQ5`m2kEA{4UtOR@ALAwxw#9PbQ0A(Jv~D%)6K84XN{^fm|3cI z;X?4ig9i=VRF#!OV@@aU)jNR)Q7__PrwI!UHTd%GHi^c0i`NDoaa|Mf{Q1F$T+$w# z(oc3C@DsL{KYH{=uxoR5H$GyL@_C+;lG3+Ucd;t_zRWOzW(S3`_XSU}Tdy=7`j1$5 zS4ls3@W7kj@bQ~BZytGge7WU8vZa87#_ZFRUBXV2DP`s5O6uy-cs^|%ojL(?R$;5~ zsx@tQ?kp7Pf46dcdZMo~&D!vYgoI&bq!RNUox7REdy4l5k@v?tgM=N&UzubMDdW5O z#l^+HOp4qirp3i61DM$W^bUo^YqPTw!O^I9d z>13H833p{9qi72Y3#;}|Oo+uTd-p2iMXouh9XHP~zVLZ*YWtl#cjWP*syHpJ?iy@F zMdlc6Z2!UMuston5C?Of#1IyUEPMV z<9~(fVE~4l%G|<;o?IBm@`I2KxNy?=Lls%M4w@vUkg-O(9i0Ex149 znimHaG4foXLqXKrz4VIB#*Gs9D(Vsq`Hk!NmN4^uXkuexibyo9Hu(DC!93;pSd+PV zIVl{yPSRx4wryK2ceY6T(xD=qv+R zn+KhpdTs6PRq4)7PFcC`>~Ts_%3Ha(LJ#zz;+gT!$>G|veS5{zJ-T;!f*#*+`1HN6 zFAl#U^pY9(e2?D6P4U#J@ZQGseN&G3c3(yRNKd^4{hZmB;HGHV7Wa(3v`Xc?z~u^+ zLWxhkHgi`}lps6Ji`(bUo%2ol_T}+u6Z8BO6ut(*`LmrQg|`R({zLx2WST&s>U1SxfWc!DK$e*1nfEWxDQC0ZbawZ{JJi+eiETEMSmg zzF;MU3tq>~4PKSKKRz9+o}g1`kzZ?%lq3ZgDfhLzyZc8!1LCJ6z*)0zGC1LF9s;-5 zjjEBfU&vr!|59mVfbV&$t6n78lRgWvY`ZXQ;`clZ|kO?%vXIYm-iJ7nR)gBxVV zj`dWU<_Uy5o0#yV-=Lv#l$KK(oWjDS5e)S@4}Vu(xBsHt^5x47 zkaSm@5MV6^8Af}33YXLEP>nwvmo*-VPEeU{Yns`g%fh_#jJTg;v(toejC!hkx^3TM zPEn%?_C*>dqgWok*`>HDHcB2 z)heN7`tnr8vqSTDXl9&R$#vqsRsX`4Z{=Z$PE+GYE8nda$2~{M(0 z5{ii_nKft#C|9z$P1(kB);|est55>i@3l=N@)U97Vku^13k5;dEbLl#g zcqFB&nspMkiil{SgQCzRdU$xC-gkyu`~g<}lWOp;N%!@Yxpq@S)rnT$ zlq@Xbi~RO={Ki2AItjJj!jk`s@=&OwfbB=7g`!9t_W)R4&B_|xR^Vm$z2>Euunxc| zEghYbnp&ibi%aO#6(qe$aD-6UM-?h6D#{amF*rE*_*J_<;Pnu5P<*_6M{z(kf3^C? zKcKat8`CVVzGmmX0Qr@csMkepmhrv+{@h73GqafCmX+LXpJ5Qmi$kj6tkVC3`7_KUVyXJ&Oi3_)W?XW!dhNktpaGD$cCFqQGb|C zw?!%y8{D1!ZSynD97Q?9Ja1u>S0l-VA&^zSCi=83C!Gg~(;FroRBq>&4+k5O{v4ewF zs~H)&F#|q*`gB;D6;bMuJQCvS_P3RR^V?Hh|C2|KTxW9}Jn1LusFvJh7qxrO9-l#x z1GunYC#$&aJ0TZT9|a~Sg1jhi#{d5k^*OAAp=hrc|eRmHGTrcs6umA?qOI<1}EAtBrmE`5iLJnkR5|Y5z z*O$vp19%l7X5CY##2`8vxOAPc)%z?Y<~DBbs3C+wPMbF?CF?85;rjl0OG}Gd&+FH( zK|GiYrl3x$WjUlGh=$sIOuLXdD3$~ocYP0d@Zecaj`+mJ{rfXY`<9^pe{8T}{Bdjf z#=(SusS}xYL-MF^qSK@2Nhq?DkevEUiq^beO$V^Zu)|we98eNnO;KK6J}NUf_-iD~ ze&$HWiQ%rM%yd$pg#$*0hBCWG7N7!~oqQPg-?Vq>bxpAu8R}Rn6+ON1x4ER<1#xN7 zJPNL;P?Yu+JUKN!RPI7U_e!sHgOZ}6URkh|NAQA`T;U2~G8lsHTbZ|h@E5WF?ksBY z^%j}gk+WOTvpoot(danR*i{zddXG&cvNl1t0AoyRuAAlIk66CYw)>Qz&Zo8O#GKSY z(O~72)zy8mW<4y2u-2TWea9JDu%(frj^j1Xnki<_*6^r@zrH%(usl@SBe*YnMibX6 z2SBrKw66YEb=tJ@@s870_`A@ritrPx%HAMXvm5d8yXVfE7y0UyBI?pnFDzioPU%7+ zlk`PvaUVsW@4LIu$ew+9>XDyc%=70PuHU$^ZP%`oU=ogc&81upna^D|>W(>_Jk_C_ zODpLZ_6I&YbdvxR6udoYd=$lchobL1H_9Sn_v+mF^PUeM2JO);+Om1G1P~mvh#enr zTFc3rIke>o|1`uJ=A~5{C>=X?$EL3-2E>%;(s@+M+`X46X>u!9=Q9|ze|nnuCV-Q0 zIXiYp&tJ+aXJeCeU^Ok(a%ztF6HO!pXM}FCzqP1Vxn?;7<Q}#vc6Ol5X;o5IjtmTJxl^2MTu&N~-Egh$P@Q2M`pmKU3~Y)(V-Ajv{O5BQTX$7R zkw&Yj*|a+E_OA)ix1Sr!CTB!@Ij^9gK*7Nwqr7>ufPe}D&U$=;qDm@!->w$FnDJ{! zoYu=GbW`?JkE!)w=Sln1DDi`X<+9zw^`>#v=BOY>&qVk6~Z0LBno>VoEiITTppL0Xk%1;m07dx z^dhma>N%9S2EB`(jX}|%&u;BIuRZzPz*?1V0y%Ssx}~#u)21WxQw*9m$=oh0(p_k% z+;faOfhhNsW2G|j?>`w&hxyA!dDplesjaO=Ovxh)!7BJ!YzDT!i|M6BtSaVoSa|rB zCF_J08TS8hxv_K|+UFLqPDPz%$n7n(>jPasn+|rC-f?qN!Z?K`4f6G6eV?0afETZc zgSt7(xbs9YCKkjjLQ*Z;DKjIJcPjmZLE<*tC&oNP1PA+kI;w#--Q_Y@eo;{sGL7G| z{gc{fS&s}<#mA3B>Ex)bcmM>*d_(JHo97}%w4!*I4XRNIgEi5h3zpV7-OicmGw{G5? zXG|)3&Ji?>oc~JO@~|Wz`_a>e0}Ar4C3M#&T9>WM zDH=iPUj&cev?!>YF31Jt&GS*rX_mQ^AC{2d77$2oni?1w;CGt57^9YWY}c+`OYGPw z@u}JG5?0Szn}>_*2Dcs6a@dF#73XgS7raxl9t^6mW&2%)+@j**xFIdwA0s0w$tI1y zdqpX}`E$gnAxzAFL*AV+n0=3scO8S3D(Cy=$ZPR;EEeuw$VKrn;=Lv9pDf2sQrp&q z-CabbT$5gpRsDlK{_EP@z&l-q-EV}37W6B3mrn!-74|i|$H?|61S~VXq#>wlwUs)9 zLg!*Pz%3S>kyj@bAj0LSW5vIOaU&u3@_EHL_3xLqQ7&h(WnDe$=|x===@ywY(-U`Y z-`kt!JFkFuOUYFR(QsR*vf560Do2joxsKuIu%7qIe#Xrj3tji%Q~ORERSutvGTJdo z_`}7OlUeWRke6Ja7viU*qN5*iLVyv{c2H?pxRes7=9EwnKRklBDuk|8mnt8fm|)SM zrPcxs1U3PeaY~hzmKv0Yy1mTveEIUW9Xpi7#l?ei zsS-ZS7kAv4^yr<|N|Qm^Ydts!f%_ zaT%Gc?cWKdwr-ydAu+5bdXl@}Gip^NR%_N*c+jLsT3Nk9E$wd1ewlm)B)Q3nOHd3k zEBx~a-@@%QsGzQ{t~>MP%ejeStZp@Qv(=c1F?$dsLwG-E8edymEo+~k&PGN?#?PoL zD_1?zTI50py)X2&N;}Dq%}R7s_~#^BTBiS&`J39adpDnM5v$5$gha`9{!5Hz|2zU5 z#-wDO#l^`Pd|+x*gkg0oh~u*4W~b8~1N!>LP#6NNGkkw% zH3Xz;2wAa^mWWpB!FTq}H8r2Z{&rnk!5wyCaTQR~G%tRh>o`=YGX9>|i9>1|FK;zQ zIz!{y_#*^{Dl0$kg>nm#XseJ=?H_Vf7Tw>McNUS~^ zx=bL`k2EtG$AcM_y?rZjsQo;C;qVPOrey)U0i1ckIoIg&;D9O zT+lB-@SISvlo=3~A$*neQC$1)+axO;9hKw$TjJ`fOm3H4r)%)RT%_UpTx()*Fk6it zN@j0NA0Hu{(O(X~j=RZGdNgCEjvX2L;>x>i_wJt(6Dp8b7Q2-VZ)d6ir`9 zToo=+qpvqhIy$Swf>{@8tFq-+S=?=}6vtr@OJxl_ELysbv5J{vnpAbVsfkG}T3LO|2xUM(kXhiLB4Xj|(j`I-wM;%I&+uqM zjnc7NUL*%G9pngRjcx1K=O7Y+zcY~hFS_F;m?J)9&-?d@o{z$$3MYjUbRypF8MF<(h7@yfAtf5NjUj}*#K?ly z)K!}h#;N}Yfqm}%!XrnI8dOEA9+Q!&0%L-%-Ek`(THbtgHbpFI=7hlTUI%m~eWTkZ zZ#j~$9G8@oo0*9;1kEt>2+9pm;Fdkt=)F~yU z5V$}liqTi3#}X;Zr8JV;TF?G5rrWN{#`MTz&Qnv9>^;f4#RB8?&AW#neAUzoTXhC5 z-*_WR!rdo!nr)L7_e{CtP-GZDO;-aTg|VuOUIT5?vp%zJjz<>C5px8&!6Whqb7KN8OYqs zH*DK>)T@+}-R<_yv}?kU%;wFV`w^rTX061!;ZA6gatU&H6@w19$msJDCeTy)mMCG&8zY^?3fuUypZAN%y_#H`h+sEC*Wc zpFH`j-XvX`H*?SfFwg1z$d79pIZMar1)=dl{3P5z-nN8#WUo z?Xy><@!9Ew1Fw*3!%oQ!7Oqoc-i1+D=Pj{t^~);y`ah0(x-tyRe3DTraa9AwVsW5d zBTpxrkeHoXEG}i&{!~{Hk0-(Is0bynDkixp63<^m3cs7jlPAO*Q5Ybm1#?cEr!-Iz zQCP5`pfBj6td`vLrR%&ms}WAdp<3vJU`gwaO@D+b7&&b)(%VSl4_W!jrbo?>ivctC*Q1@q6%5t<_M@1pf$?_cE9fz6&3g z1r_YPJK}DOY0hQyzh|t=Jzq={E!3RWo=cpA{?ECZ`G%d?*jT7yU!jds0OA5EEAU2# zAO=7PUo4Zt?wPB7D-9}P|AHlp7yk6I75=qujQI`uMem>3x9%LtJ=^Q{wt*!~ zs5rAwryL8tYRwuh)4m(dLB;3eC_8)mZkXf*((ZCCf;qs(wM^m9uiQ)(kg@ce$WfLULYVv<8sbk|RsQQI@cE^drmTC4GxJQyBrD#SLJJi9e{~pIZG@7n z03o4N`$<_ts^!qPumH^}aHh{vEjyUy9$aD-bDF$U>pJONHlM)uk&o@ziPb^L+bycqK@y0Y#aUlfPdpK-7_t>DRAa(*uO6i`RB7-NbZ*>O6Xn zRp|L@ZspE*w^uUnzHsY#P|y(k2H`0wHJxQA&bH-ydW$({k>A5W6jZRw4UE1UGygGn zvFVf|kedj{&U^cMOCayRvKzuD22KHiSHR~I`|jO4wHdM8b1ys7`?B`D*j=3LIAP-m zC`e|?TsM|Ph{EU_DwuEUQZ2(u+b)r8C9p;<$>{05b^Ag|`4F)iB)lDzm2*~?VzsZH zM!!hfp`KE*hK0q@ur@xVr#HPXDMl;1N$2IMyF7&((KTz)fQ{fkiP^!$mAluhMI1(r z+c9_~OmfCnm)H=E#Wv;A0=3VdKR2pYw{$apcWZePX#1dopL$JAO-Y!%>Ty}o(-3*l zJ&b`Za=mSryS_i?BWxX6SYKaX6|a4~9>xkco{x{nuVEBO7#ka_#jWe7k2KjELv%gr z)wV*N#!3OrGi|8qG(T$s9?7n z37PR9ZyCrBCYm;D_GJv*gL-0Mr5YM4RebpL zR~R;ZB;u)0TwI*-=Qr2)!XnANZCkwC+FfsK3i+#R0D8`2>oADFOM)k*URt2>0tP5g zUhDQzBHfeqHx8c9%e>P*tUan+kTPn@oY*2CMafM^={ z`Ez%maB&h0vh_%29z*AmMq6VBk-_^ktDj1sVHy>SPDIC~rPVbJ_aryhnPiRW5Dj8+ z^rwWWJ~2DkpL$$*vtG=dKYu0V_Z`||d{52G*7#xAi+na*TpIyiBMI%X9;sn8Ygv+o zz18@`eGZ=3PeZ?kiKzQ2oew0~O22-5h|S939)4MC1Q2sS&Fb5iH~DfK;a_BTo_qst^;hq8kkoyF$D)%c4~i7Ki6&ApS7QoSDh~NYW0DCE`bE$=@%bq*S@O z!xD^f8eCbMc8wI>ha`lwWbe_vk-C}Md+6G-R`5-R*h$uhXQ`^pU9_~cgcz;Lph0nd za<;d2PT68&{em+=AZ>9@$f=Rs7Us+5zusKnf};ChnK%_iOG#mM_f&yY5#Cf8D@x6AzNM?%=ImsF^|7N8&C5V#@sf zbB29pRO0HkJ@czFyNT)uU||O{5M0NcQV{06cb>h{bg^{_=+fMlg(8e-4eiq_L}_g{ zLa``)arP~IX(7NVoj2K?!iQW2wriv*7I^ViLrH-v%x^z-7*a6T@-LlT(5BHijMT4DT((so!Pnw+88<<&FpfAG!(b*w3lUf?`qzHsY6iUpu z8!RR}NvmpP*$8k2;)Ph14H9QyZ>yLZX^v~nb7xU_vS7CR@qS(y$Py77TNQZV>Rq0< zkKhK3#>~K?abxStUbmB2#Eu)GD4>xb(_HR+x=I?K^8yvB@dNRfL0r{GHXZdkCrls~ zX-_bAMX1DS8q~&X$8YOR0hBeHA0)W~sVNd)t_fPiAb79w35F zz0!L?h(8oU%}o1|$DBP4sR|et$G<+5T^w7Ku#13#*=J-zGOP|jrj`MncD*s6s?RjC zghBOya+?Kaic<=NwcU@`^NBn8D))fH?7g_syX4G_La5s$RjuWm`P!2zGM}EjMBK}e zguuA$N@G=+#RS#4T+0N8u)OtG>3xe05)FDAQi)yJi$|j(SJ zQQRXeJBpaF&a?MuxRFX*e(;vLzkRO|ky?1OC*zY$n`3+GlZo5W4hFy)-Y8V!M-mT8#%X4v4sRyb?#Uyahq0ORR#t=BJ?O-+-#GMiiCHaa$@55NJE!aimgn}=>J1M!$Ye0Q-I;07q*%<1v!Cv63Zcf zI>~4k-pfmyPgS?>b1@0F?Q2rYxY)1Vg98mo0V;DkPQ5sDxyf-vW2m$Ako*3hx7aRy zT~7W^at%Gu07c);+Vn1@|89aK(iSVAeEd$P_)7yiQ-fh*N~mC@+eyhox&%KN4R~_u z_U+sAR61*kZvdw~Duh|OZg2LNLq~t@d1)_d9hr9RM@*Km?LS3+7k-mXP?pd@=l^Pltg5BZAWghjEK$NF03?s@ItlfADTYtqXlt}y-Mg0K zogfBMG8dz5z=gCKc%^cvj{|?eC{MR-P(9jyArrP)|uTuv=HN^i~(;5htr-V)~EH9HKn zR%M%gzLGWiWl^I|z41Jy_NPd7SE$Kgfjk~QYF=)%y=lJIL$0s@QpjETN%Em+uIAXu&5 zi-PuGoAC-<{+A#f9j#zGNX(@uf-4UCe!za={S#n{n+`JTXB^e;d?V$AR{N&DDhAhPJsu0zMq z@vflYIPiy@AIAj{(MLTyN)3|6>y7q~O-w{#P8{w~1J~|jnx(1`dSX}Pe)rro0p&ua zd%zi6*RK~Zdmp#|g#Uh3Vm%8z@$~t8wu|C0&HXB>RSExS98YE^ZBXrLP_}p%alm}# z4f6qr(!1MATMM7=kw61e0qO?v85_Iz zIi7^{@$73DN9Z|n)zWQZM8`Wf!YkDoKhxjQ*2bjhIopkz?E5M~^bkg%&}mULsW0SK zVSeG%$NduK^s41daoDAY&~ONl+KpVv zO|#8}g?Oq{EFNddwle3lZ1Brk}QjC4xba}JgL+c=AwGj{s zLaHH#O=bZTU*OzC%MKah_ktgZ6jO**Mpn1kT(JP;@~}}q<|J?T)Ftjo*)VX1)UuUS z<3c1oXuFe07J$F!h+6|FCtZ!{$%ObHC=}=hMm*}(`SR2V)neCll+oolRErB@!_N^J zM0Vx;Mi7PQXbauO;{z9=;*cNbB<+d}d$UZNbyLuqdv8f4{@u4svZrjO#)_RETlHV` z(88mq4HWI;ho1`0YR7ph9ksJR_8pLjpCec{Ky-LnJQxY0y9^(){LE^aIrMm{$z4`- zEI2lESk1BjJtOH*gEi;fnbiGs&o|P!boZ|l7dV%wrk$u(`TYHR^=ZQ405!{@KatNx z-~b4U^ixt*VchA)+f_r=TBcS)p?}=yf`hkSlD-CQgE%@niVrxzA?5 z2$jOdPLuv1{ zlMs19#)X|-dCNx_FO+V2atAdburL@DIk|rzW_3T?rd=t*181-(hRdi%dh9o0 z#vb!(#R3ji2;0V@jgC+CIh&r*_IJk<#!CE(u4tU0AS=!0@Z$j3oSJ&j#xYl}(9!|! zMB7tlBD8@l9M{%%Kr}?TOq(4JCdUTmDPCav%iCcR?rd=6WJNn7@Vd&w+-I9S8>Q}k zHLy`qnjYxlc#O@#TLU3sVTQ0$2*Zg7;)>XY(B%!l0}y2uGdf=tSu)I4%MRYP1f1^T zbslqVFY=2bM<(IjMp9R5P5)$Uywu@`Nw0Kv=|Fht#3v;1+xDsxtOxy@SP^jOj2zhr zI!@<%gFG-1Wgwi0(%#Uw?kqWgbkwa3$2crhC&)2axK=-5PHDw-QZDQC^I<`q#ND;eFn*I)ul^+$ z9(j3H3tx>r3Q`VMM4f+GKG-G`fq)9?#3p|n0)%|~$G5BBbkdqhNz+To%End7(3@u= zA@y-ot`31hYM_)nurn#0Su-6#>;K3pjGt8yfcdeO#2N;!MH$$6(A|0R5C-wRX`~0^ zsn6qR;aIoUOeFCh0<#S-+igE=bdY{OGh&jQW0oY{1~m|joLrP6JR3kkC&7O&j$BMp zdFNN&Vj05+5>d*r_h8y_pemm%$j8kA6*$YpYbb_v^mq6vMYnA?!(S2*v?3cQw2}B> z7+m#06a7op=fOu0;Nz9ZxO#QOkwwGDgjSL}a{tw6nb5p3eh}-v={_9c)G6|fz;WAh z@P+KNACq2hasjdwG?%h~>A}q~z#dCmdl04+l2ML>r4lIJsf0izMBQdte?_p2oKooV zayZaLAj6LzW@JMA%aTUn94i^#YEC1I*gtm{kd zV7t0)_k8l$YiLTAEI+8;hdCyh@N=Z1LkRFF)OqOTn@*<)6qHFdY+ZOAT(|Khq%Hg%m*{o9|EXP7qp+A?7}E{1%$>1xz42;KM~L zRf1Up)Kwd7fPfN8OiWDUZM@FTuHhd0rlULSN9nXV7sdMGk8IRNSIK4+od zJ{8+WYcJS6t$Pxy4IniB`CZbu$ysykAD_inNko1g&kLoY-~-fECqN3c?1sZ zFtM|>34;DS`JWLHW8%FF*Y>4V{dk|UubS51`q_$IE067H+p|j6`VHr`eK|0$x;vG26!Jc=0z{C4>cK}!(l1XdiyUjlX# zl=$9S3I>A6zeMYSkA$U&6$FvE_1|7%YM4bRU&+)JbD2&&E+y4zEvn#0MG&pRzDB*{ zy_NSKKJ=~pK0bEMjfJ3RlZbu(oT<_X_jN3Kf0M?(T3u6U#uk5)l9J+ZJ0Ej=N$GL$N!h?(EyKBi~LN6IHgRF8dOzpQAH6I?613`T0=Jls+AcumXP7$#F{U zt-xXh?;vI$RmW)d4`mN)sHph-{Q1*vcHFeHvvdFc{jv@%t|B`zxQyE$lMfWytq(e_ zuOB}$V*Tvdv($Ss@A2$?5)%5dva&jFFL?!)toh#9X|rEkT<@^MklK|id|%#v8}t*pJydb%T|iS7dJT9MYgsv^nUaVqgT|d zwEN9xHS4-F=RZ-%-c%%y+`GHDk+D>kSw0)*_-7WYeMyWGuAzyMr>2@5g7s(4YgUF~ z>b$!#HltMevvRt#J(7%KmG3(zN5$PXetpbrvH!|9vyB~-Nfd;K75TL@XCAYg_EkmQ z;WB-JxmS`|Wchk0r!4mUJ9i#?|NgxtTi(@x&B_)6yOY)n62w($EX&=ywBpmPH(4bg z?oEGzAegM0o#e&OqxW&tSVmi;*w=Z7T(5Y!zKMTf4bQ7;L2? zJcdtTlW*Nx(b?TClI3ojeqGk&w(|yr>#&WMuh9#h4;u>#3mI8iI|cmsgpOkB?cxC1c%oF|~x2ua9@zcYJ-ERU2TH+xyT4)4p8HZ9owb9^O}P zo>2W-`aZiXkDolQ@fWu6zf|;mG$%MAD(cLahuc$4%6BOSik_)RHzt%{iiHW8*9gY! z$)!YvS}d5>%&)GlE+{S4)X}NGee9)DSXdYyo^ZxcOFOZ9Os|k_A+kYuE%= zv7ZbmWKNtQQv>EQQ7|MKdjepu= zpgX=$RHT5^TAj0w^+;Wc0eNco=xiezQq3ctKHb#W)m4+4smp_(W@RDA{N@{PtXw1L zFr*uIHeHE|X5D;qy9)+|b-9H~;8H$CMMcH9d9%ha*2v>dV=|q>$&+{V-DZrq4RUo6 zQ%)U^Wz@8_qrN@aEAO*MDKN6As3>c(RC4LvrINrXO#@f;q@*Oy{rk_z%Kpa5$;mE@ zIn25*4KMXRQI;r2Dt{Ib5Oa9=ohn&g_%7T!EQjq(TR}mEK_=;^3B`($dq5o1b^Vg!P!JdewAv z{4ro=p_A(B&vIwFSoGXxI(^67yu0M3>a}ava<(AQn9Z&b zN8IK!%*@O-ZQZJ!AkNRP!ok7e#oYdFZ?Kx3ot<85%!01!=c1Al4M#`ECayhu!lUwl z#67r~^42&m&d)gY$EA<^<;_bUJ9ey?b+3Scs*#bAeZox|`m7{5JYlIkJdEnZ|0-83 z&JD)^BiIk726J(9t7CZmUM~UzUCNUvalVWW%$6!Il>T&NTEvaia?%AT>bwA2d# z60)?6r>0}J`&P=Wm3Y*)yQDhHzF*L~HQ#CY)2C1SIXR=7p9ARCr z@bG#1`0*>*Cwoj=^RH(OW%Z|6w;fm4&@lVi@y+MWZyWbU%lq*Zl$7|gi!aTO`3sr* zYQ$>2s;jHZ>YqJ+{P?B~8+LhqeD#IZS)o*7F4k$h=T%0AXmQ{n)$;OkIb~&sU+1{f zm-shHB0%(4lKAlLbIa1=RCIiNO_M{5o>gFM>;dtyA_1Q_dxIR0BTG8e> z*zTp1ZmD-aej_&DBVdwZTzY^C*nj@ns4K|?%Ci3N5Q6{56US!@3hU7ypYC~ish>Xm zNJUjO_1ajM{N%#?SgFvZBBoEDKNqxFo3wqnO*eZ4>ue*sZ9;$5s#QarI0*S^jT;Ef zc-^Q657r`nqe4QCF3e6;-d(@j4$%1iWI}Yb%G6Mkko%&Gw6wIIO=EM8b3cg}65N;O zT88$Kx2VA_+{Xf1Oi;xAk6cT3n&=DTkoVmuDyo%`JKHBcXW%@TIt$F+SI_q(3(~SovtD6zEUy{YgoOp+F$8{v4dqvePV;D|HJZ&xH0Z zHl|w{0CYv4O}BKK8%!56DtJo0@b>LnA?L}1HeS!(UBa&CQJQ5_^rJ@%pT2yN z_X$@Hj&HEa(`(AIuS7b>=?X(J_F|K4-p&CSTjzV0vb8SB(0-tfuh?Hm9w|^xNvQ@4 z*Jru*kaepEsNY@|k_7`5)Gh=*c@i2JxQz~|kwy6OBX(Dy5)xG^1&Y4nN_eLt((D*2 zG1IY8?^@@xp?zD)@Y?2Uq#b^Lf3TbU^?RrW}9DR}^*gZXj$pcN*%q8r-b>~jBj5jMQ3ma1AapFXbD)>~8xUqA$&;Q<17!^fyh&m)*L7}u zyiz&lN57#DDNPLT#$~IbMMG|QO1-%`#z8Os^N{w>y1L(d+@`JXuI5^Iih1D0P1L#V zv>qn*x$Ewhc}S|6bQQf|{qFSXtTAB#MwISNM;tX|Aj?9zHwblBhQ z_7++}JU@m}KM4xri5m6Rk7=s=Ug@8FMbLqQict8Woj>AyWDOJ1Y6Z5jES1D5$lI=4 zCcS^kCDt2hNAjxvt@4n;XiQvRN^+VoLv)$fC7#ckYIYX7Tz8QCb)v62T%HQFl-9!| zm(Cp$L%NTT&r?6Y2vAZkkPgTRS#v|#tF9A7-Uq$>#2kNrW?aYxJp$^_F<;5amwzRn5)E5=ecUw}{M(kxlQBf6EIOR(FNm34I z)n9S6t{HrYUDkDWJhNvmbue{-AWQ~nJrZ+(hva>(4mDmYpE7SSpQ9kk>emzJok{d` z`EqPmall@`LiJ&B9L#}%%Locn5H3==$j>3K#)-)p`LISO`)XW8Wo3WU%D|wY_*C;+ z&b@m*S&ky8ZhD1K$byH|M61V)Pq%xUkF>tGAG~tqicYH8vy(7xJ);FAxSUSY!eDeeGWSq{VTGh^LcoSX&Rh9r8wLY{i=?d-_IwffF+ zo4Iw^WoWxe5wp6 z_~7o{)7T2&<^EJZUtj&7)bz>^UO>f4PEO9Mh3*$%e;H46ul+&P#p@l0fU{3TBt5bYM>LyD1H|8Ehj`sX}^#}f1x6~Kkix!^;#C+DVyH4!`Y=~gX0 zr5w=AL`5?WaZq}2uO}!R6(9hqsHhxq3j{%+V>+1MjzR#Ta78O0AP=MnE4!r+AC4%hy7uds|Y(v1gCXNqXYQU4k}57D>n+s;Tz_JuNM*;k+OQ zX69&CaVN*iE`$jkawv0LMuwKS^W^ySl|2g2TgykM2EI$tt~h7D;wa&z;oOxFRof$^ zVLMD|8C!3@R@|O?BcZc~a)-yBu?`_8kw)vAGM`rxy7?!|uuuOeTwBxa@HlB3C>gVO zMk!S?RYt6Fc5$I@v5IxV+os^kVr;Jpk-rajI=SYLfQHX{u? zov_|If(deXnaMwiY;JM?D6)B+A;)_ubybD$2EP)!p8e8$19&37l|0Qz3HzNRM)48( zw8$EV_4F90&hP&Ua1IYFbxSU3W0hC0UX3mAX$Dwx8g6l4T3AM$yJa5QX=dW`v`*lf zKOiT!cJhg+s3@Hb>sMq(0mO?@jZmVSb)O&oLIR8Aw{PtmEYeLs-D3pB&^&hRIxw7S ztrgTNoh&=krcxX_fY74?>gwvUK6vmE{#+5(l{Cbo|CoWO7r>ii0H)&fveV)Rfg3b! zY?6HsXz%K65b%gldRYMqC8=6gmJXy{RHs;TTd|iU1=rVamX>^iI{4th11Ae;awZIu!l2tqFU6t^ zzdX$9^gTNc6w!B&D?X!#q^XqvgMDs1yu4OjRx4UnP;@wC$%S3F?&{n$1Rj5AxBBi2 z_6XH1R~OmUbaWi^6i~}(5boYF;o&DAKYlz>zkBy?bu~4+^3tbIpX#Q#qxv?LVi&4< z%0n3;f9E()p_m3$0R56R+QY+x+VGOGvH9e{ckTsy!o~A1O;qW^h1b+;nOaBN2@k!Q z0pWvS=rMD)*yGvB!I+qYTpggnvbgl-`VjX^moDYJy@!;G{5mQZhy9Kt;qO1fW;Gn< zEei^2YHCkr&Ae6#4n{$7aa^{<*Ix-(a_)O6&+Ln1H>t^V>@7a2rPnY!(Jy3D79!8ujR97G z-d15zeSO#F%ip_q4^X_KqZC=-mF&XU*w{<~6XBl^$%o zFO>$x@fm*J$H^(@JT+9kQTfQL>1jtVCcX~<-Xk~uNg(zPqavPwMv)l{$|Bs`muH$ZosCazu@e2=P7p2b<0>@poDR}O{X9jn zf|w5K(s%!^rt7{cMG0wPL`pGdF*!59+IE4XObm%KpI)eYR{l4|42o=PH+ND^nchgb z1C_LRgz+GevH|!>%yl+J=CkFHsunYspr9HArjf68g#SZ0cX3CdNI6Xo^p3U*PV7IR zm}FeadVELgZY0yP)oL!T3JaluPLtn_5u)9bqopqoM|||82mh-dWEmQ6NLN;tTu9-} zmDuweK|4)}$EHvoW28|VvA%0(ooiPn@a2^65&o;M->^w+d;Q@al@E3H5<&PsARnCn z{ZTygi0A5@(a$V$myMi<889n;F=Mihe|^JM@SU##745e&d6owQy_l(%lEQ=6pu2 z3MQpjM4)i*o+qD!_%5s$rndGAxHhC0sShF_0%6#jZLg$c zu*??c8hJwZ$hdxVeV93}+?qy3T>RN8S=Ssc@8L~i*OBd(Y_8sBfrHGh?b3sa+r40+NstN?6fSjLUENTL z%BL(RvDS>GLLSqS8CVcPgcLI6^Zt`}{0m|~XrOHUpRAge?@Oibi*Gk<*sy8SCMb{WIp8`I z&FKf^NwpkVy*k&`8JcBOMn;`pCs1OY28+YmV$AU^er!6HukH=!L-Y<@KrZ zkR^xqvEXbzj*jMpz%P`w^g_Tm#eK;Qf>1QnQLkAA1QTf~o_$?v4R0#d?om~hnjXX& zofMPD?B9@E_v|@Y8Ln9QV5m%;;01z!sKd>`tv}Lhd1WY zuXVgOq^73kJa{lMEN>lVyguDKS4ODhs#oq<+GKq5XR{I^55-JFQLN^ugcDuJ0TD-t z;<5SpN6o({8`Z??WygB5I(_Xcdv#M?MdgCFuhBxsUdbdFh-Ye-LcJxDAy6B3c64X~ z(r9RC_*SP`oHa)Yw0G?)4YsoHDSPkK{n8;8n|{`z`C0@jg7M2kw&7=lP?NQNVqu^< z%-@5^^aa6l*5}A9;JwI#xsGr3&%kzH^M6-NH~tsJG=yDz^!JU?v9VQB^x|&-NqgZ= zS3wr5qeAA;Rr^~Oo+DF24#w$RYbd($1{SZb7ohH&ntA6TCxbU#x zvli-n2rBYEa97qY|6wZz_`4qeyp=0kCDmo(NmH>il3L1c(R z`uGn`JFZ_V!sG$!jk4CB^%pRHxHwblE^Ly34GBDCyH@QY8^R>J!};*lfsqRw9u5c2 zrVYFv>@E$~g!<}mKk3CQDbGGQQI$CR3Vs*1QIvTWJ?E1G?DXe1x+k$XZHPrEAg#$W zp(lGq@@5osChy%_T^uCda9Vxx(bK1I@|G5c>FRB5Z0wrsYqv&zWhF%p7^?k{6(;Jv z*(BqKnzC7<3s~J2$AbI6NG>MjqC94$fx>V>_OQyG34dQOZve?k$aU5ZiUiq}Fx&A& zS;6n(S`25KnB6JT4~6AsKUOTlh1LYppp}!8Q}DaACLw3iAF5OY9vG9ARd07F4T$~~ z@MO+aoy2q3Vbh$?I+B-))b2W7F2l@!@l?(dn=0%!-n{vWb4H6+ z5W{EtViLdu-k>YM9A*L8d4funV$mR6**TMXd(D_0I{3P8Wv`%KPz%?-eThy}Ll#i{&ceFP6f&#YM_LKtg+I-eA}Z^%9TM!Jacjd) zs=?g33zN0R^x_p!a z1VqvXS4U4&lHnIvDZ4Y{9CBzgMLQIQ6O6z4pY`90L|X5t7u*aP?nXw>-T45JJFTr|2+>|Rk?P2hy(;scY1mvskUoS>95QvC zhBCVaZMzhx)W2(@K7%>-En597mtiA4R5ULL>b_VKbr@>o=(Yum&FbdtRj?f_R{duTHm=Ei& z9gab=9ymC4nW}PioL16tvV!tt5AaupO+SPCM1lYa0Z?Tpnw??e(5c_niFGc8cl-S6 za5J|oITyRmXPV6MUnQ2aK4nPh&Rfs<;D!~y5Richrv^O461ccjXs~!8lHd7Ule2-5 zQ5f0-!X+1am7}Ag9o6$T-W})x521kusNZawl*R$xz8&6Q~yb zz-#eSH@Xi%5hA@i+$ZHyG4nzvuX_|eP8=%!`t@rWxi@*}VG^_NdkXa=43m;!a~Zi# zwhk6 zm($=9j-Oqr_*4(fuuH4oQvB^kz@~I)+OgZ3Hr{%Z-V91qcwr(3u19s+lJg1#Pzel* z|MX+mgHv4xr?w#fcpgDOuU@sP9B^FG@4{hHEf_~9RTSKQGzTTr1Lq7cw9I#j+~FK^ zk98KX%$d;8yYh+AX)v`GFqvIe3~hva6#d^k*{j^QFx4WW`)cU|Sxb3M(7UQ@JvpGA zGhQL@gfp~ir+%92+*OXfX!U`?p*<{qc!0)eLx1xFD4UmC5}G?4X)&+6m+_>2e|Ef#6nheAfSUqUkKwYhwod`Nj#LZFp zm*?ESo0w%de)mw`Y;{5k+RciCB@K{E%6+-d3R*QESr~H2Ywub?Z`c$t+7s&CH`5(l z3p0XT_vLY}bXhqd#V;T*QNWd8g7lLG34~o14G4J?MFORyXH6dRwVFM7uR}vqFMiw5 zbmhzTiTajn-P;$CGOLja)~a_cX-!>fM0rAyQ9pI+E_^NKBNwbt3&n>=h z-H9w+pX-_pkwiPe6?uiUWKr|UVW1v9^Y@QNo=no8gO@Vi8xh=xt}Q;b7fXgsR31}T z=tAgwVbH*HsanpF_H&Hy1;_>-asyD*E1vFG6*MZ?gt5z$2Q9&U!JIrg7!2BiX3=e^ z_z#02kC)qcC|eYEm08f_5j)vF2yeS8dpI`+O}b3+WqI2rT(s_Q;f+rhsZw^IRRxY@ zi7(1a8Y(`8k>ex^K`K*x!7mNt=L`U1Z}R2qzoL)mF{Is@xEs$VcNCCsqAS3v4~=xp zB9?)yj;$0V8x5BqbN(~r663%IVw8g=00^)~bLg|ff%1!{d^b$?6Sgc)ig4>?sSW2$ z1!1+xc{V|ShPoo67i3_Fd^*=?yCw1bEe2cku7Q-iMi$wB=#ch0PpK_)Q;$Bjod%q_ zzItIxe{;H)Zx~?QNpvM7ACO1aTNN51$zqT*|Fe)8WVm<3!e*r3rtTmCk2{B6mSi#f zuoJ_197hd~#%e+KZgDXHb8)n()uu#miu+f;T-?|0*1 zbyS!(xdnO>m@jcthG3K}BW<2+X3+f1D#I6LN71*~PYMExB25<~`Immr65)k+3j9KL z>4hu3j3%vqbVN_gZj*G=g@Ewmw*!`+8v{Nz8sux{-$C1GV=e|iymsfjbk8C5I99?h zg;*HjG>GO8bdoa}ziND7Z`CY5)fh^{>UdNy%P#X`Fj#8dl6={Uza>S8#rN+#+PGIK z66x<213h*Fti2k*2N4TRoD@(&%;|m|ocW)Ac~3vKnUoD#i;@`#LTJ;q?w45@3Y}Va z3t3*~*3f!L++z6Q3RBT{d{Dq$=HWJNE6GSW#AN4St*)&Xlu+a76M0{|5Y~-zU#1_ttz75WPO}`}w$5`XZ)p)DCmlV` z(uC^fK42`sB}g-KSyR9w5u~tzISHvFT$%#ZoqY{^E5hLGJsBV5pr@CZ4zYYUdQ$PF zm^#vE0>p{&X6NCp@ilpWC4U+PvNTR3 z`)p!ik*DQj=i(}~Tb1@PO9Y)23TR!h7}?SW$l8~Cbr`HWIwnT(X?N}4E%1e9i+Zxb zsz3ia72V<&gVU$aMRG1-QQJ!n4_8sq9|_r_@AztHy;iW>Y!ul&GCpo6TLC;?{nl9d zruyvOzX~|tEd~L7mr?13KFz!e6sZJ1eJ5EItQvH)Ops{_FsT|#V4QU#?{n5vF8I{~ z0-?%0AtxMxEbjyMABuLg-t@eMI1-syG-at*q$?L+pZm3#K$WyWPLRqGoTl^BqwqN( z5j0fgI6IKdDtncK$RnxX*OQLy44~X2xisU=9tFJ}#g|X_kBYqFXz+1bzP;#1!a?b) zi3Eje=2F-A1Uqwjb7TXtMWf>zilkXC>ZwXM4DwvY_p4$#d7E)dn1qm>YPTrD)r>l{aTx zrRgmjo9p-)5*o~+t-$`vc84A$1YzBm?tdkFyvPC&XI9zOpu1Re)~XlzLBpF>e0=01 zJqg~ZdRg97; zx@c*6F{fA8d6JNh1bgrUWoSqFBgQKBe%!v!6Rnr;w7hcu9LX&P%EK4P3bq~{ChY^? z-$JS5Cv`JcykH^GhY!N#6H)t^i(ekrL|!^`>eQ(wfnAXLqBQldeX_Qne2tQ8@wfK|N6L ziB?yqj!mcRRR1Ws;!#udYxlX#;f%6(~Zxwey$z;bNv zQ9VNipuW@KEr!wn^i-0l4uA*ZswpaPeU5XwzVo0EJjfcmYi?fl^hC1^F}@S^Y3SXU z(!!vXdnE*q<%V0>JS59ooJ`N_rIDPz4ra%^973*yYtd&f79r!3ZJ-#6Ky2jq$Tnb* z&;TB~5hgM$xBPlVYI-$O8rdz3w+Bv6hy#>(;_an;XIhUt>yH;{!-wtNaQQxlacMn4 zxBJ#}0W_aga@1`mqXMtMw7L&8Wox2Ow3;K_iNFCPpME zL+HU~C6B zfSa6$b96w4(MO2fHASj&Ko^m(UmstXo6^MDRq*SW`ZK;x&|cq8o+Rv$#~V@r!XzsJ z_)up_dV}_|3E1x6Pose-gRK_Chx`sOuvJ;^x%ZR{(_bWoK}}qy+dOC6=-ul=T&p6_ z%py1Z)B51WnKM@OSvm+HbqK)M?+x7iyI2I=O|j`LpdKVu4pO8D*)?~LJgcdEdIV1- z-A*_h(X~pnqwh$q9gU-;m}8mQxmlL%R3`Ig{LEn;Y zfNsqS4+<*gl&Rqs1N=hLyT2u>3rYa7kf2yn*bdp8u&B3Ac)E8v+bv_53ne70{iAm% zjns}wmz_-hf5oiG_320Cv4HwTD%_h`S$TRJ7<|xG1~}R~nBF1`!Y77SPRp#`JugMC zkb&XHPS!`rfI3j^m!;pHyg!2kIVvVOS;gwz=pEEYjdaFuu#8AGy)q2I{#Q-+? zc8g(n4hB|e_E45QbX8#CM@HJfu=c~XRaH!} zC9LGr#C6XPlBaV1$Cf<2Y!(R1fb1oJMAr*a6taA)n-*J#Q(&ZQYI_*c>0l1P6I1cQ9T z2Jcq&-{;L;7WB{sRCW8&ST)HNEc6ev*Kp`}pV-J!SzYms2ZB@}lF6nBcZXxrcfcXxNEcyNkCal7I9 z?)Q%O-~DlaWSopM&e^i|T64`k*FF*IKzVFTa!ddKfUT$?qX_^Y2LJ#_YcF3Q?(j`4 zZ6Yp0uCltWS`L=39wyEf096xLM>_{sI~&tC?iS82HV*bY?7ZwetZ%GcT^(J7IXJ%j z&jaiZ&Q=`5Su$gYMlc)|^jrV{T$AS?Qh`Li4FCxMP?VAS=$Ucw;8FhNkKt+*q?eSZ zq9v&s^|1eW;R3&y9$@f)T7PcQJ7NYO!2Z8_?6$=Kq$0ZhzulSEpa%Tk;UMmD zRQ&(#emCj?wKT+e)amiw>qQWfQX$9XlpbP07syFhSrgXXdsF!nw>>Q+Mx`c*ewE9z z4#{g#1KMxScZ6KFhe_^iSP`SWrJa5kC)#;2XZ+LyAs;JB0nZ~^m@Khs3}r)l!%6xI z;6eVL_7q+=_3%31SoiTT8ePl^%`S&a=EJHmm|Jfq7 zv){EL^m(4k-g)5psPyZ~|1kw(LGlg%zl@oHa?LvkQvUSG_#nRm)>lZUX!OsW`oAG0 zy8*0o)dMt*$qo9S&8yau0ytqpOgf5$!`adCqzA%0bk0?* zQNm1f+7p+W1|r^M`<0FvFbLqBG5eZl`dGJp3mPk%GRO|`ubXpl@c8!#Kc#Vap0F7h z1CafJZ|(T{bi=i2c`MKvTiYzy2i}QhUk?x6vZ{tzh)FH`!mct_^RHaq>~*$flIZT0 zo(Z%$QsJHtl{UA!$Orr-Fl@W=+A5z0`_X3QU!H*BMdPPWr>$2lasGD>Pi#A* znHyUi{z4L$W)i&ukPQKGhOr*dVqn|I$jHv7c1?w7I1N|~** zl807%+w-6&k*T?IXH`|Zux2zC;uch{{#lK=^%8!kvWgkDxD@Fq|S5%29Iwi44%Ea}0jInw$Kpq(1 z`jDFOo`@RP_OZ!;;hrVKkPx$MTS2lt+ZYfJ7tdZF@NhD?oj;nIs5sd8id2fsNbJw< zK1|%v8HH32Dg21SSw?xvf&A%sJ7C68ipWtsV3oyTV~0v-|K7~rrN+Bitwm_IOq4kL zRROb`+iP<9wB&aW;A#6=eGv`0o;BMNS}qw#=wM1@VFeucBgz+OIZ2vXKn0lWGrxM&nw!K&Hx8h zoveK`nV~5UB?xxN43LMC1XF=bl6pxut$1P$1ogbtuoSkCz3guCC8uAwj;bwT@`dHW zL1#_!l8&BSo@J6FWms4Y-dW_Y?H(7Fj%>{)`%tpfP+ynwLt4(n+dj4zQA*E==YDp& zUky+ZyuF(dhRHJ`8#NZkyQz@@#1|X$0BfV8II|#NhM?2t836;(an8`g@Phx?vrpuj z;b}Abq{jHJX32ZM#CP)@4P3|nLZ@O@{AhzvR!W2L@VEMst~OsFfHeiukWf>^ zB4=5;F1qt4f1r?sZAn1+*2#$)&xE%dpq}xd07z<;ZhmT{%f86i2|_ zckjk3+)6;CiTrP-!umAXUJ#8B5|z1$cVpG*dCr0g-(C4wxa?`-qviN(B z>CiR!&6*ycA!*aNA>P^^V+ph}tH_-&Ik$i+#0{xhsc-CErXraiI2wmaLCk;Uz36cd zd#sC&t83}mQW`J?H=~ibT8Qshw+Q+m7m~0aB2j=AF5I?y>Hl-nZI?5yZj{E0UB|~r z$7s8y@AhT`O43o5BnLk+k!c;5GTilIN1o{eXmK3NqpV~D4KdV7;`;gmRF^5CIyZMj zqU}3(^Ud1(X~+S6u~c28UAfAsu?CR6NqS(GsMpM*-Ip(?*^g8Hv|}#r9v(t|x4ejO z_i5Nl(Wkz0YJIwE%l2ryTYmO{=gcQ6z_CtmGz+?^WW)Y}aQ~f>=e#-@5fRj6#abhPTsy};*FI{%&%SGfC$r(q71VYP?A6{{Qhr(L50Tf1GrE;1({ zXhQj&c8&L>eIl-5F>tg+K19a)-6u^4WItn868 zvB>6Ls%rUZJ3?VFIHbhPX@12WNJ3gn9dg#%l4VSJ$N{(vT|e>c8`u!rD0Y)sRGsYH zhMx-Oyr)c$N{?pcSKEK^%5zgiYNu25eAqW0lNUe3Yu(asMSG3c|KI-|pVl1=hja@v zL}*bVG8N6!hX3Z+(~ZPa{haDl60d6ZP(Ea2HcaB)1hOd)2^Kl3M=^Wl;5DRwJ&=8` zXy0<7y>dHScUD{15<_!WK?5#pYiSul5Sbf9`<-);!#PbtH2pagDkNUCx7`Rlg&sew9B(0j+P}|d_0H(1VTbyt=~%qBuI}b5%{7wv!=9Sf zC!#XHL-0-h)4%MqWaFFUL$hVKIYZwa4+ul{{U*cn>R%UT-!ip6?zd$jaKRWX@gz^} z6@1maBX-~GaQ^}XUb(ETJADqRCD$ocj3JaB!z7 zL|nhaXzvLI8s(r)SNmnV<2TO3HNK$RSBT6461_Y|(I4T+)(x0|l1!2bgxCy2ciz_^T-^3l)O^ zdd6SLX|7J)u03E8S;*FYwQhVT^AHHuvB&wbB@btt5z6QE>?0?Mq2ifjfGZy79@?8W z!HlbsQ+IP|E_6s#qqYY3SlrkPbZVqLdnxRZDIHe*ovy`P2DbJ&8bG&%JTjk7w&m*T$_@W863=BOll z0LhrvK~mi9N;9Dj1D;SwF_iNkVYuEzr z%pvj6>9i0qBP5x81rI3#;{YB*+D=I3S62R8zW>=1_xodu4-y*7H@GWO0$zV<77?_||FZwM z?F6f>9l>usR=gPeAIF}&TCaTCQsev%%-GiM*3c#Tjc=9xF>(p5#`$#|1vJ;~=(_s) z8&H}D#?=$-)sv*vFbhAMx%z@X*-4b6%+K6`zGuVhea&Qq-kzw0lJpL$Ih%VD?EG+d z(i_j~X^w4xl^9JEh@%rP&J`;?(PGgFgW-C6x>+zbD{giB4SN)JW;dt8D@Aiq zdrsQKuY?^VJvBWnhjMq9aa~Yfb;1sRSzZ^f|B~!D>7J0J0V){VbDw@fOI+K}6UPk@ zja}vhQpm3;SdIspp^zpjB+8xfV6;gPlwbQ!lTZYRPkGZ$9m~ea;L1<8l{~zPbMYI) zx@|CU0ld!H|L6H`H4gF*Di86$TU;H@^jNt;7A+>RTJ||^xj(^u;(QMF`9FVbGIz(a z#D46s=#4AGeIRzc~0%;EG?rp?SLQyGeaIGe$mX81uscv(>Fa?&9xQBi9v} zl@jQhZ)eKHoimkF*-wKIKH~ciO0#vgHKYsv0nE=3^C1psI&MuzWMoRXyU~x!GkO1i z@=G48ey?5xy-VHk8hyB0ePUhxVbSuv7|9oXDsmEZQZ6#kaCP=QmFD=@1z$sT3!M@e zkG5Hz;U5EX23!7^uw|}=<}4*Y^v_QfcZfZa*+0tmp7?-Xdzj+yU4_09GDYug%$?$| zy}#WN_+G@7sh{K(ocQGXs;rCju|m>m#cA4=AVyOS;wunP0W-W?3iXoJYZL5PuldNK zJ#(B~V?duRfIlK?C)+97j+6Tj4LXH?}4(H4Ck<1it_xRIe&tNkk2Dm$3RIMh+6OrH%=$ z#y%z`aJicYSEb5@vd+5VpOe~~p!}j7?xC*{q2({kGy@5TYWGe>xyZMjl(9%{(0YQA z3;^~)`D;vds8Jjvpwfh~pGlf(;8%A&MTlV^wcgo3ZxlUx4QE zB<$unpzHh=>uUUcmiLXqYEp($IqK^Ci!Mak&PDDI#vWOZeRo8V@LUcK4yyhAZ-$IV zpM?zs*IPJ!q`B{)p=^jNLu7=_=Roa?qw$|$;A7q2o5?BogB4I#NsLRWf_2m&xQ#^; zW+2QO9JZKHN3}8#alMzW%(|azKavx2CmqbbI^#(_iBU7GS1u&z~wQ8iM?}{fp}qhZ|zZZWtt-!xxTqpWF5?b)jt; za(CFgZ+N`E*m}5l{hXkTt{Uem5FF{5ei=Rd)j7|9oX+-M>T5l$UA*owzL#A&2^HX^ z#JOpEI(|wA=1)C7?6*DcH(bo>-&{I8xj&vtJoZJ)y@Q;f`@jCKFZEyR56Auz2;;8~ zOI)Kr1?-o#Wrfi|z8gQx7;oLR9^chJ-tK1))q(YlyKMohaM*8HkCL@N$nomtt#Li? z_8B7s2b<~B8@ZOz0gPU2*&J*weHTvFe&wqkh|th2K0A~svwIx=2c?%bAkRim6K$+B zk8qOhBejaUtpK2ujKITmDmFsPEc{hTzsV^Vg`>7!pC=OQXx}RLsJ&34907R7nLhRN zsd5!U_ED~{p8YS+{}(Gp7ezX!XQ^!&*|&w+wrmDz-g8YWJtC_&z}8D}TM7k2v*}+I zKlzG#@=oIH9fHao! zyK!fAPnWCqPxjGpL@Idd_JHhoob?K{#_QWRgj}^fJ@`%u_-RobB9x39&+$lO_6KN><-Z$%fmt>&^cP?H-N7$r{mYR!L_VBju^?uR6$oUBdoxY@x^11Ft+iM7!WmytKwZ;x`|k{tN=}(f zZUtM{;2%)qZ$XIaE$U}3@3hR;Ug2E4r*HtHx&GZv+hX=gU5Z>x7<}UskBRj&Ts9*c zus@bGJf8b4i7xWl{XsIAB`HC0Sx5||ZR|_kaloHhc` zZF;P=&u-48j~WHn&&q!munmf^uEF|#IgV-wktvtBn*nh&2M13>u%xN$dGmD3*Bm8t z+VLClK$V}Sc0({U{h5;GSFHBmaEKDRT`OO}j_Qz7V%oBi*BPTl-jT`YX%M0k;YEC9 z!*kC;(vQ(B#IfMiJXxJ z%%4CGA6|c`c_T%;NlOo?LV9r;I8i$>$;HE_`$tA|r(^W}MK40k-;dIUPK39edpzPibI17#GvDPoKPrjG4T;Ad2x!Rr1s@xU zEX5?8Vg&O@P-6W^`CY9%+9$TZhF~#1YW=7VFqQVB6tR<~UkKgVlAF`8SgPDTybGPz zv_G#a|Bb6P0Dal|>y^1l0*6olM~dxNi*qCtuZ9yWz=fIpm8%kpoK(&akF-Ex9ZwhJ zVe+b-7j(SsIf`zt1Kv_8LAP6jqBLAb4pnzwGv($`4EWNOCIv_c#is9vLG?$V{r}d@ z1mYrWMGCNgQjRFed9l5lXJm|jC!JzlsVi5N* zdNw*!nI*G_*>%@M92vL~awW}VFy-c&HHbMcicFgPJKZ{gG3C3c+rKIM=Ci?{-PBud zECE7))9ZHINJOvhJ6AmqR*6-A(%@pUKepJIvj+~>f~kb(l?rDMnsa#yidXGVxqld4 zzbnJQZJB08R9ssB?LTL;*n-&9i}gYqy()>4`Rt^Rvv@WmoE-HVOW&F}V&|!MrfUEd z3*ML%*FNLS9(NJ&#u)bWAMlk!jH@G+oBNwz-vJ^>FWy9bG~c9Kxqf6us|W;1Z@rCu zRa^+4H8Zpqe_W^DVc&0Hlkaj0`r)Q7dh_Dfo{}8-o-jGRXuq5y1;w7|i_dxK6V;lG zC8sOOXBf6wL0D{t9ic*hO>@Ypn_q09dV8kf3H_9WYG6Cc048%_h0J^9U@_b`;11{u z0(NW3$XQcJiR^pUOm#N>V#|B%YRNh>kKUNq^wFWv+6^*cU8S+U-I&fl*1umiI;n8* z{7d`}u^o@^1%>p&kxB74jvEs6LimmGnHnQpkw_Y#hu3ZJbfXEhX)Ln`mYckheP3p( zj^b@Hj{8>Y_2z3I7Yf`jzAI+-T|`c<)RWir_NXn08q5AdQ87|$mtM!t7;eMPdic-= zvK19bTEjc9Cf7ZyKpOlx`qyv?EI76_XK#h5<QU0uu(I6Kf zBk_usj@zP!!xZC3wmP?f+1)p-9|Uyp5nAyFG`iyCUM5cXsksX47cQdf&=Nt}qYn@V zp{9`~9kkCZWff#${0;p!bnyWdnlkYLgP~w@G)&1HUPV@eDcna@MsQwNqUXkwaRW~Vq&LuLtv|_V8$$EDU{Sa-t1>fGS}OWqruvh(vYTfEBjn z2k9QIN2SCZsfLk}5QSWr%dxU+Pkrxayww}7FjCPFK3XL^9|*hrpIpel3SoZxBpN+YoxWa&G7kCVI`lAY6v{GQZ z++(PUKK50eg;Jd((j`l;FyyHke<4KUGwpJ0cMN`r zBcWm{JGWHJqU#Ew_11tXm9R0M(uj!dPsi(V`ss7LIvfr}0S7(*-az#LdHmzgz^dBw zqEG*7$)-lyzVHNMzq9yRx*WJZM+0BxOJ$-LC1BfyQ6)#A#X9n}BwQ_q0ShMsQrm1S zPC(r@*bJ3;g7sxui{4P=&lr}(EPV)|h(J4&4FCU}~xTdp+Hu>@;2C@4=Sy%O7 z(?@RpI3(0}dC9+QpUMcLo>kMXnyeIH({E3eNrP8!#{S0w%smX&TclaK>I+CoK6C@$ zsdDh!;b_w4?&XEf0Hdq2!mjdtkK+A$E!afG7acP;B~WDW%-I~2h<^%BP6J1cb6x0q z9ZmV*7gqe9Ge15NMs^BMGOpjo;0V}X&L7Z=A}Xuev%b3oxaTwy4~$___ow}rj)=l( zj%ij2#6ypx7DUKbelo>zZ_q70J0<|0XQ_LYVgdiGh*Qx0fVAB||R#ZxhiLvGCw8I7yoU;n=B^wp(uF_VyJqcX2ZOwW$gJT#Go zDV{iSP0H4>{auq5^%6A?v+Y|4ANlaTo`##>S;175n%}I|D8Vm%CEj*NU363!b;hJq z8Toa+pDVM9#!@CGi^b(GUEM98QPYnr5A*1~PaQK_TlKqt%N`TEt(?7Z(E82cG^$d# zP!9c5EW=B*PER0<&}x{X5zh@6N#?wPug(yk!-#T=W{08Qih}K4|82Hk*P%;mMIT0e zA=wT8dUD7j|CL{j*@hBeftw|r-Ll>;P(H+ddnW66-ORA0^nP*O%vLhJAyKkR%z!r` zwniOj$`+U{!}41pdP3C{w3t<(`WY|&8(lSHG~%M$V*M|$aZ!k@P+!zdU11I(Hsb74 z6)%&F_9BiqWPf1F6?FSch}cf&7p2^7gKHA#ggOhaHA{NT1A526T$Z*IPEsr&x*nQ(^K=E(0_aUh^xFR9jPeOEm6atlrG_hBNhU;YLZf%0( z$VcRFWo>RwSFe%VZujK>WX=}{#??GdqTUZEv5?gWWE;w^-SJ3p`Lv6arWsdwF6R+T zwXYAX2Kx&Ti|^LnaJT)+HhynA(1(sUMc8DyF9$5k_D6 zm7E7-gHCGB#PZI*nhZ~5!Enmi&BbFW?C|k)bQnZgG{ZS(j&?B|f>wxUys92{4)NFk z9jOyjXv}#rG?|p_S>Xk-{!S$a!rZ+s+=?>{Moy^ZWJhwGmnvsAum#-qa?f*Z1dHp> zJCUB?iE(EYKJN3GNoT0=ktu#fqujyL^6BHtgnFv78QQUoQ4C%NYEvi?&^#?59gH; z^wf=;!OZBQwLC3Fi~0&B@eHZ0{bkWGFZ8d#QPNvd-aB@jJZCo@>}<}1ta{}mwYL}v zZ1-Upw2?_#CtgY1zMFJcYFNKMqlCZl2JDkHLJ4Aa5RwDpOprIVEmzjwpzlx-ai_Bu z=H4V3n^n1<4cVyeWj@+nRYH)>2pncASp1!kFE??Q{#a&+jBJKAnYTFgB5N@4;_UmV zlm%PF#J{TV8$mCjL@b%XH7fjkxJST-jitBH=HK?f%bL`QQmvnx72G9GMiD~A=cKH1 zQOFuLZ@)5V$O!PkTxt2enbMbor5NBu47W?3u)dJ4j4r*Nqnyp&5%#h+Cn%Ml?!KqB zM<>c6!RS%!4YUgVIr^sj9|xuQ@5h_7yLeQL=)Iqk}>0%aw-FT23$BG(`);I81- z>y*3{?O!MWmEtGqJ!VV-9?U>ZT!CnPMp#khbMmlDVhLmF#0$1c{c3a?_xISN3HBLs zUSYdpX|HS>mUy*UO9Hw!O0cqvVPhi|k!Or$r*b1+(Irg0C5|#iwW5updAQob^2%tO z%~>sus(JsN*2?-|NcIt8;ph$J1s4rWPD>t&Z8V#HPo-3`#mUQMw9luX>f|mAc9^R_ zh~h}_P#Nx zO0QT^u7^N_UWlLXzFovUblE=@FKe^O+<16ZLKHR?DdFpx9p=H1G&>Q8oh{ZjMw2PF z32(t@+9(n$4s^DREG(tP`4sUUW*w>ESKU_*0 zMm4&KXD4g5Xa=NpG1pvY8i#e5_SQ`BKl;lzH_JTDJ@GCH!)fJCkzg}bM_RXO6Nq*`EyS5B( zR#0Azp$1%X25#*F|LkTmh19r(MV`ADZIhcbRM?F30WYvbb^dKIiqwR;P7s2^R{T+{ z*KS}H>Ul(?G(ZmQU9jna!`2-^-0aL} zN(wDCB%zAaq(S^f=vcthWb8RNml;;6w~N7%eG9L9zL|#_smFK)hXomA(#3*kitX(b zw4`C()4XL=Bsh6Xbz8sfw>6@wN$iZDvF%#y? z7a{~(C*i~1sTV*Mjws#Z_XrFPkG5os^4$D9D1Y2KTmc!JTdEyk>$_!KgSRj}ZA=Uu zL}Pi|bdU5kHg69zKi%+NO$SEswOA6s0qjt ztQDs`D{n{ZTB4)EgmP9O2GgHxdZ*kfejymnsNV3}PiAHNO6Lg2H#tVOOb6*H9b^t5 zT#)UZR2i}-R=BpXXqH0I2Lh(m_ZHT6sQ5A2$rI}g$*FuBOO+A?)XR_6n~oqC-H$3~ zk+iOlu&c`PFefPKOA6@kHAYC+E#K=#U>op>NxXaoQrw9rz^nva# zD;1#0a!jX#=}CN3A3A5Q@_5b$6Lj25nO)YB&Ch3Rq`l;~eiiggse!{Z#v^*Z{klA( z{`6`2%!u~zG`zDURfduxXQ}$n*06UN&{o}Ay9uN2%f;S%QwpA9)+KnZMc)HTg~$7S+w=M7)^ zWXwF-oa?(?I`W-OG0l~U0ZoK7TGd%Gc}Gj>%kevnuo8~oJ2SC)6bC#igw9GOI|q+R z&F;TS@Ys6Zo9(CmqLK&}SVQY=*F# z-5Ex*FGR_S6Z_Ss4%(F>g@UB12y&%p&t%JD{Mc^HU80e{WSqEYor$~5N%Bg5CoVsk z(Qrzp9%$ov-_Mw~WgLQMkM%cjS<;fWQl?I>Ki5q~S%^$U2~i=k1c8)TmQxl6K44aU z|7GrVHexU|v@rv}i9~55xPlz(&)oqD;mH}OnW_65T^K?z+g?fXKA5{Hu*9ji_t|o%Vb1M$c{>|It`^ZFB zd_C`@Ced{o#O~reNzJ+R zSWzDoHO@n#q$4LM6<>FyF95*gDo<%%{j5HMJdgEsmQc*FZ|8|! z`nD!?)EydZzl$Q={i0R<`Czzr$50r@ES^($;>q5mg2Hx9^67qc5^#B?9s%Q(0wtt7 zM2V9csK88})-B`e9QQQCd{>Gh&KI?Bc?fdDlV2~UbDq-?r`|CJXAuaa1DRmwUs0w} zq0$T~DrzM}@qv@xmdW&Glv739pS876)pbJg(y$igbIB{c!i7G3v^3hE4X(ye@%ZYn zo{42{HY0~C%Sekt{+5X)xNR;vla2UL+Br99)<>9b>Fz4xMbQdXR%rbzeevK8pD7HpHCpGd%2SI;m|{*g=!6+@pA20#X= zjAjYuc+2WVhlNP^G4bmdKFb4DoH+-tWPJzmp=9RB_#zcjEZ3bkD8N#8R8hG!x<~~x zSq6TDqzk{cmCF8NM>ldQw62vsx%Np7@sH-2?h zIUNz+n|SXEtik`LgO&QHSjbQkzWAq51tcmw33D~Aoc}g=ruV9{Ab0e2<5<;#mNqa0 z_d{@oo%5C;jP>whtA%bHDUjpmB+{nTbdDe6a#80gbsz1{r`ns)P%P%3+BXG6Jv}cp z&FI*HBZZP5(gENt&&t_~NxfS{QAAc-Cz39!e=z5dSiV%OL#E?&o@|eaQH2QepC81O zD&{J@OsrKPJ7vk%TGfPL999z z_fo$33-SyF=O0FR&W3e04wRMvh*4Ctb5bxq16Ftdx_`H&PXDMY596a~`K|>vTvw?2 zGvv9oht!A81pN@;N={}kp5o-)GIT1Xq@nk?_Dk%jnUj_)jdfP#ERFW;Ik%^jPzyL* z_9sAxhB~S@>yBH7{U4xMug=M#^nF*33DD$%@Tz&vQ7qmxtzxD=bh0q7o=eWuE8xI> zBcvoqJN6gRO!bv%#6|!dwmCn@U3(f~Ta(VsMkVejLjkp?+P0LFwx!!1vTpEo(Bw=5 z#aBvNYJJ#Ye%nqdq#N zh(`4zZ+V9(`GWA1?581%WFp6!dOxR;`ME(keDXIl;rMA>H9wilf&(W>saR;*RZ)h& z^?9+&4^TUWFp(61D*}PE;O5!JWrL4E{wLzN%JV`Q*qcbyfIeZ&A_FfD*2%AIwtZU~ zQXG7C|4b_df5XIrrq^0bKYsKi)NcuwVnFCau$osczeGscC=!9N2s2qd;n0SYdaGpK zH^Jm@YPmox(US$`6(kmw2D6T3C8=^B44Zz^Wvl5MTm!(z11w|ee=aisCRJ+cGhjAw zlV*b7J@WGhJNr)HiR>fmd?3UK9<@fn87)oP%-teo88Y2pVptCzx zj;5WB3i2ifO95n9{TKJk(Jx!1$%Up zUzZM^Pq%j2$nO25q3F%svgo_Zsepeybi#TRj_3vdkSDtQv-PW$(6)x+ms_e4U^%n< zC+|nTq#DuM@wbkyj` z82`B*EU7ARDxKeS4Cd<;!k4)(mYKGkYA%=#lCl zGLocZz@qTWUL32M08UAH+O)s)T$$akbMv-*h2lJYgq8Iozi1wA=AYw~@G;DBiy}u0 zbGasjH#!rp@UXB}X_}IPCDg2)#OGn-Cu^{m9kj^1n#kOljLKhjwS_q>58ta$`0{}K zV&lpNr9WMBN~ieDNiqaNY<2g#O-lHOnfqWxOyIs@;rAA3*Iw@IKVuy81a2{W5)+)> zF1GSD!-ch;;K-+{if{4CvCZMBQzJE5Pnd51@ac3Vvb;~sbI?rG@A?`p&0su zxHD#>Bh!{<>le_+v|{*~?IHu|Rn2#EL+MnaU+6L#aGxQYQ1G$zqdadRPYQ4y)^E(u|bK~ zYX?gICVr<5lK0%n{bVfA)X{Eb6W$e%58Ysm+?9)DbjA2RtEQq68d80_MSC#$F84z| za74a^)G=1??MC+R$|P-|YYhSCoG(Lqtv}2nIL%r$DO?ch9I3~&9`(Dj1UJj&94F`X z#3xdcA)h%6cUC-d68GH{uh|?IYzH;r;L?OlOUmAr!E{MhV(~~U885E=i;qCyYiz;G zj^#m8`d0slyw!N8MN1B-JHEibGXfNTZ`17cj4r00m~=6O4v(m;xSDn$qye)l`}4)C zBhEng-4 zCuj3#z=MDm+h;04Z%fkY zZLrk|uij!I+B#QF_CKB5p%(h=qd8K-VnFH@QelNJqoilIn;&YA?_&3Jub2C;SepPn z@RikUqad1>g_o)2iXPqXDBc`XWeR?P_N!9y%R1WVp53Nv z3(lr)xPhiU%XYgfaiURD9cvOXbV`cIM$AzqqaQOzsfM-keX?)HWPDQjkB z_m{(g_;?gOk2&kVsMJhZ%NigtW)G-`M2T<8g)<`l`U|F8nd{6}iLg1Ey>Z>x;5-^l z2sbjF2PuZvm=MnD9e02B@z6}r`E4=^?&0*1SxA(@V_E)QBDG-8o>_JZG)p!E3BH$Q zl7!ZNtN~mv4F2n2+|7y1njkeR@4%{lm3LI~qjC2wh=ror^JGiKC+hPk9irVNFg2J&W3*Ir;CDMJe73X6vBiwz5!qdG5k#hkr-42sO~5vf5X1_X98%I8(NQtotUBA6x@4H2Ae4#hYSav=92L-afG9=o}V^WoUR=Ze>2pMr` zvtYY(V+uX=f4Y8JnRE3$~i=OloM+2VlT`t z`_M=j_*T5Ng}H)Qw^aokPEL-Jd`7V=Mx8BN`lOo(W_>VH`{-r$G-k6(W}*c$^tQfc zV)$&_+!w-9soEKeL;t>J3NAxs+fjQ9Fwqv0lkLbgk-ki2Z^W&RvQ$Mx5o?4(O`dy- z5qZ^Y%$CSxM89j*54;b)U&PS0;CEjx@GmWiKwkWJOdHMS{@Ul4ivoWR@~v|V@mh8C zyxkelNN`-d^|}X=UxjrFMY+AmE-E*{|CNY3p+EwIvDREA)#Mj|dmG=+Caa6mA~8*U zkTGeY+nxpuj`Vq(N7zW6z0rJC86G1w$o8w)QcPtiO~Z(X32cd|q`c5@y`2#OY*{8(clSUjJt9UTd}E}4bnIgHQ0q@w3btFb2! zFnP@;I96T2#Nx%~wfDnRV=#eKR^n5J!QpE%RU?pG2z}XpN}%bN*Pl2^_^v~qvVewr zNXw3!%ZAx?CK9~5B`Cm-7x%O*U%D@?TY*eP{uUobJ~2p<5I zU)Xdpa>p#S%H$U^SrRxEMZRNj2yQ+p7J3V+cig#zE;+#-G+e+mWxqD z0jp6O%7OhL{E&~g0ArX4?H?YOBR~UMBj5vmkPh6e%ZbmiOiiZt+DJK+1y_vC`UCF~tx-}W7qjZ2vj`M?I zJ}vmt73FU?k21QfA)QE_LgMb{K{A`_iLdAzD23WJfAy&7%xMq4m8NMTzo*|bWp^!r zAtYGj=fdD21Xij?js5SwOs|}u9HHhCmNnWZ&xgO+ zI^*0qEBILnY>avcUTr?7rD@$jp6aYjBk$$utA=grPQ)@!E>)*+v9ZM+jUk-Lpl(5y zqAx-!buLS92bX4Lqclo-T_HZLI1 z)0sL7?GOB1zzAlIl*$wG{|>ELPtMo=k(?rbnaAjKC>uuL^2x_uXhoVuR?kbDyK7b{ zF8O0O()$y6rG2L2G>x}rD^5mIw^DdT62IYh28hwhHh?Z73NDTvw2Ark=8IX%)^?)c9xYN=0^LM zHNkBPvjE&}hECA8;)-mPCsM4}ec1N`agstbR=Mj#26|-LWF)8wX8z#MP1C}_qO5Ki zww)~n%lzG5Ru%rolZd+bpSm_@;kKE1kO4^`rry^o&Qb7a9}oW>M%LoH4xMOcejwuLZPBuj2H!if_@|Sg^L#8fq4KH_&Tw=&w zOiV}U>DM#NFyXB>5%S*v;T8();hN=E@1Yz z=X>8L%fI&&*JQPq`TN%9xfr~gCKK2t^ho-0DZ|Am85|W%R}&`tJV+2@ky%`l)AcbK zyct?h@rX`g7*fxq7U-PdJPtuHT$JTtVZbk59=O!_xCO?1Hy1$=aJLYS+`(CtOa-~2 zfVQ#Kgo1VpKbsN7;;e+}5!J0n9+;w=6Mf9OD`ku{xghvw@9=F?tW@QT|@19j(~>g>A!pH1A8!){~%L#K%33kj=QWy2h|s z`*#7{P~LYJaQAb)a88)LsSOcQs3y92ICzEh6)-R9+#bAVU?-9NUmEC^{Q{lGAF}ye zhb$E<>{l*?z0apevj2P$XT;mbDLE`;`|0A)Rqv3{pl_NGuX(;q_z4gw>1Sx}Af}vU zzedB|Pn|6M`TBPN*HosF!$-;-li$a&2KK|L88b23;lXIoDC4lpO@K|5s&$hfcbX!D zmmLZ|Jq6}iY>f$-P+6}a_Wq^=HQ5Z8bMjoN3 zMVJy!n8TA^z%YzEu~3VD!_KFDCTVrcp;+O>%N@cdIeOQK;oHs0%GZ{?-FvrtZ85N3 zzjM4Ephpl(ur!p|&`V36nRi6PN0|om(IE_053P*9xJaW~ zG)Ix#_XMgiQbb%od*Z{{WLt4E41iPIJ`$jV!egd}Qb6=dKYAf063C~4F7bE@X?UMP z2k-(lL*9((GcNO3?0jy8?GTI|4I{p7ht?NmGpTp6K9p5p=8E&39dPA^_n85D&eV*n zh|91mxbFZnQ!B)TkJDh(j{y;dV6w7!qEXUCT-N3cpqKy9=7mcgf?i-){D5mx!tGja zhLrx3{oIcxxM%htMgsam%b@jFQbD`;OQh)!xAht1m?Or5UMC9T=&>8PM9 zA~t50bOc<{(iWKzF+NKy5JVE>v&BYa*3sp~BcOL=i>D0Ge$nFPW&P1NXBIa!C5QCF znHT>lG55|I!xu&n|E0+Opm`vu!G`xR@IlsK=gho7#|D{%WHI%8Q-Hl{VlY_u=LADmWzc(|ke?pusI{f*E z3hRjZHK1Tw+O{sqfI_ppxzB3|(YFY=tq$wq$mn!o%PMn8Dm7i*H^``Nr>I)Igixfw zZVqOl4z>1&b`9U{fBTkbwYjC1gKG2LhB04R&G%r0QxHAs+55h=SiOH^jl>R!G$4}G z-DFM|`VW@jmOi9So9UV0H8s_(6=BBTZ-{tbOda*`8@V+oQc;wL%NO+h>QL$~HHq6v zp}(>qS&~RmPVl@aou@^=ZWK`WrmAt-w(jD+aAM>tU^frR!p&PKQwIN0msynOCNw^y zmmO^}AMW*t$0_NH-MlB;jN~ESzqSaL%g<GG`Vo_3-9jH3e?kjCTIZFTGiC4bYAoxd{-mlYqLlj3nh2X(-PfClQ4so;@hCn|Y z{oOzgqrZ7-$>-nXVMbS58MLVT$T17Ep=Pid0 z)7CwDAT&c@8kjbFUQG#jR%r+n1(B{sYDFsilvTNvBjW_w3`EyFv)03jQG8MLpjmZZ zmt&oClR3cU6|NPTI8>10cs25cGE($XjGzw{%EyB0NV1e}|N3j>w1ABD#|FuVZ@zck zepC?{*xf~91MmH*iqi4GO{w!}ZWl_!GWCPet5b!qARb%<+6EgJN>O zI6!zQt>W!(@y8G57}c@W-oGPR-d}xoqfc}M1nh`#e08;ZkMjw^E+$r$ zCT=@MLTTESM$b3S7oOhEKd*0gi#3)G3cKF_m9xy%BJ)azLK77A?bV!_NiqtZ#^o$a z|NWXH?0k#GAdh#gPwyKbN|lzpf{r?4MgGZ&cxPFasu7uAy9xy@FdQEZSZjr7G{b<@ zVgx^$Vq=AkXpTWL>KlA5DD2oN7MD}f0K^t{CBK?RmX;-w>hV-dWHac7MaMru4~LBr zFfRI?gr4gTO7z1D82&rQ1GdmeuE8f@+{Vk_{H0+(*dkU2YUj8r+jBizp@|e1bT-K! zB*TuCB9Iw$Qq`864O=rGK5aHi80{;91R`2hAPO2Ut@7i-p{M#(&Ws#Aj(5;cc*IEq z-~xF5@ExtDYEk0;YInqFzHX~;4Gjmvwjjq5Jwy2SG_8l~)8T}J8M^(M=74HR*YCaV zwEC7Y4hB=*5Yn4lif6c-zOuYBM3m>p)WYDndNZuL z_6iYc{_06J6OELNYUp|-pLSrQ-YmSUt>HcH%2!O zuIYv!MzL_`tLx|D9*v+3{^#YExiy~fKTtX&PxA!3kBJtyN5U{^ z58bE6n5zhsdq2e=96}5jDO9s~*;9T+l(oO7&Qv5+8-Vf`CGP&BLANp9UAC`c5^W{! zr2&P^XY%3{+HaVTNx`w)zYQ-IW2Se>U>YhF?zG?+!Uij?U-6zJ7{b~gJmNF!_EXKw z6e50A;dhxSwPdmM$x8XfXmR9+P-Eh)dI>B+9rnXt+6P8tc64~y0Day!i$#Kh)#@eW zuiz|-DFq}Rt81+@YQW{>_0}y^lvtRIm&a*Pi0NoRZRnw92b`eW;u(qNYLV^Z*9gOx z1RiVW`(7zY&)Ze<7d1>qUhglxW}!iZM*L3Sh3Z=OpcN$E$G6+hkD0hN6PWnDYsmv{ zXG_GmeUcmpeO69}EJS-&H{bhG2yOT}M)paB3X&zPT!5cWERy0nI5g*tY+hY*y~dTX z>JqSLXgI}7(_zGFeKz;ZL7}t2j1M|uO#GD~|0(U1i!LK>JO$MSr{T&fS{8666FvV; z@O!a~cwCMp$o&a}q)L6RF#a8b3Pq7yKIzkO;Ho9H?xu_N6vB4bNBuC{c$_|uNLeTr z@*Jp-YOd#1e=#X+Srrj*tnTdf*rr9RUPMfx+}dEc?d>*gmShcYYAbH(Rv#hW6w-vRuC7Ar7E zz(PIHXJ_h!MgUZQab_5_M@%B2-?2D}CP?I8+AewTuz#5$bqA0;F1Hx7EN>Rka3x5nQdlPUs)s8Za)?D*~ou9wY2_4sZgnWooRqZ6cV zAQ8f%-B}<2&NHeE#m5jd)&dTvT+y=#p_E{qR)g9DTU4OG-&OE;VAP1O&4W-uOYGTj zi#--V@ddGVBJSo)B+@eCdHV$?(xC_tghrUz8IE#`Fi@wH?684>(?%ivdH2tK#mI^iMJq&VORN zGV-t`YKUD0H#Q$*K=^Qz7NK4YvMuc;|E88GseJCCOCpiT=^Y7FD&1eTL#wha4c0ur zyjZomu^U)FPh;eRa@LfIw{t9_-cQmY^h6gBpN(u6#X3DdYKx0R>U>QOI{lGfV14Wc z0NlLHd~NY{9Q2Fn3GxVhSsAEA<>HEX=`R5*ir0M5NohmshjI;rowV)Ak5$2aA@#Iu zL4-VTNbK)a-d-GW=`02Tpv>Sfk8360Z!%NB2qcZ9Ss;`g%yHTws9&Ca{z$k0>{(Bq zkH^CPYL}s;>zSLr^Gti!7GZa3j=|p{!FrH~<&|iE*XPT#OzN31Lq__a&aVx|)WZuw@i@mRZPA5pOv56MoU=DC;{i=SV@*9&{jPxd|tb?OVB*he_^Rx zEzUB%L6(W0OqC&JedbbL;xATw?*>wECxG`C+$899-1nq7b*i+RsDKTQ=V3M zfo(sgD7W#O@{|D>zWYBX3KkEi9&{Cm10#*tKD?hVeqGwuBq7Kk$!3Y5_wm!rBVZr8 zw67Js3=J)BvVE)Ge2?ABM*q=@4c#kk8iP35?C{aaKmkjFeC^wRsXzj3gdGV-8tfCK zd&l_wAQ*k%A9(0%rkbu^mTMMd&>E+Jde9d?(!VfK%*bLb)P;rj5_#9?qmF*&MxKE8 zR~#EoM5*F!>5&vcmVC?tM(*SF2)M>Uq6t~ay0i|N;oIgedO3`U{fhDyUM4pu5h?Qn zYV>sf09Fy9UmfWxb6joPVJG$z&DBnr_*F>_$m=fT@4ti5Z8i$U$~)+^ugb=k6p)Fyc}i2(f4WR4^lAQuc&p;+XZ zJ#_d>E|?0eiL5t;DlBAYzj_LLDR{>brE)$K1q_g{1vh%o;y8}l#vM+c#HHgRC+Z#w=6?D^s0r))*OJd-|r6pP2UzamftSD-~7;t_)KNj|OyY=y6 z$iMYqiJqp@;7^OUBv!Q!;MCheVy{^O-yCAU9!&pcA;wv)&blyOs6uC)^nN`C(@2av z9|=X>eJ2q@n_a7FHP1}W)CEW^ww2yE8wlABR}(R(K){03}&_QCT5HpDL}U__eT{aJ`O* zp5JM6`f{iyd7sogRk!54ZWyM@k67)HsIJs-!MFJ9H)*+dm=f=eEH^J*FvcZ$;AK#O zuM-Wv_0f{{Z8EJk!D^wM({T2Rkb1kN+M((+__wC?0dZd`feiKID7m@Uh)K$XbcuC4 z96|t`s}dC2cx*sP43xSn&JY=*XOK}@CdLKen%!TZ!0{^TDhraO%*(D_HhwLq3ReTg zD&tl6_ULbH^b9D77nP3PA%9AYkO}sZ%vlV-=W~UAsv_dYKp!nB=`p200zr&m38jMK z{S%z>#R9gfnfUNDBVrt3a0(-0cb!()Q{ve5aOaHL|P9*zE*Y)iVr^YlJ_1P25 z?6!@xGwSf~Th>a+jQlwoacjUL@A!vq$>D6%( z5a6}Rq@(ktj5{b%DK?4%1xfVps&s#;!c*)YwA7Uzi$P|7mE5U;Dl8IEc`lW{vs_D2 zv^p>0wl>z#zAdK4ML`6v4w@>z)JhEMGhnE$NVeNHVReGPHvC$Q{61GjuTG@2`Ry`A zUk?BX!P^RiNLOJ`O|)9Hp1Fk4@T`XbO!f266$Pr5QnOb@ujb#@iQ);8b2!u!cyIJc zz&8WIJ?jK;;^A+SCqk$v@-qGo1gJd3M;9x1XEoCbz%^hAaWQm}{0Lk>GYS;$GU6DP zr=5a*{B8@HYh9&@C~q%O;aJd%+6v+9-$tYrSal-~YoGz*{UG1E0d-n-o*#FDo`-+> z{yFnl+Z|Sa1uK0{?1wrJ4d57fZW1Wg*iAz2N@!Z(=KYup`|5esF%*(M$`$oIx~Kt~ zq>fy|SczC8DY$+sb0Kr8E=Y!Y$rqQ1NCb3UQEYRlRAE8-kAygQqV$kRFLB7nkRfsM z^B88I{L26$`z5A@?zwfob3JkDkr3M)J2Yb|BEsQ%>#=jf^;+bvYCC0xBbSWQL}O40 zHVR3t+SP#@9>R`_x)A$P&-h!{0JeJpyeB$1R)@j1KjZ6S7I!)4zx z8g1NN$5OI_gtj(Hc$&;6T{*}{SX6->y+Afrv-9O2j}t@wdo-kdZCv51LBh|1#2br{ z`)^X03BldSe{Mk^O8|o<(!ZwD)*;)!ZKDNPe+mSh{sIvkI#ciW9z#v?XMJ!tm+>k> zdPBYk2P)9dN1YCUi8Hn=%UWynu=N8G7^sc{v5pf9qz}F@IJ;RLE~_xPg?@AFd2`Um zN|8vL9}7^-B^n5Y0v`-(WEbP*hT1wztv2u>G?@yF?PD;GD9RqbuQ|g!GWux&H6F$KHgtbiUrk$dF3soYpi;;j{>txw!2$4 zAveFg+#uAV=d`(?gz0E406^S<9RhgEI;ghN^&Hd8wXX=X{{Xu~k2`RTtfC#_c(-mb ze@~q3CpasJa2+dFb=K4Vz8dRXWX*l7VAVCz_}G?@7Mgxr8JU>vZcp z8~3eUJh-kbk{VM)cCrNLV?jzcrdqkfdwGgs%f?01V{tDwwuOTdMp4U%!=nY?RU z4|k}mv91+e327**$DZXkx(RCF(jZ_~ys^G5gKahM%b}zY$QN%{h4$p8t8=ID1bf;Q zeqo@AH2S{oroc@pcci;9(0c1&%RHOL4eOcF*5w~WrJ5(m%)mk-T0MtrM;Q8#GgKmU zImD=_uy5zb;+7%1*nfBec%~WZJjeNf@^he0>d$o-g52yh?OCzsjjmal3TM}}ILDAQtuf_{-d|>K* z6l@rMN;5eF%vB1(+4d|QBYG*T4+pm#%EGw_+zi`!MGjGlWi9qX`l=vcyWt?D;SNx# z4dPU_)^Id3!e|sgVR=uZe421Su$5c#J4f}M?|$0AOeA(q5sX)bx+S`apE8Fk@(-Cb z!Pyb^;eP+7To9M1vy2dWTMC`3xL&-#BrmH`{8>&sOZ?Z$!^dmN;8n1G2#uC{0UPZn z;!mmQM<~=~^L;}sQ8^SJwdrUj#@$q9D5RJNVi7KIFmg8h^-Yu)F<{70tgi*FmSs6p z5D;|F2zyOx5X_e!8SUp}HyUs%K?E`kK^5e#?0Uqzm#Y+o%AjBg4SwSW%$}wS=JlWp zGcqF`rBSXrMbVn=4b;ZCe&93Gs0(TE>XD^*AGR!}-A2X_UrIQ_F>J|#V(i4m3|qxo zvP#va**W#1HW0pE{w3+wh}_64rXS*p0rg-T)MSrBReenTY`Db;qo=JsUHm3Nn9J)@6a_2Dk_Sp>j4~+axXN z@^>w)eVoC{r9=wOsJW?U@-R1w4g2z7FVS)D@iPmamY8z|43_ z$JX29a{B#ozL>E48H*{DV`k`lAe{$nw}E{T zbJN=}oe{EaqeMQPQqX8x6-LSEqAHoBtibR4q|{eXQbJ4xqF5oSo{lxEnqg?K6Fs#1 zQqD9yw*h;PN%{CoJko8pUth?1-7q2_v!AN88xPx45?*O$+d>=B1iEEe<3A&9Dv08v zY&ky0k3N$-t*1)H-Nq)vw7_gp!#Kh?SYN#ZUUH}9o}A@Bpbi?ZgmA6*2I_a)BWoAX zTcA&?PsD3tOCU?AG!c_W!c5b#YZaF;1dkLxEwwKo3}+)_D&tRE2J&n$N*pJY#8Q4M zj)fv&NHk$Ox>tztB%&NsRe|kHd+JM6^tXRQXgdQXM<)rRZ}1Dy0n|Fmfn+hOmWM^W z9g_%y1-Uq5E%Anz{eA5xZE+K-H{L2@F!P|Ah@94N7yTi@UN;$73(H#V$M)J{Xrzx7 zmy%v7Bi|po!b1~ybBu=Z*wO9(F3revHjns>%{c=KiK352xPTjst29WDwvdp}MrhsC z8?X~#Z{K^Flw`V5uRFAdLuJ4@$4SCtaJ7wuq*9N&(i4(DS51pJ3gW%mm@i4=|PkphTN!rgn*1wX0A$2a@W*N>y8+A=}2n{)AdE5g}s_<96?Jv;C27wC5| zm3Cg)#d@&Bw?OW8CYw+;GfI@_GIVCLuLUU2k+ruw>ndusXxBYvO$g%u+Hd78;b*uR zRz=udLK7%LDV(T?sSjxgG(6t>J(9y|H5B zBY{`gXa0n{?qekU;UIbsLpnxEqZ&6E0ye4MI>dk9$ogQp-i9sb!Wuai<&ZnXJKZB) zK`H{k6^YyPhfvi^Wd)6nCHse=*0KW9LIps94&4d+2<7+dOnoBxPMLRD7<6OP1Jab2 zWJN|4z8WIQcDKt$?9Et-x_j7eBHea9{kz+n{bxvagDgv62%lIDQp5&~p0!*P zoMR8s-uHCc1$-?89OWC)f1W>7wRBECd2b6d>^~G$@yeX&cchn~hRdzDy*dfD8JdeR#7`dNnA;xn&tUy`Rw3D01x87EKoI0-C7*?!`zE ziW!bChExKs1O|zdJ~|$hRe|Wm2{amn%DC|gs^O560TL8UepA_xlM3^Y^cj44*oMM% zJOgGEvP9Shci zd~_w&3bg1xXoP;XJiT;Ehge|p`0yV0+*>TJ#Q46*TAa#So4H2hXw}fq$_^9#N0V;V z8v51>C%^As83_ghr4e_HsdtEMuQ8$g@T>ys`}e?K&Sc4!cHSU*;}7pY(}|_Nd`F7~3Vzz-G39RwWEt&B3%tM3pyjI-r~Fa!8d1OyEML z&7LWa-IFCmMzQC&JPVkgQr(8RAI|erF+o$!U7vCdHi^LI_Uq_U=ruUP`~AJCPKh1G z*(~`Rm52Xa4H_Tu>sn1R1W>|MJ)a#m3+5CR2V{n_u*r7m(abwiC}th_W){&5ODe3H zIWn-jVM~&Dpb7-ki80xhv~5fEq0F-n+ZKEj*QL@;oE{K!5!rz^~o|eWyNL zYhU}U@HzXZGc0MFcQWAu2T8jig=?0M2R!r}ZD{k0TQ-o~38aKnGVR8rS=i|Q1fu{x zvE`cv))fOS4Jyg83{!PxOHpmaCKe#xNLEFiB$$Scgg7-RzxaLK@W(9M6DFu!&`~`O z>|Z9Fm>5m&5QP9j{xWK>@ejr?1!(#jMg{q2CxXK4D3t9Cp0@95JP^dxG#lg133yi` ze*eDz1Jm~~z#NKX)(?U3W#DYVTEK2fhAuUusr0do(7$g2`RI#;4@VeO{55rDN`IMG zgxlBWEXSV^KQ`9+BZ}Spx0c1q1qoubqfR{cCi)Jep$>vgQE$neTkE3z(;v68@h+#~ z{Gc^7!oNHwjxz&?XaZrCr6&|glpB2_G|x@wJO&ff{tJC-Lfm2lovWGO^Hrs9SuaK z(JOv*$&#FJN6oJ_6Y1qu#^kpjt1bZvuS4pQuHt@RjXZE`8x`ebTjaid=8@%J1hFv@ z5s(t$?>w`W6O}mt_6WqMu!=+!03kT1{ZcL=NU7K6z~n*I(p%Cp+~W3WLL!7) zIj7#nVK>l(OB$JO9Fh>y!^@5rKr-i9r5B>wx%9p>z>=4!wzYL+bCaBrQOWD_KKYL` zE9oC^rG!S`szeF)C_0PD0=m>Bl%sx9mT3&scxEjO&WzS&E|Z~{0fRGp1M1zmumEk+ zF^gLoK)!cQ*Tq%yDrwVT8!)Vf*AmaGe9pY@hC6lc+F)5n- zHFn5#DP9CZVdA$V(?Z#$GS@G5K*(&sLP)BibMwDs2nB8)S6@5(2aKd8bg;~DBl&JRB{flLdgl-! zry>&(Jb;WUQOQ@XB#`UaY^IKr&U#USd zmXs`IVgV#F3Jo=w*)UV_98M6b^l`4dh4fcE%J-$5_s5?XkEo;`$c>p*)K&~tvXtcB z9l_1U0aH+h4Aj(+#}ROw13EAO-Q2h%UF{EwKi?cPz;eRm<3@E1?OHydc2WfdEXbkt zdq+R*BRYVDqXH_nuTsozGIS?_ z#Ed)MX(f7#!EDb5``3-`-+JJ($v>}a!OCvyH|jj+q{6>ZDyV25)E6p%NVvA+NC(Mx z&-f%im*B>_yJ|_A!fH{BoFq=L)vd+e%Li!0F?T=}4*F@_&ba;x;96-El)HYRzo_vQ zXUkMiPz3mE3G?|dN)7(f#r_YfxsKzDs&wSeXtGrH0k;H4#O7EHhumfOHx&OSc-i}w z!?_||+={6)sf^}vCREhfsR8MWPZVxBcH!6H59Ex*$s=;OX1wLopw=+{7?SNTUR<$7 zhFES27{gcw2@6)&SeBUuCk|1F!I=-$osUT~6vR%mlGfawCxV|>T%@>gQ4u_q$%=gq zQze3qpd9=%f1H1%Xe3QTFlsdE;T6g4nsbdmy~u>WYx|UwxS~(T zd3nb0ak&~@@Gt|Z3PNlcu+q(0MEQN<{ZYy@LzcmSeIoe#Xnp1MNPJ(A{IF!JOfG0x zTqq;C=MST$On({LFOENd1Fiu4p%$l&?W~7W#^;KzDkTZUmRL{BocebGo;uMH{`pp4 zu6o~)rbA~LA_J|3i2~jvEkQmfLqt0Kc;@mGH+R)xqcNNQ^QfRaIgDzJk#p~UlY@ibCGHszfDEsv=dr!gEeRf;#jn-?6_J05EIot8}SUZYXU?BU+(L3r6 zXn8WyzD*!GJIp)Cejs(dT9OLBHdGmcKcL6o#aQ_c2Lw|>A$J@$iw6#XoEOOZI4DMs zMl$u>Tn&M9p*dEfDk@JWaF>yXNVt7LS_)ISr?9!j_@o^%9cHf1G0vQyhZD`%7ozSW zr(txikJUUaw>(`V#*5?6NfX7n{Y%h2MYB(GYpb<1myXzDHmtVNe<2}6hn*4!k^BBe zLH44myy6(*o*IFzSXD$s>ZElR_MX3rIA8ZzdBmMOk}_s6K1bAwS9pDr&nm7YcV)tq zC$w*$CDrkir0UpjtFd|}7c1ZRo!fS;jnwy8Rfto6mVSPE?K1YXG{IpxgMXDqgEN5W zvP6rwxbtFi8PP`6Ha*f4c6`X^#2JKOP3dUMoSRwM5JdfgrOS-3d98<};#_v_CmQ1^ zzTd7j`OkScpF2uUV(~&n5f(@>B}Xx%We?Umzj(T%vykISQi)RmYA?hUWbuVEwMQ3^ zi&q`NV-w9g<2)7dnn?iHsR99Cji*NxQD=*Y>;Tf3{Jg!(>J2U)$W_=jtn8WF`DM!A z7H{1A4IoyhS6kv_SNzFT&oyoGC*G_aa&j=AscUijZICmRy_favm9qV?$T@CN85*S| zTt7&cOvgTn=`Z5b_PWj!W2{6{@~V0Y^LlajhAIh0zDE;hrDSG{kaFn3Otk{w{RndS zgfQNu2{}XidT1z^ld8*eX&9Tq6n~F`COiV?tA-Bwz9urO7B_zYR`xQ2^(Rs*Q$L1T zIzD0StRe9V7_pDP4t^W{p~$OmW-~#Zi)1QE$;36@Yp#~J#IFl$mh*fv_=tlKuN0QX zUO>**6eAt5$U6`H?jdD?l}UxNHzWE(1*Gry9uEywqpGw6GpkU;mxD-EYKsm}E7&Ia zyPM|sPvjr;^os4;kYD6W=wJGV+*e|muG$?0n;nNT_ob|qJ|LM>kNkMYAC^axvOdXN z4RO_1V}#K;0@MgdymBYhzC$y-(j{NZWB2FfC>1LUGW3pSWFo9~Mt@EHlpC-&*T;yH z51JL7z}IUnjYY3Jip-kw2peIiH?I2|$>q=VjWV;bqf|bo4^tD7PE6R6^qHM##@^Cl zBhhtEuO>-iZXIx(fF(R$&EF&Uc}YT(7~iRUfVgl5uz4kkIG)G8;Z)!5;uQ6ne9 z_yx)zfZSPu=xVM(W`nYdz^t5hQ^%N#znym{lcRU9BdvS=Utq1Aia-$yzv`&l0M<=!_{c?nzD z&+*=u?Sg|HGTprbnA)BZd8CBgpWuJGSR`r!!`&`GZy3YptG2rTM_W9ho?QMtYxZf- zi=**tdy*6}Q60jiu3~V)s1ufMKGe#lN+OznsY&_tlL(vlNCtyB>0NAGCYU*VmMomF z0cu#694nqCsO2lJuf_+oRg&&Rm>AXr`sgtWn$=brZ4Q=zCm=PphEKYLf$fS2n+pi~ z`oW{L0C*M_DqQ4F=Q$2l>9IfwOJK9joB z>X_-DRQ8Aix=tv3+8JQv%$f-BHi3(`&a6SPW8-8$V z*wTJT`fOlaxO^=IxUb_;N$nh{fdIkVW?NHH)+o1L1;Pxi!}CByI3QRHh=K&NZFZTP zY=9`-TlaSh68(VWZKLyqjR1&kz(y&;Ah6Bcw$y7JCKcir&*g2I*}U2hTCJbozTv63 z=zMd>we1A^znBjvO|ROY!uZWRm->jL>`$>AU6eP*?UyUhInQT74Dv$~&~EN%oe#Q3 zC7Idd_|-Ie?yl(gB`?m`6M(GlA0oTYn+Zc^Ko~>Z(1&xHBz5BxzA;N0aG+#t;Hqgt zpKR1s8daR)V|~m`Nlk)-PX%!xc3=(SUJ--S7*)?SAh?_(uoYihxxXr`u}c9YZ6iHi zHaH}vb4I5W&)a$s>G!xP|AkZo3$ArP_x>1j5pW>yNeDRuv%?vo9-@ zop!G=9i@ehIQdvFioi)T0iNBN2ZymalS_hT-+E)IbO%!&>8MFp9-ZuA%7}>~4U%hy z01TEkfjxw6oFwL6L*A`w(1#gsWI<0BI* zIUNTI??345tLV|`(Q39%UNw2^E$G6X|NpMWvB*iFq~Y&9p|}5kuYYvQ>z(K1-FYCZ zr*AaS=67Oz2A=c)8fk>P2Ze8Iimy|Ya3#F2E5ngYxtcQZfHc+=Xx7ye$HZwQ*v)mI zUw^_56stqnIVJkcHH7lbg_IpZ4^UdQ!fRU%G2)AzD$1G^7T}r0>USgqQieR2VC0RLy(0x%tAMsbx%my8zc4aw=O~_t*XA>27@9Jn3qiw) z#b~E1IDTV!yOo=Niv9749F_KrN!fbGFP} zqMsgC&!5*G>G$Ucy30)+10K}RY39AuX)25mE`R3uy^9Cd0KQ^`di2eAK>9uSn5U72 zwWZF*OxPW6fF?-xR7wT@OqOuOxj?#$-L~!Luiej!JK3EVH-?$tr~0b_vu+yO*oGBz zG_=-5UKZZxZ+ZwrC6FJ&fzKCxH6_6v1}yko(tWMJC~ExM;=>dva0r1!70b*J-YD?K zWr)3bi*w!J1aEP6KM)oQd<_Cw#4UF-A%Oa*#kg*8R1tFS-G1Q?kREmqUjTJ<0^k#t z>!qKaxf=XwpCQ0XL)Pgp1(`(GkpeQYqHP;>RFjMGrkI5n(B8|xwhp(@19 z+sKgxftB~=wK(2?cxP&t)C>{}{L$osCpsk|VSv_dP*XM6%83G68=#mM8lexws4bI> ze&{!otc!b*pMg=v5M7I6N=$*3*Q6CQ$PeOxq! z_gk7S_6%$YR);q3hWR6i3KI_u*3&>Gs?W?Lt{dV`O=-Cy0SCi21k-X{(4Ihj7Q)fm zo|a$u@%T^{E96r7MC?j~llBx=%gE5aHYH1$U;hf(^CZ8S|K1R_EHYNmhBsx6 zGP-CkSom}6 z&im~SJe$7W_g{aT_mk~g-~q<)CZeM)6(V^AmS`#? z!Ej_AE2sO*Wb0}^=|z$xU7|g~T9NJ7OnR9QYg!QzgiD?TmfUdgHPDLWRR|7>5(c9| zF<(Z~v6_S>@l+)85g{?)`)PJApLA!{j~VGEgj2m@ilDr5=x*l+yk1)QpBLk`IN+`V z!d3gQ6zFm0rrym}7}+D9r=4oS4iHRnBB9&@=b{$o(ChKqHw#%b+MGOAW@THH-zAYc zinBa3rNV3E$X1s&5(#XqQ`M!<66=FJ)Mis5Mho5Q!0y@rd{v#J6njhf$+>MRv6_(z z;do)U@0Bh`m5_nKW8i=rIsu+sZ{AryVM`9;U_q6mF~)lUk;Z8o6(kLWC2|6q+!=+) zh#0xi2Yp37ouJt;AnwbZ74ZKyKEnGmZEo2O*<@mcvD#roWy2wyWS!z>MO*S-!PpCwsDS)M*tiz=}j~Icld-H?PFklEy~Q zeD+v&^zi0&NmNcgdw+MjQrMUUj3$EZJjNZEazPDOW3t*MSz%YgpQRsEt4!O1LPdY_ z%KI}RP+=(T#Y1_2aQ;A%invo8aEIoio!T4<^4JuZF%zcKFz0U~Dust>qjyEU7t|$5 zTK#QL1nrmjMML#4Fha+c){xc52s+X}qQOWm$#LO7526+j3g>)juuMYsM)U{K}RHM&r{8wsvlPW%_55LQORDkMSed8&xx zxD6Uex7F6KNC)f|0Z%N^DM=b>D3WqHe#!PvfMK9t|CuRxx9vvhB3>pY`kI&(~3)_v@VN=M`6Ohu+n~>+;WS zIIj&jpuu$=moQu8X8*8W8(&x3V>5 z9>57l(p`%a)12(GkBt*t447$fFj~s)9~RDZw}Q+6x}*ZhGR?bM(c@kWAI{AC>mgtx ze$2w3coIxSDV*@Q^<}^84{c#G!U`1DmEvw|Y2TZzKQ#)tnA81RVf0-$5!nqwzDj5T zD{y_S!ml`$m!)YrKm6SG=SHuGS?4!@_kukEjHR}~1o6&^BQI2muOp7FlxaK9fU}&h ziO0~E0mebF93PuKuaX$=L`GhmHWsf7h^bkdO0>FrVl$My*Sz4!7G{Bq87_-XFMO5qVodwF9f!y|@SG)e71HWvb`5 zD^d2RWXV*%GQ-1(5l2t~B!2WNp}PMRkvoah;l}a~o7Fp7B3l#Tls13=Il71p3M^*N zn~{b8QWfbAZc`3@n8EcGOy?Too2>DYXFZvf$>X-puZ}aDvw{XpQt8>us@_9DlY_b1 zAAny?`=oOu)D2fvrOeb3e+u*1Mq$3it*kdyl2Iy!eWaVDzlI;2# zvF61~mqRD=2?<;6#goSB+8cm*3BH8SrxrtLL1x><02BY+*S2j6r#OH$QlQ0XW0E1O z!LtT(zxPpPwcA8lRxN1vb}RQo>-9olI;Vx)a^B~4AS!ygAQVL5$t{WV@e+&u>n$mc$qz-=Hj z7>LjkEy((S2Qj4wH2$JIY#YS;sE95DAA46Fc+07e1UVoD@W8DwOTOI+A$kH2)8SfT zMcOs6(kp|k{0R7!2*P~^xi$1D&36YSfvgwpNeuqbZbp3O{kbog>-yMqQVSK%EjD8M zVrdCdUAnaBr-mvB#phqD_-ZgX7>N?+kE7)pH8?ttuMvXl!fGA9#n2b6Pawt!PAlPm zN)BGMkOYsv2w?KpC_`$sAYqN}Y;E7qD~moMAkG(TO|)+T*U;)VX8m7J=Oymj)=!{pct^_ZD*f-+|5aw4JyxD= z1p^Ixm5;odD?-_Pj(hY?D&7xwBs-4#!A|*fRQw@p6142y@ATR?U1+F{wd1MLX*Jmu zD~ypadQTx+J>OVX8CeAu6VW7~GMvWDtAXa^33GY|T4#ljg1iytp3h{g#<4c{*xF3Q zb@tkhy!3o2^VZ=W74dd!lELG86o%hXUpTjb&`eB5iX>nx(G?t9O2tZOpyXztk_$m_ zvA<4B0SBL6U{x!rg##~sI@DKi1)i+@FU&zP{B>o$jX6?F_<+|tKA=>Rjiv$moo}?> zZp#P<*LDM=t$NAVY&Fpf83((02c~<)^htBu4YG9LzeL0gcFw{=mQoI}PBw z?`pxucxNS|a}cb6FL@U>0C2mZ+7vB)lSYH3@W`{O$3+jsKi;U5|1hkRPulo|hSqC@%By@J zSu29JBKUTPnAy87O;^JX1&augVufavHTo`c;)$LiBL6OuSQPK6Q?M-eijk1%1;V^+LjQL=#KaFdoY`jkTCs$gNjOz``I@V9-c7;sELWb z%ntE?{A(mA96j2p@pFJesRRVDP@(4N_}Kb@o!$n5<)-=0aTD$!NUH8xR~|+`J=%M? zR+nNWo$t|Twf z2N^KDWK4ap^XvOGZS~yLdc*q}@;?FNH!1yw&lr5--kP%?Dgd8~6d&jsJ_XC>6cG>1 znxM`%S-e z^-;hCi7>@|G|Lj#*M>vh<05$?C~s0s)1`SKQK&*S!TPr`Vs7q~0Xu0vI%|^?+VxX1 zK<=ydNB&#pQ@5{7rAdF!%ydZU4Gs=AZ4hvSgA=o}A$aBg#X$==o@wQ&?^kk{V-n6EH9;?AA1yI!|nMqWkEtj z_Um%|2x*4zrTaVghK58Ta}{_4xZ!?1UmSYDAFjWf<}S<*=v#%p})6ErIddTE$%RiB}Dc!hG;AQ+~Y7c zlme?v#@i0tDzP&OkH8x(d6}7Ii+UZ_Jnf7ivw4oE&PZ!BnSMGJ8+JV-@rjhwL^xe7 z#!;xM$`(N%pA6TqG$hdJEQ8w;(J8r$6FIW9W($5{mev#^(@SWbG6q{0`qU^+=WBQhN;lN2??^d2CqD$ zV-GSwa4!X>(CfZ%E{z{I!Y!~VWphQXHNrVFM=(}7rz5pYC?AImPU5+C=-`tdj}=G2 zUxKiW_r0l{vz6auay2-i!_cdlGmp}1eRaBhYDa2hvx<@1v80fO zTGLsRg*j~i^{CQW;a%b9yt9(});ji6@J3`!d$`Nz}XejuaiZKd1oFL%`kTxR+)skml-XFgbr z9ro6cpRR9^lGUc#yYq3sS0rn))Q>LaZ=e1bk9*bg=#=}zmuK(xnBFISJ&F11k5^9S z=_Swy6!{i5SquyW7<#^E&;Kwmw73!3Eg59dSG0U3yW*eW87$KdOu0`8iJNVT3XNA* zG}mvzKwlCJ9~);dZacYG?mYM1loBvwBtyb}($=XXJD2n3ulQH6TGEKSnH*_hxj3ye zwX@Iy2mV5-s{&5%4)vEZRNbf)+)SLnW@JzG#NV^v`Kb?0JHb@CC*@^t3y0Xq2TkiN z=k{@fmYa--&Ez*amd5=LQt2ja?TDvf8pfZ$6uT*@&QVO*eEc_q9^vWOXvn ziAsEnA{^Z1@L14!huM9$YSt?(Vzxob1?Y6Ab7aYvO>>>D%9VS&=juWg>L(>AxX&KR zvCay5^0Hpb%+e!g$>r84SB3QV8YtS8kay97sr52goFq4mqD^u^a#Z=?owzM~hlL9p z=a5I^7+|NHI(7TdN|#uR54|y&hnbNH-CcpQnn)8)%EjXA+rslpNR8Pi3&JqWz%GLuJ zFNa!D>eq@Ooo!3ufK%_izZ2vic7BrHpBKF>Z0`7cul+3q)Pc1$jvmbspf4+ZDEk>+v6%^%^ZmNrZI0WP|c_Zn0SCQoj z4h{!FBtT$!q{jSf;e(8)Ogc@$3f(nSzVZ)uevR0bF5+o8fT~eF($ddR)@GyO@~lod zW9*3!`sxdrCfE-{9)=X;%lxiErk({xJp4u>a^SMd*PQ; zsn_4kg-&u$rn1dt7S?{R$u_Qj!}=0hB|1+P zUwBq&TQ+(a7_6fspd$5oWhLT=M@OzP8kD9!}az!nZd>fBARKVtJKM zMyZvLFXVCxPe%T{>awk0qf*F>%6}!L#Mlub*5g{9c4lItd|~Bxyd%>P+`Sa^ki%Vq zf~=C*-y)pCi+|M4J}Cb+AUJS3T5t6_9jNYTI!;^~PolLjcz?ioslDUCDpd2+`&<=g zKmYVFBr`ivtK07-f3SJhPkh0GZPFib9v-|Tog{QVqs=|-5ix8sP8yEPG-Nvjv*Yc# z;bGo$e$jDolt!!J3uEH5&#+$@FQ@ktNjt$jZTB*(tz}I*zr0Fu=Q30GM%#vY?uM}Y`75e=x6H&az>|# z2_`n{gC27=wGYXdi)7=h>Rubtr>+fBX@L2C>lqbsiz`L4DNl1ctG>2hhd zBpo#@?)`H7X8VU@3yz;G^}*Y%DJA7*8mL>C2)oP^OlKHO)0nrmo+V!_TH!A5H{%($ zV((ZN=W}B)n3I!kCLZ>)Pd^ABk2IloGY|&chiJ>e6B?G?GY+%3e+%E z3)gIZ$(Rno!UX?bG429de{cO$$dOyCn%!GF^9(fCKwA*+gZL=nSUMxT#WTop!1Ytc z%v|h|-ulYqipwmCn!x%!2VO0Fc$`Knk4TSBz}-NMK$6Q@cr&d$X^K9tv^{j{HSePd z;$RZ<=HQoU(AJTHD}LTP!$Ve2&T1*EUt(yAV_Hgj`lSnlkj+IzqJX}o*2m$fP{3kQ z*@EiL;t=dNCRqpvIVEZ4-$WftV54W#`~i()hgpOhe|=8vK+e?8f1P`ky0{~t^OWle z!1?!kpO*5!(FXxtPj+-qW?#4&RqvkYN5Q~*G|EBGm4DU&@6;)SnEe@1=y^|r-OCrQ zpl@f;)^?A0yXmcekgH#xAo(hu4pxd*`>Bg8&DRzU7h9+&qi*dwOacg{$5b~ntBi%E zj)!h=%`F8REM{=kUYVF0OHcfJYSHo*y^uEsQd#Ig>rVWYclG6X^CnyY^I(6y;lW7b z0{16MveOZC2dr~lcr`e^ye`++0xvZ+KCL}UVB=*r=AP|j&f84KY*);8RR-yjS;IqznDm$QVDl-iC18 zB2K^P5?S`R&>e3CF=}q>l<{2gtIA`(=z2HiZc^VDo5Usjy9!#GMcPO^;#7A%Yb_LE z$M!Lbq^iV$U576K$^B;o1AUmL`{1Rf2uK<1$0A$Q6%-R*_@*=c{Bfzk2CI%ha6-ym zx8#146r?xAbk7quDW~N5id>zf@h@e_$w|2pe`DO`e3u{L@|MV!jn%xyn->4K612$pHHIo(`;rhO4rtXCR)^mJIzyztvrSN&v02?W5@DFQYAOs8DKKyUJ;Lfd( z40Wt62l~HzQ2c zzL}5YwN=tjb9}mN!dc=R8x|#^J0h0Bd{~HTm*@&t2JY~tLndD)M^tGTv4?#+X7eY( zl%s!(B3KT};9q1oRQT%9&6TR6gI1FE9d)&DDE_|8EG`^6r5OHunkcsZFG$HWa^Fl> ztvrFF^z#uupl`X#8r@%gfNT}l3k>ZvSsTGyh)qBHd698O<9Vj^70Qm2)Rd3ud_@;F zb|eg$ewM3#Ba6Uw2oUTm84e{vK}ccAVQ_#zEylYl0|QM$WQlr_$e1R4qjOCjqW$br zq&0O=R#3ug>Hc(|Su=6%uAYZ{WDdwcDhnXd1&b-9B+unR-dP;#sG)qQPuFx}-8C#_ zp=S6rr{&et9KEFs2+K*EW`_HZ`wB!X%1 z`$lArqn8A(r!O)r6x$rK{t;xjM+D)FG*4Kr&kDU9K#_L6M<+ktufjx_ zAqJIeQU_%itS|i2CC9d!Ua^hFg1y~+etoR2k(V*v_n;_OgD@}(Ih~uUoHA=`Cg$*d zu)DebJ1*eaF3^Wt^?V2j0}JrgBM0Iu-;3Zq<{S= z?Hv+Q+J8qUNR20IqoqCCr`<0NW&ed_hUH>?muxc`1B@m01RVlE7AmDnENq%0L|DmD zj!#5o;5E8VRgrFn(I5c8x%@ri0z!6z6np)CFb_VME|H?yDP^zm!vHwqQBB!uYnn>$XN)&A zr7HLJdx`h=Wp6R7BDFHeo8}5VvKhO4#4h9#yGJ_2kM127-%=^sCO;N@jXpy0M2_u;;yH^ zo(@g#&oq1dGPSkjvtkse?$oC^R2Gx~1Xn#{83To#6B5*+aBJ zmRB8rPiY2HlrL$!=6>PPS*qz#pzG7|NfgWg))!DB{d4gRu%9#5ORAmk$b;v(-x6@%OA~mnc6uWg4ulW7$2= z`P~kr()1XNdqR;jLkuZAH3XJvZZ{CYczjRw3B}wszg3{@a+;-VGS}40TgZX;|MvVm z)s68Q_t&R?Avdm0<}QWv3%v^#UNPMv29_T9N_tMLpV6n* zzM(37>H)@2S)f!%vO|WQ{Jm$L>9vo*@5IWa>J~^%wAU{s9T6tP#>6B8h!p5li<6x$ z&5%BkCCqQAHY+rbrKOc-H!pNCMU_BXgdZ&a*0jg(u@fuH-yF3$ze-)+75J-ux+2nP z;P(=QhKVN&1%-%!OGbSmj4ee!`n8-phfWu|GYECjeMV8c>M4UjUQA2XRB;r zCa`lhY)rM(?g$)C#sbc}y%m^P8<7ddQu3JKB)*j~nLQ{j+Y2K<5#Vk?6Vl9rsSOS#H6~~D%HD>dQ3V} zZJy1g%}kC(V@lW_CfemZ%^>1?0k&Z#r7D)aTsA|gM&qr%O;eL`h=`Xamh^+on!Ah8 z1)@GuW9(LS-q#HC$w;VVq#`oc0WZc9Z>`imRpQ* zWyDg)@`Mb@X;GK+B>Tp6N^+SEKjfe~B?&4**z`v1ZA2u#Rs&YlmVNgrDunf54XWiE zWGY~4q{h=(RXUiRU(_OsYrof2mTWGXL z4{@wuayO@Erl==30~ZEIi(S+N;ElOOyuCUlU}P#(5UxAp{^_lsEc405w5dp)vi6DH zqba)zCJCJ2_SgPB_T*xkdWH8=?I^u2vzWWVXZC}wL#t80f8m(6U!2H@X6L7fv8LMW zn!Z~D>90y;TrHc5oU~LcU2oMHaS`Spy}yb+w)(q20*ikOsnv1M|yg${&) z+77fNw;?>l8qNsoCI0!#AisJ9_{lZm7P9cc3qjED9w7v%xAA^7`dN9awwDN_s^ZV1 z6HMt*Jd!uUv{K@%j+~a9*;Xl~_F1pKugRS8n3KJ+P$C5X4aTFAFUZ!1u`!eCN2REx zt{c?#`Vv;1*IojN^P$IIM!eXr?w3_w3j!Sy*3ErLq>9+)Fkg6CL~}X|%s`Noen}PI zI{Cz-AD7V@f_qtcPpVJ-l-*lQ6CJZe3^%$uQDk)Qn)<&uN=s28U_Zz9YAYvOt0@N= z(;Xh2eQWp=Np5Yb7x#k&<@rh5=~=VgLDLmxTXPaAfCu+~DJERll*jfzp9_PW734p9oe zABoW}U`0<_wU2JhUy8uj6^@yQA?B+_+PBONC=#wc)4e2gB63sc7j|8sUXV&^8SW^g zwFABA@&Ezu^$nFW?%QwfrJXACHbBcISJ;K3P zxb|YdD%Z(*p^OtySn9$?o@4h6ul>q=xJ;|7RM)C~sCWt-J2+H1u@eO02#2uv^Q-mz z6N;*I6wr5IA@b98L3NKSz_bc)!^4ppkmoCJjcerV)V?GZ!Nmt2|NIH?z)F{Q0DKfZ zSSu){O3`UOD8l?^LD|IL6NM@UcLi*~o_D09`NjH9eOIs4qNmyXblVzH=qW~}z_{cy zT-rZiW%FV4YBG_;iMiQ-TYcd|SOY9|Q8;%XTfUMMa@CqbW4XCkVbwUFiXux!7d(0` zjEY5>4f+xaRa*WK$d&vC(`HyYM^m5mb;C3WMoUngv--UXN7a8+haY4jA6~DBUT?o$ zPe1uPLvmsF{(#^wtLKz~$az~O%qm>yzmxhf@`o7ORdqeOj4>u$O~s5HKmI9;~GJs4BYCOLgM&^~|mULEb z!nREE%+k#aDrmW2W)I{d3s!D~a?f7om6;Wg#g!o_-9}Bm26ySjy6 zJ=WF7*DK76 zpVGJ={1V?68eu}soCB>=J_LEe;=j>jcvp%X|253aP}a(56FGPc%w2(Yz#eYu@`fie z7-*CqqvT(XvpUT!o5kO(&Aen*c(gA3V;of9FnT#y(sTXvU*^>o`a2O* zv+Els7Q-+8Jmo`{FK)8S_2$wWA51;xAI)5HZmjAlF!wDRphgvZ<7X2DyrXuDd*|db z{}W&aZ!Ef`MHr$6=`2@Bc`P>cO=e>sPow&!O$Eou@DdgLtdlLbn+8%7K7=)WvI8aV zJDG_kdXc5~BPMzi2RqfTYcb6nNDe8a(v12xmIcA$a!30;# zI(wyfMbuv^CVE-^dhO|#@|l65eTXO>^^AqSFzgeM>UGgo1I}Zit-^qp8`Ag$w~Pw4 z>DOl{nfL{Wbx{$hJ82Ia%j>}3X+nS&FWSbCB?T?s(!e@&FWP-_-LH!>`YYlmmt`M3 z5B@63p?}gACIB)!P}}*vsB`=z9u6=5SMMDhca2-6o}_dYqer0^w3?6kGLxPZ6+^q; z;T8*%$*vD4iMNpN@m|-K$)y)8#L}=ogovCD9Z?bCkfp5o=VgZSao1F;69oLRf5@k) zd%=X1QeN}>bwvkm)0ica=NG=+`YWgYpVMF z@1bLGlk)9&!Lytm2=FO&sEe&Yr^MUWjJ&IH@xxWt=_Vae5L`!wme-=@owZj8^L~=K znv#D=4>4?zm8sFaett5_=*?GAA{?Rj(V1u6@(%V5%K1r@rjr8()mQxpZaNuho2uwH z-YQPfzeh&lY}2X-HxvVN=ue5sZsm*SYlx!bCZ5?^Q}M1F z35nI(@c;Jn=}{>C!YfzD$G4QqPPbo=NX&GjK+Ag*QFCT)%{aW-zy6zZ#G|@?UI`=& zEP^1rY1OstGcBeQF8;-oA*_YBf|W7-*}ph2t0Fn+ie-8#DS_)}p_o$UvOToDIu|D; z)LRnia`RK!=S!tA;Q<8s^yi?BDTkf`m6rGW=Q+XVIp;D+zkAPqpJ`mwttOuK|El!P z@$TArLs%w~FET(?pz3OAY+2PC=58_?t-Cd%M8e0Dl8hijnlriM5yI_nWPN0Ap)po= z6zn6U|D!zdyy)5Lu*9l6-1Ayu#Wvlj8ZKKk<}tacJ&bm?ktugIOcFU%m>!}o%gP7! zO+qAq6nYtc0F``i#Z1e`-drpz7Ot?TuM)g(`1fP^w22G9{Svp`-NFHG zx+RM-Dx}*_hI+{C=e-Rv_vf)0QH%E3mu6#mPhZ_R#sbMCpUsL5Xp5wg>11bxejKW1 zzQt(Hkrujohbs@BHwrBHR$tAsKcOF$=!kkQq`xBY1RoDFv`+u%C2OTUc%T5-bxmed z`^uI{t8tTw;UDoUa_z1` z4UM%ag(kdB#SR=nb)f#ZBpKZzK_7<(f4X?F%JS(=RR735f<(mfac>Y&jSerSIlIU` z-rD=r|)BI|%j}VBV@4iKL zMV(iY%P`^YosS8jD)ax*TeCiudSO*Cx$L5uuRM_cWigYr(byJod)zJ{;i*K7LflZL z2f%~*#RHPBR>JB{Z~~PD0qz}%Y!~xRFB7`C!LMusL0Cjyi4$0Z zin)A^JC!qVv4>VI*CmrR!y*}`@Z37{kUJB(68JCJ<9=pj$9Fw={Nj(CDq)HN9fs_T zx0yuF@Avy(-N#Dx1LXtM9tIxguC1tUNlS%nFXH_H^Yz!;RKZAUQm$_M^fU!#Ufq#Y z-~@h{i!Gyfr7Zuj#jVBuJ0X|< z9!o_{bbwQ1Pjw_%SHk-9l3bFbILLVl!#UV_W8{bfqVs2xF~VV83hjD}I#OVtDEM{% zJt(v$9)ZBt&JPdVpF@dHA<{$<{fk*1hRCD9CT@M_2W$R(+UZ+|3hZio?(n^h<&UzZ zL?Juzhio>}))9MT5_UQ78_b-jHbD5~x))OrVHA$vLU!ms zG#~(S5|kDXr>X1e7={Dl_~I&R z78(~k(d&Yda01|@Tgv>wSHtm}eB8ewnQwvLv)74EohL>@((#EXz7aF7EJ3YJn2 zzBJ_X8sD7eNMmCo32WgjXB~79I4INP>`8~2z*js=jyMEXAUbIM^zr-11OOrn(U4QF z_fSN;x*wHM``sO&wn~vH?6sa%W?g2+YjGc+LQEGrK8FZTAs4vC;X#1TY|Uy?+|&$AQmSQVr;COyP@3$S;A@xlk3B&8BAB({O`KtPj`vlKx9R3L zrXeaoM##+bfSF1z&9SLFqtWD%9y&ykdtp?0*gTmwW-emKuMov>NkSy1+U1Cfo? z8EYGoIbHaZ71o3!5=59(k0P;6FljeWDXTu;-Qu_`4Zh_%jST^-y`QGihiikL;KZ#YNg@(; z4N`z|$j3`QvoB2;V7xm+^=?k)EL3bIg>OlOl%TTq%f zfIp~@t*N1Lc4k9BVNda@{*hQlo5va2{|W|LmjB2i)OiWHn`ZF{vID7Z6kxyp&wtWx z|I*NVd2A)ap;}t;zo-6~PLm}fdkS}ar2iuWVa`TEQzQ`AShShps__uUX||ULqhsQ| zY;iD?Y7E58cWHJgpT&Io1;Aah5uTDgZmx@)aE@B#5s}R*(515xmrjVMBwAw$KvInS zHev1R9kzod8gH>Dwj|L45j-~20so$y7FrpcIk&Jyk1)IHv?v6mg`wf30= zl2?nwNL<+!CwNkdgzBNNT{a&VIz%o+`@Fu;jZv>^6zG7UYT!->&}XSbR@Dl zruKCI1(BR9rafOh1Z#^AsNZm7ZChgvr%tl7apFh2#k%Ok8Ze&#iE8d-lw^)_&I2at zu$F~!-;Se%&s8OISq?;!FSe@n<;Y#4_VLOOn96vsru+lafD29S`e4rZR$_E|RBpR( zH}EQ0!s&Mk^Sy(UXy@$9Sv zXF>nm`>xL=X=+D~PeXQo+ex~g?kIUg1%UUqFGZ3Z58Bq*ja0xG-Gz^i|AH>Aj<@zt z&yAX{_W)N`UmI~zZ~vX{y#M>~{PHsmb_d3 zp!1htjZ;X@5q)!3|K>ZmntZLOuvW~a9QF4cc-g}kX=Wf98$mF8)fO0cpsl}?QI)vv%xRNl7EWOSTd&!UT0(};u0bo${MToU5T@tz)vn!i#*=1Dk@W# zY!FmR13UUi^%6@L$xhu!w-f`Gm~Bt53s)5rpF(43W60~q$Ybzz3e7Ofa%q^J&=;l% zg$C3sTjsPn_6bXzPRODJRiS}A+-Pfai56%01rg)idBO)0seFi3l z7v1xgg&lN6cPGYlO$xyxX;q@Dh4Im3BY?qm&CDZ{?n;KMP9Q_Bi{znReW=>nBDaK6)$CF>bEf;VVR3@yN>zG2HuH2>x(W*LpDVw}KhC&0{5HE>@+ z*{G%@{+3#L0d!zF?=$VMAIzE}ia7iG0j}ggnqmPYY=3JnK2%ifZwp4&;(4sjq||@* zC;WK`kyFH@8@=o2x0mTs7B*Ung*%r-PB~VDEzHClg4xFmbo*pxra=< z#IO17C6~wnk(24_6^0@ZE-eKvLc;C#_qDltG}o>oM}WU;1r=45ta|jOY1o0>jzegNwY4ihY7wh25WWxg{n4ESD_O6ReZ-~a zp$FPY4ap3L$-4seHPAZeP-jNJfWxPQSD(!>l~4}x}E&R6lce>JjIvf za$gpREZ^mbOL+Efd{1g|#i8d&4|K2#NVa-^^pQAfpAIE(?);J`LihK_$;VC^kpqdi z|2oF9YwNl~rxg7nwAFI%KL)(}ZyfK=@127ROW9?jg-`js&@ScU+))R$^7)MTv6jH2 zAp4%;?L?Ma)KU2GW5{|^Dj+Q`-V~RHzURb%&9j}Kl<*bWJUSuV_}4(4V91W!uQ<;- zR1BkmJld~$chXKoYIF9N=kL#x`}gm?@S8{hGENjZ&D4hicHQx}mVPHtcnsm_hQo}j zz3=b>hl@5RClDj@@|R#3SvqkafH7S*IyujBhwUB*n*+#W^kAziYl{VSb42`i$OiTSVj&qBt z?5ojZH#&(#@Pe51N+}rCUYMb?iptEVFlINmO$Ahq0UA&OYApyD>S$}-I37~!yif(r z(PpYH6U-nQaP37s-D1=z*ad2*i)`Sj!jc{y(?z{v?y}5*TgSnD^?$DTZRpaLz?n>| zygCV@E>j4T>hC7IvKhQ#x$!>vHus678YCE7@LjOWqf-_TE!lghcgWdT#^x(cn_m`= zAzH?zJ)Q2jdKA#8igOQ+#FoJPy`OS_|{sEHn*xNu-j{<^Sx}7uOP`u;i#w?advER6IiYF7z>i^O~ zmN@8|cJ~Dq3i-@PhhwedyIxX0YpPkUd%qZ1d}FEHsw3?MQ`VrNYBu+G`a^}`=@7-_ zPIC)0v$&fwjNC1nOB;=^V)z4zFJYL6s$q1<<;KuzrCV#?t;Fh;J-r8V*^a4MFCEk4 zMJRr;kSEHv1!wyXQ}CD|%UA~)8_QYjNu-%z6^4J4RX1B*?16;MIlsC*g2%%)`A&ljzO2fQrk@6F=pdjsuk0W zMt8S-Y8DUHe0vt3asV4d5QY*Mvp-N>H8#_ZAC0#B+FELd8ra4>VHZm!D^KE(HObYE zp`;E}YOo+FMA{ykOx)7?l+FYL8TL^izYArUc!C<5c*wjJ*l>siz^DMTIY(~*dA4A( z_R3omX&0t~m*eW0=pLcLG`YC4HlTIsq6c&h#Srijw^!yP-xdby`;}yGdOdISlv&&3 zJv*vLkh)voxJ!J_$E#<|rbl7mw3BHN6bnz>-0xQQj==r?x_i+Z-{j~ek6Wu{Y~D#% zB!WfX?q%B~qZH{1OJSloH+RrOZWS!HY;?>QyfywIXfXwErr9l%Ys^kbsxUpz)a0o- z{fY+~7xVKHNNP^UyzlUL#GA@LSY}}mdPZec(7+K@eEjsHT=|^V!}MM9(RAI73!Q8H zs%!={Wh@paz^(Nsn`M)IGx6;(4TLD2iXGmu5a*0YyxYTkWSitEH6WXL*Tv{@KVK-f zsN{c128!}R<5E8|Bhe)+08jl@x#Zd*{Xn$_RVr5XkxIBK|1A<*mbMy*%2zh}lF;${ zU6yOe5BT4(UAqKi{6R(mxG`-dQv z8V^gobBZeA>@8e_!D1j$IZy27iri`;ci7*tuj(dyQl-8_K?Om1pVcH~5#UW8fD!f2 zoN?iVx<>DRN^MRXacFIKjcxsx~f^}nk; z=gxv}6b3BKaY1Ga*ph0K(NVG)eZt~!HnmI?rAFwgTHgbJiHtj1_J6Z2e^r|Dz*%!Hkc|L&YS8UEhe5un_dd zZTDg?O9Q;$`}N}2TkL2iX;gWl5P8(x5;%cF#3wM^5ma>>&=}aX zGzcZ`3}|qIIBPI!ITPE_UbvS$5%j^tpY{oOeWYBy0Rx-Qh)sN}L!VK&761&PG88Ex z5?(3!AZ_q?-lAEkB*3F*uqrl5f9}iX3DCo(w+HB6=rVN7A&&&!7uWop|WGPgUq9XJtbn;SYR zq^7Nfy1|V*W0m>mlbI|c~4hi{4Elgqhb}8|fHrsuRA!wGDf}U*Fb5#%?4Yq@oYc)tx z{XODHF7L4^-7L46K=P)iYAvRu;nH-Ii3F9u>(hna?C62SZZD!%`ssnInmA7TVIrN9 zx7Rc4X(cyfQGB4F!$?1HMib zN8d{KDo7)9do`E#_RTJ+zUFSKeR?;)OLN_JY&|`9k$&+XsaDe*7`6JzkBsrHEuApPXY{3Y0I3XIg?NaS?!G zDKUl%O@(e6+{Fz$P$S8h25g%9M$`Ek`Zg{?jp_h4DIhhoJ(cjVVcK>5u6V$0fw=(UqFy0A^2hl7zi6lLn~Za*l{GHd3A5G=M)%5|y73KnhDH`qfQ9xSXNCVtv zCA2*U87I$B&i8ni%%i9Ky@z{SEFrj?g|_PxQ2` z;pZ9X6&pHjZ+m%b-8K*bT6%u$iC}~XYtzr0#ahnCIv7_AdzR%_a*&vsoBbBSAWls7Zc&i?K!VY#(Ue-1>iWR!RR zKLTySS!w*O@0gy@Gw1+{!Yvuf$=23a$2h?#1HAcgdYkAafq0#p%$5+R#a`hDe|!Z< zA%qk?6G))M${pg`+0y(p*C1dMp)+u5ZvRm?8bXmj)>vY=x+y}z2-ElxV1=x1lbtw8 z%ZLgk><{tDD?iHqT)#Y7020`4V zu;DdKX(>Kx-8IB@D#)WqS6}vpvIX}HaYBAXc1|st+X|^Ni-CyTBRUEf3pym`zdhRR zS4q2k_ftQ)j<~SXhh<99YcC)8%=Cg$I4-u>w?SU}<=$k_152gMy;+%>lRuvIWs#|ECCAj9K#2~S69W4hy;1s`C>SRq}_?w;YCj76O^#%g@32; zfkbTSs?HlX4G7y=qr1eaeNOUv{5r!4hDmlwgP7x?{xq_qMX{Q#s^`xb_ATUwQYFXz z0HVdLTlq|%en!UZ`m9sZwcYydeBR6d>hv;-S4*;21K<)GT?|DzxS6=cjkr0DVZI>p z7AIW&IL>mT-e$TK7|ws$6lt)zGX={?VaJUekyN>v3-jVWyT#_b@U~iz#ZZM-HU!50 z%s@&dC}0sb^Bd@#k~d~cbSh~}3<1V2dSX08#ZW}<6K@mtm=3S32)EOh(io=Jg|m+el-*{L^?~j?4bMM5ly#NtGrG z(G>Au>I0`n=8ts-yt?lDBB=Y&@oCE#iJu5#qx(ZiN>`_s+MwbmAajF(;UA; zG?<{rLki~T!(H)*sWV0_ z)GGn_ak!G1%HT6?%Rk8jF=y7`Amlmov;-y@6Z=&oJyqC`TjfMAr|-FlX&}jMwNFS# zaUDV8N|h!SUiG6gHPnsmyU8JO5t=}xd&-t=JnAIwtVID~zr{d2%rj&96AbX8#mVpr z9fN>NZ~+;STByhZ_+L47g;jdXz^rs=i5nWG=)Y(3 z-XUy8S{JqQOx44+QJ9bcj@i4y3iunmY_G?n`2z>K1bIuGnB|C{vqIAYoAlU4Sl2J? z7m(rnR8hRIn(14_^R{PWPFk4S&&PozGBRqU-J@p(aJ<>zA1NDliVTN}&Ap{J9m?1H z0>r3!z0yb`zkYo}p+z)Ay(1(~UkuY&E~i;35kG4M$0we|GP|VFu1Q!ve>i7byof*2 zBQoBztK2eCL=#1qhrV%5@Us1&$&$5T7`EWs(6RPx+p!X+S9b99$h7{<`uZ?;Y z7BNb7zk0!7O>CBd@ZM)M0AwkyC*+XsREeltlRBs`5;h0(E>5;oPg1)5JO4kX-ZC!A zF6!G>6qQtvPHBmuq(P8Wx24T$l$IK#1{k`#rKMXWN2C;$t>Em_G*t}Lqz0wY6~vQ`3V;UjD^K&^kCMhLg9kYe8Ut11BlBX z-BML`&s%Y^$%z^jtl5H%xA&2%`Dg8lCT-l21?F(l>=Es_VoDFDa0R?T<@ySmpDH6V zKO$(rG4*4Ce`k$KFOa=s-ge%sAX6l`uSpcbQuTMrWU4L0n>?X8F~a(_8U_%fOx zCwW<*Lhg8rIAG5pjJflB#o_O|FZha$I z;IW!sTM?I#zjf8lM)Zimn9ZazZ!>3~8m zZg-T6#qRzX>X=5bo!oL1}Bx2)heIV-8j zP1esrllVD%L=Du9-ZPmdRpx9 z?_S4{i3V%9mEDfA9j;|OSn+TSmipa#Px9m^%k5RDyIAW$kBpZy?aEqT+Yy<;^rWlm z&2ll_aqj-T$x<*Ta1kS?9bra#Ik9baSSuNkq!57MW9#+I161zCuYc?w+WY-LymTKP zdPFteKF?^HZ|ZdKgG`p%u3JEMlHa|5re+=B+k8#GxLy2l*Z2r_r)}U${dSGKG27Nr zxIznRqA55Be>GM~`0|5T=Y5DHpPyi?3O$+FO;xF*oAW6J8w*AUw^2v?j@}fA_3=M? zSrJ?}|A@u0fxKVZYI-2vJyB=4I!L7AD|GKLdfYUxn;+7WUYHcTD6lFvS@FJ3vy-2s z)zZy+6*K%X?c=HvqngRjf;hM$)aBY~U_hXY7raJa4Zo3RKVB)4Vv_zsAO}tf^?>bkEJ4?RQAno`txpi$thME9A!Jf&OR$~H_f8-pKyB? zq7dk*wxC&N)HvT}LhPGFnjy2q)Mg*bnm2e5`k;Py!0)#@9~%n`KQanNhmxzMscd8m z@bKY3?c$x=7yGi3S`?J$;O)~k^pR)vP{bTT7PFx>^qItaX*I*`G2|52uw##rt&$qW zqUqrgAZHtm)Vj8}FQxP4wLUk}! zh-9SPbQ`TtBaUD;~{<2`H8 z6Jgw56S2;O>v)9bb~j95Xpn?{V7{pT00A?f?X**r2GtH%4enyfksH(LZn&G)%L%(s zMXs-KaL_z$qDA80i)3>!>~$^aSVpJoJ`p9OUFn?NO{=y~=VD1~v^T5Yar0-gVsew) z&(HbJhKbQ1C6{PiT1$;)p>LS6B}w~R!$Vs&d*%(R?4tL-CH?QIZ~J&HlV!s}7xVOk zm}J1#W67Ri#VA|$n*s9p%hj{HN*(hOJMQOwPN9T6pCR63soeEE#CB9<@*q8D*>;2( zPNnNhPN~f1vdhfeuvh4N@pc>1HQtL-B~u(IMBQ*ab0Yx=!B>YKazfjcM+&Nt1YJXFE{@r+GF>dO$Z59Y+=_M7kRxplvh2TK(P|*`r|Q>hT0{?Eg(*HlPAZ zQJ#)Q`GPm>}N51&7@v*O-Xeial zs25Sz^Q3VlB_ZEe5j8%?mS^W)bcMR`jg>fp2S|E%9l9*kc9i-FVsYr9|}{}uE6_+CKG@8xlGnHfyHj96| zF`v?t#}e)>zvAfyV_V<*$2}V^_Q~+}rjgF~N9$WR{-H>WTgAj;3=N5r_@EWZe)>XO zW#99%H(68iqaYjLhj^ikm(-kuZ^+!bH{g5A9;%-m>hu;(9cbatfv{!Kotk`nzw>I-1mHx4GeN(* zTn8J~a0Y50z?$}53y&&#W@>c4G`ezkth@cQ3PDF1C2@yjcjAo%>a?#hZ!ig8`~5r& z5hv$cqzzv}jM3kY>q@$NcC#JD^u*53{AhX8AclXjaudh~5EAyXOw*Q^>%Mf938|3i z@=Z{~+t%;9y(g(z#1uTSlRxqZNcob|@wmk{+*%Lw-bAdAkF*bC^sLE4xsUJIiF(Qo zjO;hj1GelD6533bRFeMh(K4S~_Qb$L7&oBq|JT0t=;WaOU*oNsA;8%Gir-H2yiih- zS+r_mihLAjt?^UF3frwRbNVGnfCdSl3P#KesATGSIit*1#UD7|lV_SES>)eE2YF7K zJXXmsv`-m5g|Jh(rYpTJw}$s$yeOmc=38L=yYh$@d;u@VSX@+>h)DF?VxsO&PomcI z(%xmlmQcRjfQ~M;2gr#oBvfX;*0H{|P*aOFZ%EQ~`#E+K?dNx9+ImSd<0tsNt{oEs zvsc_5$nm_(V!>Um4e8y9*+`OLjk%KGSC8(1+O(=)BuAOsM_2eQ`~*GW5o%7c-@KTI zJfnL)k&^Ujy;}H~;=)Z;FTB^4F|$L_h4P`H4Iw*-Al&=3h*SI07WmXUIo_b`*RiMCyT>0(Zd!<1gGHZf-5(q@UI?F$cZfQY}FFr%9@7?UjNUuARiqkfZYPh--H zoV|FJ8r><~3y)kqx^_n8J6k4_2#k+uNBOy?`PCh;p*hK~~Gp8@jR zMw@*_k_>hY9d()p&SOkZwHX3VBKDN8R+Xb7zid&#h4&t45D*y}Ka`DZks9UXCS&Kx zfi!v&)o?jr^=)1~Tm5O%uC`gVcs{p(9fIl^kl27BG=;IaM>z&0%LPk5rjAkX7sUMg z*skqMr2p`){j`f%YTTFHGe7^835W~i>UGEp!r6i{>6O-Ztz$J}94U1?0wTeJeNu0J z3j(KT11(;)C=ccz%%hD)gC#y?OnlDzS9GCd`oSXCHVcivD3YdqTl*=(xD6P*vY9KZ zAmE?Z{-1+Cwx{OCJ4U`RU}sNanq`Eko>s5Dq5fcFUo~@{>e0kKjMc};j_o{k#)W(j z_>u=AMI8ewMzglj*+w-LMnhJzTXR`4+K48`ozBE5*r{^oY;i;~Ws zj;Ym4NA>Xb{MOK!9B@yO&JSsu6|i_fbs=O(OG&_{+vUa3IKye2X&Cvo!sHxQt`aYv!mNqXE^6W9p+5Md_ zJ8Mm39!nskPCLuU9U}C^Td37K2~G+={Rw_HPAL8~f5iQY!W5XUDmD^gJpJ)`q(Y*t zrXIi0hq|JwuT-EDM7iHf?7x%Fucq@R?OSm)hFq#MjTZtN0` z(*wo%-U<-NP`M2vE$NB*b05Sf4#Q{M9?DXQgc?(*kT`iM*dyboeV<&l+!~*Ua7*HQ zjiu6Ezl^W8_ZCqT$tsLlPueJPqI1=JiUuwWdB52+h9-a0eg3z}{e6lZVA#b@Lj^Fx z4Y_JM_nZf284tSpw?VvaL!3y7otqrn)_vmITa2rvG6z{xYetf`sSBYU9cTEa3b$5G z((g7H5GaFffBRyrB5P#9_)F+p?TuZAlIvSRH>jx%>4r%0-JFy)B9R#=&;5#qbaED5 z!^#O9h}&RJFE&NgK=mDxrB@0|;>KweaedER_OOL=9VaJ>TN|Em+_=BicD3KHD$ib5 zdFLc2frgxSg5exj$s?NJ1EliiK#@mlf-1!{u_*k5WAvY?i650k&YHLr6U?MF<=x-; z0>Dv%cyIY-CJ~lI#PzGanyl}4Y9J5gI4-!+s})lg1=< zT)RZs8V*kdN$(y5N8-IglFv<2x!51aw8j0dmeZxpFqpB={Hn@G=lei5&*NGF_f2Cr*5^~C_Gt|~LN|oD;OMW~E`I9g^IA!zt7%>v z>T{2(>{2$Y=tE%v#hw(VczH}=^JCY_HMRd?Tk@>oKdv?mXfATSFrTNyUC`@wlV5Vk zh#bG~wD_e28l}*io>ZOxO||2N$M5AW2NT=X%!@ebspo^xAOF@@J@+0G>JkjeFg__$ zSfAc*B=NL}(s<6|G*;_Zp%GyudLJ4l5$Kr-WEh`$o20}EQ zJ*J4!Lh%RSdm;sbd<8E^MiC2wr9?HCQ%v-g=QEZo=N?jl-@`iWb1_E1HTmNQaq#RG z{|?At+Hq+I>BI-})G5!`7gmj*IfFxUIu|HI@~K6*_$j61*JH$Y@}@@1!VvG>d0p7c z;5+JMAW-%Me>y8R7E+jjWChRSk>u`#D`essx7*Jme+W-2d{49Var+k#Ecagl4P`F8 zz3-cs|41)=3Dva8$nNxmWElYqo$tV%at|D_;;?nzb_ki zM!k5U{5%|3L+d{k+PMfrO zL*GZY*Eus$6r=^S)1?Tu4`N`_yhyGb$GW#b zgzo2n8^oH|8c{1WA34MWcajJkl(B3e$I9zrTwT2#nk@QyN~i69!P~biroUkRz)W!6 zV&*Rm&{K&*|G8~pAO1SPw8=tEAs z1=ij^7%I2QPT{JKDuOe|f|*>2U}&cq?ATekIOZ67&YAXW6=AzJFBE6}jZ*RZxO?A= z)(e-g_mpB;qU(FXbimsgmMFX1+>2{u#d5B|$Mc!H!I$!dvJ&Xw)E`w7HT=d3ca;5% zI09KD6H!BO)2Jh>2CE0MhpOR7$K3^H@1E!EA(QVZ=HO7a3g*T~zlNZa`6LD0scLQ+ zKM6~kB?_DHh(o`h(cZDKZ&Xkio+R!Iag>#Q1o04ycFy?Q|N8xLVHf4+7UA_N&psy) zV=_hQU2(s^Exv%2`gp@xY()LQZ+AOk>_^TwBC)?$2g-nzJ3S2M=E>n6D2tN%+j{Tg zA*XGD_W)k8GMHnl`|VOGnw(&GvMsV)BoretJ{76IX_H^qGnpHyxig=dpaT$=Cy80q z6u2M%G}gSokjQLjGQ3NVuIjkGc`Sv|6`gBK9sB2b>QnZ4OZ~6Z$JqRmm@|T|b|L1l zaRKK1y5}sT;Pq;BE%?&SEQ<>hW}oTk(zLrm#TPo~^v;0;;{D=e!jn|t7!;?YRX#+l38yT!|5H~VI`oGns=I}?o3U9+Y z`MByB%qc{jThP01kK%>l5BHIlFZjw^oQ@OIyN=^(MJoZB@AFWaeO{sW=q1erA z)Z6H7TzdpkDYP}5LgLaN$)>q-G^93;?vmmJnzg+8?GBjbZ>quPMh9;0HNlpV#((uq z8o#`gLw#FsQ$X*z38=l@6r^unW*Ts8^%6<;?RWs~VXSm<9WbC6Q*OQXqlOrz^L+o^Ag(@gB&WPy@grSSZlwAn(<(?h=l4Vb?p|(?!n@|sq!Se`{G>Dy`CFw^>g&LEMR8=0UB*de9Vn%m z6}ntfKLqXCa6k%GYyD<-Wr&FG(j4q6u@c)!g*^u6=f74MMVW%aQwSrrNM^w%nBSAu zpW5`LUU1UJlZ&v*PxFshk>o#Fw%E;R5WA|dFMK0F(4#hM-L$bb&x$Fxs^zMs(`>M- zNUHktv&V@dDvyNReK#Fn);5O&l=ygy!*vEf`F=_y#{PUQ=@Y!8zWv{zA8;0y#Y|MB zT>=-hfNurFe!x}X)7I-mhS@L%(85_jZ4HHMBgC^$zNgaJPNhtFkH-Iv+y6UdtIob3 zHMWv9Iez-z-QoMYc=cAFjvP%HW8oi7G4qi|qsc)C+o>}ai=Ty4qE(1jmvF#oq9tip z%qgIMhjw^)Q)5(?oe2Dbfn_&7;DSo(k9eElz5e%`|5Hos+_v#xPA`+J^`gkQ%iipV zp^PvdlxF)0WknGf72Yvh-xEA51Nof|E zLwMEJso30MI9+#U6SzUR*9#t#D;Q5D>p7aK2a5uV1WGZ9>Z!Go7Q%WIBi3u?$K*pX zz}aacX2=_fXF)Jzx}A6JXn*zwWnHs@>4)>k7mof*-6Zg(&C=Vo6>x*l^00|^MK@cu z?YKK~TEWSFw5Y)H6h@6ls033R{)8towL57Oc4Xy_JcE5T>|rD=LO4I=LYtDy+tMp&9rclyT~8OpA$b%<!`RLb*6j^|d5~9o> zv9R~#3YEa7z-KCoz_=tO>65-3vo6~h_ka+x;h0JqxQHmG+n!~);iO`%5HrsKXmq0D z$)dn4ge(Fu;Kejs5$CvAvpU@yT8}e~={LY5;V9QW8?);+O z_UKSU`+am^Y%czTz>x`N^Eubcd+J9gpKk(-mjTJ{*jnj{+YV6n+k+u;09U13pFp?E z?I|t*=A5keZc%A6Wb*O$vu`X;%^RzWtRql-&Ocs@I*iSvB(D>QT%=x zO_knF%~HHyWL8uoTL2k5NwW*eEK>(C z1<3bd>CZ>c2AXyjCD7Ar+j{+ayBc*M>;R$%KP1V?%=KpOBbjx}(}O)Awd#u+RJ9!D zD^at*MT5-j(~F7a|F|&zWtL^9qN>g-bb_K0112lBt3x)_`=4C9H1?BQY^k-5MTos? z-{8d+v5(QJdW#V6Om{q6ZPCA?P&(QD5R&^{487x)$QS8et@I_=*!augA0r`|wAylD zYOE#DspxGlAdRz+Vzm)wggNy_?!MSpaASFW)f6)n6~}q}C4#5Wp1qRoi}&Ty?9Zog43;jC~g03SX`Xw;g)^EACJrV9Tnv<5{~- z6puvuY4}P&JL7*jh|!@PJZ^GI^@9(WPggv0ctF^fv(ji1gKr{cygJW1lsB^=pL;A7 zz`x;?Suw$r_yPOl?)C#q)kUdno0V^Oenirs0|(S^I*KoE*gTg}J2&FqEz@JC0aur4 z>0Edd+uNz1`m+?!7oo6|jZ(%Dd5-nDPCs{uyxw;!!A#9!^Bpk-wFFvLP^O*tlxu$P zq#IG5aJ@uzXs{6%S`YLzTP2ZM=|(#kLP=D$llO!3S=IBQ@?~G_sbXg}#CkQ~#h?>A z#{~q|+MhDEzk7{n8HpRQVZLg>cn{jrsWb!-xo23#knyVt@=}Bd`TEDV9wlrNznsSu zewjbGb_&a@L=;UXezs-2&S1sPb;jH{R@3X(k&x5&t=lCX4>VZb!Lo1qnteJMR;++!&CoK?%PMkTxy?fH=M!hbbIs_o!@Y$2l2>GO0 z8uh0pqVbL22edmg|1J2c;%Y}%ywOUPSp1$uc=z>VnXJI~Q+TvCXgf*M2)?2X11C>o zF(hO_ej_D|S`tVAx5SQa{>}QtSnd(p=#F?XJk%Z|<|3eSwJL#^YW|qRzc5yJPTnMF z`*0n!xT8Fo*IO+|<>JiLUQZAOU7i57PqhlCqkOMh5|lu>U4>xF!gsOPgV+gcIbnXu-`(BgeBqPgz` zMqGFVPNR)d&|{Y*P2q2g9^TtZ@qHh}U=q=3YH8pgp3K_@>eg10iyghq$rI;6bT9v~ z$L2!y*D8X$4m)+(S2DAkKY6W+^NpLzo_ez<`qmVfWhnQa#>RdEAypxny9*;*V$w5H<=bI)|GKSmO zwk-7qdL3r|Wy!C;XOh{T~!z;8=<6Uz44E=(j$a z9&rBeA+!95f*FRho+mOoDtzOTNy))n6%i+||gjfmlm|)Ohn9Pq(Kk!dJvP_o!lA^Enj76yN754#X`tedDz!%9B+++Wk%-wzubDO;WYrzB~+oL=m<%H}_C z%1Rs5=jlJKd{j!xjff0%t`iw7(CZ}O+W!C<7bb9V#)I;S*HX-}!i<3ex9{CpuJorq zdEMZo>)cXoTqEJr72OKEo$g;ci6jKpOz*6QcwJO7WJKVd0tKskXflH-q$WG4As5fQ zz?@!fwoum$bqsDi>MJ=et^KtOvQ5DRg~kI9r~}KA)o4J)L!GPI=lL}&Y{(RoM|L79D)Lc3R*Hg z%<^y2Hc;ZgRlI7wlD1W!7wD2%HFBE7IZQqwwZ)rFa89%y*MC zkh#Nm{?CImCh0pI>>A`8C3~S{x+BemLmP|eHlhs+iR| z*f*z)xpZ6(<2m`bm?%>b12^8^^Z3T#z~g^Pw%?^0R=wKv&Ix3RLEt6&aj`_}e8;5P zUNgt#dN4b}nRkpzLYv5owe4@(N=LgNXki@QX?6Qgi-BAJ?+L0=flk09_ri)Z5|o{g?*Uvl!w$VdX13Gk-S zbQC2%udne|Q&t|U?-3MI6Um9h^GyBYA`EMdL_AusD90Yw;=mo11{pmaq@r~+=ejO zARoVKD^SWtGFfsAVRHuWN#C`nUE7Nr6ee40dE!Y1=r||uO+itXfKXbwe>lf4P`em}{*e}n^ zj$+Tt*Po@ zti^QMM-kqbttylKt}~Z=ZA)=0-1fl~tx{psCTu7yEb+%j@-|KCpR_1*v+Dnx9#Vkk z-?D>mWS*)(!}1*7dKT#2*=`rw^D6q#$%#h9TC(>lj&^DGzM<~v4qcStTskOC{Ixm` zkAYghIelGpW6TYwNa+7U~OLg!hx^RzOP)Xs)2CQd&BShYWZ4|v5SWd-z#ET?Wvu*@`}t$ znZ{2`6ThmqND<21U3dr&wPu%?GD}qEkb{257bCo;rT=ZxID4{pK}IeX=T0Fe(Kywi zaSSYOJ7BNXhRjj85R%)w;%;=4FM=CyiurLi_V@>9M+bYOfzZV!qg4{9VHz z;|JklN6W4MybN8g!#U9*8}>40SymohmlBo;I3S0j(B_<{4MtWp>e>>sRxe=p4N#;? zgM-zZqgz4MNCPVZdjsMfNL8vuY$l-sHq3<&iZL_gzYPU(|q? z!Rovay?4Rm3X979)5xZ$bc+WXaDrAxHz9CEA9!9GWdL0>h|*)1^lJf9%$=2qJ0JhQ z{-?*3mQH2HD|n;Rvs_1_Ib!CQLrSCDqT$I_BTnwl$&U9XqCyZOjAap+B#iZ_l|e%4 zI(+F6H^aYpzlyZ+_dVYnBR<7~C;goE@;sO*z_;nmq=#utP33JCPO*3@@Y!olxH}`A z!<-Z>p3faAZzelZWkclpgp`%%tvulGvS%Gf9`{Espj5cDf8olr%zpW59iur-Txew< ztFnsofDOV-^lV0@P1k%qo%LV8&8j$9q=m%yL*iqhnkJ2XMbx}_)%umZMY;F~s#H#+ zFxIRZGh|2tKS@9T{^fQ{xSk_xswJfW0nLaO2sY0a@cy)r`k|s@MD#)Ho4b{)L_mG=9 z@l`%V+vHv9DB(c^Ya-jqnFOSusWBnj7KGX!(IB0bHW#0{L|~%C)0E$R?)%Xe0{}~j zs>L;9Us`ZPRS}7TT`AJ)g1-Fh90-3A5cxbgIX}ddG%;m9pqnRjb&igIS>172y*hD_ zVCsDtH=weXfphtDcn>vlTVTJX59CK_wAXgiDb@6q&O28 zJoikAh6SNhCEkt+d0TOISF1<{1aM@0i;(QC!w*Z8yMu<4Y_|RR={4eX?Xy1-`{}XK z5$5yl#Cdu2Uj4@ZbT({nH$`m}rK1@+nM-+GdU}qaN!c2DofX-=q!@u>JLoI1FaoU< z;P*w|?KWWFj*hdPa8=29hK0h(-FYG!79&z;;8e2I9>;#`++`Q(9_cisBpO5c=ET%q zTW;}_Iqtg$R_kAMlsD6zKFG;7i674&`COnnda75Kt%oO=*DMUc(jkOpH5Hw3#3=7K z0-sjZ*_sS%(kY!4a24 zYZ@Pm9h#iC<^=}<6oB?M{So^uOKH7A-xriz5@Jl%NK81+_-V)6WU}^&s8ExCuI$^Z zRjDC>m048Sb5-H@#KpmX9C!n1K3&XjlS1aLf$@afsYVJIyz!C${)&RkxtERuqc=Qt(CW`R4w>L8jr2_OtAp_$hKf>MY=WVhPAYo&iB}Lvt2%Xno{%x zuR(NULDr1`S;>{X}zZ=eUaQfjtyJt;x`$6W8*;OO6w}#Dc{LWHTOd8Z0C_VdvQeoYNGb_xSv9T># zF7KPntOchVg#uPJZO9?CyA7JOpUJ0;Ta7kPgb!=&J!^!6l_V!W<%hc>yRAii@ck?~ zHzN-SXN6?`T+`(`x;73s=I1YD7LksBWy>;A9-5a(e)xl=@rsR^3?cHJ3F@Y*b z?nTprOJeF|iv-xoS7_xKx1qJTl}kSN>yO_%=dfRnwo3}TlLC;9g4L}l?E0~ua&va< zsI#+Xqe0drGQr^SwO*TUy}nd02K^*?8tn#w z#c9f{?Wk%6W4{1DH>G~_SBL9de+uP=I&M5IU2}q;4v422aVy|GQFKKkG6*2i-Q3sg)J#O`V3?Rlr05zVTq+D;roSW_) zhc5@Df(%ZYy3G$Mb-SOLO&cNm)OXK&*=Y^U4aip99sAv1yMqwHx(w=bOPsu(pb_xEB6$RdS7fxaz5LjOFIANXOM7eNP4dC+_aTNR`<}NuP>{{YuueT(5EiJ5$gcHR-N#I0H{n`Io&>GfYD&lIEKO=)VQ+Z5 z9mI@7^B{1yBw6dXDZ-Mt;Q`{1bCDf_|OA7;C1Qa(gO8{)d7Sqe4C zmVN8`9wG_BV`eJ)pC#czV6Y{X5tkd80sCB;UQ!? z*YmLQ@#WcK+Hg%$z!iPK%Kuj3!Ha%j!{9M&=IWD+265 zw!5lt(z@B$MOlwxVyCIQ_X}7-EX8TV0-0!QLhanph!MTld7t5pBB1MSXlEI6r{?9N zSM#V!7M?(^w$p&JsC|CfqJ9Jn%om$wOp?C0z|wDdg&2wd zH~Jd%M!?0D?J#COibm4IvvWGI>jX#%sr+WQN?IPJth;-%4JSttPn%voAnz$l14bpfK&|cZFY`eg3Yv;ZIgqXaC#bPa)AXrVq%b=SxVpJ zdquB2yHOw60m7Pi?m<`>Yg#NxB8tIfvlN($%m**y2A+M}^+}R#<+@*j9o0-6yUGkt z2}e8gkx)Eyw_z46KynW1fiM)<0k?IHm;(#IUPAwq6@#9fsA2z_A=)aa=7O(34pNFEX zzQ*w_t*;HFRfjAMiRjT2#r8d$o;!@J+z#V9fdvUi`ObzTI;rQ;g;vezLN*!BPZ%zU z9d+U*=vL)9P$~!+CYpUsk)xWhdt29hZM7~qh6^?)w3rU{dzUdqq>Wd}QRxWQdUQ!t zG`=k|;_3n0Iwt>B8g>+Id8nEI8^E|G{Jj$~6|T(dJO3b%I2`K0@O;W>RBi(w{=hx} z)@|__!w>qw1;^F;nQN8-yEIl;`|`Hje0=!Ph{ za-hneds!`U;nwWnDL#z1IIS++$THfCHa6MAA7lH#gu1=`_0K-RdCvp!P|_DM>Zdj; zeB}3D^()8s`%mt_3SzW}7JMz@GN|UtNLdK}UQq(6C)JS?&aaTduNUidQmmbJnwW6# z>`#)8B(skqQG9~+2&-G;YvW;y$4>T(F~3nn-%ZsAo4eSb%%rif6Xyar7&$T9qT*xc z2WJ&$tz(PT>7kU@HR%TFSlO{fy1KdM`{e>$f0;Mj&x?Q1UKJP^#Iw>M798BI>!b_Y zZ*;O-i;y#73L@F^KO{~ag|lLKPmO*ZJxfm;x);xef*S1#e)9-@Dz)W8=h~d`)G?df zE{gZdsHgE{_2x|CSO?dp9m1tLf;kh&jZTfS9-C5*JEnWQZPr-nDi@JG^g@k>BA7jE zX@i9ccd!ELU^eEx6O0y~#C%3ksOqmA2=SFIqp_{iFC7Yt3Yy(4zSUp*&g$T@uvdA) zG~7MLIpn0slF1LC7*iOD$}_X)$Yi~Jx%6Bf!<>UBtFK9PZZSpV7O+yIp(A4O2y4fV zs45~fg6ossgv=jmw^xs*jKun-30Bqc5N&f^H3CJ_gUeiuYS_X8xcA?DM4KO}%YMAb zQ2qFCgkkDg?{|-z_18$=$1il`&GR?D3FBP;ZXq(B{bEn)w_cIE>CfTf+Ou)xlN_F$ zpuR$PI(Qh;taCXg2_u^22OqiVj|^fPY;mT~%shLItl^jlq~jL{j-xh#)sZgB#|n3c zqc8oX0ipv1gST7KOA+N5l56ka3^MXduKv0&GLL6UlnGu6jvU86v58 zk*YhAz#X*eLV8;P-G z^bJ333+<~Sx?|v^EZ}psX7)lbb4I#T>O;fS`iNiJVyA~GtdJ6znCQwWO6&DYe-u&g zFFge^AE)4t+USJhu~+h%qn}nw^WI!d3#^;b)s)``biqHr7klt>w*3WcvU>H8Yx_Ym z3x-#IN+ALVcn&dRn z;INLlu}j2jJ?}qSX#tlD3_J%Tnk5ZCJPnFYjZU~?L1k~3v7W)dXVC3Ea+;hc24U%5 ziyR^2k)%nsSrrpA=SoK)EnQk|r<~^`D6oe&u&~Edqv}x69Pv1T*2OH;&dG2`x7?kR z4XKL@Ve6$f%+-gx{Y`C=>qz54oV*XITY}On{LIY%jQUFM!uvaC1V#DwI9yE-iAO`# z>)r9*BDjvw=0Uy1o*Kbz*WNWQ3n&wnk*w{wfPphq!1*c3uE>LyFvS$I7)RT(+)@EY zNJd@+T^}E8ooi>hMf5!#SHZs3z7d^(*Ogz^Q1An&s;pFcPs-U*Ru854#-|p0xrFV! z7v-;I>=|+bQ{g>Kj@1Uxu-+5K?FQ}w9bMd)WuuJ}(>QU#A>qki2qVcyb<E@ERD7c_rsd>jnLW~&QGOz z2bmI{xkGhztZ0tjZ2j}?ItA@7|H|rKXN->H->8; zjzhzN#>KM59^)t+HxQkKG0w72!33+nb7@xbI=KmnZ}X7JCTqUcia+wPsvEr_@Ur(* z=+nAfUk)m+r)vKAWOWxe&iQ!LCOR*OoIWN4TU3#SdX=e+d#Yj8Vk~!K@SmTn?cfL# zy`esHDE&E7|s3qxSW z=I^PdwZf7TdBAbyyq?LwuAiz+>p9x5&OR7~D9h!*s!~Wiv`--Oc-r?w%`su3mOv8b z+`dB}m+_DiSrS=N`gK$WXVgQY$W>uhaC5mBJ2*^HQ;B#?q<;)?blVkh+WEhafzJ&d zow32#rL4sW1%DY6=lRXhkVu|n8e`q#pImyXnhqPEYKPBl7=#JoG$R{O9vdY|bEx(& z&d}$|jt{={+VpLmw##dh7JUpee*=^Y^ZIe@LT5>*2O|pF>`_r0*4<0VpERFLeZ%Me z4dlso?#^|A2JyOdG4~D$?xl#K4y`g=HeA$nHQAD0Wu~U223bFc8CCskDpE_>x~Pf> zVEHppbkI-X?#al`f@HtU+OY0)VK>Oix0XpsE3cW!$qjMfmCO=~t-Kt%|sE8q@4RmS7o&rj%`-ZDiu%L;!kaFsI zS#I%qObvm#`nwOt+`nJWWRcxgsxNPCg=;%0@7(@*O}}&VJkLJzTI`LR$wE$)n$7CT ziD940-<17*$RAds+cnIN2$cC(+`W%$ss7vM3PXICoB_KWkJ%VBGcofIpHda|lGCZY zbzdSdn6#~#~mjtXK}+Yp5{#Jgce z!FqVob!g=Fw8{iuvWYk|svYAAQYPN7Q9 z0wKIa@owDRXmqbdz50g`o@)3t}inqQ@r{tr`c9oFRghK+v=R8nb~fPgduiP0buqX&+3bP8i2 zj1W*lN$DQlFkpmqcbB9vQo5B^Kqdm-Hg^!N z{HtK{7(xQr^AROjMrw33ZhE!+|5k@@zhMnBL{91*xyl^nSveLpTshYnHmgaXT4sW2 z$gszrM+Z-nOOTJBrR}LS9dBMk_k%x1adFlFcl@Y*L)M?84lo(Bdtu)Q8l+-IiXJ@R z9;ag$)N_OVE{UF@3zABEK*eV7=1^89($L7wvY1mMmZr2IX2egXB{DCP_>l2&FL|af ze>M`;jnpvVW`%yqM+*Kek?sA+khbX3BV2;pO|EtP#gWx+Fp15xu%SP6q8B6++>AMO z7D=Je%sg;*%U3}p45O+;wN(0;3hz|&8WtETRSSc!)z{uV0}Z{UP~Rs>TzK^tPE{{x zJNB3Lp|Plb+QuhGOw(*cSTiIJ#FzZ_R#DK=l{Ob;78!$S_*ALPBp}@E}!i2 zf7}t#AxZ3H(xDDa2ns)?rhfND>`|N?5Oh{H<>$OJ{8x%R%CK>eRe3h~>lY4H;yGc$ zTQ7XJ!h|Bwp8#bra+ADo=>F&%WCJ_eAg5?B*|OPu2Y4S^ZL*5F&AAKHAI5$5NA#yt zW(MV-_+DrCi5vCXl;_FGuedz!rLyk%Q^Vfo?Ku3si!JKCNJy+7$7oFjEFGG3+}2z_ zbi*uNhW>P zx)kn)&xCXY2Dm6>ww?kfGPkH;K$gWEn7drPkzcS}5Or#8JnAIm${)x6P{)`$o>cf( z9j<031^dH;B3pDj^p{Olip@4iBH=E=B#oTxSk7$HfB}(&AwUCg@~T%YNyz&+hu1}J zlRuzo3W9%)b%7&8oZ9(N=i{}Gaq+TKW4Fs!B9a}CSz9}DBgkNNVK(g8YmRX=PDa2Czi+m zuuE$?iJov4TPg_cN8H^f^=9`8LcU(2*0Y1Nyf@N?tOk`)Ov69(_L(gs)H~ym(b0(s z5W+bT6lrQrEtG&HkxR)%0Iru{MNFGdW!YC##HLPES*h?1{W`KJZbL4XpK6Ew!!rx| zIXWfV&`wVEof&RS_KCTw?Ox{?Ou(2*2vzJ&RYlZc((g0?BA$u zQ$Qc2H~Da(T}b6X)o;Plks);wb~s0!06AHM><>?G|`o zdhI5QR>pHY4Uj2P^nqSzcg0w0smkf~o!=s)YBs(!E|p&e+#;qhNl&Pt%<5rPaoR(| zGxqZ&Qem7gJ@|B=B)Xi(s~rRgZW?j z4CZsdY@Hl0xm^iXb68cw{{7f3Uvzm20ZVDql0Hd`kay=`4t7CHJxf`LBC2nkXcrcS zKsWZCfOL_xy_s{Bkwr?=h4x5|J`s;Kr`{2T-mX1{)HBmxNBstIV&Crnrrfegj)fU2 z=~MebWc>M1xXvu|RnWv8Qq-d=%YHFg?QZy1O6Q}!Y0m)!T(H=9*@xwsN1w2hYXUmj z+3_jxmd=VpMW`$w1}Mb+itr-i$*i3p&VD+LFRZ0EM~Km;nQ|VQ&xbwXPpk=iFFt*X z+59n=8yb{(rc<^#x{o?AHP+vc_q*k5Xrx#cd)!U`g-sbT;TCz`VwPgLC z{=ep1=eAx7X!E(#pla8$&{=_0#dy4ieQd>)3l~q|*2}*h4vw88tX7N|D&;$8F?-%7 zi)Z3X?%O|#NFTG`dEO@6`G$Hr1-M+-i_5wqUp$O%yO57Mx{h-6n#5n%9sha1G?aP! zTxRGeghkb*Qp*CwYfR}>mY=&L5kGM>8Wx+^TagsB97V4!FVC2REhD$_b5+^hPxq_$ zOHdtt11wb5YYh;1l(VKL$Tdv@Yh-7mwq_1A^T9Q6_q?ICj*TehBC2I(zb_Bxq!#ag zThoC0p~l0$1s1~ewz4wMdQV5UXPjlzmfdUv z5nWj#9;n;0g|QASD=Klfubr!GBQ$F37NKe^>+aG`_$os$PZIjj9cihY3gwO6+D2J()AmDMu@E1RKzj_wufPYNJZF_7;l4z)ILvL0Ku zWsJeF)#A{;Ai+bDD@cK5s#N9ARWou5HfZ`)j?0OYhMvyCvq13bRWVIKBW?`M8uoLH zDn>RLbd8O8{*DC2XPL4Q?w_Vg-VE1$Jx{$eRGw{iwlagD4wN zZ6y4KDUDm7fGWYb88SNI3Ht@&r%UXXRfE{sYl!$fgQ3JDjyq=@cWRjzjSXqv{tdO6 zL?wv@*)y>bA>lc9kcibjXhcYKTbIz5h1ZW{(0#q%l$O)#X<{Vm~x|{?@`mY!`_a&qZ1xT8^w6)g;ypPwnW9S z)VfGaJw_2wi;|@68xs*rEyYI=6^OhcT3@kyZTW(?+X1 zTY;?ZkAh)YN7jg`OY=d8M$Nh++ zV>7QINq`D!-hw(AH)7JyI#%FFs8^O-i&}T^g*ph}||FA!1u<(&cfngiAblU6GiTXw#*va=CQrDnhg}~Y_n|-q6 zAaP#9wJyBgQ$9+1?X84#y2tFVbjp8zm`x8-_X~HYk;C0Z!NLkgY5=2o_*H=BPjPcP zYEGOwN9;%Xj6|~?<;hOLN3m(Y%Z8*h#1MJ5xIT3dIhpEY*8GFe9M28dki4%n&>HVMf zwnT9Df~qNOV0N+FVXYNquv@eCDCJ`RHN1bQN$3OnoeVA#X_&U>K?9kt?osb}>=r7~ zzF32DTnDj!sa^3eb9YI@@GqQwdAqq}>_1rI3_X70EppE2S5rxyJw#XH0}hwg)0Euk zsxee)0SNya!lBEli7e`xp|MADX?P@JqWb>Nv_v+|43woEsA=+v%m|xeiFswXpwGsi z7ucF1w-#$c#q7fR#<_L@H}vpk4jrObTOJBP+aCNeO=St2oog2)tJlHy_cD~vf}!9Pf4orXFCoJ z1fcB&)LI^{0O`(~znOhk8+bpk3;3iRkB=UtAvn$)o zkgA#5-0X;D9j$MkxC>or*_vx^mMnECb0NBaecYG1xGH)ODUPprLmha~+~|jEU%H5B zV)azPPZ8#%eUtrcUTj@Cb#e|=2YR0G?l%8jC<0x=?w>NH_S@@%q~2sI>p|p5Wj(Jh zcVo@I4&16cd7auCkz)t4(J*h*Wl<3X-y~km`niOmt6X~O6QJ7UYp@I^BfU4O<=$bKNhjU|*oK~MXzZY@u znBj1tI33#>{EK4AkRYrDNTMuzqB@T=^_**sKObkM(=t)LEowg(seu=0sAh==Dg>U8 zmEfKClN#3qCSH#{+m5}5E|Iico(PK{mgs^JD-p;wiMzHgHHMvnV)Taq3Eik>XHsxi zl4pDlCpW+jCEQ33Z4*(QHO4XB} zC>d||ac9-%A|*!gYsuqz9l~4+C?$PFE-Jv&q-iaXON>wmr*&w&CT7`kGe5FMMLN)* zfmc^}vn@(8VZ@^1yViCi|9?t^+U>ukz?mxY?-Y>Id?@2?(&KVC)8l>C)L@DQ%79I zYc4%gv8}<4Rk}?yi%n9JfmZ2%f6Nikej@VYyXAAGN;i)+CJRT9bLH0~dvXp`=-`xY zl(i8*p|+0hie{TrhV1q0^dLfjkE@g;tTMUnd?Jn1tSQ zAXgbT(uu{-*1D;hz1q(+x9c z9gj7kdRs^xmWvD7S?gHzad%0576 zZ)I-_G9Yx`a8XB<)OoCEWtMO@xK*y-9L44ahU+AvHB1zQ?+#~esnWXAu#+SnAx^Q` zNF#%z!(nzN*MRx1&!S{rInk|W933!}bQ_Z%MzS1)P07({-_FVZ1W z_YZI4Phnu5DY~s^Kxg~1)xAOw^F27F3 zY2D8kt_g2@+)XV&R#*QbC~xqIe|JQ|24y|(bkUXSo^HOfx~g(`V46M>G|x9b&Rs%( zdHHMDHW}1*J|}>3kUz}^kOSKJw1ZE>_bx7wNdwt0cIfAK{uYTaqJzx-nt2;EI5S!=dfFglBxuB5$Z2GB9DP#Sspyr-tj;}=7fS`uwiIZ$}ywSEKfKOPIvPlH9zVs9$t9M(E zqam1=rd88L1siwvYa%7J+7*xkS?1*L#50Och6Blv>{4Apr7m0DTPvJQ#oR`)7sUa8 zYGlIb_$*eX`o_9r+>v9;vnLKen-=poQdm8i(Y9ZnthU8_KFudsV=98qOx$&xdjOz} zo8x}z=>9Ry{;*J=uGJkEhl~Zg$rCV51(QaQ8W*Q&{fwm}&GGSwIz$;6q80M98=|8Q zTN||V$MTMizLa{JDNZdq$LF9g@wrNwrlBaT>B5!jcc$#O9^nsjf52ZLFHsRn@Zd#x zUFM26x=@6y7L@`L;ZAU0cf8hZdXA6R(3%2R*Ay5#i`ppxd;tbzTM~S{N?ZHpR@ z)n6Ojnyo;rwzyDKA?Ke*4mDhx=_k?;zXH7rn)y-pE`0=eyp(doy99yzk!^QM4Ks6iJy@7i)qG`bS z=%KbY6)1AxUEiwLXzs>#Jhcs%(g~+IXz=3@3Y%3HTKGo4=L;%XnO2kXu!Y?n z9-Y()e^0?Z$q#f@v>Z1Sb&yR@-;<~|_HS0mT7a{<8kVlUyVA{;ix=J84kRQuF%p; z3Zlw3H#+RxV9Z+H2CXq|3b}LGLtuU-omG(5t#RG=&o6Bz9vSL$a(SMZseH%xPO#Cj zDr+(t(NevA5CLH;>Ehg1Cowb)lf2mR`5FJ-grYe9hcl(#& zhVccix_9QGxc+)pUMq4M>w)yR&x^=@#raKd+D}F%$TTPi%xhpKy^k){A=t$@%pcKt zjsA@Ldeb>Ut)rXM{4axl^8sm?5YZ*X!-}_Lc7KK`%frF zr^WH;hSurjmaQfugaaTZ2p*~nYn{SE+n5hfpjP8yi6AQ?XXw=j``LH% z8_6dOe59at>w%d>dP80E615asua%W}rU4HZUzK>;YB0ml4}_zNd&O3YdRI6=R&{_k ze{wE&h^-fW7de=<6O3Y$nH|&N`zG=f!pbwL$yz8iXca!^m;_M|8GUwvOs57jZK4;) zAt>X#B9-2vY!!n}yGiWIcD%4@3E6Y8usZ>v85|bde=utEgEBo({igr=g?&!;qw!~3^dqc4`IL!nPA^9&-?0^wh5B_Y%0&J-bgEBV@WW~JX8NQ>r#lWWksG>$! zq_D^$`#PYq5Vq}t>{Galc~gN-^HYHDZPE9oxc`Gq%%2?#W!B3_hi=xaB|pXedaTQ~ zc!rLy{3^6sLZvt>XkE8oPe`=k8qfW>wwljt!l-cx$-cN>UDAINnm0V)LU)$2X( zGLWCL+fhrWG{S`Y171OXsz9HvybCt4oXkK`bW$y`bW~|ZL=h6a%bH&qOY$d-hYx1B zWt+iI$`&PFqVl+ry`f2oSUmcTY**}$T(x^q5s?v=%Hzff$8+y9&%OTMoQFF$0hQ?? z7Y{6qSUM5-efnox;TQo&hD)jhSM#N+@zvfK&7}3Ty}7g>0bi!DvId;hVA9F4r@WNo zMi00!*w|^T6)D3O;PvkdNmg1XsV<}TPIgoM~z!q31ntpqC5Gu z#AHq$yzdw3b-;Y^tGdX<2R*K9RLNB*T@ExX`{7<6ILNIDuvjzOoFY01iQY4j$f6Yv0yOhS z3;?lU3)9XCktSoVBy$+q=ne1-I+q5wmBmWZaL|`%YPsLfFS$g?XaG8khlkNyGaTGl zRtdKO)$LX6Cz|-M5d3Btv7MDb@up(0HuAy0&*C0sCgJ$`7D0-pP)1NGVJ%8})7e z@n^G!ANDKKj%wA{&aH+u2}N$L+Ntw|tbV+a3kE9UUa(pjiPYZK zh|4xI@o2u?Lc3t?Ys27JH`=%2fP$9)?<7b?E}fF^pS8SxNbFsxZuuVlns!}THs>3c zdsUT8%4)|_-wGZdS7F(q_Hf+*o7pXNnRC-u@Xaq;kwwoGd!s^`|lZ~?5`YF0;ntGr1^7rcLkMNyx+?3-}?%vnE= zKrS%5$5wX>Y`Ey?IYFXkWTq_iiCTg>HhciP1HE3~oAd9ImJqY1gX62fS3oJ*GM%$w z#8%Va)7DN7prgGcd#rQ^0HMvbnp~d+^+E=Z)N7{4y7H-mt-+L{Fu0hB;;C^Qnh7gD z{|5Clr{{$BlW?cnp?whhXjHB>OUkGg_Vq#YkH)7Z+@9=iz#J@M2sDkW(=nQ{v>up_ zrOT+y%m253uykZRS?wa^1bUTg?7+wQ4k2M~1)_jju(@%xUgcc*?60>A zVg|=f>s4Q^y__9NxfBC(R^^r??;(OzMpop~DpGPNtO-<@`D#{JHm?&erQFKo+srF| zVscp2*?wD4U}uC+we+W|el2julv(RE8B7|9xWaUgNT{g-J;7$f#L~fkFtB(`+PQ$| zB3!L1w##~W1>70sLIqv0H)kKWpnbqMnt4#Eega~Sw%7r##jqBYZasbe`+$OI@FzV? z*TW(=(4lZ55T`J2^{lf(0-->EL8v6u!TQ?nM$lqNv_+2}2*H~6q*0b ze?kMHLx(ZvGIG#T3wVtZSR9j5kzOW|2dxU(u$3&uw##dr2hJtzJ$_dgk~ zZHWhf3OplUfLJ?nQ^2~1?&{~5&Xw4f83=7dRXzuSe`ewpU#f!ZBmk|#H9{Hg{_ueQ zWrHY@ZIVQyp441fM**;(VD6?_V=)>Vkjq2Wf8E%)DiG#UMq>20fLv)PzBX5Y)Hy3> zW80%v1wkZ%0-OdrF};5W*Nbw>ua_uk(y(@unA01p2Kig;TIHM3tm=4ZsptVgj#Bbn zn%0)5;B+jT&JCO?cQq$kFUHc=mHr<72QV$|N&(^o*X-(6M6iY>YZEI1T`@Xy{*3fNFblQ7~Y!yt~pX zgvn9&yRa$H?$yX1l`w=%i(cNc)OxZsJ%uTy#4{e)r*}BG9}bUp&fYuj%;%ezek`v& zn;LZWGSjzzMasNs@Azg&dOzd-0v+G~%oQQNrwzteoYuY>Px8g(WmYt$+#{j!F0EV6 zm)%?6uf>t@a?!B2M__}b;p4iTZ!H(!drPo8+>;H$1GSHln0mA~P>n z8BsNs*AFun)_?LZ*X>6F?8ui=9_qE`Rma&!FBaX}tk)Ou@kNx7+ z%_e!US_mp$fq~i(U&JY%()VkWRbFqBDh2Zeg#>!dNYu18X*ws57@`|szdBhHld3-| zgyOQ8jT(v(k`@btl$w4yiGNU$`SufQT^Mm;n3*n{261OeR^htIre{b_A;g~Aa8j9P=O!WF zb&eWpQioMtNuloK$kQr^r2_|zLv+5{NS^7s<|1!TS@f-}p!Wfp_m{Dk7FP<5xJH9< zXZ5*1H(sERZxZ;UgesdEUo-*a>5Gwo-?Uf)C>wk4iLrpwce}-WWFZNNCJ5(Lsh)J7 zs}Uz?3#w*_%K=|>my$1e){H*K_6=GFuBQ9&870<>y-~FRqQ%x@gvn>=BT9)flsmvMEU84F0 z%4C}nb}tzC_I(ohD+RML74}I!SloREd3}TekQPAxLwv#XBNErCIJD|`v%GdSrfr(( z@b9wrzpI_h8|2O3rJH$r28N^4NzD`Y+x?{t?}JZE`qw|Byw+cMtx{&5hkmgJ0Vz3az#K`1>cQMGyilLrLuqrwQ3p_O>Ir|gi(cH;w2xU(ZGB0Pl!YC0;^ zAbINP;P?gC>9X~y*`^peDKc{IXC8a9x#IV!>vK?P#o`I)AO%6-_el8^o2xLqX1yCk zsmLsUYTWdy!QmTa?|6tr#Hm=Tga5c~;*Rri|xVPhVIpalG&xxb&ett|AO{-UG~{K~_vJwKrrvAG9UZ$Q^CPmjkww7f&* zPERbKsC~;aJY!4jr&KB|sYn{_AR)m6ORd2~lyMDrhIb)`!4x@{fUb5NL$-l@b=XgP zFVr+@2l(ruSLuCjdLzd5YYn#YwvyXsJVst6<(2U;9jytME)bp=bVyzATQO|%R zp&;L1pp-wg-o2T_#NwVBUEwQ&?*IcD8O2A^I9k3_pvxV3rNs22#P@vX z5)e^TPPv@}<`keq5p|3@j~mSdm=L-%rB^5X9Ln17pFi|kAJ^4Op=rcEVI@#HNlJB7 zSRN2u0hEL88eW|co7}a^#ae!nFGW9J890eWB|i|STTUkOT^}HQhaUNz%chx$S}Pz} zx|{(?u0{L)>+z0EBxEpL^G=kw+Ko8E8~M*Wggy8C5O%x!knyr{?+?oOf2|7;4zN&Y z$tkQ3Q;dQ#zstwukC&6)iLfCEd%N6G;6I4_@aiL0acCSV$sT%FTgIGbs~Vghl&hT} zNHj!zXwRUJ@5jlFamXq@QR@}&=hW5(7#sDgB%;8G+V6U!z=~^dtY2<&`HH&k{h9)> z=_r*kdcI~%=ORthFC6^xX)xDA?U22RUAbZ;-e^KX?nDmXBM8~~^_?XWLs<1X){C18 zoX|K%`EKXke5U|uXEW0f50!4m8@8GpB;5>F6%&SjS7UCO!p#wu#Q74=6L?p);%$)X zlLC5Pp^22+WPNJ~nlWV3YU@a7tTnihm+m`{ZRoae0@0PapmUfOk^Q%64Q!xQG>ZFa zXlU8Mfri!>b2VCOFy%+mV3(TQSG>46bH|EVjF&r_$_9*L=^3#d7}2?5#N{lf5CIM= z5QrDQ9#g|ks%B{e5<0dl40#Bff6{A7h~}n@)uwdQI1kQT&UI)O4psz30 zy5<~JdnwYV?(vDdP7}k5=t!7);5}-w&hfVKzvP3cyRSa^4oeL`g{T8N)&S_j0<=j# zEC-fZXF?_FIWa`r;W3|XLKnVE087@IiW&8w(t5u6>!CvC)eOOTO#7{ zo_^$ftOl4=>y%GoYB(;H^GJ{TBkBQ{twu^|pgM+NoB6>1s_br~;edoN=f?+ib z>VD^z6vCd-q%x>H7w1hmHrSRbsRHMgh*>_**iE6bvi!6!7o~(Z1Qe@hd;9OB*CBS^ zYq=;=cJtm+OD+uGsT2VF%w$53O$;5Q1gdhR0^MJH73vcz}B za5MSXcs0`-9aUXY|Ksc}(f~NQxrlz5e^;;mqirO^=p9XS-r)8|$IVI|PE4;qMICn? zEdKjnaVcAqX(w2ATw-t$i|YRTWJ>{Y&GgO96lntJU{;M*AIKh~{ZryT5TQq1c9Q98 z(5qC-^jie5p)BiXVi+k`25lhqQp7+6<&aut8BIkU$7HVcY#F1Xfl(t#J6wvDD3Y&q zVlaNuA3FD%iNFY>3yux1j{Xr?iyHgjCMBQNbHZt@;6%5T=64%GPIC6XLkfl(TaRS^uoeee|zI zt%CgGiK=q2Lj8H>^~xb9^!Oik?}~$pkcBm$^kU;wSF2fgTvQC<0a9;RB&?w^(j8I6 zD!4cI-@uYBZ6AD;e(y?Bqo}nJfI#bg7FB1!iyV@WPDXpz03m#d|M(({D1ZF-iOYxk zgQEF&=J;}llfw#E?@9lP%e9EZJB$& zKh;J)-=fDS?_$c(4paG@D}VgObD7AgU@UR@+CKKWvO@xoVu7so-$yrL-tW`Fz;Zpp zN&b6z%I`rSM^ZMCKai2b!O$Tvx9wZ4|3IOgECcpuMSxBf1ruP>$W43x(JmrYNf2{uD09pj<#5Gk7qb*a zuzb06>to`vLU8kQ>GIR(b;0+JjwkvzgQhEezE^#1`=hr%G_R>-jwoe1R#uoZw!9Y) zeCtGyJjl^aoBiV0fY~~`^l7PB^;swb>-#;BgMKA)t=Y_-K1QD{%CXwhs`QKA$>CtrxFyN(vj^N|ZL%rv!1q3}uFn=pnqIT6@1#hjH%z zAnFmLGHFhg%Jr>3*9TSoFF9U)d(QVC>qr4l1+pyLa$E4{l&*MsU=gdY0wOZVFLU}m zm+=~4DIaXl-AV@dipA_v!@gE3dCW4At8Onlnq4`GiT9}oO_YPOUIogw8C|_hSr=rq z-H^ozfY^0WiS#eEA=Lje*41kn{7VWwZu4I~V@S;jpna}^oCEoQo#1MCCm3nXgP%a- zX*Xn1!)D3+TdmOw0S5#rfEX_vLujrSyXEJ}WmjuDH2y#GBfnKCiF)BVK{G(by0ZkH zB~V9kh|HJN{A#pKupjn`5aSn404713eT}yc21W>Kr2{Y(0~-^cg_>pZy868iwKVn$ z3XA%jW9Qc`Jnsr2by#K(1jRFyaJ65BGuulVa<)?-FEmOub5^gq_-D7B9S z^dQp<72vR&2G;U991srj83YK{_w>9#+xC?A#i~&nhW4X~BO?KoXRjiD&0@4mP~pXe z*>;soSkeWZ3PIVO(e#6p8O6A$C5e?eoKlkR)#0S!f>esj*38zLW5k$_$BI`X;Oqy- zed|R0XHeVwacK4Sq9F6q*dg{7JN^F)$!{+y>yi~c8Gf^^Ny19IqsiMyHQvull(7+L zAXLUJ>A2C{Bf8@q+<@X{Of&hxPBL7Xu~(dv2-GPhBuuAP>#*~nv<5tKW;AUe;xO7i zO>mc2jA})eZ!LaNr5mE2pPT=6ZzhVE9WIv=X6f5v4p9G>Rd0vgJmEkXF{v3?4T zkCBsawH5imoe>eY>3Q~hc#Eg3oislnu|_k`33M5b^qyF=xbM_U0Q{yI_u6ax*ls}1 zuKGy{lEM_r{YIDDJOeL-5-e;oPX$72%8WUbzh0hhq|<$47)JC8`r)aQYwca_N6zRW zy6n7{C(3^d-@ef-NN>#H+}P5AKF#)2!GzTW;S}_B37?GhBrjCL{=>?C6gjFO2`sZ* zGay3p0h;8%2n^uo;RXCubRO)0N|jJMRvj_{z(PIgT<)3}o7o+vnM~Qq)rtt3sP_;7 z;e^Yz&+ryeyHGzY_tTWYEb|-`$ecS4Q^JXcCFiv?i@tc7_ve#$zDm-&G+>lTtC)7J zcdN`RY%lH`fU*r3AI#drbd1>qEV> zzB}?V=3{_G*kfNVaqH!u^B0=e`((9k2Sn`<7}_{7^RgjxP043nX{7bWQs%Ga@H?TK z3z^$3)3YUy;{lF~_J^<9N3VuQy{2w6SqW8+KeTRJRG5AGbm{I*=|~UU6KRn)G1CQ8 zl_hU`#Vut3ad&Ma8SN!sWcHC6{qgisETE7){QyiA@^C#HbxCGCv0<6{o(}adm|S)t zKD7!SwfvX;P8=umP|qR;fAk(uuL1`4k3;X8_F^$?aZI^uk6;V|X}<1H%Vmhg5$w$e za*y#^7d4`Qsh-Sp#Ucv8&le1Q*?aGgyMJAKd;IF8dD$$+i9g~ERXyM&8gOxt(q1!T zJn6mh%Y_DH7ui?yreIXw(DooqVrc~bB2d6;jZfPt&Ou6qyVWuLJPl(tz;Fwg*;I~W z|3rSLeCEK2aCFW-SWT7?C8M=>r4JekSXAl%o=adnYE`^8;lkEbFGu4uDzx*7Ch}q< zr2-m{_600-RQ!bbaSN4hAdDP5rrTc^$FmFH9t9c!tu2fW1EQ-FO)JS|wgD*(=v z+44KG$M@=nxVcqkt#=%_9Sv3hr+r_>EI<=!1C3`V>XO(Y-9O65{FX=gsz85f zs=j(+z3mpy|GB+wo?y9cpYiWw8SiiVcCxYhR)OI{VJU?Ay42Qe!7cp7=`py_?2JfM zAPV_RA~JiT5~Tv|%dt+5*Hwv6xF52u%rR6S^o%FmFW@?bAdyOI9a+wma=*vscZ9{1e=q=?SVUk6;q zAb^LYvy|t4o(!oFPSuG!k`L|#Gwd7Ftu^3tP+GH1PRp)mZ{4=!;r^G=(-1jSvX9Bw z3$5PF`q26i*d_SJ=6PZvXLrN8J4#tAwg?3Q`?uPx&Vn4~^M0oQB7-BN>ZDNaTg4x4>dR`Af-pg-LV)~J z;XD|?g>7SUDQyT&_;az8+csnnr#QpLVRASiC12wAj+lz7`CYx1q5rsRo-YrVeDp(?VeP#~xAv z0;%aaM{^2^p!XB4j6*&DiUcbNq5W!6Sy+xtz>{E{(M#D$(YgPRRTYL9VY8 zX+cGliEIu-ti#Ugu%f0cBAC+FU{*)&Ghnd#G8Um~vS^rQo&a>hCRy{YfD99m$G06$ z+>wkc-yFx>7hYNOrfs^ayIuL@tAE*k(8L-&ZmR&NDk&}Xp2g#*r|UgWHu2XNqu%>2 z%{Tw{u6~W){K8*lWL^zquD4w{-lRI73yV1TBa(!SSkHl|zd_*64!ak1P(RTp00CrF zd!LBe%{zNq`<{E+-7DQZY-tqDEfKy8fLZj`@%h^=fMOSLuj2U;lM1Hpfaol)PBHwN zYW{~9K8_p#Z{J9G06@as7k0{bK2)o3d*;+Un)I8(4gf$kPgCsdZXX@+Wib=>W*=>n zq3568g%Mvr;Oy)%a4;wl=4E%&-*sYi7E=>T3ro0-`SZZ{_`<~s3TTzp0H^uA*b=j` z^0%njQz`Ak=O+P_(9nQpuz=1Tlf4u8Y}--#IjQE?8%J~lDVK1j|JwrV^;R5Pp%RXZX13X_}UGp~^f zv563HL_$zcLs=I%Hm+bnGOVU{pdXO<5zVGTDW3e~pB1G4mjT5K?Y{mSfb-)iCe09E ziis@C%t8$!f=8l+UY(h#4ov{aY-DyQs`+>S_CHsz>2d`lX+jF%ZV`MebZX%B6Ae>+ zVkK)L7^#JAb(+_KW^?E7dDK72SOauF|32Our7FcfC;q!4$#(`oPpmvVBm^2)PYn~x z&%(Te;Y<&{0DT?WCe((To>#%y3`Eprt&X6vKTEAPx~Ha_+((GcsQN1C_cl~U&0kjg z^$y3-FOt`-Q&r-BEkkiuzMwmuFHY3|plE!VaxQ$jr1lzbWt(r@&dLEGsyy6fu52KS z`OfJc>CQiWWe%RwBLxIQ&(m(t->ba$y>$uC92wacq{$-;;GrrwB;iX9JnFO1laajF zD3Fzan4szA9>p^JUgy)p+8@eH4#{8JA(6vMmic(Bh)Cl;e%H{BR|$BC_Miry~{IxJE0-Akca z%DB6OtX(>~oe=0G>#IKv#L{z-9V{66zy9X0;d;YyB=VDDOD@R-6qJ{gZHMf@=AtcW zLkE*t(ZYla;9bJHOXs(vL7OhtEy52J^yXWEL)IL2;lX-Jm@V~Cd>F=Mm zBhi}&ndjXc=f7-ZE+ucSOwWmZzl?fq3N`=REjB&*bmOKu3P6&N70nskHk8#9xwuGx zdqy-0vyJOqO9iYsVaR9!LTL9Anl!X>eV>2XDrO8FUiCemnxxQAu_qng zb>`*c&Tn+l8!ZP~2PBZ8YFM+3EJFED+o-zxi z+o{Be0G>6_Q2-XD2!OBN@H#Hdwq3pgG8{ZCs(Pk$6T3WzBkpCwpIGk9(c!G9xyT+&*mT+H#3Va4D zp6BXxzMHVCO~i6n8{Zp^e_yOuMKE7GA~izCOG!nbmlBJzx7|(j)?0U^Jf5x?9bnn? zAb0Vs=>X92vFdFxxiy)MFA?`-?@Fijd$4j5jkrq#DqvtwnfYeHLgszoAy&rdTV#w2 zzf}-FF?e;@t(Uqr;$BX22Qiv!BvRSDzSUOW_u?68s1~!j(7%jKUGZ-)gI8) zwW1~*lp{-XK4)&yj}p)c6IV4FazP8rR0H&5^-Dx}8JFyZ4*x%r&N3{@z3bwlqEaf| zATadMT_WAh07EI=(q#bB9YYN*AT{(50uoZv-AXso4TAXo&-;Axy3QAm19RVduf5i9 zsREtYLb7lld1jm#6Wa-nuX*NsHuJ(r_uA;b-Bp*gOs`kO>9OroQb7vS82}fD4ot}5 zeMT5d!owUzWK#a*6cGmMk6s#Ae03Df4%o=354BM0u_IaUf)7Jftsv!3BAM8gfuDYm zj#DMF`IVM#lF95P4>p zgn@m*Yo@&p_h})WP;APc`h7s8X>?!3k*p%{eKjyWSJqg>q2S?>jxyUJZpu3W8MZK) zwCOX6AX=Xh(Mtu4%7gydd47-jpFoTd)FSTN1TIzA6!+6NpSH+?wT3}vc{OrCxK|_{ zQ*j#SixrIdNAW`?sfn?M(NnU=Cm^bjf(}7`FJ?M1Le|KN3dQ#0KX-wY3OKE&%5hQbcn4Vzfjc?0qIxc2 zZ-s^3hx_T(73k4JulJQdHR)NtgDfA6GAnoSkDF{pViDu30`P>w@|nSw%>8VYfrK_- z2NbWKdSt0f?^tsNeI-$T9>x3{FIUG28KEDs(~q$-bwwrdq2B%#fkw zJU9hnK7RzpN{e3~llMg;z`nLXnB$rylDUbwOC45NFmXD__Z{T?pli_$Ue_h|S0>N#Aqg^}JAL?1bwOSCk7j){np7R8}X!ay1?G!qxk2yk(@I z^74H8xen=Xe=Yavm)Fx(iFfX*bNe z&mH)JaU5hSz|%QMOEI%xkf2KUKV9v=qdK_cgSXO}80Wc&sqF2}z$@ZK;tA zF7e9`p5KSoFdv_uu^+GoU^sd~?*ahobky)XGArQK>Z@RXFC>d~rrJ)@sdNI7yX zgvE4pO=t-|DX~_1%@cP`+3eMyq7-bttis^tk6(ltS-3h~Lc;>E{P^Z@z4$3!EnmFM z?lIPTun5D$HYLt`+s!O?qM|8GoXZoFaVZwSeIhb*Zr~KDYDr;9HE2FAjrbHxdQ9HK zJ)|O9-|n?!R&J+rZ$OcoTgrG6ji0PAoeu2)NNUA!tim6>$ymX*c*H!50&0)4VY}}M z3$>IZ$dnyrtiUCU9DBfkzkQ9{jO2+PCXq)$S2ZNYvW}JfB)eb&a3T&@gx3L=ODcWh z9M@Qe_?4$t-qcgGHo=E5Scr`xDYvS|+HEk;_SAcqq;*w>2%8D}hUyZBVr9AXnFOS= z+<@SbqY{Yvhyq}Rv8j{W$Ch^MUn?#&?pv1sZ3GJzbfVzNUo7Zi&?G%0FniDh`dnAU zSAEEHb=jJjCIW=nfx)S@h)+Yg^{^U4Vq`T+jBh;evr`5*It)SC8mc8XQeR8vl@V1` zHd1i}`$u5M7Mg8S7*R)o2|k|0W_bssBt`DGv^M?L`m9Kx5)<&Pb`>2hr_GJSmo2e` zU;Y7^U^(7+@SaHuaeDopfei*YVrzZnf~hy0fPmQO+pzwIL`&;9%K!XZE9>rE*38%W zC$s#ZW#~ZUYWV>GCZ`FC=7RYUuCTR{mCEO}$|Z%^o4z-yQD7Z7e2 z2+2u-vqFWP(~dLYZ4*j*DDA`oBf*Ob{@Gjo{!_2~^nVaas}drrL3*%cB8Xjlmrt^0 z9-T>KfPrO{)B;m+<*N`L`E`l#4my*R_Ms;~8P%|P2XxE0r@QV;%~!ssJa{qxPM?WO z!}V_aDFJ@tNB1Y$T;R&pzt|*_>tlb<_t~7>>UMSD2AMA3W`!O@YZ~4E2=4cK67PV6 z__>v~W!8OhHMPV5C$&Wjg;YrFO=m!-T(nd1IzStAu6F9{Khche#2(Mg2vfnZq+qL{ z%h#zppdl(CN&qPs(Ujcka6Z6NtElkVQ|qL7!A|yRBK%9C756sfo;p34iy~w|Ixjgn zMd??{HgC^!niX+`&WZg%2Ol-?DUZ?1Uv?+lWS3v0k}Cw%;4TLF_AWv?G~9q3@ooU{ z{+P`A&(CAUiAn(76>7c{zn&a_m#V~Rhm*X`Mf~MG2sEC65V40u5I0A|$L94#mab8H zfO!M)C{8Ol^JMh>cNKlsznBKQ%0N!4$ZW@^IB!3D-G&XDYLIdB_v-fzpX`(D@<$f0 zpW^$Pf`}8*h%Wrc_$LDgF~B8}?wJmE+X=1kbd0s(aRt9R8|~iopZIHy@&7#gn{>mF zb1ISgVhHXum*=GYW>1BAU|fI`*Z8ITKL_uBjymeo`ZNC)IA`yiUe8P$meou|rkZsqQv8h@SrKJ+g z6l(IESkU}n45h;&bf8wK{iqcw8RhCkt)TC)Q1gZT%C#TTf0Q4MCU^)N;5D#ou3Jn>#ENDf~jTt`7;58T#Ej^G>lEwRjP~x@xc->1`<2ry_7dN#i6r>@=JWPj^E1a zIH+V4bW|!TB7Eu8-L22*&RkNe#3JBMzl^tkIbKqAe0k$f!*^i;)OrTR^%vH~Rc(s4 z227G?*=pHslU5|wz*>(KW5y6$Lke>ZoAYp}<ZCu0845T6^A*X z90KpqvGyQdC{tE#U6ZRO3>!p6su$5|!C1~T*W(;I#JDO?_t-;~CIrD@lw}}7yFDf? zz3Wm+DSeA-Q2n}ucXe<8NG;ku$jFky{ok5>;qR%w7#MbeLHHt~pZV=GyIIjvyo}vl zHQ0<3Z8+}lY~1nf>Bwp8 zWlLPnpOPHhO?W$&cAoRNuKz+ z`%7sj+4v-tL9qyrpjojN<5dFHq3|4F~;JlxBqDJ^~JP2TfcR7Gt?lSZxI2*Dg4sjN{Vvd+@XUjdK z9=7m1y@)R@r5SnaEn*Cz8fJK;hNBYl+Gh>fqNHe=WNhScym(6On#ig1)Ebz|loJ(am=|$DmhqnaDO8<<~mY3TFy(C!dg?Ul5^+V;2;sngG&ZD*J*C78JN*a_EHCWT z87`l0;XBiCVj(hHZH{F$>XCBVw=`Vl!1v>z7S_N*HpNOKF|yttsgNF}csJoKZwx>G zt)3$dXZvumh*X$18VpQwaNq=Uw*T#%`+q6ee&xuOslx88L`L8i1$%C22~P}8#ZwBz zRjxyD+Gkm7EqORrO2;%r{wQsqGYVp}4cgAeto>b6g*(_>@QOs%g zL$XS_Kw_!du7lsm*UCzN3IE&y$n!6w;_3y2Um_T4wPd1e(2!y5z%Q>RU|_1#a5m!S zzyqH69yng(h|=iLzoll`D+XqSM8Uiu?Sr&QC)&5Ny!QPYpTc0$O3LZ^-$}-1_)-`tk526tso^$rCP4pm z16~LZ0BZIs^e_qPghx8r0ow?8fTB>+Gs_8efV4H(AYpv+<1SN9chuFAs!c3v=RY%A z6iagSpIC>4nXyk>H#C)pBL=b*#T0Uw3!xE(tg3-Y=k;plyHE%6VGByNr$CkC**K12 zimMO+X=FOkJGwFBOj9%E1zrpMCRyjPoxs{@L*VM$ZBetujmN92wnDl7(_d!ht0l%& z(cNT@xiHlUAvmx9XCqv^Y)yTAo%~vaFLZBj?=$N4ORsO9yCgY(CX247UjLnP{M#%p!P2&?$${$h8`2h{uxWiQ zLzo4P0y=p68b{q5O@lrKLDs;8DwY@zY|QM~#Mr>J{|ZL5D2_Ze@=l@Rpa&Wf&V$s@ zlA1BsMu1e6CC_=!4OCx11DZA>ar(7xn=o3%A4`hgcJ>|n?$YPu3NG{ z{4}y0CTe58(o$&sQ109u^NLEzpFlI_y(Rbp9CjxWM$B~>(pDg!{IO0+PA)0M!z8h2 z*b^AHvy^)Id*>XDx_q@{@(bd{LR21D`t~_5P>+EUfnPcK^en6a$0%GrS^_$li>nRPF>;xSgP&o6K&s|TcJv0~K2KH5PB z;8SNFAd}?$Y#o^U#O60(x~CK*PNkz>;KxKb+165L{TFHEw1{km4C0KJ<(ch%IO-1o zyQnTv2hh^F=k|o%&^bLoI=^lBUdKP|33xNJQ3J9*X5gYa1N|B;)(Jq;6Xy`G-HSfN z@x_tEKPD1Vfq+4Jcfn{&%MzKZwpQJ!N;Mns7GAyaJVq0H8nL zEM_&uSB$&;4&*K}lZ_>{9W(R_XPR>Yr*6UyN`%KZ{#DH$b-IhBZ`3{$!N@ ztmS7F@(>6*PJw(Vofx7|CIH*n@h0;<#smA#ROW`aary`=TJ_Ks;x9Ku4( z%P^G_wDgRwXzZ}w%-V01BJ;!VnaW#StmKS5YprFTXvuFfOTy&;{)-2+i#Cj^~Dh#R<+^ekIAiA697#rVVyM$xas>vXQoCW{VIg| z9-YwRwWI{Dw)dm8fL#X?_d@-CRM_|%eZ=TD}CiIMSo|1EJ4_h6|rM&5iL2L|n zILRs}Ci+~gOcUE3ow~{REEGda?+svtD)&boVouaH*3-ie!F$p5P1R2X^vvIL z7fBh0;~}?EeapZK#c&6a>>omtJUG?AUoMMGXxQ1PK)G<`AG7EYNzKm z*Qv+v-^VH$6LJ~Wx4V*<+J&VyEwb zzXi}o)-C(sTV;c9TO``56wez6O3>~Dq&09_9I3{Dmw+WhrEJicCnNgcJcztMgt zI1^JTAr(r!-%w99O3Q*Lm%Jc(D)h?_F$oJrz=Q}UASHBWa!MyiSd8(9?92sS@qu6^ z^`j3x1vFr|p)?75!FqMqqknyt#RDvw(B0)TkU;PGYB(=)vGa}M+i7qqJ6`=a8W3)| z9&Eu^GCkT{xvvtG1rN<{Z)_a^PL3*$tdWHrmy*MPyp=i8rGHlxZ5My=!FMrkfy&$- zd+Br=yXQ1K^)ltP`+m8Q+FkE^q3gEWQNpF~%Kkl~cMr-iZkcnI==xL~P2{vT+zal( zoTN30Sa7b(B0}}X1NxOcO10RIO_-yCx!Elxe3(e}jfcHk-Z{d#qt;yzmW%nf1h}owZqHmoPPNA_wkz5IGt{XB7e8)`e~&QE9q6K^1h|!02%h-zgjF+ zo2cnRJ5<%xGIT_^OpBL8p=VlPQ;Y5D3rl&(zeih5Pbr-!O<*F~3ZAa)-Ma76+l-Vi z#{~;c$soL<1&FTL&~iRo;KO)V_SK1qSUxK01#wsZtVXv>t^<9|=yLyOtwVQFWOKV>b zaOW~)`Kg2IQq>|j%Pd+J@2B?m(ipt3PIqmD&Av$HJ zM@`MEZUu*~{seBG-D{+#60(@%Xo#}h$=O+>;3;>i%zHRMyZ1p90X1qyk3!Yq&9${r zI6fm|dfw#b5JFD(vje)&Z#e?*M0d z4+_Pt{52)zN5o}yjumA-0H(C3%J9-_4GA18p5^Upl)SsInM6v}aOAX*SFElngkM6Q z+~|wvHJeiu0zg0baF?1SRskV$FhA*;DfyAfjGo9vcf$KzE|K(AWDHQ7z?dCNLV*6; zWlg9vqvXERR8~h#Q8=vfO^3u)ePX&n+!k!&vwNZf_oX6P)L`M`fmuI8n#2;03+|t# zgMXf(@oR_A4%pzJLd6yAq`%3?ET!Bt#=5K1DzJ;J?qKiO(nwj_PL zqLvy2x~AFuPKT4gt?JI;V8?J`HTkaywSMF@JG&LooZwcNPTwXOcdq`8XmCdy{Qh=b+bg7|Pa1&0(Z4p^GRhi>juQ z93F*%@hI#(HmLB)h&y-#RL;1S#@Ydn1(z~7|GuT>oXwf)o+we*O2ry*p|eft^p#B~ zZb(sw!2k;9Pj>qly_tXZXYDaGzwv;q4qg94O{Z<_3cA~7yChffxIT7U!$){31!b}` z4bj->yf3c~V4ah8qL0|?e4#@)x^j#hAx2y2Y-Wb|U&ulJQhO zuS5p();o)YHiQYpK-iBaGWjd*Tiik_94yn2GUIt2x>lm*6cjMJ!dRBn)j1yBrtA>y z4*G<%;#zAh6bdq4oF2Mdx{)#q^+zw8m zKVv9>kbCj-G2q4|O?ZJf$Wyrj7w7H7bxi+tiQNxoHu9!P^AgAKLJ>+1%3qT^A{4a# z4v@<3aj68{Ra2QB4dr^Vr~cd30^`sv3!yNGZ@bPGKo=ygSxNsI8zU;PR<*B%KIqg0 zM^r1=NvU%t@VNu^R_|)1NU-gHqVf8ZE2F>t_Tt}x>kaJd+^n{!@)n2SbXlVJ~x< zCGyI?yq`jQF3!FNQPG(h3P7AwtnxAiM!iYyl_aHjf-O1fPnIB&e(HE8c1#H3u37KS zGBy|`G#uczY^8`rhGBoYrldL)B1b7%qIQ*B@*+W!M-D?WGQIvi$Uca@O0Q__o! zbsw#2Nx;ipoWPF{mUVUV`bis!cd*_HO0 zAMi4+r-WihJwwEp^ZxA$i!Ky?%K31<`t193`?M|ycm4Iqaem!)dOrUDR51r5BFyt* zoygI- z6U}b_&gTlvf^yBKSzdV#8V^hx*rgkjKY`r6AvpzJYLHAr34S^gPdqhAjb(m+p!dtH z{G9RLR%|D*ck89h3mbsBD$qB{+!ir-cAF?6DE8D<&&7ZJH0_%Oz_&F>Vv8W7RPO%R z2k~WzCcKkEH<^u#L-0H3Vp#og|SJ(@Hb?yY-&a_V-$r? zr2{r2wwx)!%wx9}n#y;D>M2{zXvrR)z;vI_`K;jOrWhFr%$51O9IM9iXJLFI(G;kD z*i>_XQc$~vlV%@DxT4YxBi-V^)c+jj>wBk6rPbBvpwqOKP}Ya_5P-Ob~vmoDmC zQY93_qMXKC{uN3Q`~4)26l{UoV(%&dZSFWRa7|8nwMaNL(!x$a+_<~gx5jLU-Prk; zPYSRc+N6!c)6E>r*_2KL?UJU{h!c|w`{OVH!@Bf!2%l*%~(%Bn8reJ6P{*2S)G>ZKgC7L!8oSDu5AGb#&mt5dp^oRdQ0)zRr z2g<(CL{$>A&UN!8!qbq7YCbIZbXuva9`6~Updm>O%NpP158x$s)LEO`=L9zSlQ#rF zx{J+qL#sBpvdAsH`?WfEYEn@tc(qz_^zVWhf5hZ>ycO}|(<|JfJUi^l!=WdHA`6VZ zVDE09Y1Sc#H5X#L!>;+BM0TsRGKQ=DAjird#)LY_1?&R zM46>O0Rc(X>JET*TrDTRM4^r<7e!Z&>zK?;M{CvYyhj|5++WWYp_X$#m_37i+8X|P zeXz@ZJ6XAKolfyRw8YJ-d(Fmg@1yzA^-S~K3-5dXR*DW?(L`FU`kfnJMW6c8%>q9? zfW$a$m0H9?TGsaOkBt&}sFgD?Fp>&YT>AkKTsx>t0jCp}?ByA1M>+hxghG2{dSI^d z*(@)GQJJ@aSb^n5bU?l)3Ex?e+986AGY_v-xJ zz$R!(_!}w*gYBt3xVu()40T9TNWod-R&_gwd61Iuy@u-|^Us_Aip50WU5M7iC|wH* zCfvVC&Be9`6h;!MD%2UuFyYMZ!Mvo}cv)fveTZGjG##h;CrakVXe5VPH#hKx{|F&Y zRgtK)riv_4)rSpxG7cEe2t+np`qN~spgtqEhnv^6K`o9IWdUX4KBZri=K$`_e&qKCCt$th91@oFsnhQ!nSG`FzMp{2;Oe%x= zTKKnv?Za0T{J<%+46CMG$wOE{BNdBc1OfqW1p5^#$VfOya~xz}iGQpZ`fOFr_tZCk zSSWTp^RKV$1ksvWCe~Z0{C&5^Lzi9QH|17ZtlZDs08L55`D;WCBGs#iYDnj$M|qS@ z`t6S)21l8AiwZj1g1VHU8_tUcv6DGlF_78$4>q!q0r-RF)c)V@-O2|}Ds-jQdcTjU z^k6tpllI$)VX&6!c-I3o3LKo`G9O2ilea_f#`e{vZ@&P(5gkgQ?!RY(B6$7>;}yN? z5om1sUCkE@+zuu)uS$C|(({hi^)h+{jX;2-9lF{brlVx6$VZXVeg~D7TKQ=hr1Bt6 zm>p>F7syBCV1gLz$aI%@EZOJlb@Ojz(I0cSK5Hv&me2i&TLf zu{^}o24^Y9*8y0QOY&a5O1WOCiB}&=P)_bEw7ytTIrvq;JuG_s?|o)lRc?RW(?zb$ z2U}j<4}KUgto<#(^}(cw&0*cN@jtRt%B9QJ5hI&zg+LXuhzBmY_Gsf8O=7q(T!B7p zJVqzU{GrZQPeDULSGFUrtzUWU*NQ#NXnzLNpN_W)BOK~{>dY7mb}WWB4{|~x+mD5p zZP(pJu?!q$sOQ87wEbD7KG1WM^+IU%<#T;l6>S#-25qCI_(E=@-DA|6Q> zr)kXOrp1R$U7R({)k*+kL`C|J-i%nT^JBCPtZ+&Ew!sv+qUD-rTT=IMXbdM93Xr zYb|*!O{sNvGqU1gj6=>Bf zr&k_b!D3^5A0DU_?;?&xMr_#3(s#_D^#m0u-8~t zpnz#nYi-AZ>Q!&6)m%0H7G0>=+$3g65YA~$WHZ|&{mtB*?Wp_l1JgOmC+;asO(ALu zk`qX}jl35rR&EflZ#owW7*bMJ+(g%Vc}&D5%=-xL@+7AqVI>i=hg2FLSA`i>-2=J7 zNp;*fI-1(Vy4spge{2l2fIQ;DPn`-u^@WH$?wNejk(3`X!mr4>gZ&m+wQ%~Xzp>U} zr6f7MxBjpJ_is2qiOIi3U0HV~%;)cN9Y-q+iV+RCz!YUh?>B55$U>5~i>J`l2ZNeG z%++M--_yJ$TSH>w$h~y7At4B6wO_eY=gTFY1QdGttvulrD=b(-6<+cfG>;D_{!?S5 zQXkP11~t82eCqEBIeGE!eigDcj@r{ifBd?%yWjYe#beCqvrR&Sa!Glx2rk}Lj4p;? zg*|9fG#W>;lY^K3qqnkC@o7KE(a>t$x?)m09Tiw&Pip_|j|}SHvC7#SvgG35OxIRF zgt$J>WhcmKoLcEO54kk4J@%HojGysR*hUR%NVW_rRB&>i6L#=#><8hi2xQP+$MN64 zGsWojK9F+}KDrWergjx4c$+(vBGW1OiXdc$A?r2r%ig&}GmBM$qNdNRyAnaJKlu%h z7J}zYZl!99GpieFl3n>3#VaO3suakq=TJ7|^eB5YpS2rr9*6M2+h*^~7*#)vlYz&{ zr3dh(GhUBxe^7?S%Y37Met&C=T34y6G1M7Jl9l}+9xEM7Kc=*8sGuXYOmd?q@5WE(;X?< zToj?;yP*GRHHI;3E2_&;{#+j?{H!6s!zN9UquMj1JH6rDo5_40@rAzg_@{Oi~AZKlhqi*)9uu}PVWU#o|nPwXvnk$>HTAhV_S<=r%o5l6<5Uc^L%#!^h9 z_-nIVYnL{@wbEY?`kMm3^oxsUxj8lVXC;z*8d)u4hpj6wY=%{Gom_u25uJ!nObAQ0 z^iX)Y#$wY7c~v{&EC}@B#A+5FQU`kTLz^7kJuVXy1QG_;(s7dDpX;@9*+ah&15eslJy8O%#&dBw5jI6h>}DC|{V(>lB zWRY(dRorb{B}^HsUN;&jA2HemKwG8^Xj!fA#37k%xZ3i^BQ$+b3K% z$oFtRUi_gkqraPnguBY**61)sq?cRR6GTF(T2d;WGfHctH3dXw+zcwx8nlM*Mj6%J z4H<(zZMk1|g&42)Yp0b)5ub=}4VMJWXapg1Nx9uH8&~lwiVRgnep(RqT;REQi;TiFR6IWEbI&Wm4`Yebyxm8wLlOd z#N~8|Ilnr|`}MbTFaISqIZam>0LG0#lxE$kx$6li1YQgJIdVTv`G z8jHf4rN2JD+O)|wSvlTdb6c^znfe;%>*OsvrRU>T*Z!Dm*j4=4F4^NCdl)=}r<%H% zmqb>6x+UjVYZ$z$d=`dLjvh`d72xDdVkM_AL+~QyKK#)OOCWW%s_roE{`}S-Z-sz~ z^^i)vq3Nn_)tR7+>M15$kEX2k@#1KK5b=VXTCzcLB+seel2tkDa`zz>mfDJR_nUk> zLZZRWP>U*KKD%U9w&|JR74VOpaBp-M1^g-kCJ_g`sAsR!Ey{OZsB{GLLHUE=**fDe zZCMig=LJd7QYJh_~n3l1aH@YSGZ!Vbt44M^nYQm^w_IIAvW=7pHTd#lD0y&lawJ`icVaL|(m&RPt$Gk> z^77-#nNxK+l4O~wB*IZYWwm}B&vs7gHr0f0p!zyl6fiy1tSZbu@8(r~^kiN>E@1m8 zM1{6Gov?M*GlKX>8K&S zp)DrX!nt&w8uvYJ?z?1l(uIFGxOhzS?LnMY!g6jYT9J+yW*=fqAFVUbVnzZ{?Mx~m zJ*^U28~R8`?5Y|9O`UZVndFGcrgRa#NUKaYHgy@*jj1NBUhuqL{rgf2vARu>;wL*r z@^hK?o#UrC<1`zBE|4R-ctq3YxrRhkoZR7X_}w)UFA9@^EX)%)!uBUyXhq%&SMdwq z(X8X)v4(r%QDZrJ9wNkWGOUzcK@^nl;^8-!<}T@;}k zcGq(t(Wuntfh8~U=keif58r>PfDr`uv7UVIBFc{RquBb%L1nVyLlEwPQtDm&-l=V+ zMU zgafc!;gv)o^{#MX^{d_uUn-rI-`XMmrG(>?jD z9A7UyxfGw#wBsLl;R|<3!~Cm_F^`Pg8MBQ`jyKzp=b=M3Z*xvQlK$j(jA^^yL)+myL87$CN^d39491dW_~+I=^B@5?ua{s~ErUIZm;_bWOY0@0-h&awkOQWbWE7O=B=|wKbwomSdDPODaCp=< z^BCUTJ`S_T6v6s!e)Y)y8V`eHuA_aKP_U6tg*jSRs06-L?EdhR&g}kBgDZc*VW@CZ z?-`U-OWmC~LDP*FTR06n6kc%kQS$du%q^LuavwT6mvZdV9L@h24#^e&lj>b@7(C?t``C7O2TxtOLX+{U{a+@F?_0b74ky_NQaDaJ`Bidb|NX6h zsb%G3SK1!NIdr`AciJiMEN;;~{h^9yV%v3&Wcz7Gx#Y0mztHoAd5q?d;&gqy&6*xb zk7~l#>|Xg(By8RfUxe;{DcSZLKnK$nMnA~yA?Q?lqW$S)lo-w}sA8__xN8nE5`=lc zMA*-C;nM8#73uVxc5&F9V81~=A$8O48f3K7`yLQN!T~kzM?6H)>(tfqSt80yEgQKR z7sM&tZ!FnFw_$Vh>3J_VBL3E-}}+LL>ey+A(LNMJIj|% zTVu!6M()EZ-8xO8G&?fBQ@Mjb$_uN1lw-i7dxJVRrd*^0cdXXa1GZ^PR5d|Lz9cm^ zltGMqu9FyLAX?>Fx11DN@flwADB-hXF{H7VoTh=N5yBr>&xz2P=WdUBxbS_N2mSTrhW-d^ODx(xvxJHb9eimHf81M_i}B?_v`VPA-i?wZsPCTp61nLU>A zvj1ahl_$B{6gRA$tjvJIF1vb$5c3q$Tg9ISOt0os(lfHQ0kqvzaWaLu+*bznJlg8K z7zjN~QI%xIrU}i5k95_3m_-M6eUIWHs`7{_je;>r;jU+@chv0k6?F4zKxeo;l1aa& zN4Lb!T=W<;vHZrBTe;2bth`;6@oM73HDL`WqtK|Fxhg5rD;5(Kie)OBR`c86ka$a@ zf#YP}aovbLQZaMgCB{6M+Wl?&txYIt)aB0!2TxVC_HmfsNuO0Kn(qzx&HNPQWNp^5 z_viQR;uk<-%P?@6m00t> z7Cc&u9_C*j?u)Lb)#BBa_v_k$d@)Bs^*9`5%ziVU71EidpG+!ed3As0!_y-EWPF?- zz0vf9oz#wy^^`c*N+&XK!)4uF{3)pAyw~{o_O)?wmE_SZ?VlvPkRY?~y-`W0p?jbc?G4l4n7={(=;q9w7xy_k?L@eey?J!r1dfUGE-Qt8r*O;{HvOGnm#*%0)wdx)`iV}+0eg}cal45brDw{NT<;z-% z+cb_!)~h@+&2;0v@b!J)+t)?v*a<-I)=-#Z_FS2}Rqmj)naj2HK%Dkd1sZ4C$Y3J1 z6nL58Bz1CR0iV8LH(7g(aMr_nHjSvPv}Iql2cP<$AewtchDXBx66-Lk>o7@m$WN^F z)rsyS+7B1@-GooTyzeNWQYPTEC_?34$tTm#o3zRZtLDdrn|p6p8&^L$!PQCdF)Qu9 zzUKY+d+GsHZ6&z{W7jh()%%Cycl!x~bYwC`N=4PLoRv`Wa&$X1{CbQz1t^QMh%fWt z9(a(&nZk4$G(%!gL2;Wk;za15IMF)|F}rtNumvxJ|7(}{Q(ktsdH=}&HtU8e_TgDG zT+o1JHwj9OHC8Q|6~2xsNiw%oju`bIZwjQ3AiW%oib%{fCZK4ubHyKnVcc`pkM5X+ zl!ik8OEa9Lb$(8&V>xZ$*R^4>?iw2zmEb5l|SE+it?b?|3$sE# z?6CWl6;g~IU1mjm_(3v=j;6v8^?O&|t~arHu>&04Q92%xU2=oLRO&W#I$S?AcoS9* zsd@uIqTxX0Mn>!YX@5L^U`S=UT9tIvZD2dost-4`kZui# zw`q08xt~DSaGpKJwZR~ku_-ZIQD8Mq;(jeKXP?4ibieJK<=Nllg-^)sa~t~KBV%yq z*?Ez)JQm(kfhZO=5gMGLD|bq~ipojW47QAYg33MIS?UI8O81syk>uK&?Nc2M&g0ug z!BV^%lex>+ZLRwEPWC0cMwa$R(=d&*E6vIC#Ma2zQka%g%`$n<=*Rhs?Abk-ct9DE zOyaCPmb?jKWA8Gg| zl{uRANY^Q-AYCa1>u(rX9GdwoOYDy)4YORIyZh!2LRA|)#p#CLv@A1x{Ikgl-n`WX zhV4NF?}W>rV0hya!x6ownQN}E7N&(~IL&^)p14%(ZUb)3m)?~s17jtkqAew4bXQu^ z&!aM0bNirrY83VDy-_~9E`!&N1Y7A(nQHyxQ2H))&{Y0J*jI*v&tNcdRo+o;Xc1<;({?o9YO$+otIJ~u#WGXHilcEil|_fpQl*e4 zQco3&^&YC&5Avqb^ilX1vxH1Zt}i^0XoyaA_pENBRl-h5-~9!G0|Gok4IwOe?HW77MBf(*NiRu-@g86gZtuW!Q|eZ#_OM( zmh{7MUq)Az5Z^B+onlbs`2*64Q|>ZeH#7`f_mw&{iBw@7)%;@%+K_n`Ob9>B13M0f zPam;SOO+LZlA4+h;mP9;URNZG47MwNJwT`zOv5wcE>)1ydJ(}A=-um%;i*TA1t)N9 zEuoFN5>g^kr-w^>;3h!yev>fDY)E>S#_G zh#qypE%bxFnzM_gk9xZ`OBi}j=y|}da9`i^`L@J}KV*cflVQDSB`w-UzZyzXiz!I& zoj<2{^@?jr!d=nTw~T1{q%eZlS3{+QfR~Fwr@O=sFLsDbQh0PDAed??WRG~>B2VV! zgHYvY$)oG`QgEq+$29VHoK!XNBeM4Ukw#{?~qpG zK3&xBK}}+%VAfs&eUbrwl}FBdG4T+L(hCB7Ct(+cmmf-oHjUE|C1_)w>%pw23Np`n zCJoBxR6CJhpD};f>!*^ux&8AEec0yrQRBf?kHIcS7=M^|?2k$6tPPah(Abz|#9Z&1 zB|&^4J;m-&P&kl0a^AT`02$YY!tGR%2*cefu}2Sd;d~h9w<%%U+ebq!P||1f`~vlc zjFxcoy>0++dtOAok1&NO3>r8ah;K(i=j%d;q`Qf%<67tlB|&Y{Px?Ym^*LKnOZf2C zftRmiwek{SY{g9$IS@i~eC!Lj^JI0M62S?=rhV^)`4QNY58FongbH&CsS49PJ}bib zs=>7WyWdB1_3?mFY3MG_4%f3bsOZv4N;BrwgYubu7lQ+jtaZrPlWQLa9Np zC;D%%bhF|a*_6Tv)E7{U^l2Xw%&UHRr(xdD+YRYUW1pQQ+GJ-M;ozTj{Mq2z-&rxx z6<2~>T~Z4~a`*W+Ajm*tldc(A*Zg6VaMKU)0(THdY>}YFDkc-PlF5gok1UQ` znBk!%?2wW!ahT$VgCQ-@c;(Zr)kFypC4 z<>tTbpvK}|)IiJ|+ zmsDXtcm-m6Xe>1aJVE15lt5H+lQd%UO6gq+^X;r#^0U`(`OeJ2qA|PgduD8A;3z6e zEK{^&yS%OIm?dQ#WK z&`#F?E#z-?CJa0U8(k0T32`nLKG8TX{p)_O9Ik~!@ak6`nrv7|<2f?t97%n$7Tr`1 zWWTt%^qlc3&*|Tcrn8Rd*VVz4BGJ{bkY^^2u9s&S%yb`%X8xz7oPn)cc&K5NGatpv zY>~sYc<9P~Rx(H7w$jnkY_I|(kNS%7jF5R@sv60&QDVB@{YIW$HGClt(TH$@gxy&- ztinW4?nc`>tQ#Fm%EshO8++aHmu43)jPxr7IQy-;tRJ5l{vS_o85ZUGet#AR;DXEe}58Vt%H*7kjyAcHG91x@>1mU^-{+{Fib{`yD9qzgA^IU6v z*7Z3$*)2J?q>TH!u06&t6JnQGk#LUpeA4R()Tji($VGx`1*fxQjEsmINu}cGolSnj3t%mu?}no0WI-_+0^SLJWoSBpwT_;PH8FFNhAX-0Gb+t)T^8_^+n(?-=N>jy>qUU8pDW{jac-OH$LSJqrKaZp>u`GX;@;*GOKa(r87+Zef{G4;HfZX zfD+<~CAI@@&zikaTnS9L|pa;#jU`3roYa)Q>3~o-ZAKJ7eDLNRJL4N6*J1W{CA&ZchT? zYSGhU3#90h!va{``=)ste0dsf*fm9^lieJY`}n1}*so$fo&2cA0}jNz?R+B6wOFP# zbu5OeTDNy~Yx*;x_w?g$bzIAF1f*)j9UGa4`f%kKt_=%JK7i zKIPxWc*2~$D7jfR-YB$;uBgem8PD4v)5mgf;S*ilu$u&Mns!*54t~mLRpU{Q8w|3U zv$ri(@S=1UCY@=kFO=?^Ont;f_JaWo#V)XmG>#0vlYpmjS2g>Q2eHDeg)(E)S7QQC zcbl-l%Y3US+j#r_tna-_KP`tNU(>1w#p8|cc3_-Us{t_-s8|YZZoGv&SP>eu?N^fp zq%&d`(Ud{A^#?}p zen7uN?WGYz^O4P~Sv4!f6ulN4)=q1#!q^dY#4KT)B$FF6@^YD0K#Y%1 zq7F}h_S-pa#s8LJxNx{vmDzwbmP1>R+{f?2vk`WMbbtq)K}UAU=+z83`WvOci)mXb z6b@D$j7i|jZlt}^>SbOh5Gm4!Iems%fWv_E{3I_JLJ(G2!uAcCrK4Zu@N>RJsmyZP z-5uy9s2|%r=hEp|#kExMQ5yl`55)=b6DJT;QpQBQXb^3%Uj`Rewy6!GdEPiqy&qJA zJS>_cPD^JHo1x3slhkEsW8OAp_Kswbv_e{EzacUr;QT2}v|Q6R`QQbvAHIx;OS0KM z>n{W?Z;ARa)niH0GE%$jx)~4P71b{Mmllcz#&HfK+tb#@7DE%)c`9iz+#BA6(U_Q) z*q>Dyi;5*dR_1AHH3R?)AC=N6GxNo0+Q+k9el^<1rEI+Ft4r_iB-Yn&QbOQ;sv_;9 zRRJEc=_O}B@8UQ_snw=QI_`f6gMs*VOm*eD5c3(9Ue*3>eNF)4GTSN8hX2j#GR9g~ z0@kvfUak>{>Z}(lX?9Dwrx%LTnXh4Ytma2br7LPFA#wb8G00m8>X`ecErB&wh}|Zi zt+-n&#kg$=44y1-bJhr#+;mhn)l}9aCHQV5l8lIf#Rne_EyO1@{R!vH9;7qp8N=8- zir*=Bj3ltipJXkCN4?#8@D2`zJVTFd?-+m*ckYZsnKO$8Ni>-hH2TG(f_oKuHY8eu z$qEnfg|(#f%!`}igC3~%1OvTncJ5e`)&>lO3O!TJE--7aHBGiCQbI!is>wI9Tv>L( zIZvdN*yW{M`ZdP3erSYHN5s>ZmC~^_9Kmh4PbHQ(`@UKJU?9>=aCYaqTeeLOpGmAb z#Pxpf)jKrb6Ul=s4aqaqCys^(m@!f}5tu#HVW(mhM^rDnQ2e1wvM6yp>55d&)+;+1 zUyrJCyo6E0i(f0Iq_I)VhbmAP;eHP09Rq@?E-9qKiQ_>IZ{Vo;~d?*c=AW|#~)9c zjj~pBa0qaj@as7V&{-s_Xy zIc9`5nx`-OW9es2;j!FyNqE#o|4`m=wz{?RvF_AOmrl)he988tp?~U6EV5Bi{!@Lv zH_oFgo%C=GYR!CYLYMb;*_)VjrUBGXcD~UE?OzLq{Vwcz+aof=zvDAL8QtV2WL0zo z?qF1*b(TSsOiByk@=~#B694qR*p_<~{_>)w!o{(&x4r-zIUi}5+G+&AcOyc@j#aE| z(I_RXox(%0Cz|I&o!ap*G$|vCWukm;Z^C?udHq%*;{G;G+jxQE_|!9}Bxl-9QVZkI z%da%F*S-g7#3v|fA`=e*_e}wT_+-QSvjGzkQ0lzR>V`xEt#Xpm`|kJao*w5VZkKk& z8k*3_Yu*)c{PLf9^h`3oiPPrHD`3wjd4Dw>_UGSVgRutoThMbfg3ih2?JW*1bzUEO zrZmMn5pKct(-#tRq)Lz3@qoLmFSW*KT3w4m;8_a2_CsxTx#>hZ=9W)<21H9jMqSgv zn)Ba+#n-2@UuCcg3NG9A4#p00OU;$jE%hQGEv5~~JO#Ap+<4PGo+x^r^g_AR^vP49 zP=zwfNmdG5IOl{%AyQ7nMe@bD6nm{H>2TEF@H;5oNZ)R)5vd-Br~(jR_zc!9i8bm0 zQ|o@%%0qD3pjPkg*DQgsK6vWStG~117ojt>W=iY~BgCRM%Ooh;fZ`MxEDT3-K z?XU?^pxxJM@o>RwHV28Cd&KGb)5J4LT%rg;+eRb~0|JV=I0-h8wTKy@&3{>FUTSDk z>grK2JRjZsJ&XI4@RZkrlnW6XMcGO4BZOri0u~TzUlGtkq#;>H;dHCSG)=0>c=C9;768Q z5@@+Bz4HC*a@A7OTF8E0V#>i7Di;@(M^v|wx=(|mLP{~3gK3IJQ#{%rn;V7{q6*DE z!qz`=EM%AGuGjhm#lNUY6Cu~hp<0g!QD)ym3uVBrRo}?|QO8@K0Ub z2{;J)};Ctg#bKCCcDPIKn3{c)%b+3=T1M0fWXDwTq#F|MY zw@unS<$9*BhKiCGsQxSoQ=g%KC#`l*YJ56in92rjQ2oTJ2)_KQ%`;X7)>CJ6D|NG- zco_D%mZjwa&s`L;HD4H%I)gY)nJ+ylYba;lRk!7ITCjJ`d{ANOvqF}bO8BjUa@QQ+ z60-~fvZH|Mk~{@y9=xRVij95>S;?GunsrQyBf-_RX^9XdS)HK(r*={TorR`Ec$>B~ zcq9gEgQ*H1$-_(FRMx51HsQg*gd&r0f3|T^17_{l7Hcy9DPRKm{hLEPgTp&eXHS>% zHm1vO7RGkUC_dUgLxFmW?+7(!ujA~BC6qDlHD2BHCPY}9Q@d9hk#6Q0ny-aqMxkGX zy>LNHLG27vtEx5DjPlOoca0?yXv5u9m_(TR$UD_AZW|m*0M?2?I&+>kd2lmKm=!q2 zTT{>r5Kc6kt8qz-wNYV9P3^(NW{4}HiF!^j@cW70#4C%PVSU)t`wsU71$RIfmt`zj-+EfUgI$EGdvXC5u5eP(?-tjFo?1EH4DnRk2v z*Q%mS67ydr_gkAE+&bO=QuYM)p2w{A4l5%WnS!Byv6>gIrTk0yQnx-kz@AeF%Q3Na zc6wt&9G$5-@yvxV2pHFrdpoW~U>8FM&l#Ey zRuPbl5>zZ4?!=qlzfrm+mnH}$5l|raCTRIGS@|S?_C&Agqz<~-Es^%&p{ZjsE&^iZ zv;7PVcx@*&vp?$-fcn)H<{zBWY@jgEfAc`;5YekNH)zB3nSpp-foGY zV>!2eD9@_r4-7vry7?J&UX0~AXFckEFq0#_(XL^eO(NgT9Xui=7u+K>!Xs3d+VgSH z>uZO`dd)T^m@S%Ix~XpHeCc(TxGnqU(l*W5HsyaPkM zsEWT_6}6^ApK{eftWpyMQX-OA!z^+@_G{Cf@bt$@TvEDpDz@RY`RtmTS8JOa%&gv# zU|SHFDu6ya?ELrREv#;r?!yYp-A|ixIy*n!nwvH3#HF{mtYLfr` z@BRNffrQCFP~-Z8AmZ;r{~hNKDCgcIQF6|6i8)GsP>WQHoW7I*5*yALLnVjyR3w#? z4cGt)3o#3vm-wE4_S8ptQy-s>2URrmB!#g0qQ^offd54u?H_Q{&!VlkiOM$FuJgjs z{Y9UGii1Q5JeA3OC)no0$vDE}F1<6mOknW-p-2bJ#CogG-G(-~@VHy&GnK4n)W*dP zSk>gor>diQgdc`iEm!U;p|2OdPr;>(Vb7aKBwp7>j9^_AYvXOKl1QRN95Fsp6;rk;p!J|*ft?^cdNd=AFrn_l^z}j`}_V4Zd>>@e8_dVH&UbD5z^A8 zKkgU^lwFp~*X${z)ZjPq89CrOmL~vWkC}b&h=L*NC_fNy{1;{bs}%U%9dNUY@MtT7 zPy$5*ZOvOR+a&kwm0~wxLX}1nU#lD@-QlG-zxC`>Z;v+>Z!-j9xQM&_Z)d9xESL#b zy=wYy*c-04Cq%Z~sS*C0I_SCPgSV652fal7|KgIJX6gN#a#sJ0K97+_6G-|(p`Hn3 zAQ#r9T#$p+Yt(ak^2&aOYcNs|c)(S-+U#%%tZA(^wZX1v!j_r102g_c>8O_^O-#xJ zF-yQ?NS0qZQt_Vu9qgu!D1M6;Uq4q3IL@w zsK3D<$w-G}1vj{MaBoxZcze0D=BW7VICo@_=sLs^r3GBN+*8C@`iPPg_lCFlzu;Y6 zo#0N1;CM1k{=RR0c$%0zIWzi7PJ}^_nkiTCY8D@w1RkENp=r@4IWfeHp<(AOB%cSL z{4s$bA%i5FYvPD-gBHCCp@`SliHc1wNdXy6h>*HA#?COEONpiZ?ci@|Oykj{5bQAe*w;*&$iT5vwEil<%+%uk zAjx7LZ}Jt&e~oi}jndUGe(QHFo&%lOQ$fea6yY-{(w|ea!cY#aa(K#2Mahx<&Uw>Y zVupYq*H`kXfu=V&N?ywn@f+ZCIPmEgr-J8bHS*ILlm*Ij0g4xw#y`}*EvT=mak@?^kQ^Er*tbu33Ma{M0P|(EKab6u(!YbUZlW$1>7qwiIHZ(3*s{`97or0L~o9aVJeH|sRQzN!`O zkNFavisZ97y9wuAe6JPr@Yt1vhVSERwlwze}JENj*@iicstDh zpSXC@6}-=;4SFKRM6ZY0fwic*BD}pb6`WpjI>qK@Xi|16AQFIcnNfcqq$9um)%#xX zF7j#S{kX%G`9GGx={fEMEZ<+(d8aT$Wf)JhD^&?YNM0OfUzXet+%2U2G;}XSM_YtV z&t1D~ddpmiEz9F^7>1#dge{(IK=;WY$l=b1b{j5OR$9gtQnb@y(aUKNq*?t`gP1<5 z@g^`x?=~N^tXQ99rP}T5~Jp!6B4bvla6@-=6tE7sC&y}p_g#>V14_WXPm;d-{CFyb#a{I5w*nfh$dc>9n)PGly~=drv=g> zw+vhKvYXPw0JYlg-yQp=W-#MM5@OQ8Ip8r_^Mm z!NyZ40y$ZaeQV7mZ>s!5LD;v-$fkaE`Y>lchIF(_SG*-oG#@1s6Pag9+LP zf5aohmq~M{40Bn(S3?^0`!knpeo#)JS@dgZ=(_9jhOte5a|8X|-7+o7|HhBa8}{*b zwwt^C@0ZwO9e=}8QG${jJ6WFz8dVtOnx*m~LR`dn*qWNn4O(V3_6XF*oGTchph_hR ztZW`P<-6#}kG>$CHW>*B0fjirUiopE5ymlB(72 z59c_@`b$d?E8~zPKt|F+u;i2ThY5*9B_xFQ)r>Pa+}@V}Dftfcp(k2`GdT8hd~8LT zEu1-=V?1T(LF<~}S|POs zwNuV|p2#P3E~)zIuGZcJ-50V#qO=_*#i^M&WJ2i( zBmyN^ln?~+TH~EoRYyD*^u+qzQzSoQ#Czt7_3~buQPE`z%kg-&uvh)U11}kiy6rU? ztVN>}!4Ez*gZ9ge!#wQ&Jzo({JqF1nn)Z&tu}v(Kmeu^DkaI@bNbQ6aFBv_`QQh}C z`~1LsZt@q}1isbwrqgp0Bg2RD0Tb7ZaLCDzm2fvV{J`G=jtFZ()LT-T<~Fg`ynA1~ zmk-MLKHo2@ii|(z@PB6!@8t3CgbCcAX{5NZi~oTnU3yJ2Fj>tvRpOE#+`(3@`dG57 z@O(q|Iajq0Y@BD|b zd^!LJf_pwXUoe*JGD_QpvM54A_N?3YfF)u`9KeI%Mg25S8^Iv~MBbLHO^c;#LyirpBBhA>q6~&Dwg{Emk=*)|i z+CpGPFfzxwZ)i|jyWk3=1`!R~mclrzv`)XVV4uM$D@=@d+A-H1R?4y3&O^&)??Xk8 zjM~cM>U~lc=7#}vAO30^bSAu4j@nl?64%v!Iq*%JlnrwXF?svTT{xy+BujsAwvQX+ z^&MX*gTQKJq}7}~KY(IC2HyRA2*T=Kes(q8d$7)F;%wt8Fujo|>h49oF7Q7V%^+6rWVnpKn=7u2=p2 zMszgXasTIcJ6fF6J?+Yyw9}s}K@bvYHADm~`@>MKCF{SSeM)rq6K=5Nno(h+78#P? zUFc6e&SP%z;axX#>em_RpM13IlfRuij3BpQ<=zK>3KJ2q{Wc)7+ExL_H6c9Ahn^D* z;Tk~mJ*no|Y$tmQssLz;gj-kEY!BS_z3EQLQHtkAw4d&JUk@ZIhZO19N1?C(@HMOJ zM;-nK4iOoD2HGe^&!J zy^6M!jOJ0=?rh@33$pY%@^O={QcQqceBoZ?_h*hp;3*UC8<&~N#f@XoXXGJkQ|~y# zTFqGtopN{I!C9eGBhEL+_2WH-QDZ3i5u|x>o&pD{p|Ezry{SzPTxl*ox(9(gW^Ebf z3{S(rLhVok9LNqPq@V1@d$F+R15i8&ya)MktCmWy#{XA>U~zgd#Q5woC#EqW_!FPNeH|xFhW2# zFNT5(Edb&J%qs_e++=%v2F*>wMMgPSfDjCc-u!%_T0Z9kW?cK8^?Y5__44cIwbVdJ z4!ntY%}glVsJ{I~8cpRj5xHeGZ4Hv$Xoh7uax88Fcq+*r~@;SevB<7j`rhD(<@ zZz&*@60L~~mw6`rTcH>Gkf`AGV$R$xvA%E2Y1pNZE594b6!3eT#G(BhQrZWoHLxYJ zWMBh1`SalcR7kmVoaa<{U@ox^t={1$uc8nf*DN!yM1hMnxmd4sG6G{`Nv}9vtD?%t zlt!JRO-^bu#ASF7wze}AT#}>4tz{iBxDK;K+Pem*^!EQ_AB8t~2e^n4bo?6b4Uaw) zIj}l3fET>mF})dPjeAl(+T?xlTCICXbFB&hujaE{t2WJx>Bh_LOQ>=E4n2whUC5`H z>$N2JvIA3-fT~fC%g42%AGjX@nLN&YJo`%Mjx;!DX=IGd=}PjNcDlHLp5fM=6QsmJ z4=Wc#SW=VDz}w;|ez(OXsE0!p%jcB%QPcp`pmNK#E`e%?$RD{A){46CsYq<_7Fm`+ zb(JY&g517CL57O_21`&7?2`7Zej8bu#2AdmqZT9DdBh5#qx-%VJ5#{?Og;D!!(U_7ib-iNQIuS`i_4;U-PUOG;NRGgsr+GG2LJYsmNSu7xP{x>9e4bv-d}dx=K=8x}GNfOTqNkT1`XsN2f2pim0JyDAHZ zquyuEqXU&twHiJU-~>p~A$Cky!K z+B`ZnMUbQrqET{AbBA+BROxg{+fnm+t^O}<0MNy_02f7`-fiDgXt%#~G!AmU3}bEp zH-ZW1{s}$*1RYs8oM>`^A;AFnJWDt%I{9+}R*F-mwL|@L2cv(J`d{P-l`p;Vl09J9 ze$|=p+d|;2vT?h>cFpP%rTJ(qdNRiqjTi^430Uk1>74y5tO=|H+wFQSMo6GW|0)PP zhfM1o>E+Rmmol*0_2RxH;>Dj`-O40H;%qzZo-^3>_pFqMcSW*Le0sZ@6CzwUmwRZt z^lKF0rdRTBm+p8#%;ivNX&!LW+6MU!_Jf2Qn1@)V#pJIeR6dsAD6}J4=$;BpfOYdf z1@qn;xpzKq<8D&kkpgoLWjXw=6&-MbrbS2K8o)}U9e{gX!}V{C-zzCY-bdZ0BG_9n zYaxc#-2^PWDw{9+ab_fxUSVqq$k`=7VsmZ?k76*6YlRtj>n17UkU*7@CXkRNKq&3ob`SCP;#qt# zBqS!qam>@*%LFD9o+AmOfvo< z9_wy5FU2|!C-AL%yQRE2<&&EGDdt?uVjEGAUPX{)acXLkU+3-5mG1%^DjX3N_D0vX z{LFBz7+w+-6-C1YPSNjqzxrRODSnUw-j*rpwd*|>;M#vfIU|dOi^49xkwz8ohhrJ z$@;}2W0wSK3Fw zopgcM9QRh;oLeb@*D3d3Og4;+Ry~QA+S&i=55DaYM+CF+sJH-0-X6^?? zSJNK-(~ISK(ixshYU^>x6#AkQH2*gXJ_ghaPn#tn%CnnA^njfO5@6hZz3>7hN3&&* zy+Mq$+|99abXJ-`+4IKx6P@Di+#*vsAIAK3Kk8-Hk8Kv;OD9!bzgelK2|{co|tvU}@KvTlfaD2>&TEk|=J2 zH^YY+Gg8JSVM0vs-IfQv>}TGiy{dZUl$jZ9WO3lm0vay7-lm0b#MDMR?sStxzu;?& z5$fuH@SZozKXcm|V#;1$UjFuGhhaGfkaMj#i>q+<`Lzf-c6uR|ciQ$_wz;fr8f^=#)9Ux)kG0dNVC zuE>4d-;b(`>erLoKL4^O_g7obL$e>a->a8>QM~P(#kdR0@&EbS{=vtiL$qV3z#VoY zT|;J& zK|XQU9@rMQ8D2h21dbO}?g0=Mp{?63K8#L-)6}A4a)exe@Q6OFMqNyiZ4 zF)$|(gmQ*$9+oINks{d$wGAxoQj|Zsy7nZ3?xBQt9=O^&;H{Qb8A-*k6{NrQaKJ8x zrT`X7NA4ApTfa)GK)E7pV zBr)BAGYq16sWMVWqZ3n%Phh>tVN`6Z71+q?0aYtNpPaXa7k1O@PY=PwlFbUN-R#tD zI~GG44lDlB(gfZF|NR(-g#Sk%oy%Zs_B{+=+4S_9n^L_l1F%#%g6yAd07EiKVUX{h?hZkkSoy z`XrB7KR%T$!|#3;qr>~_h<%R)!cxT5N+n8P*WPcVpCuskINMG6#kpaZbmlcPe0V~* zwR;G%Rq>e%$n_}xpN1wS1Q3c)Iu~xd8orPfC3l}o%oiYR*X%fzB_pRX&LRA@9|Qxz zPAoI@%$8Pq=hiO*fCUYO&lo6Pqo>>y@!-q6IC{f0UpVtJl)AEN_Ud^1UexvBeXr{6 zqixr;ulJYtB4gGG0;_%r6&0`kH%yV;ZME4 zvb&7QcW=ahTX5|3*Kl&fS`=od<{gB-IYe*PrAH2Gl}~&3W5b^edv?@;W@% zjz5VUUH(Xh93~v$%SdXGUeLf1Z|;SLFC4ZWTnK}_mqR$&KxbreDrE{88^}!laqRs& z9`%t5U{soID9^|$5ag8ngpCNY9z1sQ|P7)`~B<( zcUsO*?*g@9AiD(fgHGchj=$w~sHk8(aS^cY&wdMj*dymide+4n@%nfqUhzo$)=-3eC@F<2LJh zkoAYFNV>KUDi{ByTrQiSFT4^PdG9xC+H7417)UY-Z9~-5#e~hFmWaj3jHgnh`%k?aqe5LX!wQYAY;>(NQxXC8mj}qHa zGMU6&Npj9Y_}=?skXQ9=j2X%qoMUN!2ukV1u5d^`gCt2?El+2(2H-728G(5!_WKi& z!A?m%rnaJ_gn6szrZ+M1kP4xNDC1BshEv^kwHBXCPa=>vJpV|fw9h&J(^KVjeclHS zM)ySI!V>X7ApVR5M}W9<>sLn@SuYIK(JY$-*ZyRi64aORG^$?rE;5}j$E6oUR?>bd zuh!yeZqc)7wq6?$OnA9r%e-PYqbB?{p2m&)0t*pUT2Qm%3}ov5Z&op~w5|R~<iFF%pYzAqD*_cV7cq$;9&C!*!n{!pX_$zF0-KJ;+|A>cy5;z zg+^6aH$x`Z&|1W^!-|;>0io)ElMp^|2*yGc0chZuqoiM)4xY6(=2zohv3JnkIFf)P z-b=4@jVR;F9E;j@x+uGm(# zzvv&nm_>0!tvZg4aC0lDD_;_|zg8b!o?!vD9%L-7jNCA@YSP*L0}pMjV+wBayE&Ta z$>-620cT_MZOrTKCDCIb$#3Z z0%Wyq=vH{c3XRN(l|y$J2ouK|{?Za0aaKThbB^}1zv0P^CqL{*_& z_lF#WCO>a!^04FTrrCF^8b%p8aVQ}cX({6`^IjZ@UVqr>#Kzh!GjO^IoSsK5PqcTY;-*X3oXbBHw;7OL^_f&16*I+>WrHXRksC<}3yQ^7p3;g{wqZwd*` z=4=KIk0ghbgms0TiybnGb>!csu$?9H7@bBM0TVzSPhXS%s_pulz+&yGcn+OC5XuLiWv2w3}npY9qMWZ^y}hM});0Y1==^ByY{AG>u3Q+ znC@l&?UCq*_|^91_3^!6o9|R@9Rgc5Nt7U3zme1K7o;Afb04OVF@WdfwqKNbwp@w8gQ@tX>t^>5U=3t#NEa+N}B)VM$gX5N{N zZ85wFc68o*iB6czt~ssk8Z2m4VFvE*8TMPSB!nEC8#T1jeVv^SF>bZDvzdY?R}vpI z94nQ{WovQ=&sEy*Gb1LMRd0itm9gkf4Bu;mqO^n^3M%C=c)>;pm?_lxwAtCi2~cdW z>4BmR@Z;@1?jnnv)z(F;#v?ExlI=VPDW4c5VSxnc3@e2L@2k*&(O*RI&LBJhP@W8B zDrrPy_jq3<;SUU)ddK~xeI=jyjCJX}*Uf4q-!PRCyGs9x{MysP9m`W$Q9l^67ai0Z zweNoK%ldivie*}T!%d>zb2#tN02s5D8PYy)gxe81pZ}OXRz5YZKrl;QY$6&?OrX4* zwun!n`Q}|Hc$Na7TjGU~5UrHM~iOkgeuuA+z);Rtk_5w-z6DHHyl7JrkFl zPv-g}^6@eSu(7}oc&UOMokHrCx7p~sR!M{~>ZXeQ6leg7I96{Nkk=vn-Wqxz~Vzme7(PWD;>M83Q4uIZFJo+VRC3i%O`D8cEtUTs(dI zc03DTQ`9=&>MZFofbD{klB1(~?@u1H|G%@T{QJJ&Nu|gWF4KV_vfl^ zA3pqH`b&896GW-az38ZmVht@<9r{YbpD*q;1GU9^Xzh<{lJ$@&Wv}o-3oLY4W=4dH zP57-ZdWuQl-?-WmS0ChX9hC>KG$?;NDKlBf7maMH)#_K1COZhJzzi*QE($L)C^PW8 za7=lps9njf1Bx&Q%OB+aF_X~yA_1y28h+rL=&|=2}u3Ny^dDg-uo~f@$2xQXj3~!FTWQ-}Lt> znj`71tQwGUR&=Xg9rhm+&&Kak6Xe6G7;I|+iDg+}rq0E;#L2R;4<&uKLxC{gV9HeS zzrYj;NCa!d4hU@GXQ?#13GY}!9?gM&GSKI0raS?2=;zTIxYN+lp8KyD;~jJMYX4M< zkt+LlEuH5{nSOzz$pLEAmvxF&ANpMhe32P6t$s57lQaE=*K;|gwu3Be|HFB8DlyBd z=WIUuvya6r9y=Z-sE%;qz7V7i{a4vJ;c`yL)^0z=ycg^;+%;&^h>HJ0p)G4sVm?() z4nQew(wR@-Wi}W+rA0BI^$cd3mY(kdJXqi-#jtbRUH)PBdd(B+C^tK;|4t9UW{?r6 zmQrcq@DyatbdAehS{J)F@~b{KC-$?ygOLk+t++T+1>ayX!-st|h0W#Kl+Z5&zO%2p>j% zbH1Dk9nmjO7p^mwMHBIA99SRh;U>maw%%d#u5os9;(gAaL3g1^Jak-*0%%d{6_;_M ztI!1n2HM7Iwe}n(187GNWrVOusFG)rtkJZ=WZ8QRd?g|B=J`evx|X=oe#u{3mQg4Z zy?kx%tCXter|XLUj#a1}3k5caNA1DBSie*Ho2t5UP`yx_R`rDO01!TPoL0@&u6D>z zbdi_ed+5YjP}?@$1!-!~8E9r(Yx4TPfAm;9+ObXGg-wZ0+3j%EEjHNr8dp9< zdbW70-J@rO9D%cVcnqXmDdrq%bBghtOi&?x)Rv5g=WI{+03E0b6w!Brv1}y z>(2uCGXGJ31_9x-s#O?>SU>m;3WZ9B!Ey%tgBM0gz(E>4?6j(c5;6dTX8u>RP3{IL zuKX|~qF6hLjdWk0D}MV!|J*2$vHxXzS`hWqrSKx1(nRQ#{E~eVHXfD|I_*tPRVp|a z4#iB-MmN-k<3U?$L82jGZ8l$ z03lzmHiUraKGUe;<67VUu9Y6(*x;!h0O9%piyRdE3Jw zOg#O`$rX(P-m6(ga<`J>d-B@x|753}_O^+N1TG5!(lyIoa@fcN{oTXi5Ps(xds2#R zG<9M|y5x~a%|db4{s#9Ra>(_l&ud+R^dHx?&eKeG!+&E&48kmcm{YewXuYQp-~BRo z2JE+p64HE=cv4zd1;2YX)#`yd>0)$r-Dg-}KgJOIL6}OR9B-R6N|&dM#96#WQ?-W>B1(i0i_*2OkA$bOmDkT}VKcgMAyy z4_#LG`gWOJK(#OqRnG75gTaMGIPK~j=lG^Mxu<@cl|<6YW)0M915hWOZpNASZOlgq zC~N^ps7rc2F;Nn91PIbFlD-b8{I}N{=3Moh5`!{(kP~;4 zR;?%(yK(VkD@SVO>$PoCZo&rIQA9FhCMxjcuR&YK>y1XIEKra;3QFD1`d5NJlAT3z zRGwrwy#OS|cE0Wo*wlV?L{c#t>X#o+H!}*v6v}OZUX@&P`(XLu6q@q|DsOO9GEIQ` z&)-TP{+sbypz$uBegERz8t{{!<0rZ%w?ja$zP?Y=x@bLZ3B&ZkdMqwT)JHwSe~tzNM@Wql}-OTnF;4!+{` zz|!AYegy7Cw4llW5S$>y*sYULAL=%T=iZZ8(Qt-0uK&zCLDws+twF%Ff)>AfQ(Y_> z1*B_@Mm{hkrA1?+e$egw`lFDN~Pqu#9S?+6# zW_wdAA(~eHSgJz56Js&~g~*In^7g~?M-2=Bwx$58T=QU?wuH_;NN8RZ<3kW!8UzB?VUe2~&BBU&hRH+YM{ zj$xFK>D~urg6Qd*v}K9dn{SFjfa||56<=oWZ`zVpYa67|w!{)8bViLs9=PT~2XF|9 z^{IQ+GfywpgTvmWFw5H!=U+Eitffj&)vMKmN)O=O>_OI?nO&bJXayw!Ra84(s7@*@B|#3NEZ$~HW4hjk@BSPSD6o#o@-d0{fCz>kz2Our% zjRDzXIK!8ookQDa&oE*2!%Z+`!uv!0c;Ize75ziiDjlGnb^-tS?q}6k`plVCOAc@W z@qInUU5@DGx!2MIw104Gkz-~q@#YMtJd85r;N0515Tu6UJ`S#p^@X6+tt$#yzd20p zl^UQudTt}ejvWqBr1%iA8{@+zC>T?@k;I2p!k zc@{eDmv=TY#lGy8c0-?SZpgw&wL@PHfqOvFb&1X7@v-9&2`D3R26V*~ zLCWic-_lB%;pB;f9}7ymlKQZzDhPk0_3<9l9pSZ||RTsF07-eQ@mM z4WAq*!zTS2yg9^GcDkrRl z)mY(%UJ0Y9FlFr>#mgHI;TcFS^IO}XzHH?IJ;Y5g)EW~-3K^@E{IJ1e3-Aw8G#C^8 zaw7@^W{|95P&V6T0teM*otKceOMhJ%pRp))ogS&5uB@!kz0uL1V*j#@#`3j&bwna%0OVX%!Z}`FR$1#W%3oit4q<{tW0K&5q zv5OP%#0{7W5tkjX*)vu4|51Y@eH!!P+AO7~qCX!+S88;Aab})Lg4}B4f@%!r+HmA%c+ z`fgr^5!YJb0j@`*{PH}9o`q;7To>|gp!3P0{{5}qQt)S~Hi!WOm*-{Ae{zrH#gePF z()!XvkaF%eT>b*RI#wO$&Yf=i+W0cG99i#xM$``_T>e_7NOJdMz{!l2+vxzm`V}5{ zVV_$Dc{JYp;G5m*2b#6Hz&5I#TVg*ya^+$r z9u+1LCG{y-mhbG0l_x@C`1QUSa}9^@!XQ%>fLUcw?9m|6lJ1_?f&^cE<-tk)WA5(o zjvH<$b{4|?RFOzCB(&lqZrw}k1BT2fNnnHh7yh{pFR4DgFT_Wjp&GC2ZH6?KOF9t~ zoq#9h6ULqSNOG{y5O6IxpQGVc{C_;X1w)iw7cPtvN_VGp4Bb)>-5@0l-Q6H9-Q6A1 z0)kS~C@^$4NH<7>AkEpn=X~EE!111Y_Fn5s;{(&@*LlmSt4c&a(Haw51>S-X3N|*) zv26zE#-9#vVX*KM?h{0jMFC2*G>q%GF7uCjjNf(=Lo6lNyL#Sy{VH5KVjxm`4C?2> z!j9>%(J?NO;#^@q1eX6o25U6Me^nQ~PZN8q2WVPJ|KbQ-M}eG$6X=DDSadvf9CWP= zssO_omx5f+QD{SWw;3H&$duRxiU`b)xKVrme9{6I=?~@zXb)c7lUdS?$x?0h#s?@i z=}9{{>iH?Vg6U;NEQ#jb`mS#Rf8Z%9p*R7{LP$;cX++OK&R*wxn&#}1%yzel2f%kWr3BP)2PwQvG|4e*w>DB z)%yRXE*Xk_muj0ooN79E8DAnGt~1&wR#RnZG-eBw56xlOWjy~ zxC>Q3poynp#UWs4-2Cu=Zt=8O3wXSvc%3b_D2cYIiRT{%cLypZ%HP|8Gw6U;z^#={ zbHr)i6zp0HG2WNPBabydz4UWg+#FiES%i9mTgp-R)w;^`oZhy7)i;Tx!art+!iQ{EB*ZtJ{4NOK`8V&` z8WzZJ^mQSZ_kZu(_astIf3yP51=;Bs)BE08X)W$%pp>AX<-<@H?QU-zNiwaAevBNF?LR;f9F`I|^G!lgyZY%ARvBo?-%7ypwCr$i6?Jb?Fd{3(X@)Ome`KDi6z9@%-e8^ye2ZlcbxvI$-Bgl zHUoqwR}1zTAZSMr7^=ow(nARUWrPKSFutfZ1`TuQ?vzBvTd>?L=#MiZ~P~jHco)`_oRpPU4TL5kL z9H%g~Qq$ny!rUxEqD!&qiSy)t4hu;FFCD095CFMDRO?giJqJAN&Uj~v>@_Ld&fcA| z1^=33Fl0r6Cq84W@&8RM>Tpk2Kc42Z3JUhdpKryUBc5)>ZeBeHIyMa(-LeGi{9h2K z-#d~zU%4To-ydc=yV*O6R93@vK}~V3Px5_Cx93T6Y*n^+dX>kNqz~9Qp;!!p)pbPt zK!A%-tdIh&5CVW=FzuFK8%(?DRj*f8eNH8KGW)JE0e5L1i+J`TYFMcT&xD%V{ux+6 zK!rZkohoDTq{Z*aKLfb;t66e$-1b#z3|D{zlzUPuOzb{i83UzLt8Lv8T_mY1hh`z9 zCu^P3z>v}8Gm6m1jHc^;b7`x6_aof0?#U%*&349OA#|Hm_pwIu?0E6?y+2kP!~(vX z{SrTt%#YANE^}bJs6}%S0Mw+_?9<>ymfIJ{L!DMgG#hfCKR8>BacH{@1W*s!I9nkS z`&DH_PjdUXd(7ecpXVSl{z^Y0L%Dc^8nIqSM%HE+Tbn}kIC(9T{?h=v)IdxmcaR;h zyTunqQ~k|~^yB6smQJeufLIDAx7RWu`kpneC#fGi6rlCvzBbE!=}^qbWs)47l&IA% zWr?jJ))$A1C;wJaOx_hc;zJFq%zMFL+|L6zuOt(;YT*Q*cb8-z*3f%ju*Uoh4u%ad?JQt*hYXk4?6OE9YT0B z?{wtGapwI6tI{Zwu<$Qnv4HLhgj@;->{50pVOixmL4_ON?^RqO75Lmo0$bthClSQ; zma@U;`;7dp&4)IP-2a(8w$@h6_oH6E()^yq_~jXy)?9nve2k|D{7FgjuCST`jDAi4$N3iCiF(dJOTeW&h<>tO;xoHtR%)iwMGS5yjaKr2{24U$}?eUkU&l0oj4sU68QRbK+| zn$Qd*4mX-w|FII~S1AMOp~*bOAUe(|x`a+SJxj(km$FX~xB%)o2ps+zh-~m ztGVAG*s+Ki=f_9TOCMt)>f1JKIx3OAq2DHzxjmAGjtAWY8-+=7zRl(e;|>S|T7k+D zmFpWqG#cHJ>J!0R(%h=Eo419`tGKm#5DRv%cAyaUT>lpaQ`$OuKh^|n>-Tv~F4-X6 z=T6z~)d=rlsNJ>ij@cZi%^Qrf^@6&|X^N@CD_xR)Tcx^|=(@;2#c%N!df^Su+H_ww4(vcD(Mo!3#+eR@EBanxgBq|ESTF5{>G(Vajm2vFeU z4a3y8jlnz_kkyvX|NS!#+?X$R_PfcFwgn4XU4koy9u5fSL8Qt#aLNOK+2zL}L1tK{ z@OUNy^7xneL06p$C|Kgl9rK(&)=G@W+!orQ9$|?vLAoDN)wa7F| zxzUNevCC@SF`*R9wvL9JpkZMfV!maQWZ#_f%NmZs-wZbKJk>O&u}o^d1x5f+RhOVq zSw?hPCfG29H2!54TBE1bgQuuro#E~ZTks~JCBrZ{A!I@lhm4TaA<#)~0U=&X-GUd; z*0wS`Mht7EOxw7pn?Y+evk@=tf%!k$WyG)dlcf!eSlYT3jw1o})sm@}KtILKpViZm zOeA@1Ird__6>;P!Kp1vXug_w(vNa_zpsiq)8mALy2Zv&{RiS{S1IEaxA|;qs7Rqs5 zlv!n{noOekh!z?FGZIzOjv&q^-Bez9Z($Xed#}|vDlXqIjO_`wgZ4V1%~CgI|36W5 z;N*4%sV4xRxpN!R{C4q`&O*~_~86NvF=;9rI*941R5h+C<@<-X`SSO(kd}xsxhYbPRMS3!R z{N^FA7J zH6HXwm|;+-_crC>f4Q<6=zmfn~|a%tNolELl9Ho(o6^Mgx=8b|4axSYe~ip|H*RS{gdyK2BdOzTGtsifs6@iUAH4n4=J~G zIhy|a{AE!7u-vG-W9bx4Njs7OQAk(tJep+8vd1KQUn$7v!_9W8dLxuTZW=%v%Rk#L zj>n+1jHQ*-^87AswsLg#I<>O;d~+b_fNj8!#Nk)`Ap$l+k>}@`Uw!hiNPxzvJ+u`PmR`w>5%c#NY z{&5)eEZRXve2n7mpDyRMOW=5vQ(_3&U2o1d#&2)pNcjam-tpw`eQa?$*D^3__qT-2 z{oIi9xQvkR9zBU=RDn80GB&yJy(MpXQ^qVq)Ku6*DpE+PsNU7u+Adbeecs|$F;Jf) zi7|WGe(Rp{Sldr&aY>aLddl;q3M(FwU~m@0i+h@aRVBZIVf>sc zLA`Is4@3q@I*fWV_IZy{{VDwSWDeVEbWt()W@KU#$rc#15OvyLW(l3RmWg|z0!gp8 zGRLIM@6sV@3Wl-@;%c;Wq=@lzZti6-RZ^rHac;C$h z9(PJ&^)rI<9EEMPxT1<=ekn37tSI;(=0VL1lF?u$SDnYqEXpK)o_Jn2JV;y=;Ra%o z9NR$~@m-%W2Wm?*zexZ@e?Km_OLum=C!?+XTq^HU$PARov{8tRtgzreEuMBLEzaEh zX~al>!zCo<(GpU@%ri{y`8D;M7B=SfOkZGu_q~DNg+j!*{-KLy#m{oGa)LPRY00u zEHq@bOX20iAt76+UYArtf0*k+YX-d3B%DYBd!<(NhNSRBRB>Ayue#@6$bkCTYnX4a}fsiF0b_H_!LqW0_V(9+7@#nQS=pFfuRhta{HT}q%pP*Ug< zXG4DxQGo{Fx(J$bQ9faf z6S9f>Wl?H0>zU|r#W)O=3HlaQ8eUR6(?`OQ$63N$z0y0xmLSr(ly{VC5j$|(Cts46 zbUwk$vVPoEu>Y0eYN_dAE|l#JjeCWEDpg9I*!98K%MH;c^zV1vO3J&G!v4XSM)ufr z$N*4y)(unDKgNm|E50dQpziyMBA#7VDvP?N+F=XGnU5XpLzDnEDk>K#&)*M z-sa&+vF#{9WQ;A%YqYkn>v5LC*B)ITW7Zx?WuPSwn*~1x)z_@@yT_+`KYugeOx@gE z&72$9%Wvdz5)fs05)QyWxgR$&0s?@ATC;~4)knOw+q|_~LCS!&`_+Ec#~D?Zt-d(+ zzpR~=hcO+IG_sjE4PP=zTi)0;lDQ;LW!-qGDNW8;Z%c>oI2;!&gh~nL5Yhw4O@rUJ z@lNzu>)+v!4yVn9D*EE0gm=5;z?*|OP~tDMZZnr8d!GF~ zsPvv}854L}?~(rNsQyUm{U%2w;%USxV82$kei1yi)dFXq+5uZ-fr1_Z>9jYaeAnRo zyf*Gz0J0U6ngLQ0WSn7(7@_p&nagkvIVog2-ki$ndVbfIX0Z(!D+Qv`FLSUyD9gS( z!wbW*tQ@a5s>?^y6!%}|-Ii;0%=g3XugR5^H{>K?gf^8E%LdCiSoHE9Tuqslm^Ha< z6WC4IJVKI5k+tfLj6}NWfz)Rl{d<>WHH&}9Ib}K@8|x7EJi`4p6(WXNyZCtU<=w?E zkmA~ds#jEmBlj)Fg!Sfi7*TEg*Ht`rO^L+B9VK)w88pX!o}Ig+c#bb@}e?b|XcG zp2n(k18j_Tn^c9B<6M%AeOHcq{7`k|JSgMuL9Bra+qSoh-G~p(c+Vkk{tD4VmRI`| zjO=;yFS~OKZ)w(ii&J&?V+0G2BE8r}fe}@#ckk=wV5GJ4{kLLIa~ei1q>q<#^R6#$ zR0Hm%v6uFxlsY15@mHF1Yt*>RnGr*>Ek0EwW8Dvb8susW7KkK{9^t_v-bjHA|C+I= z{I0S{P&1{#XQ^QkBuf1DMF%vJP==^-phGJ#iLjQ}nONZET9E>dw}wTbxyb>ShFBRl z0h_mc@;4rAqw)%_aC({-;>kGD0j3N%y`a-`&^lVma}yVyR}q{QwX>cRT3OsNbSFZZ z8_qQ23&<_sgf?a73;D0kwh#=|1UeG;;(NJ-Br_gs$JKi`-_367>h0@?Fw&>})HF|L zemUpot|AZ;H}Xi?hrIMLqUxB*k*IiR>V@>DbZ(uh7JWyVXr$B!@`7=Jt$4P#4ek!)j=CP)Mk=LB>;R z715`B{&)CM*R-F+t~fQbT7t#9=8#`b?ko{E(=tI)m0k@0mH2*#0pHJ{LKk}kHwhtG z{yozCE9;_f3mqjrnldVPZ+!U(h%qtAE5C7H2u=-b++eex#^3e{?Rob^d5e0KhDZ&` ztZlG*Le4gK6UUeLFC6|t&VMG6%wLxu#fikvx;+>bv<_~SlQ7mfTdmd7F3<3{YP54~ zfFvM>ukPS!Zy&ja%~Lv&k?9l*3|iyJ^WC~KE|GvY(zUg_SoXK6?M&AB-Bw&IA=w1+ zefweUxI@{;(*N(M`lnU8T`YKnu0Ec4UVbq8`vJ~xn}%{jHsFu!Z4%`z_S3o8Q@_!P zo}bn{p)d9{kA>%U?P3nHXANzVCEME|qIaF^b}}jhjbo|pgTt zWs9wy_gu4*NV(i4R=tYEqm4agU8y76P7!jKC@vo65^sy->#e!mU%q))16@99ZQqc} zLv6z~{6&Eyvx(s6Q4w3gVhweb3SdrVeLC}t5zy ze*DvXG=wwPf@&JFxVb!*m=!=uj#Vp~K_joRNlQ0~vU%K@B50^_5pJFJb>7V@iAX3< zpYdCMSn=A?7*WfMR%*DKHpw?~;|I*LIo@Ls{8}EZGbAffX$|RQ1o(4ZUl}@FxtM9s z!0IZpykVD;H`e#ZQT<^n$azuy5`&vM+^Sfme=J4AnTdk&^@jb+4_>4_UEd#}h3Pb> zPYX^$u;?omV$Dom%FDORx_CL(kIz0b`Cp$GRYXgQt9>J2H3;G<6hf~fGfeB@jVUVS zM5d;tg=h^TTm|Uj-;V|zoTGxL|-HsArds{ z`_AokBo~)l?dIvb+paKqUM&ke?p~Nj}-Nly}F+GrDFV*P1}*>mE^Sk-#q^fmq8omvkvqB(?+>`wAyqr@fG3OIX+!L{RHCUEF@h8j(%> z9L)GezRZ~+NrQ(+asT5%JccXOzZ~ohUxkoVdXU+y!S#_^c_^e z*;xkU?OZb#NW)sF{Rvxn<98FkihP(_N?Jj(}es+ zh=%aZ1@@SoLDKD=hH_1V^!tay1pWn5?_4OP=s|GM)M)JE^X(yvI$W8}&_B84rJLAa zQ0i%Yn^QKJ@VJn0uKIi+_ULN#RMpwJ5aZ=&HE=R9+TDdndv%#2{PgG7ksw+g95QH@ zZRgnRUdOALX<(hL)WxMuK01-oU9=9#vNzs_Pb;sw`#e$MPNQzY zZ^uBoqHbSyK!2`I&?u?9wvNDJnkREyJ_LZYTQa*{U|zCYyfF*dcWL1*;>Ey7mORm` zcAi(r8squIkFHapn`_8uYK@Z9A?7l*81Bp);@n=N>GoyL-nCVNeRxT!PAZUeg?P_X z2FCQ|y+d@_9Rsv5j%*m8lr==t2n=KO+&xqH@#A~7ylE=oE;axv?WvFoyb#vCX&jUdctX6PL_cR%# z8l zZX{??IITP$dYGmBx3|1n^h)YeQUVIaQtn@iXayrZHMs`9Q6kgCB(_DKQ2bYH>^iRy zB|B#a@-c>mXvU5)7D-zL0Kz1ftIv3`?-Lil<>u|AAXx6wo>aUSs=rtOuFAwu#>~V# zzcyj*6Df-?xwj*PUH{9 zeH28+;_P{OT+UX{p6#FLY{NL>MAH|3MbL!m~ zBsaR4e$}yaCsF@AAH%(+6TRJo9C#jS4(3xRtJNE%&D+MzS}MD(Pc9U0 zLS$5t@l;vEeoY--OSJYR?fi>FrMZE>YYxArfuW(lGcbBAl){|N*VBxD%L3$bG&qpQt`e@UX4XD?ae*!x_d60s#x=cw_{fG& zd};LH1h(mwjA47fLovo{tG@tkA^aW@?435B6?QHjAt9dmmSC8mN-Ks#{^rjtTS3cY zu@I>9B3{CJqoK95{zpBiv@VXa_Xq>wXb#nkfMv7cBrI6jqvTCpYSSG?6W7PjxRI|? zD*xp&FCZ`Oqs}DO417tI?lZ?@*dATlN=HCGZ#xha1q+I0%-DIMPdunStY6HV%t7=! zwVM}g)7*W&>9|Z~jT7r!?wi6NgAm+K4Eut-iHLYj`Jh*Gl?ZAhX>+Nke%5K~W9!8k zx}d}H$|oLG2z(Yku*CN(3Q1neNZ?*Rx!pf>wTN7VcS}Z8EqAEzcJ=W3pNWakpuvBo zg3}Cad#~^?^;eXZ@BHi3oh}<(z%D#tOM{r{ZZB)&4&YLPAiECB!O_N()url)9fk7 z`KXke9^xq>)*;6f$uTB}79z8f|D3?iYRu5X{qB?k&l4uI`bmvvfHbRxIgCU3EF_g< z%=EZBw5~#}4w0Q5u`FMXG`kr@LSE9vM9kYQ2Yl{^#du%O1)|>5_?RVdgvoTRPhOGO zeGr;nz9Xw#93lKr^MTCqLm9xa47CUJNaETfhlKz{USmvA;w0b?>;LMJNC)nOE(n!E zXqjJyDd&}GU;ac&%*?0MnERp_?eRl!o2fNO5qj1O6^r0wTU@m}qx-r@SZz)g+<;_m z4Q+uooy`S(3U-AB(&+P(tFh20rR_Hb*1Lk5qsUgSWvpLzK19oeFUofzQ{zD`YfW8C z(u+l|fYy^jTTf$?rx41K$*wn$ER`q->rukM>O)S3XiS(hd#4mtC&M`0KmNC0j1M*4 z?Qf8w$g4=G9vp~{tsX|pi(G~6Rp^PNvj{%@GC*wzXB&6K_`IhKB!gCjiu%h1XZw>R zQPU4jDU~#AH{?TCc{jdWV*cEc9rU3q{Ut;-s6{W2wg+R2N2;2W3gUZ4t>0v@%&<_iY~6`a1n~ zb5T7j`|Vw56O{szPN|$ezp7bTvimKq|BKSCQ3N~3MrH4vGS!<+Df1UOl@fzl^Sc+|#I<7m{$*(f(2W`{ljBuYqZ|P`(S9d6Rw6G8@-e8CN-ET{*I$8{fm5 zlb6(gnIq{DfuTm-XHmk$wEhZU0tp>SF`+R1$#s~1P87cBTW>M9|zqs^0U`+_gr z5JP;mhsYeavwX0tYh|5C&R}tD+Pb(Wx|L@&^JJTn?4Y?Wpj&YX{w;0+e}Uu0(QYE) zciCKnA#PN4!+wDgl>-QaM9`Qb&o|}!~We^ zo2Q+pP>%=-JN%SsROu5T{hiJ2kixKcVe(Ncl~&*dDUr)gmv=^=$XzQ zC{+4($lBfr!JD*O$B|i@#KtQ15;$L54&r2eV@gDUmmJfKDoQ|wYccohoEUe zES;RVlS+&IoSHbHnUv%s^rCyJ0X|AyjR5xC-j3S9M%9;z>VS(NL4-#(S&lTFe01;0EToCXEJxL1RB(!SkrkopQB-ex6}Y- z?8Ke&M96G0#5$1HUg8GdMQ>g2A{{4mk<@$nNNHb1l9mZ9vrNB9OtROJBxIMfUTX}3 z?FXO+k!H=4S+4$0Bco$@{BoJ>Ibd<)(9C+QO~8GP{7ywX(LzrByeUPQ6Jyp5EQQ2A zZvcqn=5G~C*sBT2Yo`nUg!74!OO5uMwF(vWnY}?-K7TD*7}b_aWgU2=^0-MZ`lAQ> z3#3sE_&?E2`H(Qc1+O*^T?ij>BbDTlhDC`chT+KJiDGB=aH1bR#P#6Gu*V>(;_V{F%_m%$5(bmx;wxjg1xT5~0J?c;*j=wS#><$S) zFECG0HA!)=e>x_W;Z*45oT;1~3Kn$&GkzF44N7>QnJj6nNRX~Ap3;fV9ZP6X)~Myf zFo;IF9gr23Xj`F|7tJ_+e&)j+U}06Wz5$z$DF-TtX4DEuexId|#BppWhh+_)G|H0Z z8bX{qw!W#?df8aPb~-qtsV~cL(b(u|ex=yX2 zRObro+P3xW21^%l%NwUoGYTeL=6+D%q438No819Z4IjBb0aTRpb~rW077hyk;5Dt^ zGX-(kbTPqneV@vhx5ANKsNHRCm{A5TCrfN&&JSU@QRGcdv3Au=VBP>3FQ$b*6&7Vc z>Dl*4?bbX@7UN~y8c)lCWZF!^9$j(nRG88XCjztHm+jDe%6SQF3~hKTTi4-Oy+Wt z@Q?|%$>i3I2P8AT`!bbf@`i78nb%K@l|)se<8MNLZhW0|_N3|uRDV2EOKa>Tus2Td zhP|3+Zhu~8TY-*jF&zHMi=3w{=s`8R?!%D%jkxOP5k$!MO1O=4{f}wV9^c&vK5OT} z2_i@i0mDU+z|O`M$>{^8>dUk2V*K40zQ5I4k<+08=e~rIre3AU->SQWD1>3pf4{Ds z)2+pPwfx_jwHLuw%k5tKAxOV+2Yu*!bm+S3NrG^VXBpsBu+u)jE;FjOepiqFM`>QG z?gN^#64e8TrPEREWY$z(Sg45vb17gIX-lEM`;Tuh6O$%*iS<$tao;5;nV+{JYEaqy zMhu#t;AR2_+00w&E1F2NWS-u4h?yT-Ou^y$4IN($uXrtrux{GZ>-YPDYZ&3HTA%p# zH=m~JXp<5*kvM7CjW_%7l+s#?oO}C_Ve%u^1b{vwYQ|1y8=-M}JBzozQ;j|Dgx)-x zgDu14hL|E7KO@khv;Ka5!_t%4oXR3*47R848%-LztrS;O7!_i(xERE``{B0QAVx}GWd)pE(w9*%e-|C+# z9jHn(%TH=zuCGKxYWWG+%qDMHoWC&L)PTDtzkSk-hI=&E08;mU+{%0BCF=KFWhYDV z*sX{g6A7&TZS*{|QDMMPG>d}-3rV&kmCRcpqS(rM5sshc2NAd2xiy_OHE z8H~+MtRSovbIEFcQ&!1!@$yC6ym`3F&#Rgqaz*KE#1z2%-F6^nqgB_A+m7x!t^63O z&-v*10f7r5-%I4%Vh?WpHTQXHUz!446|18#eLH0G$CH6A(s4Ft8>iqhg)dr{JScDf zQq~l)6d}8IaBqF+w*@N-nHas*=a)5k(=gG35}pfsKxk%DF?(Qaxm3i(0%FF+YLT9*PhcFfj z;a~f)M=p@xGS*Ez(%B42EEd@x02KDPBBJ86->^u`jmyw9zwgW?k_nlcqg8iDl?C(n zFPX!8%mgO6u3w<*Gr@9C`${4d24BxR8Tb~61@M&ez@d6M z;S(2xdlALra1kC}qX51(>6jK{9J)tUv<`hf*E#0HGklj#9TI{>zsp zV|B*LYQ0YA;+=VvnVUC&s6Zv}>N^{P5qOwHZpjgb0ow`k=!&gYtd~=Hz-#i+f>^H= zD$$=z_UO6rzwdoSWQpjOe+$vdD{!NBCTyjm-UGbl$gOIRTr&Iu|dmvG0h{0l{{PLMm&s$UJiL!^1Wbz~C zs=jFUT5>x3ffKR>oWg@(DTU{!a1l6xfbZGVyqQM|{^@8n&7w<4i|2e7wVo$ugZSG+g#|HI0Vb;C*7 zHq(bplg>f_R!_i)If-`syj^*t2cNJLE$zE``SocZC7b%ZEX56?4LJe+C*N_W^QbEF zY)CGE97p3rFTpu%-<_e$WU?0*fhSo??xkmX&YTSbqRYQ97J^~!(%`&Z$LocwY>qIQYiiO9Nrzb(I+F#sNQ6bI!*gD@SgmeK~8>_ zLV3JLCrKLH2WQ7Z^MW{r$g_skYTe(~2cE#hh%B_-NIW6w0;>=#7&76tjQ+12j%#Wj z=mea;m_#~^H!>wPi4=z(DA&oFqp1^ZRw}IJ0A7)K%X#P~n7>9=x0s_oeh5jmH3->b7=j(*8 zoUTBXL$Dt&*}2n6$9Aj=#yqEHv;5$S$$~q--@1f~+G-X8n&W1+T)xD9t!W0R=dld{ zMkN#5Y%*HtMV9zQlb|rRelm-KN|z#ewXD6<`TTH&&jdHT!v&Hi1Adw%h+OY<&O9ex z^%_dC$J)e+cto7M@DfnLxt5_wXWk0soXzdhpZtj_y}LDg9eSJGo2N*JrYwcjB0lmy zpbspG6mRwEBE!U~;&C;VH_X!mo&DJQPdl4s>#e`(*Q()VwPh&gE)lzwitPOH3raAw z<@S)olin1f(6#8KmD?xu0J4=hp^O;6T^~w~v;(W7_7lxd2Jxdi$n`qKg!~Zz*Z=!9 z?Ofu8A9+jg5Cwh3MA*y)F*~xQxKxL+Ye|w>AtaF%QKM80RiKI6d^;N5shU35xsp1i zj0v7$TgGZg##6zU`BP3bWWBPASIAAas$gpfkyH0aGry%3BVR7KhH!8?&{pc+@nPy7 z1F}Wr+B!~T`CW7B3dgSVb%#Bs0T8{mSD-YzqwouHvmM1XujWM`G7SO{5j;~F@ozb0 z{v*I%y^f^B%@19j0fQtE4i!}tvaCliRo4#BO>9{9i^!>Se8}=y{RHKBX94ukI@P;g z)*XF|rBmV~GXPWEYYIoGb=J7H+Jv>~@Kx-f1^vCrcDyEAb$5*y2s%E0}^Dan>mbcpkf-wfdXkrqRzA@)MJr(w|uVOxNss@MZ-!*|uV&h0X zDgu-LruO;n<#E#R(Ku(|7fmJq4f4OP^R_#~tzVyut{U~>o=#AgM*Na?gsvn3g$jvv zd3aqX^-B6p8zw$;dcOFG22y;#%vv%3IVdI!hiHr*z7pIs(>A|MR!FtSUTW6)o=CeN z`_ZG$Z<$IZsvhn@AnhIP#@l$DqypCHX*{iD4tJN=kbRP9loGB)oO0xBYBQT`XPg`q z3&j$6raIU_9B73a`rcPIa2>(6lRM_x3!BnR@<=V~4$Go%VCZhJ zwB;HtlB;y?Mo`rLtjkRLNIb8Lp@LWYj>r4RIz%X4p`o8mbrmf3R^2?2ne17@t%f@{ zeo?Cvx%Vpy3SU^NWK*RpY-WGT!teRwIP)XDv z6Ov#Lim0dn;)Rx}eAmCOS+vTxS(y5!_55^BzqggbPJKtQ!Cy?Gi`t1EwH@u7!v|D} zv!gG#|8M$)2-WbTz{>~R$y{1|U~ysolhU8<-OaecU$EFcf$yV1NgUPop1J)*YAelY zm3`~~ol%&Sq9gZf&;BZTcS9U){^x`NNuEFMSB_3k-R2EE&o9NEFNJT`L%!bJ_G}~; zJPa0W|9EVAmie(}<=_zaw|!5f{n)|DSL^g|uOSSzjYiijA*@cicaFI21*ym@$qZs8 z>F^QV=l521~ZR zn__;y=@B({4pqh`^N_x1+UGCr*K;~I2Q+qDuI+?XzwnmaFi4=FkHpDeBH0Y%1R|oA z_O9ovK~m}h+$dk|VVKL1Wk7h@5Hzu6Y$1*jN|Hccb>5Ysr|+a%>mGI`6E8FNpIR8z z-$gz6_jY`LE%{yONH_Xix_9P6fy5W0yb<5K8H7t1DzmL%*L`bXvKgr{VUcvC#!j+8 zyt{E}(BhBhR&@wuXm8{-;`v-t?en^n?1?U=FFzFvTuUT93VNKs#Qx&&`9i!OqAZPl z5DsEs)!%~tt-QkF)d92L(sEogZf_5-+6M+3w2E|!M6QU(URsK0_Ey`FIWDAvR$M~v zKQHMWVIwj1ClQJP^wAgD)tpA(tqFL7b&B|}26ITP2xD?}8Iu)oOj0NEz!Urji{YdF z7n)L+J)gz0kB2t-XpM(f`8~dnso4ZJIu<+n6w8QxrfHBy+=dMRy$Zr$T8aMWrg_Sp zru?-{Tf3o{rK0=4*;^kRJ<5c=-Tv$N6!S2iJz8N2n75X8{$0{j-EHs<-i}~ge=wiFF{x+{{)x}$#8X8f7Qm87f!2LV}xK}fEb zNi7?T0oepijao^)jy7=I1!DZe5zC5+Bp6wz@xw*9#HwbJ1u+P!<`vs|S)-{$pui`> zKozTwQZ|7zh7b9T7zg&|^Olv1ih z0Wy{PSgrz0>1i(v>x6_e zr*Px_!Yu$BRg`5?{jf#)&|FvNJ_0rC_IE+rNQBqF62e+6T1+Pyvxyc9jY`yR8)N{X zVP0tN!gqKfD?bFjN|x%V0k$U1ZM^XO|IWbM5?u{eQh5HKsE7$)P3^#kx?G+M1dX<< zE$U^)pO^Q?_Qzj>Sfx_xWRYMF?1$M$PBT^5iHLj2&_NiE8YCMF5P!I0)X_NNWs#;- z76PcC*zoE4aoF$7G{-DX*q4S-Iyf$<$1Z{A=Fb(z-rus^++pzfAnD3aHwqd2WYqxf zlwj^L`r($e_R-`Od-$vQA%L1Yd$bHRUdMtEq&4qRlig@~P(Av=T}8>q|GtHl?MS(0 zG4EnOi8-Oba9!7T=%bxQyBv@E`%1o*ihfzP?_kKH5Z1S-u%FDjv%fNUUqw(|n*fPA zFqs5dtzkw1J~6jNL4;9`2Sz^*XLkyoOBvw;uCxQv{%I;V{)KthI@}NYR2w~C8SSd+T3Xm|9;jY>9o6<{=HzTK_-``k=<1r9nT3Gn z0t3&LtIE|&#g0gm+_R&;z$c}J3HIZJTKA+FMP`|D4R-SiTeo@FESWAT4O&s3+O#Nl zgQ4%B!c^%YktfaTxc03X`=(qO{!L>!-|M2#Q=e@tU-*P7@)r;KjKp9kZf_Ub93&Nq zAKL*U@?$DV?PPV}<-q0N-h7I@@(Hq4!JV{=a*pnN@(KY8Iuhv+pnm)D+>N115w2nxm>`CCWo2Z825u&(_Jcg!JS zUm0E#(KTGbP#d$^kWSC6(|U5Cj$lI-3pwMu?@w-^<)m@7=~g)B^ncsxV;M^B(xL;; zE0n&WYQcp}Jg7xp&8t~l=Vo#mNRDzi3{ox%xlwEV{sXY6v(3=TY8OB;-05RTCS|P< zD2)5*i_y#D;7RvQ;mMh7he?oDFs0hZ@dOf`vEP0ql3hYP1+sS^1a(fLeJ*Ozqh;f$~Ep*?Hk)<-z%rG zZvT|Mc)oF9SfupvyHSr}BxuQ;7t&xB3~}o4l;@bfW0O_{zroALQ(ppPufr@si1N-; zkJkGkg0<&PEBTade42GlWI*DK{Ro&3G13AVmJYzma@^to;H;PUcyvn3ui2xSh?wnW zh5L8yUCW&NPcTG0WZBHL_Z7Bi>6CEDj56ge!hz)I_1?yrD>#7%l(^Bp)LTG!@X-e>Tpc3<1?$XpzCM4lX`WwFy z3y~qZB$v`5w{?kOfSN(mGU;IBY3ZUE0DW8&?y%h2)?Rb-+kxCk~U zu#dDr%0jG6SBbsN$b$}*f2+p#J2sPKu*{4vmf~Cm%M4^;7vZtA^2-C69^qwR?|}}#HS69XFJ$4`$yKTURLsOB1Rt^2B-7AG zy>|mZmA_xLLSa_hlN7!q4@3;HbpnbmKLe%#H|$#5W57bE34IeA+V?G;dx5-l`AE59 z+kK8%uu?GOu~w0_+^vyYGG$}6k=YOrSB8m(p=9r-{V<6)zh!Z+p8u7wPsxxFg}#{+ zB#{m5-M!V|=|#ky#A3F$kMrl+)af=7k4SXxGxI*1#Zt z8(Q{}t#zYiFW-0e>(zuL=J`)}%rn# zZU|SfyZJntx3kA1+53U)>6%*Na?ajPHe6O=!VQPoT2}VOJ7l52ZokNrF9%Fo! zKS^X^j8?qeV2&;aBSv@bXJOH4D zZXg&xnXxLgp31sw=zkH;1|0D&xyFYmLXusUZ>I*pw*wGVV-i~6Il*RN0?1xWj->x( ziv!Tkuew)85%xCpQ}{C`3)4b3b58V2PH$#hgCBW@e%+CZ1Vszh>zFp$#$e=-*70V# zm^dkU;*d2ryKB8HK@&9jriuOVb%|U8Yhr|@nu(Oy{GN}d_7nk%kSq;y5(OmI0EioD z+J&fJxj zt!%Q&_+CD@+wb>hf0Uf_8rSnN?iUuJPuu7h*QCp}UwE&p3m-QMn{Xf0UOEJU8OS$Q zH=f?o83ZZprSC~Zj=||dyqfd6JK8{+-MvUT*0Nt7|0M$asK0vt7K3JP^A33;OJLvU z)Q_%+`~D>>U_UtdB~0bvNaSn%t)I)s^PP|~mVxmY56Oux{-=FE?}G`hUj`Q@S0QqD zrj4e^%(pXf{o^>YybtEkC%(g<-(PHl8<e2;vwu!Iq=@Pfiph>x%xk3j8(qs%QAsw*ni*G@Ho_0<0wyH#8sF%7jrooQ^bC;)S z&G^kRj3$F0B$JpxJuPBGtM&}w11kQVc4#DeP&gyu0CQ4J^~p~sD(H$7Bky{~V}v7| zKfbPfQSR~EBIdcl1`&%yK&4)}gQWki(+$+^WTvn_srANJN~qLfSrb?m4p|~Q{e_{6 zQ0l9oXMq`XQeKg!|kJi%*oA*en&n`WH9Bq=x*}be3q+_uD#eee}m)@|fg9Qo=ryJ~K z844yn+vhdY>5I<-!U@{2w!%UXa@vzGuw-ioNlj<(%fk%$PWuTB&X_wJAJs3LV66BT zNToI?GUE2iykD!9ncftEe9JurrftIqrj%4$&o!^=EN869a^qJAahk#G=z>x z==+ls$a*S2HydE=1RD}-DG*Wy9@fqswKIfC_05vDr2I++>BFaaIIl?L7JDsMDQmCy zzY4{gjQPHTk!9VX-_3-OTa4ktVqE=+4=>7N2)mMM6EY{!xwon!B|GlGBZ01ATq4PQ z*1h5>LE-Jr2g(GFpcfmGsK>&Fj&`i)bDM+xiw1MPP&NL4%GVVMVa;#*^0FxBZ;|HV zqo)K$Qx6+YGa5Su{SE}_ywCJ^Jjvle`M>f@z-N!CsacsSown*%zH4s2Au@T*B6Fw8 zzMJj7xYDOBQqkhJKIPqz8px1TaP0)sNjtXYJCMtyF=Bbe+6akLVma7qtdl3CBV7}j*Ro*|^ zgc3ap9ZrldGX5p8!+ISglm(sa+FZwL9T*kV7C(~C*$haWKU%2uXGH1^8fS2&K^xGY z8Wf3jMeleF`RXo{P6hm#mR-ur(T*)hSw{)Sfc^~j157~kDK!s( zHvvxTq#FH@Ybyn#>8l51cy^M+rUmuQdQYw1b8d&#d@QG4d`5U*t@Dv#av8S^;~8r~ zoM50_o{6ayc5H=+!^EZthAMIw(wRJOJ=2kyKgJMj$L%DK=@KQp1J-D4{TzBw<448 zPMbdGSBv_sKH;*j`tS|N2(T=kKoWWGaGhQqwq>FPl zah%Vo;EwJ>`{k5E{TBg~viHvY@@d03n6zS(^OkddVG5=6%DY{+V&mBkVrIR=cf6Me zO6uGiGp}T{qXMz>9`5@JM9Hv(18XL%U#8!9JqTSc>leDXe1C{T`31kUStF;$0~hTA zaU4FmkQ2YJ=44q#aIlsO$nS)_SWrcqL?;Q46>$zUFOTJ)48AB@#{DgqR%^bgf>l-G&R_!))2Vs&{e|M>|@vOr6pL zvdxn}YaBrS_s8p|?r)|#lK9$WXH7DL=uwhjz8nxQj@qvuW;WYKj|oi@d|3)34_~AY ztr>k2YmPd7phaa3e2j0!PBqC(R+UXUy%(7cBUlWRra4c4%rNqq78X&Il!QwSk|YGz zqlVHv!T*J-WI#a&{BIU7M!@*6s7YhfoFZ-!Y8y4Lzh97`M7^zrg!E7#QVx!p5SpkE zaQM~h%`ca0RYZ}#KK(mA041-LF5joZn*OMmfzX1`H<}Kj&gPZkjM2uWubn@{Ex`m8 zVICp=c+Mo>#IdW>-bRHaQ zmRviNFP)juPfkug>9G`RWsG_3w7W-lK1jE6*tb=A2rDKN?rXL9FT710!};fLomVlJ5oR0Znu z$CW@`_utR#@M!9W-||b>)ORs|Fsb*d6oJ5dxqyp9{T&6!(xlxdl4Ca4HAPvKs}nwI zhD27kh$$qpjA;@O@dV@O`(e|)Nf=hJNRZIrn7+`v(1u=xI?f-Q8OHSgQ(|B=^Ks~*w>|tTr)Du$!tyliY z)1NC3&R(f5Z z+j0Sd*>?NAjVIP;tP9Omyh)jT=OOG6cE`LJ^%8GI z`POcHhF0IowlUrJ0iuw^06E5-wm>HC1L?(QeJZj<#_W?+HMg;_tmBPrsUXddzM)Uj zmYbng-PZb8xhX;_xT-*22);C;FCtD9B7~0Yyl<#I-i-vmM*suPo@~hNalvcF%!2js zz*km3ogN(qJQXMmOQaDr@tSvNVC1(j&U{~#8#-c6n9odaY?Z6PA~!F^6OK^jCaJzn zyA@{SEap%X$;@H*M}Lu@^uu)p`cSE#dU-}Kx~Z4>(-cavavEk^u}qZv$ZJf?Ly_Hf zhxd+TI32M)^gBN=X1~?!eqVy!8_>3A5uJ&0D%o-HuciyVIiBQ&R5eNl0Iazd+(lb zHShdI)o5aT>E381&N42@SvC=4IjJJ+tYi;@8dRI0@aILRyOdo;wN@Phsx{jb)s!TU z&iC0gSokF(851&A0wWNyf~Nbv48Hb_DHSM>qJ3-w{yFla)8TexcqxyAL^@`c zrQq$esBeb)7^{ZqHyng$_A_7@(`)q2^7|8WK{#TQ1c%CKi^|TSp%P+#UpCD7y`}cO z$1xdz26Z{R7-{^gS^sZl$HLxzr{6or@2LM`B4?t?yNZ0TC`0srtvfR8$G)DlQz~$} zd3v=1kkeGqY*|L#`H>}Agx+hV3EG}7E=lsrre#KuvzfY?;-$&)N&VI9H-(S`gX4rF zH*eHpV96GxmuU*Zzjro~TltFssdk)J(Ku4`fpRZ7c#{e~o3dF4-x#48>tOQz$?U*- zFIwnpGGEPLR)tDMjeThV5|-&XPr(m`;^&Nix6Is%2%QeSrA?q?c!B&Tt{#=JK1Q}J z0Fv@LiAuxn>?*5$Tn@ysUzV{dZt)atkE=bqUb1uK6cD=cO0|Y993AILE13W>)&k~7 z_K;OeGmq~gx_x&VMeIP2!%sIm`p(SEOF<1oke!8B2!F&Gl0$I0z{Mq4$0wuwwzx|j z8P}%E@A|St;{I%U4Q{6Fx_cM17jcY&ms-7$@pmJY-q!X&lFW z@yA<;7=2&^Umh$J)6(>Re0+tMf5J`ZbF)wAVcLOgMFbs_-ZULwYEb)}%Z=W@~2K}OeY{gR;^_p^ndhtJZ5A9_{xMA^Yh+R|^)$<+^% z$qc@UyD`28G!+##!<&^2{fZf%MWz zZ9WDZ6v*VBPdG(iCNi$tbE{3F0~=VPxl*Yg5*3@VY24{exyYDFlos|c62s`6K3X_i z6iHDO0)vR3l3jS|ntqKIudrS}@XsY#<~yn3xWJtFAj@lvohGfDZ;zp@x)74%u_ndg z0~FurjT!!w9tLzS1oxT@GRT|s?I@2^xqsZ>^64X}|5n~zn%&)m#j495LsR7Jgp&1R z#tpI6pca>h@f>%CTVb6*{|gCNQ^iR7?f@Z&PickP{P;3$#+d^d*uOf*@hZ1V6$eS~ zzZNHY^lK_owmrsu-y#Myj_R_jdKh1Xba-+!wUpi~rP{%)gMC>NK1btzvB8=G<@Lsk!_Uu#`Nhr_@aeoaZ_=Gy zv-g^s+V!E+A8VYq{XRW>aFB7+sqRT^jd2f7hNO#zMdgl>#nLygvEub&bm8Yits*Um zaW2Bm)~CX&uPxs^Frc0W$e4&NESBFMP>_O~yG82Dr(7Y(r>^%(@yZyCL2?Cx^>;py zyvow)GqPMCVx`!O)_dr6*ItOH9U@ous|Or8Gw-!YLf?v{C}5Nm-0@pB!O;jV{T_mN zmv~hl=}AI%RX<_!{%w2cmB$9DysG6dI4gLc++POB@;m z4z;%&dYV)*X;zV>YAY5h@UhJnnl~l_c>7& zd9sMFvQG$DV6KG>znC#mxlSKF2T@M_bTgLetmhm5qwzKWRt@YlE$yUvKabu=#Nvym zrSyOVfGixOM%YrR=G@<8Z_H5g89w>e_-k9*ccqg0Y;5ff*hOEb2R~TZK$P&u&%@KJ zdLYK<^=rv*$7oCU73L0hHD|8f@T^sM zz}|fub8(z>^<5nCdsd>}0J*^zaztT$KMVN|Df%$x^^&B#%^rLnM(TV(fCjo1*2Lq1 zY8v`j5%?-RfTxh-c5Q1|=HkDW8IeOqp4?;vzcvXZxe3dwRrr7P-Y}S?y62LGtHGc| ztS(JhXR1L#u!!-JgG^0)RmbhthfEtXt)kVmTP=FIB{!6}Ebb)y!%r$2zm*l%-_}3~ zg^;vULYRKG4NG2dQ2lAA<=RoYd%v#&akmlRclgo;C!jo6r7KO0S}S?OqC%c7UOW7e zSJ=U@iFZX_*X0WW3u61US{!`)ffy{7#jyq8If6&bD*tgA*F~eN=KZ4x^8}LX+h6g5 zBn2`?bhhUmd_|hxCzStg(W?2pfq7Fh3BSxuS+i&bWB5;6)OBb&?$^oI3XLLFdc#b1 zJ-vSPf(*zU*5MDA&mWyKtsYWE`Q)zIfu%5AQO+%8iW+)MePbWaXAcVb92l5=rQq$n z>I%|J1ZiBt#k5RLirWv?cr<8YkSU8Q>w<^y+?z{Y!Ku45X)*boc7H4Y#6tU6edU+# zP3E$b(``LAKF6E1Lh9zu^9vaC(hAU5guKq^#zVJK_3_R}tzg!Ita6c4C}_2e2Q3}| zZ~eRC6|$yM;nNiF0+XY5Hk((I-)|~c$~|!fY-1t}RnnT6Y4qXJSffZP z__4*+7n%__PfnI%oOc?I_bbK!Rgz$18hGzXkB*ImXh27&R7#U zJevGgQPOc=wJK`7@_S}w-^;luHIJfi{aFP_4&!mBVZznRQMI6cMS>2Ux00;+_E)*1bT)D8JIBLJA({A~kM33J zYjAP}u9c2$&*(rao)meR(Z>%&;5Oag*uQ79+_`~0CF#EnA=Y>d^X~UXVHq_>HlIf9 zUY0zpMh(%{*4GObh#sltCrSkraS*)#$2qwyw}iKlJpA_9N0GgnFCrFho2vZiaXY`w zN_e>j^T1nvrkkk`nZl;+XJRKG&%d!6#_(AXC)JZ43mTnu3=rG5X8&j({W|@%r}3;>b8Yt0Y0Plt#x8Kt{#vHFOZYwNS*#9EX6CPw>p~Mx^0PQ^FjGoD zQW`>5>LG*y=i@AW&_oH`f{D#-`gijSJI0Awm;w%GMzxXpHpZ zo+PWp#*$*ODTVPC6fZr)DCZVUt?PNwxf-3%z@d>4WB7Y-bM>tdX_$;7gHtrQ!YxyA z_?#i||6y|b+kb`Eg(cy25?x#0h6oKECSePb8!hsfcSs5uwe8`pAF;ImQ#0b)v4QRO zIl0!k7MY0>4S|HRCvglydU^2&kE9^89K$HP$6Z0YRfUIj?9SjjMa?F%l7*HWdfqj2 z2if}+f(Lyb|H8vO4TR4LhH4}Vs4W%R+uVDrQi{yOriUjmm(tMi(qzS$|$0a7i{Yv z%a8_PA5wUb_HtTt3RA;bG@$x6*xV@YnAZ&|$#3a*k{UP)#8MH&2bgebJzdWy>$k_X zN=Dutv-1Qj)fVC0MH6;=WuJi?`=8?jOyhY)|NG%ZlaI`GWoa+GrjG$f^+lb1Z`!%v zak(R|pY599!-qnSix}B!4Zp|!9vWV{&K{Pz?d@F5G%j5|xkPt7@EiB28=LbLQmkMD z=&_rhpn`(J*`Mc^{MU4Kb*CNM@6~VU?<|J+u7}ik9LupsUmrMBqjsVF_tQ zO7%0Lr|9xphB|CrpOD)4HaLrbWc8OX=iewhB+1qUgX>p%Zoq_Ako}fp?%PY0z)_8D zek2{!W7j;K_&{Rxrp3`&P<)$UW?Et99<=aHxQUmVSnLne+zF3Mli{cb=rmR>_Sdlv zo~Wjma|=3N!3+vLNiHO2o|V_s)Px#TmSrVBxSai33F3jd2b_Kc7ESTgGTvaz^I?*q z#BHR}YWwY$-EwlrJP}i{eh;Nsn(!FvS@W%IAOb({@Swl+`?#!ZGoG~2->v_M^ffvt z*;&?b0B$jm6ZF{CwyCcP&d(4=5|(VnYt#DAs)WX#M2I(q5p!WR0|e&SG`a*qbx6He zquz5Yl1w7gJK{UKykDC(9W^n^Ned98O`Jv4`yIVGV-THzaxHP5(H5P5GkLIzSkZ;w zW3f{wD7K(GOca0$b4BvB#FzEAO|clm7OIYokW95p$WX2i{(SD7B-6 zu@iPnU_I(igJbgHs||)=J8oi?W9Zf|&_)r+_+a-7a%AM_$n#KcMOj$_wmhPE z+;oPIH$D&~!jr#{7Sl&Z9H{4ZN_Ov>~_{BY=!x&wVytil8OnK&jPb>hq}+buS~rEF=0 z85L$$jN$eGYx-m7%62qhm(9aZM6&|S3pb>MK-Hw_ID&HZbb`={Z0eFs4qiUdzlqac1*_)*H5ylt1w|JFz39Xu%TMLV@YHZoxt zvvtG2b>yb=TWTpFz0SKCPA^RNh1&GZzp`9~4gmD`Su3RMsRmfrA>Co(w^{MB8w=%j z0}chi9Bq8!MaI%{-K|!@cpU?fb?FmW4x2%@f86B?U;FzFJnKhs#|<#JwwQWd5%n!-p+f)3VkN%VZ$}Wo(z~ygeCTN5>f%2 zKWHQ^KS-M8Z^8-8@)N?L6j~&yR;kcp&9Dj&$mc*NKiIEp0VG7>>%)nA9u$<`M{m~8 z;p>KTF|c)`vL!8l4S-k%K&qeICu@ZWo(s6_hud*lwBZH*Jnis)#po+6c= zYM90IlMY>ffvbeFvsQPaI;@xLR9CGCOe&`a(fD@xwWyG3D|o#Ag0+1{;u%(U_%zp9@0x^Hr(!_T zAeqyQ;Knl2$?kJC%VQtFfE`7KQRjBF+Qy2xH*64#qGrH_HY3kV!SRwLNX;JUMlf=9@uU;S%ir2+7{jkIOC=PZ?ZV!z1Zr za5D*p5@iN+;{>_+F(nhQa#I^n4o~MAUoPwoEA0n&`G-Tva}Tk-mV zA6TY}8pcH?PH#|(d1kpCFUatUU`>{AqhJd@5xd7d((w#;*&;N+N^j$90A4&wG1zoA zSTN;*d~z^SLFlQJ?Q*%WL#ii$z`wlgEmz?UHMx6~g~$kYWudJ=s&-Q|)IC?bJ7n_a z)?JteszW%5hzeJ6Xfpa2LTD)7N;&vCv|U2NG7&97+d8(7;=e)w?}+NVF@Fw(w; zbGF7JxUPH??h){0;qH6`LkIk;*3cDR{38(ubTH8|$vBc^`CH#ibFOF##$Fgj=#A(x zS>kc(S^!}X6slM1oj__ZY!*46p!w~p)qvms)%|q|{?%_4P29_1FI@SyxZ|;7L;K1o zg?7BqH+2~Era(|st!#U0)ezUJPFm(#@YenNBV$GT-<2=_aq!=`_`dT`%(H>^YSMZN z4Cee40|`}u$Y}?;M3c0QnPU+n@%lIfuGV+Ze%` zq4dR|8{g~r{%DnIxvRFE&cHgwy?GQnd|aDRkB9h~lwYJvzay`fLg*3T;LRi*1&-Y- zaXt>Gpyr4VEDl9u4Hl%hFM7rZ`6on3_i>UIT~OwpT}3lQA*vMK``(0}gSWK29Zj6Y z&lNdHf~AoR9hEY-AlXNXFI+TGCPhE7Z+YlHO*R9pD&meR6BZ?*I7=NaA#7K!;pBHw zrP=p{&zo*EHKL%6|Kp)SByc#qYb` zcixE4xPkS)n>U>S)gfVMW+Oj3_#|}46l1?xg>B-IhAu_~`2##jjk~*G$-_O^-{2hP))zPMT%;6yWpt3l0xuA%0+7twz7ZOyB|gy3}flfjpc^{Lb|SS+gw z-ZMqa*75s>Ia7}Yil>#0Py7XGR{%f*Pz&hTL&rZT=X}8YVpk#}plBD2%rEL`&tgVc zso4E?eEM@`*(5KMzGmb(KfL_)kG4Sjzwe>njui|IyD{fSlAm~}JLe`G7Y@=J_Q
    dBD3 z-!dDTg$kjTk;u6+cPD`d3lXI^w@PT0C1YP0KN-{*Qm;8+LaVebZ!daSBBk0z!--v_T}mNyo5{JolTFN>8mxYBE9PF& zUK5JSF@5(}39O_2E^WD4sZ!y7A{#Uu0inr!(Y@L_@l|MLT#U0Q6Ghr7ma;jKT~CLH z_)~21;~<*$4qm4ck9P>A+R?7J|CB>fvf36NKtu{FVnZe)i#@V*XV_A7)Qo2<)t|t1 zwDjw+mge~L%T$ik8@~hyy<{1={&ZH=N2Azp^z$77a1Wl8uuV{}zg)dK4zb>Q!!zyS ze|(2&o;+3c9bu!S(o$Mf*!RtKy6C@2=0LU+pu(+(G>n2Kiy;`sH{wrdeV2+JuwzEe z@)J;`Cb2)wgg{s!8TQ$~=d;T?wk;-|AJTpLAw-44s6YVPs7G%(wx2^8o?O@7DZ_bM z3<_54$ya_H&c>iATLGioe?yI50MYSZ#v}ViKWXmU|LztuID%)If6g;w9ZUHd+xy=+ zG@g2ZXaXbc%EfpbJLI=k7Z_d5NdrRo)mc&!>5JECUx%Yd&>^Hl-^OVwm{;h8wkUUS_dip_e6J-L=yA|<`laj*c1mbGg}#Q6nBn~Q5%_D9D@!RN z({QlU=1=3Gh@8F#Ahr7d8t;1iRk#U@@nW^1MExMgb{$l$((F6L_)CE+;YzdWpj;pQ zpp|4n^m5}H)4(pXaf;9Y6-^Q<>4cREe~9Y83ymWtD!emlp!~$tt({Z%COPHD$y*!F z4_{zY-&Fk>yFep_NFqq&0ICoIDqHf(Mh|4l?!0|I6nI~r_spMSWb}YR4q;!6{+jT# zKD5EVb$0w&oHTkEveT^o--+V|)q(T?J#*DeUK|F_&FGphf&~e#A^}3seJ8;)e#qmB zsg$fj5(XS(9k|Yjs4I|IpotSmH=x1^UpK3FQky8QK9f6gi=@NmZ|>_b|F$#G^(Vpj zhBftYDenRqEg!^%HxMYvm1Uwa!>O( z=*ZJ;owqKl4PdITR)s|kn;xnIs<&!8at0+C|71`lYzWXFYTO!5=`9y%(@iOoS5c;i zH0`T6xYKW0%8spL9-B!&S#Cw-n^^-L0TO&~Zb=wE+>;DoCDTUNbu4kF1vFBzU;%4Q z$*9)G`4VN5{E%o@gll^rh=Qu|4#nE@3y16>YuF#KZmU{BB^k^?678E)N1Z~4{!45Z4kWnke(hn@Z3}!f$ ztPwF`o!Y(NKVoPR>cswp4coI&jCVZ^C=vvN9v7%`19Lz%`MG!H(m>W<7(9UjZ8IXH zX?80*6g5R91Y*1|l0iPD(!`Mry*_~<`S{z9KNbKbN`SGyCkfrpo{h!k=Uw}*v=i3A z$#>lhDUO^Dh2CvAa?j5Xj+x?%Dxx9G933yhQ-ZF!w2KuK?9VS??|3=At1sKHGj+|b z5uPv0ztL}Zx7IR0GHb!xOfEGIc7%lmF@V;hqr92Xl9;e`ww)UB4aU!o*>Q7Ddlin< z%uFu0f|~jUBpFs>t_nLYqc&+S?4+r@T#6r;(L38VUR^c?VLk#IT+-Lwy?lPF4Q(I_*H$MpuLRmm($&3mTV z6Pu1ZHc8K7ep2)Vyc>Md`BS?%y?!ei6Doj^e?HPG9p6;a12+3~!J_dJ%9+Mge~CG7&upjFp1)h53e@9o#KvbDF78W14g~GS)@}5`*-?w+P_GkL;{x*d;f%boV;!>(+(S4*f z&P9>LGMj(&0n{YP@0&*28Ma zJ{2%rAYI`~g_%%JULit2wVC2}`#%<-uneq)0_Iqw5MIvTJuy(b=iG{zHbV%B8p4W~ z=c!TAtwPLl#^1Pxf&#c#-77mpOI9{T7ry4q<%=I^mrSmQw*WRpQ!lvS&ewmC!KnOz6o8A1P_czh z(8*?$*oR$MHc&2d1oNW{^NpN8QI_N$7J2=>eTh-otv?|v$PX_W`kJVMuDx0sX|*-Y z?0Pwp*2{~6yy^8vk<$bUnni1_b!lhv3Fc&7pI>9|rxag1``^>!1eJ1pl8563Wr}k3 za`&ycM`4H;q9k%M8s@X!b#f2vzYIE`aP`05J1optc1gnVVxVIE9C70g7QiUE>>$2f za|MPVN7LAn)!OC<7Ik@_$%kwsj245CFYS1ax*hNi1BB>fvfc^>jnUYC5p;nsJF=_` zcp)HnO3&@FX;b0T7VrI$fn^$yNZK1%fL$ApahUdQZv)%S*orqMC%qldbYby#_{(GY zHjrob7mq@LkE@1Z^ImZ8mx#o_I6;!%nD6RQaSR09s>tb&1)Rp#RC4h^wyzU+WV{tk zkRpi9fNAu*4Z~4la8zgn`9-Tb^%l>&H1|-Fifsy_o`5?qei@nlr1}S+ly{8s!~&hOvn+FR!cImedNFcvM9uY*(#)=%tLiCJ>rmQFkh zX9trc;nM+1ju%sn{^{eU5M@A`IBK+DBJ+xPF(o0q)C9bWR-o;G$Pd^ghk!)22x%&h ztlqLvHxb^HwVx)0Y6+*MYi~du;d{Q$e~wt#XU2sW?+Y7gGW32S!~*5rZ7>d78u7 z=swkq_7h8z*sr9~qx&?)YYqXaKu+C^()&PSVGMn4>7iboq_&DMax|b$97;vnu!!Uf zB-lPD{K&1er^MzpvI>Yw<&%1I94B*EBia4vWloI#FW%H3VDmt#*WLn$baL%%nuYQtZggn}T))u|_cvqo#k_s5(%}W! z4z`*Vx%J6o*2_WG%|Fc`mpc>pEFQ6pODai7)1I3T6$CmGHd8?%pD@0wmHG*2BXr57dC@RrMN@I`0G2^vMA$a4^;Im8#caO7r1SV`6UB!g+1l>3O zeP*}P#E;|{Q#%kS2J>(8MbJhTTQzF;*uX82qZEto`*^O&21CpvC3g?69{lgdS%!YE zLvTbGX~jp3@^&0cMHf(#0)JmW;Y`4TLIbVV=Zcr4LurDUR=Z&w`Z|m;V_8;^n_APV z>;PQ(dgM(|-{9=eFL&CJ|IqD0O08v8PvhTR(p9HhbCA!k8$C)i+Os3U_4mN6(Q zp|YWSNDnsCphg_SRkIvW;*f%_wJCquO~?HOT0?n81S||*2NzY?GexW<_+!oxzK0Ki zK#K4KFYpcE96gW8<1C$E|5&77Ucha@$Ma2IKV+=hp9@UftDWw!S_6muw1HDPvyddE@!K$Ld`BGYnPSD#^-E3EY; z5rx7y)CcmEs3mKH_S~xVk?kFB*{l3l*Z{!acAyJ;tJ_)^iU}Jkadw+rpO~Tq&jNJ z(f=`vImYv9a%-1rtMjV<%NY@X;!+U{c1;-FqNVZ9Q<8|m38|Xjiu(Bm+#e^X3`n42 zKS5dNj(XCg&U?$0fMpZ!@hyWV6wK@CQf<6e$>>nOB0JSysqx0Mv<&b0Y0j^8oc3aT z?Y-IEU#F{{#L6e)CB+zSIXR)448^~N61UkMTGZF@EtlmJaoI(2t7At#nFPRm_a{yVFb-ot(s;2cSoeQjdh1hRj@~pN=7tyM&|p?Q~3I`t`Q< zhqgn@sp;j|G`ioL*-{?K8~P9kSARM;MB^huv{F z%^HkUs$69ZI!2JQN@`}X!3CCRgsHwxuMl*)q7j#DVI`M2j>*S;OX&{eaVcQMaHvQSaw)jr%PVmRsM(Cg*nk%^rKS8}}Icx&%?*X3$$0 zT+(=R`#P-BJwhxuSf+a~Sfr#J%hWHKC6HJD3v}#q%gSDu=oM?%#gs9S@S@s{CdNAx zGG71jNdQN0k}B4WG8(lvLvA4?uDKd^_?p(5Vu6CHTOfnn?G{izDqnonwiSB(MQ=e( z6F)9it5n;2`PT#5E-WlkUCRbO&<0=?>z6%CmgUdte#Ut7larGv=a+B3MQzlnvy(nS zyc@4pDj8Wk+L|)#R`4GFUG+VTYYX?zQsOzPzbWRV=~O%THTv)!kGU?IO4RXNHyBt8 zBafDze4EA!IxkzCm4IF{oZldSYzj$^3J1M_SK6vma z{M!iazq7q0$@J(xng0Bg=kFhSarzQTvZIP&DTpa6Z#aUHgJ>k6PkzJ#Wl|xyTQlfL zS$AFgRvml6b68+sG9SeDG?QKds9yzT%Z1ACmL7z(g?Gx#txaBpmeZM9@5jBH7*Y=} z80g)?m%dxbuJGxh9Ve%{R3Zc#`kIp#^NZw6n-qQo(eNbsu0r~W<)9z^WhRJkP9S4CYMkg& z@tP~kQ$;Tt-air~+PT{NtQl0MhU;fXf5jvXm+ktJlz6N|<1_PDiPy@#aWoQwZ2Z&W z9hYlL#vfHPb8|~_nfR^mHTtZQJuh{OWeVGAsA<~j3v|o0QRUZQHh`6erYM`e2J$s- z4cLqQhFVZo`;`_$Fx$J3vEM+tLW;Q-w(ATpT;yZZ{cYpo-8ZGxV&~DV)+(K<-{?Vt z=zO_u%7yAA61^n-;n!r-J3n_ht*h1H%-=|Pn00H{_A`Gkg?n7;>M3D3QnktzHOBYd z6S1IKj2xRkD#&e4WcoN6aO#ori2EqdTa;#D{l>p#X$DnmrxZkNVajxrKzB##$>MAV z2TttYmt&?STm>_hmiO!=SMq1*vm68S{ZVW#%!}EXT)HQ6T`$L^HO-?(UMcq{QFsw@ zZAA-H{6lykvdNixk{W(_#TfJ4P}IzFeu)BGK>$Z1x$WQ@D+POm266kq z7xkoMy}yYr6p842s-aZN#&1>NTF1|) zK8nzYz&S9#3iNn&HR14(Q0m8V3nbNsx0TnmEg+UBpcG_>|4T_?2$^SxQ}n!3J&Z3b zw`h=^GSIlCZ-Aw@g3)Jf=FR}@?X=;oK*klAa6s`LT&eQ5rrZSzxYeWH@odbnRUjPe zHRjbfo?{XJlZ;^*^O}B4qSoL=&Y`D8fSeMq_3aqW@cBC&`!A&!#K?DX&l6jwp7Vnw z638xBe{Pm=!M{8#IC(aH6Gv}?+S%M*wwEXF?cq`2d02mELF>plp;Eh9m9g`Z!xh?! z2%EoOabnS7)7hp#%8$xv$pN9r5Z=SsPL*1m%8>FP>eAaf3a6Yc)7$muQXPMgS;^++R?P4E78!{K~DXG>#7aE^#${&JV@;%4JXL}LfnkgJO8txQZBC zbBbFCf-*DPQD~HaSVV)6Ktn%neB0}jTVZDJ^Q8XQM?w_0rW^Ilz2=>EB!V0X_V%~$ zD5Q8;RrT3*F8)|ZmAn5k-`=2vZ_jk}n;Iu)A{_ZCU|sX5h}yRPC+=N|i(zLGewwTq zRDWLkM*Z<7QgDiR+psv+!i}z2tnu^@+1Dw~v_zs{wyYwDE&&>1g_Jm6Swfj$Vm|4< zo<~x0EyEi(4JN6mfQoi#^tG+o;#w*qJ&nPSHt=}k0^O506$d$2!CFJS0tFqogsXXj&jXHBrQlHN2? zacYh@mlGSL{>KAr4Oir_;}hdnitZb*X2#w$3~hJSmWgKyU`4Hkd-n;Eu4A*bqtVt~ zGGnkoIqq#;UinL|3iYqi?@{KuH7u35G6v`-ykE+U1;&7tj66@>=3idw-*Gy3=+TWH zqr}9TbFF)tDN$;)JN+^yfls=ew_iW%@-#@l7&B`dfgUxN@kP(MuVG!xuiQjlaY0g# zv$KpX*Z17~&M^^K7o#GhHM80K^YT$UV&dJ6f0s7A7x%@&G0r~^UHfibg#LUP_0?w> z_x>(CWDY+G$x*r!o?CYyLI+9wONv)|o5%JKJj=Kf+*O^-RA7KFW)O>TyS~h%M*8EE zdg`6K?P5S{9umpofK zuR$hMMjRg`4_Ld-ye-am_C@u8)HB%}Sn`kY?0)lelfT0hk_p6}4bu!%Q{-?8Tyyj|4 z_xp_-D+Gzo#vdzns+f~tA+)9HO9im?QaN~|iC)u0I=;iukAr}1KpBrN4=mfIiM$Ex z1eaGI(s3#CXaoV9Tya85L&_=M^yB7{=ux|v*#J9LkGf)4!JEV*e?+#AHuHsItCrM= zcAb&jLmEOK&n2T4PdE8wEYr4M6Aab9ZoKOUKRr`K^i#r14+dM_-vQ4~`?wC)z5c6QpPF)rKHfY+w2OS#b5|Jo(qgshX zi_JfeSG&k0xt81M3|9B1^x+XjSK}7VHN9Cea;#OXqo?<2cULD0axJ*^q0Y|IzEFIO zMUZtfiwfqN;EcXXw*V{Z*ULC!zPpzjh4v_p_w2lDcskSl%9m7|N2={ee(Y% zTV0Ex6YsOXShaV$JU{lEnDbjrvpgB3J6DAW_5XjOh`XJ~9tl0sK(q76^M)66>A|-p zaucb)@KZ4^Exz+*f7^f=Ob%=IZ>(c(Rv_W^=v=?zuwm3QOzku4d&Mt+3~1XZYZ|uT zlo~8OZziR$*in*1$PqcdhDUWP)-f`%ZHKV%>__DkFyuvX%*(c-PL@X`Y4wVngs@M_ zhLzNnP<&+QfBxivQqMh|q;qn$k1Xr>7#>)}E>s}VJW%eMRu!Bem`0i6*8aGGjb`A* zEk33!XJ>Qe9wErDXKg3y!umo)B(?3~4UXO$a>$o0(QKy0?2Lxvv-mP%I?>Tqq)~cv zEY3oAA(ep8HmQ0!pB=<|VE)cFgxFx3vSPyZ`o~Fz;qv!b(J7JK@1(Q?*uz5R5waAR z5``}YNNB}gTB7W}2<)CL_P*wvCS_TNx1yO%rWL8Mpr#qkovd6_cBHzUqS9Ht905E< z7wc7#>kN#--Mj%({9bOTx!WFZipiN|g(u|W1H}qWY&%{g`%OsKJdLDgmZG#G`Wf-4 zJzbgBG)2%mIk*%{b9n#{Ue(Xin}p=T)ckG3h>Xu-34&7%FU}qW2(7fw{fFkGzUlir zjx>NmpXjgQXY=Pc42saiEImqvH{Ro_!S*3@T#c2G9m9F(O7?CCmgnqB;v;t# zxTY60>E@c$%`c9;lpS8#_vk(!^|(A0z8JbZ=7BYBa_QVyjr-?_n{#gc$jik-TJQ7M zzcp3;29<_4wC8Nbh<=!`k2*_EXI^S^Q5f<${lGJ=t4%}ncAUO>BrR!9gEkz(wdqO3 z<(F18zxzx~RImk)!O`!7_I74}>H{j+Df~3?%gjMdg5Z5yyo~TyUk0yAR2F%RQJiZTGX-^gh0P3hihy9Y&8}r zARo2)BOn!RvHm0RLDGl}1l=HJZm9VR-dOD;4Lo0`h^JK?PN=Gz_a+z$b)@+*Cr$mA zYCVJ&l-;^IBIsFQ+0)vyDq7JOvJGRc?p6QdC-nTMWkzhG)Q+hNOyM+7$qP>QUO7_yHi2B zK{}*`bMu_%oVUCf`)vE&_jP@9^I{dKLUrsTExuXVbjuCSwBRc{p34nHn&vCUPNjlg zi&EGC7(2F~hhkZAV(XOue)D6FB+y)cJ%UPm1w>A6O~=yC1}WRSm|IFts6Qj*67=7T zV#tY7c4YZ^3(G&oZ977KSX1LC^`;i}JVFj|yZ#R~vO4yt$r6Yo_L{%*0DdiAugk}) zR595C92YSc-D44um*D2F`t5YJR)M3U^aW(QTpDJW9%%Hocl?k=v6|=0`?qiDwUZyw zx_=~ky^-=LLhf{5{CY{>n*aC1a(7FR44PH-@I|{+8a?|_{45pfn`YG>?$CDkvLh9U zda%H%E5Fb}o4RqG837%79pd!rfZd}}4P0o-c%PYn{8oEuP{xIB^49A*u%P60-SGpm z+_!MuJnS2MuXK1k zAu%Y3QGD=+H@mPOhYZRy{j5snH`SU&W`7nOlmQtviqB}W>1olsn$L^>#ji$Wb!#;= zh!r9<@}^PNYy++*N(uP>&|uj;(pxSO{#PTRK6d#ws{MZh7OmT-l>rcKX%Um1i*Gax zhG0EWQmzXEdDt`eue0RNN-g{vt7!4bu~Ae}X|_z$7I6jbXIP7g76W)(qFH`G`2>Qs zw5tT>SgOH&_k>GIO(G@i?=m(4L<9O6Ax6VcUm9D4X_1%xbOf`YEwl(j`_JJxNuaH0 z$4?DPFjnK0fnSvj@Dk>5Xhf=}q?gD#&2n zXjZ}u_#NN>Bc!;>Z|B{|MP1rz-6RJ}ogspR#luM_tR=6;fq>hjZ7+Y@cBsmB)7S_> z5&Ds!@Q?(nM(bt3HQ^moCpIWf!TS%6aW~?Tw{g^bIlbpB-1g^2(-z*Ed!yL~`x==& zpw;`8STF_QF&EPLx}25UU8Y!b{G>3oE6M50l0BNchDE^6wwy$j!1rP@TK?|1&|b&4 z#h6&liSq}{5vF<3uM=O0Wq+Gc+#wGJkl9gos^Tb)+lHijpL9vB`UN(nw8P8^> zaLXGPMS_MNGDtK7EAQ%(2*064(;g@ka&&E4H!0y}bzg-YG$5(KxwbQgXV~l%jqB{3 zZGMWO0jrT>BQNJi980RL^19$x6fHA9R;xvTpR~c z65cR#A}rMT@h`v0EiL8Q`0bz?7AsQ7>nYFLTUZqOs}sp)FhKk{sgc7AAk~OXYaH>5 z0a-nds|z|!a9x&es3=5CHcTufL72byU!;lht-Aiw85EkwPo7^ z;Gb{&%Z5%YkaUu)a8X+K_G3A{&h>thqhe`*j?`y;>Rz4|@upuu0Hk=*6XidL52B)m z1P_OYkqK?zBdB`yGB})@)?E&apcCqX6K(>O*BOn2N@In>*i1T|QGddipVB5U;X4hf z)kw)B-jQaMb^^>s*DoQsgiCi)kVne|P==XLz@8~fE)^bKp;mRiFtHWMV7qZPxA($< z5_&3E5KMwDA=~n)>U|Y68Ou7S@kY;Qok6{OC)P~ztVL$6i@tqq5p}tIJ9J4!G}%DY zsD+h+5@*iydS`*6y=Y?VE-vi~-RT%K3@7)1;hai^Y_s!)|1_S5-hyclOgFInYSCj* zu>(ptVpJ*BMtXLTWo@m4_joU)FyvA{1I%2d^S*yu>6f|X3JA(7((rI2M}46|oD$C| zKMRCJyY+62og(_KZXm$GMXcEF51S@blN|K}Jt1o!JxCP(or1?tG*^hKFY=)n8$mPo zYCx4vjwV*^<1Nj$2YGk5AR*^K=siOep~39S6SV}kvug_d`_U%lZ*!N*%)1~slrrQOi4&-tz2L87$SdWkT~08bemrE4@lX;<%4Y{Wd;%bFfp9Z;eKqT!lnKxxTa-$brb}2xVwkFmU5B1q0ZJ_Fr`h~`bnkb?YE84jxBhCO=_ z#4Rtj-P*%lR|$M#{b1wk$-#d(?>pQyA{u{*dH?5Nlt==649G~D%sYB|OcOcM8KvDL zUFiPV)vC2ucNL&w&DlS{`$N~N(f&%mTSqf&x^J$*(Xa$Yl{%Uu>dU70Mq*$+^F z1Ri|M%KJB$w~2edf;$dbHHcczxNLj)=X=#fg_yb761;7Nc~>}^kTTw_Zle6A&9mgc zX+CpHnc|^0nEiuke4-ci3g7yrsp!^%UX&c(+1hAg+j&3t)2={phXVt654@*i+_FMv zWkD}mwVPaW7|rdq@5;D=+PG9gCC4hud4Rr77kv{^7YG z1nW`neMV_TirfaCNtOV<@hTjv6gg`#kWeuKI`}R*<8>yqlT=jJ>UmE|<92kpGB1fY z36{o&q7Yi~nO;}i;p4dHK&g~@H8Fw06$v7e2Yq`AtiE`vM3Y4Q?GcxfWa*I`jFUjJ z&q3>KHn#3GOQ!zD!DD{HIaHmx&G%Gq=>-oCtqrVKULsKCwc_0!XYsV5Flh=M8JwMG zJu>2;DqN!IQ_cKk{dWUr^O6xHfBt~LFynON6}I{`fGf(ne|?{rbR-hVKEZS^Z3(Be^|&gV+v-+`waA|N;S0xi@!yr{oEsa;2oK%LF_iCbZ)H6E8%o!68NDu?{_ zbeaUf`|LD&`FNXONvqHS+@#o2{>}FfA&~XLv7_VZoR@O2iE3;NgluUdJ()fs5x|ak zbh#T6ZSfuJith&g^6}&J^%G3L$hU93{dGo+sXtn?7V%bswwczrf|bLcfA@Yh z0Qcj6mZRCL(AM}_^tsZMn<4G>?BI~GTh$61T* zl53BGbw$Cne|>-tYc3N{iSw^{PUUZHpoOT@jB*2s|4gG|@@KnqJ>&PJ5wUl8qC|0) z6GY6UwZWV^p(W3pJ)mLHMZh@!&pP8Pk5ulL%Klg8fwA^XY#OgMDNuo$1-Q037XG-L z8HvNq!5`y)JeheZ`Tawx#HU+_ZiD4bCl;FYpDx%@MP)!i0gz$JSY(^{-mowXOyU?e z!>`f3ue)QOtO2`Zs($jO*qIlaqmq>ncpyV7qYa&}fev=<lT* z1=Mi1Dd$41=Db54r>mW1-`ihU6!#zY<{PYUYW_+$!hR776819tNF{DiXV3VPN_m(O0iC4vU!vI4BNfQ8ernu!!c zjsawW!Q+EUhCGc2m--0_s6j_))QALL@n>uK#Lqy9DZhv~B$cd6B#<+MhCCU1FSz7n z^&A@^)_u=p=CL#J!i!Q#0<`GJy$W0cG#Ecs+1astPD@hX`VSws-nXa{g?3+vplPLr zQ!Y@O`1mK#&Wt1yo(tN$Y;>;&7h?UiIf|QXJ3&fYA(^rGmi)dW{om{0X$@kO?6b6x zKVOX8Y&4>Osf5gagaNA{K@4j`4-G3-A?i52Z}U8@(*bFTt^2qsep~u$_1yif``^UN z9Q%{X8dtDBpGjQ4c5-*@7rnpIXub8t?3=zCh=5&pj^KC*sV%wI^~olSmrsG8pgB*e&O z)*|o@>rQ7ffj{n-9e|0MGg^9p@eiT4-p#gw`ur?r?`tD#kC>;sdHyg28)5CEQ|k+4VZ$frla= zNpsO#_uk9a{|G~uj9ds2u-IXQhDegi%c{_!>ktTajS3VTMc2QUBgj8;HBV8i!C}mj z`V$|Ih(0HfgFORSO@KA1dL6r57FH%jgj#o|<#5?nARoP595kLp4{-UHI9EMjF=m=? zS3P%mohg&4W4HNi+3nRH)uqtyEVv_G{)-*HjkiF znI^sy*yOYf{R0mzDrLfmT>#FB`g(1IP1z%%?(kCSOaL0ksd!QlTTQ)ou;g1lYB#r$ zz(I9dV*3x@{a1JB^`khX@ft7vV%v%@>^e%GyM}!+=em%Ry-CK7V%c2i> za4|*W9qIk8o7;R6XKzIRs=zxfdYCQh)}VM_CW0(s@z1gF*ul8FM5jQ}<}+`p8Y`gO z#p6cTPXlFfl@vAVymHmCY$0>W1AT_G76Fu#PS7Qn=H7$R)EZZuwv%(5fW1Y=j3?-2 z*jYz!`5zCC&8~#SRUlVvQW^ut`L?IAZ95f+bq5^Aj5Ly5@Yxyt{m!Nz;0`vRDwOB{ z0zv3Nx6UAn0&#B;C(gg=EG>f>%NyMSBxrIdZopO7-3iqLS42d_=iT)6mv8@;DEqZ= zoM1nW0S3z?N^}xQ4c~c;DhyUSO~URW-P}a#I-u9bPJa_j^c0JaL0{#&PX4XX>}a)_ z^&gF&b$VwL<_>+pIbnmUpFKSpTlSQY1qR>iUHN?eOt^b8O0{F}w1^ z`{gg3-hEt@SA{0FsfuB8i3MfBVzuw9N=P8N^Dh&N$ojIR;%n`4KTvTxh1s$|RoU5L z4U4%2ECh1N)Jah)0fukhWyMD^C`e{{=0sPZ%V=h!8+i!egzF*7-d3R2i^%CkW?cMmaVS_4lkoG+KsV@$Om)g*pSG3x;3Y@shn`AZ~loK zJ`?EQ^!PsXozgNMS;NBLmVj@xH#_{HbWCpV* zgFIlUd;z2jm+(H1s%=>LO>_6Ez^7Hxat{V|d!!Eky#adnCUkg~}1i zE5}_W&?@`Irp?g%h(5F@k*Kj+fxWke|J=)@rLR8*z<=}#Jqb?)+BAsDmLjyuz%>iH zT=EojQPv<*Ddy3z_6@7(aa_j0Ld@Qk5LRAxHue7g`tLK_HNS*qN{AWZIGb-0eqs|s z6?;|9gC*^#-82w75Yk3`-D?~7oxUf|&>=2uTOku~GCFNIUG9vve4&w(L!D%c71+m7 zlq@O7Jx~D1@l>$yyOquKi@2~4K`9l;&hVjX%O6=s+b!=ym{{VGzf3WRHxcO@`3++*BMdf3a`S9;Vv9ea?Gjnzpt4o>4W~VRE z`T?w-A(j?YspEA=$%eYbW-tH8kHhHuAaX_-?{_~*3jk2!>%50!maGWgF;vBO?ILG@8mguPPKbzU3?V>DMAeT5jhX%s-ai-d-&c&$)Bf`Q;o~6k zJ$Mzb$1u9H4qX34P&6aTU+@rScop{lDG7>O(^jXluGxf44hmp8!C0ty5BholgHtu< zE=c(_BRbX;-TuSCc>PpX^@o}XA}(Y2*T{MSQF(B#K}Ke&FpcfS)Mj_02GU3vKskWV z*vPSLF5_KZ?(#^U?Vrko_hi&)?L^%ULD?PG5m zqY>?2eOGaSO#3`m!jjy?mPMc6sKgF9ndbJR)qcs3tZ5Hf1dsw~Gm|+}-QIX~oQO?im#0_4Fd+D zAtbp)?wt=MWeWl>JR$k+huFaQH|*8md5RlPu~_pj>cD+VTwtL~LURCQJHB(0Y4kX~ zNIoceAVxH#YHU14?rdvWl~`5v#-V$hc(_##Z+ogUl9NEu3>IYnMaF3}O~||zs8B89{MixR?qkw-+WVF71_4%a%t%j z{TEUO;vak{+X|3Af0Dbap=!%JY7n?=Tpasawurv^=w5C1unDW7CPfZs zh+1;+Bx_xU-`y+R0z|Z$O+o`z;=3N6P&a4%2_dIOR9a)#yb`3L{(WZ*0jL^10m%Ao z*MEKQ1?OC>(y*G}agwG$Geis2yR%`?G*}_eDdB|-@~XQ4&NG0Y3cgL@4>1mgN~c;p zQ2{{GTI(i;yRKa?UnAk~sl*OCvznvH%qynqE1ss91{-2GI;ppvCP-#F^0h|XY7hYX z{m8QdUXHo_#$lKw!Wm>mSbrqq|G|I!xOiFS+f3$3zG<0Qx9_89zPw`_v%8o(Yy@X^ zwjooMFxD3mh|-VfZss>$#Y3)HDBRpiwb9)=y>=5Dr-zYGwG=|Dj9Tt5soun}4Bh=( z_6?dV5Cf~={TUAc>tgn930s}c5}onR`m4|$2fRNWkAWWGiCsO{JL!Lab3*blBa|7J zP3!7wYYszToOFoczZt_#pSDY%wk4{+B&uKkD&9@cp!6E_uQGi$Dg}6D&UJN9?LV%z zhc(bjtlY&HSrf}Cm&uw5_(1aj%5T4&fWhMzED1pLhX4~fXV@QW>CGD<_~{?xd(!e__F0Qua!oh%kk7V@^3j&Zm?_R+q2G*hZle@ z*oA?xcCv9dx5r0Za6Qq224-KlJvkQCi$JJy5&_U$Q>8qMUhY3}+q!r*1-rj`b>09< zDj48AB>;%i0%y^#6+pcISx1)2dm2Ym^n%2<6GYdEbdZhMla@;a@<)+VkdkD~NnEVW zA)m<2RmGOcLazofWGrT?h91U8}{(tX(Ev7DU1#Ho3%f!&&+VwiFDIF=Svvmkm(gRjdp;ptF&&k zY3w^EBn;ph0NEVYVgv8%G5!H9=UKj02~w?f;PFNDc|C~>KRw` zwG5E3UNT3}h)84zZV@;Rm9%KJI{_+9m??0zH25*WJ4RY8IYj-AL5XFYYk6~iPHm(Jm&#b=Fo6G_I#>0L>rL%Xhn3kFU?e&W# z?}8417LGam1)*;p5Q{1c{2u1p!a#4a?N0HiF@52U&3{}l;C$xA(qI@cD%(E!wd@=_ zw)}@%ck=q^ty6qU(2(eD;a+wQE7yetPzie(6@gg(?JC_DAOQv-As~JsA^9CZh%cVq z_?mn41A%VehnjX=(PR4!tl~{$ghXk*9Y4l>+9e5zBhAlXP}G~ z|81Jr5IrEQ#3!d#-z*B8FxgguCNDn4*!2K{0D3x`oD5$W69e1rb2l6rBnt<;{=g!5&n))!Vmj`Z z59Cwt%K4N>1n9`R<-#fG%YTNBj{gjE&gVe~+7gTXzH&Z{Y+1Bk5lQS96wuX?dy zdlv95XJ-;-caG%teO&IrG@Y0x#?9}>43Le{>_Mywk7ra|=n!^4S z8RkW~_JfPmzoY7Ayo}5+1|HqIdQL5~BIa=+htyY=$6@m?>=ajfJ2H4&>D4vxp9Uhj zz&&4Zga)J{>pc9whlvys#=`+;b*7J^Mg#(2L)|E>8qZ7lK;K}VS-^&C23igdd z|I?$)^@HLMcikK!z226fLxZxF0Et|H$Mmc!FF?5Q;`e%2>(c*10bU}kiabJUTv1wP zQDM<(#S+afalZMyXPu!y*9IM+Q&Iz8YL471K8$c#9B&5@0@WMrVibLM6kG`;b1-C{FltcB1dMlAD8x(OB=*<{%;&>UY~l0Wc`A7gH> zslQZmX8K+7@p|ZojtvkDCqL@a;>@`P2A`+25B>cXdnSuQhSeG2$RbwW0J zwM1AWmCYfj?uaWQZ7{4ix3QW=j_Do~V%#3r#T7xD@GofWaC|IDZ*YPqm-2l1Ox#U} zdLT6ZR^Rdin+BUhojyVgTKnlF2(#u&1!UHmmRJCZZrdH>9@{T_HmNn-uP;wqYj{Gh z^Lp;bWzv95LXDHSu8AEeC)6Nb{yy(4DZlCQ?%r})T2cZ&IK_e)AnIlwD^ThQEup6l&}{rzJ=zM&e^m7!b9PyUl%c?(7!D=Kw8a4{J7MFdhK!pWtVI#LyQsGS@} zS3S%6N8g2d2#3SJN{fUWL>4l4%kD%!dzOwD9?T?%6g5>rV@VQS{`18o+j?)u6Ww&M zoyja?dk$5h?dhk>Xxc)e(Lkod7h&?Th25#l@N76f=Vp%{KQId1pc!Wy|G|)TDrFAs zRNz&BK#axl7~Q04Du*$pc${s(<1_#w9bAir^F^ZH4Q6m;Q923Z%I(zt&UI-G^I=B zNc4y{>-8`wNx7-O%)Rbw`n)YW9mY(FK6mdf3eXcrrCKL)N9(i&@Cx^dcAy;4) z^*zbdJpvPxKE5`ZO`Q!xP+}kGLmnqr$)~;GT#K%+Z^Ei+T6nFP1SU}>$P1;h=OrXi zRmtu=Pmv&9rcCm-e+!^ggy-1gWW019s8@}?n9!V5ZF|V_SP7!hiX!&V%6TyserOko zpnE!7z9TL2y$sWF_)&Z}67axAa9oqX&UI?a0vo+t;2E z=Ps-5^mxySr0wGWL449_R8g<{+vC2FxB>Bd_{|{e8lA_#m$9Mwj`=1kkXl;l?Qz2T zGNu7f3yJp4ZFw|zneK#4(3!J!v&Lph-ff55-D0~J?C33UDo7bI8%~PT|ExwYfPkyt zcqt(xo!R2vh7V&Tug3v?R$s zrB<*eQjF&XgqqcHu)tQ)0kCMq9T%pC)0#18%o|nNBqN-fc<^!Tb+>~yG5W|+!SNR- zk)N_eQBN7$E%bZ9od1$dQ(#yz5-5Ryb}65U0I-M5gcIJNOkm5@{gI6eac=KUAoHeH zUffmV*63u~9PEgsYPQS;Hmdojgvo5Cl#*+n)p_1A9q>R~l9Mu!VnR~Q`8u8ZzdA_|1WS?j`Rl4 z`Hcie=Oodc%+r(fkKk1^3&JYp?c5m5+AWsXjrL7TSU|itcO^4T@yTi} zh6q1`AN#m76$o~KqNHGe8z?G4lX(V+2<*39>ubJTVAB;zPlNZ+$$I+RCR)xgFjaRe zi#B)a&47dIghJW=v`1HjND62Kl6Y#QmIC~76w`L0;_`@2Q0F_ZpI#PW%F>WBH>uG{ zSHy#nA&qPzWXM+{Os+Q~m3T5e?O1*%+5UEgS~{ zywQY$oA};rTpd-7aFkC2DAmKH#mfJi1QpWK9{aBD0pb}?ZHB6!Ie55fK##;v;40Y# zrQGqAYuYRTjLhw#qg7PtW1*Sjlm%4HpZg>Xxn67UR%-J-SgWtC%FU=UcuABwjJnJftjw%hjw(7#0!KnM;scOl^s=S^IjK%QHjKD z$;To5;opGb{Yf-FPw!XFK*OKXdezPZ7z?NS}Ag~Y4_bg}H{?er%g)|912yT9YAB@nh(Bz6L)fye!=dx3= z!Z{`F5nj})@G5Oqr*e(GA&7e;o2(wBd>4M2bqaln{+AO&=Dxz2c+M zzX}mYVh(_b`bFot7xmv|#5>iiAnc8JNaCveVZ)mJIhNfP_9-c+s10Y;aq-;EG&XIbl&liz*uwBP(u8 z3&TZ`yT419Ux${8R7;NYas77wUa2fUr*F^cO#6EclyM&!0J`qKzWW+1uCKbPv4QO9 z+YAXa5s-U>nbxstkhagJbK#Z3!mgLPeVl?Yt&Jf6;oSg1UFGrQXr!$dOMexj%VAkU zjcDn+=9-e_ptOg)&pxdJxD~6_Yo4ve&NPlxjAj^KuL%K^7W6CR_7Egc+Hz{u_B8TB ztuk5SE03dwp6V@A@to4Iv%%0$OSDOgh+fAb3TrHOKWEnCo5`(ecNN&!K9K`7@FyPh zlc!5b*2c9C+p%4#K-0KxG+c23O1NZFh~;7OHC7bR2|F^8cp5Z*~! z4i+6y!x?HcJ+#Z=0tk6hOJF?9CqW`>WT5#Kn)^Pox{%JikXC81MNXDMtY=#L%kPCI zb%Y%{(nm|mM}5`mlXIzV6)`Q4k3agI5=*}W+eD~A*fU^-CrWiq8+vUfN3h>j&|8HV z+0EnzUeYpRH)4(FMqs}O`ayanwPwyO{UG9<7?6Tqq;qp;H`WwK7h4Ebm`=Hfb9tI=A7!8*U>$54U-ep zwj~Bett{~Bp6<$1jZF)d_m&3fxz6vt*+{u84dVt1%hdeR@oz)c3!Vke+8GySsnjjK$(7YPd= z?pMt!2*_a_V*FY+K^&Et+#{^a_l&TEZDHSg;SD8#`j9kqKSvJ3pra${o_!?@;3a?^ zQL^lbhCsWxoy-+`gsupml8O6{vX zwnTr@(bUYpwi}lli3WeRW8Lw7C)P9?(dp9iZt-Ulv0Qf+G4>X#iCr82xgh0j_hWl{ z33;+)7Z>vmcWD70BQxL}fU+RmAT)(v4Z+~Xy@pgyRixKlqMZbF5&KTEXm4Z!)!(x3 zBUi@|^3(e7^J4QZXmklLO*F?VVz!2Z@$^P5X_gwPBDupw5xT4{1r_0MB;;#+2~hNG zL@Ha3w^*SL=Y)GElM5DPogTw@b2dDb+BmvY{Cwkl?V`iMkS0AbE8l?||2+y9V#M z?NuP%$_Zpejl9QEhjQd1eIN0EpTG;xMovQq?;q{m8XC4Y-*p_WW3;Jn(+@WoYvx za=pXg-5*0A%V_4j@hK=02-%w%T9}K=4$fo$;pJ zuq=i;tqACmmzKc=+8inTBHbBJwHEtNyitKggTGRW)S622vlNi$Q@Jnm%xwr1;Q9t=d}`}qr`$dx;q7R<-se3y6 z^j{ieKl<@(5Lcyde*iPF5#EF&fX6KBL1(7uUo}ywDs3|lk95_N&~;x|+FS$M$6b0o z{o_@O!Y$Un$cAL4u{b#bq=OdAlFq11f=l+)3~6Q(l0j&2WWw8~u9g^Lx5p`@6U?!W zf-1!#ICHyAc5WhvLyW4x0{l)$zWP~mMwySP4Qj|^2v;Aqt2v=!np9y4v!qV%_SYYo zW!eDJjKRbtcKE^gDCp;m^W2ck;Q_if?IY)6VR~8#RBrT2Dy2*`t|8zW#{^Yb2o;E+ zux>Y(29ESwfOWVPBQ?^z*tOvPWCvWZ`YR_O8#AYJh%OS)?c`EP_O><{uEZ$_Q_f?W z%A*9-C=n%DLRsz(mT8Tk*Unf-9d+($0#8d3IxyjRvubtmyOw9!fNz(p@ z(-H~!)vRteaqL$Ta-u-d8blGjtO8RpkN>GHp`0Q8y!3f7T#5+wev#y8{N;5yg!0uo z(82&Q<6EDK5pT;uo2jkM9DML4d3hI(T`uwT0Xyw$vb%{*Ka9q~r|iRzPe5baN_qpj0%4J)Ch0*inS=JixgHEH2NWj3v}Q{h8}4`QlSzKC_|3I(c07ETOFcvLA15jLvM zb9Ac0SG`oYjq1EYf2{ARDqbLmrA2vw5e+GdiI=tY0om-W|Oe$qS zq0tVv4jg^4iej8h=E|#Dt>RP72M$g{Ui8983n)+%Co%db0Cka_P6oyHAcGwIbhd(> zV?XkUO=s&%Nt0z&wCSMTUq3+lxM{5F7iWR7^zF$hQu<{$@QKY*p~<@Rio_7V^&F$b ztyFLLF0ux2>8(Kq#t%}`{=*Jq<~}>oS7Q8TtzUKw^ZH?a#rO8_XsLBzM+$&g)LW3{l1r_Dtmvj5p1i z>r+~|V630UWN;LmSh>?nQr35zV%u?BOpMUl%f4ga4g5Nk;$dnUg6q42V&~vM@C50| zXZe=tdCXl(z^U@H;6THhB13NxgDqVIATTN8rTo7Zm6Y>EyD?HP2OLpulSrm`xI2c@ zm;)2w2G6f~-^+&Qth^D7M{aXefb&y)d(rt8l76ZJMH$@A40j0agYrv7y@=XD59(-wO%_Q}LgXnm)DSv~O zAG}WD{EKuZMIELrzykJGK_=OT3S)>E#OVCL=Jr9L@6AE$Wq2WvVU_iB_l5VQ{J&EY zDQ*eb6s3nKSfyZGX|b#B!5D zSe2CjeC-@P8oJ~Vun(SZ?}qrX7)b%|+D||z8TTW*e2o-M!thOM3#V}zBV|}PO@4{^ z%8Tw2&legrN~+Rgl9ohUNV^1&M&vW|cz(>`R5mwY>rJKorZfcE zKkIe?(!KKNW4;cZ`k_`jQ_Bc}h@Qx;mZMzS`+c>Et!W9wWmDl11slbpDt{S770scDii zWn1+%ic!AFT^Mh`a>>y&Yg*+Xz;eM33`zi%`b5^A)I|sQvoH-!Ch5)&IqUuqRwGB{ zB7XCeNX1BkV{L0SBkSoJ=W7K51WPg`SU@Vd-*r6A*VLH%oCc?lnv4uw4NTnS9#VGt zbE+Ay=fRR25(3K9mz)O@ndTbDg&L{3*T&!KPDf3~c2)HcRLqlO_ZjVk`QA;wEv4f! zBxXH$s%3l5NDazFbArZJ$2X1kr(WKsLgNaG@&`8>w$MhB#cB;cYshDYbD=!uOA0CI zz`p!u8LCAF;&GZtRbZKzC96mNr8@p)J{YNf(#`YNE?EKHYSp~H!S5HRr-zBa+(BB( zNw@Sv8>BbfUky@Eac=GFC4tlgiRB7lw7S}_<@``YES|gwYJ}OwcsnV=briB{W$JFydIMz!~0D`gu&OdPD~D`{aLQJXPINi zuA-N&pv7$c@0EU=@!t#K#g)>P5erkFBW z4paj3qZSra@XlcC?zxNmQ<^exHH8Sp7uz@AM%%AE}9!Y07d-;%gw z2kUlXAc;r#0x*`cl2Y2vLM4(mKwk=IrR7HdDNG2qG7upE>hXFSxLFlrteMWO;cUi# zXr%3%j$F(=hTE}0+29awj4LMn&p$Z43foG{plI`LgejG1w6!t~mK0zc^M|<6Y07=c zyRWLO^lVWlpgA^zppz#?n6~mDL6Gv=(>WN6sk*)KOLZ&)BP5I}3KFM+$8`~EjMmNt zfl=_`vTF(Q8;U2H0TmmVF7^|iJZUof0(O|>3bk4Yn?y$x9uzRV1^AjIWql}HD)t`!KF^ZRJkD-;V!8G zWYXxs+U(%LkWnf=p&CWF`gxSjxGr)k){?J@2pd~28AL(IFLIH3;peqYh^f#;Bk+_x zit#H7Isg|A&ME{yIyjjZYP5|jP0j-TRgeJmQnu{N+2wKod`wSdL&Vb36L`P#JiQVE zu1hGGqPu5tGoO6*rTUj9lYSi`>Um<@>evQ|FvXEa&bva}<5#2MAUd0GTGx>N-7uhY zV4)JVuyxBxh-ul;Y3I+xR+3Nh1kT85!Qq*%TUZ*Mlj`^nObS3N*a0ax3Zt`@o>L|B z;o`>$yEbh#c{UAWcU$yNt(wUrU)8V!>- zpJ(~N2PonD2zJ@}viQczaRo@dVna5VmK#2BK5D3vR>PTNcvD{S$G-tOU6RTlC$wBu z8pN3m)lpOkXlEqg;fz7l7oe;wd0sz8-atb#fHW1{T`LhLsQPspqa!e22Jm0Gm%@N| zie875y=fCMDzT~3u3^>{auiY7?m56`w4|h_h*SePI_hLMQ;}_FOIi`rw=iv_UwiJY zS3MjqAm1mtXH5mgb9?l~XpV5iUZdfWg0I9LNDKqJGD+Q2Kv&CLB^Na+cDyf{7kb={ z$x$B{h|NW6Spp2sbJOVX&JSH%O26pkjcQelR>Fwf(xQu2GYT5ALecY@ej=;}NlQUE z2e@1KfD@^oTQ)P4r0>ml)y+$T-|Lc7`6BoYb*#Ku+jX~gAK!e4A8k)y<%JXg1+~ z)c_#P8<24Ilw%mM2~84tK@`S&EZf@(velAA^t0ie{V@$Qx!|ynRkb3<9v#LQ>0076 zBJa+Ci_Z`U!kSRh_aX>yQX;_wmZi0~(4=RKu;Pp(IQ-7&dv6gjA3>#27OlbF`V8*b&|Ppq=Z8AM8F;clXi7l%LdAOe-xjwHIkq_@(;(X;9)>U5F{&1Whb2pm>Ype9R+$;Hi82H~C`RsR_ zWmc&Fn2bGECLS=ZfOqF);b-7tP)w*Kp7|GyRC~oY6Ljc(?cZZ0~6&q*nw8V#qYTdtLi=SJMDTlKtPtCAzeu% zc4{b1%;hIDW(Z{p9loONSRBY{i{T~ISCRboZosHW(`W}3;1v;ibA&tT(M4*t8f=Qh zUi}TQNxtd3mCB7tcw}<^qzB4cHj4_Y6)AiW6gK(b9oMa6zigT++9mZpJwl<1t>oEedc8-y55(zlWg_TDFgK=TiG7&o3e9 zU52vZ9=9QvAn*F4Ir+8DaB5F_OGR08v&hP?yrnfToFs$p9*i%)g@D03Em&GitD%~| zz|8uMf3Y$^HAurkqwp|A{hNkrDEvS^4@l`NF<6mQ2#sFeRl44<#hGtmE{j9YojA|Ewv-amKZY;tDpC^)WzHZZ;1;0c9Tdmb8U;R)QrjHX%e=0RDjEXI z642PM5NhEhR%0oU;NobYaSUeMtWgtpM>&0$LI>G>D5z=xHg+}6?++Pr{}a!y$#uX* z;g`;OYq|#MdXE~vedn8Lk$d=9T15Kv&5vC`kt0})_sFFbHaE(cqBQzPqt*oc|d8nnMRUv0%srcFPA$i^%6AQ*VmxCNcdrROFS5J5VyRjIW$GVjh8 zYzhR`PY&L+R$AGxsVfrcjPfQ=;>*j34=VC;9mu_#`FUIzyV=Mrx#%_P2YKl1o(JGw}jJ>2*)F8#{rW*UTp1aG9Ss2_=9;)YUHl`0DiLK5LG9 z-3~B-Py5WMQ`%7;wqCvPD*rH2_J=b8(CYwg9_tRU{}XbUWZS02z()TMO=leyYI;5n#Q-*GolI{lK2gpzY0)l{qvgh(UZ4e#;Z`>y3${vk`p zSe<~#JDwt!sJ z8*d=GWyR)HlWypJ=Ke6WbKwa1EY`8KX5S3hp_^ladE9B>c7y-!cEyXuabnB{)X{ zhV)Zy`lrn*4}zCjgF@VzhT89@@3Spx`u;ay^JWR}j(%`(@MfU;W?=j9TTs{EdarTs zBa%`mCXHc*9lbK)uHtuq=-E|#i|hlioRsp)<5{Zr0cQs9vkD_PV%T%5`oOe!U+m|9 zR$HB1Q=YyqMJS+E+!tH;XtO=`Nf`J=Ad5 zgFTjJ>F?$+vQoJQ+o#&f0tMdahtZIu7y)<(j}Fw>W>e1T+!)P3K!-&tmd+N42WzKX z_4ZYK*46N2bjGx!*xoH_Qw#oEGJ_R#A!M!hE(`!O$Vdlns`K0Wt0i0GEZJ_jC4;!z z-R(1g<9IR9CL+7?u#v5>hWCO-k@ICvzfxV0At=cK|P!+R1Yebk_Hj?Easb$|@WFNRjYK zS4dgmAa61x>ElB)u|o?mF-U#-D69Ot*QlkCx>OcB#jkugqxA)> z!tYjKy?Bpj6n)92VA?Oo16x8M7m_aSM9oSQ=#D%i#G>?o4rd#!Rfa;{- znzq&cZGn%hblGuDX7Y1m&(H$BrL}eV`uBZM zEl_F2QMGKTzF7vp^HbtToHvb*JG3_IrL>m<=EHL3*<&FEa=)bSwLSzudkBn!U|mxO zj|pLzAjunGHAPp2YlW{k6q_uadFYA7QIvlkYzuRuFz2MunwNGFuQV3b2y%!sNg-^+gFI zf`iYM2`qw>-A)d&Rtx69eBuRA)O_gI2%A~h%Cw9YrZfMmaL`FEqrs+6nL@wng(`l5 z=|)fileuX%b!T0>nL zt>-+F#uZ;ry=Tnk4&(wnz>fM4Sm&K}#e*&b3L)@m1m@_Kz(6YC3vK!Xlx7xtHgp=g z&Plq)jhU=Iq4FSK{GEP3z73uX0YzG?A~?;=k$g5v7=!;Sf`uv7y- zU18-`y9P7lpQXDF*fYq9t{ex0H-J+9nzyiSM(ou*0rOa03{pN_4Uu@ zM~WR>F+)A6@7-#-7;{c*=9F)DZH(|{}`!;rbKQ9l3QKccVM_gK^D-gnnvkJIXydDWX#smS~^@R~(kO)c_ z+21k1I{K8cRFslLOGZaFMdE~z61~ISxNOb?Nl@XL^Pyny^p-v0llH~TvlkGBfP-bI z`utwatoOKemP$xS!BN5W#w=X~b^IgB_+F*f?_h!gI1f#efLn!Is?T9P2M}yYv$Z|v z0WX-}z5V_@V3mpP&qT4Z3JVdf&k|bDRY@@AV6904-TnVKFZa%jB|IyKrF%ZUz?t3h z2Wp6Z{X=Vi-#6XB0lkUUGGNqiR^ad_Q(Z{=4 z3uHAHO<${%&_V%>zZ(HA?=F|miJkhyHQ<%9;JEo{pZVURhJXO*xPajU> zu{xci-`=3;3<@=1K%8Wi7^)9 z0-4IGP5mR!Zl1h8#L6_fkSaU*v9D>QOD3(r&f#T5VV{B(u*iS?#VF&mBQIa%s*hnv zk}|p03{)44thO;j=}-{mP_*yv?A<3f+7&~H713$bZ&d}Phhcecl)bS=9fy26;n_tz zx&)K022!Ine9MjG%=UZyq^y7Fl{9oP;pvIT-MGdiPV6ZBs#dmsK&9OCC;`)YX05eV zm87)nIEZ4b`{N;FWIo4WDl{$R`B4(;GP{BA2*Fgq2f;JVV2oFrQns5tI~)4{H8Z+{6Xa0zT}83`5KxdR!YVnisD)!=7$hDb$rObx9z6MMdF59vAg!u|Z4h?sY*X1lfL!t@> z80&P?KMSN~B};YSCl>?Qj$B(J>1=jvSp^U+&@qSkx=jEq1?bekctFeh3LIKq9HN1S z#7U41o>?&i#zDjJsJ$^FdS~v=F)M1BL84~a<6RU*;vXPTg8?_~7wQkNck~2h8b}r* zW{T-EluB1-0jEzi*suXIv}}(i7_1;LSPgK2W&-Fx4kLyEB(1sXU=ok(m@a?O zeD!ij*Qw!&w1fxX3Pe;QDpr61KvoBI>a<4e$32F|xF|Ho(~y}9Hs0Xl1y<9awmXJM zv>UG~V08{UI+BfMXG^Mc9N;L745gKkV0W?sUgJa_ zh6f4_WdNtQ-0T5ARa;ggbfRBLHuG2A7syn06%}lW$MPP3QDR{dlGTEALW(T5S}yhC z*oJ3z)MiI=+Js4&ZlTKd>M}PlW~QRj3SyNwe&rf|5|nm7@8Mdt0!R(F&ptj(PVI?i zm+tV_0xtolQ*l2RS>k6jWo1!i%N9KrfRFLRDXFJiwF6%``8H|P&%bkz{(FoC^dGhl zrrW@yO~Fn0ax0216w-Si7t-PO)27NnqoIxZBX#$~%w|c#h-erA=Tb<)EB@})NuF*` z{p`1D3AY!Kv**P`ZOLWJDE9YEk|=caR4!2Js8&ESBP}H@-YnI&$9= zl;|s)0(%3mSc1Cm`fP(Cnt|m_=FT9qb+qKPGDK|{z=A}BQekJ00}Jf1h;{Kx$jfCb z?2?k)+=GYQ=N<`uqczWc1=A+w6s$~^>en2%%7XoN0U{rc^a1cX0T^a*2NPTI!#jVF zc)(dkcw1hIecc!kJm=P7GX%6?qN=@^i=Pk@&OLBx0fh=!`&(`HfDDm;z}f;jLRpGy zCi7@}QtWqsqr-;mfzZLLO@+E71dW_UXoZtZ`MX~3Fsu< ziy4wq)zd5S9Bo`_4udUO(r;g{3^wI514?>8Bu$+k4g{`SPD6P`Lu;+I*Z$Ggr9i=a zwEmOwx946CA6mcyz0q`)@rvo)U~qpLr|tt`|1+rM{jua|7N4z2b;d<{84&qG(B_EG z&V$c;a6D9PnoO2b8CYOojqFjvpkrvcEZ?##`$%%c4L7OBY257F2H1>?c~uO~HW9|u zKa>KyATwYhuq*G3N|*T^qc|DMrUnzp+P=0dM|K4CFe>w@H7HTXhu^u@IPe`jgEXDcP(GHU=%P(TKzkpQA=pLw)-DEdC-Ex;Z8Aii5Vl0c+_=Nf48 zG2tI`VpV=>=vR zbRaH;{Dp^F4rAHc#85jDvm11xZ^#uU`MbEkv?W}^kbXbY7doU0N@HG@%j_RxR$wXx zw%%?F$k#BoH7!1TPN4h&D%u?!_?Um{$5fTWSK{rj3e8G|uks7^C$v>IapgPm9WM;v zG7s`@Bjd!TH6FJ*0(&M3hpCE2#TP2MMo}(1`-ANT2ABNC50$vtT|tHvN0VB z?#L~*hqWp9}b|2r(Kv61$Kv5h6@iQ zLj+WdJ>YnG$s_~g;A_zK*NguA8^y&Fq|o7JQNqImkZ$RIxD1y#N=i6jl00InMhylG zrWPs?J7+oiGuk4`9F7kR(f~`{4N)*Od=>^yY8BPNk6pBLD44@M0bD6Q=9IX+mnbKX z60pKecR){M7WCIj=3ns{1jfD3p6HOQx;otUaxR5a*C*D$IM_)4#o}^;u#%oAoBH;7A$olEMLKh z8(wI6MW7*{CqhbWX>62P6fvGWO33-Z?t-sX!*8R+0%|-Xt8}G)?X4z;(NE{TPOV+9 zN14?aRC%rRRW8ywSR5-E!T-T74ayT3%M0+8OYj}sR&K+rbT060L=}-K@E(MO)zA@c zQ|cJ5SPhz2F(Um>`$d@RHvb)xVxUxoHJPp4Ug1rsLWmB^6y} zlMdB(k%eTLdd{p>WaZ$&B2Dh1~7$WQ$vJip6)&7vYiunhS9(P;V7{I zaci&)XFMbD_N=imFC|>C?~7~YVF&p*fQ(;g0wZr^Sg_B0;X@*LrPcCMS)E5JoIQ#KqTvEIUk36 zT@;x&*Tq8&HC|b^$bzXfdI2smZ=tYdpjZ!&fQnAfEAv(OPJ)G(JX(6WnY{=jN|XEv zC~-34syb^TnDC7!UyX5vr1q4DlyMLbfvn{$t{f1&K^+^AUO@_Q&qs6IJ8mUHYwyy2 z39TJpG=F;gFGN87{zUya;ci^=slX(ZLe)%Ji?+J_;L17$&pMKDgav&p* zYdk^Lh(m+I8i;%YWySOOGVnU)$Yx|xtW~h=1Bhb|bS)bgW>z&ZuvdY#{X<%(Qa~Tj zYS4b}94Fka$Ed~&^e}S%()|-`6qM6=5k``kFvD8%3j!ITkNW(++clKYj0hO+%+|LP zq%@u``(|zyiHCq&00>u=%?Gj72LOg!jak0W~X-^Z>ss*18r4WjI7t zD)Bn=ipN-}JH|p=5oz^|#X?Sw{F(M(KJvXDKXvFt#wYhW6@boS371v$gCygwU<<{L z6KBmHWk@=;Yj)}O=@QywOu{6t^pWLHaf={-FhYE|v3W2Ncl$HV(jxNQ|K^^>w<7XO zeb1VLV1L}I5F%4h*H3?5dCPWUW$AhDgM#ic2RezNmh8Yw|A8^GVcSWbS8iGWy}`~E zuhwb?oEXiF*aGE@ZBUTSas=E2RdlhXGolEP#>Y6VtxGK7ibw|}?eymW+6zQ&j0Ojn zm1vUZ6{GZMlBZ)2-AQr=uVsS%{?XYptU990|F!h{u3waX`O+^XQ zPe~&8u}3dMHiwqC#|_MyS{8goE0qt?Wh}q({kvIpaphEQAHyR;p69K_mo0BnDzZHI zSx1sm&Mv5Y&6Kav#(pGC(1b~mLeCr>-Vj(|!KcduNbV+WQDEbQjVy>fiiK;J_PLG% zpa|PA+a@J~Tcc2sK)yB;Kw!ztbYl2xVSNPC6_#VtU=l%Cv-w5NM81Mc9StxkbKY@#Q zQM)_i-P41!&ai(Ze?aVBDT|}M-?}soffX3wUnBs;V_$7I;2*$D1)FLmdnZWzCg0v^ zFTDU)SeXL|r^mdpZ?oCcFb(}bjfKD^TP*dtdkW!^)KJ3o zrbKcu^b>-RF~`aPH-malrF5^y#;uN1)KtcFGpO$2xlh7se&ro)jmj`q6t-!YB|fuTdh;+ zzCLM99AWz?emF}N`6D?zI=q++jc)8P2g-*#FJUvj_S4`3wH zwY|v$3&{Oofv@XAU;eM1yGt<8PapTb{};OVW%bhdH%?oShz_pM?-5@=B&$NU#zV!Y zknb3@pQn9VmQZ~wqeaoh6Q_)?MQMu= zl;Ps>Uu*bl;EHwB+-m*qfTSb#KCW%dxFiw^#-fRRcK(>z&^qnXhaA7b?DF!3ms4P9tN!@5Q_2?7(4T`OUXiJoMW0y2phu;J52X=~@1 z?vH!QEF%8vRo;HYfv!RL-yq@r&8YZIwh7;xXE;kwBo5GMgKrKEpDq!pi*}N^`Z6C`^13-U zlk;f&dVQAmaljuGoI-q!HuAA#zM{BYGPpEdeLp}}u0XWqF1ILS8#`SNEvt}Cg+gFe=deROTLp+Y0s zFL*X!*u2Xy(3eqXv45`KTasTM=%0|4x_nk)e78dOyiNcc)ABIn`Q~3?CiP;6Ew*Tt zetaCtW)4dS4v>h>Nr*@uN60+)l55n6E#M%=hOcgHaUh?&-DCrZzhQ*Zx@AFK0qb;a~)u(58Yc=JlUihc-WG>NE}6K8zC zVt^3Il429m(p2#D%}8(iN^+T2txkbIwPXX325(2&n+uNYQa#3WA!kw~gv&7WcO!CV zbxd2~73kC>|&5}#u$9xBvJ zY?N<^Ib&oKNQbJPv*1d_>f}^#mPo2khRNt2Est4^pWw|hs;{mm7KYQ*2-N| z)+URaljlT$s&g*><+~~Dyk_Fice(Sq?bnEt_h?AuD;^ycW2Qm3kvDig_Tut7@adx@ zn|H#aO%2;_LH-ayc&*+!N4fBmCmPb(Q86Bh$)) zZ~Nw&KoL!A2#dDwgWEE{iV~;BSQVCPWCSL#UyD9hWLcJ6tkEveZ}7R1j;Z2|ZsXp4 z`pu`v40uU>raMF*Nv;oO%<*Hfka-(Ln8z0U`sDpDG-?_LjG`p`{Nm+0%*a{5T@_c% zN$nu~>C~t#pm-RjaxujD0!)4Ji`k;}aMD%c)|%t06sSK@wXD2MOD;YPkNFmGH~;(* zw?*+r&5P)#Of_SiTfEnfq`*j;MnVk#I7yYQlDoQ7{Q{bbLkwpbE!dSa`b9f&$oL>S zLTPebL~P~Nm`-`TL=*$t+%H-D53wcwFGAm%(?>dVyka+`e4jm{%9(7A?{4qi4I^gF z48^gXAbq&Z;aj|0JBz0yA%KjI>p*p+bV(p?Eo{Z&Sm2srjP-T01CDmMR>@MS z-pc7`WFK2}7&5Xil&#;Dxdsa(lbwP(hZCTE|G>PM(mA9PKg1e7uJRPa)+w+mCsqv~ ztb8Czc&Qh`@(#ih63sCV%@z{C`KYh< zqNajFucd;}1&XV-=Ha$x)zO&73Aga$FILgZ?{rnsnH4=^GPn>yPf>3Uoy$eO2|@Tu51q7Ioh1t#Oz8C6l$WkKYmQ;5I>SH$~THybbtG^ z3I%T3qodxpy9F@?VCOA+f4RtU?Jy|w(8<`Q>XR1CxzC&!auL;+lV)`|Yrc*3BpWv# z`B@-RZyVbcm2W=!$sRS$Myt6>es*g1?~~5WjZCpGJ7cFzdCkB6 z7|1)Vt8u4;WKJ@n>m6JfTtVk4Q3ezIl=z;XE~&|@1XvXMjP6do=9Oe_=BVQ9G!jbq zBMS11PG@5Tf1dHyq3vSLL3-=RUO$#z`hKpn$K(ga31`lgJKGgcZ?v!SPPh*xj*oEd zS&SrqdwuG-KU~v!{?#acm{eFot9vX}ky9b{sk7{KoXD8#XMPPt!{RXzzrN4L-51x~ z=!rv9mEUmW6mMa(M6w-anaq$MY<7ss+eUk|M%wCr10Q$M_j9l2&w|pyPv;K>{Uu%$ zCAz<05-q~li3mM?Nbf<%x}hwKkdsu2CquKodeEJIVH`s-nJa zgI)3lBTPGunIm4|TR!J@qm)v5m&H#)%GjXqXE6NiFNgfDRd$+`-hZZ^F@~M=dRCD! zpY+=Hib4_UBHOyViphMB$7-kX=TkCxGl204`R=v`Bz-( z1`v`^F|3ZZS}BK?1^0@zPDgeAXw|17c34|}NqW|{g=q9t)u|-G|6>c;dpw zASZ}VJe}PoL0tY|Pr>dUkY3SOwntr$#7g#2U*rfvUs}!gCpW%TaWDO~oZIMaXr5gA z^O=uVC93!XfqmX2^>(xl+~anAl~}a~O@I5!Xr4w*^c@bIF@-)lTo&nMPo2*Rg5op0 zjRmj3vrweZOMb=f%v~tx@&sI-ujgpV)lbD5hOl9Skn@%N)*w#)0 zl2Y8Ix9?YrN$cQ5Aphq+iN&;eV!7Cpp{DsWpKS7D_TdN0DXd|~2^s({-;`8;;x!eV z+4KSVIvD2C3xbUkUYBP@s_ROm>LxBSc``tLL4_H`%Dv}mKW$A6A;!jm_uJ2iy2Ar= zGqjiOCZ)9CH}d|g6z?VL!=%m#@570h`wArP>)!c4i{QP z5xt{}!tL{!7rGvpdVm@O$aQei26pd_?NfxfGJaJ=juDy#$$;{6~AWqS88}dfzYn(9 zj}BY1vsH@B{wtfX`mno+<&w&aoqU)U9D!8mEAOU{MAKt49EzXbsV3oc=7EoCQ%Dk0 zinEh#|6VJHxvs;8w_v%!0wb~#YL2YK+#uC(Rz6jP)YRL6#x z*~+`=V=he090DGMMbUqWJu02G8f8=?Fm-qyK(O)}lE@P|OtL5d>yKsoJV*O8zznj`akP1fjzD_5PY_Kq_4cEYzNF#(?-war7^OZPTeDujP z;BNCqkoyyE%HB%Jk+aZxbOPLBm zo0rQ05?F+yE`8wqaXaH47Dm2TmSYx{Vd1-ul3 zhDhK4?-9VN9R_V9Cw zJ^Q7;^@j2s`otAa3g0aI_dM$b$oRg$>|`;|1>)tWg|TOBtAB1u7HisvHb(00n;3vU z=T*`7pH<4<`|^kK(NSS@oW-m~Ew^^Y6^or+N5lu8m0Lq0(z<3#8S-cTH=kgPQO+ zk)@tfiEVK@nKY4k=+Q#Sh8?jA)R-Y!tIA8vq)nLo+b0k+#u({YL3hwW#K-@v*I6;2 z3d{B&uV{uxHsdhra@m>aHiaL2n#ohf>=pJ6WvWNXvMNy|iWc}i3X!Ro`g8wTIA)f+ zvg180AkeU~=lw}^8Yo1x+-f$f+knxR%+H?IPJ}>5=mgZSEu%0&o0!hp39@b?2il{H zCyy=p;WosOA5NjSp6}zy4vPnA9w{2#s z6Y@wM`*+`s4pKdOUT-wPUt(7V$hOpoyXfRx89sC;)q?$=PbUFll5$$iDvAUK8{?-g zE9cZzOlTQi#sq2Wo2e?{WI|VBK^pvp0jL@giL<>&PN&kKW3MnysIOwB{$?LvRFT=h zcrw3Y-pi)))IvisD^b1k(sXw3*igL^Xe#;OABwYwrGMHqSh+RoFWsVSeS#|AvnaPT zPHh}28-v7(O7_hzeEoF2a^X&Xws+9}+&PM)r8}(Asx!>w+%BA)(>C==P|>H@<1k_C zbWFIPU}vMp)tkJ;2mL>Lq)j?l83WZ$H}Ad?jZZabG|WI|&Cci@wEbTcH&FX;jOK5Q z70BG&w%?zNxGp^i-r~M3o({~p|7&{7c{eM0ZR_Ohj94F{xLa$#$@mwG*}Qvx_qY0v zL-Nd0(ra=WyNmv5h|q~o8*Q7bIhjzb@H`YWJfqc~!lGJc-sDF)>Tfi?JxB)ykDmUM40{XsSw`(YA#rj-a1S)<3pmdz1_ zjbs7*evuidSveLbO~ND39HWp*lkX#JR;wth=5i<57Rv2`Gn0W52?LkVRyc3))evL)^MN1N zCfzYqfv-`1aUhl=^m<^0Bm(Bu@_DgnyXT|th#Yt3=5%t+Gd(Rxd4tr?ad2t1Y=3l4 zxTudntA&o!!i^l800}6hYC>6dzq*uYg2xj$S@=gOuGpK{`T5+}rUl3SJwNZfmRxd} z0~~&6YGqE|iukdLBb(X*g7LM`^e@_kor)v*4KFY)=~mZ-VE!t4piJiSy|8TJ*uvx& z`2$zGUYiQKWjN-OzXAj4y{^@R!Wpk1S!}~ia}rB;J%6VI1GH3ldK|k<>iXgU7n+FLUjY@5l&j>ElU@=r#9ubv|uHMqT*Xmfv(2t+LOed#POdhS4vC zeG@@kh}x{Sudn0x6y0B`s%ZutOGBFB=es)p^q41e~jo z-e=`smE|v!1s{_6o{Y=?`;&foi6a7Fe?tuo4LJuRwK))b^G*G~_XTl$>q<#*_6$oS z$1fZbD*8qwJ~X!y+3}T?h`~2tiWb_r^4XNe5UfZ z=jujIz@QQ*V90y18R$NgraA#F+2}FaZu}C#AkHn91X4Hze+T}ip3<9Mj=-d9H4__; zQJBc}rYkH>u!@5917UbO>lCwpYdiXiUxh-hjgezibfHFSB&M}S ziT;>kf77qCS0q`@OtqKMNWrO{vQ+49RqKD%Bml4a-yiU6j3T_Haj|HhHM995up$~- zh_0PQji?vHmJJIn80f2Yt$dHbO78BV$@r_6zZJorVZby2mDh#PE|}VS8#T5W)s_7c z<*qtsoi$O+UikT-PzlVy)>I|e*^!ycuUoQ*qVR7b2fsb<5GHF_-_&-#jo+}=($f2+ z2aU(H9!;=MkZv~VZmPt`H0O0B#R1~Jb2{hvl0*qzL)ryIeKvA(rAajIgJ zuno~8-z^lDPi9aH&)NklspK-CvlAB7rB~vuY6uW*8+-a1O5(?fY^DgxJ{;)9N4@&2 zoz*}!K~Zeva{0q4{1G2I=^zG|5K{lgXAc6zO3$)UDO+vn`)8K2WQfi;Vy(Tm%GS%+ z)G{{S_(lD^#zN~dtl4bQokV1Y9<5(TSpSW$s&9W)A1b$>C}ur(|fPzJif}|9#%^6$qlbKdoV2*6w^pXySr*&>2>3;%w=FB~J-Y zgaCMx$UGbVNA}U`)2(<$AlG@MYz<~@zF=M)HIb{{{-uAzWL7GTIp{KK@Feu9j;8R; z=f>cgA$k>Gn_|=@R|0h+NtD<-%Q{?8plJ~iaHH0vhe%Xggc+3FrmigrXYnkm>cs&? z+^A>u!YK(9ydrf*K$P2ECVXkU>vM5=!Eyk zCK?0GV}NvIe74hhJM(Nwz6=)N!{fMe^9dBlQ{NYKU_L|x*_j7ShZhU4ZgN1|uhD5SYhz0eCZ!|0*kyVg z!-Z;@R;AHUrG6^hm^8#SilpYQ-ZNY)2HxgT98<=Tf{{ulc;%xJTNc$)@l9j^ii0aq z!nwqb^x^!kqIUBsoukVF4A5cq_M;v8ql+~-H@~i??@6UsqbA-8<2A@JRBEvOU2MRZ ziLiSL+K@%}Zk9+b&`27FzGWMEI*AQW0w#rZo$%b;1r4w???y!AL$Ct~77F_qr5(IC z-MzG|$e-)d#E+7=cBTHzlgBT%7)*SI^Ocd|;l553WEhjN=1LV@aU^mr;6*P^kX6R4 zwPI$R342nI=|xH)M~=UaBcuct=kD-O*f7|XTodICOTGM^kXReLq5Gt}tTcG;FM4Wk zg`;ZvmOl@G_O+8)vek}-WH=j`bk}i;dkBl%!piz#1@ zJxnwsQ`2_lNBChPkoc8pPeTpj!;?w%WAD3>-&p~w>DK>~<V{J9xSP! zet6J@cU&iVT{rLjJFt4Y&6HDZRJZZ7IAqHzOi?Yn7m(y^@QPv!+3Um=K<_A4C;I)F zMMDHZI>#jRuUJcUG^6525zt&{^6PNK_p%XE#>?Yr*LdJ?D+#xYFXN5uxgu=)Y(UH8 zPheA zTX5xba%EI-WuS0>0y9f#PuJqoAjw9gh`xz=uZKrlDcvsx0iG+b_Y6faDP3!&bWs;6#i$i*f0ZAg z;sa3+#<)|?oe=qS$UMDN3I*AiA!xnYe421x_Dr!EP(G3byrk$MS^edm-nXz};I~=O z7+T;(r$i6EoG|>lm`4LoV z^eN5J=uSkC0INpd0f7Hu}u=#|$2Af;o~B_D7O7w)EIE zQcxD>a;U0NkNxvV%j}Y!c-b30ZwQ9CvJREJuHG(&nBQj=;u0g5CRvScdZk0_SJ;Qb zroX5)_^mqGKr+viAMI&K?{{TIEedWm@*Ngpu5jqEV!!XYK>{#Hsd2Y?KELyqexUwA zv}Ywja^&vz`pwnVo4fTlM`JS8+=uNy9g>jjb#-+@fq`CLXYrHWE2xCy!SG%!g+F#^`Llmi*7IJOC9%5$#Pt(oWhP z<-=#XNCV1tdQ1zQde8U~Vs^vqM$z4vw0b?AXU^uvg0IKq^q59#!v!q5CF7rKH84l3=;+_@|gPGpHq>JGzrjQAj;pV7NuX? zsSph~-x9HjURPb{DuS8wyD(s;5Gy7F<=#ewz|n`-Fn`K{KbZ%uqI<>q{4OF=c#jT2 zrWm;~$@1UHn6;d}A_45iFMJ=jW1iI}m%Ys6GpuDW`zQaixTJtn-&Zq@@z6zR%FT@Zc-UZrw z%Vt`cdK*Ir2~R`D9@FM?{()OGH-ats4@w3G9-%e`i65?;mxaG7d7^UqXKBMS{d(WY zp&6%PuB65VeOHtGZ@0HGh%uI?Y^ceskJFHe7wEc(^6T~EMMo@u5@R}7+KyI2<&ApJHOeRtaYSF^0aVd&r(E>wP7_cJj@|9j<`0iIMJ>55c%sM46Ia zb_8<0126wPnIJs#MSuVCY9!u_Zo~Uk{RlE^V%70%b34j? zQ4mk7DdF#xQI`{Fr61d}pX2_NFA7TLDX9NE_L&ZfJ_FKr>yy$G-J><#46;c~4Y%-n zDVUX4UM{Tv2(*qLAw~4cZh{MK*Zd{B5(NeiADAKIbG9+@^$49%M{y2Ca&jer%|P>> ziAjD3)01)l=>!P*iK@Zlia;w0Amc>YU}@7>5~3!K83nHyb3X5F4yAfTNDbKhE)l>g zBRlEG^2YDp!IrN2Vw^;yL#$g^3q72W%fI!!j$h?g(GiJ9jefsVW0BwTZ(^`_}E_pPV#>{6rWixp#h2 zbdJ5DilyzT&tz6dU{(cAi2v3T*D1J!Eb4b_1P&-JFw3z?+Dqo%2A_#7@{wbRk~oJ+y(8-pWF zemYh1h6uAV`bQoHLW7h?aSxSsYR(#KlrK(SCPNO%dv}>?AyHp^6eBa3F~1nel7Gx9 zP1Ld`aN%GmsNg+pY%UYPQmoA_udLCoXMxaW8ijkeMw%xsq1Yoh-2H00RmNANVz`ze zYkksL+$K&ndL-L=@N|VGuPaCVu!B)v`@=SXJWWvm6iR9Xa}*e z&eMrh$e(yzGj!orZQq5_1>&!$|9$KiK7TE1L>RY-KW&7WkWD|kl07>Ces|d-vwy2> z{i>x1%$(b|b%u|wOk~H2eL-%sOs2~GQ+ZwA4K&2!B29GFNjVN5dT1_I7yTcDx#I0! zBj-ynoKJ#`enHv{WH z#Dh%{-NCl0L4h5c$9yDAQKVg5Hpxnj8?2Wo3WIeb;@Z^X!#H|URcVZg#@RQ#BU(QH z>Vgq}LhNR^zPR+!=yY57v+49MP#~wNw#P_A#YN(J0GIm>E=)TMaM|%Jup)ZD;Z9wg zS@J=(;RXSD2@AE(>XAmO8av`z{GeeCATl@DzJhA+RV6)JPHp3+)-lOcJE0Fs<<%mt zcZ16?DLm#0un&BhX_cxnF2}3e;KHco-~1ii{<&6m(PDX@6)oIm@mJ14sp>-jDw4yM z)PIo=g6xY7FYImE_}PxFQ$Y16>eBr^Aqq82GhFztco3|73YZk#YN_M-W2m#ZU|Ioz z=7aQ8?Ea4P=81_`%ZFfB+G|{@=PeNa7!ggyvV$%2y4rKAksun%qbsOiWuQ$%Bd@FI zo`g0<3xBK_UB&^#6XYfQF})wz=@t1JFaV|DDWNu38b8t2oq2MS_2=2+Qqf-@-9~YU z+QbCk@>A0&6D_aX%tGXIS51Fy{$UOI_#`RwcESFkogLx(oHtI{Vm*~UbsL{SM_TD~ z+AOT1+3YgZ^MOEv<5!+T{L}2V1@v0Jy$nfSE%Ng`c_RSQyD`AiNt!jSW6#F=*5#_X zaXAty@KQU<(VqYf1C5!fh72q4JtdMl zx)HX7xu9V#dqAfjYNY|CbyF?8LmQ?;0w=`C3<5$7fU=hZGg%Z0yEAwNRi(e_}6#7ZTab5QW|W)~*gQW$f8+<#VtJoTjfu*baTi+|Gk zUH$fl`r*IY#JgpM=HDcKIVJxF^8Z*m%djfjrVE=O2ug>fbV-9WA}t{y0@B^xtq4e` zG=hM%pn!Brhop4(2I+42hUfi$>fwR9_kCa2%$jqpDO#7;{0$Zn;iiQJ3aC3SDQ|hN zn0N=YlX`?wN{08ZAD)<8Z=~66PH=f&wEJAVUOMqU(K_d;VOtv93KZsR=*}XEHy(H~ zidMoT8A~N(s~^yOc!%in{b79{Bz=LvKyq$@_A%jlk+DFEohQH)MLmCl*qqMt@D7q* zSC&?MD*ikH>a25Zr&oy4lW>uwWlMBVA+N%2V_~sqhwwg}2hk}Ie7@ESG5338>3nXF zNPrF6#H6BE(MXdG19s!bI* z9hI0tV9}mv>mdGAFA1PlU?>(*%hy|Id+eP*>5KCcAeLgEg&DVIXjf{>eKzLZRP5+w zrIHud>bt7;(ipW%MTEXoWULt2ubOZk*Quzg6MjZk0 z2rDO=yXzzQ(OD5~TWSZc(ZDN@TRMb{)F)B=K|=LVtRE z7p)Z;r0gO#G_13FjJMrb0CWvJX{og9`e+c(Mea9*!YT8F|8lMfog7!jD36cpJxKM> z`M`)#^j&tOwV6D7Q3CYg7X)qQ;og%W_9|6w!vbjf%-hwThvxCDoe3<2YWeUAJe8(- zh26{aa9_VK0$z3=%)J!W&N0;rT6zpUCU)Hlq}#8x)(4I$N@SN(dt;gK%xPftXIG^) zN4RnZ6KxMWCc&4iN|7$z?|DayVwU@nV*4El#5BM@z2+IBn991$E+5O(Kb}I}ES3RiF@Fuf4KrR^mXTg2n zk?+f>)1=Q<-zBfJi_2*Xt-2AEy?S;un3kpdq{$yIm??^KS2TiYcc&f|K49hzFm631-E_sQMgvA! ztoUcY&*7`&`ZQbn`WBA}PAE8s%e!CoA>PUSG6XYMV+kW-$rfStM$CaMOckCy?(~c9S;b?h^emlcT)lZjM<=G>y zheIjrs*xTvp(Csm-41|WMI|;pYq7LBoH}l8K^HSpPcYQ9s3ErG86qZ8i5p)%t*snr zSHK0G5M9#5180GjFk<6J@tZmiF=>n(?2PBAG15aXIz6olX(~jMg8J7-=vpF_U#%SC zR#3ru?I!ovzd|;sFNI4Qf(tt>AB%FkFMQJ|=d9NLgU?(J;ST>Q`&?&T?=ZbA<9NhL z41X0uSp_d8RQl;PGBWFR>2T0u-9_Gf=~~Q=pz0wAK+*n;Ax0QLV_=RF zea{4%f;D7<>OasrsB$BBl!#dnl*~AFVn!#0<14bNRA&Z;M%E|mzamVe!frvaW)X=M zZ(HcB8fC6?FLiCcw*!ap(o)~1bF$CQ>&lbWvJng(H%|rBfUt*_G-~Xf2C*VzQ0Y#4J-CS5@2%z};%c*Fq zT62uh-fUD{l^SrAN6%Y*c(H=f5apjVE!^%&Q=FMwz$%=7WxhN{h3j^?isXSU)kT&C zza)JlRV?B8;NjCSw7{@6&TBF0+p_&RkC8KO)rs|>>0q$!eGEA7XCl3XX}XW6bO(4| zs5R|#0IGIL{((42{0oPS(ZBm2OS0x)m!!SSKPvRY)-6RiSbOkbUXv!$KcH}E#yHINRX5laKBdx9x^0^`Xpd;3mytnZg>1?non<@GG z@!fZsfd-}bNd@1uSN81Vv@E=`oujQx54_9zMlUoEUrcU-XyC4|8fJyWg56fs!R*5eNKb@Ptsj&m6YwlbO06i>^SF;oK%Mf6w!6!!NJxFOgMgWt-r z$OHX)y)*HD@}rFt`T@kvq?I6MsRh7ldUG5#r;5ZKPVwJA#VfCr#PwYWO1O54onqk< zSqVn6dq*CM1z^lVQMZI}V;GjKR;vP4a9lt(U4nVX7CA-F-`&1t2<(E;(h1T!qlO>P zWp4=|6-UTjU5E-Fh+h2ZyZ9sLxB260xS@;XqKRcEvClK0;b`<~BALIdf{;pmAtavv z^E12U{RMYmM#o7567pO6U+-co23!gr_wDxE`}gUX0&HE(iK46=sEip{rN9QaslQzP zHYA+Fw#>5BK1un$-SA75RQ1hL4pgwq!~7m{t}g~oN%F&c;jo3JxfkW#E~zPBzBSH5 za@amRj+7k!8Y4N1(R(eecw8O=3rF_`2#_+=;Tm0ux~r0OA6q>R!qp2!8qG&D4f88j zcQV9ecYy9T3ln?31#I}N^Dno*M6(e}&H*oda>BTRJTPg@;y4IiAK&BcDRvrY_sFFW zw6?$*a2EabBHP%4C#eZh^sA$zUElDF(YSsl*-ya^UTzJbr^Ax76|crF0jZiQE*Kv2 z`>Cqw#8=^TQBPW#ZhOl`P*HUVx}gM?VDC9{<2pn{L8#b^)%2A^%LZ40Fs=173QrAO z>eVC)WflTr63K%=1m!obP^tZt>dbvB$yWatpA9dzN{PNZdV($`+xgAX?7%C1Ig$Pe zU9cFtkhCy=eI$s(8xbwG|(a<;xMtn){4@3m|!5@vn=ypo(sgLk$$wapJ zRTp^7Mf|oJ!VuupcRPC*k?~Zy#PLi!)PQcu@be9e$7~%j_Qap~`$VX(pKlSXs@r4XL!h1+&J5KhpxWR@E|LauIP9;KjHfm9EWg}9}q6H+( z_{jy-MVGYM7jcFFg?FPTj&eTYVmcbtb0M&``+j_0z9U-bfYm>cuR{4DHD1?< zoc#yIgr6K3n`Ck2@h8^UVWU;?5HqRg%Y<^bL%R^{e071-iXHBKIi|T_=3{+Z`D=Zz z$z3+ih)ESaIIj1I9N=(UI5@r_uVZsarUdKnjEo5YEKRK}U@WOR%Q>DbK(?setCujh znopjol1wgb7D3TFqcG>aIN|b` z%h-b5pgn zDxc!L?1-m5_D#iqpUbj0@leVR+F?gGy=>L5H(ZE#{zC9|MOlF4sdLZp< zP)ZGx8Srs9PX(4}I*jR*s&AeN{L)-@Nz*_~Bd`C7Lr<+7n>Y6mn>{AHk3ubzx!k5X zc4*4O5WrA8vp;jN=vi1vd+#SihVwV<^Isf7+#w7kK&{$V_%XWOs#RO4P{D;7M}RwO z^)VG+(QI`!xZ}{xx-f*Hb1X@A^tEl~=et})qA@(2$}ghk?7Jxgv0x@oSt?$C{DHTL z2LT9d;zNE)@6{-3A=_WS-w8LOx90CB4wJ?^O9(jsY(swC3;vP7YSk01${Na@h2FsY z%-0zT5VpFp@_v7kf}nc4)pO~97@kGQaO5ZuBpufgf2m(aDV3HT+AL^sWGGiRuy2Mg zI$?0^FwkFVBhnJSkw|vbF~3EpivfUaY}=R$H=5YH3-k771@Xcur9=0^shMiW!u6OH zimPv+8)V;Ru|fm#Fx%j#8drL9>G)$^%W$4j&EF%#K~?&7h`;+{=!(Mw)=4GP4M%*3FI^l(T3C@ussgOF^haqqyAuDotlBoJ z*4OL~2)2&VAU)>&;UrGS`971e$)8CEV1v}!&p&-qhH+^qgrt!qA9wQq{f!GtLdxL#wf6TU=y=e? zSD<+{{yjG}as!3``7B2|p}O2D^Q``Qp89I={PExu|L-oI-isCmk;{K#v9;CUe1ApY zhvI}NbU2;`{qshhzc`7w=1DuBLbw92bNgg3zTr=f&>{WRbi=vJ@dESATRL7o5Z{|a z^y}TTUdJJrhMCYr)0ZXCK8Dgs^9(xj@S0@Mb&V-R{nT`ThycLM+(jba$8!gGt}K%< zS4g1w`ZXL2(u(*B3yd!8gf@FUq=s+=#!Wx4K|P**-cBbwMtU!1VXHcF-2q4^2cJHFZgdh1x)VrS-N-v2{sx^RJ6C5DzQn*gX7o?DPn89 z1bQu-ybcFF>oGzkSH<8gdWd5;+u+j*5{uX(m9F0Hd5(%*R6d3BI}hIxkC7%`gZZ`A zX5=z&SO$zH#iN(+75CExNVh!}td$yO^GkN43hrNg^UIGDHG_IdTlVA#BUFxU(~i!x z?yJMkEsU_yzxXZ^6?xpc1{BQInJqwn?Bs9!Ter%5 zzRfqZZVdZJb6rqgA^k@9%UU|z+moe8I+guR1O5TP_8)0kxd9{;EkLHak>xp`(Q(a~ z$ncOWnMLd0S1I=LJVi);w0ta8^4XJEjPx75i-$x!!-$nr+)X2atz?z2VGE#Pe(A6*CwB~LG^xZP6i^$>*? zhgG!qb|ifcBzfKTsQ$~$vAI67xof+(B%SKI5QOsd!uVx-*va5Bvo=oY4|6?J25^83 zmrDX|rGW1h*jMxj>Vb1Scy7_Ql38L5c>(7Xld@+9_moxm9~|3EKPLab5A_$6SaIMa z5`UwCp3=iE8y?c6gIk#NoTiWxxV;0SzzzO)h1M=O|=9D*)SgczP;- zEy{Q3cu?^YP8({X-@pB~5=j}j@Ua&w;IMy2>a8@BqL zDT{v91)Xn#@4S^y*M zhZp{=od&tl^f^>pxAd|SBe;X{q7yUZXYv33i4B*u+jyb<#6pU@o$(~VK=z5!(azoq z2>)FR!w{P8&787~X1fmG1%nH@QN>$ly zZ@RZME zm{fK@i!d;#yS&~UxV#u#RE2Q%>EdSI9(GG*Ba9Ye>$rZL#J(>UrJ5e=3ne$=a%O~3 z*N^M7AF~C?9vY%5hKA~^SZ`E*540M}L{UkIgr+lEKBl;8s)-vP#i+{zu@^jDZpLLY z7$%;hL4Cy=N3u!zKSl;*mJZtG!7(MI2`frzgk78+8V8DnEKD$V5=;3#=hQy>X6?dfr=d#s zBqQlNqIIe2kCKWZy>v7yI{ZZNx4AC{X>}@@g_AT<%hY5Nx&0WYkQcY?^c;u5c*-p4 z?w?oqanU}!r6W%hQMFB@+*i}t^tKa7Jg{zZ4ruOzQO^X58=-f?L+{B9c9 znU$63IF(SA>N8qq4b({!epF~-i6X_@2alOzY0K*y)#bD~S`X8E6ktmX(|GNwObBYjh#8o++Je#Zi{sE&NpHv^$CWGT7k8aO?`E zxL(%A5!^TG03tR~A$;6SQ+PsvzppmgUE(pa+ZhO<73Ro)G3n!=ZJ z7gPaMJ@yktwmwKf9nmoz>J}cWNxpfEo~ti5Y4(v{Sm4N4V}bx)I(T$abZ)%U6l(D- z!oQ@mm-X8hzdy0EN27j3<=d?S6%$}bpng?^%#o%Iu;;dAM&$rXffNkwd*`#8p*Np8 ziX6$p(1_0)LuxmEh$AcFT}!8jlbw(xHauWQIS|c;rvI)v@G+^)AXAdfstaKYypuvt>+$l=&V=NsZMh(uLzvKL!cu)qN%$4fY4y%nnBBGkM6 zshwG-`LJCcIu;z7@6LXyES>hS%P6iff`i*#Xk;u*lU>D9Jo#d#*9v{j{b@DBU)y_x zy?ZHPsjpK*M!`BmaF3#mMxKLMEB)Up4!TMUxuaK-IJWRB^;|Vg3lGn&DW0oV1>QOZ zV;2G}D*8`J;tb`L*F7HsxpUt!Xj4&`ZhgD`W`12hFXsl}sV5|t#>!cdfvRYqVREn1 zOhzghO>RE^>I9Wch_@L=28DXC?|g2#=XMQz0BNa4h5P8ncTV4alzNFzHYX|!%gqgl z7~sCXi=GTSCC7Vi!wXGt!UkknbY|(_$2*yR+a9*YDdedDV6~XHXDRiccC5KkN$bzG zUmW8dpiIo@1g8ZO{JMr)gR^qt=w#wmd_663tIFiukY`X*=0nx8v_X4Ou&QOFCO43Q z4T%+J!-$0>iN2O*uR`_5N&vkz)jyvj@A$YPa=W^P-0gO$Xo7tiC82@+SXq&i6~+}n ziLj;}rdYGKTMxWMHoD_-JwswbH}x7>Wg$r#2D4HeY?o6T$cw=*(sc&fAT?AHG89Kg zE27EcNmL1BI~?#BXl{-M{M+ix6b{weEp$?fI6>70ww2oCQp)9LPwm*h>Y8&tM2eqe zhS~$H0m^J=O3E zi`k#OCDK3J#lx~w9ACy)R641i^NaykyJro`@M0_&c|>-30+jK30{V3irrS3XU<5sRU{F6 zMKYPW4zs>$_aAu<+$k1(z{VMLjX(~cDkj69gKkfd<;EdmUf&VV>_SJt09-1pLt)Xj zo^L1g8QSmMOM%boT0h8mpw{Bno_6H!R%Lmi{yJ1uc+^4A&Rm^%hA7fy>vFZvy_mk? z^TwXQPXx&j%;{b1aWu*$od5hazUU@<*=hdZZuFC8kkU?&bte_UsPj!(!F_>4QmoG*p-2;4j4wG>-NC-F%+Enjh%8cJ8bB_)e6yPBB-U#iRRLgz*)h zz8`x13s1-`aulEnVylW>J7ufRS11SL=mV`NHKOM*=*LmORiqxH3q*Y>s^V&0_Bv@< zN-6xaXk<9ii>>$LC3Z0%-9WcXSV$%T4CTr|&ifc3vzzS{^{K(Tb;o_c9kdLW_d!40 zYxNi`fq&wkjqnStyj*+6-@BH0iayu16?jwNAmz+YMO|d6_cA8m?X^ZfQGUz>QJHD( zb|DfXh!)MLLXi&TFOR@>1T4OuH8DZ0i_cYp!Uu9X@(JDv%HqAx)NElX^n@pNU9np6 z!a@zA7$Ji@?!R?)rZcv{rW9L*zrXNK$B(z5X_sG_GmkH0++f?gdgf62ZzKL?)VVnx z6ri@v39OhhQd&`vLJW~nj{e{P;Y<(yn*#Ni2@V+a0q*Rymz7KXrTK;ly&WUGwC?>X z6Sm?lFJXOxsYpfB5Y1eszN%V&eGiOi>^mY=D}$@$JeP``7K;EXK?@0I1z-Fo}1$1i>>@Kh-nueMiuH?3vu89q53 zlptdX9Z*RW_(;_$t-KX@9?#(7!vS~?90b@eqp0i84~VZP<5l4iYNtf@`=A_0?R{~H zd`g=p)IM+gA-{0(6N-0qu^NZ^n!IYGjRj0yOoLlwlJA25s93WMc3U;k$?^;`VPq4s z6h7`(2_mcY2@0z>wdG+`HO$=J_2{$OyEMV`bMEhlKegu{^32`4MRGeiOE8$HLU0M_ zeh@~Z-Z%H$(TldLR44EAf3&$)phbmp;~v+P{%)^Ba^Oh`dI?yVpkV0ma=7KWve8Sm zw0FvdNe%vy$;Ko+n zDX@&{JstjZgx$^K#8(jk>a-63r{IH~Oo&-gppHs^uEW-`mqOJ|d+maQq7}93jsn($ z9@u}>Hjqd`tt?APElrFVA^*CLim@#$u#G=W>lQRxg$F9v( zMm1z`59NoqbyiVCGY#xh=+)nbB-)$}tmR!!N1K z8dTG)3W8vuLkk*2(@>=+VDJ$r@?lJZ4cHGY(J7j!Flp%}YqOcR!wLKe!_()fA>$E@ z9DA$j6VtP@|Mdg2-&mbu$y`mNbUgN;`sNNR*6d{C5;_|5_C5?zJ&khNMl=YNwaF@q z#u@&ZbfmeKo=3-SB)j-c=Gik_gO9%7<0}%`zi$8qI)EFMK6x)aaO^F!8&!*(!94<* z0kp3isH7KQYS?*7Q9u&$x~{S{&CM_>oTzmC_;lv4!^IJY#W(fd`NW&SyTtFWDdx4; zrr27s>f5knH`jo_folmuKkh3pUrG`US$AyJu&tg-+_UR~QU#1IKeuEbG{>`S_a9Qo zvwXG_WvlD9XA}3>j%t&`r0AS6cfrA;AvDrh?6ABosR}bg%`sAYXXTbpL&RTfghvdE z3>8^cJEB{T$id1L+2ai)w5zR8tQVJu{&GaLWl1^ile$oWKK~C*ZxR`k34;GX&i$;N z{Z?Gjyej1@rMG-Ss_$+dQ(j$*3^{{hb2eqpodwHJTQ|{z^$saU&hs_^mX(Ku{E$3IO1_o6T`LAd5RT~kI_O8V2eH{X3_MW z5~|_}r&Ab^Ckv9P#KLT0#_4C9W#>12i^?e0@LI?E*P~&%p<&e9LT~V6YJq**GJSc# zDNbr}@aD<=yUH;(oqZm9b$vGj=_MPMygEc1P!oXd=p`+f>X$g#*NbJ6|NASEo_jJ* zIRX0(^~hhAX=GxkNB84M6L>hr`lg50L@0whc3mrCgpQ&cj5thMdR6B8;g?)b#4p#| z`Zn$x+MwS-@(#@oOnA?P-G3QsuE+CdOB@?DTgeEe?!}-GtE;BW^V8V|`>^Y?4I1Io z^h}#hyE?r)CyWhyjK_OC_31FbtNOJFnQ|R4_B(@UZDB9t+j3EmW&*XUpzsPb5Ryrc zM3|&rcMhIpI@BCYMV`q<9TS_`|FpXlW$(5JI05{3b88k_IMNFZo=&lljZwR=dxI4?mIE2P56~=XGU`DdG zkos&0B05B;1Vx837Q$$L^Ct%y8&_ghaL*_CUUp@65H5-se;LDtPk_W0%oI59IZpNJ z{w`s7!Q7VE!IobLe`c||80{;ulvm(Q2*2K@rH@=RWeCBQSzT?cTK(%}ZVIOw>YpC810 zwy@gH{^ki2?S9+Jl6CvCO~{=f6h{fc4FRyYFLnC1pU3HmCMJt4VE_u8`!NO{-d5yq z5yAJQ?n%3=BHPyGDwl6fy%zkRBydYQ`lewQI$XeGu{z+bQzOlhmHO|^KJC-~s^0I0 z_`v7pU7_FO5t4_rgRWbLfIxm(xu>t#!F{Ao>hi@{z1O`D;ab|*aNT4C1BA^F9TxoD z8dUPi<>x}6Ob9sV3Q1$lHZPAnP>DO){86}=kil_WC;3F6@`ro39S9ejB8`_JqdCQP zNp^0d)Sc||y|M72K}WdLoFKzbnu8zwOR|Y`mxR{D8g;a`Wc|+0f<&4qIRmXdI(HzK|V!qdxTLgJ~eJn%@#l>7u@+ zY>IRok-tzDdw<{f1v-pxV(hBs9a<7#1ftFR{&-(g(4x*TS)0o z@1hG1%?l=7nxtMfQI}6bK-7eQ``4~;qIudITpaX57pQ|t}1rG_!7wl+p? zJr4#Pi%w3uJ&e_*sdMej<)-|u`KKsvoVy^det{yTnGKvlKJf5@AIiIMjPOi8QVr(Ld#;@r><%i4CT5=dU z;3YLFTik2$*XoMvy(@$JDo(-zXP$te;dqMM!3eY?t0}R1mndHEtMn;&tKm{dkDHBRlZbG!TXLMKfD& z_}#A>&F|CGl*+j-=xC*tqiZz3*B?tQI*~1c$OljyBiv@aK3>LOj!E)vc!G2MZV1pC z7^is56vtb^Z0#jz-N2=QqcQA(&zK+>6h90cJGb$O2;)Uoy&i!r$K2a zK^}JaHjGs20Yua=&T0zbVBQQDb7kFu6ZRZm<{M$kJG%6Ou5UF*kNa*cO2P*n3x-@P z;u$FVE|6es(P23-*W#H-$#FmG)Fs(W5hDi-diL(ceiSk%ie0Chx7S=r#t-!&l4yw+ z8oU_abo-xcJ6~uKYMbs%Dw~~Fk3Qa*s58k|?zSgGC6eZD76JmFot-KP(@?O3LfY*22yP z+@5vDzf|3Hp^FL&yNf@@svmsjw$VXxQFeHhf{}Ad_5HL(GboeeQFVU*p;*skuY&13 zaD~cmbrM1!{{HlIvN=)_!(a{dap>%jpiWC0@M3%3x1w`BWJ*#vdpbK5je-F597w#= zqfa6iwdP78IS`=?uSpc)VtB;z;nz(G%L9R=`(IMY_JIRk7fdr5t%jW3q7LFO^j{gU zHtl3(qeIMA-u6+3`cr!RW(73n8==eQEg`|M_lY3eWhcB)HiQOvx%KerwtyNS;6m_F zLj3S{wN0web&JuvOq-t!l|Gk0uDQU8+|ZJCz3-E%b2+TDY;)Dq(3vj!=>*6^k(|F( z_%6HUzUg#QQnf$Xz8acyqEg&h-hKFtl>d#13yxB;6OOvEPS3($7OTZiY*x<~+Gji> zfy}m}9I2l9_HgW>GN~Gqa{ST@V=Tu)==#2zNczAk=LUF<~ z2=sp`bh&`{k$mM+@=2v)*IFyP_Gfwaf4)4+d#=kK&?bx*KFz<^aCz{gn+paz|JfYN6r4NEDKH z440UR3OzC*J*lnbU3$@s*&?Iz;-%>pm01ard}&HXUU-?~8Hs5AG1{}uDDt<`3?nVp z2@0HC;EMd&U_2{UV*E;9uwfKq51#YF`hLwjQcGel-K8>3VfzRx7on&M(CPUGy1C+x zDiCuEAV%3H1W>94$d>8`_OJ0Qf=c!J$2Ya4CZ%D0pXoNXE#jq13072W<_dvuZeqTA zwPifC*z2=De77JrXw?!$_?2CALUU;r%D~mcE3%HL$bMWs@+jPnZQa`=hCB*sPhQ*< zBsnr*%AYo#n~De`5%MJ@RnL!t1aD# zq|YwPl{l%#2AlUhzW2QLRL>+*0F6WLnyxvjTdG6h=719=5R)pBkjKaeftvHW%_}~& zzrymREFZnB-!#RB@?avE)ulyUqH{2JoDXLI2}yiwa$4J`OmD2Mr^o(2f-KQ~CrZ#A zWIB~@yxZnx-yH?7b~bL}ps@D=ZmSd<4H;+;2nA>B--pyizcj%io}Mk*In*|8&6dV5 zoMCBkLmKZR#8rB>SdBAT0rPUHs#t{ z7KwG@Y)uhy>^OhQNOrb~uIAd|ty0L)HO1Dia-oGC!!8Fk=4)a{I!#-2h9(#oG=z51 zm{h*SL+yo6IH<8vXawu@qA}aXD;32IZ$0{mBPE@GvZo zv|$Lp8Ye{hHT^(Y#nn{@YP@-IdT_ZEXaRW3`UVVk)eHy0h;rBm15Oa*xDuyzs|HdK z`)OpL#)Y&(w4fq-=(w zI@bTlW*p_I2e3!7OkpLq=XOu@?|F$2`0eX+P+)$1{H)%n-5!DlrlyF$$bY&#KQ6VI z6{|9;mE6{sdx_ah`>h+MeVdZWG&0dWD!hTyIH z2(`7D>R2~5eY+B__s;zN{BV)Dppg*dc*fciuCKauwUulz?3PPuuW5eIqG_pE#syU& zwu3l;2ex0W_p2P9!C{d=Qsa4i;6N>&oPc)pz#Jn7?IK~uwTV^+>%MZ9dQEDY3*`}w zy@ghq2>F5}lU%xK-uLkR16i<(Il!;}tq!$`47xOFznwQ9#UA%@3ulsE5Ej=jHfB?0 zAHWF$1>#U2Dx(rAJyQxYmcaXZVSmwNlzAWli|tLV)IA2G{3cIzvFQy=wdb;{m6#^a z??y82pZ}pY)>HcVdFJ*n0dNs@K~L-NN&w zUmin4ITJt?g)wWGCUKfr65^FvicccGRd;CD>FD% zJC)N~ZP32)tEE5o3Y@*1o?TA=M7nTuWuI91Z2s6yZa7UAI2=;`!N__>gp%x)R_NWh zTSXDfWasPvJS2IK1AOi<^=Rq(u{__7GV5mkNF_>K3!`1C4IfOd3W5#vckh(wP@=K(12*QLLv!=Dc0sax4C=x!Gl*mHx>O$U6>@+3> zQQa7l9kTd z9P(4nts4aYmey+)zYEF1N1!-dF@CIw8&nkyYh{*n7mt=Y6mXNo{f!3_Flq!1pq3^? z!@gjB`eYs12n8Mqc5A)738Xk?(&VBJf`2`j{0&D-Dsc>W(B@9#euQzkFkgjC>O-sL zD2dym%BEGA;xZTV#9BOAb*y@;w0~5YBot+%X~1OpU%f{3o=O_X6*aS(o9gIVDUqpR z>rvb`xl#2f@LfCc-fQt4?7L<=*uuNmL+ehdo_o^u+voKW4Hxm(dv%o|6}Thq=opWg zA0lr-KXPAd9`5Sh0p(K5gF8iKn%qc2T#}SMT)~S0fkcyBfEX}p+^ydq+VI0bD$dpB zXV2t7#fHE#29hMNMY*kENcW+6vrh)eJ!B}K+NzDy`9dX13-1!6lQ*hQ1$lXO=v z`L|68pw3|1^})-;R5BRY1pN(d&G*mi@{?{Om#UnwFGk1J!0!`DS#e1jTgxZ61A4mL zFo=HH^`!s-e?)6vc4*UQ#Z~=W-&y$-KOhiFY&w--TUNo^67M*>}uY_?yrr^)L7-yw`rIVCNw~| zx&hpkPqz}WXckxSiI3;x(-c*?!9gYjhe?Io^+21Pa=8pYCFJOr76>}3=$l|rNJHeZ zU^^66I&~Avwtwe6$P%E7Wrm2?UOXB_PV%?uJ_lWoa5X5ql;OD`&Mu1lMhN2-d;235 zIq&ULIl%VP6*=4Ls@eMr!(4TXp{iK`!jD{@jZ6I3>(IM#4Wv`7dYK3iFWFGB?CsIS zC8GT#6cnlPWJctwd0Ae;so|>py@ymn@6T{tdu&_?J~bG=Tl1v{=zemcL6cL<3f|-~ z)l&MfyJ;%ocx;T?EoJ4BDX8tXJp=0B<7k!npUVO`%KkvV%OJzsAZ;rw5UV(KmL$OU z02dvCYT*PQeMgEv80yR0D+mALbdG;+Rp zgDK(^k%l-}``c0SXTML_XLQ?Z?gR47>U8bq?uB^-E%R0h?}L+iWc;xWBun(Wd&G|7 z3w`wtr+9nFJ5>(+#A(miRq+hjUx_`MgSUHIK*0cL)~=OE@>k&0OXIC+261!SGdF;b z+Yv@yiCODOx7n6aDj`GupDCywC1|JtuSUZvr|fwZDuM<>`_gRSu!R5>SV`0R_Oxr6 z`P>}RTVwzv49<3!Y3}&KiY8XtR<_H)-Q60j6pL#qYLpFiFCNPlQRbT$7zuDVY-wP) zSJHKkZJdG}4Ot|P;>Pv*_PKh0clEi?Ge`{5E$#nX10ie8(PLko>iRvC^|yi%WCcNT zkKtMMu^`EFeH@xG*qGj#L||*(qTMqk!J=Eb4e-}}QE>_VZge*{gZKGTZ`y2Ts*4Ov zgVlbU>-**~x>)lE{oPF(4O3flH4XNh>`1JElH}k0#ca(^Xs@dAQ zmY7P34ic*dT!bR;?`;$WuN@c*zZWpcHdG)*Tz{Fh+s$yabbmQ?{PZ`;1Kk0Igl9<= zmle=j!HaqiH6WOxn=^zDQ62yiW7WFEruHJtIgrUbBMS?k85-^WLQO?hFkxBR_d$q})EjjwWZE=e|z01g(K$(r%-@Kjc!6 z?9z(OHPa@4cfMO~r6}^2WmP~xd3iFThrAn0BxMhJD5wI`SDcy#?I__uPP>c1xN z7#r8V=8pxLvmgK`X0gLW%;aq~$U4A!83y9dzZ;c|n!jpgw@VsurtD>!uIo(SZvXDA zSyV1i4SRkA>7xvCVaf}^V`08_qj`F9%YesZ8n1(#L-u2o0~o=Z{IUthTA2I3?it`! z05LfIOzxWt29@Q}N9lO0)q@T2+VbqO@gAf}EmyuOEBd@QA~{%V*ES0^B@z+AYUrlR^YBjZFrzy5JB_752n?5_^)J|s@9vL-MMyUDw3HwnR30{s`fZ?bYL@I8Ran3(Y! z%%Q*~Iaqi-8nOa65oBd*&JgZu9rx@4n+E-@fhnq&a5h5xCU?CYQoA?p^otz3hZy=C z&g#i&q3il3@zgF!nH6V+0q@-6QHaX=dH^1+8Mk-poqE?i4ipFGcMMLFFq6x8!=rJW zQu4go`jXDbVs606|8|zC`4GvMOD>O>ZPA?AyNsC+gyroVW8LS^{y~cX*HJS$p$it{ zST*~|gKW4ogNlFWtha%EsSrv}qUVK^+gxC?EdR#J-%F0R@EJ&DJrA+Z#-N-H59Cgq zExlrs=XghnY58S^*GUp#TWT9qwwivxg3TOe5 z7@#X{Vwxo_wi52+hNY9mtc+_N`fLjgU0{27|Mv>kCqj!Fo}R(TzDbv{-5zsNC~Q`% zcc;?l`l>VShgMCS$IL$Io5Pi4nP@-SG|xR)31IwUeCS4DPVZn>Ou9+Nxit8+3ejvZ z9fTY(YqrOZQ<1Y*6TlnYxBnKj>@g>K(e}5%wB!MDDt*F5qi6^=$-B5^a6?Be@60LP zSI3ih4?QbuFOR^Y?mB}VL$zB-KrmSr@O;Q|UGPDv7X5gELG_{>l*MQV z&&oKqMZ03c91@$61|sUNlcP8R^`JnGq4}TBMc9QrJz{~Sj2$Ui^g|?O$BMssQ zZ844c&u9XkOSHqvi{T>VM(|Yq1g z&JyV-sR8|pci^`qqshA+&{T~1<^66O{=1cWqefNI@+efedDr#9!4$8tHJNs6Ch)QM z&PPjYYjzF}hrgremqKJ0bI1*AZyR;0CbIR-TBO^QrdR&h<0>n={(JSwQdaj7XHf+? z{71SAG5ZP+pto3>3=cxk_t;lck5AKoigyPSEhV`xHfqiiBn&ksBmA3DSHgB;%X(^WKfYBMqnMQ0LyeDyvA z+6U;N@xnvBSSl{7Wn6%-#JJjG7GTD(L6ppLCCeTh zz{lo0RTF2(DCFr|*CRo!-^wPA7gH^QNQ@T90p%T5kgFb~`D2+#X@Qp`qy zKAW07i;78}-sd_bLy5}_n~GAA-#q6|(2^)Pb_|%yCE)v#Buk|17Hilr7H%BCtz})_ zk^SI8RuqHa)u|m?*$t^7Hp4q@3?iKIs07JCG%kO{@6zV+9bg)BV5R~oU}fd)p5sgD z%gNIvUcxIEBOrpDq@E+}&|>L2Pcl`@VXFWbcHv8XpWOjx3x)|S#@U4uC`Fw)W`*~) zrm13SE9%L{NaPoh#tIS(h;idgd@%jUqw4*-S45b0WB==&j0Ayrx=9A$34vU=FPi+l zxX&8hwJ#m1Cz|c4PNAOIC{fhiWugW3BT~c+YPBHN=|?c9c@0+}7y7y=FG-5gj%vbg_XZ>4^$(x3eSQ3SUah@-J4wMAVY(vSK4IZl= zY#_VG0NM%4PBdRnIw>?E&EJpu76N}W0|D>7j1g(;+z+`a!;4v@c6 zE@7grkwKn%+4<5ZY-{=dYehqK{VMa~iCyan@+;{DIm||T^-8gQfgCj^ef81(T}Leh z?66r}B)dLI=5MNaIz_j9PNvyN{KM==nbuo=W@%LRj2vecr5iYeRUTvj$p4oa9z2oR z7Jf0zCU&SA`L!!U$*NeN4Hf%lc&1Q6pY#NhRH)2)cdHhjDHkzyS4}-B9)HZkvvp{N zgLbCfa_#Dt3<*!;!XtRFuLfj={(b$GZdh(IvJ7eZv&a1uT$8X+iWG7o%-a|LC?#fO z$#v)?0gfg*!beIZm}Z)iqgu{sj7npViE5z#w#=#4u4ht)=%aM+be_GLeo7ucALK0` zHWmJ@fmw?ig!}=RJb;@h@w?LKiyJ>g!ITwACZW{5`~2;@qy8K9H@U;aK!a8qw9Q^K z$)?nNjPxe2j#N>z;1R;seERMg>ONCYuvf8A?O0Ff0YbgNYS zBVqeDF0{afP|?FXt;OfZr-wr9zJB;}{^3M1M$Zq}XOSW{8fqLo|Nn?H$TlpQ*`F;r z_fSsr14f~NJqRLJVX~=2=V@W;GgGW%xC@M-MBk#%^&S_F%F4}77m4|^v-O3eNER(K z2RE0N;zX=j7vuTt@^BboKrn3>mV9r#+V&}A_vWmGY@oH~A1Gw9Caz8e3WiO+Y;936 z>Y#=oym7*N7Xwu!Gd{nhfgZYOV#bw0bjn!0onW55o}=i=_^tZGnWyxPUa|iET70=_ z*qvS`lqT1#Wp-8en*{u@qStYvnYpiNlC)Ez4S8{80P?eS^#73dlLIG=?7nE${OXWp zSUBz8?N$cvr4L!`$VAT@T3%C3G&5e3^KO>LbLXeCKwgbhG58{uUk$+_B>?moX+w0uBD8jWR<72zdPL2QX zrLZxYQsdmE4SOz#+PR;ibA70T*ak0I_durPb}L)mCNS}%6Ga_q>!+~&HG=f}>kggK z5Z8+-W_Yf_C%P@b)lLcF<6d7wDx(5@^Wdz%*^Y%8(4~2UqCW-J0UmFgDjT*#2b6`+ zFyM@tszr`t`0gY~Dm=UJ$6o#7)VCW>J>Cq@voXsLFpC4(fhfCnT{m&|Y=Ysg@H{fv zyKkoEP|v`|#61li4aAaW)HV;7%xnmxIJiBEOaJ+%6sCAZ`0!#wE=Ea~VhQJl-Rc1- z=L18zVTmoZF`5rHqpk8ZF(cxoX!$HUl2b9gLCoGu9~qa z%JWtN&t6O_jFb4SCWQ)Fd)>DCuy7wGo8~UBb;5h9m=zapCz3CW^+&Y--52`7*JiGN z?yrU+}%?U->@hgCOBBEiQp@u!#g+=^5uQSC>WbnK8rMkU>rqdm2- zq!~ojH%=13+15M3)Mr+M35{%vnM5bfm-1*TnrOWg0Pu*D>&8WD;@d}=p1?%}A$;Y| zGHUx4zZ)Z5^}HH~<7DCxu-5t0lSdD6^-|sV*G?hyp%mY?ikcl;PEHSO@{s!d<6O`D?vR#EoeWN*qQj&w-q*ktd$v$q_ZgODQ>A$tqQ$R3C6c}Vu&&)fI+T-Wos z`mef<^ZC5ruW{e^>wdkHR8&?-p6kA%gD~%}RB!!t{a-i{j`gMwJwsie(CiCeb30Isl@sv2X%&~h)e?P3?mcmIn_``WHZUvttpEI`I(PaUncHOpsJ1C*3f9QqIB~){C1Q!Tw!^;Oc~y{j zI!J32AA6OP9x<4l0*Figk`vfs32dNM)fSpUhPjxNOT#1vz_P)`SK5ETn09_qA9&K7 z+MDQ6wTrigrFD68RxxQP@ETHn`Yz38f zPsxK8pYG3#Yd^!<3@e)L)DQf@9QZOkRa1CF$Or*`15ZE9rF{h_bIX4!Q)t7bqk8}N zjaO43#uFjxd=G}U=L@<8%x}CMh3z>IV87^ZmAIn(is3^Kk6PfNfGqJ>rn0vD>x-Au~DZqXK{n8z_ zPF>E4X_jtQCj3CF3Vu+nWlJ`?lhF|A8qlEh(I6QvXWBUG@;&gm{U(vj0mkHsS=vnZW8W%wQA z=u^}_R7gM9I1XIr*+qc4SDrbLqLwqR=?ibiL4VBrYGXo z$cnW1s!H0ft8qtPZ+&-J<`6%kIeBIGOeGtweXay==Z_MUa&=nekWKPDAGI3l_wC2tbZG*3?HTlp|mHEtU8lYEQo6GzWxUr$>uMX)YtvHXQJM} zw=5Hryi)PU)zi4CC#EWfQ<;){<$j}29z*mqjW$)Lu#%qle}0}!>@t%HbCuZOpSDM= zmz_*edc2>i8YGQiSuL)o*BurxTT{%n>%)C*8sW7tt7Z8Cea1Pu|Ah=pG3SBRRb=zg8b&}%kwJU(J9=`Yq{CmPYnE>e7K zo#bFFiO2L-<)+j8!CpLDE)v^dx<*~X=e{fA%RBw{!ADPPi2O(y09h=XkAUiY!)!l& znt){EnfZ68ZA?7DBnKudrNUUE>fbiQ z#ODos?Qvz3PNvTZqVo*x$gpy;v^(OA*+nzmw@c@o$0n)IF8r^3A_kiMY2pTOm%7JW zFr)87thp%UpDgl(69a987|-+?pI+Z?lWc;AM!SvRz##tVc+!)xhR%pI;O55urO<&4 z$bG<8B2gA*_f`wF>2jYyu=^vIR#)(dm=mpcB$BYBAMDt6)Pnh2B`8$5>>7eOLW>Tv z`ptQ{H)=>3p$I-PrjoBb_#3G@0Duc`gaM7=DIMD ze6GijI!=U%gQf`F4oQ1jWiS%?iTMW_=*P{APbK|?z&U1E+Ux`e*>-BR`F#6I-0!^F zKf|rw7d;@YLbg+SvnSy}^Uebs8=IZw1a(lP?{P>RPdh)lsQXX2>Mud69S!dKYTdd<3@S2ShLPQT3a4~C;jOTX8ay)1f(sY z!Yoi^VS4YDtH6r*bc6fMpG+Hki3`@%7AoIR8J~#h`dE_BJ;u30+P(Y+{Aq>Dvp+&GkpBUBHR^$$+7tA&8kH){ACeo{;UqXR*6KeE1B<}( zub>yEE z@mY9q(P@8iZ$SE5;y=|HSO}xct>2(jF*&`zVK-gV>c2mCA?!1cMdQJ5kNHTM@x&Gf zLg@J2Y`^_I7zEbYs*z}X&7=mD@!ULIt~Y!Cph#P6@MR>00ombb@rL~Fu)vDKl+jwq zQvaNH*|6iu%!oB*Hus*aBD2nx2#CKX{AT^7QK7)h(!;V)mXzgUr<+X(M+&+^na=5D zf4w%%th7@It$27D?gWvAnu6f3!KXQ`QDxY>r?XLus2SL(CBxz|{l2~1jyUlN&H5^! zx9$DTFStla6%0Fv-h&ekC&({x#n>s2BxaG6+n&DjlN%yj=ov8!iX{Q|R66T*i3(%R z&Xu70;3aPy&yNi%jBve@vE63-0RJLl6uqSQ&6R5Wj2fmWUET#i*_##n{5 z%q?bkFjCp&AK{mSraLt&B?8> zM>OVhO}-bs{--?u2|dBqs{htt&0S6TXAJmX?ce(EO&Xl`XrHhE!=jy=)eOfM=_0W= z{~Xuv3ge$;@3)_E;MFL6UbXd#kO>5sSQEAWZ%1H}+Hje#zRusWKl@)-wcw;rtUb^4 zJ+v94SAf$fB_Fig@w3Lvel52>f#>*$juY0XUUj8;2G2^z!2Mrqw zrr4gfs{Mfpx7|aK7-}2LhFtG7&?>-FS7~(;?U3=uk=^iL9|2!wR7GMYM9{) zN0(iMH&K+0@Bi>M>Io;NRT~maD=Gvl?u;{~G)|hr-iB$kttU}~U7W3^Y>MRhCofeS zSrNpl5xntC|?{o5o9CRup8)h7bGLzVPXr-iYd~j)R^-~Vno4yU79gCnW zk{wVJ>~CPj&WwNhgk%$*A_&4!y}SipW%;OMY9Tr4!x(;RtTRZLsvxSbs;{hYPvmN4 z`F%)-7qxJBZPVrsLjh8>ViwauLA7elEPXUed5cUtOj9*xrQ{V?DN#Ev&NEL)=^=P6 z#|<;}WEzMcf(NJj#azf9(UNM;Va?HWDl5|ai@|+4aYaB0TUS4DqJf(moV+qp?lVjZ z3Z9}uV58|P+>UE(#o!!L$YIjz?mE@>z{EuhsXr(xqT?}d?KM%kwOPg?%hOI^JS>n8 zZ??@%38d(pcqupa#FkZ54f#3lZFlHiGHSYAxhGqHwv)hEK;9S$XDDF%2?Mi*soWIH zitZ^!KQ*KI?pW#U2U$pc|q;OOF2Rq&b!n4C@grooLzigwY;0IhW36C9Gbg97y zN5}Y^jSo}Jms2-c>|$&CihIoJ5MT0b@fdxq2@;8PyF3{kB_-p2UxPvWZ0OA`UY|%` zJ<|6*91HV`WV+ktQ72evY;6CYH+DQfvR9%FhMt`$43w~c}NE; zgm?PE$S#u{!*e1s;V{({X9-?|nSD_Z9rd(zMf}=_%;SLwsT&k7Hhs$ssElcgDMsa+ zGOv)sXW7H~g3{luvZL^nk4!k!=d$eyNSb^9u5f{Tqv{E$hpg^EY(2i;mJL?rm=o=l%z6yN+g6 zEmf!Vwv{BhqKAEN>>92be@e5^Hz=tEtSUvO?o%A78y5st&`O;qC*(2eQ zlSQ)TF0!VbkX?VUu!ED6Q{uq6C^DK%{_e{*tAQnwICZ0QUJ#QK)rhd1jgi4Q>_)?ZI`VX_MR^m9mtBynCGVIRNq7wQxMQ+Pw?o$=ql=W3 zh`$}eo@`)erIr%6N#6I%j2O+DEB5kG4V>BOEpn$QCM^ z6td0#8Og3ct)7b3%N%2;zx)k1`)J zM8fkBP)i-DBKo_lvA35GdT!|?cWU`3)5Oyg&3!o2ek~^s=`^6UKN|RPQ653G3_i+tDTZjXg0G z!Y98!Nbz5lWojiA6}@lph?fl`*gSjo>-qEOFazgVWr)_h4Nr^m_V<15k4OMu16&zL z^7L97N1dyf=Hje2?4O6blD{YbU&a@ zyt=T8T8aIo+OfRe@wen2@GUv{<(#3!rpY3RS9b^A4$9PIvb{0>44*~01Y3?5+DvtM zb`yn$B^#X8R3()* z+%{l{Pn2|FsYO#%G4Jb=BCZ`dl;2fA{%LbT)CSg@H>S$>a6|PUc3)Dwc*4AAUrexi zP3ckLA8KZ5YTCedJCzX^)bq_P{ugoA@wE3(CQwqHH!&{m-&A#+@A;ABu*u)Le*OW8 zU+AWz|2(*TE+oK!5&9%8`!ucI?{aqu<#~CCcE6ms-jTj|^e{~JW-;37`Ch59Yyv1O zcC!0z_ewhch`5~o`x9`QuG}%Iq~O~K7E!LKS*t64C+h@`+qzYc*cz&aSNPR`J9ree zTcKC-GhkA_R=_%FmquT&W7i~W#$aj3)Dqp!tp>dUX5QaiVOOi?j|N@u)M>N~6%xZ( zmeqOe_d!uPK^{(7lS4M=PCQBTUHwC`sHS}Gb|}CHE?B2)O>i1K@?;x71MvonIkgnU zHpERP%^jJdWZa|GZ>dV^YUN3#17C}=8h%^1^=_vzempvJHO98rWL|z5EV$76n#x{9 z19F=eM9Gn~ewdTOKc~`pwoAfz<_T5>za{6hXCsdj8kpO@Ub3$CBzJ@y(t%hH>MRE% z->#~ax&1OhdE*jeKAmA+&5$fALKJSFlO1~dBgmKTSa_i_2&H!~U%(^La6L#9J5H*O=?H=Ii5YshjeFS1rNdYQ@0Z+B(XAPyMPp!%M^9q>bzZIP{__ z2BdnO2P9EEm%}_pQ%4hzFK+zee)sk5=JWVQyyr%BC$PBtUiQx{WJ+JXCF*4JcW_HM zrm=diP11-;5e^&0JM&0)GxJtL5u_GPOCCN@?2OpViDQ4Is_n%2m-%{q`boBrPv~S( z_uzxmzrdXW_AP#d)NiB142T#DAbrzXyck7Z13%l$463kfzd0$q(6$b>H~_(vQ2iKn z6cN$*Y>R!Op_*s0Gok7^kYrEJ0$%>FQB&QwEvhTY;^PlY`b&;P8pYf?Gs*p zGW+trL0o?9ua+o)Gado!6;}}m~sFsMiJ=ZnBq5a6*%UaGj z4$P22JziR9@ABw(~lKmxzwLf@CuXSh~zME}} zCS`DACWPZLN)=rs`&wD4WMvZ92LmPiP+nfwkP!~acnY1Sr0Z%y2j!1hWHEkm`4fK8 zjBLlS+y2XCzi%Vrr_=&pVnrdiwX$|dHgLbIQgsHEG87n$;H)Ji1M$nA&|(@{~Fsd_h#y4Jkx3s zvg^=#vY~tw1MbNun(wj+jQM7#HUvIz-hhI)U{&tk3}BVjx$XD66QH9H?)j1Ldl#V7 z*f0R*SbV&ZYl=0m}(MTaIxjO@s+Nq$%CsW=7qwA*_@zn|q@ zpDTQ^gChZyMA0ttGMb{3Q5h)tQtO`IOREda>FR>Z&EbnQ4lgN8ttw0{nBV;A#NDF$ zqA#GiTEyH}-fB8z2tI%9;Je@YM-G{Mpz}g)8l9X;rg?OZGK#l zl8Ao0vDU>bL0&M(f5)@8Dn#PVZkgZ2!VwSX9S2Lx2zB4T(4}jT!Tc$e;qUbHO#J+= z)Ea+)XqR1!=^>k^m^Uqj_xNN95klq#fSgmK13LC+H+-g60L!S4DC+Z+P91M1U5z66K z@w}~;RX^BQfy;5(|9DMC^-Es%aRN$YK|yaC)98`c8xnJyOepl5%Z#^F75gh7kQWuw zGWO4FabZH4b{m#|1)joSzf%$Ykh4r3B!D73HKVpjROrLEV@c4{^J)z4DjfSC2F4=U zmNL34tbI-8mJ}fg9qox=^+_SI0Nx~*?oE>{9wU4xY(Of%>{M^vE1<^kaGQ*LxBr8p zoa<&l-$zvUBwsI8SQXWe(k#sMSpewpM_mgst^@*GwyGYW9y_#+y6zouwkQIp&1c&y zqiV$jhqtf1Uoln?HPb47SEDUTSp4Dir^}c-`>qLxS&AK_Cq3(~Z-C!a$oL?p9zE4? z?GS|e!0ugQ)%bjM4=E2v{?=B5^l2->6ScLyfTkT_-d`huMIqf`E@V?GR-Grhw#pVj zCMKsuhYjyGnykx0spJk2pH@nukSCh^&z#4Exlh_eaxizl9ld{BPam3}j-C+Km`{jP zk0~gr1~93ftkGZAm7j|JjMEYRWtSc{JxXte7BzZsi7EGoqJ z?Bu41o273z&>{`LevPcTW*}6@K=f}(2TeQ0PQ$MT^bRSTSRA&eKa@BoCb9WSqGvUUD$_5j)|*;UAg!~6i~ zV?`!doxbWU8|J-uslDb&=gZQLFMsihoMjn5L_|f$N*o}7pV@Mqb+s9D$?K{>8?Q#l z)Wt`u%&OE?E|A4Mkm$Uucz8OyR?tfy@1%w{lf=(B7VPJ#uy`^S+m+EMGblvu(>Kv-@~_S2d6P~EFXFh zIy9fYu=%?c_F-n5eYJ!@I7@dP0wYImuO z?N^in@}a!xU$rD>(ude;@yhVT%BJ3YwW!{VCn-YmzkA-G7W6aT;5za-m=<-#n=4<; z6%y|Yf^~wiQUfJa&v#^O3{?3GkPk10J}jK@Y9QdkrpV%Z8ec|S?})v90Y`ShgV|*} zM*l;AW#c;}F)dL$ZK)~{ni&}@uo;(BE7x?k?pnN=m$pFZon4DfpIov$HiEOay?ge~ z4pjZO)WPxpMdNQ?*7ZU5)kyVU*M_{B1~x=$pHu9IqcICod{dpp%9YuYo@#O2yx`J? zrv57haAD+lc9OWFr0dJo@(f>dthsD{a;KT#x@r?y7|W;T>cxb`s=n#9Zm64HI&q0u z$%-P8(%6Ni7-@C!;w%D$~dM*Gg&@f3z>2Y5K zI{hbLJ+c*WX%;%vmh3~UR+Oo%w94~$d5s=A_Q(nw2D~fKeJM9b6vz`zA|T)S+N@24 zPA!<T@_U>qfv>~Fza8Je*x$->hil<&;p%)jkt~jd+T{%DJ(Bb zHAlM@EOrbVdVJAHky&i;cnF9jY-Wv$n*$3IayH1QM=%q|!pJjSGLyNRM2Va*} z84Qi{k5NJ`V_Rc)Dt|eWf=!EHva^Ydp25h1_%ZZ@qYOz5ce)IDfyu(ZyF|#6*L@WK z?8ED1rs7U!4+&l(7DM90w>1)X1&$6>Xu$agYLY^t4mJ(?@#faqdxo*9o0oB!{|kUT z_R53@{&pa-WqUe>mV0hIDKR@Gb@oQPPWrW{sF&{kHjeoPWdct>WP=LCW>G2F6G8o# z?H?8V&^=Y#p$!gsV3jvOcoGmu2eV#dBz^nL17WcSZ~vGKuCNjYL{q_PF{Rb)OxsYo z4|rxrYSVcBTlH<>j#fXwj+d!op}(S(i13Nt5fj zR}d;(r9jqkKe38qM}Mi*31QpH!BQA8(z$ucLPcVXNK6(xp^;wcRD6 z8}2wTKt~zT7fS^W0uuRJP>}hRSTYT-L&pdDc;ZerS?M->IV{E2*IzOC1Zq!E!lBAN zO8+8M<#0Q9dFiWnlV20$27~T=d{7a}D3+|4F7y5K_F1Esqsjd*Uo0cpIUc?rDnl?< zQw|>I>hwIMz3Gj%<@j!&-2Xl1mci#{HJg=Me=P9D8t39F4PVN~1`b-3qd@>}+Uoua zh@-S#JR#!ZpiTO+Yf5NXXuE&*HvlU}0#zVyXMiTSpBwC>vp_*s<>}|2Dcv|tU)r5J zpcRVx&|4oIPJ^2emeV6q=}?>^98FSUqq9`s41|B1wGu+m#ha4ABk$KjH+^LwWN7f~ zYGv3HALW~TxjEZHG9n2}DqM9%a)|Dw%b*`0I&ny*I6+LxEgUS$cLu)`i)WvQ#Ly|j z-|(!BK4|*_hdu`69Qp~g>^KWzu{^ zC!k=_)m(_@3#ja@U-%|~YOqYkr_Lay=ZPeNlpahz^OC5)9v2e{Ck9Z4Ir}|rVXh+V zn5Ya{FT0kCb7Yq#@Mfe?cLSWYt7!nRp_?^RsjcB%-Z6FLG%vB80@FSQ^*_3;dnKiu zd?G>G2qX5M49pB-&9MbOV&uTc zC$(f*1Qfi+e@n!YM{Q3fkNZihELgvms}8-M{O6rl>8<))*Ez-c8R$w>^W_>HdIb@TY*;*BY_Z=T z%S|}95@s*8cAujML2U4vGnuW;N)i}F9NMdY1uOO!^1A%sO&t2FG2iOr-%T`YBenHg#s}2S(A#L&JAd8= zaJ~Y{b5TKUBqr1*=FG<$J2NN&8zh{L4A|ALVrw6aZU%ar?&KzYi;A=Y1l4ovMP`WZ z6~174u%ir`01!WRfaScL49k!*~iZv64;LKH|?Vmj{yQN@=toNOU{2pSwT8=rtc!u;x9fmIStDr9|6|I#uT1yF%Pr`SS1a2|R=qS~L?Fm7}I;IZpttGJ`KbMf&EHW~TI_yZrh z{7$HTc%n>d`_IfzhgmFd8zbfNEPnXswv0r%B6~%DP6gYgBPU+|UTw+4OzTEPv915g z_yCxkjbH%8hJv|>!mp9RG)$cCRKV+ltzff<;qJ-miY@pTi6lfq;sdTmzDjs}ljE1P#irGEV{$v#TEW3EcP#Hftvq5@EVUoa= z^74rUWhj9EA2x<>aAkzlbuW0QzIY)Q^nUiI2rq2Wd@5(@?l(6W@InA_SSwkS7izo~ zGHoLs>=;-WwLYs~X#*5Hu6L@qXjsD8Fq+I!)n`F8!7EYZ00t&xX$uk47#t#{gCJfU zkf|rBf#Vs;xx4o!1)K*uW}jmB2TkB3_i?CUJ0IT_ZXMiz)JWJHwN}G$Y=?N$ZT+tp zbGkF64D!ZrajA?=NQA?E#*bTDfR@DxtO9*7-?986d=4p3YA?acy5MV<|+`VD!F8PfKQ#b-LJ;jpHu{=hE%1 z5vV_T>Oq$x%+=)H2z1tfsZnixeRD&uPlx${hHMhL)A&Jghw2-@f%j4%kn4<}bAt|W zGe>cNpezU|^ns0PVR>u!BpwcPWTM(;Nz!gVmFWObAj&7RVgwvF-ua(AuAu37D5=4Q zrU)^3)DW(#|E*@u*ndq7Z zu7pb+2HZ0KJFD*Zz*&{Ek*0?X?=mt)8#nEp-P3~ReS$i+g$L#kvJ`$@E5hA9K2v!l z9PYVgn3KIRDU)mGlo{;1nbx+XxCFwlM)AbvYHH-a zf0iEnF(1MU)JTS&L<2O4&xugc#$n9wzX6Y^Ee+3k>*yWLdKV4zJW>c}Jfk;r)Nf=( zpjU{6NSuau}2Z;!p-PT+1v{;Wtwu=)7Qf&M?a zrH7J4GMQgwY~YdIUy)rBQreRvrau9198TFRw|x5Dg{t9st_G>~`taJ-_H<`J19!zJ zZYoLe;-Z37Kz#X^(N!V1lg7CM z(s%HQ-X=pYG0ro2pdau&HBX77&RE{jv_uyPs6k6&wSD(4%WBA5&CDXT_MgaHp7&2y1kISNuLj*^sHPGURlPAV*@*f0;7p}_dDJ8x@5loPK*bsp2ejvC2w%xAER^MRV+1%Daz4bUN zNIcMfu|%aVtaX`YK?_2RLT)8EpgIovBbZjAp-(#9Pb zQd7^L$D;;qc-|RDe8EZ=P0Xk)p$>tvlH{}7*|>INZ)i!49SI7*+sG2ad|XfEg@1nomPX8| zGq~pV1$F(}`>G`WZuc$R1keQF2cF%P&b;eeOG36J)6a~NvraJUb z)zEJ5hr~y!SRv$IZ6f?TcQ~b)BT0Tz5g|F2HHYZ_VeGuD=$yS$=0+IoQ4wZvV zQ5V2nfJ)2Lsi_UbTwZ7Q&FPj0wUbUD^@FY6p0E|bV#_9AgK9f%>^72lqzp?H_S3V$ z+ki?Z8E6KrB^|3p^!gmX-*!~+KpH}iCmE!{ZW9!-E_8D6hqFzdhP|n+Hgj0 z+lP~sRlz^tjBSiyjlf>0j6QToGfhMd#YIp1hnG}YCYd&zWcqpM1Cllo@Gyqp##X<_ zdVs_%k~6Po*rR;HT^0m{W*B_!+km;&o3UxW|B1%4LT?e^b*| zSuYZgne-Lht2>cs@@?!`iJ?o+eJ!Brb}-`7u{>z{QFoTsf2vMESx#-r!KDHdvMaLV zRb}<2r*MgS!FxfG*V;BLc@s#kR;^DRpUe?xAPi62ZW*60iZUwGmqwu{I4MXE+hCz^ zT4M98ERx|$tk68~HYW%bh2_=eD-QBJKcfI3xXbDJ_E56OGm{oV?!jy6wSBlpP}B~~ zS-ffSpKf#B^!OL+`CR%mev}awy|3|+SIv*3NWYkt^n~`P}>&`Vx^`w#HqcILqC_BH# z^P3IAipI~X{y6Jk3COSN_5whTdaiM{wqQO39QAF7pkpfHT>FCF6C+$N%!$q zK{7fbfmAvY{MGjy6!_}0JTls*;4z0Um35osejQ;Y*JR#X)?8`Ynq^eBoRrG&r6C+* zQy(h=II$nMHRI7DkVy- zFCqoYHT)XPu&XVk$!)Lu&4o&8f0=Uy(P<5&@A_Zw$czGw`daPnbWUf$^sjJ5`5sDO z-r}qk$t8XX)@U=%Ymw_VoDT)nkdgI#*|2kA`ZJ)Na{vA)Phd@$WY}f^(S4J5Wdb)e(yR6JXO6Fts)WFG zLb8gB7bZT+`9?q!B;@><+odH36aUUR#~<9_rKwG70ilk8f|0PvbuRs{7*KHLumn%~ z^nKAE#9bow|G5QQuk$dH@Y{}LjHgI*ThtITCS(za5;bQRy%5QqnJrazxhzw>_7J1ozdPo-+({4!4 z0*JKhv1R}-Me{W`<9=GAgr)UpqNx51*6A$-v%^y%fEkvBMtIrgm z4*yiiQx+&G0ni1`?2u>c=w{pUK)CLh)CbT~S(Dm8BHm)c&je;8G&t6d{Q`;F%Glp# zQB7e$lk#TD++>YJf!7TB0o0`<1?C-+OH>=f0&12zw<&xd1r$cMCTJPC)J|5_4wVB$ z1Q18i{l`-0-yC@K{MuE}Ioo(k!R)-x#J^*)BhC= z4u{5RoCA__SB9v5#98)$7MYGtEqvx;MBt0 zn>jvD{~wCOLJ|X_VCB{3FAGYoE$Ti@R{KtC{QhWh5BU}Q8~{cbG!BqnEd5Kj;IGXD)bT)EolBg0 z%8sIp)tsE4wm)z9J93urAD86fgr4q_EadJd1n=WH-t}$(#C`Wyfq5$DQ*Q_hmo(Vi z$ala13M$#YJ5@Z>KTElfe>8kz{b)WkUn(Ibn7-VB(4n|R-;{3?>5U4rT>4}d0kBz{ zu`k=fpm+;UNVL+IO=1GzNH0|iqZ$z0d!S{&CXJXaJa_F@Y{x({MvwTe>#1jFK%^k( zv@iBDnEjRJ-m{q8*c^7CoqU4=!3R)YA?e*8yT$Smk?c24j#(r>hFxEq5!Ld8=>Lq} zjt~fU?5bd<%Fl3KJem$*1P6#N1QAHp{%|@qF;S$k`S!BmzTLhCV3`5U9Hn|oir$xH z*{XMO^gTB0@nc<8-7jpEDQ^wYy6DS4<-<@RfSLE|@^(lRP< z+Cp4+DpD+6aj?drCi5gu7oib8mpe-c{SgjwP^1=zXzy* z*cC@}*De-y$bOS-OxXlT*Y@wH7f-QB>XFWXlm?`y&*ATT{ys(zj;k6C1WR{8q2aT$ z#<(r|x828sBhB`MT6h4?T(;_Ar!b-pf zz$Tyyx?gW|bPa2|tb-12xBa{R;QGXE3_8riNHz6-&iY+mAdv%#oo@Kcj?q~MnC{Ie zfE9ZB0>IH78_3Y|QkNoXpMlX4AWj%gmT!HXRyqULC6GkVINt#;H66(c z@7jYZU~bv=qT-0*q+qTjjxr-xe=weKNQz3&=R4<1uF`n48u(q~h;5`-lUAr<;*8-Y zDxxs}SWG(u{!C zDv0@jjdqZ2^6`oRxQk3<3*bg5u;Pp%`3Mpcux*bbBC+q|z&;KOz$F}cs?2vm?Yu25 z(aL}R7Zi0)sGN=9hcll*^Vx#$X>(+kfYWj`xa2Kd2THl2*A{wo{+E-YkiPAvZEw%Q zR~3mSCFa9bK+$x;d?RGDhuIOeSDQrzV*^B&OZf^RjE*#sDA=IyZFNS*qi)<=R z=W7~(pxIUhNS`)52ZcsNF-Inyy z0}p_co6f^VLTOcA0f5+oEDwCx0Q32|;dW~Za(%6z+jM>gPosZh5ow3Cf}=?pmG3u! z|BhA$v%iw7`Xe0A68}7w>hROUD<3hdl#^-;d%g!ZMDVpb7P^v2P($i z=!+IW5@(G$3%37h!zoQ)(Cv~*s0H`fZp9_l0a8sH0!eNgg55xJC5^{v2zGiKptAMS zFEF-x!~{fs-BqE~pc#Lzf=j|XRuQChpTu(cRu(sj0}t3~cMr1mtJ&Cw>aJ6_1I&!noEzKPw(S zK^+;{03>bxOp1}I>~l8aUtX{kycqxvYZ!N5zhs)BXJ;;%x76Y-N%0}S6SvP$AB(!a zM*5(+R!=HoNo<7g5o2Qgbn^3lG=T|`xRZG$Fi~%~9=w~>&>tmS_tVy(A$AJUs9nYBw|(g9civ$J zB&{WAf2We)ERgVLbp>SXHUvRsQJySPV6b*+2a{VeufPiiGU0dF*y_F+vhs~Zrb5OP z0_}OU_w)}C0pM)pmjqETw>ye$eIL_G!y=J?vXLw6QHh~f2CChff|sV4bCc5{i%s_T zKhx=prqhpWv7-|bH**G7TV%Bu&DmEar(QQaN18<8!lsUJ+wRIH6sC&tYbE66t(O8k z=MdKa9e+odE8R?1RqoY22(6sS050o_oH)vdtJ%6d70Ct@H=No-aZG~>XqUj~M4`4$ zvR#05+>4qC`s*-+L|lbrkvtbvzXgx}ZBqYlG6(Ysw?%Ot2nSa(sDKX718r=}>6I+j zKhfw_VY@HRQ@WQ2M8^*0U6sipWXv~+>mR3-D2gZQ+;1n)tkEoypcby!{NYbOu-z=R z?7TfSFi3)ojQOaDC*l6NUvsh@-?+)OHiYwK-q-z6nItfZe9=0I-{fT;R6KQba;QQK z(3DK|EW~Q5gir@i!ljK#f$^fw7R>G>Uno1+pyUB!7+Zmpo9zqUg4i>okbs^InMAF9 zv9SgPuF~cO@%qgArUw*Qpm*K@wV%D+4GFE@LD>Np4=eQh(Q(l;x-5?P&lS^lg|ZZtHbe_xkSD3FuK1Iz-$pu6mBV{?C5nx3njtor>=Kza{Q)n5Qwpb;DY ztUq`I-2LnAriGCwSQaC#s*7Ai}IEf1HGGWpfXu4{R<%EKz((Z9wDLI z>UVCHp{u{7+q(){Y=e{U=ywz=3%7x%TiH4>;34IuPEQ09n6LJaBjshA?!Z+a+Y=(~+tPS^L-v_|I3 z7cX79M`Jv@7>z105|LUcD>L%;7F zfim35vv<*=q6<8-Jewj)V7r+ZOZDS5$x|O|$rPyb<4-lOE-JaQX=6QY^HCecSXcdF z1kVqQRiP^p3PuvAx?2+$QQMr3dA9pA)>K}0B7V_ev~R&Ap<(-VkTGP%H;maLxxJkk z@}}w@HP7rn<03rJD@jzo21L5jzr<6otRNC>&{_8#R`tDCb2;2{RdnNlGj`z7pT!dX zGC}|;oe&PS8|`m~Y%#$Y`re&SoP~(XHyl1@OHU>8U^0s zU-Gu*2eqx7;f(UoTq1qbn~Ci=1rwyD=VLiGPawe z2_OerWvD*vZ%#2WF)?Vg89snwoHC8mIE;u!N=g~t20}g53`-t<;$8|2eRr;Y;S&f% zKJuBV+-qqBxIhzG>dDf$ljcgmgw|^Lgmr~@X4i6y`6`kqQOGFOB#PrkqiLOi z5;vHb+pPdg)=^bo3A!0;s}#muX;1G1-5$}TJg6BMz@QOKs6ps#@szZ!e%`ku@de*co#*Z8zk0HhoL@3O!6X3+@1*}wsEWqXr!JbTQ#Hw1HDzHD*#Ui^ z_2+F1^noDfe?kT;eUtAS<$?#6i4P&F+NmYezL+G&MTiY%oLhzXp;itYePhyq>;aJj z*x`XrVmFOgeL#D%3QG*46xn{I;Ab-nA_DM#28iuLtkT zv?@U3ZOcImfiC>Z?3yz(WLpt{{I&pA0lEWJ+LwJ`0K&)QlonEYR0tY0$+*bE2nAws zMm6F<#zuSWX+?E`xncDG#5gI6%(v$5z9ioVLu>iwRscj>-Ak579f^Wb`LfCXL)Kdb zRJnFvytV=g(nxm+(g;XMH@XM`>6UJ3Q9!z5k%EAijdveEZ&#Qg8&xntW++pT+cTCxu=a!c_$k24AK%m;cfTL4vcmK?Q_zh? zIB(v#J_8t0dZM7ZL+2W7FqEB-Vf!`GpZ>yZE1V`kQNdxXSJ__br3sE!@stz7Fu*%X z9IoV*&^NzUvkCK~2V2YCV#|Fsr+$FO1opxR;|Me1tZX4oiJ4lE2+B6$w)}DNKs++S zXm@JVl`_hv&Ui0kUS0;{-TDoRwL&Y6?+%)c)Oz5p`l0?+y?gV?-4gH3pt#tH^tW*6 zlFGE326op4+zL9Z@jp^0`kDs`&HYsE<0c!c43=A8=Y1|)_!$`9lPl{)X8IhneS~C$ z+m+$})PTTiHK2@aFVXWuR8Hil+|KXE9!IYh;+Y6x0(1R@mo_gHF5iKu534%XdhM6Q z@`BC%!aBF8P?Eh;v_vMy_id$M7F$|zfPIX4`%QFNwvu}7w^IPM=Ui)pS;6*!P6n>_hzTj6AY=TB-dnj`Nvs3WhQDYto9 z{HHqe4lpTpnpOyRD^7qq%Ofm@lZ9j7`RDhz?Je$e%2!s!u<=Tq$Tzb+TH^R4B9c{= zBffB$%rw8+ds9-=T7A-@`p*Zk+H4N3P6Qj*1tLl^-LRj24a1!jvHE&8{Wnka@y&$h@#3@c2<5SVT%!RHR zC?y30gK>pl%IeKo{DIZOD3oRQ1tH|Gahps&M(z8ui>poytBe?J%AG^6#~v7{sqejj zTi7*hS>y$-rt3(&*}n!$N-zPYzr8^l$md5}?}=b`0y+acy?AT1%(8OPT;j&5|8~}A zgNSYeVkRUxDCeo#2f4=qJC@Q_p7(d!NV~SKu8Y|Z;n&5iO@;bG?R|0V`w!+D;D-K9 zf3)D?N0%K(s3Tb0OO`SX_Rklv?C$2TAsm=-@BcQ4TFLd=lyqM>p+2WYJ*fSdr-3Kr zYKE*#;Qf~%t09WFeyZgK!Wc}Uc(_#-29Pb_OVJPwd#Zuwp}O#!!~(}ZG8*P7P%q9| z=l4lW&x3Ujq)si3?|B&Vc&y5wOUz-^By!8}$%0s#QBaOCTNW&g*|5d|(=*Nd$YwGy z8~zrzG#8rL+3Yna%uP&p^#`p~>KBicxnHoRCJpkis?T(sqQZoI+4o>0+;~hk^=O7` z{TJF8p)->s@dk+4gU)t!G9^iF*^n~waJ7Q3PYxMeEs}PX1{sNt$dyNBl3RLoKjQKe z$0Hh!EwC%LMrar`W*z56_@0_@N@Yao);aTx0|XvuHW^OF3Rh&bv85ZOx(5+ zQb|z6>qUk#*6IJ7)~WnOrt_!y$oewmEho;k#0f*Oc&0Vbm}ft;=@Ca|V!e7c#8W>4 z0#}P<=qtsilW!|6(fO6t(`?)RPQnbSGC{fxJ)Uv7qKa$bBD>YH2uXK$ud2diVitTc zrFCs?81k=&RGwL)2Sh~!`vqC8U+Vf50XD|)b!H6$-cE=LcO5?zRv3&%(s)HVLY`Ob zUuyB~CY~pLyc!?G9=G@)WTG>b9B=UU2+{!D5Z(JrVzN? z(dBUBauVi8>-X3B-oGS3YcMnGxv;unE-pxBlQeXnb3Aaw%> z05I)=ycmQmYFLdk*1-j1{IuG9{5@PmsrA*E)L9G=3WI%yuR~V&ZptwIreA9=VvYKK z{Fzm-pPrx9ibg?k9N9P0Pe)Lx)V-1s+McuDwQWW2TY-YdaV>T6VMBgBoJ`gG1; z)bGEzV7cnLYK(cR`k*PCN-}gu=W6td>l(~(h^#M|cJugBf6SsYb!c#(4$XbTIqH}= ziCkU@)aGRjg~`KG$S$IDqH2znfm0pSpp|Nh`-$So>fis;e1l*l)6o0r%Sz#9a8Vc+ zzXP3tQ2a}!Su%NO(FLSX=M77Kt`|XcSbeRE-}7rL91IW=R-uMxlg`-ZwcKDdR1;t) z>mJ>QCU)ZREwtx$Z4~l)saBz*Gvv*2YRmV)3yL$V{nxh5Rj+%b-=uasViY$wGxQDn zJB^!(w^ITp5`?!T34(MN!C99e((pQ*Mk<0nkxz-{_VeIXzMJbF`0_CRuo7QX1BZ8? z5yX%X{o7;ZZWZd(3In#}`;b*FOE{OUJ$J)_1_N|)a8nN~ecaYuhx$NM%?Tvw4f5ur zmT$`U(j2x=r}yu#d)l(_|K|^4@hQ)^agjfL#tcXcmK~z{T_XOgi~WlMmP@RZiv_w$ z=UvL4rN36quC=|MSJPL=#6lm4wMI|(V(YuF5gG|SwAcR{bPGpYmyUqwnKArCho5`# z7lR}XIa=}iJ+Oby6r5w7Z-EU=IsqnDKsQ^o3>qChyBMZh=Hd2mYFiumC5rqL(^EeA z9)v5XO3lHT=Lssdn#*{d1m*^grT<+h$Xe{=eupJpl}(**F{BXG z=?Q_46-X&OiV~oImHG&`yxQ7GIt};=34|nc&0$zFyfHP;?yUWKl(TeAJVBR-eG~0v z6C3A0EmFJ+0xOU?=Y`R@>V$>L<$iUnuLu~?oZ@VztTqTtx$lw6k|aXF9ly1`7zhxz zEW74o7JWojqIf=i!hbA@f{8WjLHp73GQRu9b(^*8?HirB>Y-47W#|0wblK&&db+3Z z-&)};e#>Pi-BBEX9h*8l0iTne z!LO)&l^Xgb;|Ypj>@;elsw9KV$oa5dYeZMj87ufojXga^Yw`U%rd#A^Nk?!3=oR8~ z61tV`s^284mNP%Ie)ux-UT|EA8HQ6-}O&N%o zxj7+Z&!v6Xj0|QdDA-ik-r;O*hkHEspaV15jUPM_Sr;Dd7jEerlY&$4CZH_;>H8@z zcnQb&Desb*3mnXynG%m_F4o9&<}_5tYmQ$&dg@|mLm+5Z*2&a#CFE!NNy&Gm8)wY7Y?#jU`3XE}~oU(CMjfcn{!;Xrq z+ee_k*Hv}ISQ3eQ3Dx~*IY%GaX7~rT^NZGxFnO+Y+^ss2U)XK*DFcn91FYWoiU7d` zq$f}*w%K))wARDqNNH^o6uCH$Ug2ydRQ$D=&>SO;q}+`#kcaO=UI{REpp!XBpii0s z`BFYHli@Go+>b;o`e95GZB!cj4&{Kd94m&PPtf}nl;y2ZH4EfJ+Ms*z3W3K3{Peon z%JN?V(iE5rrw^0Q724lUx1bpy8n`_?4FVS>9ln1g4~-|jE3++5Q;6sYa;;ws?JDgz zu7gls|5fAGop~O;(q$XdLH(S~0sGqz<@MmH0t*-hX*_ZMaf{nj&a}pQC74_fll{a3 z3m6_#SJ(#UzFeVo3ly5UuXs^A=<Xs!%n*Z8@o@nZ5HRxJ)|A3y&uKd88kB6R1S`N7im% zv0t@KL_I$@QM-06OeowCWXwSWOEO)Cq;7-T+MiEF3=w6_pQFgp|g1O`L>!8OqFOM!r^o|&Z@8yYIo-^ zD{U5|9L}K|p#ozjH(mx1(X0r-8OPb>WJ2ckZV8sS02u%(2NTb)Q z-L^BGm^&+zA4Tamia)LDfVsn~FA&M}%Z5-QT=vtrOGN6C&|{U>JZ>y6FSIz&WDu=FJg23_{YVvb2xoCk?=zsL836x(F>7UZ*VXw;8*=|pdd}dbG@dckc zlGpu&^~NiKL!9Nllx10+vjKs-U-bwGS~UhOA@JBf+c8%l-Hi^Xb!O+it9pFoHCV4W zC#{1$rsgp>pjz2>)VAGl9(@MeNq5~@f%L%X;mz|k7bue2?K%N1vHN_wJZ1GoHz`~u zpa#yCEMY2*eNkjdBErjOBRx0nZbjIQr0+Af9mkk-a9UtsNY_shE+nz zka5Xsu5o+yQUO z{|9VD{FpYp&|?!8@AO@CiwY@3Qde6U){$*g7+5 z7teu+l5!b=jT2luS_qO|29Z`HPwU?7sqvSwzzS@B$Z{+swG(S@R$3eh1oFax0XtH_ z@}nbg^>TSjK~omIKhwBMfQYd1inEke?i9C`p()&({B-8Ay}~49&2x-bbe(hv>|yCS{Rt;X6KJ61T@mwf~CvGZ?br$F_bu783ISRRvNF zl(P*Iq*^iAaeSA}Z5aB7(zFk#8qbMufUW=dpQP&lbkx}LFE{Q0sHpDOvfwdqvd58n zvfCCfEX@3XGEsJVu`Gn~>($l4D~{*S+hXeuXkJb>@t<#$5c4@am_9zOojw=%cPezX zd~sHIb#}bTHU2@&d}X`x%wt!=&wK*!Rj;aZU&FmZCdZC-)Ks$lGXPHIc2wi#0sSeX zhhm@0el%L<`!kO@>Xsv_vU{Xt{CpjaVzVRr%_!5AQxMRmoZqzOueTl@-&S}l8djM6 z_oaw_Rpfk=BppH`GYrjKKhiWCb=@NtG@Xnj#=Sk-AdDL8YJq~gigNNTuW6E4jaU;} zPxXSCq&HINSyg&Bc?BM(`2dxqY!T)Ha8&sviVQ&r;@aYJhf-={2$*ggc|sNVCkXI5 zfZt|S#_D1mlz!NV3jxJ5%UdH)JPN@}Zr8T>G;0(@UgNQu*Cp-u!?@$C{qkEHH=nC?Y+pwG&u^_Zg}k*>l5)v3F)?v5*>_1yL_~DGr`G*2Pltp^ z6p2KJFKT#FfH!mc+|4sACI(k-aN%Tk{vrr=SD$PE*vP}h1NvoKB~FJ)^UecE^g@XT z!pHuyf~Zx+EdqGp78j$Vl?tYI8{Xm_%!vtv)$O97)ZO zx}RMvBCPtrYF%XNsVrMCHnC8q(J7#zh?>Qu!C!dt!pS|t|9<4hv4jq&J$P8z=^VdY z+uq4&Dn10~Fg}zx4bYDJD#eblyTZwKQpA?|?`3J)FYCT}5wsLyybA0kIjzd9hPhX; zDHhCX$E4pmRM=ME-duiu4+ao`EwA=U02~eYZ$P4|X5XlDN|*0LM@RsY`hvHdz9_DmL?{plBT&)}7c@oW0OiF_e+l{2*=+^PMpW%1zvin) z`5?r#G(-AqF_kW;!}e?I`u3Mm-e{<(fK)4tCDhWJTPv z&{XIJlZc6-NPY7UQzrDZl4i`zpL&;-*NIikgh|8DWtq4bDjP`)`>OLaL^)C3xS|Ve zPkG*9Qhr!>+7ebDLv}h5NcL@`hV0uh^mn^97rz#7)M3L|r4|p6e&7OJ8dwU)AT|Xz zDXSx{O2o;p2q?M3(#walXrw#gaiq(1I=-j_ejU6Kn#14Xpx#tjfM!Ae@51EU6d(jD z^uF0m^9LFlnTNjdC?}4O`iyZ~D@M!Ou4~tlP053AfI1FtNdXdv6A3(u0CPGS?3$?A z*7Y76XO5`C-l>^#8Y6fj;vk=yJgT0(n1g@tm&;tsPoiOFcwwnEjlo(FTjt7 ze5X!%|HqsDF;!2V`BtI~n0ic<0VuiIR3`r`hx$-N2I4&_1LQPZerLZ|xTBF}Dx;vn z<{1B08!`mxomk>p>Cs9ZtL)?<*2hpyq;0Dq=~vjRa{YCz>EjaONb9NwM3K5>k?9G~ z`&Hn-BJ*4V`m*^7CJl-yDzA!ggwX)CFoOD_3h5#K3o!S7j3yB(3>K4-c}#brCqqof zq_CjA%KOK|_HDQnG}aHvQ+RBh))oGH;xVqnlV}gp;)M9ir2!WHHDVb)AnbIB5a2=O zu5ij$XX!#ow3J&7q}K1p*F?@Kw|BQ7o6D;@dvW$rQDOeov(j**lZB2aVAW%C()@5R zWVLH@jtN;uQ^s*dm{q_V#G#Ib-5kh3TtJ?t3_3jI0Oh*&PS08_1>dLfCY$jIgSYDD zdb+gsf0H?>{I4OS6?#lbH809tOH`t$+`c=f^T4GKUh@+@uhb5ykNC6;KM$DMtR~Oh zqJB)4R@O1orizOKn=AR4EcvT`V4wbqxCMp)Fr)?O$b*#tGEib+^EHA@rIQAvj$xd^ z_B7k|Qi*iOtzJV;1yG0#>a4I@DBr@&47{R{5(&(S8ic4vBMRkprs7x&QXjzvN#wK& zVoSQU*;G_)2clK)AD9MGe0TR>`q#qDvHoT`<;G_WxIXwkqdaQ)gT z(PaT9ABOh>tpLkv0ywINAEB~Up1SOy12G0R-5i^>j^4CFLZ-u)@Vp68zW4s%3YQP* zC~goF&Pp1bvYYpP;C2LjZvg$J@#s}0%|lY0BZl@vG;kve%89w}lN1?`Ed18e3x%Ga zJg^9wDkMW9;qV1>13n#t*2J>$1g0?t9rax>^)k@O5y9iFWT-4oDNQbibpgK7m0j?G z%-wNN5s_#N!jifPYbT^|vWVlD>}&?Ut^41w5t3i*BC8Nb8IgUbM1|~KW=?r6SP!HB@`u3nug6|H{7O>U1&5jN#S(v5_7rfY#{xGT^ z@mAYSHiXDDLH|D6-w3xd%b;pudCbAGFyb$FsK?9t4v|e=&)s~A-nBu1*V(m5CNlF+ z9jh|TSsP%G_@FM8tb})mr+UQ1ZG~e;q>;Ks*~skfZ}S?S2>8tnQIypsRB4pe{e@r^ zJQs@i8(VJzal9~+EEEsAG=uZ(bmE5F*e=TIOB=2!_*M?5OBt5Had_1mqn<>s*tI^N z9rp=;fDm=LFtZ(yu;2{XiWf(jJ6@BRZaSi>k@82VCBs0_C8+NHVefS%H;06gRe39>1cfipuSeo!sC0aAxKB2c7mFqNngN zH0yxD&&s3SY;+dlU9fT@m607J41oEaL_~4G!w$4G@e_A79ggO*W(YwsXik;tm>htL^T zc>GyG^KOC;7BEp$iu0`s!|K-2A^0>XwvnN#so+lYr8RKDT=&>@9g3)apJ`_IO`Tc} z7;rvBtriDbW#3_P6CtsEn|h9#LfQutINNeK57EgO2MC6Ln+7^et2icPKD>NKE!X1H zKV&$7gQG4YF>Ax&M~M$4PRL1i)q5J@iYi?Y#Ll0>x{zDJIksXfNMye&}loOQdSpHHG)ADa@1uz z73GF@&F|~Cwfi3-Z3%j58 z8l#RP5MsCm+*1X+0HRiUe~FmT<&qI6Hpf{)K|w7sCESbG{H?!m!zg4MhbIVIM&UgC zq1J`njAENa*){Mk=INX7$6YElBy|1|!`0GwFzA)~RjQG~;y$Kcv{&@pJxq8@N56bz zm1ZDd>?8ZWKe#<18OT|cgQNa2kecGAz;oSNvLNl{oB;vvwlCyqmM9HRXgUhqn{lpr z3zZfo9fMelVKI(vNQW zX-(bu^3c1(@nZKhu{aVKo*WlANnzP$PZzs~D#V0S>jn0!xLi20Xjj@U zgIc*v$R(`^;AOOd=w)7+FO z0qcQc?1v;pCibY{hg%|lNf=Q3h2yz6)|e|Oq`5i2>5;8Z&&O&cI-H%c0|7DdZ)?Nwe1a9zW+O*r~Bw+aNB<1)X2m6b_smGolh z9FOd9;(ty~bn^f5Uv3Am_arc9?sLZp%L=gal*hhq`$o&#?k|02gI^EUBS1Rv*>?=6 z!c5-yT@SCoc&ylF1bl8?e{Tm(iDO`38`ezQ-K%PNnj-O#Lc1#hFwH{{6x8O1X*IzjWDIEik#pW zI@PoF@`u!}<1H_#2h(7RFG!&B#|HNskT~S~P{54vRv3_NY%0AV5qx_&9RkL!jDp*& zy{$@y6zDA`;UH7-mU9E60%|N+m%DAZC+N?Lw-ix8a-E>%3-o4KIrtkM@+oXn@*K`3Q7_#{r%XIlJ!p(OT!fcj60Yv3|5VKD#pV zdT#OzI3iFK$K}U?VIHu7-7;idVXT~=q4%dFHIE!svHEGDT{8s>XEv1mZZ2H< zWlatJA7W4bI(83{fpa!QWa#<~R0{Sp`vonGh4}~9rC~x~b$$AO1Ox{rGIfR1-coch zbLv*<7sIAAi_Bn3S#Y%&6la6otK28E^P*nR=CNg1=T8zivKx-51l_-P^n{9X6|x~X z!NoRQ(ACvN0`^yBn&;>-g6t|avKRiPg)I(aGaF|gbBZ4jSZUmpMz!bKudA&+HduaE zut9R<3w@h1HNZjYPM})Ug0K76IHr zT&1|@bJQe-A=PDZZ{O?_UZbJx#zy<}n@Y0sZVMoUT4# zI-yVK^1$=1U|l{#X3%TW5@K3PJ|#A|?) zBFRG5W<_B7fEW@_Z|`pl(Ffkr2sz|Nb@>_i*;Ufix%&-WhVIPGg^1;lh^6mX#nT5= zz<|CAdHFm1y6W_nJIcDC3a4g(*XAeU(L^uvR7hFRzW{y#x^M6N>BGSr1G-}dGg=$I z(_50ZWzjZTgpuAuFsX<{e{-Lo1BJlecF?3se<#8~3B#eMu6QWJ;J*7s^ANqaf?PbP z1DIk=pB5#6$_fU@jt*-0As%u8z|lKe9x+l;$#g8$YJ!(Z7`7Dvb}drvxHpj4DE^i|&@X(h}}@Z#Qn zZkWFuGID~#E1&u`567Mn&|kb+`fGFCyU<6uoDW4h?lo*FeYz#UB~B}Mg!HubxOo5HMKBR^eG$N!S@SHteb4#x+C9o&$2No4 z6(F5)=TGLMsVHhaVm9TwqA~G#fi|zVFuix5&Qd&#Y{nVGx`LCSWMY zo65Oj`2pV}v8Ab}3kK5S90dC{J+?on^-CSNqIa5Q9MazH0ASG-l4AON@2}I7JeZ%_ z;6sca%wFJvp=M6!L&>P3n1Y}?u+#+FWw5tg3$wGvZL`0`K8=$+-TE^6H4iI_hD1ni zjKE*6NngPTc222ts;yQ+$5um6Q^?RgDi6Wr*CZ|V8)C(iQ+i3?(u@ng=KTEf5g@Z$ z;vm8Ue<>;Ran@>k5Am$z+-1R$CfI*)vfc%XHN1v-=w6jf!wnS`DJ8W{-iMmDL_CP0 zct#?oAvq|8^PXzChPJe*_tXEz`MVA2J#KuG zkh=#}2~1~@xW}Y<{q!Ai;)fqQfRu!L!QT6KpfUk>C+{OAB?4zm09CJldQ2#t5J`=~ z04fmt9OO^gNuKIvY!?sNBd8;yo@;PGpx;PIG(v1k%gN9z{Nr9bL9u7rkEdTo}D(Irsf~NGgN%!a3=TERhYm!_fQVhxqu}`iI1dhbp==odK zsqG_Zl<+!$z-uVD`#U-u2=Pj2rCNg{&fp5>_9Zoq1lKDR`#^x`+fMbAc8_qlbbj;v0i$!dweV11J_( z$4)H#JLf6?wamT1;tPA(h0epSLR`3grr^()FbV!BTN}zg>)Ib;9j_U#Da;-AKxKkg z8S>xY_W>U+^u{@Hgrnt_BW|Ry`pjFBmaM|6wub8(i-ke*W#Pg#MK%$SOz=NH7toJp z#~xXgSzJfu<6FkH=3p2HY3b22OYXC0kk`rVqK%?4=sOpj2wUNsBW3o-w#$v%h_NH| z&4s}Q+qAhD^ngy|W7txaBx;f$~5B(Y8U;%ip1lM-$$sgdkw%>Mdw)Z#HlGQORu z9k;N>y>nfh-j%{mhXVmVg_pug?W?E^s1wLAqE^@%9F#sv&@sWQ`OW6u!;FB~j|<`QE88%Mtbx!?PN_3IPdz!aNpmJ1k8et`0Cp~DnL zIg34DIb)KO*DH!xzJ?(_?ME)!ryI@RV}l|PgCx)YjD7-tA=-2Wtd{$(&@1sIVq9~Ywp%Hw5Z^#!es*U z#A)r_X>=r+t))iIG??ledGtJHiU9Av%BQB?Z76M0M{9+y0qTo_R7AK@k#=(Kq9nS( zBT=Pr8WeRedTHqaG3Dtok#KQouT;kD$ZQ)9N0kSH()ud_C-LjdL7~iz87kuX#c}fs zNvysbT*I|W2V64u+A_tNUU%&QM*OkfFqV{597t5uv{A>2INNdhsJ@R!^trxcLEP&R zd8uOAt?RD%L>QW4>quByBPI-pHyBTV*9;m?dP2ek%H7g^jb_tMm{>!v6uLhC@}lL6 zOk2wcE?JOpjyX*xd*g>mJ)Pf2g{8c+bExVDFQaIbxP{Oh?9?L<pIT^pAhM?3}4jEM@F@o{sr( z&uSmS=^Ir?G4;eBf=Nv82I^p$#WSQwPS@g_VH)b&QsgMMSiZLj8XxEmL@Lu`5!*}a z+dYlpx%2!ZjYiq<^Q`Un^~YC6)~7^t8w)X$K$sud@hP**eK>Q8pdzzu+v#~I zN7=pE4>A&CktB7o#Z@lP5R4U*yC_(uKS?sZ+D7h+<>)#Qumxh}hD!hCYTxrB?|rQt zQ=I?XK|X;dDw0P0*(G^uTHZ+!=l-)mubPi~;XgP6349n(2Soe1jZ~GCaORknFSg=1 z`=m?s>-SwYHIeJjkQCyiO{@mQ9lwh+J8yCH(FGa{-8KCETmwn+=R>$n#wMl_Z!YEW zX)bn9+>=p}t9#qn;gqpKZlo{L{c{bVg?S>G^)jK>;m%|&pW z5t#G*Frl|b6P2gMYxS4dN7+(z{9|{t^NxOOIZ2{k8D&sC54Pr?!$14_OjM3_eD z;brd-*Ndn_?RN6$zs-TnDpgNIVpVsvn!*&5CkcxLg0o-n`DS7^-_&}AXP%qJs#D4< zs3DGsXxk(h((!e1Pu zEJg2%Q(*I|AAO(Jv7dYDyqUBwvLz6xiPz(T2shNPAB z#-W~TIlfxz94z#?{t8^ESTD=2Xq{cnrAA|qs5p$UHAeps`ffa=lF4ico2(TPlBzT+ za{ap*$+Y}5w%P(i^xr@tMvZQu1On%08yk`L;|STN88VLvOn7W1gl2MjF#Swqh!bop zhtPTW*7qtoETrsiY&0zuM=q*;H_V_wOc%W!}_=5UB!*EdldP_ z9Ra7PDjE{wmPfbiD%cE7h(%x%dwJ!u&6nFfSOqycPLtY6Yy=YL^YelEgEsQWwP9;| zE0<@sw8wX=lW}Y|6spuS0u*_B^lQ{!7js%^e^)Gh)LAB2^ogyIDC@p-Yl~%=^1>)X z(!AV{sYmcDi}k(w@yOA$us{%TZk8*OgnCa{B6>;L!uxaJhDBY!|69bjA7Y}y!l6#b zt(f9BIdFsA-qP%KtXFdcA5pC>F>>dNM~wx3HhAY>6Ze1*OixW=>^0O>a(5{E5IA?c z!vFqZ=hI>lQF?@4))~!g8tsu!kkM{9Ajf2VuJ7I_&%ttj7|(9h8O<4Nat4`3 z8;>>N9iGK4Nsl^N^V+C#>+v_Qk{9emCzW?i80~tuT@RXk@;^wW8}1#=bF3tEF86Kx zKExJFR&taJ?TK~S2IYQo{TQ|I$uk`e=Vuyx@LcL|#^Ab3BfEn2gfiFZPHbDJSW`E} z&vT~}(m53FxHb6~=i7Jbhg9YUE4!s$b|9jQxp&WB{IM%?j0q8Lzm3nwU&58PP8Tir z#SNXydAj57T7fbtMq_kA><@w9WbBe9&0_*e7OCQ-8v1s-vCXc1FCOfT5QA}p)h;#r zM{A+NjHtbv!KWp^Nk34&{upTVnk7D(DgMdiguJtz!OJA+mYSWp?|td| zdBYtyxH0$(q8*N6k>MpF!Kw~dp*im?BtoUaF{iUqD-3&oaUIo{9+%&)^i}wS&~Bu< zX~lVLK#i{Xe*wHrEg6LGB0AY-aB7yqJ2x7N$nD7MRa0Jmv)oOjgg8?7HQ6R z#a5l)3hGN9qk^sS&s5Ycr7%C^o3N-|Y=%-MPZ19s>1!&@yIIGls}%FpzgXHgnIN{P zbl>i=?^fAZe~*6|fHBP~CoQhf0arsJ{-&xSfd{j8{xaQ02<4fuOf+g>+DinE7mq=z zv8|b7s4|X2P23km_a|i6MCi{SJ@}sIN0&aO+Aovw-{m&KJN>G!boD+8D!hu<-#l?V zL&=L!9yol31nR^)BJcGrc3d%QQOVes-NV%IUa4ve7e{u}JVT{z9YsM!wZ{!g#AiIe zH@IH=kvw9VTc>Ez<5iV=VA|I_MR9F*E@CC)d-X%klVKbM4(?bH_7y6voH$-;Hl^zv zq3jm{t0$~7yJ^v(vAXgD%G!*#w*H80wy-4q_trdrICyJErGHodsFkf8$z0&T-@EN{ z!LrTMO5c0^uuBL*F{Kq7LzLkqIdX>690B+DR%C&hPu0QW03|UiDogX$~#7sCXX|J zN=9%B9Vt>$^y7SX?J&$SGk8Ks#U8NpG)G)iJ2x@fNIcCn42nW?{?6jx|-F7rh%Jlx-l3RISY-N+)R zoc2}c;z3oMAL9;{)dRZ3nVOqt?x%LKdf~VFZRCwR@$6NCiY;ddbLDO!zA*z+cz|DW z;jZ^fJd5~t>CYQXfgMxRtWs+0UCUX<>npjPt}J4SIBC*vA46IQ4p-x+ctA?%S9#{- zE_S4NHvPX>L_+WFjXG4Zemw1w-NY@+&{o+(u-mq}WMy$kJ{E zIo_8Cr^;tEH_~}}ql{U*AB$V~MDz5ELIRa70hR0|LQ5+a0YR222KGkWXB1V8^F0cX z-kXdUK(3*;Ei=|^{@HNUq7v%m*-x5#<)0)udY`|RD{X0I((PMEL_GVA*cXDY3NRiF zCOJ*Bhnc=hnj($xPm0VLv;o$JYF(=0>Dh9Q?qlkWP)hg}s)wxLRn@ck;M=p2 zd!(ge8Y72i#%&~Sk5i@HI8WqpB*7L>Pp`qZ&lLnWvRUXSb{DNiPC7Y*9Huw8 z59PmH=)7HoY*@Z*gKruRHU&y>BRGR_7KzRHDv%0@_T6)OnO%L;Rsp3Vo;9RDyYTcY z2Kwx3bUIZt_t}GIyRsWsm4nva|6Tu0te2ghxJ;v3$y21ZrJMF5Nv_r2UWG8m;POJkQ*;o$jM>x)I-Ki;#)fyvZ817A{9$ z;m*ohHgl2`a$ICUjo^1syok4#athtdq?wh zNke)4K;<)i2UOI!6En!qffwqGI|iRJ@}lPcd^22gxQGkUZa<#9tYXMb(Qs$)Ee|14*#~qYtug_IYn^Cq~@n6`=nN^M@qv2&)&BqK> zv~eiwzP(({si{OLR{xT7Vv1+s%GoAlTac|u;C^Cu)ZbG6*udYnz0ZpBk`JaX5V zaipuvI70h93jQ(wv!4Q0+Foh&-O=*!A5>noKSUO6B~pi_1>fRD*D~dCs4*0(>gflZ z%FRGZmRI7v!v$gOXv*RV1au;d`rcxhk#L~=y-&!g=`9?WnggDqp!moZo=zw{-4|tE zMlLc9TZVQ^wd@sDvi}yt!KQwq()Q9{-?Jv4@h(yA$G^66EhBLZ6F7G#%an~WD0I9- zK1d<)zjKqImm0@0Xt4Yt=@C=t3tK&BxMbDC$@B>z?=_4tAz~~mK-fAgG2(@07`)mG zeK8+b8Q8&$48=z&=5OP2d_%NVcT4^4#vOP!O)0g?uI~W3G0I-UR1Yib?#eHiwnqb) zHbO^7O)Tqm|=*2iZA|b zzNSd<$t%PB;DSI1@8u`nF}?4+_dskO7=6aV>JXw4tLY{7<9Xy=%g1P)$ljb7=yz-~ zh~R3$bZHnZIFJ$xO*e0b`|TUkh$UfxFst+=Pm!+O^lw@{raw=_{fVEI->!4dX|ww~ zTSvvbl*f%~*E~%s8MUuKaPP?n${;Oygbi~@m4Tw81JWFwMx$+{bQw2zloA%DlfAsD zA}Oh)B9qxG)AV<`Tu%JD%g~=_ONrAD0}=$rJHbid(6ED!%v$wuv@-R>iQ)?Na!CtQ-t$)b)&z9^wN zc7|maHS=$`Px+mTx_b8QlzF7?RDntp@%Jm;b6+T=W2!`(xLjP#+rw&1PhHBM^$FDF z3pcNBQp8T&Y@*MwFomzR=JF3y5Lcqw!oh_PBHA{CXanC}hio1hn3S*GKByr&z$B@H z`;69W*te_Jk0?8^lfHAsg^h$|3f~%DLcDeEdFcdSgWPwyfd*^D-`~Qvb8DR4Kdw@Y zcU*3k7$q*M+;8iz_;a+drI)<_xx_7+=?nZ+D#NSt?-#z#tcFm0z9nfa1BdTp6JGoY zgMy=5#d6wcGbftythg7|exq#4F~%LuT#k&P3V+$u3aXPd*|Ygrn8_<8lJO6`eC(^K z3f_wvcj3|DF?J*K*P}T=Ay z->qy>@ZJNtHmdRM;L@i{D+ES%l1hhf$xmgSFHLZTZ)MCk;P3V3@ycSATRb_q99uC_nNE7fnHxJwCkS87E_ zgd1*z>O0^P(xAzIG9D9A!jV8gTYwR98&%ozOL~dXTcaptoTRac&xo-B=mwZZEcViL zopAQMj~-}6c%jIvs1?M<=c(PvnUR^8f2!(A|4XjLxODc1Yrjzm*N!stTbw1Up5X;vVIY3mR|-$ifAC**AQr0ew`!sc!y^Bclm*(E%k z`2@uKzLY=H!3OLR_6`Nz9)54%>6Eh&P(N9I-Je;-|=V7lzDe1PxtXRVvCp~4%1ipLw|@Qp^wwY z$s|r@fKn`1N3s{;iD)9*ALzGCna4gfsJ7` zE}x;x7ZB3RU%zeBr4P1`4xfX}DAEs%+R+qyURUb@%t)eV+cl=4pL2WYJKw$W^~wxZx9iw))&lliG|{uSR6D3 zNKs0v4qp<_^5CAl%ro2yqu`P^aw0&y)?FpsS4lMPND~}0pCI(PSgqtnAngq^n|ma4 z;X&%9pWE0X7#(^Yv1RTcNV!+Zf7g(IljiGO;;}YePl+n{5#Uh;@8p<{<&NSul#k8=JRd6N&mFIu(0nM=}Uy zxe{4%H8)S(7wuwMBSgZ-0$bdBL{xFS#Fp-_=LVXaD$^mH!wL@rO7K;0kXiki9>?hT z?{sw0O2-l3^|eL|mY^~#C2X1vH!D30vHrM$6sVfYQfFVi&wv^pa7+Bt{64N(D2@w% zCEG%~;q#pY>20{4A*tjE75i*FJ6)`KaC$U|XYNPc&zwlI_dmTrE)qPKsu*}gi$_Mw z)uvmE51#_DDCi?$mJfe8##H9^2>2y*M>E6Im@^+0m}F351SNw`-O%EWML@14`QELz zq3rQ{p{YgBL!r@?P{Ktolc7#~DZDkoMH}(%?u_`r`-KFQpP7uH+2rOc6+M#E%AiMu z<11N>Y)+iPx1gU0}o(fUyGs3^&KSCcXf1tzWiQ*NpunU znbC>losD6c4;L@eHoB94rbahoR)Z+ zQ{%tK_UanT1w!HTP|+}{B`Y3xh|BwfBi`WYVwc!b)wFwx3Kg=&!&}g&WW6z;^b}hv zLT`$ewG4aHk%Xgp*OH}?%VDh`prBE;@F<&?ww&n=FP{c{d+#MF;BzA^kVY;;X~c%g zu_ZLHpqnSw!fjY*2|IW=<~BmxczSvMI6$|Zw%RE&_=^4BC*nogcqT|pDh#t_%PF!K z*!C=(LO~UkD5^*imp9%WW62oG^jO0vC^z5p?+M@BDl>1fAfLu8^pC=E187*pqUi|s zm0*47aM(f>WsnLzY&m@Q9*zDf_m(d9%C&^v8J7hQiau0S_`{?nhgPVgB$LLFfy+Wp zb`gnqjPG(qqL_ADT{ag>R$fzic9Y{Xa~dcRba9*#BD^$A}y=Le_DzH`yb*9LLEf zdnYSIDndrb-ejMQQpg@9$tHUz*^yaB*6;GYANT$E{n?{3&gVU@>-BoRu8$t?j*rJ< zIbR0LWps$G#>C_Ijp~!rhaZn@`Os&4e!6^2b!dAuP3)q5KR0{nmSiF{4RultqdkWn z=MK=`ZjLXU?IwKl)yBg|>2A#`H%3Ecy1}^#VxOCFK>@<+?GOeRl#SY*>95sw+8a2A z<4$Y%lP+#mQhVWh6OY`(EZ&uuy~v>BKVL+*sKT4vtwGII>ldjW+1|~0?N#Mm{gtsp zq_pm&EiAif$!#*X>qn>lspCdehu0mQ+3A&kv*Jy^}kEJeM|QWjEchz&!Qe(d}u= zt7ns!mf`w+v#@u1p7OZP@l2F!+yfh1&A9nDq6}n}?K%cVg73y3bB6`I;?v3)-an0i zjrJva^a@-k2d_B8+nA?yS~%O!g^Ps1C&(?r;DA??q3GFly*1cNq1>32pcMzEoAHIG z!H(L@D&^9$S!=KLQ@-}pt#QCb;$!+=I&6gQRvh0?=@%H=?6t$E`KjkDzYk-xmZ21;j^xDd0gATS$x8`Dzs2_qc=y-7jE4CYb|gk zX3-@w)mcW5Coby~zKW|ac?(=NU8&1Gv-|Syf!0Y`bT!@nLX@7VGH3D%?eB=|V>7hT zG@v=y#pR}mQt7z6|v|JCT?4aRm-(6W^d^N)0ww86?9d`k%cZpIyW^STEC&y{Y_}4DD0J=nX z>3L1L>vtdd2NZC9Xy?d$;8d*HEUFqLT(bJ_5~zF4DUVH5R;qsn$w%p&3MTwep^J1O zS+{6RB^!_^H+&+G+d!$0GTwqR5k-L{f;*I1lQxLXz%;W+8|n7WCCkCxt-4*a`TLWD zZE+i4T5~&e2WjeW`7h0Ql?1Bi1#q4UVnw0VS&6vbp77OJnY!abs`aYWH|7raq5ab) ze2qgmQ2uzm&N|?^Jr>Z^A}SA6iRE6L!OSYzcY}hpro8e}LA|0I7LGgB)$u6hBb4gs zUyC}FwHJ~FAzp6$8Y3vj^&%ELv;8-h&ye8q=2JeXbA-o6-yalMd?Wz6KS* zLt5cGvgqAB?aaraxfPoKb(T;qsIqWlzj*_t2@2_BzQ%BDHn*)Kax)~->EojBzjnSS z#~u6cC*&qnP0Fq=8K20=n@RYmABpNxI9+r2`q6#d3vxwDWmc>ERVKgB=OgOo7CVpr zHYpi~z-5XpB8C3il_VZSz*)F_`mM=x_bZ>YY|v$EKFBn<-a#BJ{~4}^>PdMkMQr1qbYyi{v)d$#>N&IeK1=deB!0%73j7(AIw)>6j(yi!xNjrN&C&YHL`nt1 z8VwcW4}T}s`gbx%?fX|`Wt|B{(YClvq|On!+!Spp8Qt8{eQ$o9L)lF!W)3``<@zWT zm0gVjbOMFropIbc(Ub%U&*6I&7FlS7G7Ikg&88RTNfy7*HE>N~d4Kzy(vi~(E_JIM8L|e}E5|H`14Creq^PFDM7_aUc{|=(1=N@ACY95S2geg2c=2o2lL%7aK zAyHHKBT14St2m7OtOR0jfKp~*W@gMq`J{{5a(SO3b1(f7r=~Qz8dPZcAakiy+dcm# zN0=e`*E4(xk!BSnzl!m}>U^4u5tavRLD_P{!p4d@RvjB&ZNjZwv_Yj!68O1%nJ)J* z24juat4YvIRRptS{QLElxFNAaQtEFBv?J-AFFklqyfPn6l~3JF5qM2U9vLqYRfQ5PHbzmO!3 zowhczL=r$&vWSL^~4}S+2^g0{;5eVQ_#9Y8l#1?eoG@5p>y9be}yI; zWXQJgGqT+y^w0OVIj(~|5_C?jTeJBmNI!~Yp1<${7?u_&LiP%~o+X45&~{cj|J(d$N4f$n)GXN>G_s+3X72>qCqfl6hdGf``QSYVE8D`EW#qpfgdX|p)0*iDNrS#&AR!AWa@mqkb1U&krIMuB$Y^^(8YWcSK z=#pNIOfWjUSDezL9?7RJE@Ng>Vw07xQ$5LT6w&k?js|izrDQqHE4Oc9KBKx{^fM@9 z9%wCj*=adB%pT<&?7*>kflK*xae<&&rFgF7Ksz-tRcg%J-ksdRs1@&9eE#-~JxDmKMY^9oNcVpp!;oYv;e-!u3R>d%w8hYBki!S&q!5@S`w^uWBw z(h;dfOrxkgtMi8iD|KS0f=uNb*-B=UG`}0$yV8WX*(iwcS(p-1BvGB}kLJ=?M>@0* znLY0?1%pYvMItO9lSuP8at;Z6fldj@N+Q3{k=b{Fmrqkq`cN_YehU6~buVjr6K@*J zqs#6_cB@-E$IMAV|6+6XIb}v=$h$wPTLHdg!rwfD(#@5U5Mwz>qhVbjrF7nP>RyQe zi(4Uq#`ymJn*rx*RRei8R~a&j)@O&JQgX_AFBjZAU-@oeXUnu_B_f%}2%ep=a+Xua zq(U@}v6HVbLu^2Rf0Q6rkjp^Qlsi`BtE>7{;>=)989TR$xosTSW(N6Ve*&R3`Uf?0 z!ZMkVwf&bjXdUH=4U3<;_z)_hU~`2yYKGJs?hEQK`*O=hcC1%jOp)A!j48$3KhOKO z11$g-<1aKQa^Sw1)6@H>K~3`Fo#~Pw$(7sOy45}H(TeP2qb9l2D;%Zyh`Jc&a(Y)TS0MaJ4L0z4mZn_`N1K@56gYW0s{VBf{F*3U9B1@lqPs65H)ODWFXi87M#?a0pe8p!NC%A(rYg%lT~=mL3TSPO_=7nS};wUa9psZ4qtLUnk4Xf$nYa6 zKhHk_YYQD8{~RU88@lDVvcA-E$#p*|cseX4&-jy~l69;~#vX`EVb54SY5@~Eiwp6X z&%B;5r+<^-yQ^RDqqf|n_#=BQ}gU+ngIzMaA%^#z?<#gFves@m81Z>*vm)U$30BN#PNzgpLJpAoFDP3g( z4Uy030`dXI*zrV1s6-yeT=sJ-04S%0Nw%y5r7rQ!!)JfP06LSYJ5^(`*TV|mY7Ca~ zs7w+eTqM8E{)k{`CS13DdqbI6M8&qkf+DXkd(L5)vkmc6lV7i-$};bETVI<}_gpdT z`m+yJD3V)Y9k$o27z)2)Z(A0;o{wR^tU&^+kF$=Z z$?9%C0<;(L0ko@)?H3xp4+0{jMtY}$P?W|iyZiHFf->Fnj4ig-I$;^#wk@ti3+crS z@wgiDhgqE)7l~cKu#uMHsD9xajl0aNr%R114GM1p8WV5&>8|X#d&t+h)xp_cyfMMf z`CpPV*ItvHvA+&babad50?)ET5g2OlSIgb=zCmG>O#r8;O4@h&zROp1amsCG2Wxd= z78_zGXoHIffl^db`zqB|KqQ{nIg)eef|ZZ_pn!zra;dgwzT|n>2+|QCNJ4R^;dw!} zyQ=SRfy8;x*VTt@-!A9mqr*kQ=V~;j?ij4?L+NPToQ)AgAzF!B!_P$1KxG2PV@e@E ziO!I(4x42vIwkw*^_I4Z;-AfQ^5~>@?Ep9vkIlU3A7|yQc&w@Q>YcqEs8YAPqR*td zruF{4a$X*e7?1j-RdIRD^iVVUW>ZwTscM;1>DYrgZ^@`v0ion^Jb{XDuYeoE*5Tt< zADQQTkHl)`Q~DdzlK)K9t9 z*5|58s*Irxx|D-b#_A&TG8fq2?3`H|Ma@c#1gp38J}-Jk`Z|@tA0oA{jW(Bp0+{^!1uMCAPw*Za-_FSkDN>~}_h<=qI~6`4yz7iF z%v!`3(`>=EgR3vE0vQUV%JH^zOMWc}I9gk_+n_H`R2WZAxnEV`iYz8YA(onKuhN4) zE!80NY|R22_nl{wrfINSo)@D5B1t!YPGhUf0KAD- z3YB*>17A;^7F0u5UQ2*fx~>x~L?Q&wbBiifb2e>~&b@jDgB0Yk%(~y7l&b@+3f!$} zTyKPpxlQt<@jkN-88=KK{h4oiKUtlX%F(`;itg~N{#f<>YRrqY!pF`Z1!nrTllZ&z z^G8XV;x6z#ln|cTteD{eR%5HWzxKuT*O*cX0loQ(IeKWA%#%)5GguHUC)ifuv#$zW zbL$bxgV8e^zs*~Rd3UPD{=QJg7jWr1$DZ{h#^J!oKXukFPAjE2G_Od%MtxF5LfFWn z!fJ+{Yy2?k4NBawBKIk4_Y0*4mn|Xuxn$Jhp1>rEm4c{(z|2APkldEd;dV*~Z%+2p z0{IlgkjiQQH1kFJ5Zm@Qn#ga(S+R2xC*+b)#f52N>Zg@FRZ|r`UH>Bu9YZ zzGg&rgczd}3~U|~OIy87l1Qp$UB0AUV!h!3Wfjs!pVBB^7daApu~KE|LQ+b5Z?&Lj z3p0g;&uJm+*c!_d`cZ{WLj;=O5n3hVi7i#7?yQ84-cdo)VWo7omrkVDANdPb*J}zx zdw$4IkXApH?Bchj5QK@_gu6J!Qu`Ev(1-4571tOB4s&-bUWPy*&y~nwZp=XbARV3s z!vX4L(5^SC5tY1paMTJu@$mvi;zRWWT|e3&j+;>nryZ4}C)-ZjLI>{{L)x$>57EGLu=nt4yl4f9|%ht{}lmzE_FhOfjuvH14F}rIY zT$uks{d^faF>?23we->WX!q9lj^iI8F4HQjH#bXVIK}A2bcR>{S7*Af%JgaK_;6~W ziRp;{_)o?WcC~g*#{Y2mNxJNApzM#8(X!62F6p&@O#i-xc#n^N|7tY#@2=DM{0!5v zc*fD6*FOK2UK^O29tB74sAqf;r*a}?Jum;+ZPMJ4_5@P{DhxD|4cUn@bq*`R7UO2< zcmWiIvik(GtQP{@L#jmJIv;|%kb39Z{phd&PO%HdW6)8lo@MzIPISmT-#L`jT+=m< zuYiX-V3K^PPKd;(KZ`@fw&Q7p)&4($cLhaC1wWv6ho&{yu~fG*v@8u1msPkPuOY3g zJe@AqC1_R-`c1)|Vor|FasE+IRBfJlczSL6NRhS;H)+PF0ixis}JldP9e*>`;Piq|@+<_TTE4f?Al`07Y-PV7O z4pFoQcBRl+8>xee2~DfVbXH48riVr~4~X1Pc?Y~^sobDk1UE*LeY?FH?ar@C~?e|o7aJgK^HQi~_HkQ$u&?ltweZm-K_zS4iW z@>J_q+TbAWXw&Sd<75QPgjiiYdBCllMwi1OmyPMmPj;`G9>>ds4qp+SFBH9Ox|r#R zVB|9g@Nq5ryl+mDCKB)w`7$Rr8{1BYro2^pXw`D1@uQ3_b#tn*^{$_%=@M@+X1Ld0 zQ{$*wmWxde(=9Sx`uFEBuJW4WG%fvQlhrJ^^91odiPb(0VTI}}pC0kCsR}|NUPfiV z2s;5-;?WfqhU6QrkkK2~5TDwH&$C+`Fvhy&d5OD5yfiz0r|_LM9(B)Oi-w#Fy;oub zR>NmDMJx`SR}ht)Esp%&t~>b(q-5W-LtqlHNFpCo{s=46wa;wW;X8sL{;IjxiO+1u zgSq5;EOEOm4GNSHUQf>8@c`oAPjkw6r`)%siVNKHmR)^fKGqsn3V6K4MD-C{Adtc4 zos`RpN~WzFcKy%J6mRdK`A?(`w0mv2wO;ZK~W9MMT~ zn@byhaZmv^_5`Vn7SuWKy=7`;)YWPdzguR1!KmnheF|z2I zmngMXe{gH^IPhwbT}^cNNzum_dG-DUezhyt{CCZdzE164-IvAU;=MlZPx>usm_0Js zp*VNiKBdn|^thH`#&6I9Mwo^~-WNn*>5CilihDAkLgx;#bUzQ<6czTldQzZ_D!j&V z{nH*D@*q3myXl-J`lI=gEedh_np*mUU(OdQ6YWL0|NC$Q_lEp_5} zY}Bd2@D0o>;uD|e2@Aj{u8$aIm_|KVZ~)X)SiD|nUg*x6ppmG3^?90`G8a;KWj!21 z--cHHP-wP!yRfySa=!C!t^(~n7ls^11XzkYxK?JbE5p8kb17rzM(+0J`FL>T+PkIA z#TuJ)U8L|~39rW}5ojjd^8reI7)&883mC8JeuA!C*0;Zw^u=w*TfalJsp7@EynpzG zV3Ks+sqUxu-(*!H3ns+S5G_2Eis7DF9XxNXvMMgqAd|W9+S~OO=3*iK^dgMhHDpgc zAtgMG6**rg(c)BAUUC*1X(9z0J7nhIOA_$B4z-(pp*YGaVC|!2D5!0|NY~7zpN5h}q+YVhvwyZ#=~>Uh zC0#5Evmh}840zupe>3p41KdRqTLi!iz6liEWP=pQX3A;f zjG%Q=8G$XT9aT7@J1aQK)()*j5ouy_m~vCR8q;Gl>eqv6^Q+)ajW$ORVNwLb@_ws{ z3Me!cu!Z+>nTa zT)Ei*8#PYKzI%JEn#pqnjnM&4jvn;T7eRQHURc_p-*+MBNK}Wb<`S28)m(M~{fxLZ zG7o5{+iplA66MB7?6sv3aIh;F_8g#N3s;rB@+TmPnTnt8^a9ayx+=o$!NCGaNe9eR zbW2Z4;g1waD2S*ft{z4a`^wZ%Ygc%b*1>>2AP+m-pPzyPxr@E+)sD=4DcMq=cCU+5 zD_$cfWn$eb;*(2)+0mTYJT~JW(hO#@y?5Rxdbg$V@sGwq{l}dh)4!Gzo|*F2F5EZo z7_okT^r1QazFb#tn>*-hsx9H*GeTJ`>*o>cOD5{w<4k-iZHm#|zh~xciw)SnmyK5d zI4!NaS90I|eoK?6ZXK#A91ET?_y&H1Hjd;ay_fY1Zvt3-A@g^$(`AL=tUrfFZ`88d zY-HI~&xP2iPn2o{;rpOrM#!i_-&q`L1}jT)9i(92D%|hpOZ0laGABDfl^x$BJN|ns zC&Kn&@SDF1>V&V23E^37GYoemZ~NxZYT>GUvf9B_!E<4Gpl*e831B##Xm_~W0ir7Y zJkNYxRj}gxX)r+eb?uwZNC0EojhesAG-=TjZcreRX6WqJq8>D86Dr){W8?dUNxG~p z{czWa~4hzfRL3xXKVa}v(RxQXNUVFs*M4iIA2CZNkpU-JK3gxF+d-0$>(MD zJdJ?v9ClijFm4$T`Kf#BJG(;ErEkI2X(eFqvqgux#?zTn1zn#Zjq!+RWwe)qe_Q&tgrD8b;UNpU9{_lfO@Ks0A$79MnG9S=;?_LAL66 zE7EV4mE`={qm!|$e2>PTtY1Dl&9pz#vO6PtWVu?s@QSAXJMrP)x|*7Qr3;JD^J&mX zI+3xGb&0Q#P?A*`Q#+F3i~x56kABHV0OZd~Mn~5zg?Ny58f5O}Fs(nXiPcc^E0;ipw`1;sp^ zAoRO@2{SV_j-?V8F;Ulppe7d@SM2`%=#8+|pHXeb=7LiA zyj7x}HNL;55EP$_IufPan*m+s7m1*-Flac&TW4#&7r1CGP`m6}J=42G32L$1q($-1 zZ-ulg5f(!=@F>YOut`PLBQ>8xn-N~`M75Dz6a1b*nyoW`v*WhK&B+PS%J^x`pQAx3 z70BUocg%-lCx@96i0&pK0IuOjTKV7!0XfSkb@`OQR_m1vLg4^I;MlA*U@|!<)^0%* zk{b+>{`=lKebjE6@Bl?sC>HP z8|^ukn>owGpDrAa-PCu$HB9dx-kQ7V@kD+h{EB|FZ=F37) z1vss7&Ve>>8hoG+vv54@;|MLqrP-@2{J z5i(J2xNyYE(;lm^=^!SD`SFd-g6B4oS?$=u#^2NaF(umNcJZ1uu}TONEa<|S!1a#&CR zcN&1`c2zoDQV}|RQm@yVNpd2Xso|&7+Oj75(2fL3Y-2Hk^^t#=^QX2vdW_)@!xLbI zd%#JZaQk}hE*q7EqFIXa)s*Xp2b%G0sk>{|627LL4`s8N+Rds6glx3VY|Mg$bqAEI zIuA*{%HQJC%zJ#>l$>Kzzyl|bM7W|`xlmUn%cxSD%6P4f#(qaMMHJHrMC5vz#m(mW z+>WtUGH4VBvzD^FlsxxL7z0vktgR|II6#5zoU-Y?RQlrLtU_o8qFf&x?(e>&KkfB$ zZT8Iia`pe!fVa<`S%+!;SU3=vreQkg^vQx4esVax@i>F&u$PJG$4TP|Q!M@)Jb#Mm zc(-M5QAM_$Q+7{{j8XDScQ@IoIk#lD>H{9xhU&1Uo41o*)cu%sBUOx@%modp)~x0; zPk4Eo_g(V_hmGBTPs7-~nn|=+yRA%@ApmTxi-1g$Dzlv!eV39XkNfG{)S0Lm;4unK^rfIlAB@qwUTCa-?En3?ZQ4! zUbuP?>0+wfuM0?D>{Ue&vs#@l4G)Z7J9lt=ZOQ^J7{7*2pwatw@+|0-=ZXijS*3pxMmJ{P7=yKZcY{R@@Zg5mi8`X$kv9O@h$=6-9aLP zvN7*|Ykf${8{u50A2Z8mCFWl~UwM_C>DZntcLVqo=EU|f{^)nudMkdc0L(Z!mn?S! zNlz6>V11dF_b%(tsfd^~JWW6GYWQHE0vgN%mTqir24 zFdBsXqCj0+&&;lwEAL^7Tr5-{EXltq7OZnpGBvbBWi^@}=Ox}mQ=p4koN zJp$WJaPDRIa_Oo6#(VbNul(<6!&CP9?!%d}*J-;Q#Nz1am|s})7LVolqKI^&tVnW5s31u3v&lu`i)J%nxkbvOq~qTwm5X)>&bQwV7!=>s zWeA)!Z(T|kP=^5p;kvWBjvNrSTukAn*Q4jPf7O4jnIW|((-BP|YzBH&Bo#?QL7T0_ z?8fz?l{h{uC-Vlv9+T-9ChXqr7Gtc;gQWfi4d4x-$0E3_Rr*dYglSqIT^nN~Dj^`z zKZ=}iMiHC*&M?jJZD}9M_5G4IAKjn2IFR#VQ=8PzyK!{ArW{@B2tPx0QK<3L9a?2U z)7#31zXptBt7F=-ss*)%Ki?6o_y?6u^g~H_yO}cY&N(XPo@Wa9nC9i;9@&#V5o@Yp zn#lUYMeN;&mnl{tU_-e99OMOF4}czS>McX`aGp8p^BElarU=z7`QWS@z#q6sj@+|F zmQB20!c&5{qEq5=m!6DRB(>fZUUx05C6CLrT2fNO6VME=c%c7>uUDJ_KIBGrM3=lO z8u9PhL|5v&F>WyiIDhj;&YuvcG(Q&mO0CFqjemJN{bjYe!Lh?=Pmu>iNC=$c4*k{y zr|WLXkEO6sJ=W|;dknX31>kAQzF!uv6qWDxbJ=Kq5}|C}m7=tI6gw3WzMvmX z=eG8qrfe!3EEus%D zZaqgKYi+xkvJfQvq5`tSIsG0yDePx)@k`7mvK+VFJ*dJISh}p$RTDZGm5Hn^y28wP7A$7fdqJ%i2LHAgL67%UwSiM6M{IiY$O1p@=GXAqM)t?ScgQzP)acF;g3#vI!3*ldaZ@{P`&aTMD^0!idffec z4;W%4q;7HYWn%dvixTOJ)m00u97I}}PYNf|dn*Y@-Ey0R8IlQ`kafk;s&JXrPs}** zY6*ai&NbU1ZcAajjJuJ&(V z5k@AYl5r+FK;bC}D;+coRe~LoC>f=V%VpGzE)%<>JtV)3t#w^yM}^Gd8CVTTSX_62vMH zySLCO_y5^sju2qk<2zY{42C=Z}LL`^*@;aka&4+es-<%hJ{Z-4XzR|TvRf~M- z%cVN0@nFYpi%%ysqeBdNQ=6h}D{di)I&qrZind;CUfr;s8L%^-Uxm=v!tuaEOm+X& zJ6PGEa05&~e}lRS1*E(y2x;Y4`7i3|LXKFtSVqdI@f)JSySQWN_vu8*(}B$3eSyCY zaszxnk(S(LWsgJP(->0u%EnOUR}qme5dc`Lav;Fnd~cY@#b*D?{WzN1vHmG%WpF;x zIW_e(>ZI7o8rL|?tWI^>#i|iHN;V1TVrwr8SGkwtt@B9&B23B4gf0Rpxx-`FS0{%> z_8A-2BC9p|px=di6H+1^;WAn{aw4#+ZjF8#(hXC{(nc^~n+9>&ZvZ=-=Al;v4S0Cu#qH0OyXGyGMJ4eDn6^&+)(KVR{{KUoh(EcUe)mUh;;KsQ#9i-Q zhdW`{51vCNmc7H>Lkp6b?}te3t0XU*ED4bb!DV+5E6;)WEDV5$cYot~sHO%Ol7G0q zZK~{hkW{1(n8OVdCQ`e70RVkdirdnQL?EyVp(Qxdp+{%PxZzsB_#o@I05-wolW<3M zAE}z4{G`Z6OhmW1d4B7Z%x5*#zZgqojx!UWn&%& z#S(yG!x}u;4-pfumtf;VwBsA!hKoQ}`eK>IlL$KYGbY%!%`~=-o$&aIj4NO0E*SFe zFy8-}BIzid0fQWznm>mNf#Z(rV5X7KyTD??_jL$|PLRKiZ$)H-vaWmIG=JTs#psQ& z2IRfB#mB^QSN8=>K<|SaKUuX_DZq$vFfQ z_*7d3t10tQ=$i8cf;I|m!11E5&ARpey#(vrAca>Qu9XDles$esl+H!@IGR6!(0+-z zotqH(|H)s-V^luX+hRNK+J3y_cvZ>Z)}W}kfLYe6;TvHFC&iiM-z-LlFWhgkQZJJ+ z3z;tzQkPK?vmih({UVS@wqO|I0>K0Qa(Et4p9ZkyEVMY0TD!HTUKRyR2Ws!ea7IYu zwk&k~2}DBnR@BI*VD-H;2|(<-p>kN32zO%*aApxcrsUQVA%^V#=>CTjDrx=o8R?|pR3X0&P_5ews@8uMI+%m zlhh)19;%MLFy*dj8E-M30r3$x+H-V)%=3Uo)u6TF50x@eMDXv3Ypz6%6F20_ zy~x={{1a&^w_Dru;Z$8o7~%imP#B1E#&jvx+uW;@NvgElp-EW}36NHBd~i4c4fw$8 z%3vq5>krSL&Wt+y`mV!?t_DJ6k=H0;$I`Nx;TOsx0uOop5dy; zdC#)ARw8CmQr(D}nIsLyNO|TmuRCvtl8Z(l+teBn?zrfLSAf_-`An>p1XL83apS-<>6Y1*Xgms@;RE@|Y1(l>&-RO7lB zE?Q0QdtpF~cROI|?JwBlv)UE3F9M}zQN{$^WVVvFb|x1(fw%TyN;XEDc{8m}8%F4` zb*T~;EY@$U4I&M88)p|(iIWbj8>VcXcYjT#Q$H2c>Gk;EfQ4A@E!&G>HF$kZ? z(c%*0_E!pPEawdbSx?-_-9jjYkYHIYE1;zzc?Etwp$2Z5tF+)^g1BAGXZe*L-_}Uz za47p?F$pAi+W1xyPwIdZ{4A|HU7v?UWDZ+7#&e?LYnq^C0@lNC)gx6rmK9!8GRnvf zoR8IV6`|dt{)_LOZr5>(bj{h5{>ktTLhHQ$XZ~*eH)8`PF!V&Lxfjaa(b6_lxBhZa z=Uq*B%KfRVecAVDIjmyqCcJ-|i5ZCkE%!np%V}BgLbcVEJc&E^eLz33&ga$_mFQ#J zZ`3e>ksY-E3K%j9(f$dsR(%ZBRv_rbyK0`*NQ`zze|4u+cEZNL4We&jy+|IkX(cpZ?6z$X9^ zU@3z2mieugNQrt8g??TCAG6nAlMR)4yp-bew((W!iY~a8I3^QZ{9eZk_JUN!kS)1Y zr>>@^i8bieR)h#9pn{UvpjMbP|MDzBe_0-Yfg9^0NRsmse%e1{XF*fVcVqGQLv9AKnYQ9ZR zyb5t_PZz=tSMAHC$Gn9N&Il96iY>5$B9i_A)^@_i=|zl@?@Z~mQKjeHNaF8~-a}p# z4LO}q?CwExGP5`IIW!+M&(UrrAqp77Xb% za3O(ZWWm{22z}=sAumaw@5Y77-ecJc(0Z9-X|af?&58QkuyV9lvT{^S=r%SmEQ8r1 z@=4K`*Ls3}DzjcSnCdsoOcF;kidF z+UEA^J3S<%X@luUmPtx`Ryoej?r5VG`sp&pn)JFyi($=RSUR$r0&P1O3hA3>g)~f#7ENUX4%g-+d zK5f#X(ddUl$^O2!rw3fB88@ZnW{JRC!c{yV)hhH8`&vclF4;pA7v!Mb(#E;34lsn9 zlb4NN-k6D#PolWvw|@)MIe1^LM}wTms`^cxdIF?-uCy$u&!U|ED0HuSCl#uX_6d*> zspzSereWB$J6P+>tPRH-{iIuiWVBpV3Y z7P!46GUr&&iGa`))Sqwlt+Ic#bx|x!Gb!REWX$HfLg-0Yxt>DaBpaolJaG(0IL>Br~I5u7C=kmS>!p+a|M&A?#LI)Ey7d78AI(dVm@_(ifU>itJ z#t<}uLJ8?2wUoJowrWv0;;T!WFHhA62+>up;uRo&A5zQ}r$wsRzZh}0PU*dIWr4or z@?lht5c{gcK<0ExKBU|b4G;5LAagcC7j(jvmg_74u5L+QdNa(viUZ1x&b!=@1B}GJ z8liQAX&-S2o#+`_oe_RAA&5=5Tc=hsI%gI1J^feEB^thU_FfV?w73u;j%9MX^~wuvW^nZj?i z^BRPc^=lLc%RzPNn0$&!f`<3|L%-m;;ErwPpKdLjw~2&sC*Zh z=18yNPR!9asKm^Y=MLYh7~Yu`{xtOIn~0O*trBI|TXAZX^KYJ_j_#7WzSi`aLsE`2 zvk;y*)LrWpCN&v;O*e^caQ<&3L{ANn{rwssNY z=-Fd2QKdo%D`ZL*(4lbKZ`4=DZOg96r)|u2m|UwF056vz_3ipc{~ZAs_mlja0>V7D zaSFuDFM7)&WN z&rk6J0?VXiVkQh4aK=_!7buJl7%anp9tjItj@eeR3j6#Q#^wy{U{zB}gp%j_$S2HS zoZTH75=J6QvzfcyHbXJ)r*qFFCGiKY4B5AO%PPk1-8UdheyS?Rc5Y^O{P>k$b=|(w zT)E71u6L)^V&2!+YmuLO_cu$^=aTWTwW}*dzp&Y|V)EwsdnW^lUweHH zH6>piM7KjkpC$K1;M}=z_L2%h%SvcT~vM+ zPta)l<^wUW6smBQciX$RPaa~vzI#b&tT?CIktLURN>eLu9*GKjmMs@YEpF2Yh2BCQ zNlx6~XLr1~A0Pab;!GU!j@RNBK6MJsucjogo0Rf3+5mtWYh!Fn-)W+ueTtL&P(CWN z2yLwbqfZXl@@6_d3-DQyy=%25bIEFbEImA=CL|w+^j5e(Nwrtz>y;c8`S!Ny*24C_ zVD1&M?vGo4u*b_c@6-*2@Xw8FzFIJD@T1e}*Ecl$EZk+Exa0}*0ol|PYA5G6=Q>W_ z9*o0%+#r3exySL}ERGp>YkW__t}N5k&x$<69VZg~wF?nVam^`OZGF(eBo!H+2jMu|RwhjY(ai{{JD6O&7_9Xc%JoAhg zB8{}SrFPDla;pk0xdS|0kw?i9P{bYG zlvz{q=`8)bl%xOf_@`P-i{|L;h%u3d-lhHs7z$AzG6eH!C>3Xs8hR4tI*RfvJZ^RT zmPqS9y?68cSW$3e;OG3dts2B!Z9_=wV7#fQSCD*Oh$@wpCnUMB31S0ZnVDal^N+d0 zA(8*Xj-IOJQ@G&6^DM59oI6t}UrPjKD_}C0(S)okoD$|77qLGiu02BZJlxyPqo4Bm zJ1I8X9q9hmH1d-ao7Stxu#Hq48Z!08T}?Zg zqp>~{alF2GzJdUVYLs}_(jHgKyvBf2Y|4$_rjn)smcKf2&XT5|bC%Dl6M~tnrMwHm z3(<931PHPy^hEjqoiQm=wWA%bSjLV{n7F_d7SJW%`tgZXpi1%fv$Pm!t?BclLIYA9 zTYKN47Ktv+sDeo;1hX&n$dPf}R8hfh_$;hwW4NHM28n|Hb~R-{AFbgy=p+La`2tC>-id9vb<^?b3E)Q4C}0_sh$3dbv&eY0Hz`hw z>@FX|)+975!%nO`>voZo@gJGL77v9=sk+~G;qe5;D8TRkwkq8Q$$o5O^jZ)}Q^a0ab8qz(X})Ro zsg_8gCB_g1*;6gw#09ZGFWlk5RCvM&Lt0`b7GmHpM^;oo`Y0_BGAq;1Pg#Mc?e`;y z(szLCE*BD5kD%dy>;LnyEk8fm zn^iD2%dC20X61e&s}Q^BKMI%wn7U9j0Fe(0NTT_z{^4~^z?ONQ%=j$M+ED3P*&M~B z?vsf~NEs2V?CrwTF&816Kg#eNMMR=7I_>5W4>HSZQ6lBj>?*IPX#tLeLKg&D?m-5S zI*pp5h#4;<;I*^zDMDd7+*)}Cr2vvZQ%ZT2g22Jrnc(ON#LX_>9hVsuE0+lm2*7XArMb?6)Jj`mdi+6(#GgyhLb9-J6RLNta z)UA|Hn?#qmC1jajMdMmB1wwxm)t)c24!=8U0q+)C%NlZgym*q{6rA(?eA0OMZ78Ic zo4&}qal+1}ab*>tLH&26{dQSrlfnMc8kF?vsx*7Zb7|pt$!dUgove zExV_VOK-f+j^*eVzt7Sx)oq7S|@J{(>24M~elFw=iMZXkiAfK5cnwyt%rmT-!hiX?#OQA04M~ zJA@qJ-498|4i}7<&Y{8-Adlg5J8qt~P@${0K>s|X4<^k!n-cf`~=TFllXpc`M9Q>GtJ*9e_kOP_?)av$2jcr)P19+%^k%^3-WR#srhtuerZ~M%wC-?XT zM?PM$Jb6W_UCLLZ@0-;AGh+UMIVzExLzNBjl^+j(`yI?MO?~vQowNb8wa0(EtZs&J zjTvuwG&J?k=wSTGz6%}6`7|k?n8+swGj&_(Yv+D=`7e0w7Crgy4UwM*@KYdsM@s#-{X?*G>N9j!;#31@^_D4vZ~f+{pyF9u1apUU8#w^8V8_5BRU0rcvLff>B*xCEmI_DdGPcB znD1W2FGX0wuyB}Y`cwDEYY8Ff?--mZasyyOS@|*;IppDK(4?(N$^nD0p?nz3ay@ar8`<~An_%U-uY>!y_*bELTQSVI@P&)%n^NsE3WW#Nly3KX zLb89{D|&8O09E)_{Ef%D%F#1=q{bTTe7WS7wn*2!8}5R-%8dfLPLmKNTX|`5E=X5o zK_dB{TdnO|eGluOO?t)}n^hVV9SFwDv zApalxVe|INknE`H;i>x!ioVKEKJ7O2+&LV$(Bl4myhbALMs%d#^E-Y&DWQ{ocR2QL<7nq&#@0d)wm_F$ zVZHIPf7ICvWb5A)FAH3Y+*`^xT3W_SYhl0dH0*37RMrK_?w83b4tvUMmqcznp4xdV zwef`#TeiUUPC^}n6k8|%Jtsi_GJnv4Bt)@r@RwNKk>T*`lKU(O*va@woj@>Tx zrRgI3G!339NExkAX>O0`j*?FFd^sd**3Pmj63(fChDn)xg{8Iw%i8V?N{U8Vn@kN)G4TghhLOvQV@_Q}$3hm4LIoII%c zg#`mc!=LUM`xE|+J14u`3wHDYJa9o^kr*W0o|l)4z>A8v*JdWy{KX*m#`keI{A26d zLHF7^?7AGO?Gei~NzY%(OkzFmzy3;Q9L#d=J!9HEEwh!}v;OR|-_yT;J*la4tA0fu z??%2`K6RA(WXolDq($cIQvd56;sG|b{Nd#TSaU3EkJo%NcEtJq7-}VNTKJVsnfH^y zfHj6ZD3bEWBq2!POJ1g338`ahd2a7T^~i>dZ|G#0h<7)Y*IL8UoqY4lKRE6LPDkqSHn`Rf4bP-g^9T*4(YbG(=d1dwV5(&VoH|kL5nLBjdZH6Xe(fG#j zypgbZPnA8<;Mf6i1UZE*yVB&U{C&2!z6Co{NtC}BTEDtD@;J_>UCj)l$r}3`y?%&i z{PAN%ETiHfP?N-YWYattzwIrU$YHSd&ft;=wVi(b0)l?nUkJbR*?V5fQ+5B;M&M?F zVbhUN>8I;%&zTpe`R z*)86R?>jjN144GN)MP8k-gVyy}i53Eh>u2Iy;&VL*u+87(d|u8q*nl z2UD-!h$IFn4?rgigw|tngaSl?ggKUE1wnCH#RLHb_T9ml-jUx#2h*{^83?`NmjYiw zJd>*du#y25@Omm?O=&;_x&5#9Ig)&_+mCY)_->s^zG0AE@0VLNj3er1Ht~C{ien@m zsdl1~`W+DIfVS`u72iT@HJb>t-lv0jetf3pOkw;aVC;cLXV#)sc-D8$UhoppVJR7t z`&7%f$Mg=2DTB#Djp5{v$(I@)VA{HPsy}(v_E|M7IHouB+{XHv!Zwy zqUhnL=ye$T#|ycG{`0w#Dzc;`5WV93=5)O*a+X-J%!fc??$Xm<;LLtXoIj74Us!1K z*G%XHPC4Pa+mqiVtvhAzn89oB%xljzad2p;c^e6UVGB8$6nsD5{0uz?q9Rwd`lXF9 zBZmVhU8sZRc0C>deRjH=k*;RYj@3_Z=x*mHSbLn`U_Pwx>cN9x9knuhp%&SA)B&u4 zA{_vwv*sQa2;;q*j|yg-W2nwmcE*p4m*wdv%izRS4O9-aE{Kzh;FKNib5wG4(+?Mw z4IaBEh0z^NzfojNnCoYlG;&0wCIv4?7aB)q#)RJDQ22|*^}e3@Z9=T+sPmq7Xke(^ z_y;3+j6!(AnM|WWjpn}FpBH>nWpyBx<4l#l+?);gJ$HY`@~-0hW--nGVmh4>ubEi| zy_Hv|V1aLf&%z9@mK-N9GHEZLcwKdSe@A$%z3@1UOuW?SnW{Yxg zUGTkg-i6Nv$J=4>aqGwQ1uu8JIL}*NPfyQvq%VW!%QG?5O$i!4Wdp`ot4GE8PIPKb` z*Un_^R%wGp&5XxsW%?>G9}CD96w=_hJc?FysO4r7_04^^E@;G}!vJaRjo)p5%HfT0 zpM#HN%Utxxh_u75`e2;Ev0tR4Tz#%Z=|s^Gqqya=_-dHony_UbucfuG5BEJxe-#Y` zTMbZK-l_5N@wTgDFHQTNo1w#*fIvxp5^&(If33nWRfWHLIpHp1-4q>@Yj4v$P@W7( z3!+L1E@CU)zr0mo%^{f6{r$N9k}q`8&Z&F-Xx$B{xHa&g)F9UROx2jstOE1B*b^}N zqKA)c<@IA+3fF`+z~~a#8^ENbmYNlSjEP>4*?juM{o)1u z`fMISaMeoCxMGaz_rBn`IG{z@?=~Yp0ULeMX>cXwwPx;RhH{V}JBN#2NqB8{dxi71 zTnwVUxWVP6ZctlApe{raE<$FmuF1|#TY6)W3vrWJs-&DS z-M2@ePk*Tru?=b-ENTVJojpN``V=ONN>;ZA)d6MY|<*Au3&d4l#?cNove4o?FoL_niTE?#VB{ts6x8sl){mF z+G}@qHP_^WC^fr&PPsSjyOH}gepPQ(Z9Wm&Z^iVOboL}CXV+cW7|DihisZq@oylNT zI3`86yx5p6x;mULc37@r1p`vw}!l5`szJ9OK1rs&TEhsB|Kqm@#KY=X%Ak>kp*LrPUiP-VM)WHGx2z0H7ImF;$zJ9TONBVx(yxk4s` z6}>OV;`&Vib{-1ABR_xcy$ai}u4&p)C-+v(^JoCmf?$4lAJd_NH25;+c`F$OxX)Bg zN$v^|(>5m*gOob(t>=C5_r9*z26llO{_MUY3FWsNeq* zb8UJ4H7fK9P^FCZPMc%mB_75%+*zzL;%%eqteBAlammF!KlEnQKnxs^*JOEIv60Xj z+dd@D0q%oHvBKeH#wI0e6{{5>a08TOcds8akYd@h2>LDYBV8sp`8zpFk-Uhy#`F5E zW_><>^8;tEbCP@woiQU@P+|>p7r9y_Fvu53<6aevKm!s&*EYa4SxGxeA!EW1rgP1{ zOfJ#PAyh#2z7f%`?AX2c6>IrB} zTToXpk6(AGYV2ZaMR*`^QAdKd@bWy{ntya&+^Z+8$GnHd8R`{)goBABoK8H6H10FL zo-zQqx;DrasmRiTDaxsO1y%Cz4We!Cf2o$p_oUsB3nIB~N<46snB(_JB^%}W&KIaF)cSPSDpqgeNGF>~mX+nW}a zTCQ7a2Hixg$ZMieA`Tmpvb}}QDXvIMO)9-jIg7~nyzCgPFETOVi)?hg4=&lnR;E3# zZ}!*My87zM8n%zPDqn1`U-RoD*TASPYtj6YQEdEg?#?nAEF|ZZ^%&kfzgj1{uw`>^ z4LRWkPmnpk)V|Uh^O<%l*`0Ge+bcK66w4lO?b7(YK_&8TaR;Xnx%c3qZ~`FP`2xAJ{w2S3N zz-Jn}M>OV3J+xc-WIjeim@+K5{#C9@FP(odqzqz1teW60(P;DFWJOF!_y?@5$=P}L zkMGuH9_?oZNlD3x2&{~d>!S*kId<*h4zt9_WH(&$0oat^ci$=_=7(qsH8b9rw=4Y` zA8#8UCxs}ft9MFNfir(uYC@Lwn(RnPN!ch3baX!2)!y+rf!+j+pbo7aE*qTpmWEOV z>(9XcVT*9+hq`Q#q|qiQ4GX-2y1P$ZPX7{^O*^^1Ic#Vjbk<3M2Nzs_>lYndZAG#? zf1dIk0sqMx#GLcoq{WGah2?d+h^HJi_Jicsh)2A`4bHZzK_lz~hLRJ-CH&!7k0B)* zVJW<}?Sq4Zo3_!~%F4bXo|g+<5s#D#)$;Cl)0GoMWM?ClC6% z0v#Ss!mABis_>B|C(|?LJA;Nox9_!ry-R11hbgkTOVWQ7wk4J~db~b6JMTqbI92EU zk5k6XcX|yIt}7FR!KNL7^%yMN*LXvWH*Qo^RD|T@cfh6^WK=#C)Yax?Lwjm4Q#L;x zcs=2kxBEi>_G_?;CZ@G_qQS{MePxiRbaZqT+^mog@cG9*Jh5Alr%#_gW@WuMG&H1C zJdWMX%*xua(i^+Dy?xKt)|S;t>&5bPm8aG65Q6{ zQA>aR%(Jw#wBOIs^5J}cF^R{LsIRY2j{2LF#V7Y>j%UxLY@5Dw8B4F9FS`;zIydaMMWj+QT4}}SIUKIDmpqdArG`^L`6ki!E34< zb)eMU`}Y$H3YccyBc$nt-B06AwkA_JS^AI4cC;jK`)toP)Tl0(lMMLpz`sulL3`}~ zV7_6CNllF~ga>BIMA6h6#xlsimXg8(l4;)F!wL_?f3)!TZ%Ava*i#0E!)RsV&CN|a z0Fvdt^C|NVbai19Gb%_rIaS}K-*U^!%34@m4Om$C@RX5J!sUG#0~bLx6?6`s{4R32 z(x*^LR#x^nh6XZ=jENyq{bIsJ#-Shnm0qSD4#xzGs99x28X6XM0LWy%3Gh^^>FeK* zkT$mS6!gAn49VJbn{!>K7P?r8wR3Xn0%1-<3W|`TA{JKt#;ISK$!u$F35G+~-|ANQ zb}_cwjf{-$rEOdL%Z;#zh=~RFiIcF8GVD3m9fkj3P6e>()sp}LmX923@kWsi z_IG#ZkC4jd=H}MFvK~uo#=m=4TtWg97Z;b)VmRY|@KA-TtE+gS+U5idDf{kSiGyAP zB59`b3E0jN-Z%c!)6?uHd>m`y%O8eb&_H|bSs@K&yR!}1?q|Ew$?q*Jn23molr%K3 zfh7vVvfDutXTJ%rh;@R*yE);6k}#{Hg5B-Myse9^d-{YuY+ z#)Ga$dH6$L!s~<|#iXQ!eVVOzEL(jFJ+epTGaX4RUW8h*XlOcXOdcCC=bS z1oCW8#?q3R#{0^iPe5R4e-W-(^NAWf6|?D9`Eb{=>!c&?E>;KKd_7w^Gd3Y1T?mgG zwV;z6uY$O^uMl#(a%pAdslL8`#pk~&g~0Ob4U;V#{~ZG>Mz_1WyR@;v1!MEgrS)tX zFx9}EJOnqJhZi1PfRzN_5C?jz0c&n<9vowdmpwl}Z=FbJ$qnw|NrD%!X+l&QsD)ez zjl05qwMzo?^BFPfY=$f3K&c}~z;9&&nH@UTeBZ0_*iLDmgX`aYa!qHeCsop!W&cz8CZ zNpZ1&O$xLe%R?W1_wLgX|@=YU~qB3wmP)v@1ue|+?BZ}69b)aJ|0=Wi7i z6F~sJH~EFR$>y&@Zks925eps_EiLA23w-;9xuurN3)UAKGr+#lwqT?vCnT?N5Bh#ia}!*~(I97#&?qOblA| z>JLCffE_#)a3#Q$Ja^a_esXYjmUw>dGRp_)n3>UuiH-fYJhJk8cRG_?*7g&@@H&p@+7zcR05w1em4&d z43OliF!S2Z{lcHAG>@vStpz`2T8wg*?4X)R=KoP&uU&Jsv}E+V4w^qTJzZ^~&CO2c zWAfSi>L3Ub-PkB}v5_6sF*qm>Op2-9pW$JpWI^ZBw(6}(SeQy-+`KnR&-VPwU1F2* zB6Ye^K39b#PH~Ql&|r_#-{wnOTgC1KVsma=C1#>BYHD!2Z`Q~*Km$&*jfeo0Mnhu~7RL9hPv-SYBsAob#|uKYi> z*&rEZWrTHgbvXC#eF+K*YO@4Z^MqvZ`)BOQmRjV)NN#NwfMEls-*aA<>&E<0t zk@y-No$&|+l$2Ce{Q<(}6BNXR`1$!!$~QP}X#nS!4ZhTQZ%#^2k6JqX;mG#7x008a z$ZH9SOeLnzaOo(T2;jL$NJ%qo=bIruK0c79zaE~R${HFIS*EO-WstXT-=bX*a2oat ztr%3oZa>xSiALs=;5QQ#{P!R?ms=bl8;%7c-(8^2N{5u5;trmeRZXF4emep|An3F$ zhDa069Jk{7yzvj0_VyO`TBcaRii-SH3OhjhAybXzWLj5Gk5*uCy2_f%dg6!lM*xQE zTl92wkEfk>rUOj-6AX{m266E51Au`C&hTXDh>Jl`P_XF?ZLf02zPlc+Jz-$L{{8!R zPha2b7O!hgr|qdooY)=~PEa@N?vMmlFN~uZCtfxnCnqNoCraA~>v2^-fL?Zs?O5AW z0F(f zPy5Hmk}4`h>;}!@AQwz0AfP=d0?a3{MIXTT^b8Dij2FNEnwAy`+#y6vSC`6Z_fJS| zE#J!eIz0ym!6V*Jw;}ha_z0ovL!FJTM`h*+8lb-Tj0)ddFHg1(c53D+LGAM^vUIOY z=800hFmT)xQBm3kr=9lA@#2&#swkmD9EDVYfV~zJ4LOH?2Y@MdAd1#xe|3Fr50VtR zwRRY*tEo5j2{+WbV5Sl)s+Vj^G6?> zB_{&;^>lNq4}Zw@dV6Q5v%mkH+2FTa z>jrPrl$Ms3so%dtU@+LgcYf8OG~wrT5sDdP5BOd7Grj}_gv7?i7O1hH0c=jrQ$3`A z`79VmO%ELF((W$1Rh2dwyDk$K7Z=(;&+-9@Kyy!q6c-mmqK&&FUkdnYOFpHimynL2 zdD&N>@JvXkvD343+^Q3SPz3B0b!3VXl7U=7 zj{5iU2nfg_5&8uBrgEtgPw0$d`eK8pe-strHn{;>AlcA1XaIQg_|^`Egs=u{6iWdU z^2&DZUX^wPaD2%E;Ps?JOz2K@Pq@cHC%K)Y*&WeAHv%l@uf4=tY6aGKJ#{UJXT!=1& V*6`l#+9H5}4UiB^mcIVr_a7ChLm~hG literal 276893 zcmbq)Wmr^U*Y1EIN{57WHw@h+5&{C!-QC>{3ew#v2uMqJNw?I{Ig&#+3=C)V{mysZ z|K|tSTdI`V6JH7e`{v+rv zt?jPnWa;i@;%WgTf0RUJgfBz7Eh?m*`5C8x6jUQT-IKPXzc^>nW1m+$6escE5Up=hv2Xb|9(=NBGuBW87a z`tZ~hhDwE`*;uYoWvfx4J72DO-Ny7J@6=QNU)K!RbrE|0_lCyu1)VCu=6~G)sni5G z|L5tyFFN$lWC67N*BgZ@@B#YpSO3o{zPay55CC- zqs~RQMN|M{I=jJk7xcuhnBVO0=~zBZiCm)JuKS&`biM_aYwrDopY>V~ctzTT7~HeG zOiU^45)kl&zn=A1RzTTU8Jd&!)26z)?%TIj&#O)}M(Y@n&+a)?* z$kX?Frn}M5Bgjbk+H}f<1@LNZ*c`qzuiwRAIbZ)e95XR*6N>2cW&RA7a6@3E*+l2R zAK8Y%hfe7sBz2C(VJ}HMPo__K39lPzGNIM)+DhK5NvQg`iK2E%*v~3W& zfnK;};!`63mu)OK*i`+lk^K3fFQE$9KkxR#0-^Yyt$o;tfSlGp`Zq_(;j`v6_m%F`_*sb? z5DVyo3~(ySapO_Ely@2|cU09$>)bsS`5yzUsrGI3lryr2pN$kp%n<~lcj|JA%Muigl<&6l(JMy5hVC|FEDQ`ygmTg6F?Tb1t@Qyd@P(4aYl z3}E4eyUTSs+{!z?*!FHL)mt6hLX8N@dx6civCcrFuJNbajcy?sxDC0@y)Q*k2T_2f zTYpeDDg`=KmNt9Kh_SEg2TwOe^8csQQPt>5PU+K$a8 zt7|5^9`0qf5Mxd5GSVJSXY&SX&MbYFkL(3@2wB?!bLT57E5Q(NRkqu*olmX9ezt<2 z7i_HvC;T7 zfsE_BX%!I7B{Mw`0OI+Fg%+Y+yg(j)%atNX1_M*PC z6DkUGSD32paQcM{NL`~{n~*p%XAc=2I8kdLR$B@>%wXEM5Yt_~yz80HpJJ-gsHf2ie$#zo4H5sfEsXCJXKWE-j;OHK zfmZ-AzsE+hU;eqj+&D#MR1-iZfLSi`t|=B-+xA^TC`8DMEm-%&K8r3Pg$_{)uPPp) z^rUGIp!f|r#sq;@PcI4LDDJs(4RF7I(r>P@-;c>kkCz3wL+R6R7Do0^*Dfo}ZuPp9 z(dhB&0nw3~{9TGQJv-@o|JV6CCl9w~!yrP&{D)EZbR1^+MS7kz&Ik+f>FMp>@?Xrz zex`8~2@Th&%agrOJ8toQ>(B0Wq6=s|i;iAvU#yxXPUEy)89-wVK9KvSfX0>HYcZx` z-|LQ+7Nhw`*Nbc%Q~hA&h2qfdwdsae(KTLkiwHNG`UL3zP;Pl$=VhGudmDs%?pkt88)SQ`^&5hC_FPrujAzl-GmyOb~+SvYf z)8J+L*vfL;*n5Fm6V|qp;{bOQ&$t)k1RS0P=TZv}_f0&lFsEj>7^M?GlK5x?F@oyO z_#vMy^ENzVsCnbc_rlExN;3UD#O0CLZv;Q(w2w#%p#CBhE%p_~_zecCI0S6{lB_#S z!04DZ{T;j@qb>tBhWMY}u}c1L;=y*U|2OOyTHzypWEq=YrFdZ!SXKe@j88-AQ0TFk z9#Fu0U&3osI6S^>m1d1w)ShUI`#eUo-;taWYmqootF-H?HIDb}0QPGd>LFVd5N__= zw~9RJnc(_qKR_Y#T3nTdEMGy$W~`tIS?2`lP8a4kduL|ZI|jJyS4m-u1ymq&JIGc& ziB2Cb)(X77TLC8%f04VsjO)p-iSwcj__%+z(77?teI$LyMJWoS#bm2mfO-Ir-&hqs2dEzfgfMS|M!l)g6YIyu5@YcbsM zH$GH+z$gtr-|ps#Q)oC83OYtcmG;6hiU}j^UWhIAyfCs5O&*=?5Aq_sEuPdxvrc2v z|5#c*Pb-u7RyxZXAqnSWi41HER}lwcf{XD(L!cbH_0&AmCDrd1iJhlHH&4X5UKium zO%8UM?>>c2sH`hybGa&D7s2&!dVp$AlJ=FHQd^PPWrJpiNjC$+YBsX?XdBrjRF$s` z7x{ouWFm!e7iY@`YUL#189KDBem|k}KoSzh^tg9^&z9*k$IFam-f0sUL;-)2#ReO}xl2=*DxP*jWhH zS#5kkW&88wB<9{!{vMd(SzzNXcH@JF#^XfyJ^y{_^Hsj9xA*YM`VF7hO>O*nDQqqu zag*X195f#EWc0l7c=`-|o|F~4z#$K~QX%&{;`H?Nydwz$JDrs&2Sk_rObN_cK)F@vQIhsr&i%zQpN)KJZ#ADE0I%?i8?@X_dEy z61a(S*A1(AMyukbxa&c=JIIIGko%wYrn>;)V9LnQgU5*|T@w(AI;4uZ{Mu4ml5Ol! zlz`uha9WBbTrQMJ$xtBPNFrU(d8lUw_iI@dV3-+JS!Ko3%(FhLtqhh#N*_WdU>Lwa zU23A9e`6yFoWJ6FpGf?mBMIasJF^8o@|W`=Q}cRVyjsQl*|311Kv*rycMQtL9A})F zOZYP~<1#Z87p-Di5QHw!1{vx(-hg~x>zw51ID zqpTT80Y?XDm41AFJd;JAy#1~0W(*sYJ(C>WajvN1SRlx<%4Iv`T6zpierW5mHbY;OJAhyB4G8Kc;+9y$Ep3b=h z`iHjYhuAj5X67qzreKSTPljTSYqjnn<+Y28_znDs4r42Xf+-H^tO`6&BCS*{I-2N4 z{12j_T0Ouh!5?LXp%A+`hbgXGu70!GxEA3p#no!Vq=aJK;6Q3)aZXdV6r%a3F8_~z z+}y1^AGs2oZjZTs)YzkK2RuUE;@cy9evwRKo(?yO8kJ!?BH9_r@)E}`E-r5F?|;3% zzBUVD8B1cw_fLu-_x)PP2*{XEYkoZI4y5BtoqEc}nw~NgaNJm1+krzH|A*Q9-PKmN z9Pyw$xX;15g?nycx83FAMY>M-2BhNDE^3^`e2Da z6p4?D!-k$Sy06k4A~rP^)LwZWyF{vN>R-`Fxyv z%6Y-S3*n5U`)pHbV_P2k|YyN-^_!e)gWY1qVCl<}4-Jj?Vz9;a5wo67@(@j&mxn&zq9X zI6R7s(gxGUkYLF)AoH@>6uM{^S7BAd>L#eR4q?zJQF|p>{h){BtJ6Me6R9vus&VVo z3I64XF_EUZ)$eNN)!oObb>eY;Ubu@smF=8AT6H3h!b$r{V)ULc3`^Il zmwiVE)$|ZJBG72 z9xea*5!=QE8}L%ITL_|H^nfe=*e5>DAbv0B>E$Kdw}3{-e%9378S4bwb=u8;Ob+^m zB6fz5=YJt5b{?sG77v>iN8Fsvhw)4bu3we#lle`Sm&X+sn(GV-ub;=6-M0E(GmBrn z7w`Z30@veZ-W)f$|FY}10D1_!@1*}$VVI8y3uIt%7+8F_c8J`}!QpuE*h1&x4jkV- zEczE72SUbm16SgG*vUZ{?V<{rv{T6FY3+iMnz>or?tRvjq(O0z<}F`k(LKb*`td_e zD*1(-D;)DCfI^5nR22c)r%;C_36qDOp~rNkvm6{WR#3Z^b|dOpH2I1#jZN9VrAy7d zVy!iKlZi8{0XcDu>?h$X>PAg--Nf_l!RoR6>>bR4Ypz{(yY|fs(Ww@X%!+jDtw_g` za4D+`7&t?icWA?{9m7F(u1(_jPsW6uU?8~8#7cjJ(*w512gR<&D;##=C1a=?Mwd2a z7L-!%p|Cf^MvQPW?8>d<6!c zN9Tz8-LyfUe`7si|1aWQg+?BPQ%kSym7CfTd(@&<{{TL^B=gaKwzG`bI$@qVeLi)=mnaO+Y&!kX zXm@V0Q%Z<5o#t3G<*s@hKhZ({uRfNCyU3M#8`9u>Ba0vD79#)wGnM5FT3p!2;^fw=iqpSW#Mw6#?iKG^`%@c1<6kl?mUs z+Vr|WyL8$28!ogr+=JRx_*JRE;HyRGygfz|tEOdKFt8n4K}U~);89! ztG%{zz{`zxYhb6wKxlJNcF-Nxvx%2}p3m-ExC6I$ci&Gq?fwNRhw~LV!d{rc@C3Ud zd_#H~c-wxTYIKi3nI{U(qL{8aEUuBW5X=CrwtGB;ii zFgx;_ln{#sv=`LcCCEY+xCF2_Erw%GWJa(Z^g|2JyYR&CD02tuYy{3s*T=Zs>d6krMMoe}@=?vBAP)FU2DQ z+;5(*Px#=7?Qs+3zMnzNrEf@G!-H(2VgX`+;;tlCQeJ+tQ8c|T?RZ~N-_+D3;Bolo zdG`5A+~s!7%Wdn|7l_1_F~_Db99P`w1wow7;Rz@2`A8f()z;m4py;&SM*-u2t7&6E z`LSR5tlFzHIyaY040axW8RyjzCVpuJ8&@=f#ya`abf2Mh_bm8NEN~FV-Z?$5Jf|7f zEId7BcO7JV|4Ed+J2{0p!qzvSet%)henj9a?VMoo$1SYOzfsd4u6E&|z0*gslg?Yi zyub$=*b+QRK5k;cDE~5IxvK^hzOnO_O-IUhm{u6Em*|(Dt9l{tiLT)Ml#@Vvfrdz_ z^Cq9%QFFhW-|HT8z2imILy*KTxy^ak=j9+^w{p=NACopm9TtC_`G&>vxycbRx0zm2 zUW~@%4vXSBRVfmp#{FMpkUKiWeZB`9t1q*m1HYL+(_~cTTB$B07qrWvpr^eXulp(; z2oFp@Kjfv~Ha+^-7*#;TK)^0&2E7Z(sl@I1BBX0L@h10Fj5%uVrzUO9s|{>J3xKni z7vY}%0*);Njw$@N(2QEP%*3v~VVx(7-zWQn`2*oq!o@3!=ewbMtLLNqtynS3x|PsAryBAf0O0GZ0UVl4O9qrl>byeb-xVv;*0Jx(Tz*d4(QtH zE}V)4%fj)>y%Q|^xdhtI8Eyn^Gy(&kce=+H0*@Ci&iejGSu4!}dMNwQC$Z<74VWHm z*$8U)IP`oTH0~|3o9B13rTly#-g)?{3$wzW6gr#rWTOZcd15uOOSsr=2MI|Az1s4a zeriwN`&o_Wg(Bk)#LuvARVNF1#ta>yjYEVs|MV1iNdTTIcNr4;?C`dj(RCJ~?WV0d zA<-RASc&boeU6ppO7&&aCkutrTJTM#0M|!F6k=#A6|c<@Z^zrO)^I)HF0y;TRxjOq zl@K${ZS?iOhky4DJTX}bXgK#+-f${~F48YHNF34@h%6a&;$54z#j{y=r=FPQ*{-`g z9^dC*Va`>^Bl{oB(4DmIk^jp}x1FZ}YsY_6$uPWJdk+5#!52g=t*j!tFSKB&&yV@f zZYioF7sE9Fz~EjGY%g+z*6v-Nzw1UL}n{zy)jrjkBlY?4_%;0!y~BV^7|f4Oq^p!mnmv*(1qd=u;*_Jz0w zIf>1?Ba`23Y{P!lg>v3=UFz-Q;fr{nMu1LPuyVdwEN6IyRtaSJlP`JcD-f|(HfjE9Yf-zoF3(28>u`mzvziQxZ|1l3x0C^s z&~;4hIn)QAU%NBI0xG_V{OGwMo)wyTvT;jw%4G5$Oa1aLAEouaGawWRr43)03Y;;t zCsbYBYPKby7FtWHH^K23Fi8*bg8xPQm_f?|p7&?1w}A1wm>Sq&%`UvQ_fALJ>ikcU z4^LLmoOrgVP`{Jb2zZtLx8_TJ{v&>`Y#7dFI3HaGZxO& z(S*Q@jVG^XvUR_}GnAmSRDY6+wl5FWrw`R;I| zoK4N`a;=gVey zO`KkgT(%lDHEkMVo32_e2n3M52Cr5;18ME=+N;cjRmXLW#MIW z$4#6%)Ewo2SR<*MNZ&j&KNfca(s?lwQz6zSa_+I)#G`6gh;FKH_yCw zKHm;V7siQr067FvOO{S+2wy8szC@!hwH7c+J#Bx@J?TV{@u!hH)Tj8+8if67K{~6G z9Er!PFwO%%Kf=*p*kHi(`%35l;jD&z#c_+A*ZF+-3spJ`6lemM`V zUvH18D7dsC&xOgLe+QiCo~sy8S>)YLc{UI{l-_2jL7kvg?nsAv(u+bNVrf=au4Oc_ z=a%PtSeE+g4?gqh3-C;xc!gjVKcjI`dL8euHn1ASKlTzHRbYRXXu6y&#$n$}^6l2$ zJ!6~K>nAysm-6|JK9+l{;5NfpWbr+~ZwbOR$aZ zUpw);pZoG+w=sEAY5Y_}3fmjex}k}TOi-NJX_k)e#5HN?n3kf_R)wD{)==rK;F89X zgej6VKX+_kYg4<zQT>uVGQenOz9c5+Bb&~=f*KXl;I#j}GYC8Qn%cxK;k?K5xh+omRmk+}#o}bf zl)lJzX4u>HzBLkLquVpSTc_I}4x1M$BWiy2?1uJ1y7l~JDz@j3$;+k=#_Nj$N|z#j z9D7(;mXEDoYkmrVvupjJyE$_3a{aWzZ+SpA7FScUHJ_p_<$SmZ&g=@P!qFrgP3CQq z)P=JsX|#o~&KS8n|7e&)djbQnzb0LXZ{0ud+72y-pfHUjTP7^VXr+49mHdM1uFY&E z0Bv5kkd&~z<<3w2YCU+UWm?(dkt}5GB4{i>Wk!#jUM?fzq@ay-=brl2I>Q_JcSYi=%=p494=)&G7y8pc_PAAcHfD|2w_2C!3Wv z?H%PdAc8>(VA$GI*0!Y)1&>IDj6ehaC!xmeKvq8@+qLP#?YJO}obR$^QAtv|Uf0 zsZPoetl30CuqFX{ZzVkoOF7v;U(tW8T;J#Z-dK{}OUWNidPw(aX}v_}Gp_cYMT`Ss z{u4n9yOrdE!U~c0+4HX%t7T{g3+d1=ox-;Sulra{*pwGZ%|)DT&kAqOt3ZeHK5%{h zZlHA5sF|G6b$fog4bsUwGb(G-Ssq*?f$)=F`%o-qgG4+X`uEslTez617*CcC&##>X z`d+LA5byciI8PR74Ygo@LZH{^J82kflMt^?cp)cZ!wm9!t=pTbGO!1XZ*k?>a|V6V zjlMBeM{l8gs#Yw>>Z>!*+G%OJlF zt+}{39uT4&rQsc2CYbi6^@f@)0rPk=rzOyfx=%r;nT1$~yc2};CuXdK#TTNKL9#DM|m?(UlCb4tjP(5*J&^6H$?VH%8#|3=XtrYE zv^);U*yoDQD@~8zy{b2d`?z9p$~K&r+J)1~|GLzZ|GLyF0ve$Wh<=qt|y?}mr{#zqxw(P!+mmcT7R?wAl{3MaWIKZc>{ zW;Iqw|jW(EcXwR&-J)P?h}`4xrRqn53OYNk=T#VC9`f#Y0{BPDAXdP*g_K z`Jh{0wl1{*MGIHfWibmLc_*KxmujN*z*@E_EQ~*ItLvCN_ELW_|8i-Jrt*@g*qO?i z13%fSifW#?7=Il(hBJqZcAR-C^*m?8&o$o;9Q9-~QR!%H-$O+RsY|Q=tSR|fygRdg z4LGbCrWz9XuqtL-5xP7!MK57yVo4TpnLT7h+{5?*4?*}zeRd3qvHDu|W#+fx<$QXX zR2x@^PYg5UF$BT%DNJ9`>NtsU3L4s^FbwAON_ZhYxUFHvrmQ)fh*F)mU-70fDjdv+B94 zh$dK5-2@;u9gF}4NbP!2s=;1~EG2_(Jps zivoNVG+&9PNGxNE9R2wbLFX==>d96w@t5bKgVBgXGnN{^KaC2HE=ztwqMM=?9Vy0X zOsZ{G{e@w-p_iC3;5UvJ-Wt4Zl1R=i!*|&7>06_8=E8*J-I>t7P}ibMLp&Pc+hX=X zDAk?W%QGre&gB(dF+=SK;T-=sym-O$)14K9?u~n21L(h*CtsJH&WyQ95<&-bf|4IL zA6LAM{myc_j2k^f{3t~_OFc_t6clVt(@!U?TD&SE+(OWxZejuFUk6`asJkLE?-5P0 zHQv(xP!dTfd5vZNMw_C=8!k}bk(&dLRS+|wiyhhenCDa$r9t=Rhg8c&<;9boN_<4@ zl%(@DYfWxu5=)QwHeZyrm$JR;G_Pm0`oC_9%>5K^KR@SakWc}rTE3Bf6MaQZSCCG} z+4{>k#@(PYdHSbJVliT%)Is@y6@4g`V&RK$i6lnT=aP2gcFMJ4Os)Z!I#kqRM2Cjz zm_vUgY{btV00@}}K9O{LQ9*(xP1S|Ey+=wKrYf#*x*RqA@U~j|?YK!`GE=F9w z8EI2lV(yU01ClWbm6#l-bq{-CtD!p|g=v?XFDGwS*9CkvnvMQrgM;O~oDOUl<@>%H zamsJpUzT*vIooEaedqUTMbRNU{m7iRnt4%dXLdu+EB1BtHj(>1xe&K;eR{2Um5-~_ zD4wudN~lR%K_c44x=9#TBF`}uZQ^Mh zJZet+YdpS(0MNyEl2ef8opkc3Dj$X$#94{`NZMSF5XdLusR2~*Aeu&LGaSVj{7w8; zoJD%!oSAwNV)eRnHG!mdpQyMX)nD^FnnQ4~?Bga6;+bxOb%Q&)MGksolD@v5 z<{ErcHPH6U_kr`oiR?o}__@s~aOy`zDmr$hOvk~;)oT>IU|y-mm&ZDtV=(6POjFwW ztR9cOS=RYBzg3{nRzJN$=X+L>PTxsOlw~DCu}K1hh`;4mggn8F%hqU`gNq5`lGOK1 znc3qcW3Z3jy6i~kc_O?yqg>&gAHB6Q-wiyu@YH0c#p%p`(g7Y$Vt@F^_km-@+gENzYy(4mUFJPe(Eby`iq?YZFh+D=-=(VS;>3|;pv z?q`Jz2I3-~NtE5#-&n+u_FC?S9%V1m8rF-Mm_m{f+eVHtP5CBKB=fl{9(iQRPtgOa z4KHnEqd-2A>Up|Yjc((_3K_vfo?~vH$sv##DLw;N+T=&1p;i-7<)wWKdrVbOREo(P z54JGrs{PNTRT*Zg%h~in4QBfm2`!KQHK`}t<^K_@P6gRiS}f#(d9N`erK$0Vy<78p zjzK&3;I~P5TWJz5*+DfwJQ<5H8O|fRj;$kNEc;u*#d-{Dth$ickG0J zbB(`wStSZ$Bwvo+RBKSh)b~37gXIjP=PNo)ON@xwtYx2=mpdT~T|y?_ho z$hAc@UI{|}8B#Pl8!BCdL`xr8k}hZEK-6w)WBR$ms;6L@^Q0=>Hfk|oOl|8iv*1iV zWt9Em-m(hkqX?_a=Zy@u(ql5{r{Ni&iDcgbe8oGr?VFVdw~wnf)i|C^2SKv8Hz8EW+!JAYTj?GKcB>2S+^ zfg#wtUWT{TP)9o6-+t=6?#yE+kcFnjjwDExPyF3~U=1Sjb4?aO`FQH?s+eZCu{fU& zF7w&GoT9p|?cR=hJx&?UVcd1^z}%|9UvP+(-^#PS5oi-JqAyb~#;A(1zTAQlH;AHs zW*%u;#DQLyW5V8lPd#lA)jz$;Rc5!FiWe_l`kI)_VZStrmX}MWLR7k3P~$t#WMc7a zxx#kqAMlw`nVrx_+2hPP@^{hrlsWzVa1A|_C4Ny(`w2?UFKWQS#+M!14qy~ZrF!M` zX-LJ*gomD=Q&2K_z|r_DDtPGS!I5G)ya_0xvJy=Fbw-=10hM<8lkjX*ffVO4*|gLW z$2f+ak0kj0!k4)y>mqQOeT-!^b@`yM1gBm9{tA&Xt0$unqI$x4ldXd)u8PT+mw4P- z{pWX%i;OcZ5-Feal8tLgq-A@w^`3Lqq>JV}X!ch#*hkFqxxKCI{!Qwx{8;uqSe?gN z)j{w*E?i)o_c(>q>C*~EpMvk)G|WU%>f2uU$XA1PMqc6x?$6h4SZ+ZFcTW+o{2Vj9Px3 zv{C1^Vc9AWzv_Xo$K4uJ}f} zNvb}{T`ux5EZvy52(n$RhTMo=M)oaoAI1&->WZBZ&xqo3^6LEWlqx5MIOA(l1L(oL{rC22Tk!v zGvj@}rZ!6;dFk^@2I#4#oFOgT4Ty4Jzi22IraN=>a#>RQIriYd9eA36aGmZ~HJMVO zt5Jzf0A8{<$&C>%RxJ{8=4ZuKDt#+$da^$<2<_SOM>vUt2b0SzxgDY4g{~ZsYwfUF zt=kA#+NM6gZeIDI^!1OP%A~7UWg`(&O+nvQ>=6o)c`JS0>KJ+QmCR4N%7t`U`&Cxq ztIayj4*KT|gz(Ng>M?FN1*`mKO8_5W6)JLRN|QDu@4ShcOCUfb#VZybOC3b{ zloY3;XPpym17u4`b+q;~`~beBbBQ2Y+kFRVF`hFZHMUKYx$s%`FhFS~N+Hydv5Zre z?=V_KXbg5y)ii+XPxZ{a!=P)vDq;LHHp2EN7cT+ zev(T5{?d*N^gh&7RN46z{MdsPyMIxbi0CGURRp|H1^K={4Z7pe3rjWXubR^pf1etw zUkM)OM8cPTRoFxjsK=ukn73!=(Q%F8=%heprujCN-SIt};a;P5;Jwu<&g%j^j!`h; zxctE%1EH*eL^$B3i6$>XkHq|5_KhQpC#nh*ozh5cQk3q>r!b;+a1zUMzL3MC$l$$n zi%6ZDZoi7%iNa0O^Ya7mle#rw)r8X7C!wt!&DgsD(4?7Ov9ommeo@On!yXMy)X_)T zXp%2hoIcJ=U}NQ-#mA|=#^hw z>X1PC8^%s+kZ);)Evf9K3}C6_pv|Y)gGW;-w2VN{S0`6qKlNnfb?JwOAGZ%&l1dGQ zOw=cW-FucUe=Uai4pjYMNkU399Z}Byhgz|wBEuS@nv@lDfD6!g}#oX4u zXZ@wK9?0r0IY>Z72v$lhfd0zcoxcmJXxI9p)qeRxHB1prnkvvMC-BZ z&X8e(dm|^(pS61&w&5sO^}+L_%B>%7$k!VPYNcLL#R-_xWtSv<E_EWv?HsmV2Ylyh^R zG$Gqs-LoGdQUeRK4wZU6!sq$uto`I;5`;f|ygg`7MHqcU+O<)o3dE;*>ob$p$uNI;q;DV8KD6{7cfjC@e(bf|rU7xG z@dzX9JqPVQK`iaO%Rctn|nSF2uEg}+LRgs<&(x!Y* znYrH3=PY&ZVKvaj=h#4y$CLRxHiLmVQe{0G+23s1DYyC?zwOSyx6m2AjPvsT=)?4sRV4hodNCXrC6tn@@bcOdjC7IqrzZG4a-ZSc9b9 zi+4%L<%2Q`_(LidnUid(cGLZ%vJYy7;(|Qg}CMlJzJ9aKi2Gso2;Hex|)Vwyaa?AdghxVRxR=%&&SkSlQ&ib@8f-caPuK>#F{2NBh{@Yg zvt90w|LyY2wjGdhY{zzar+zeCHoSvoXn43oq~cd#%RkxVzvV8G~Faz@n&>b zzcIEFuUl;1ihdIF9$iDM0$bf4bv*v+thdJ#AXHO zsCv5olyND=VT{j_t%;HVV+jH-vEgkAl6jx^#Pc%H5Uwoh!2^$2B#gmVz`FdguKm*R zYf1I3C-r`NhgBnT27&v{!C*(7RaHS7UD5&cKg;A4@31aE!x4Gc8;Tmp-*5G<>$Fw| zAT8b#vF+ZS*0Qdaib<>|SIlMhq+nIR{Iq_Ho2&&5iydK6Nm53mjd^A5lCnVY7pt_v z)K!k~!P_FP>e@UxI@0bjS+~Cpy$%-vAj97HKD#*#&dO#7)GD7Lgkr^vhQnD`G!$;k zJW+Ffp-Qi{mXh?*$kKe0lXW6bN~erypNrn_+ZR8M3RmG{=FVgel)SDJ4dmr*g^nV# zgPfUqC5?B`FPkHHeM^lgv9Mrj&L7rk+1ApDbV=QMde!8qNj%t3Q^b2_fn}B%dzIIC zxO4?h>Vm3OI;V0&+&_Az$6X!t3mdjsPISS*jy(iEKc*?tH2WL1^1(~^oXjv@A6OVq z<}$nccBW)#OCttpc6BO#U<< zyq}Y*dN}I>glg=@?<&PZ!r!1Z{xpKQ*|+mL(`@WcrUMm_Sgm*D6r-lMk#+8|ixy}N zCt5Sgae5CYB%haE>ODTSLa2&gs(z0q(p}d*B5wjTuH7hY*3q7Qk}@W8R91O19Sgq^ zWpglIUCFYxNd8^?^+$&5jFQAM`?pI3GJF<#!~xJBQN~y|2@661GkKV%h-t$i`j%g2 zaFK`{qfo&QQ!Ca_d}*CJeW@z=YN6)+XmznRbsSqDc|&DCoFoTYrp#%iHyT$;9tK`U z3BK7&_Fu)Kh9!mhA}l({7~V+IXw%lrv2RwI)ugyI5t)y2)3;evvKx6JQr&33^Incj zJ5Ul=WOQ93wDTGDRsQS@3HuzFHVFLyHg(9@m|K~@hltkzHU5_QhDk}$a_Y07JRO=Q zhF-*_e*h}!k1Dhm7VHJ z2~iR{esQDWVLI@R2`9Lq@mxmx^`=+JsU`Xk)d1*kM1r)0YG^$gUG#vr^S1 zK0Rk22D>fshl#-Z1Y+<#T8djFpjlb#^XUs_xt;&qj@B9?oggV6Gzp6_p2>KJ8ZA&h zs)M;#=Szs0VWlc;3!y~v&D?sFnFLWX@S+k9$@Dt|rizPux^U#^>m&K6dRgI`p?L<(TmY?g##IrzGjVr4_R#W?nPiQ#5k$%`^%pG&j z4Ux~5%g!Rf@w7idI zBep)_uV>z3z>r=AW|jv`46-|Nvc4H1qf|wVa({FzjvV9*Q5C*Nx3)PCCz@xh^+x<1 z^G#Sw=rl8RCe&`C6qzGxoMGC*Hu2jqPbbfTy-7^siP4fb=kKPFU^;I(y;|~&f%TuL z)@-fAu9#`H4rw1`rx+DKk%yMtRFxK{UuLP^EvrJM#oQ|9K=MZ}GyOk7c(#gp)^$8o z^QJi)-dk=9R9`VP65QOu18lw4_=I#JHftQ!#B$D&(Q%U$sw312Wt0mkj8`@_Og_vq z;4s#$E8WS3?yak_i%gxrV68xCX&_sAT6$%`uKTX@aqp?VMb zB%J@$Wv3YGjjdkn8Som9{F=W*(nJ<6BI8DC0| z`sO)LS;imx^)D{ID#{!bhI82ISbLAtFe*5m=fadDa4K4sn5+%tx4%{+7h1C_O0P|0 zc#|pfEh7bEK?XlvhR&#kI#+}c=#Kifo@h4D|9wNCGu#JrOWiT|Ow)h0InKeGNFHDn z=HJQ~UJkcQSWgJs3r4gDi_ z+TrzrkoNU=d(!9pDgE6?-*-y_uy}Fr@C_e(tvEl2CF<^?{CZ&X1!s*8Ea)>uLb^=EzEgTf4HZ1h;eq3xQrtRUeeo;ipDp~_tqagkJqI&WT`r~0HDkKJM<9y+1fJ*|Qe zeP+hu&KTaqQ;K1hdtv$@P#`!KgOP4Ml8P}UDUpW?+jOrn@>gb?Em3NtyR}C4YN23z z*I)dHKj%tVgX}wI(7`udm@ZGcn9C>PI0o&h#7SUyIb8T7S7TcarJNi2xHyYiZjszF z$1c5tRl*R+dv*C)orRd8Xt`5v0M2>Ja;qE&F%;>JVBuG!HgDAT%7_;&JlG?T)URdF z=?mpt4zQTrP!HQpXsEF{KG}7qaN7wwb=l>bkjEyN8ABV=7SdJDKTmfMbXQRhR%hz` z7~y)sUGszFU|Ud2)}ks2^DE)|1$xUJ-P5wd)(VffK{RJl^Kd_Y!;Jf=OO%gmQ@1Pe{vVn;)7tsMo&HT@=P-ISynfDv@iKk z`)Sh9y2nmlu?|LBf* ztIjE60jp{=PgF&YEAFVv4ZU49GtBxg(LLB!c`Aq@Yu+69T(LqznI!b4;XQvG%CA9? z{F-NVii;g$ZZUlQ+>`gJ;z?P!gt?sYq2WQdFspm18QeB9d|1F*dteO8W?I#oH4<12 zOIKp1$=jeo!*XdzRBTwBt;c4_IjoMt3;aBQkpb^up0kSB#pZ|_X5S)Z46m7QQfhz< zX`{wWf-N@nRtgI?x+*io3fOPCK9=${jqDkt1k|K8CeUs6Y#-P``MyN`<;D_Vz8z`c zV(h3FJ6K-;w5ExVhe0sSM!AjKsvQGau%S#g6L!$qI#8)=8ptj{CHtRHDY-vi^_f85jbK{9)8X9 zAr_DbbXk$<2e6u_%_Ay+tu@vJHzP0NDgTb&5tAz(^hEqD4nRofxWQ3f5$i# z@?|Gh5%ZrC10C+*&seuHDNkMbgo=e&!LT*H`lf*z5}E^qn0295euPI=m41M3DGr@2JmJ*XGyGGPJ+;B8h<+TrI_{+*0>Z6Nccc}R-lL19QY#Qtvo zAh|5lg;th=E?k(SVZma5Oq`q1LBN{fiG^O@vb0ZIXt`9!52=M(zVBUr-oA*T0;|4_VkiLJ-#{B&vA~7NQ0phQ{KiNPeD4fd$nJ-q@%J zngi$Y6Qh1_Bm9)u*N&t9n&1ngSU2Z+-<8*_?%P~6(w!W@vjk*h#~t@Pjf9QI$$!yB zUV}ncTiw&G!vZsJ@80f%ZL|kkoc}HrySh)#%@G*W())q?VGU}gI!^SKV_35 zdVX1QNsZ$#5Bt3Jjb~eJP@QQ~<}5|Lv_J>{Pe%08yp#m`eQ}FQyEceD@Y9oAJD#Y4 zjXZTuE;-pZic6v4Nic27cif=^mIoK(>a_>*QK_SjzA!U_Vp zPyOa+m}z9$$sqh^i(ytnj}(-F2k+rWpb$jN^{1bfkiE7Qtq4 z6e2G}xYq}$!JUyApePl)S$Yz|OZNk_-&_nVhVa>F31q*hRMm%-%!k2ZMtX{b>TD@a zyzdm4E^%k3p_4Wll{|)mSCQJ;JM@OFCLOSWUyql9dvLE?a(cA$9n1O+vzj>=hPj^{ zwYjSBh$WH-$fdr#!{nFxz$@L+qEvKU7)rfGBBa`bJxo~!a{zx;grlhm9v+ukHO zbnDTfk!KSBkfBFPLtv)anRxmQuyDL_oW3kJ*W~5AYTjkT8(6Eq^aksvPxASh;(kfjOo=+G)iUu{-fsNcVth=HU$0bjD0^pgr)PcAmcA* zQZfh)j>|4Wf2Nq7P*;B+0~Rl_U!!3vVmo>7X9@sRbXLm`|Qi zK<;V0IgIr5E{SyYnnvZkTw|uUdxI2Y7cw;lvo9pZ{}lts*Ujt+#g$ii9BgTeSySF^ zudIsGj&`0{yJO#vfK&2JWd{u@BN@aXHba6W{Natuwf0M{L*L!6e#gibD=4BaH{Z)1 zOM&Iy_cY`E8>b%PH6>$?&y$*CHTZc$#GMYOY{f@^HOKhk_9upRN;g&MzmC&Iyc)!EQ^{<%nxiAYzt7+IYK#YFWxE1VPx!@Hlz zC%>#&;+Rl5QU-@s;)ErN)cT8*)-m+_xZOWe>=LfYQ;heT`Lbg`!J;W1$G`!mu7>mH@^q$(nCiQfMD zo+Cfp-)scd)77#b2Hv?y?D>8}%M%W=eXx0tG7xCR*SQd@nXJ6QNHf(taJwit;hn z>dVelz4{sb(sPP-H1&SKr{;lOjXHecJ?P`aovyUQk4#W=`we}t3-NSV2u=1_GIPSs z`7-&@zZy|epax*vf-Mf9P_j>H^s{(@cp)kO7W9l%R5}5l085tZxGvxjTYjcQ>2O2T~IYj|B4g$CcbVtGk(%*1Hc3rYTO&XIQ<{`HV< z{gT2wvVzZ~w7=44SaRf`X4w`t3AFS}rONc-J)x8M&Qzc3s-LWvwc$8o;p?rKm|u0g z>7gu(PC3TyX%eZ$ca5tJ^Ts+{Q3j8Ku%9hu0j0(ocif_8IM>mevCFiA5z zlRQcaD-}&&V}U-i70WgJGp@|9pB|PWhteTEBVIBtpas%Nq7!4DeJt&$%zUiiW|K9_ zls@}?kMgN{<)SMCF)a39J%Qa@^25U+1YH=Gx^y?jXCfy?RzBea|vZ!1q#^5r76tqWM?7w0=ty9bSec+j9 z44bgJ&VZ!0t)~8e#d{ukf-t+l3*N6KO6Qod8HKXOc@Ab!5WSw6Y{VY({CKE{Qeu>K zj4gYB@?Ux0orVg}Ws?@`3o|!RIJ&1h0YeMhg%XhAEAxQ=8&oV=ecEw$2gY5XfzwI zxS*DM;uPNFVOE(jlJ8nkAC1LPE6$L?+zY`6lsIgYl*(TwaJ(q9`vfy#X3pwYzbe91 zh{#S6;k|o+wWf(wQjJapvXPZJ?;*Mi5KCdCAVb1;KJg#R?>$J-TLWv(+($Ni(Jw6u zr49=z$ro?_We)!s=Aig}^Tm_z1H!_{=yZi1{cwzH`YoJ#Qhq$Vs|iU75CYLMq>gkA z(qvM?t}BTwwMbljet#t$y>ASe++S@K7B81HZIwBN4T^1~%ovVpaI@AtR3y6L=f1$# zD;Hz=&OH}4;1hAnQX&DONXmO#{jPb`-oDA#=?yh=Yi@&_7#A7OEnd4q5?(WZtvzYn*OZq;`8bEs;*DO;IAFJI+R|k{!)s zn=M>&IQsrglHYdRH>Y$uVb@YwbM@Tqyql8=4Nj_YC^Lr=(M-O@)2^P1lYbK(o*&zI zr$oXvnXqqa(_prutc(BE&-ZHAxd?6i9!c1-Kx_`HOJm#HzlR9EO-pYENKpLk*LVR! zCPq2XQ_#;AkoajV&q)+`c=YHOVZi zSDnc=4(2Z-w7*~%m2zOfwVHsbPV?j(Fvuh|ZCbG4ofsLrP4GIkj5bz{NVNv`ZNKta zX>CVdUkAfpgsh_L#yJ!w_{UF&F{^3Pu_{GhCQ39)x#itx&wloy4xuJ)K_P__D+lUg z5k(l?Y`gl}-!v@FS<5C+&to%CswrW0j64_{k6Xk26|Bt)>M=^F_ebckCdS9{T;iit zw=?d8ABCHzmc{?>OSMZ_z;<%6KEGDI2>b9`IH+@EZqV1Q*xq5Pd~zmTy}Wt2J)1++ z#qOl1NYq(&;df|vWIwPp&(Ovt8nSUNA{T)S~_i-SQy|!Q@RqyJPVQqdbns3Y{ zQmHx0X+N&$VE_;IgMJ={QZ{=N=*-qFb$WD-IxZu6G-F(id0pUd(1Hh;Wx6VGmwM6< z$HNqf2+C4;XW_zHNO9h2TZblP(F%_E9KpfH;F0FL^(v;vbEBy)wAa2rG#LHP|KV?H zO0(Ux!--_{u%q}E5*xTzKT*<%TRK(2mTGQ(7==&q+y=F#qu_(BnkUI@Ou1Y{PjnaG zi|qsFZ_R?>!sgg2AgT%Y=1q`s)=p2mu#!CGztZ~FlGsaM63fB%2UHp?o3dmv5gV+A zcpn>@XF1FZ$d{dVfJd2HB1$&lNqel#XhEIX5J`oAhg~stqZ3Q4Gfyz2wvr(CYV;RSK=}StvEbfs1F`G)+sXx)g-Nkq>cBIzs*IRWh`Dso)R+0 z2rGove{kT{zOjqj0G7v;Kw?w%wIf{r>Q;>L>&c@893ZJ&Nv;aGhTv0dnSwYxI+VWy zYQmvU-DByx1(bZ6PUb8JFF&4{>~9gf>w&RGr+$5UqrI7U>PmPOg~Bzv6(E_X+l{pq z4`V(R5N+9iqB$2FO7h3W=_l$*rsPSEF$n;>*y;Z+slxGTQs{LRot?n~m@=ZE<}lXu#2=1(!s`dW+FmK ziLX|Jmdormp)P4OnJvF++BoF!aWe-ij_7+G$hurb6<(kip3{XC&L>j+mQ?Ln|8WV( zht}8k$VF2|ZVe95|M8N{Egi6c(0-L^WBRPyKW!~5zGz*6>)4tKt$w5?q=y4>0!i)m zR$?VZ49HNDW))^GPis{9t%QnW&D?`bLW1>z0rp1HUoc#-O^>GdM)~2%YsTTn2>0s` zALkc6 zP*?aORj1AP9hr5*|2DWB9xmoU=9s*1&oBJdk0i^8oDWAo?xAxofcr0$6%$L(-xvi< zxk84b$uoIf?zI%-xWS#sobb5DfJQ0z6H}TEM>OL$x3g70BQho#xv>4pEIh_=MCfW` ze-SLhri{4l!fxkj9WVgAxVcT4Tto79X=wcvj;Os}yC;HiG0R3l3Z<04a~ZLHP{G$| zefZDe@Yf2VE6XFg$GQr^<;99bLz>$!(_dAe5@4MxEqfM%Rh+2XduCREG3Sz-HEv$0 zGY1cqOysVJpj|jb5*KBeF%!MKtGq1`5+3xbG%bsdh)W19uXaVPD&4|VEv1OVD3Ycm zu_fwZ)9X||5ZPwMC1&}e#Vpv!QX~P7_`&tg)-H^OQ2b=PA{OFeNe#q{MyOKL1fg}R)veLN2`1?E!D@owIVbnR5yY3%4_j%1+{ zy#9>1U0T)X_%oEjYUej}peZeOHIL`Z*-wo~xeY>7VPE&Ym71K>Av}4dsq$(Ib%^JI zhANqJ!^N={?moVARUVMnyD4?~yo}snjD*1^wF=^?@v8HC-m*Eczp|L!?1{@jGyWt2H+WQwSI_N}7I|Y63~iW~ap%3qzmr z(nvhn24;HBVRx~jG$M5~%QnHtEuo^&xV0G#%#w;66MX>y9nRg%K@N1UJ>#~0Waox)s!;`-VX88OJLf?OC2fJWT$dxc#X*M-i&w#&-lV+883V!wk;!%o z7Y^KQfEZuRYcQnteb}e??|6=c@N6|}X_9HwU5rZcs0kCDtfejQ>p@(ez+pxRCXO(I zOT%WQ=Hgi=4lCf}LaT%o>1*Qf1W$fXGe+e}BGSy2;U)zxhi}RqyNThQN+noFFDJ)1 zhS8Y~&NUm;HAm&m-c+ko?UWgo{)}0r@FJt+FtjZf-bbMGWsz1up8N9|*P&)A>MQZB z+@%f%db97wdYIhI7paaGc5(Pf1&!}N+j;Z+E~Wi7|nFA3rk5M<#@YFyIF514YA`PSA-#&S5QCWdxukd7A3mRY&+@7Xw# z2xBR^k;t{a*b1DG0{1WQN{XpQ-18xD07sa{8KrrZ{PiU^^gRrXxD`Hf8#Cwz_^k*O0z4pR_JL z1G#EqCF?hx4#j6-b;_o^Mk)l&W$>gW+vQBaLAZN85^zMPNdI-++;6_je$#ts|y;)~*NQiUUuPeo~3 zX>rA0`_w=~LN1U<;`0~1ld+f@I*tJ>-3hcuhkMeWJ^mZ}*$l zR7BlAX$jV_5dgwLUWb$DM8W`W*XV@m{Fz?b@98>&v?Yb(wn9m%F>gE1>A8L%c$|EA zcFE%%ml-1cltWn0GX}#C0N)*aC20!dWB=Xw;CUW@V~u2WQ?};bun~B)djR~piK0ZG zHstB*qrX73x`8X#BygP}wlpmTR3M-gAhs5>nOFKC*? zE@GMf9loIZd3GA=Vn~LWheGsr;w`Fz=vUoJfPbXzo0uOJlM@#qMhUZu z#To%S?s0rOE#cakoe4<8{JCxBEk&_bqO83hXCiJ*zwo`kZBHkr1sYZ6%b6ySb(cjN zNU927eE?as!F?9-FdjBGeYd8H$?F`V6TU9fFQ+uErci`+qFGV_p%jzHuPmCK^0H5F z`>TJX`d4YatppeO_JKC}TDArgqKPZuA`e$lh|SBbUCtidBehxF0%IORNnb$8zoL!- zs}h;^%hViHN|MuNV7J#=7CG{Zno@g3$q)=4E>yz??hEkN6^kTo$kKY{``&c@S@Tw;Zvy`rBzE_ zNmO}byIo**sQO^Dvv3dJ5il?nHBu;ITda5syLQg-b)TRT%`vgUy{n(Oobj>_7#|K1 z@X_F~`#5Ip=@akbE^@%)QP;Gl%FsxCyg820V^9(`fcw!LN0#ekQ;A3xQS>(iJA~WF zhn%DzFnrou&!@8;Jt<+V^}plt84Gb)5gxacIU8ylZdp6eL3CIuRxQ1C$H|xO_RHJl zLK`>33-Le(OkOd$^WNquCY+x*Xv8^VW*i4(WyOfJ`3oIP~3zdFMm36v()3)Qp>W^mb={-=N}aVI&+ z`9W7975Sz;4>`WqqiY7BYEH`cfgIRdvOPb8FV;WRam72X1BYejv&Emo$i0Do(TWi+ zq=F*fn({=hEbcA0uUA`;zIr_p0*zSOdH@%lXi4DkhO&;Q)kXs~1~N>m|oV8MJk>V#g)dM-%0!J7=F6{N%xq( z=)9?l<_thXK(_Kmf`h>ZfOBrRE0`JG1)~#x2E}%ND{<9SM6SE~X4t@oRgm~Ge;;wd zQg;;<61@OYq6OJfz|s{&F1DDdkK1v6O=4?^G`JLwwKqVYT~Kc~Ev8?H_D^-+NGNcenqozE-k!k&-%jdvcbMds3xN=eGpub_DzBtX9GkOuTHAO4F zAdXVz3@=@1X`-O-D&EI7a-e)3YW%)Q!8?vp8=br+I6K1Dk>pc@J3G?A)wKE)xgx^{ z4uRnh3LD?Wrv=A1vW?y2>D>P+eVM&gYQE^7kTqWJYj!Fx|EN;Cdz^Z8HBoaNBS$Ol;PJ%jvZ;M*1e9dJqi9R9=M-~PK`BSNHB6cd`HNVVCiby&&DM8-;A=)*C%AM^uIMNs#S6R+d78~`W>$8UPtx!rlf(6$vDO_%tbgZxfK3+- zv$W-4z1>_}Z@LEOj%#Xf5)(0-&~#n^<`T@t-<4W~O(J^*AifqW_EQ=EPUT2%0ej{N z-P75Fv4WiN-|K;o@7_3u>ZQsW(aPO#xL`-QAE(>O&B3FOrFYR%On!gnztpU$gr>kBiCJRiq#+c09OE01Gs-KutF9o0Yh}ClwEDC1z;YR*lf&4WT0>iy8UFBy z*8TBrV0ER-GH2e?nyfzNOdYG32n*>y@Teu{7Qs2KldnxOEf?kDZwlABuQd{mD5#hv zf{F=VnuokKZAd6BcA1FzI7Vrs6fknqAN2~QGrF~@vp3|{&T%ZUf$Wba-6;ae{QVf;2W631~97#aOTIQZ>WxuCn$vT`%CX?`l#tZnU=LYjt{GMwNsCE9zy_z(sgEyLnCd+kG zeCrg(QkoA-F2$TMJSv6A&5u(0!GlK@A42h5ds0rVswklpE4f?iObr;~FDL&cWGw z0W|UX4=~R~PlW5531oZEOM!2^81WK;?Iu^}JeDX{VWKGP3IEyqsCf_HmwjSH(b_n5~JAAghoHe7eB9R_nYYATPurO}eKQiTsbm!2a1wk{Mxf@+NKXVO%SBZ$f7ji_p{AtgGBl40Vc z+PQVH5jc|$o+Bj7w`E?K=WL2yXV7#!ME)ZvZF5rkE8jAHC~MiV)0S8R2ay8vq$na& zUo!?@0Qw=PZ2ltZuWN%gBn#8q3yiRKqNrTo6;Q&N_R8w*{yYf4^h%b zdNAiH@|rqIn6yhmL`INS5X0#`GEZ=<%u67A*QrI7y%!>{e1M%5670h%As^8s_GIVQB2Nu(j5d z^l_x|3JJ8|_KQn(_ZhdXS?F>WX*L~CRyGlhw@Ec_+}o;p0%X^^W2VdWWO5bFzRF;Q zXd%R>)nT#6K{i{v_@X`x1(CCu)pTi@+QZ@F7xhJ@CEO>@30ANO6+wVlMC@@aGbnrK z*UfdtI|qI))0#9=4gE`1n>Q7#2~Sqoh5k9@OnLw~Ci5l|XeWSP`kGTerbTvVG~N)W z@I+|raiuQ1RXqa5FlCAS6nz664$LuVB=tYJbP3|jDV5eTCI!-YN$3iXDi~<~<}Pz< zfA7Xj;2x98=cK1zu0hjv$fg@=Q1MY$I`~~>4c8phHzsjMEZmd|qNa79Aa3&BySKoe ztUmfS55Uu2Gbtsmq&rWnm@2Xxsgyj`cnlWH&eJtVsK4PmfI&2=O9OCG1yXu|yAOSU8@T$5hQ6d- zu##Uy33%iJWi`V4O=)rMuKaW{6Py0I^>eBn4plQP4fsKix1n9j&b7+ctYp(CWsoWp z4$?=s;727!0p${TO*GL_`QM*E4T}BA)k3)LIE`aHcVY1MC!Gp4R0p3l^7$J*=?|Z8 ztal(*O3iJ+$!f7BvVtkQC2@njN>9p+BZ^yM1uBC8g+FuIf));whITY^K8Ih~u<0K2 zZpAM=CNWaNW~v|sJQT*TH(0?BUsG+N-y$!KqT2u9A31l2Ih;R+e>`C1N>5wDJO<^> zts{mzGRxf^rW_w>CLse4JD(McM?WOSmflk~XRP!#!GbP~d3kI<0ZjVi+No7${%Y3P zorSjEi901sQ{LE^fHF7jF+1LzPHi>OgM~Bk#$Ac784$gXPSfmRoYv;SD3<1tJj;_s z%<*#l4mC9ijaYFSY-XI%b9L2urYQdajRGo*ZH73 z7v}zH0RBrn1}SbiX*-^*sWiOckmg<+ugb97d~(%c!y(Hp0*Vk^B5~@r@Qy;cRBx^&5)!?2;(IL$ksTBwvG6ZZkMKIt|B#RD(_lr z6yQW3rvfhcc5`WK?QI!TV(65=!V#)$Q|Z|@&AKax5``iA$5NaX85*G6)@mu%hFt1M z8*eIf=n@R{P4Iup6iR+OG~xYfP^RmY)dUpQx!(z-S$s-0o{XGE40232ik zh0j2iud7HP;A!&R#%uIToAgMgzbU7tlyG_yP=Q6C5R_Tq>4mTwz+KY=WqP*;;n{KJuK{=7G_*Bi{vfdq5|nOHBPEqUH2?HkS46lisJc|@y2~M+O2nBHUnW!fuHiF)&Ny%3{b#K z1V@Z)&qJ1Bu~hribEZy>bESj=rjuD^^Evmd>}^3#S_g#&X|AtB=k4syel8eeaSCxc z+WF*s#v)CrKL;8bf^-eI+Hxxs?AMX8d+z`#%p<@0HdcNFIoTGg-SR% zm1=$l(;FD*LnCOJT0(#!u-M!IY~uH=M-C{9>Ou=uvpJrZNz@QaSvEhr3G1BY|Fj3-yAw}wjF6!XwN7Ub%n%#rRAp%N@6UB`3 z>o<|9yS7kapQOt7B@5%MPuvo}ZG{e$u&pYk7}Bl68;aTti|?AKe}hb=SN~j15k`Ra zzqV-OCo6QSRHzFcqcW-7!~a71#Az=5p(8J{dth#;k*lJev$CC+fndsZlmgjsWL&y* zjamIqm{enqF4O9%1u9C2q!WMBxw0Z4AP=J`!8b~AO>zO!X?pKdS?;bC6jsty;*l0b zu_fY^R5sFB01qBtcjC6OEcB{;=N(pB_Fl(g#?OksNwmG@@waz%QRUve5dlslh5t^p z6a_AlO;|$3zzKz}QjL|+S(5^$f9$b#@Fmimi3S|Wyg}O}<4Ga|3!W?4b70K-GnONL z!D|Ji*?3o~Fb)}YY)y0?Z{Z)UqJcTyUw(QuvjU83sHpW(B z9Q? zROCIcv=~GqTl9Cg6VTYl@#TAp3^s!v#&^47PYC}7lKpo>1|3gf>b}jnI()k^;W^{8 z?XvLl-=gX(_J0TeJ&8H*4Zy49iB9FcxCF$;`QH^`57#8DH~tLnjCVp^r ztkPZ3?c8r_4#+(v4UZ%z=_toFmXNV^H(y10cJsv*P-q$J!{-ICMuXcoaltORC@&gs zUDqyYqvuMD-M6-NN8Qio@pXRJq8~bp)FFRtx$&ek)CbxGn28=n&{A3~X;N7R^N*%w4D|)W$I095NA6Y-6&>1WUGk7(;eV9<+!w`ciEBhzay&p~e+` z)zH<=L?4pr<24u`1KYDJ6bWh+r}m-sShj9XNbAzjsW!Yg+~V1swe!|=_-Z;oTaH{7 z8-e+ZEq2XPm_@yiUb!u5(tuI8QDAKCG>YN28wubE-A8HCVil@ysTC5SNM+s(4#I6J zmG6_ro!OfJkdig-c(r_a$%(mfYsT|z%clEglklt43Srp?f)!dERsF2rzgjSW7D`f> zvJV2Ea!-NG>k5H+xL~gBOGQCrEHH}y(+n(LML61Q0l6|zP%2r$UDIF^wJps^Y58K& z=w|gg@mD$MuK6_PZfE`WQ6;@jfv${2AGiHz28KE;(EuwcGm@;3WZesaOg+F&13Jbl zYD@x_<1L4$+aU%Yr>c>v@iME5Ai(n1W$4IWwU)Zl{&=-HG_{?= zh<>%Z=R&O1`?6-)tj`x~Lp9Na5QHuaMwva8{^xWC?>Vy^C_ByS*?OCv&BaFaP+Itq z$0uo5?_{LD-4pD6!LJk3P$ zPnMl2@bj;aWe5b)j2ml&2davSSj=$gnvjr+*i>#~H|NLFc1&souBsy+UYlyyTPPaB zZRst&e2j7YMDY1#jHnF5I4yfqZl}BEGDufZS=_2K%=vrYv7`A~o&s|oZ@hGG8?*m= z7bX*18=5m8b-nMnA~KN~|B>fTh=4~PmbuzeotQGCuyE9rDihIRrL8>|*4(@+j03DY zICDMndtBd{nTBTJOP9i0Moulzj@(c{u0Yfukw1Z}n;RDkTotfR6oK+f3}j`}lvP%G zLYoTTd|PU*(|GVST4Z!yOP#5b?v)mZy#1 zi4SJQFui|ZcHa(lUBB-9_xksI<{$GFaHj3KBJU5w|Bf*Xv-u}9SYcicLbFjnA1MI|)r;;TJbBxtx z!b+S>JY{2>O#x7HblweS911cy9Y*Qqwx7@jDU0%=8k$@TCslIdMn;`lvH%3y$Usp^ zvv7Dvg|Gy3xhAI2g1d(j!(J_U!(uM(CwPy>P&nJgi~C?4^s~RYG@9zcy<4r=*kNu4 zO;3cQL6qwp$Q!XMIN9ktxoQ4hybPTgMJ=Yzbp%G8ZDOIa0|l5r!$ktBm&!%`7yFV< z?krFM29=%u=ry=T@o0CSp&g5Ypz*d{>iqYM@^)OkIQ)&x5&O~aEk?!Fsc3RimT6@| zpgP>Q;R7T^+I@<4duv2nux177L~g+_YS!3UukgD*y>l1Ne@6T^L`VgD+&1!F#s&Rf z8VqPlj;hEucOP>FcjqQdNH++$a`YhF1p`fdcKGHDaoHzMSLSgjFEn^@=8~mt#@+_y z$v|_7jOtAW0ED6p>SXWis=_l&jr8Z+BmI4+Pf}<5Ew^sn-q5DFstCy? z69ryc|MTJg7d_bvk=qW}f4<$PW->-fOe$DWSh_h%9jzZ zQ+zId2kNF3fw=pRP}6t6d|y1+3Ng<1!vK=GkSFUkbf7$49JA1LnIAva70OfvBj(X?`~i6CN-1lMBK0o8zjRGW%27j5*6yUw zO$3Sf7hw_FtEQolDvJI!$rUJ+9Tv{uj;2R2)8qIau=4nuay7d8nh;z7A~og{9N93N zb}8*Rj09*@GZhymW4FOGRv(ohe<~4=P3xy<+_E7!(wUMY9bJx7IupM;ZDyc3*-{d8 zJu(VIzr>@jiJh!On9iN+dij%6-iZJgj7#HoF7DHC{}W4Yf%=agB#%bC0L_Y3QXKD4 zq_n27JLQCNmZGwE;{aORu|FtzLKN?!gYtlhyXk&a_$@Sy@X2&5^Zaspu}TH*H*otd z?d?L^QNR<~KLl~p4dB2H*?&s`_g`-k;(QM~UjnWk{n_&V`wM-38Wr2#dU!8({oeO? zQr=;k|5=;;36DdXoY%AEbPH%HhkwP#u2T9NXB(ht0W7FRfHp@4U;f(>ikCK@w_?S| zywjvy@--haAcEy}x1K)pmC(sdbB=%1ob8~1Yo2EP+)Q)X#Y>YjlZR6@QZdr&?X*X7 z%&^z5VGe2IZ|Z^{P1-p5ZlZ97-$rbAT75z6KAo;vFKYs`*$)s)W5G#{Rs>_W1x3tc zZEizPNDPjNT3fPgmo|PQcR?P3vq`7pRqEerM0_f3x{NvOjLX84#&UY%6tu1d$V7xo zE%6kvbrVk+P!|g&^WI^xSa(bUqJ-`Q=JE>z&{L942xxQAwLt;A2Xo*k#OX*;QM;*2 zyweJ}-&}0ad#1g*LlAdP@gVfZHu`jIv!{I7Z+9^eXz2Le=S~(68V72CSkGrx^OoDu zzf7oKZl405cZ>K86-3TStmss=2Sr&LpCrN>9O!a!*UAh{jF~>KQ#KRH+$4Rt^jp~%>a3Lip($T&!KP3!6Pf;lpM@(PHl0eV$W3e54_)T05iW7bxj<|7_Ya@SHT@5a zaG+i)Y(`SwUyyJskpO`eRCMJYOtp&ql-mg6p60Y69A`u}wG6{ffL&14o#7G|4aSc6 z{E!n{3(IwuuEVL)icv1b^ke!10}sTI77Ktu4ee|qF@vHa?Gdev4?RaXe8rPTdblZ+ zhiHrpe?D)*N1kC}`493t4??w_$B;F zX_PwQmp2uO;0|)!Asmiu)oP!+UAgc`VpfE%crMnZ%e;rpV7yQYvg`1_65jSqh0QHfCzF03R|1T#daL2&_ljKEPE{!GQ8 zojs+#-^=9CAPqmlGeC6pS}^$hmf@@OKc&Qbw6H~U`L|Hllh%`Qv?J0G1)86GTe5+W zGZahpd;yMMg#F7|1vgMc!3bT=Veb1%L~^fx|KKyT^WfvxvxLVQ12lafS}~%avgEM7 zvqAD|R>BxGKk;<<+;Oi5rAEKbdS&(jLY#t=$`)-LzR{~LZ2mSJd zjHpiqXyCmLnDVi3mtD0mjhRuMkoZ6WS9L_Zka}FbU{2we#4>zo3UgtlCEX(I4_rKJ zIP6{+?P-)+-~`a-*4D7VXom|lcFX^AQ=s=cjBWFpBVdp1FFbJP?>XGz>B9|WW9onV zKc3j0-tHQ2-nms)7XJSYyVlm*$J})&R@{|QPFWsJ_70=x%Bvnw4c&LLHvleTxq2`3 zKNtLIehDe<4Z7qd!jIp~P+o6OwyokEr=M3MZZNaMfm7CW;bY6g4NX$Dy3k=o zYxO3++RzYuo%@#qfa2n+CD8)THGf;V?m>!8??Monoh-Yf@~Q^7B7N0g>H&~M9*N0!s0b%rJ$ zU=Yv1l0KXITLE5A8v7U^_|d21a7qFXZT;1xk2<;dfP~lkyOyU}JsN=QTlEF1i$fIQ zdNn--m1&n@&KjRvI|1J3Zy%p<}I)MGJpJ?W~FM}e__Y?*y zoFyHu4vA2Ce9jrIy;)U}hs`FT-Is>Gcimtr{m28=hB5etwa z1?<|U%1AL5y#HhBtD~ZNqjr@P1PmGmlm=mtk{nQC=n#;YA(Uq5p;JUkT59MnrE}<# z?h=M>7*M1IB=7lscip?b|5?MpdC%VO6MH|{SAe}?ABZ>j$j+%HP@taZ-|ja5e4uhHVps$@s*~lHj;~TDx6(ib8;t4yq~1&T>~QQ$b6TN_!S;BP3T7t$+oH*hoC$#=ocG8J zTsxk#AK%Dn$|r_TFx#9+ISJX%620n-ptg4idSu-AMl1@pPD}u0cGsO*Z$njNeOek~U9oF>`s!VB7UVjc%d>1GS8C6ncMg)AQ?Ls)Lfjo+S=>V}L ziZ|Pix9tBnBl$Y??kf;j-3mFIHM^c}ztjUv7Uu`Y^|v!CO+Y^4aG-Ef)s0?Zf2Tmvjb`TQNNh1BhuI(p3R!3VQVP|c$*7tM=9CY8p(PnV8MXKvoCbD z4CD>TkcnuxoR{USe*BZe&eFBPZ#c?FDd8MD+<8FbV$&n*`GRTs#P;=h$-lpljZ^Qz z6t^(JDLTW)>cCRKJyjbVnTB>NS>J6|$5`vB$9nE{e?(<}w?+co;~AeBi$K1Slb~A-R;A7I+`8u#XE^?O)7wZ9{TW)JopEO}r z)^Ik!#h6m`V|Q(7r9O(-W`?6&DMS-=y8Qpn`ILr-LyeWFF`6w%)cRcNO-|n}r+LKz zvZa5H{=yE*`1-Cub{P`0D<=H<@|w(R>G(LWz}&)S;4LX=Z zo%v!zDiNoOx983J9Mu>D9*6`7q);_zqmB|QLMo*vJJ3y@WjW#K8sl^ zh4<%UpETk)@cxR1+I)oK2>nml|}OuJfH4AWph%D2u~4uP8&?75s7iaD ztwd4?@7w7zChjjU3LFd)sG0&d!uBO93HGxZ7<&w1{Hyv#1tkycHvsYvLzYJ zmN_xm8&Uw(D2A#ya?xgCdIJt@faj2j&E5TS?P&b)@H~N_l1JqS-=^bDS$j{+-9?P! z?ahBNwtQJ*{}WEUa^&%GmGI-I|AIWPi|%&)oBnycJ`sG~m32GipDG$H@^z@bqQc#~ z&HL}K1DojOS_W$5Xc`Am{g@dUmbORSz-=c?*Y0T!tjKM1crvaSvB_E%l#_(XrA9Qn z2bwy8?ZclAtWCo`b%~`5KxI;$F>`} z>>{u(6q`7sg}n6ds``?G?7gcvw`P&UFTS0Fr6-Ac&=EVG>V9b7_MEWa`{OXe0PB4m z%sj;pC9aOe!rzh0ii}#B6I+zMISZ*~Sz2*yVu#PDeGi1=?BQWjX+><@@$D_Z2Edcl zJ7`7zW5#T(HP34MzrQ{$$fh5;U3K=C0oy&YN>>d+hYe^3q&@d~x9^#hw_AS~Y_Oum zSy{85L^kx9w@qk6X-Y4C%0PyFKymrSbs*bGelOZ&vpLd7xM(On02`+R&apyLVN1iK zJK{#_tnmqP52AxE68#T+8msF6y1hSXAExW@&y+0vMt_@?)i|_UooyF6Zk%%cZZn&j z`jr>k;dZgZFekdeuE2%k!+WKo*=OE+q`m|Jw!OvPfvEdt@2u%3Wrm;IbHhv8tZJ6d zXT#0kKLDvr#uA4a4VR!S*dK4`@P1*FwsWK3koj=&9q^Tlv(uxX~7xbrv zAPkXoR)*bASM*=8mo!tgBw7%?Jo&I$^ZL+MkT-V z?PGVEdE$< zh#ZM$oK0p}(A|_pX<3u6U}1x-I?@)s=eBueoTZ~K zvx1$m4)?t!O`o-(kh+`l^LBz3V2R zHsDhE0Sjsq+o^uWa`0c8?IkyMM`Qa_-``(xI={N<>-YAv=55rSO=vL$*z$+@5`-LC zbE|DesJnAJ|BJZ0RA|fbTfM6g`c(e=I84L$vxfiWR2ojDy@AxtuExoKiODy`{v2vk zE1H`y_Tp{ZX>=xb&8z*2e*!pC)ca%5(=1|ZFNy}k3_0KRc`Acgl_en%_+d1)m}6$< z;BP@lSsgF%qHt1V+E-CFaN;9jE^RNwU?}}27FYWz;eF5FJZlpIW|;}q_fw8acAoQ~ zy~zm8VglP@Hmr{aH;vH@I&iJ}$#Pvd{{sf}k1uUjW(MK4*8PL1e9ql}!g_u8McAL@ zIBH@Trt(cwDO#LsH$7v4Uy))Nyh<@YDjH&;?amN^v=$_hkq@ZxTFNwglAh#Hn3IY;SO&P=gTRS&H3Q6G80{ByH|xN;K@n~PIvL44W?6JlMX9Xo z01tn%JqlH}>(#7#veSf$EY6yv=L-k*=7biI##esjRnqJ4WrDtsu;;>2VJ)*&*bOY9oE&Q5R0San7@B7fgSWd zHU>WLXI_snp4Gqh==VQXsX!uVDqkN)4*&3mY}esUS53Pdfrpam#p7|W&@$QfN+qey zR$T9W8=jZo5rGtqCnYq^%Ot7 z)=sZ^K^IrOUZBACUdk@m9RM$f0~w5ZnW?Ld!bAC+PAM*EAxO6&*)9?mVb*B>Z7`%o zQ$Hipod5aWxCaevlF3F~>5%h93bW83xC*-`F9z6MnRbgo|Cp2BDrdUIcd#EbR97?c+G?{3vzt0HbXxJB+OtbO zTB%kn32CrPE?`5U@X{@qx^erw@6N6~%2!+@w*E&*&$E-+F|MJO6I$~~SV~+H02j8y&*~=G}c-Ppw>nv>F$Gtw`;MMk> zzuN=h5&5hC0`FtknR0AvhF>s(o!hRR)U{?r;VK=CEWD+;4qr~_47h#uPJL?mhUA(( z{8QH@a%qnk2FCq1ShvkJD|udo4^qJ0tPFEfmoobjtHwIV6%445#zQ+f)|Iwio-evA zomE}u#yt)};QeOhZ^yVRTiXsXY4KnB>qRwQ>}PRYudDQ>^9qc{eb(XSC@tK5+a%~@ zy@M|t%fe7IUgc!B+fW9bv6zmdAmtcZY)D{3b{WSA;iOp+`d#KkSm?pIve@%Q^qG&%Qmf*3x;5$Ltitw<_GWpP zdP<_MsVb;2KN*N!a$-|PL95OarnV|%=OKljJFsITf*^IB4cgg1RAeHrdgl%AU zuD)EWVUrvzUl@-W1x8xd7z1vrvO8icGoXH-0dfBx1lP1B0QvZ!S)9?#kZ3%inLHTtP94dSg&j*}s;IiK9T!YG&;DPQg=KotkfZ; zhf;Ed-I-F2g*>P>wyL3^fF`nruI%}#eMqJ(V#r+S!`87^Voms)`T}iUwFI&Uipan%2pWoAE+!#%=K#mCACuL95V;M$PuV zUmq)oN=R%J`Ck@^Nl9&+J-ec5zldmW;15}B_rK#7|M(in3=h@{&$|4cwSIW`70BZS zUhWUsjr{pCUYAltd2Yp(_3>{|GnObcB3(x}hlg$d&4MXN zEX|c{rS51%iS3kiBEMLoy4Vu+&aj&ep`(q_+QE-DU)?{w8ENQpvBT*T;Dw2GA+o0! zinTAIBeVpVcg4-dM2aNEkyZHeX?mF4b1~R9XjH3dbTf#~u1lQAY&AmZhe!7adKj;6 zy;iG*6o;*}`rWDjhfPr735G@_XVUTaA#}7km3QW{)r=XzDBniSF{YE8pRVeYZ z$);_bvZZVrDYUEi@v%e6RbgB$Fm!m=86(xT#ep8%qXI(tpAly zs_(6bx0HnBqdqE<0fBht{9hEBt9<)jc+q>f%0#DLDMQAwdW{W;CoG@M476O~GrfD; z66@a{fubBG@Z@K+lHz2JJ^jZcSuiwf<|IZ!q}+KgBO_A1;7*RI$2|&^QTI!qMdD=6 z5`QsNn|`x1sP7JHTAa5OEHo^{$5zQHsFU+oNv0S2?goI)aQossyOg>)937r`@gkYj z=W8rRfg53J|B6O+crIdhcvhb~cpn~4pe!poLzR1geuLmTPM8^|E6WH_GJuDU0mj!nHR%hQ-40DcarNI0jP%{9d08&*&G%Xlni(Vc+NFl9QtJl=(XDCTr~a zP7#TrQGE5rFrk6!B6@`Hw3072G>W1$$M!x0Y^l2c#eDe>%?}HvUrOgu7QDV63{>Vd z$ENjBg~FUKJJ&@?WXv3L@@z;~n}Yj2G?(aRZ$@D4MM9reivJp8ce4C`r(-m9ao)W8 z^EWpkI?%r~lJPFAF-m>QFgvN?TCC@}0OkQZ= z+$ba<%3fY9Ly7SoqhMX_z3<#z=gzga#Dh)p;T4k~p3fA0>xf1977d3Wl8xj0&8$}K z<6c>Q|73!zV0RhKmT(8P6pvqOQu&5=F&uKo)l++4x!oXX|IcNs1ux6mxk3ARRJjk9 z=)HKlwlKp<{-$}N%M6`jwrPCCGgc9<0%@RJ##y?Hm@Bzp|iTB4M! ziV$*!2QcSs5>V&JPXc1_^=n#@ia#wVD$#@af<2f(<`Srlp>yC9-yy{$EL_z)%(iz9 zHdoE_V!g#2m5^ShT=<=Wq>bg%E%(MJ?hPk1p+mcgIg0}GmY2tIURutv?}lqWH$4%l z$phC?)kbQWI?P8y+(Q|!Ztks2Zzh5SH1zQMY9cqFov?J3$+)nXQwG}m+);A#I-l!y zhmno1#;??J@deiHRINs;De0mt+$iK16`TqH3b4Rs_3j?XB2(5=al9(|z!P z8}O}N8{lLY#Zy0(RU`ApO=%iH;4Lq>4wy7fu;MXi<8Sz^yi{Ht^DEjt*xVNa-<>Hm zm}6)X)VuXzcb0jJ2xLNjHjKwqMpvyYb(N@ucVr)B7Ir34f+q(SpoH#x;i|N58o8or zqB4sY2CxW0z(|KjC7Ay`s!lO-J=ZdGdKO+IczDr%ZSX$J?6SG>V5L!t^PblM^-=wS z@gV>XivK(SMJTbFOBxBW(KH<7NtJb=ih!jbymY0rE~sXCl|Rizl(G+I<$CoK5E7|EWoI$ z9Zk(OmCszU>EKrT3C=LYd}?=@IWk@^Eo~|QV-wVpTPtU?Oo%;LZI+kF7b4BrjZ_NF zK3Je{UAf#&B5zASwg(5>z=eL=N7xRW!_6FvoA{-VVvK_Q1jU_etq*Jhxp)2v`}ols zgl%i2haoi`#feZ{j2pRg_v}Q1JPK6P{M9O`dsi(l-0Wlo&kGLw_ETZxT85Ix+9D zI#6%)$aF%i)=ay6H|QDp^9iA)^3hS}8O2|1KY4#Eeo|{nGruPXOhINLH*>{lJHaQDk!v<4zi7=LDwaE%^x7eLiD-Uz zjbh+!d2_p7duLm3`F9)b&hrJc^uR?!G9OOsK%dywH6uwh3 z)Cr;YNk)5xA5hU_o*3yY^)FA?9=GE6?+u#hxNS2n3aB|Vj^LlRzj*ORJTobTaY53* zYZHVgoYzsXEB@3h$Okz4##A9ub5BKc|5PUw+R&%UlXY*5Th<@A40QaeqdJx~{F&bO z^rhDwWZOEnW;kucMAR7!QOHSLrXZ_Bs!*$`Xik4JAN4`!YE!AzFlIa)szR7#Cgxk< z8iktC>v0oXaP7HaYlR5NR7{wBdtTw^Y7@+vN^eShQ=drIJk#9-7{kpOhi=Z}WI5h8 zv)DvZkC&z&f8Rz*6!D*&@^4Ig;QgKy^j)GdA>FRK-Y>UU)34T130SBeWHUl!$Yvyx z&Kt746-9&QPg*Q>!U-x79~M0tgvk)_hA)EZ@o`Nd{hIGS)NURd#y|-Bs`2!VU-86$ zt`%l~N;;2zTlT5#cT_S!J-0Sd2fg^~MLDln2u=KWaJ z>~5ps0&&Wz-IFakkM9MY=XN*-^x>_AIR*3SU(L-XdX1XQvVUkeoD)F;6jrhdL8AhU zqk^NlVkh|m^C48zDZUB{;_e&c7Lz9r>>{S}SDjG&Dm^AUDdeszH4hBwhc=ODd#gAw z2rXlk=QE^At<9};`G6s9e5&wEoVJDGpyzCrg?4c&3Sn3^%sp60ey@nb@~iaoCoUFC zboKh7R<^x4L(3gzG);2RYz|X$O%6sFTIF_uj-P#HxrKgv%Ub;*xnIxCKuu}LBMkh# zTDwTJp*%b3c3RHLl}*VvI_dO>fOGzQfk@xaC?^J$ zd6@za+BhpPM*&{zTD)PZn5A6rjgg~rI5%v&>ZS5{spXK>^Ulro-jCEV$>bV( zF}zG!U7;3dhyphd;w9;R$>^9-020B%fcEmwayH)CAxmeMl zHYnzWZt$X+>1`ZujuvzMw*}p&Y{en9c50Sr*O_H|{OD}cGXklk5GkOjWLm9>Qw;&D z1XVNLL`NKa${xhw9vMK`~@seMPW3_SM&A(;^PSw`FUlI>&=YpM9uli%JZ| zgNPx0g$Rphwl-lYhafJ2^H8a)u20C-2hl~rr3u4F04)-OsKJ7rE^(D4|=CuWF-jOgy`|LAqKiz;NRV52QMnDf2(@X6MI=j1cO&?Qz; z@du|X%>}O#*G0L7v9h%+H`I8njz*rhSu!iuG0z^V?ZN66=!m$Te|9r^zSZWBz0AJ1 z+4{aa>*`w8*tgc4+ZAY+8_>}|HIzkF=^xmPzq5?e$K~eO!MQFjc?ogFC=<(`!Smu^Kvae%WBcJoBJU%i4))NeR{SJE^yFr!!0zG_`DXLc$?1XJ2thM z0g};FgL$SBS!JZd*3E=+Ior|(e~p<^x!HouTx~<4(}H)>=ZfFrsDEa+#!JK(K9Zw1 zmcP%JZ+*bk;e<5_0NkjtkX{NuX*`%ag@iVI!)s{e(a&eIm=X{%T3pJEus49D7rb-p z>f{90&;h~M^20UZH9AUKKO>pb2&W=LrxL0icK@w!UjK|=Se%c(2u_OrH`zrig7yK( zqy2QY#k2xn>vjz|K#7c$^gT2jvh-iAk~|a@2`S3N9=2bP4*6czxy(0Npc2#j*mCmJ zJg?1W?NFFaN0&z-Wcky2V-t86>l(KoL!L!`T5-FXj8I7DeTeiqgIorvExD(iW6cv| zDgVeTYhfm(Z6#7@9`M1*MTu1g{3>ZT+%otDIDeJjcNt?Vpa?0EAEdrr7C$!0aWWGci4oO=IxV~u(_%wszj4ej30OfHoV=6gMXY>Vi$osJx zBoBY$MRah1Numz$O^{q#EW70|K;#11bx_PJb0{}?u{seeY{2#e6qWZ^K2!T$9YtkX zbG4gu;W!+{TfVNxT zn?UOZm4hil3gr=DVcf;2@x)f&4A3ifYox+)osS_K%B4VAD`UKI4*4*`0XY~pcf~=iy%hRs*?S#zYCgu#hrGB_#WB@1A;N@RpNiZ8 zsS;adHyL^o8PUL(rr85Y^lYeOADfYhjPaGuCGjIt^KansbV3OXao7IZxgrCg>T#st zSeXfw7J%X$S$Hapf4(e@e23Z zkmyaJe3lg#n`KmNemn^Yt5^kHp%OwgFtJ;Ot8oCgZ+_KHnS7X`kqXWY5B#e6;M7%; z`PL?*sp(0;0VIBc`prr`E&htWc;8jsW*zlnGvEk|Rdx;3{X{^+zu(NrLngKR} z2)nWz8&VN9fm9Dw#=lkvBZ|kVLo8Wo5`LNUzn>(L)@zUhByKP_t~#|?mVf0N?k9iG z{n8%2XFOaIVNdVH_s6<~=39)Mzpfhr1iaQ0yx{fY{=8Cy$)>fQF1CO?T0Gt>+^k#& zuRoqjV>K6D&z7-?8$tP;N`oO+)La298Ow!##!=h9`Zvl>_PCv;?D-1QD~#^7old=$ zIh7_nG{W4SwcmgX5nM!|=qPNz{>d@t<~*x8h4`jLpAcA-pVttBigX;CVfE_bDG`l$ z$giDp9;MEh>Kz3^+8G)+9=`oyB$z5ZWdyg3!!`VggWxR=5p`57@i+jMG|756KI_BH(AaCOef31DKgIQGHBo{Jk6&=-O65AK$SssPhLOkc-@e_}!{; zAK)Te5$s1_zJpvTf9R4Lru8Q}*qGOT&{Md7)pbwB4OHg5ES@;(y;Lh7!dw_X3tHWf zxlJp;w{_+_7Nb!V09=j*iW=pSewGN8r9mMJ$$^?W=0mx=tZCAk2G%k< z8NC{YrfjhI6OOn9(vyb#LN-?rK~A6}EISAXrUQl+A|M=m{6Z-m>UsSj*=(;$bs(#+-1u1~^qS+>R!=usUE;2x+vbSJ%WQ?&i zG7yZ0I5>m?>L7OBU2YYgUhcgA-aMUG&{AoDCsEBdQ@0zYHc`8MTB1t-zR5{Kk~WJ< zrz;TAJCOUl#1;uys(S;t?`i1~H?&!)$#|eh z96&o5|Dn>SLU9#i=x(ncct^4 zFgDXMM>V|fPkgeTx|uI-K`VsJx;dKqQ4(OxI%pCu#N9W{=Y$)3*LK&}zWvK>((vb$ zLATNME9O_V8-?MDc4>G;t9|P!)<1|7xaauR|INAy)Jw5?rH1*s8TDz0dv|p@qhke= zH}EIZ>cbAaH#gYz6U3}={*TwGEMYL~0MJrLH$K|1oL$B!8jSe)4l~j*7yNKt)(hNHsu0^yqF@ zFPzgVkU`nZgKHXu;-jKFYG^_k31tVi&Olsz5z65t9SxTZmu<3Buh=n=Ems}8PZRc- zaJxQL)7rS`8Qrni&kG*b^C46DmMK!ampt_I@Q*VPZZV_8((3RQgj2#YE1gkR&>pED z?#aGrrj_qeXCx+?90gTc;DjiwW8?z@4{TE98){%&kve6R(FOe_sSyp#-|3pD31-NKSseLjWhkZHUoe%vT zHA=rx7H|iWP;AL(m=hWBQg7hr?6DwER@l2Wz9M^;Iq=I;vQnj{tSjmB(pJTTj6x_GL^{wlaHKm zv9B#iE+;-NHkmvZqrv}HZl)tdpt$^)niPvv+Js#nx8Gf@{J(~|(zE-|>SO%N*U1sL zWgM3knbB^UmmHqHUxx~-Fl{4N#+PF?Gvo1i)L%DlJY0i$g&aKbd!HKteSLOcgnS;@E zEdh-|+L^y?FAtUE*c^>Y8znc_3-zSQRv*6j{Y(o4drnuBeSnFFeP0O&f4zoYE>wUa zsqS$*B8vAr*4bWS{g-Z#?x9oa;d&k$hl;d4UUbjjKa3lSV}YRCVG3x}>sk-E1vHpX$^w!ooOb;+>l8&YbV@c2N8ImKmdQ zH)p{talyT^R8&$7O0ImwC5ZsiIEAh8D4H$a*vg}HC5_Ue&{5b?e15f6HO8%Q6!L5v zhb_+Wml)O1wXH{}6wQ7A8_coeHMYGM0!D&&k00UUes^OCI6#+iHRNk!;e}ULb3ZM+ z7liBtG{9im8XwshZUEtp#m8n$P@>$1UX+MMxs0yI)mZd;8CDAjP|AL0IxdasG+l6A zn=x!}_{M2N8;gqCyjL*;>tc`AjN@+eM()g~aufV>_M&*&kSdxK?GINL;c>;^0vIit zV4U-eA~q`|lTUg`8A7xEV8r*xH% z0Ebb7b-;IvC-wxHfxk=R*@9BDAGajty+RiN-k2$!-T~#O$>GHo6k?Dn%A>v84=2qd z@t*;u!1rkF^M-}GuJBV8D+#;5Mg*DAr5Ecm#J|zxVgv3PZw)=v$pOBxb0*pKsh+K! zIJ`{cC<#p!Wr)jeBrAVs#E~jKhK_=~IsIB5a6w&1b0hZ)ukANqv|Z->pA%e-gTuwn zuT8rRE-0tk{^6kSIoLT6n3&A!JB3H@td`pw4*0)Psw)Rz(0{pur9y%kvo@pt#nxar zE6x#k4d>~D$M4A)Z`3{a;>GT_&BYUO%M;S zPmU_82$S@Ml2X$Y9l*7^g0xqCS?MJ@^6eL@-^J5eWOd~>lm1}H?{4(3^!t24qDC$E0;LPc@-CU7qlg;BAK zpttQ3T^RM!qJGG!D{pEnyv6)Dp(hZQ@Ow6fPAJoidE+xx#wh$G_1exR z`@3esVQ@heWsnO00}#t4)lZ^~!*yVZ3J}F8J)P{yQMQ?|3xhXl88F4SMc9ThI-^jV z1(DBtVx31%@TP4Dvy*!%Y^nWDti5;NdS2XCn`Nw8X{Q9 zcJ7U}CX?nPEm=qEIc{8@;OQ=%{29S~tkHwLg1|RHV1fPj`G%})_8cr1LuNn``qE#Q z%ue}I67Gy;Uh_=}Lw<{uK_l3Jf0@ui?ASCoE2AyO%+^w=v!suESzHCSO_^g>Mc!yf z3X$n6{AOdQz>G0eIPt4TdpUEgJKk>NGO7w@F2yt`n!C(DyNr}|WMOSbGaPRpg=5rp z0a+!VKt=N>sfhcPuXRP=%Jm3gI@qPSeB)Bo9ONZr-^Ja>A7FO$Q@#6MT8(gNGJLpS#ZE;q3{-9h-FpO~Fm;kpb4H#NPRpOSP=+sf z09xz=kYOHMbflCTm)M(buMt?fi|7z=*GT91T=-p;W4PuO?)%dLG+Ros{ldDqtyDIS zkQ=uE*{+oCFo}m_Djn~V#LR3*dWD9}{n&a2D`Y1GJiQm;sMVL)80o2~;8?w@Ju)~;+W<2T@@vbYhoNZ@aU0iXfluFHajj#9 zvsT)lC{BfCGIcn+1d>PZ0Ukl5pIGxA;MUrmOFGz{H`dYfM;p!;0yd8y5s$EoVjB9E zl!+7g>fVgalGFv1CoRlFHgx#1D_h6?9H(~CSXw|yr$%-bTYt9^n_Zw&+T|mVu)o#s zwTqjc6mw|mBQsSoI39yXz6k)c|0sSUY@y?3t+IvyTm~D#+$;|J@{5uhjs8rB7Y(J~ zi^Gejx8c?@8n~&V)aBV9?1fr8q&*n?R(@3R6n}}NFBFgEPai}>AF@m5GjTzkKweY;eC0M^iVneO zknbDivqGUe@V&pd^083|5BS{tSCRJ3eI4htJzAn-yR+RqIqe2-{qbekd8y+NqcNYNiAM?5&*ZE!C=LFo=z` zk_W7kuJpb?=zfSF+J{A|bpJH99T9!XkmVS0;*nUf*36Gj zzO`Qo=Y_a9i^*1E$1iLRo-Ft!l?MVWkY2RjqC||C#=~lv$M*+C_Yx)>q9Lvv6PNQg zRIrf=2zHsrgf2iiIxk7%VzHIB-u=>$ zvFW;Z>0x;!%P(}^H#n_^J=E3pIvz8obex)zNk}!Ui+|Ix)~F&2v~r*K;+qiO@AIe_ zBSx+IAND>&*0@=7&khNtYKO4TM!lRe0UI$SnT^CR2?1YUcpC9{Q@tNjB9^|DwmwGa z{M>mpPp|%B*kH<|^{nD9_;t_~uloMqOLyLTcNy)swEJVu(pp^7T;J7?;TX+CwFRbp zvOxJsoS#u7&UXTqRm0a;r#X$(8TEV%ExTlv?Ie#OYD>R5RB z8_g0khS>=$(--%xp<&fJ4rnjJM)ewmBA6DM|5uz{oM52!(N;G8pS)J&a-(fsp_F8n60>(#@< z%~j%V7EZ6QF15VhEQ;d0hfQ%UN!9Hwm&6DhrI5L?nB3_x;a^MCbKjm(?ay&)|V%&yrSuarQvjA6ROP547dxC141Js1FCX;Nul@0j2NBxPQCa>{{83z)+f>` zbFoWetZ!JUJv??!Hr2CKaI=~c8;W4?+{c`|dCam z{C~4>?P*eM*hHT-4FTCz;HR>kDwtX8q?Ua9BP&|KGhY~(k=eHuJI3ic@Zvt72+(W4 zy*2%H3^1$x4F;Wsz#1oMv+VTWPs(>ByE87!WGgpyx}aK4LSteusu*&4p1FQNPf3!$ zUtaLd7Kz*DPT_)upa|ucl&ZtPZ}!yKOC}=7eCbyxlm9}VP_OSQyQ17UdQN9?Mt}`n@6V9 z_*nG)iS5kqg~of=-0i0?kaOAZnw19hx0p8_t-lYVem>6#FXs1JiK5jjpLn)vooCfs zxmoM#2U1z1)4VOn8S6wj9*G9l{7k<(;{mMAjGxR9eHE9zK97@^ z#g3E5`-?zqexEwHgUhBtjRh)v!EyylRKewBdKsev_Dd(re$2poUx&-uV$Dn{LOzI?-% zD~x@?FUvqel1%>oIdF9R97E)fs!C*mhn(ROTkLy$iMLW`?znisuVTCZz8feC*E37B zk9eQjshltXnPw@^KE_#{hc1f6{EMpR1r%&N^mb3^!(#MS`}KRj^Z(6gt^8Z`lRBB9 zn3mq0Go%H4>lXbrKDf+d>l2WTWg#HDgy^|#{cPa(d&z)!d;BIlS0N(ZXDZSQ{#NH{ z1{yG6%x*D_8PmO;d3AR>!c~#glMk(%uq45Kv{IKG#Q3b~Cl+Y*Rj>LY(({5p`Lo$# zOhDmZ7iOHQc>wZ#jD15mWGIiZSRy`b!dAUbp#SwJwXx|5 zvd;QKfC@&W$UIn(qp>;H>vS{=lOTiQ>i;CAMk1R0Nuw>4?um#0j1)CAm^x>bYdct2 zsTPVFeGpEK=s9|UwbSWO&PlA&U$th|0CmY~KQ4my0C(I9#+Rb$7Cbe?3Et`QrbCKF zcC0L7PIe#zVss&S>WvULFp*O=wogCL6CohlP}h2pPj}J zm2iDrVkKlh^z34s7ddhG=)Kt5rS1db{fr{t>-ppuW5%NosN{s&<>Y%~x?D ze1B|$2E!4F6E!J3_9vvp8|94V5$Syt+%RWE>VF!Kxp?;R>Z{k;{`lJ1-R6PSbpQdt zMf+cSyx+csEU~U$pngmWt633OME&f@Jx~tNogqbViIttGHe^7jwd%{v=W{ii1dZgB zzE^^y@+{0tB#<72<(3qlmd|2M9gG(L`th3tw*_07qJ0f$i;8m*2I2Ciqf`jC?L>L; z?aYGRcM3Z7=FqN5in^f|^F)kw{L?k-96C{ys}M(QcWRVmT73RyT|Ap(X7^%RVS3+| zp4w~LOJNL}C3A_o)kQ}H1U3(^dGR83euo`50;t`(V_o$HkB5{^4s@a@J|7i`LU(U$XP#OAHoo|g7 zg%Cvj@Mx=P({p)I}}jZbIYd}CgNuP=JZw3X4#Hx`cpX~EyHzxwz*ew z(QSS945X$d3@n-eqjhJ|%W~sx9h^?H&lDha3`dKdpJ2LGs@!%4f>96m(>c<6@Yypx z<2R?>1afeC(u(+vFwVBk3d>)J0CWqy+`NDN%2j2ggSRL(?C`G-L)}GTgRLeD$0?Eq zz{c|!DxwNdnKc{`U;iUxfIcjsV(XCAn_ez}_L1^m>wE9{ejgYxctrf>Bel}=b6&;p zkfL(}JE&IoQWiVtC9%!azZ5IVN4#3<8&6fZ%Oi0eRB;$bT-tmaHX*1AHwF_L$+`t> zUJ@aROi~gfFEEuR1`I5c^^Dik1b=>+atg^@{ByEcAayftk}^HHrJ|gQW;r(BtHhj# z8Adc%H@IXTTJtvHBmD+M|4xo$XVkmhSCZmAa3fSJL2xeK7+-h7TfO90!qB(6L?||1 z#R!4|yqfB%b0m+2Ov}o4DXGzArrKQXdaVIvTFa7KN3&UL)Y=yP^WXK>K?}7RyWxuH zBQHZc^_b{_BP09ld{j=aO8Pj|@NlaO-!Z*Z)OdSSr$$L(Za3mg08Cn4lyK-aHgjr7 z-&Z9Z`^gqh4mMP{D?t^XIrLYlo7~`u5ALJjb?eyU4=DaI8}G~>@{O<3s}G#}&9z^r z7y0gX#=&%tWi{+;C>yT>lQbH>JZw9ePsWTr{nfOkkhx;9=X0I$k|8(IRKgjM6WJ@l z4*NliVq+JF(pku{jU=Ef0GM$DINDOeva)bGwhb z1uUqPN+LaIaK)>WQj^ElprP$;_YRmAQeaF!A*P-+EGQ5-@V?h!M6XZA_FHX1v>hdP zMbA3VUyt8wTey6Adz1zmtyXK2pRN;Pf4L}}MPEQ^Kjlm}WKv}V=V7BO2{>4Vg;PN> z;me3jWz7ZxZi7jhd_*_?d>Jjv(gszA)>8{A8hzx;LlU_1ehQM4aCV%0F=0mF(v^pc z3b#)n+V7v3#ZuLa7o&Rk)JjmpgnVd3t_4hJ7-MD#=Fu*QB>(9uEUD7l2RK2N0{S?e zMANN+`H0Q46pG;AfqM%{x&mvS-tB$BLWKr_Q!zD_{d9H#G_MVpO+vpXfW>t;pVHvS z+L}{aEI4$`14{oLz~Fo^0FAor)8{4Iasx_o=JFpG#3nhGG|Pui1h&Jl@%Gqj2wv{C zX&@Kv%68J!Gd-!~#;`l6V_EAPivqBb()8;5x&zfdGoZmRf*-1@>H0>rp#Ee=I4ZsTg%PgR9MeWWb z?B&rS=e0i6lPV+5t{7KbY=1D91lc|W001!D+IA3^NczZf zpqH}cg$_C3t$5XbVlE_CgsYhnXI--2>woFex z^&~dRo)BF_8XmkQ{&y5X$L%fQ^hy+S{$o-8Kfb^FYOcJ{I}MvgxY;vZAOD_xjDQQD ze05L0lhV#UxD#5OoVXdI(mQb>>!aLr4TL-Tx@PApbpjvQT%Q;GP*qZ!{Dv?5=bsU z!UM)wCrviyxz#r4nlHv#TZFvjd=^qty6U4RMCK@W(wQ1I5uMdMpcbZ99jdi3yICJX z8UOM3;7>^Hh($u)>XoAWx*>FeQLSxww5I}!p^$C%sk4fo(%tm02y9J?KZ^^v6v}CN zj30=DnV$Z+{6KgX^P$wlJX=qKv2R4wQqX#}y;5~t&gwR0%5T{Eo$2H!T~%(0#tx7O zlsliRVk9~@zQyzw(T(eOnCYE9+46p;t!&`rmFoLj#vWGZAT0%V%=afZ?rJ?{_{Ds3 zk!MUgBwIHXY^a)6P1IIGCX?Y>y(?rN*|6rwk?Snd3ZST1+5`p7d6Sq{xuHOvSmj-AvMze2AVoA zZsP?#SfaQNnOyDCnl#24WK_fOx16)Ns3y{IpgV_sGe}n4ilp_3*F$vXrR_$mD17}h z|3yye{;Rf<{C6L{F35cOK|_4Xuj3fg8$F&-ntWXH$F(&nC{8DRwAOHgrrGjn-RX^k z;gj05^`_TN>+#pTh%sHK;92V|t+o99N!)a3*R|NXHa=||A0Aqc`QZ z(iY5KKFxB5$an)Lq;hEYsHe-W6@zCRxRJWY8mXK&@Fo4dDN@}*11~RRuc97bwcR|+ zz%K46UXF(_JbDZVLOxnzgu6I4t2x|qu4rW-45-3d+&jt5Tv-{e>jESk?(S4lV2BBv zUF%mO4|thmdIYkf+twbYD9z7qn;W`N>I0i#MGKBIhRscaKJwz!D(PrbWl#~};?HT_!oYMoLySI_gN@m&uQ*0FI#_D89rbSimE%AIfe8urr;>%{lR%m2@^q2PvqxIb! z2&TDa2Z!0B4d4p>>C?5tB^YM|LC%;NMh0=U?qxOK_JB^LqaRqfpj{d`2~-TclNfwQ z1~;u7+SabeK8K9`kP)QxvM{LuGXbCKUhQxPSMTL28YyAda4FmFn7D` zHhRh2xHfP*`7D;2US-D3UHblKDNxx9wj7U3qV$D_Se=#PA3m8~2pYL9`*mRC^$I24 z^|$BJ(rxworhjWLa{{*YDDY|9Co19?5m$?tm0yOcW2byX%`ujS?0S6D$$5D~5L!k% zsfn*bi0a zC;6cKP2f8^(GgSD@z1eH#9AZBBUz?Rg8$<(DDOuYU0+O4)$zAnB|biEoW(FT}1c)oY2)Y!T_Hj&{d_Z+#9hpLN^^3C5#U?IyicwqOm`> zejf_7U}+9>37>X=hDh(hZvByg!Y6uh3_U+HNTf1xRrYy=Pjyz@=nB;N@vm&(1{rc? zwcOm(Xy5YE8(!aM)4v9V?+$=35t7zj=$hKML%s5IEnL*haylI0J0U4;vI(dT_ckS0 zuQxZ)fC7K?+{oxhO&PtX4YKW^^8PR{qx;&ae^|3Est(}_aT0EW-}L!)C9+~??jh^& z(S1Z5c?;7yTjpld&Ai4G`mMF@;~apRtAKsGdUn)_%H3*uxP)Y?s*_`;W_Z<{r|nCcY?m7UFpNW#6JKf#=R zdpReQT4Z;_*_a){LWGzlL9du~a(nnlME%ZLth?_blG7+oD8+^YuEm4F*UH+SV7csa zO(G2vqIveKGVo{iGwn&g%kwuomN_}UhdRnC|Sa_`aj>MIJGx_}>;z8q z4R5e9JNAe&7j=7WJDsTWAOTIK_zvtgwT&KFRjwPu+!RYIRBs2Lx$XZl9F65HV~0V9 zyP~ZjZOES)yH_F*aKnJJa%E^DweBn{-%`zdl|%8_={kG+k>mG(hrT?OqC6yACTOtV;^L{(jENK`gza^Yh9>%v(zNMv5N*4+&8f=?h^&E zhgKI|yF(|+I2e$Kd@*;c&a@)=OgE5<#aqXvfjfeffl%DDhb<*_n4;#lZ@u6#bF{3S zm-S$hYd8uCQ|$VB^nN1Ak9M_^D#Z&&DUqJNr!!e5(I3T#(5-L2E;sD@AWMS%Rd(vdDM+TRN@Oj~ug9Wx6BYgY=5-0u(;4%9Zp)FVC|eplt{Lmd)q1#3cPd zYwy=tZxYDiuoV|=$nb*}KkRWiBePKz3;M@xzy6|?MaBLQbi+2!jaUs_&HK%7Rs7VB z`7Mb#8)HX&V3ssf+&UErIxTjOw^G^EMU(sucX6=mu_zD0!wPz$*gnE!HcrU;$oV>6 zGTnI1fa&dSEm>owNm5^vtjT(2>6;QeKZnPRY&^AB+B~^v$V8^Z6V0vZ6UhQ zm%PK!U};V~$*61R=9oOhr3*=W!|>v84viXX>G z8CzKAn=Pcl`@Fd$(N`8U`Y^?gZ4e;6`CrqX5bE5j!3@b%C?PWb;jIm+*x@Aa;Y;WPh9-2>WosQ!WZF_v;(B;N3b6UZrcIQ5Mm&3MQo>`HDXB=)&)fKz2fL zu_>jM=|7tXIt<%hk67G!>w~oj*gBk%7Vd9Y`8o9UYcshWQS;Dkxtb3Ay}{q}Aze8C zzbrRQui{=)Fa13?+jGVf?0>vEq3bJ29`*dBPK$zJGvqlvP$yvt2BW7OQWZ|@RD8Tl z$%fV+1`6ol0NXE@sEP9oU}JxwCsL3nq?Rz2=prM#G8G7ho1lcdII? z?nM_fH0!Hp!MuRW^q!jQmSnmf?7$4B9P}_gT z9)7y4x~jro4R1>+B+euj ze40uXlJChA8jFLg#5bv{Ey`#~n5+{m@;SLZ_4J(Pyj9@H(f;#Xfs9e8a2y&HsWhQW zm7fr-IQxZ%_j?23^$uYT67V_TPLFg{z}K7_tUU982j z?=;p74XT2%8a`?NoUgfYg}{b^c&A6MrOwtJ)D`gOquj6mxtuTgr2=#6J5ng(Z@a^tkWez(rU#6>m5z!FP^EM5!m2A983a>(C#YvJN zqzYcbYFYAIpF&bUPI6K=i3aVeMnrk@dN3&M)(*xuniv|oSKm3?R@8YR8obJIj_tct z)X|0h88Q7NJb0lMmDzz}wEkJ9)#XZQm`8eM-J2<}(A!h+L zH@4x=@G&xDh6^9K@PO62qfx)Y#Eezp{!n%Bz*-;}NK^-lYu=6BOxu!9vMAw-xCthO zZHmufqSrAt<$G$i-QHVhTHt2`7xadYHelAEZN&5JS7i8dcO>XwjXpXTp{Gd?%$g!cjHL>tXDcPSV4mTb9 z==SQxn)Abt($}o}(9kVNVZm0~ac7el8NyG0#oma*x+)q3k=UF+?WAiuNac@|NC^g1 zhj-7^^0Dbph;Khv(XLQ-5OiTU^cJEZ+Zmf4dQY(^g+)Qhb(4-_^lP2T*t zJB)50P*T%eoVsE9sO(LS#4!ujmqNdX5|f{5OKzyGEk>?U0(P9MEyKYFjL~8{3BBSx zsr#eJfpc5FHuhjG_Q@F<0yzR!jKQv0s?V78N?d zb#F#2zFa$tvt->f6r*S;`mZ}%6WR1hW3qA3Fs}I^$_R0M8qNs5uk4u}SNFy+XNwoN zZ6&MJ-7=U6BPf{Fp7fUl-+nCkoVQD+?-l~Qys=&E3BiAXZ($@bAEmZvIq8+*bTa#5 zeU^Y~i3HItn_>ueZGdh`bri*1H-)7Ro&x~l+@C;e*#0W0kV~RlDUJOQx`pv%s)ugd8T=uE+D!iJyuDrd-X zdn_fE7CKIXn*u2w5HmPh33>1c!OD;V`zon1G!dEP+UxX|BFHikCK^Xu?^qYgcrSHc zWhwg66J~8J$7NnwuQe5#j35JhS9^E6_ybZJjFy}80Y@WllR*U-11zY+O;9mrl1542 zP(AE!x5&t(Am4{Z)P|I;coS9+jgV7zbIC__>mcs#6HiG;9vh)af>LX*jY?PKKMN~H zRV1;w-H2=&wC7(W53#0b657KQ(Ia z^Dzm=oe|)6iSue@wA>aYK(i0MDLXVFO(>(}Ufm1XnKHZINhz*z{q)PkDJXY(z;)}h z#=f$2*-3NtE6#LN*x7jBTh6<;j|cDT?BvRt(&SZ1g)h<>9H;7;^0TW|nr!Fo;RRML z_mm6u#K_w}fBp8qH@iY-D%0jI0u(j|5598d^6)A3>e7|4?3ood2>o@6o+E@?T#D)E z9p5XRPP9&1h2|T)-Rq4ScUn{8zXW$?b^dGECBCuTSa$pG@e&vBjbE#Fg5tT-h=C%! zp*mZf(LW)SHQqUqmTv+ew3rY^YYZm^w#W(X_*5atxk$0Y+h=Jh(5lcTBsY&rWd&c? zXbSz1%KEAlEqZ3(E*o|7WE+!aF<7;A!5_qzKZAq|szqwBe#xi7lCz{^-sTl6^Nbbh z$yY9h|F9;T9`$nY|Dd=$;}hGu%Q3FL(im(Dw~eLKQ~D^)8Siq1eHCk!dYb@vqk*O2 z>GGF;o<*4`^o|HXob}7_ZM7ojm1m4LX0a$t7gP}(I%pqrKE`ovAbpB^cXTw&1y(fk4kudAxg4vf=L5 zFer}0`*6J2D@Mj}Ay!|q7y(RY-s^LnIFQBxmSm9seeARGUS+G2hwQTDr-W8l^htYL z;6&Ye2k|qE#w+faYi1oYLjO#{r~Fjuuu&bwg?Rm#FBGV#)|!f>=+>&@84ru3;DS5C zx>iD~iS5^A-%#MVWY2?!*l6CoFcJGfP5>px^Y(pxw61SmVmq*xgIl-mD0UQsaPvh1 zd@B%d+5`5(9v}bD75=ZkCN+K4Ir94Iol@1CVo`0A{6IQP^uJ4K#F#N$jR%s-xxv{} z`-!7@&|A^0QQaZpH$09C5d(X5HXb+po&%gIHL427(h6ojfuQ4Yjjm5H-PQm^*e*rG&N+PL!>-Wl*YWe*HN{W6P*| zGi^mO9jP6XzExZqEg~uAX|BenobGIud8IKP~`=3d$fF9Y4Pu{M>$^|@XlYo9)>NQ_1*g& zy8rYaLm=*NO+Y(RM`x1U^C7whHRtqXM1#vXpzsNjp)9OBi!m)kd8BG)_hNoNq7F+_ zIeAw^ds2B;F@f~^CnxFjqJ_Zts>%ltp2OmY<%;+k8-EHyr8{a^MZ+5E8Y{|L7Ts>g z7qwZJ81Ch_aH zk&|s-H~PmW>&%bbH&qm)WbTG$$5c}5O@diTJ*qBaFO%7UW3cgS?#N4NSpt1`EL1`( zGRB;+wU*C|2%rm6M%}fu3gX#A_Y7+JjB>$~_m}e%FbkjueKr_6m^?OdZAic?m>D@T z@jK2`XJQmIt&l_P)a!c7@b>s)$B=pLjN{}6R76!eC{(hd-Z$a}dqN$@s)bguP-}xo zkPTev%eod@_It>e4s2$>KTtyM)3Pn~9c#_}DuL750XhJJbX@%GpUjh@Cg!m;dJ7f~ z8Y8uRk&(Vt!Ie}!#{yq&$z~L9e~NDQSf0}bARceK<$hRT8I95aGp^Fdf{NgdByCt! zw74crC(uCyG3Az(l&oyPM?6_Mc0HSxO=<41=`$1PO_$DvAD{j2PdX*w%GyNI{y+Kv$(UX0&ci!)VcJ_}5Dp*4y9CZg!Capj zlO@FEmx?*~Im)LzMe?6?*N{lW@g~+F5|W6V82?ca>O@GkZ-|u?Y(kTL@@MP%IO9P< zV6fS4B4bPw>@4tVur%Rv0>nf;(6W>S7h-r7^JwWbJ7t2f)-l~0X6oTYw?sb+WVF+B z&4V=bozU3#4X%r+WJ9r)-^reuTFxb;H9X#TMRkFtmL|C8J;^V zI?k=O`~_cXqp5@yeLeHBzsX~*aApl{@zU{hl3RK$GRH{Wo{~5Vr=Q1ll{EXnwt1`> zxA(PX2+umma8B`ef5Y;7!wS&XRSbc}J2r)em@v$!@!4u#yC)wY0(Kg9u$7CC+L8k@ zX&`Y`@Q%?n>xF~z*Xw~ff7<`$(5WEpxS2A!R|3m>mwU~BnN;8Y2FBBtzmNVBt|B~C z7o^<3&@|m8(Z!k1(PGRoeH~iMT`1cZd^W5tuY*e|p}rx38FLTrH4Ck;=_?_Yc5~m) zMu*XT{_-4ffQNaDKD%5LA)lH=X4Dzk&P&mvxNN9`2zd!cY_=rHZZ)5sT0;oq!}^N#=0j-x-&swmU~Y)b z$t%{5UPT6UY~5$;OO|@EIayFzP>N$8g7Anuj+38+U2?PXN;0CfSNl2_Si%+JueilMc!=~k; z*YSk81{2!kWXMRMFtYys9@(?!@z3VG2FHVs3M|rYz5(>{lM6XwqiZBSfa(&0)`Y1( zt)b~_UN~jpjNfwI#S1_q95=%4mS-4XNpBw6oULnS%-4-&ErK8jG-PL zA~DLwG7FRqVsM9t&XpiP2c*@Yy@bib-%&?Ya|xr@d#G4*dPb9N{(`=SJ?_o zVnx#_WR5D_Du7&TTD4?D6)W^+l_ zM=lN*^%M$zXL#? zIE$<)ThZ3Lc$7&*_}7GkGWm(4H!9X?|Lu0v(>qocch>-1E|9=-CF)tmtg^ePOm(qw zGX^^{D~38kY8<}+dxy-=d+q&?3o+kkIbb&bGrI>nb~_tNvWw_cPox^Dq<^DhV5H!y^|w#Ysah78OOW4Hev@aK>CS??t96dmB?{t)GSb#K#LQhb0zHsULJ;QTPjT-&kgya%Y+ zWN}UXe*qf_4+-O>f74go&@Et(tSn&!F-Ms~B$uB(k7rbb)s&Jj9Iy@vueDNZr0;CSFrbod zeQOqASkBI8_)Q^A6t6(6GU;Mf-Ik|zUCk5VwnNMV^J#?heNUi6nj_YC448*V7p3Ar zoRUCSzki?7sDHK~RwA<1Yu~Z=duUSv-40we4Xk^M~uI_ zqj)>9qUcFCk&!y@Y`5w`gH4*UGyzl^vr8FRMOwVQmMbJ6;gqoyHgrrf#Yn(S!Ms0%Bkq!6Yux5o?>c@#clpGjK^3hLqV3}Mu z%H`m0r)(Vj_5@1q0{aHE!H9Y(iZ%t6W^}U7q$mbi_ksG}S1E-D+@D9QB;wRSm2d|y z8ZtVg-Yl>5i9Y+`>~K`U`^}ibgKBy+N25`BaH^G-)`#=TC{@s)nbU34*efM6*s7hR zfyKM>6T@#Y6%OCi)>;D^zSv-u5o>D`Eu|jV)}hwlxO--1&HvX$u5_f{UbU8xm=x|? zle~)AGhFv!iOz`2yYW)0KEw)5t-f}ctH`}$An$2%sMVVOtnTFI6xekvf=xGaUSuq=l z$#>oh;WZRLd+#Q2;Hg)IOp7x_^doWaS1%Xr(#GzeU zl`=2ngpOEWhh$k~AIcfD&aTw#aa@EPl7ZMshx-LRO-ah!?a3V) zZndr5t5`T?V2bWUBlde04rY?s+#C<#tT0y-XR}eG_^7fZM`m}|fqHD`b7K}_A57PR zFs0U`%1CfIk!k|_Xy;K%*!(nwD+*M^$-qa@*J1cvuXcWZ``~gz4h{h*-!``Lv#lh` zfUV#DM7e6(qL*Dc0cn7@XC$j%T@t&c`pAOP$oW(@q0(kc`a@^orL4G;U0G_EDDks6 zt@+ejku<-q@0!c3SV7C^(@`F>LPl5Zt5HR`06v$(x~mPf39-zE9Vx@g}<1@ z_U>qX=~fs?nN)Rz2cey`<$+$-EyCR`I7hy|!pVnsnjXs}q1Ic{9$6C61J4bD^d?@U zQl#A!w^HA%PtX-4VZmNdMPR`nQVGkz5NX9(X5U}bRZ~#%_$ERG7Z^k{A72;F#Hul#yC*F3%9pHpdiR1B-03H=xnE!(B*!{U6L6bcOqaSO1Mvd`eGF zv>wh^92OCiD5g!6W5*5DQsY%X+M;_#D22ZOA_FQ=L5*e|%SIYWzn;66%{%Aet>b>X zE1AA{1{FQ?hsFa>w*+IE8(@?v!EgIw5a?cY;yR+D8(&7i)ZCwbIhM&# zdzSMjNXtZ=d03eCv%=d@htnFoBjTGwWvAE3Ll3CU=caPQ$%KL%EtluOjpydTwd%-0 z|G~lN8kR$5RzEIJ*=u4ka5Tl@A3URjigIA9qH<0l7#-5>WxuQ`~9^bUdZpB5CcHD7(3C-27vMVR(`a%*0u z6M^>xC3|xgZ^f5hny-FhT!BIgV|calvWkle1)G|X&<0hN^*daXv&&xwt;trWY5lbn z7MdR__|GMrekwL{R0Ao#lZ$I1tWC~1mbEmhA z9VTjwHsZPlNvt}Pq9O{AQhp;gEqmsWe~Ra>qCDc;v5eC7StH71oq0KuZ$?k@c)W%Ns{{OzS4p0dv8;Oh<=Qb8PEWT(IIifoU*8drTDP*Tn5a4!IZm5;*nlh=o<0qcLa zSEn~(X%*k%(OLc#eLx-)K*)5pnR8_VY;9BG$A(w`qF~>a&Y*M^^sSMV@-o^9O)p^N zXi`tUVZ(tBkE*wWYmC+AZiQ)ZryMTv!5JsDlk(ae6y)BbBJPe)Qk`xxb-YD&zha?! z%GK1EUTl8!WwJ<^MuIk%izq33Pua(qTxIiVX|_h!^zCcMW~Jy3uvBonV`hznW^ zKdQ8cS60$+A$7n~jOH8p0B*5NRYzewCpf?ZtG}O%P!kDmMyXjSKU`kybyx4S9NJbr z3{1?sHhHULr0Rx$upM8`nN7fxJa-**;3_Gvi(@VWR@M>Vay#4FcmNiqG#|UP zp%E|igsj7XP!rUX>^jM*IPjatHd(i{pTuZ@+R}U39oWiA91n}vWQOaNuSblJjk!Bg zU0}*F z1e!Z_Q=C_2$Opp?v}pzQR)y5A*{DAHPP)Jn z2cwKm(vd0Mn9j!UP)c zwKe;lG4rht@7W;s4VvagH-{FzpGF+{0=Vox$|>g~K#Bn-z+uP8uB$cgW#sAcMu%j; z&k5%QTzi*le>y0HR^`Wy*z_er6({qm_ZvXXanH{w?4l|Y`x6M@OaA`q3vE9qQh}Q| z&Q#VqotilVvjhBZz_2p^x>GpiUr1QOc;lEbgSd(yJyLNB#kS^>tQRG2H9R) z=R2d-EG_5f3_y_bNfvUMD*t*yO!4^C_I2Rb6uBL_WTZWgG%#k5#2bPH+HDFOq2t z2@G=1fA=k^ayR@49!;sCmZ=XVb!~`!7S?3%a|B&cyNw?lFaJiddyHt_>88!8lggWj z6pz!-gbE+3lAs{=e4)*}H=$Z?skSOzNW@L(Y;yZlMORyy6vtaHo{7pz+6WLf>r~=D zo!JeW&nc9tQ#N3H6;fEOl2*B0PcfTtYCfLGzf|7rr3zCcDxV6}c@sM%R1T)9A4`H2 zO(u>ULr`P$)0Bh#yQ6Cnt_rZ4CQqzIl6ds9uznccP^#Kn-B$vyQA%2MCu3hmMtb zMfW7Wp=!sz%oVTU0uGh_x5?Z&r<>hcW7)vUdPs;4za{ml3HjmWxTZ;*#L~7ZqJYEH zM*y#vi1QI3@d3-i02@qpk2kA!CvWeYhu@;fv9)!_fza9sa*(ZL=H4rr0D(&q@)hw) zp1Um~YCH**-8CX>%7=b5<9&z%D*fty-h|2rd=7;1Hfto*XVvuluQuZxAhhVAE>!{1 zwA@o^B6j#x9ywx@1{mSM<^h?M&giFRD{wIl+zVZy*9=6#aa+Fa+i)5xXFR;}v&9$c z#9r%w<(Hy-N~9{h@l9H{LLaGaV@w!-BjzH(DZ9tf zf&c;SZbFmI9SL^pAtj3S&X#@$0Q;&}QK;a%R2#f7Lfo!zo3sNS-7DcX*wan7IPaMu@4G(Q)g09oYk}Df) z901iIHVYjsd2G8u%h}wfAScpOU1D0P<&`FlFJc_v*V1H`RPV@@_+3E)fFWiAo zB%oLRLH4uVWf%pJo(qb8o%ecbQFdrqqXCbCpaztIRXbtfV=09ms@|g4tmjmk?Ep3<-TGNPQb_7Cp%Qlo6_EB6x@bmk1ACjPJU^j~IgH zy(!w{smoa=Jols^#YUQ>7RSbCC#I{bzgMQ{{|S*TUMM!XvmQ+$gU1~sGiMFD!J@s| zJ>iJ?a_;lu=hvG}>mK7z(7{vtgHAbda)MR?cP=T$&Kqg`RUYJrDn&(G!&jtfwZO$M za@?|#X{<8%DYdZuk2`dTn_9_W0?=?lQmCC*sC{zK(T;@vy3UWENRY|;2foU2_&^X=w0pK@T0qEf?KGJ>T3%cHy=TuD+ge0fAQFBcD~>%I{OK+;XEW|@U@Z!eV-0Mb-qovN zIZOB?CAH#)LcFx!_o+8%_;?Kqmr9#Z+3y~A$_uCfqjP_&VCDSj2?eS?XfvT~e_rykFZ|MoB{FG0Jo zlh=OYR$_aJy#mE}^%I9`_dx4AFi)Jylth9k=Djjm60K5QAs_p=zB)aYsHajL|6;`s zLd1f)3f`9ULfJN$KB@H*0|@4#UFx7R^7pd|Zzu|BeI5=kbPP{2b z-dO%&FL-_syqyCR}@yKL8Bogm<~?HCU0X1OFC2Qofg z2gPQ~a{xZvN~-@{!Ib0k@DA%p&)uxkVs)l-0Xv*xwhC;xK(z35M5O!t(|K6!9W zO$(^|2Pc9J;T41SPpV~d9V&3QQ;)Bo)W>QX*=}v>b?_uowu1CYW!NbohhPb?@+l2Y z5++HYh}+djB>!$hb*r(TAU64}#{hKbel^1leoR@NL0?hBpaYa|rU%8P71fG{N{kGt z=szc>GOt~BK%Lv@-sw$e*&nbtJ`0jZ!SIy z8%-huJNIlFghjpisbEO3`Ke=kb$xLc?f3VkH0T1VQ9Uy}c(vPfmnUBtKp&DmMZLyi z&8xZ5Z0p)kdbV|!@amuhk6`sZi$z7Yz=DGQ z2&?O{tIh#el(}U-e?%yW^v&+3@GS*61nz+eqpR%WB_N;Ks5xgJb~npv3@#jzk-Cfb~T09+AD z3y~BJj_~4HkMHlPnj-TnlJb7M$uXQ-W!tr~;ItGk{GyKWnW*Wmhgw?Tl3h_|ywy{7 zFU`_Zo-e3A;OW{-r{kW?+p|XuB;?>Cy31{=(XoZfhus3=inWtRj*Qz#lD; z@)^+n{2TZ6aU2#ZJ0jJ#l>JdSM|z1#e6zO~{q8+vCV{V?u(unmX1 zeE`kMPb-ki>ckp`+Cj)QD7Q7)pq&Ck;oot24qv9+&>mH99k!dQ#ql%JmQJh}rr0Z} z@y2&};*lE0Lp+K^<8#nzQtunY%W)~2`1?+uIJ7^J?4Y7P4tvx!P08y~6CI__E+1JP)tIfx3uBE|g}N&)1FzA&ppOr3^PEGC ztxc3_`4X6owR=fsbYbw-;&c0j<~(YTXnJa)YWSzQ>KdtVSz9XhvxqleZ_}=33yW6N zoXQa567CMDc4zq`C)NFJHe% zI}{_|L2Dd=Deg2JK9E1;rBTc^lKzZ(`O$m_Dn2-Iy2q8LRr$Rjn*FauxbJ(~QqLbR zQ#=Qz#=e(YJ;pr!BHHj_r_Vr=Pt~jEL2WGIb8{WSXNs5E>yz6C$n_{%?jauNON2uP z3$YUJW@V;8e0akeS{)X_G^VRJo88tp?1gq~9Izjd^K`}kNj-oRBXuGtc>Yx0uw++@6;p&6_0mWWeVQ7@RQB_GlS{zx@Z^0G>=r79)}#kpPTl1xw;{PLLf%zgd(bKCPdbFlo?1nD9W zbJj&iL4O888ClW>{QB)Yp?j9{`11AZjU>XW0q6R|Uj+Lan7<2uk1RW_pXPfN(9&$F zDkARZ*OD+lE8L;qVywAn-aKLmzW4nV5eBJzEsgY2Qr)@~`dnaJjHd93i)dl-QIK^D zlm~KiRpw*yyRkCN>Q)}HZlJ`#t%(HoM-I#pb=;uAeepq8Vu%ft62+dKDPsA1XId%14SCtZ-rJFg@U@k37kl(as&;>f&9(eQqNq2SRz(xbzo7E9TTzrHF|=?6 zP87-`62d*e!79{yGa)(;`uR?byIw~*Q?kdqPHMKDHZhSOj4`XJJXPGb1_QRi>>Put zho$Vpq`|uX%^_jgS6K-Q6vp~zA#<{Hk0F{f#o3=NjoMeL>|YMD56)zTM$^h)yIB=n z{m$RN4C!v8BGl>3e9`p!Y;Hnj3Qlm{d5#hLdB9zsa_A!_oK~Q?F^7cUO*RqaHQbDW z2Mpwh^)nnjSirep#_BGiCXxPDJwMYhRWR!16kLq2$1I=kvs(WBmE9LsoLogxk0Ewa zjHg_b7)<^Pp<7)qW}FSEt-EA~ee4?tUJY!T(YmgG1VKL=Ml6VeX~$Y}i!ie&y+r?d zu`YDmxq5nQwyCc1$!Aqg?SAN>gSy_^qT(~{=hsSWQCI7YwLbOy1p~$GeCAbrHXP=} zwvMOFwDAHgT`yB5x6J*kqO6 zyUjuk$F$kMbhGZt{rJv`15HlPuQo=^I$YSH|DHxe$u=K*x>MXQLM1i{rBX7c$14~{ zs4A8}fVV61ATZE!7d{o~187WeBsV|35`imfR?0!NR^_R}B8$F|2aV#pyM`w3l4+1I zp*Z2^K~2uaLGA;rw=p#aP6i5wh7YZ+taj*Ef1pyOvI}z^c(lRFHD;HeF2e_G9IC?o zI`M=3hXn(6?`&>_9lg0f{ON^VDr0uO<<5A#F1726#hf>TYnidUEH91q>Z-?AnH~XY z2yJ>&|665vmtBUhfa_^+Zt=RPa0Qh2u+pM&ukxEfz4ZHvbF*xLn3s9gVxyT7Ii4}> zkM`Baimd9X7mQfKmKx+*wcLhJjq{pHSE@MlKEF%mz+X_Lz>LmZhf9dvhmU1gA5T0O zCedZ5Z{GNR`Do-PWoNr0Grz?v^2F*-5_9g;yP}eCg?WZE;071bTRFLJ23zxx?{n;V zVOC>VHCeG;e}bemhRGj2PF1|DvfXf2D51L4N0N_8f+KG*(QQz`xL%9bIvG=i<-NC%_`b4YTbIYWX? zJPpn3_jj#=*DJ~U$YHu@{|1Z&avUN;enTx$Sqt|~TbKU)7I9U$;k$_3!n3^6?osM$ z#{8-oF9YW}`gG23EE`eN)OwWs+Xrkm%;2w2@0rkKw$7#A!K`=nr^%C!-@U*3t#L=juAMHc=a<{w(6p{FVU%jy!DNrG7kIUpLRLPD(`D$D`?f z%YRE$9lR^p&xhx(t-}&|+#lAq9jjTgl@56YCdG56*>uKYaB1;+gY6 zL%`avUj*-JU*A3Dd>|g@zlvb4RK3B6TlQNj(GoDNpEym5lzaJ-A&d%;yWR?ve4nb% zSuYhSE1&+!y918O_q2^$hh*v+=B#+;Axlorix%@8yT~Vr9Qm+Jdo}Ws=T$cgWrswPoaN2pP6NagW4jOtK0n-UD z14e`){Rwj+foteshwlgz)UsjlC-kv;iqe#k>C~UH;>b3(m8mCexCDgAi&zY$jil1i zn>wO-FIg6vI`P=It2rqJhOtE@5~5SBf}Ita-*!z3St-kE9M#D|b%=O;vg7M`OU{nc za*GEEOVHnMg@@E6YZ$iScQxw1%rB2=L~#BeroKCz%{ThHi`Hzb_9_~C6Pqe(?-0bQ z9cru5(9%+S2cc%IAa?B8+O_wty_?!qoA>$tu6Oh^L_^bmQYzGBq9n|K3o2#cJhLH4vUBP}RkTfwCs=2rc&^6--s; z1{2^-g&b!NLuwuPc$rONo4I02MvW2Z#OAh=v-z^e<~zp*C~X!w3gJ6~&8cvvZgdJ|TEK5}UnuxKfSTUBcW!+;6{V=t3wh z00mrgUEp=+$#A`(%qH<;ytoQ(nqhZYZ{awFr<%4$endjfh;e zF(cD?n=0qZMR(v1NJ+Kn<~qT7Yr_0=QB|_h)B_2rNk$oLWhw>QmQRUl)$b4eHDjEA zJ6=Idx+z%2QL2}0^S6{s?OH-UE+XMQS>9QZ4qu+1!${%djnf`xv4?l1*5bhY-~TjC z9TTIZIUh}@vV}13KoOkQYt4znx_Thxvrc08Z(8H)41wP+j`M;ktTf)yPbAGj)n?Cn zMmPw=Pp+{HqP+!$o8Ys)hPI?_Y6IAT}x~=G}mkSe<@r1TMvt$#m!s0tN zp$LDT%Ikfzq-);#kOd#|IUmVQ`~MHQDoeLF z;G~+`!P!>za`PxO+9QD8qi%6~y_kv4W>~~QLWx1keCihuO~wP&A+VZ6dKW~%V5AzH z8lwf}dI0;J&*kLBAnM15LJNd@bj!7m@)QwKY)q6IKv$0>N4-;0J1d4)ONOumqtLsf z1{9#0<9;FVkhe_jC7-jh=!=3I`gVQuEtXya9E%9AT40_<{SzD2#Le}5VohfSEbpae zf&gzlVqN`-FC_hC9x6?A{$uC~N;47F>|Jl+LuN%stL@|^{{4?2sW8x}9hQ>97e865 z9t8q8%B06%Ms57}Llf4q&+f00o79cciST$Q4m4Y8DwyipdYrNVP3}Qp$riYQD$Qc# zQu^$<)os}h=~(^ko3OR7Dd?4yiwJZM^RJX&S*c;;o$eGQf9dYnnV-aFIGy^bokuO$ z#1<#*X9qSeWYZx9F*y2{+cz8 zu%9>WBxW#)A{JrlfoN!3VX70g)z02$p& zH+#xo=5DjzFMLlZulsfPihbClSw#?JM+i>fHe#}d4RY}uXmjDvtcqou1a zj#3&HF>;v^59!_mFHc_M`6#Wpb_|4d{>)nvXuytHG&p1|-ePh@$$PB~6Q6xa)|wWs z00+}4-$iAQxElSXV@qY}TIK1ZJ|~!t`9P_wH9ty&#~JHVZR9-r;bJJIo@3TNRoWLF ziZLLAiG_=&cb*kR1yCqrOQ6vFwUqQ-^)E|J`jlCz^n}W}|CQz&#C0VRV*F*l(K8~`z9H&M<2Rx(; z&Rk>oBMS_qnH>5#dq*6dzD+BlGC2W7HrvpHPKw?fJmWx~_}vSV`Thq8Qh&3=oj4}M zWM)ld1p0zKv6Zij(y_{s>woi@w(ST^%pXx5nWacVsWZkcf#V^14I zjNGKPIWS}j$?l`R^PR#Zl&VTdDCE~~A-*@SB_hR@p+%1$v!!B|3v3ypp_8`KJR+Jo zCCgLppGvvu`N=$?tla8Y>}u~ICE9YN((9$~yPplMJwbGuNqQ%f+{R+JTtGkg!b!oJoRXSwokF^G)`EK7 z)ac(C>Y-u1|N7e0kG=emu0_y#)=R%E5dW+b&7Z;VzL&%L%W(f?nGgRKQ<@9U%3uCn zp2zMj^-i07tfSyJc0{G3mH^7W`>VCL~Q z5_p8R&>W^6;gB+`G@;Eje9p+%)tw=jsWl6ly5AhzsRm7-aNuY8dGfg!8?ZS9LQdGo zW~QupUwyKI*Gzz$kmom_Loj)42nNErDr)Wwt9A~`!90S{j1F04)7fMGI9O>3yYXg7 z7vRgO*S#qv*H93xs^)M!5CtJlx?YnT!kf0-5&54TcQ{0Hp-?Ej<_li+n60O$A$OZZ z-p}e#OwEbLmeg?;y+8S}<;G}P2m#ePwJhop@t9c_<2-8j)eIV0pM^T4c!0IV|FPN$ z554^b9k;9Et=MpnJN%O&Sk5pcfziXX{`Jsot4-f&OgHhi)z?ylsVz34xkONEjbEI5 zEGohPLIJGN>$RBix{$CQHPqlA)X&Z66T+;izV<>4-_+>n{Zc-w`C^9q+6+5CmnX%P zl&Cx3c#1SXO{h@YC^%S=<4FL84mA9Qa|*t8`p&_bcbfJudUx?i&Z6xGNmT=^idy?? zQXzCUcB1-_m_(mqSjSB>sDuOPGYAsWLCFeuDwRzWp5oI9Y=Z%p3$ZP{xSQzdX`)yD z`(lUO6d#d}9OoDX*=)>{gx3llRmF457ki56NfJx}vU)sCAM+V%wNU<^5`mcQn-t_6e5j zo#{mKU#?lu3jWnY=KL6Ypw+a9b;msoDxJQdf)-haN6_MPOQ0y&bH89kOI23Hj5_K0 zA^1dhY5Y(_kPLF*%+6#y5@qgv5IS8L5K001Z! zlo6lioht8z(iCMp40>Yq!-glQl>11>n^;jugJ?&G_@kUq`Wp`fB0ve1B;MG~GKe^x z<%__Kywe26O@bbO85B*;ajOm+(T@h+hO7pe^<;Btn_OFWM{0pcy$fKE=(=?MRJRcH zUpLE?|7{mz=y76GZk#}GN*9eH^X5I03gTd(k3+pkb4Wp@@6P_wu=Xueou9&;)xFTi zGoY0Wjl8PkZ{%-ij2Rlf9l1O^VBb6F^iGyN$=qE^_PW(-T>R~K-k|+!6S&;Qjf_z2 zcP=5@A>B+H!Rw(vRx*j0o^4=5bgv8;dKgrL1RewDxrevi2r&2r0%MeNM>dsA6+mG!jzYz_fJo5ZDBFM7Q-dp_E2 zbnfwtL0YYIg!xO}_a_!@H(;jng}INztA;mY|F182Gp{KvS3uvAy{!k;+Br(isrZ#> zP^0@oL96j&e`YYI5A7+Cl+!ylX-r-m#FF-ET3C_F-kzTKfu!$u{8%o+YKDx`m`J#~ z7^HYyR7+B+gK2ZBvid@*tj&A4O~{i?u6+-LaXu7!3+oheNl|S0Myao8k=+o{wgATvD49^Twv836b>amUQbkDkwBV_( z@fa37B}rQB9C=bJa8@mO=?y27$8%&z>*pr9%fa4GR_&S8U#vN0{4Y5>z+35VR;!ei zfHus*$X@bKjDlU|gXtx@;6K{dw5V=js>bHaKV+z~DbQ6MYi3D zezb!TEl}Wd9JzuJQ8`?|`CqL%?Y=sq`sW~l-xC?Prf6Ky5O%Xo$H#m4tA%roX{CkA zS0ga0DHjh>R3SyWBZ2?WKLl2Qy;=!H0hMPcX_77AU(5Ve6BQ}Kt+dS|vtj}pR)q|> z9lJXndmly1hDa6s`0UQ|BsBK+Mq7I5_HS>~)$D2JMp4z9*g(H3oL|6^H4l<_c*5xI zOoc{TkS}us-)g2R10^J9t|qO zc>eN&l9?UlwClVQtEN?aA?S?C&dG_}q_C8s=++8C&gmpd8&Ux-&E!`m{hV`iMZ6 z3%{}C$$Hfa^W`pQmVcE1G6O6>B#uiuos(5cv+IAo342=DFIG*z6{T?7>3$70doH-+wVwh9= z{X4$lQuLGT#k9kSk_~`qTh2c-bbmbm=)|C)hq!hd;sNHhDpxyapd77exP})q$Gkg# z3X?*jXmj=SJ!ZrSz$5yq<(z840)sz^EEmhb8kDMXDR~bZR69f)8t0fwx%No!(<}V? zg<$CQwXF%y=l-yM@u>q5i2j*us%sljGgn<-u|D~b&RsKLeNND)=PtKq+MAnrSAUbK zYr67ss!z=)Y3~Ih#nZbA6ti;D$v+Z=ps{1s+hU+2KsES>ep>es$p}Hc@$9H^%0QR) zb2Qj-)X;~ERDqK^6bFC@*rrbjfrTGtuMysN$hRHEsN&dTrm#E>!h{X}^%jgkb1U~goy2t5^~Afo1iz-HVC6O0a$3q=s<`70+KZCUT>9$a zO214i3HK#^cpR4Ovo(;Qy%2>&TrS7nz~rf5&|k^ z+4J*PT|l?uJzTtouh=0LDU4C;7C7yBnn3Hu`+_|KP#YDIS&T8T$KWYGK=rcms@HQb1H~|S>A@ovKYVZmo&IM4MzkSRL?z{U%qf$-owwNOm$eK zGb2lVRDyu@)~HC$F1%i9(zjiQ6EXq|(V+8GGzx0OSWHIAalKtrRRj)P5)~_JobA2n z7~%6FZv7NYM7BY-S!AtaPEni<-f{gGwUk`mo+tE?YCq3u^Qx#Z(oz^T!V{(;i6iSV4RD8yA!#I<+3^ohs+~OP1M_TX+0WuVPwgsI z^uMiMj0P@*Z;xip>>ZUp<`Iq-dgogs^(H0h7i+ zM*_+XjbYo|-R0K1EE(%#utxW4i}-b?T40J2A3#qoa&&5gMsrFQ3UZl}Sc*2KcpKPy zc9D5UO^FEvLX8uG9Esn|mnmNHC4X_-RY=7-Ixlxv45xTEPd0!$wbOPv0^ zXP)7Y6gb+@uU~MjSg7MvuNRJ($@uxv_=JbA1Z+R$+n&w8eud@2{ryB=OzNA3Pt%BA zW+y91refXlW#l#N-a?fL5Cu*VEX9?)C%ti|m&3wQTBBG(MIFsVOiW>k&K) zA0;GH?HK{%>FE}d{~oZE(9g*80>QLkYQF;=3k$4e6hFIUkUm4V-}d94ZrJtY+yQRQ zuS!fD1$pFnIdB}9n50RGhX&*OmaLM5M$_)=I_hD~Gg)pB?V$F%oIDWkYqA#(Y{2#s z|4JgGq`crjbfUc%rSH7p%v%%c)FB?NLp_8+HBU6!dCb$(81)$wrVv050$!$WOSSZV z+~RK|9zQm*ke5En$PFAVEs1)5$tztb&=UhMFkn_<)#C5}ijU_P8P?3P-9U+AHmk{S ze~o8q>~gUCxNLb2pMN3C?fNHs(Zbcd*+T_A8hnDt`X54hpBgJbzRrMz=)V5$od7(5 zt6N2H8qhk^-yFUF(A4n)#{j4TC%JgHd%+)H`da@i{d_y$7{s3ZgvJI;562s9#37Jk zt~*?SY>{k8=V=zi|0@duCCtoMi-IFpjM((8&>CZeJ^Drt66rfezi5Ac)WjbB6|nir z1Q5bE+R=08%YJx`X4RxOL7Ffw{XPg< zy1ER)UijYqIgKC4_>i-#X!1E)AO#=>*V*a$t$55l*yg?1Ty+f!+#Px6nR-3;w5?no zUmMe#jA6BwF|;w+Rg0A{M=9{4&H)tKCEYih7V?WB_<@7}?<!cMB)IAs z^`k&U;ya)nE50Q9XUFWzE82>kTQ^;@F0%9x*RGc$RKb!>Bfmt1d_)Ft@5>gQ2>Yj3 zg>~s*rQ#pNGx7fPAb9=8#fV4D8Liug3k60<9TsU7?fy>3AxupjB5FGmMt6S3BD?~I zKm!ufJ`#27eL)YtTI`&#Jugr!m3m4%c*ygT!ah0w$rjwQ+wt;U%+(iE>EXcn%UCDx zdc>c1$M5C(1?#I<9#Zs}ii=Rk;Y&BWO_ zrmc+!E$_iOd}?;H7|=Yl0?ye={iFH9PM6F2U(RZ~TF~(|{`2n=77e!VTzV-E5Q&1C zLNV~CGQ&2mNRQPnvmGF-K!1c;U)Z{kuASW!_USIE<=NC7nq`g6&N{%AKR>o&7@Yu9 zc*EZ;61-otbv%&0&B_9Xkj((?)!O&7A6<3M|D$hQnBQ!`_vP~~(r6K!hY?LxVWTW^ zhKd1oVZti|6ge5r#*&$(xmleRlXfh!z0|y9Y`ScZYpcJ#LULo&{(e+i5OJDxLzq$J zrX5J*5xhf6PMi)%>KRmf;dmd8kEDdsDEmXogM5bv30F-CD=?dKaF~{kJ~;wGD_F=S z#NaS>2dC%qHV&CY!8@O~wnH9F-dL6$Z-dw4?`ur0hAw}VsHquor>cA9eMn3ZFu>$B zFeDu!pzhKB8jR9KPUBTwMdcLM^uEgGQJ;{s{3#+bK^Bo}GUNT44hN%Uy*FwA-FZzz zI};KEe`_`LlN||Ud7zb>P*9%v7oWn<($G(IrvWb}`PonWK@~ET% zvROYcR5Gs-T_GDio1wDhRJC@{8u@X^)9fFdc{=ukl7C1(HvsS&Gqutaqa4`}?0Pm1 zg`J1^5&B8(z-qnBCaDdea*qq-N^bN^N>?nd_wMomgc`Pay{_!>+0T=^YXFf#Hd&7? zH*YMA_!C{m`Q)vh-u6VVA*#&XYjACjY57}sD{w*6*7EJ)B=NQN^vTt(G>CPbr+?^( zT!C2mxf(Nj)jF&KP!`)3G?K-j#hJ|;0@k0P>60NhcvYvi-_MKNgN>BZf zxkZG(NK&7JvEb_Tbug!UQ_$ zFfiAq(f#n)h>=f!87A4UNt7Q5*a9vSs1-Q@8i1tVCU?!vt3`EMMAbv}A`IgGdx(W5 z$;Hb|S})n+P|Xbp$;sMsaCxP^LJ=LY^s9fC)_xIVCz!zTqF2p0rdtp0C;hG!2sNxE zwa{40=1#}Otg!S^^FY8gIcvseszVl;aVRp<6WB?+oRa;w=!4XU;2mcfAolSZNy&HmR|ZCofs_jFP(|; zyTi%9IkY!R&mS8(n}~-frL6za++Zqp#FB1Wc5`U-Mv_fWRC?jfkKlgt-=9xpVdhoa z)a_dY=BP6Y#)71bifr^#DRd}VQ~Bmvaxfg~Pu3pRoacJazs0^Z)$@;q<>sJhQ5Bkw z_rrCSzw;uS_sSyu>p6mfB|O?;STYkstxA4l2G=cW+6YKxVZvv9kOPRfZ+z(1cpfyU z_76?~b2hE?{M_eQ^X`28j>B6*v+2CG?e{1-f_1MzJ#+o2t1lgrQ$qZpho+PIg|GEe zHlQu+z5DK-6lTdq@#e<|#0sSOyz1}<)|ry}C(SV!jHgpjeu##ixy;{LhEVa4p|?GG zxSx!k0c1jt$0S`FK%9Mg6(?%_b}hRjt|{cK^uyMhy8l>Bl}G7f+9j#KA%QLHX_`aj zwYaeAFo0i6RsGhcHjZ)UC6k&x=3$(7I$k9DctLXad%)&UnDzp_2b`P?z4~%bl5OjP z@3Bj*#Q1SoRXSjPq2aS>pE}lvz*w!TJDH|a{<=jH%o#R;p-(fuS;uVzN;*n;xEAOF zwgAP+A3ES6Pfv~h_4j||mC{@&k5{QvX?IJQBSlp4s zD|Ez)=qUH1E#pj=5Y(amQuNJW(VqMqJ52$P`VhV;;m&7^P=o{}R~bKh21gpIn!PHk zX1G|Sy5CRb9#h2W4V~`zi4CZ@_jY-M{X%WZPi7($kPA_9?8DMr+QAO~t}Ar}DqNldmhdRF2~`RI5f z0m<6DUKW^AZnH%#`9hXi1Md-r1Nk$1(l;Gttr8fD@o3#2t9V`I<4PY#Wy@f~`gvPD zvv(mpy^NEa7BysSBH6*MSsc?!G%6At*-w&MJLJ8@S~kj$fQ?maB1%*Iitt|L9 zJ4XadeSrpHW-TxMs8*?C1dcpJuQZ(*_CwK(C;d}qQfiZpJ){E6lTlkbUO^H8{B7n{ zYb+~3uvQV3Q~)bS@eM5^kZbJh7F&U8Pw^KBl)6QM4H>09*}Nt_W$vb!oDrzp39*8-vra{$Pns( z0A?sFE`+K=$j?*}nB!XF=#cEOLk-%PA6ZaxEVezi^P3Qf(5mTyCb}#;I}R1R{?{(w z^I^Qau3~(SsiC7;d7zTwcujrvdgWpz!ML%unRb#vD!#v|$Gh!mYu%l0jDBasayPv~ z*Qm&5_!puuJI#VE8Yk}sNjkG9B8o6ehp}tTNF<0;-1IduC5M0N(wom zi)ApSr>jV-dDosisU1v)7)wfGdtQ(2?ApLrHTO8SA96LPJ36{a%+At5)o_kYBBmP{ z;g=-;y6*y9D5&_v_n4z#S0#NZ!#WF={+Y#kUm$)xwmGqRXUQ_>$~HNhz-@k1r1zt! ze#~{XDA8v)tfWo@Fl`r^5I~`E6!L%UCGlap?udrZIb0g;DT<~RbX;2~X?=@z_3AhM zDEe)ILBPqee0x}s>H9xr!N=+DnV#&4-qlR(HFaocsPxU*+Eu6a)dOwW>%WFqvyc4` zfXcHJS1Fz zZaKv5_pVz`ZG1|6{GEdoTP^b^jroyBR-a$yasb>B22&uBq^YjdLSm9UWQsh#+DjZ> zN^=vS$b81dLGd2dW-#0~C1Ng{QYB0Xuw_yKN%%+gjwBm{{gsGPJ76_0ZZI!{LXbF>bD_bSi>GFr$OGQ-<8@};BtULbDK!cDG)=m>uGsaqzq5vT z)18n)qdiJ0_Y<(yqcu1%FsINImc-)vG?^nJ>bxnY?d^Q`gveg3Jm9R2z>t^P&ZDB-~y|J>Q&uBP$PW ziv__}D@#S|@b6|dO019jup2e@C9(eZ3&kAn9DN*iI{cv&O67yT+I}AJ$0zCTRZZFd zZalQFd+4Ha$rUAf$CCE<3h^Hn)c9jIws{bgX4+u*nt=6FwYm+E`7v#`%Tp3TNpE__gJs~8VLtD+Xu6{&&WdjAzRO=IJ{70f%h;VF8jjm zMsg&&%yQz4T9d+4V@ZVL>F(s)etD?=9;rgRM#P*uQ<0J)EQgbeN$?$eF9YyVdo_~i z^0g(WXeKV|Py&RmWm;g}+#hjII!c6YMVLom36n;rh*{#dB8oCw3ml=da*vQFMr|f@ zO(#b{9pu$Hrhj*7OJZDwEDDPuC$%0_hEn8Dp*agvUk^K1^D-Jay1Vqg=u`WLW(HV@ zi60|*>bQyVV%0>X4TT~rO$)CHT1hb@Oc1z#i#8tR-D>n?ufb|6N%U)2)YR-Mzcn05 zZ_Q}a@T}8pZgcf(CZKF{wh2QpI!UYOnDKjNhC32R8etxzo-STai++~jJ{h=sgiQ&b zh8L3Hdl{B0x&|V7bKf|)&F9jxrz?Jgs4l+bb9&OTZTT_Qg)paL1P)joTX3oRtbfvv z?u#^*325#U-$z~*KbORnzf_C1$2GE{(G_7r5o%{mR>oXAA{xNG($Lxu8Q;{H-W(EG zu2INp=CL6huTBXWtFD*%3%Kk8P695w>ueWpYflfgc<$VGeLti6uyp$Ix$O10?4aeD~mAQ+4 z|DwYquh9(1bsWd$n`};+RbXSR=CeARE5ugjRsxxN9biKE(Ly`O(mH3rHts_U^lSnm zN$hp=(v71l_D_XLg#kzkSe#sGkv70S7K^De$8VFHN#fkFw<#r}y!ifo8J4e7iNqxb zZONVO3CkG=>SZ3mKoV~m)P4MWt$V9d*zqh=v$K(j`Rgz7X)^OG#{|B5w8w4AIcE%^i|z^>4PQ_&Gv8dlh7KrrUy6eX_+7(Ps@e z76(FGlqEG?cW+krhz$+Hu@O=)vJi|*OXtvAc@iq3mff_pf?{k!g_|lGKfe*S|$tag|>FYbSS$ zozo%#_ehJ(O0HN;gT$kTW}e*47Ke7j`3RBao}11!Q>o0ARD8e@YPjgRdt?58gqVT= z9Dey9evUq};W0Pf-ezax_H9p+Xt^iuuGGTeWEeHM;z6nq^u&+%U-|M7!5EKJPj?oD zFlg(1%+&%idx$zAox@(DH@R@`0s^xL8YfA z(zKP%HW;lcR${4IAjzM9X}~O9CqPAxw6-sdh!S8hBjePEwvB)CBSRyrb|)l_M8m>#(kxXSxkb zB%*tQ+*6TNrRxfU3aoROl@HyhgY0S0t0!Kw%LQpO*3fJLb9cJ`e>WA&oXrLl}KlD|m{4^|mOuUa6_B-p% zx>CKnwQUyfcpM;XUpgBa;7O^A)HY6mjC17;LQp3@;U z?Rs#a6gi3R0+IRbOZRDM+r{vud=lqfpP+#gUnO3{e%^?${?xAUOe(1LyMh}U0-X#2 zgfoN|C6FpvCI@W;tR31*v>w*WdXyAEGnYB%QZ?nStNTcJw141*+|O+ci@_yptkU2M zX?L|@Aa<7sT>kYUe>+7;GxDplBzP*V0TuA`>+VUv?Nj4ZN!%` z)L=pC3_G|KSaWbh$R|>!gs3G_Hv8AdjlZ4VaGJJlaLz6o%P4%}c5D$ZM5JgW=&u(wFw(k)xf z5X8-`i87(AQjy<{MGI!;zw^oshtmQO-5ii&NvKfuVuU~=HXTd#VLCUh*;jmR>m?#q zyuZHs*SZ^{`?Z_gcS|xftBF}CAm6Mcn=fu1MvDUL?720A+%ptpOjWepduqf}yVohI z=?NTfmnSLqi0?U>ZGAs43#~`c9|SKDP#Mzxdif7w-=b&^{jj%}^2YBZ1(ANd`~wz}SK6BV{nl|>MW{E1@se{~ zoK-7Ql2sv&t2TSoA;r^qG(iy-UexX}-Y&B73CE77ixT`N9MU>+w@)p5pSGlS;}gZS z^<=`IH`62bjgpjHa^@9b!uZEuaur$bTw&U)L>g;VjZr*SUsFqJ8HWDSn~pQ}dBkiH z1R*^8W}=P*_0PDG0+wmjGVa0MUo}Jm^R)E2xWfYnxF>w`fcQo~N!oEgpylV4+-5TM zAx_-7hd5YNJgOV(x%x1S8Pm`34L!rzuR2P+^MTB6$CMih!}QnzkDQSrtc@q}lwVPR z8WVz6Vf0N*68U6u6vd!G%xpHSly8+usnPL(>+>!@GF=hG`9hJ8fD@sc{gx|}^C7O7 z&Ux`8I?}=Zm$>=C>RwbEi*19$(T#dPpk0|SW_j%X0A$g1R^alx8JVOgEAusd{-wEA zcFThC+2nykF5jYID(U00I^dWHf|GKPs#=hrRRAqkl(HX4Td4CtIdl7 zI+rZ!(Ga?Hg_c&%7-=|`)LOqDPr+IxVC_m-6(;OymT$TJVQa0pxw>xo_>>Ls!TTih$a<- z9d-XNTANQ13oZw`wArlgZ;y6c)~HY3zw)HEL<(znM!8FC!#djwb1>WQ*`7CJ+b2)h zbTe@C=g8HGSiP6;;D94kQzDaS>0oqF6n?qK*`Wfp$-_9-1j{@tUG|-Cs{$c+LG@-3 zJW%B69*0Fhst$_PSvgmq94!Zcu=L%AzcNABh=De+k{(4_iRk;y507;K(BCaRw1YUh zLmNsH!_3!KYmFVl0+E6(Z#2Xvg|>`&Z4Z_bPl1(4PKt646yLIs&-9kjn$e^(pz~x% z$O&9<=`u&-IpI7Va17O8z$wiu3r~v2JE*i`|AVguPk9O~7(WrD3 ztMb%*u;C#d>G&+deiHEf+v0Ka-t`y5l{pwEmVmz;&v<*f(4R~D!3S>i-H36TkumVf ziE5h(GZhOzT_9b)38ZF{?v?NNi#I`*0dMT(S{&LL&~guM)IXwiyF+E&lh+hGy?Yd< zSDuOWIC=B3`74bJo{hY~0rL|SO0B;~U^@jp_q64m6gGk{pGlVC>C+EEfXPeGfav1O zvmZj=kA6Sh|6V`v=BDHE!Kwc)?Qr`3@wuNhkHT8fE+7B?@Ok?+=XZqjC(MsfM)S>g zK7f5u_3ryx>qDR0iG&Yl2|nlQOWwii+=F6fO>ca!Z{OWL^IPcf|1IX~wx(mlgvN|` z5}y+nM{rO%SE?z(IBV?6Un?l;w#9nnG(Wjg9Nuu!_AH6WnJ6quY5Je}3MsTeg2&Y8 zZH@!WJD^!n%C=7%H;vO)l2PSUj~}PkvW}r-XJ988hV&ARO6fiK1q^eV(dng*d&SL4b6lL#U4wZ8WN5>#0fnj3s2%E=TfYW(wrAhI!NF3ldfO1 zdb;)D-%uFc{Vee$jdwLuXCVkxm=ugxQ)(fgaQ6|)-zqg8u3-MCuX`+yE;uL7Et<176@hUUIDvCTQ@lwxG-( zxR)*R8u7UdlfEMXw6nG?yWffl5uEnV^^!^!(t4NyfBe@k1h%kI0WUBETkFrzBM7lb z8Rv^5dEEmIsK?i1vS~6Z?-a^=qqSa6P7~EJvX_6Vny-%ful@|*{MkPfmc7W8?OVD^3pjT4k51(hv>ID@`m84i zSE~0+S=WHrQEX0JB}Gw44Y1q&8? zXBKp@PLiBL^>$|`YR*4C9)kd#b~OM3i=sQ!g{P_1LdsJqreYHd-~q_CiVl1b0Y z+lz)vAiBoH&kfAo0M3wON!_kwEgEnNk9(7V6?1SgRDc7o;#c)3xe*Aj4*$lXKx5j1 z4Akr)0EbiSCQ`J7$c;|{;fWTY{zz8?RwNnpyIvjl z^tUvh{jB7?+3DZE&BCPTrH(zX9fp()S0l!9tjHf(yE3Y7O-wKkDjqCUgUjj}9duV< zv|GuvfC*_xe0lD(_V_4bRU>rIJ2ckx`4Lf8lXm!eA|-1{jdNz}@>4jgfBHKC^%_8-S2p9d)2ZHv zbOXNvu(pLBKTxNVu`Rbe9Py2OI7PdSi89stmbaDsIu;?VeOBstpOeLea_Q;^S#8nr zsN;Q8J>V%Ho*ATZaG!T=oz7+{0a}%4lPItUnz@)HC_Bp%7eOBWS%sX@$Qi%{5iz#p zW9}rtTFWT7YT5A+lf0oK;awoV8#%nEu~Uz~bUeWZymVh2f-k4)FI1I+%}EI~>Lpflryn|1n`O3+tgS>- zHnIius5;GY#HIfg=N=({|Gr97H|c@yP>U{;#jyslEv*0vD7c6#+p?&nn)f0zxGW;Z zn{tDkwSagu2Q?KHnAi%hn02r4Tw(N0lT3mL{(A=KDt_ZCl1Fmw_D^#$gjq{p57hZp zvVmCbSvQe72jMRUJdJi@JR{7Dbu^%lMO11;*E;7EvHC-vq9t@Q*LrBp84{*FoXKC) zCfEqIaZ0o`Cx-p5lsD8*6`cuI(`V<`>>!pM8ug+uF+Ai+65vmH2>I~dDjpvc^zQ-Y zc>&Es*wBjf%DYpxdQ`XF{EFGU8K4R~K75ziB8-N#33_HqkLNFeCDJ>A;OyG-fGbj< zJ1^Tm{M*2|FZI1sAkJuzhdVqna6z?`U%E~m+V-}872q%6myD?F_+$z?Gr1O>@DCdo zz`7r82OteFMGMr~FRE=dK@z9%r>d#XSOZ`97V>pcP%O4AtnGo8|5Xn2s1ab(sl3?% zL&i~Nm5j^dd*-ug*7k&T_(TS&qDvq0hxfpiaO&k$LTLVKisXLF$jYL?rdZi?0H81^ zTPd(xwr}~MZ4`TvaG^(#kek4gPa9}6_4|cQRcxrTm9MGd!z4*O+~)%=1jQj;=dFYB z{2XaHNaLKscQMCU46Lq8_1nSSY0mrrpC^Xlb&aol1Gjii)}osZp`+v&laM~ zRR6j5h`^4BDc#$GDPoEGNiH(Gz#52^n?#@|5;q5Vng;dM%{8CO$D&?{US(&Ex!b-2 zizKOXbZs;%6{P>jBhj3jCNYs3Y`$*a`_iJyG{~C>UCeAbG0F{`Hd^TsNesh$Djh!y1z{HOQuB=wK{D8P>KZZuJBN+^d6`gG&7y zrb~*G%d)K=1KgLwiF1z_;U1|0p2dT+nH?+A8)Irg(J?lrTq=_7qbz6+?u*O=w#Qq7 zgn*&0a*C3^Z9$hQy#`}NYYPMtQM8ob&*ubhS0)u|n?$vpea@%f%oK2Sb=lbyYG>fw zYqt(ZarZMDM%I9uN7Dal(qfaHen1c3ztgziZoOwS zjO=#z`Nx#o)1LirlffN7v=PJSj8#kDiNcty;t&b9f5$>&bMPS;0lvqk))2^iEO7nqLqZoNq|yk5iz@COYf+%qfs za<|Yv5vrR1=wMb*pEl-mHrInn`zx@bWfRWLz2-BV8kk_>!pQsn+->MuSH(QBWa`NU zD&IP-y;M4W;5|yod}7b4Gv5(Mi(q#Amvl{Ys{B-yIkXg!;_;{Fo`%5>VG;lb!+(?4 zkn(VAX*{udDeQ^YLoOE3FWB3MbjcvJq2U6&{tA4i?H1GUHtMtV|_jwjv;?a};*kxPn`XI=vB241Ajfw3i< zeF?a{5XgBZZHt@fg^vd!H1$T3B9c(iXoq&yLC~sRQC`JQ?orpb5ub8`jJp$T?iEcz zX)dKueMQBJXAoO#kXH<^|Abj=lyn)0beNMOg&1 z^{P23SXS)jbNZ*fK zlju`ZU4U?r+8uqMc__aOOd*cpG^@W3w!fnt$G;{3Ot&G{gx5Id%0>4CmevmPP*Pg- z3wBD-ZvpmomI1ErY_Q7EKWR^>gyu2?N+CNWK7G3VU;Lc)QTqh>qEBlNu7{|Mfrmp~ z)wSsN*<_4!#bPZ-e}tt`+=j&M--k;*zL$gH_-~%y4d|tKaF>pb?yB_rN!?le^Yi$n zll`j}o4fm3|BI=&42!ah+P@VArKLk!nxPv}B!(WsVUU3V>8_!hTe`bbx)Fv>DM3KG zMWjO!5Ks`Qcl*50|2UqH;s<4}YxZ92T<7^)1MZSU@R7p8eI)P&+N3yde%u`wD6TAi z*xor`PG1cpfNh`k>>er$aL3iERvXk5$iES((qp9wZgU$2qbp>u{^5m&Bx%*1^&(W?QzlxL|(MUH=6`K45z-_MfJGHS$Z8^L%L|`!kHY`^Z98Kg$PV?HXlU(ZF)Y&jN_TwHONT94!zT)%gD0aS zD>kx7OWcwgI_Dcdjzob2**H<)O!!LVUH^eelZ9*TYLB1}=!qPO2U0uc(BH(iE=_E? zTX3GgW8|a0|0Xj}%~H0Cr{&Bx5GNW`Eql{{b_lqbD#dGqIBnC>>%_epm>up8`OFqQ41W z?fj7MwZMLR_Q4;#V4y(tMtkY|08!CBz;`yFffH@C;PKgq%J zP{Dtv-HfKwZSBJ45s)O|?^^yEqWJ(aw2<4YJ;n3~1;BSaXNM%<86^7k{+6dvw$h z1{X7pD3nRyx%BDK;)4M07zpgCP-oNO5CDAGifm7h=J)z{8lzLK?sU!q(Uat%!u08- zMfJ*fAmc))#&mIFPo(GMJAHg0)rk?`-4uTSNy1VhlZ>{hEHCGbdNKOAbevP!T8iDl zVADBIOXqD>Lb2pZn23Q-ZDfH;Qo3D5NTvvo6u18-u6fMsv#TN!$&*rDN#`=D*tGR0 zYa6!XuR<^hj!m_ZWH)6uUl@&v*8UC2W;A8SG{GSLjw#mC*RMMhw-++E2pALN&Cl?Q zb;cW$v$M0k^UL@9tLII|#-L(X)sD>eXtKFS@n9xmA)YcOh(I0=1Tt^GsV}gFAWK$GN0%f%u>BT?uE&D+dGo#;V&>|#?XCw*a;>Lon+P}tqcKSu(;%qhGBenq5C{U=-e{-3 z)2DDE%MG#T%kJK$9cs&Sl6k zoo6SY$vSdy;u0J%!^+R&NPh`RUZB&>2)HvW**DDBx1#q>+kDCT8rQz-2ZzsRgJ@R< zd28CE)nGlb!cGYGQ?1?u*%$gLIR>`Q0mEQd%f^K-8PTpF4`Fn;nEo$X_8Bd?smIMd zYT{CSRz6s@VxqB{U#NdpEI%16Am{YgWVr({J?qv36?Zy_tpv6Cq`F;4Yt3U{3KBNJ zleLxwTRT4k2u8h3EYeXA)W#3VpN`X9-~y18m2clVH+RHIP=jH5O>KXy85dJ_^SDdD zxf89c)@eD!@Pi;UdAiwsqtMie*2TSPcuIO>=ynriF4-qgdOII-N%((^e`^DD#B~~} z)!(x?=i$uvWWd=7&aNCMU+2vDFLYDxZqI$KVuJc?hjxJ3FJ28KyKVAZEt^?z7kV83=Iuw^E$)M%gU)Yd-G;5qoC zO9e}LNcUptC@?JldW$~b=RGPf(~ipyqoddR?SUMxoql)uec$;H?0eaaL1r{8HQDG% zB@1lca2i{&U`SyIq~k|s=L(Zar_U1YBNFOu-klPmUuf}C+!eW_UKIM)YOFSJRz?Aw zWJa3l+d6{zEK0z0K_~nKV4yA)g=Jx{g-pI9$%V~6)qBu4&=kO>Ib*+jIg=6WbEL1} z9a}+4?b1J+xln7a2Hf+K)n4pRlM_0E6Tm1^f&j5 z#QvNDrg6iq8(fbeg&Fdxn6eOK#$))(D^}?=1q!L#tcH}#sDxTjgQm`7Vf)^zG>Mtx zRvBC`8>ex{T)t_v8%j+HasMa16}C>&ddC+Lr0wUu%3_YOWK^kgDQNf211Xcuu^nNf zdmZd)6(ITP@almoQEAc*x^z=0p6s6@dm#It9Zl!CUwRbY(BxA75Gf*q{60F&!ZxFF zMjjxIZzer2~Bl8;ROP%9ZGR>JOSLeN$NZgSsuvX$^X%9v-gTx^I-T`&!9q0u}r0IWLg(Z`2rw~GD* zlQqC#(a5b?a))y2GkQ~%DP_I43-qA-11X|H0 z?U?@YvhMou1bjAz8YZA=tfV}*w16g2E|!KB@MQQLOg4#zbq_RRs|-HLcHrX`U(6mP z2o7P>Okl4p6d)7^XHIY%x!`pe6Cw(;arT1Y4i90l(u7+%cZMR(m`^_miD#tT2NufR zFCxldln+vMo=%>EZhvNLNIb)tOKYc{GJtQqu+i9wFC*=NF0Hg{!NgLx(t8t_kIECw>R<6 zJhC#cJpP}*X!XkT9SD#`-rDMgAi*3Fg#_f{W*a>mU^148^|o*V3XyZxc1^_wABAJi zKys*xhK}8@N9>Jm+2!S`f(f`BI;mI%DSSHpluvXg=GtUbyi7btK2BKc(LScnc2y(f ztMLH}eU`gRcx}a2XltT5;XbW)*33H&kp>Afx`(v3 zfwYO{edMA#3Z7-0BL5;!b)PZ7K4RRp`-mM|Th~RJxJ~q7W*8R$Ei~E8I2XGvqSgD< ziO>xK+w)9o)|49yKXe=BqjsTCeFP_B3@$PU_h(bKdiU)imf|~_z)HLTR06q6tDz$j zbo^=A>>bGw{69V|W9*aY%`n|fN3y6Hor_c!)ZlVTrC2Nv&2>5b2RJl@Lg{1#aLm0(#=OYU9GTy zD3#UUH>IG|9=TwPPi-En*-U^!Rjv`7Q=G)+ssSkP{9+T zP^O!JlsXwrJ-g+rncGqE&i~=QJjL9(|8L$u41e^COjEj7=FfxM|E%)7aUT6VZFAlI z1GcmK{XJc%HQf9@S9SIM-3|BZnZxQ?TEK!qSLFMf&&+^T!am|c0Nd=t48g71b6%eT z-RBDf&JRubs3drT?Tpxe-)FbQa9-e4KifusI*kjp6(QkiBY9LlirUe?i1k$+K%^u@i;{FuF481+}i54rhh{OOBBEj z6Y=WI3doQlk=D9mPl<>f8YMfnlD64EDSjB=5BGy5;mfOtsoqt5=ZOM;ubp+;cNmk4 z?g1p-H*@St0ev;H|CyD8|1&6w$t{L^MK*3&SwG#Un8LWHWl`b*zO@kWApMs9ONjm{ z`hB%YCU!Ajp={EA7$+4iKOuTCsHSG`;qctUzsL0{h_HaR9{qXFl2D#%Y|WP+0;Fhs z1Y$8aMB3N)W0_O@QuZJKh~2A#HK(J3SgmL+%~K^>eDmIz+0sprTB42YLR7Qj#w~|R z76gV}(aewA`EFeAj z43JbesulwMcAxNcUi#$&btCZ7m+@Mtd1txlf0Lbo*Ho`98 zqA{zYeYWwZdMa3$egmm|LJLzjd@0^u3sS2#vzFuwDYaR}k>vy40D)o(%x4jjPcTg>-i2d&r*sHWq^5>O(`lB1`v0{MoBElQ2 z!i4kYpDnf8`l%HCtFuetXW)t`tl*BjdmbkE?uRDGSkaZ&R_L|=Bu}np8fLCi9l_Ee zbVKw`Bh+EZf!}GhOsr`Q7qN94SZuWj+N2^zrA~}m7?Yn5*QZrgT7Z8kk`cc%w^ z{Cf`;gS{+i2{4=rq;%bM?uBq!XK0u5cr$5GwvAeKdB^_NHumdrHVCj7ANDV{`5blad71s_DbwUK-C_tT-fGkTw>gyzLE z6==c%itGH zjW4vh-4Hid*XU2I%9`FbS%q)Q@tWCd_25*=36-2~hWDWGj6Ymag_zGGNJpfeJEdd) zv>o?gC98zHHGut@kN#aJXPfXZ?`>m^q)0Mk9S#ZaVKBgOTR)4jUSgjSuwXDRw*~pAk&m;8G+Kc6 zT7D5)SWa#+ULEJ#Arm88vnNi#pl?^NEcA_9kt?cn3RB`e+3b!fOwuSWIQiA~Jn+na z_v`<|V!mG9xj6Y6vjUvge%bWsZe1qzavibZTr}sKB@5^b<9s#@*0MicyD? z`F#{ffHfm`4bu>zwF^ZAh(>zi>c~Wp-2ju(an7yJ>p7r)cNyInuHjquk5tZ{U;74x zzF(oesoU5d{yqi{OF%l+)fcNQbiTIk<>`PM$)M`Ckb0%mI?cW(?QBwb(gsf^cn)Jj zS!B+Hv*P$@Q`Jvo-_?q@fnL)(Z#JtyS+2#QsPrfPVuQ(kXQ%k)nLv-|2gUq!AxnK$ zt_P{`*?ew;==c@7r@YmkkkCN9q~(xxjEiNh}M*E3$+CL#E99b_3;- zgVNzQ=`^pBLP||FzWR~WZJhR6mjmbCE^WR1D+gd22mY>kEp?#-eGV@mnlA<1LuiAL zJN3oOo&jX9aUw>B5VRTD&$3yofPLWT`ReAh%e^j!2eDTnnqO(B?ey#$?c;Xpjo}#7 zo$1nXpyG#G5RWDhp%bFwN)M>PY5XzW`dvVO;StTJzL@w`x|54s-0+4BurDQ?!2pWT zdG2%l&xtda_JM`lT1sm5atkM!$;y+|wb?1UcSAirtmO2hH->ZE>$h`nQIqWU_BGdw z>s(HN-eVK%AbNlH9bhf8uX1J1IPb}<1AAopk+*4Z;OW(K;%ZR|APGB>p44aG!-gM3v3#Xxf>d@;^a*(eD z|Hfm7aDm}JHT(CBzGNrvP~e%mY0X7-+fBK!ZSS1e0=m0FBmG@j&7hQQ_r@*hapXxg zTtz-7{eGm|I+5i|&>7{9<-wMPsIj>~ePP22k7K1WT2V1CHY@+MKbug=9SK*Fvwg~L zb?H7dENVTcof21}22SLSELxQ@B|}!p87%?fQ)MZc@Ryxe zfR|;C=Gedh3XG(f%1SaQIk=<(vhoklg(x3DDPV7d6em){{fttnvwqmcajlF1SVoGo zNIa{5pH^GrG}AC^izlghahdlK7VUTx)@BHyUIdM{^srFed(2nUHj`o2?m~~tv_241 zsb%DC^$?*-cSICaB#D#+sk_?8Hl@WDsP3TernpD0SqpWaC&zH|AVG=2eT)XSJek;x zAvq^!$Q#@I;!x`LAS+sG+hJDD#cW)|LKBtmNme{RV&Nb=f;L*u{fI5{@0U zm9LN)sth|So+`2$g9e7_AVwL5F$IXLsYI58`_G?cfUO2G%|))>O~Wty`!roGO>{eE z@z}Ma7Sdxe?|uN6yoD73~b!OcOIpXsl zn9|c&$!V>{!wwMLFr{Yo`}H@%JE#6D<=JYk$wyXoYib;;OCmN3pi*M6-dUobbuJAw z5cK)P81KePOyQ~kvI4&^&x*8U z8Ue%PbS6y!rYfW`hm~K?Zpj?+!Ey-L5BX~Nr>ejc0A^Lt6aF*I1=1dalb4eV;3>hV zEPUR8y4{D?WC0DMP0OhrdNXj&yHL~s_JX=TH8c90iwlQ^*5{L2vAtR_sP?3L9&nxU zig>5V&Oot0@cT0Z7RWgqMCQvJW6>~hX3Vm`|M`V4jVQnSnMs!g+M}&^<;}z)WLQ^D)TPt(=wc%>XYW!p(uWJY_k1(jM{rRs^VhprR#!KBjjBR`R>*Cje z;84IwzQ1KQ)lq!JbW(QzURCXTi&wixx0xIl`M|mT{`X3J-QSKLwyQF||20no^;jE0 zpixF@TKN4lPX7x$wuN~x6nw|{33poVmuC~vh@eiI!9S>ND`wub$%1Sbdx4nh->}j; zand!E2yBxWDS!0_TufD$uYcTRH)TukkIYN_8vWOn^Wk}pjvKApAB|w;zSeRH#)t0!FZWhkh`7J-vYsx2wmbwtsH7Q!caKIx1p)h??6HE)Fn$NzgM+!bw0;`n1)`vU z%OMZXyicMM+IZ_dh^u^gG$PqqH#PHdUSX5po!h1>)Sz z?JPCztnpQQ8b|)8_A{A)0()q>!hB__E>x1^Kht>NyQ{4bju(3VUYNO}39Z6MlcmjGwjIZ_ z)DJ}_QYQJ+?DmD9kkMF(IRsnMr#HVe(;$GcDZ2p6I@*eQvI-6XgH>jJo_|3lH`wMO zCzCSUg*+m}m16hg2y7*^*e@e-Yv%HfvSGf{f`M?6Xq_cl0dNY)`TR0_9_Tp|+lvJ@ zBP~l&rO~30P8*rrzBB*$R~0-cllRVZuk$LjrKGqWc^hdSVtTJ%}JyzvF0vIl(@_S$<9gxbe_fs?{VuUbp0P=-#&Ah6pi z`tZ-#LY$Y0lVZP)N>ma?=g(QV?l)102@(g3fAw+rRc2Ys#nyq~j8=l8Y}WBte6>I5 z!QG=VXWr1%QW!|9&TLbl)HcEFD(9g6>Oh9Qy)*x2EL+;Wc@!YqGIsnnOW1a_2c3+b zhT#R=xOUvRTFmzf$-jyDeldYojj(hSLoCPNv`fezO)I9)-8~%*+F{0y4vNpEe*%81E%UDs(S|u>A{p&5`_L z-g$j7rRWflegqN3{cDwqg1Cdn9oxv9onS2%yJKB!^VfL6C zkWE6r%3!8gcz6Jtu|YicBPOXaDJ7+;Ik>3m4-y^qVM-@7&T7hCoxG`UUPPy4BQ;nO z#1&OL^_ewn;PAyg2_U<_-9&ID)^CWffBM0;I5LHEFXkFn7eFR_ZEuvq*B;7 zJAfMGWaAJEiY=cSboQA4%=_$&x@JBID6Tsy8bk9R@idYR+z`woYG6u@26gPDW<^xe z0?{r?Mt{;xowjt4vArGSvEw3=bAC6E-9Svb%v^2SWOZj~fF$(X)%T-Xhbu-(v2HgL zA`VG2pd_vlzo_LH|Nj+aKo0-<7Y2;!3BX2&7qK)iIpdCW%p(1KpdymaxcdVvPzo66 zRgWT+UsybB12!P<14WGOvxU%Y#W9~?n~X>!OL9Q@15YEPiP@MocTH*Q9Dzw+^Kkv;QsH*bd=2jJpT0g^4?CRJziI61%SFC9oS1Nm-b^__3mr>(1j7 zS6JREj2D5)$uoQTQn2bNs+2v%Z%7Mp>X>-C=eO~$%;(u*me8E3c-$t|yy7sFeEK3c!laE^KM#Pwof9!j z?s^VLfalt4@7oV|1!mAe*%63(rV@>fcKvK!E9UdsmCL<_N!%IG{i$pB>b{~zfO9#m z##JD`)uT>gjOXi~1PXN$feFgKck8y9#!}n=vj0jbST1Ad3q20N-U9B%GeXt(tq`<4 zY}uH$WO}8Jwb!^#89BgJ$!&5RQ{r)d zegpWliKi+;i7FJ?`{Xfip7e4NCmvX5u8!EA@l@>GMa7@`$KU=gxyN0yQL-X=^nMlu zwLvOc5KpMKx>W(m7PMbOblH#qh~ag; za}<}MAo)bb(u&+gBwcx=xn#;oztMpV3RNsegEbjISDIZmZAV;E?pz z79bMF34kQyEEqQ&OnTJJ$X8UR=%kLcrgeZ`^ZRXj*KOQ94a$znFHJ(cuB`{{!Z&^_JK`PYQdyvkY9mN&1A8Bb3x_#s6$`0Y zZK@zhj^Ba_*$xLQGOS=EBh<3q7PomXH?RMAfK4OxzV$}(BPw?|LVz$csdA$X zcf}@xr9adobGsc8Glxx5=!iEv+Pk=|5%`9?-)F4UJPLPYc-Bk+A31=_1Q#{Wvgq9- z3wulOv8V zF2_e@K^jcMq}o|RE~W$&pV@L#+s9sh*z(#zOGWEdMDXPnDz_Rbtj1cWs@uz#9))mX z25iTS8ZXWmOq}nKfa}lzY9#%GGp&$v1HcMxRwy08WH!BA5I64jb{Nj(_Ke6E& zq_<60I6KtHEzM4uql=zp{M=JF=vBj3A zZ=0IRc%PG`_socuZVHLx`(%Cmt1X^@-S8v`0*jDwW^|Nc1<`V_40-MhK@hO#&JMV+ zG|AitoXUQVo(e_9r$^nlEP-h;q!V`OMY8pd@_H3v1?}?hpv!>o5eroaAhDsb?;75 zxJhn~9R^*>AK4u~!~Me_uqE|+k^Zz-DgB~*XyGRG;4(0CLHuvi)iwWN@?8U1c50ML z70a}PM>ziBZ_1c253zCKue2EvPa@LGDGu966~I ziQ&pf!9YrhOW9o=N(PJe5x^&fyCKXX8_4Wcluf8zuF|tUu<7X3J2mhmVmc_3c7ub< z!Vo+-lggJQo@rCu`?C(Q;rDt){qWm<4OkLFb@lG|xwoT)ku{lxJQg+~DuZ1!l8hb8 zWk(_QqL5iRGEa+=KC*0gjos((FD>&Ih)eIQ$R$OZKU&tQ7fG$Gz|8P97>Q5B=oeu% z=2AeXA&(LQJCw<2C^1ZkL~Yg#FF~W6LY5c?S(Zv95t)fI`bi=K2G!6ySzn>gLhJlP5$ii08#Siyf-RBLO@y#D z@cSARx4n`@jRm2+HbkCQ#a@%7_+d7LiV)?N8(YXbH{X1%cvr2 zXn(|^z>A<@6IK!lxr{0~uDT6(0<7-$AAg5WO(;}M`q63n9p*^UY5H3l5s-pwfx++{ zMxVkb$k+dYxN=(^YtoC5O>xOhx(d8c__~RUozAspn@~v=?w?G#7$W7EF9~m+4BUvS z6`7V(XPrz8aQaJrT_PkqQ(_>-k(=?bsUVO9U%nz9p&FJ#UM@vC#}sFiiUHlC0XrpO zA|<0YDDB8;It1yIbW@VXqp}!Ell9iZ2!qkcl-tj0-xUb6H&X$F)alzUEvP zXr@?HgH6@kmLx?SdVZn?7HzhV*d)y~?SIBvMplhlT(NH7d<(L9w64UJ1ld>`7}H*l zjFl2K*dE)I6xXl}HPifAU=A&?twf>t>gPD~yIRkN7{bkn;Rw!5JT^mC40WaYBdcGz zcT`A86v2$Kg6i~d{a!I|Dj|+zL zo(}dqrwaQ=Y&4f<`I(GVUia@#Xb4Zys7%L1Qq5#Purm3XbYGaCJqp{y@=%F7Ys9Bt zF?rpK(s|!}+?iR5fCH}m(HClRQLxX`$b&;BZrT~)C4mz7ZFbXj)IK2NznKzTuhg<; z*nK-9gv>jx@V&PI*_~>lmFF<;fNx~hu%G)1GZ6WI^(^Us{U=YU)mwU#vCD7Z9QAs= z#WBaF8@@B`5*qpVXGhE5SxD;bal->J{|dZ#5`S{uU8j`Lv(kMjdY)I(!+-O5;>7d4 zbIRP;rH2TtVr>e5m$8jiZkf!&+Fyq~td|*_>(DAkz_M zbAlvR=DRA1c6qxr8VQtA=4cgpQbQ{^qFj&rH`cSwLAjf^Tte~H2=9QhUe%R8&Q^co zaJ~mmh-Jph^|44%4I&~m8l}wVe~DI*Oj3z?oOL=#l!7~=FZLy1No=PI$)j=fa8Q9ywEFJ5M|&)plMMR((#>BWDg(c2nu7o_nOGL(QO9h7rH$YE zdc>-K!_e@od=lFUL7&1;SqchZ!qVs%DA5Sj{lGMg5f0e>23d37KnoowBv`+4JE6N` zEwi!9u`_@Kr7V{bT?ZlBBS<&Y2T+b;_O#8a8CxNd)I++w$45hCuRF_hLUoao55gQ3 zP*=}6)T#O91_NSJ@P!u?XG(1=2P*c~Bn$3XFF<0gJVOF5eivo_(NCO=lJj_(A#)5oNtz=TUMj1eCf~slFvvCleKO|Ki?G)N zGaI&4m#Y_b{QJ#=y^Cc}e}~LByjasApy&`_!R5XbSue zM__YZ`M)xrQs+}6WKErZ6IcOWQwn{=b~Qit92_wN6_e_C*Drgs_4yj+AQVBrL(Va<5oD9`Gr_^D9eS&=oP3Sc1VfrYpg>jEK?CEwrX|?DkKazZ>>fiLBG^QC@Q7wsq&4#>DoB3obJ8 zxG#p$+cLEX-2)1&*rf6N%fl*^LCuNh^A4p1^Uht<Xag;k68-b#YAusx=}X&_4=%Atxs-mdOoZ`a*kG=0FI*Y}lj_F{~QX^80SJ1Rc(OyeJ{Dg-4Ti9RP4TXR~Jc^4{ z2**)@`ooWSX&(*cob6flSd9-oS|4UPl!ZH)n8#hyM%fK`qv=cp)G#>`V|w>V$X;*Z z=R;R)xO0;@@hoUI2&839ws13}D~6S~SZVrFt4F9wLu|&6Aw9UH(~y2G1Z|qL#{=!C zQd|e4nQ3nUx8vlL%39NMz&1`kDE%-jZN3gRt5F*!tIWh?+0^MTM9$=NJbPf6=zWGt z=6us$q9y81RQ9|ba_rp51cP$Q2Qp~4i1N8}f4X<<>LEp($krR=@6++7g8R$SghbAL z>6R6ik(W6y5}5cPxXtS|hdDFIp77dtT4Fjl8VYH<8I=P!i@VkvMIT86cPFH8n}1xs zGrDcRv-LPIg0aJWWJ<)i$##-Ed&_%#AU^tjI3S}=v>Uk_3~5>PNtB3F(F->T@QK*J zdEyPa;DPAYNv?*aI^2zr>-yJqiEg%O>T1@vC^9+O_?q&xOA>qr_zqKvm%kS@BBpbc7I@r7*ewj#!5d8cm#E5J&78fG zlu&KA&n0s%3YxV`7lSgA%5WAr*0#{A)K9?^TW#~eJcwokwk)>Tuc(+W9m2qEO)umu zKN7~N4xQB=SM1;U>l1sR8(GPGda@ovbJnLA(oHLCy8&xb*WNv= ze`on79L2x!W5sdYU3GV$kNq`|fJZZ1q#~Z8P7U+uezydYLoj2Gp9EdTbsUIZ8P;w*5mWTOu}HDGi)o z>Rv5>-+g}dDe}y>J>;Tle>1i1i)DZ$I zR?jWui%cti?cNOzHJ)$~J$`m~zHf7#Td;~SmDF#YV1Cwl;OBzq9 zF@p~mhiiUw%`r#bYN2^02!*Z3Zc09RMUFw@@Q5ZuMi=e%TeVdIN{_T!2gZua@QVtC ztTL{^17T#;Xz6aqM^fNIwfH^=Ss=jBSq8+^a#t@9+8bJID1x$Jk?b2&dYS`JMf$#e z-25KZ+R2I>{3cQi7e&@aIqs4FJA$&TSad#Ia$LH)AinNx90SMB6=k*4 zFXqE|RAPj7%-@fpr}Od9=Ub{{a>>}zZW|wfN;XH@)*7^u&iuqp^ud$#)XF!7AJx0= z!;|&6iNYjCxgK*LV4Tx$8Z3h#WOb`E$p2n%iQy@{iDWGK@?%_3Cvyn!`VWkpdU?X( zm1!fP8Z`W>dm8tAPX9}-bgq;#>Fe(eLXqOqJ%$-{(p9%O2D9uqwD6yJ1xr|zJ$m^- zC9I|jlsHqfW=@2>r*< zh@`d;KNoK-DUL-=y(?n1eQJ9?CFm;~MYF%|Lr%Kp6JrGjEPAYgEl9mnqGBq`@o7&HXPO6`O z6u}^`{etv3ST5MqMGAkB(R;Bys8;2V$;e{t#7U%Qme|Vz=1P59^g7()D`>q-j=79<4=o^oI7;X}AktK*^k zl?~mAb(7Ts6Pv5-qh}Mod>((s#5G!1-2c?tsal3suHRm_Pxll1R5+O?pUrx1l{tXdZ+ZOO7=nI zuk062vk=&TH3HTMWT1^mJ+U(70ct)hj|U9lWQ-h-ilES-%9?tVFn0G7Qd0b~xAeuC zFHr8>IHMHIH3Fhjv8WKPO{l`^F}f&4gd%2IWK>Y3_aw#qjj=W>I&lUO>dKoPtBcz< zS>IJsaX|4QV-w0!!=;X=)ulS8I zNeg5<>QL))9bm1wn^hs_+2)VY_N~bH(qU=L%M$pML@v||EjKn_r<2*0$j{ExERc{Z z#ViW%*J2~$=taIk)Kj=2Nlx-H8cF#71#DHex? zEz3!LaTTO60}`CXRmcv5t%u_C*1kgksM?6tA@Snlzvkcz2;QrA2@khFf^61y)El^4 zZjp#mGMjB$RIMtDJ1cpMoFT=VhZ-44mNb=+EYgFhJE9%+UhjMo|72>J7l?lP4^sd< zaM`c8+OsKuSY{SidbguLRG^2NyPaKRwrpliefo(C=~IVnuyKKkDn)6b3g|kXK142g zm36{%0WfZhXxvF3?$ZFAi#9zdl)a z?$zwBJN>^^%{vBlFA2ALx9#dbw(07s*x4|>%}`54ZG|bza=h52xR^)v-L2xx8bWE6 zIHQPY4#jX+zLKK}Fi^|N*OIZm;py*P}I58)hiUtG1V5w){IwVXnb zdIMRT|CV!kjcvqwlFZMW9xYgt)uk+)o6I&yWMzgS{n)9E6z*;YeqvCJA{ z_S`*izy;bW6+gtF>Coi08%oLeer4C~5KKi!CT{o0?yHOhp8K9J*(_CyLT-Aam98p0 z^Pi{+9iG!a_imZco!Lo$-W1NFc6E~P6ZZZlahY}Ni}c0kzcSc=_GQlQ-)>o^-<~qI z4UlF3cCs%Docrs+cSq*rZ~e!VyvW*Y7Wj(~2sbG6sH+REZWT^cwX+ae!fV4sWDU|@ zMBO$`F=-cqB`dP`^lq>>r||@#8ufiQY_9Z-2ZHD{=4caE-2%~0uoANfDaX^k=S1_A zz4nEO%EN|Up!lBS;A>djRY{tueaLjRy^R-Eis$T}GW|N_Q&$GvxKw~jREIkcU2exdQX)(N*mgMB+~m_ju5)D$FS^@$~QF?jUza@QE?EJUpsf5Jm`&{ z(KX1p;U?1=zOfwMT5=`q-cO{^wcD6JvwKH(JaUtgRN!pU1}=3stLNYqh9$Oj8*Rs< zkcEbV=qqp$jZO`Gh<{0G;=*1~?V_okg=>W z{gtiX{kSc@L;)!*JSUl`61dnTMP?*bL4_RrPn;`EwcVJ-C-Fb3rvd6oZ&2_U{ zCQBg?Y=JNQOqmp#t#jWGpI^CkDOZq?bi8Rqy326e%u^9%#0|>AyR(|E z+@*u>FW-zhjdtID|IN#DCz*A9lkrx9m_d4tBk+WyLWesiCr7JBmn(gAH7ed~d0zbQ zBd2_@=}SaDiS;uZ{ph3iCOVUC%30S`MU^sbx9hLcna7`}QVw-u*7KGeF<%8ho7hQR z@Q}0NWWqm>iY;ecL0?(rRU#YnS`GDvqWk`=2?=|ST{=_vW<~2aMYO8wc&G=iIH}{L zk}eMlS^0Cg<6gk-7z2+ed~zERYG;QaK&&?fs z^R?~qFWq3vr8^-v4r?L*A4_K)74`RheVazQ6&PuU?h@(FVd!p<57ME8N)AH~-O>&S zNGaXj9ZGjM2!iljzrSZK{l~>ZhI!Au=j`*^`^;?*U6oK5Hu&>^{zj~M{`Isrc;HD5 zS4R`r_zi9M5FBlD(DZw6F0~F72K?JY58v_98tTqGs{{C)dB9q1tXnzECf7W>k7y7jS)Vh`VRe6eC1nts z#i3I}zbIKqvSX7r%16k3J07nTiiCJS55tduwzg;Y|7}uuNbsU0Xg$2upq(jzQg%bI@~z^c-T?!%2NI95$)eU z)XAxB?M;Eumkp;Xqn&$F3cz^~$e|GeX(~@E=b>5x8-8ma%yi;Jf!~jq-PB>-3x# zsp`txn-17bJ9+fw6*#;GQMaK#58sx&-F$E~gl=!a!d}&35>e&NI^ZKX{%?(?!dbqL z2pqGn9<`sK{R4l)Zly*r*b4fT1_@SGjBUvB_9BfI#0U`(Yw0{Z@oIRXg~Px@b1RXQ z@TjqgXa!!o*$31fKKX5~oq0BIf^VUgYas(S6t&JDqZ(tT@oneCQg}TdU#o&)yrVR; zD({WZ3zf%nKa9CYtW(6uw~DSGh61E{9F2jJX(w}Wbz!Os=!X;9GAR=2Ke5jQvYY_| zjo^!}E6LgppWX!vjF&FCIS(Q)&;Am6y~no{l!Dk6f?9N1*Bdlwq|)m@-dv5z0cyN}TM$CD~ceQKe~p z*)s?;Sx8%v-j*O`9Q8DSIFy$8W$P+(R9{2v;$&}^CWm9auEX$fCLYgVDxP;!H`c-k*{LW7qyXEg+zoyOi zO`(B-58Jrb4(99AB?2-7?iTNUW3|Va-gKJY*hsAWXS}#2J-07B+H$r#P?r@ z4R=wsM*`nqjSJ7J@-;DV5hWDqkDSWd4r_F_&amy;{#Xp~ltobRrg+WG?^oKewnW>VfD6VX-w;}exmnb zKE7_^OYnXRQC-`GcLcV6(tQdxw=;-XSwCYP#u|@6P>-j{=UEx)vz;#Q7W4H}(bmqc z!n{JgUD|?mQZl|X@_}X6fWX+@g^$rVdC4-Q7qyJ1;VpR8wksLu2?r@E1#r0Xm@d$s zUV%(W&Kww_P)2Opl02HgMo<|tUJ+(U#VJ)69JhlQ6cH^Uf~i++$s@zmWJwJ5@x__* zw1V2B$q4N^z77;YKtE-dfY-pXT=`o*eL(CYl!JNv9;ccfT3^ho^kaUJw@aUEEcO_h zVk^9(IFy&LS9c1XC3RY)n@&A$3!=K8C<67~HP+XXlLWs|3Xb&8sGO1K0npAg0M zO)vR(yLb=((`pXOY1=iw{rg9?1+7{B!~X>IW7EIo%rSQ{_qKja{cyYQEp)-fM+qZ^ zAd2-@GpvZ42%~ zpM7sBFDi>|Z1Bh$nU*0+W64ie+Odc^Z5o}xNI!P-o2aw5(8)JGNu0~3Ze6s&N(FHT ztGs12hICTn@~6gFB(05=Pe?W^gMCzKU&FN&5`}gVJMXDT2Pg?pvvt^*4(sQ#Em#|> zB-TB>=(Bw@eWAOS z^K|3B8bzEnQ7W73c*&=dA~bed@b@$DIRk3zxfwW1EuR<2D5?z-rR?xZWDAnNFgGUL zNWnceF)U4%(U)r{stN&U23dB`BKs~+NU7#HBg)9a>zk1Bt`sUpft8v{-BI8&s{fgq z4Sm+)vx+bxrBnc~_&8R6TEz-|kILs$VxskTe+=};fxm=cvAvVvWlvmy_7(I^kSoMcGsCPDH_#>T==tD66!pGq8?2oB zkwC{XWKZ)l-8(w7$(YaX2TIyxAl6&YOK3z9xa*vq zXT;36rVoo#96N92_R7-4vc*}0$&~X`Q~gpfBx9w-_G4b#=#5y0STx!kcj!D*O{|$V z9Z3t-R!w+WOlt65?FU7(0M7ox1ac@nh*8?Q*xqs%`zZ!Tv&U&XcyT8xuT@3ifjAjN z;I<50k@NCv?9%C%i)H9Ck@4DbyPg2Qv(uS(s$6){HgjSbafQz2ye_v8vnhtP;0#WF`d1{aNBmJFW=zxo056sKci66I-jilcy$W zidV*4H@@Q->l9FwT@T#A1V|R#%G=eO-9mxjT;}VPwK*(E$q8}t+`L&Leq&YZJmew((~sE&WL0^+VD08ts5``Al;z6=O0cQ5|)OlACO9T>0~ZS+Ta@2t#dap>{V z+a`Y%FQy~e64a2xyhT2f6;u+cLaRon7hs>b`iNVeIGVbf_db)(XA5jArAkLSYhf3r zrjH>^I6vwN%(hotQJbG=XELsPP!#tC`bGL5*D1k*1>S81(L{-ZL-`4k0FIh<)Jxxu z=i(3k=8WHul8Jh4T&o$u)(?ceRpzwDLl*jz;|cHKYD#~e1C^WxBb6N1G;T-QdYqnE>mSvXD4y+A#vDV;WCo2f%T6S7ocHWD%5~k+I z$yJaSp+ZhXnQLBp$Fiug8-Ff#R0Yo+tn#e#@S~wjjELqyFSHHElC7X;&7(aTkwnme z70v*5koAcU33@x0NY2Jw6*v1JL#30%$VL9^2fjL^E2l@@S$LWrbWzd=#- zs?X`E+`~&iP*+HhNgO_8rc>h?JwsE(yFWJ8>~T9bNqfTmpP@>OmHvjh*pKu7Nm+}i z2j3IrLpJ^XtJ%F<*iG{Z10#fMzfg?eDMz$}Ga4p0 zPQql;;Z5k~lRuEK-lv-^v|#YIlQ3iG;R;_NjN9%fRXY$cu~^fvP2!LKET?A^k3ru+ zbyWqZ8K-ubcqIx%ab(V>6&fa*PhCU%U&2@TRwHv+P3J%vg~j})@~c}ZY@`0U{)+R; zv8dqt2qVdN)BIra3uh~6%YeCP42fx;>DTpvwoq4xZJ;4+@m*ziV-qqTTi0$3b9q?wFXPZ_zu2dBTBGHv39>Px z9B+(_ijLNF0+AU!*3#B%a(nn>ViYwH4@-DW;d@>}kuo$7`A_Tb1_I{kSl=NKsUa*B zghy$M*^n^!N3i3+&_F=~>=q+r~XZN$eYg1x3O*_o597m?UZiLE=QWfeGx-h@a ze#pEOxk^c_YbE-tsBLt>wua#2VFo}3^LPwoz|+{kRp98Lm#VUe_+r4eDQf-aG$xan zjy$)xl=$;KFuf|k*6wm0Tp2t_=Nt5Pt>mETeyvYV{@??%;I1RzfBxq<7<2oBDRqS6 z%xfw8PY!D*HYDyM1%;=pK)8YufvxY+AMDf|(4&j1+0qa1PxQJX+RMAWOikB8>wPmn ze26s;8(b;7X~_k!K=Z{3y)^U6Y{rwj{(gDi&3t@i+53OWfBBKgo-LF$y0&R`E;au> zX1)rJo_oRyrT|yd^KSwU{*u>->m4yKly_cpaQaDKpZzxccUb+s{Uk*CBq}9qB;(pU z*tyAm7jnPQ9L77@_83YxXpUM5!2;Z+W^A{p0cLz~DfU+c1erq^bWy9V0RJS!JnXiU z7;a>yT!9OPw{oD6MTv6bQ-C65syw`G@a0+`j1x9V{-#|$vpoaSg@p3CRvBILcvs>?*opP8YTxLk=?ROA zU$yUn5R9Tek+O00ZYK3X=%rD5=oGu6AVZ;;T)skkoH(g?%u3}%Ya#!E$b*-r8yRx-XW8WcjdZBzT#F)9m}}fiej=|QJe#Qk`nt(Ten582VN%&lbM4} zRl#uaVd2!v2r_yiqWKgcySHnQ3ZyXsX019zRi8Zh!z!9n4x-pK5$)qpIdoplHm~2K zd~JClSE>-BfRn4FAC_#b4~#`v{^_njw2&KIS?*yRJmLLoR1DqQRVL+LfKr0RWU3(K z;S+g*BfrvDL1+$Ndo*#6thoi*hZ*Q_to40KKX=s#u>${r<(b0GM>QXNs>G>$A{xH+ zpsPkmDe50&pDZB%%bau2DCgt;lYA*gA>>|oAE3dd#%&tb<*^?J3pzcEW%R+$yBrGW z_R4#nQ%iSQ$ROPyPhUs~Ei-ufT!bzZPiZ7nG!xR18Q3A&1k5R67vm%XRAevtahM6X zRofKdff^kJ<+`EBKLrG6u4!&OQsn|6JOmjf?ebgo3>H zc?eU?Q^|OZm)kw4fv?WL1(Z@1RP1N%!hsit7tHgFH`BBo3FFnWW9@ZuGg&j|56oI4 zb1BQRRC;l?yy`8EV8j0%D`(9x(laabm>dpWEmh+u7K~U(ePBo(JG z5#--}d;;2*JM#0;M*8UEL%(Upbh-_43ID8a!8h^lk*4q0!z8XV-8xbfvado-MOMbN z5P;J<`7;`E*x1yDQR)d=cyXE7rNQye={dJl+`DtIO7HG`k|SU}v=nDzSg^J!1E*zS zj=7&c;&Cywm*)&pwQx+Vmhs_urN8CsJfzdJlEJn6G#yRuCU#si?sg9gM*JlnI{2EX zw)~W?4U71O<;5^>t0+I;3SW05F|Mq6t<5)`N=)Kq7Jr}maWZ&33>mz^bPPew>)a+~OM$Wx4v*(`c_D|SkdB+RPZC}%SHwPG z#jJ{h;H(YQdLj~vTK8e0>I;-ycoslh`NgZA=kX=n8N)WkIVn-~u_~clIF9Va?}nB! zyYSaj@v6b|AG=4ej@sh?B9z~fX;o@x{&WD?@266QIZ=EI6v|xq7$x+<^C;h*WvT9s?UE;=`#d29OLB_$ZOKM9zV_65 zeY%7WvZ-l-l3cCuK2qUchNRu=vaexZ>TkuCtjJL0m`RhVJ*XX^QeG20?Q>O=52BIZrxd>FFdy30vrQe)I3 zoBdGj@v1tw+TK6ogn)B< z5a_~e#(_rS-+8ww&suo;0YR?GJyGd=2B;wnvTV8)b#e3NGX0!iKPK7A4S11JnL;4lu`FZMKKKcfo#buKL~IrLMI*f3%& z0#(ZOk|v&1nvq?Dc)ucq+!`0TbO~rXOdV<_|9HR#eFGblhWJ@`*(BNOc+62i$aLL^ zYV_b)%@4$qWWZl!>Gj?=lbY1NYGt1GIX7#2i2(yeT~^JwZLP)enOdM&|K-GAdKl*l zm{YZ35rJxP@otT3_^|5oSJr|!HUHn>r^eQ~`YWfuLw(KPcDQZ+1VV^h?9vs^e|ch? zU?i%(@azP%+IJhdzmHerv+i=Ig)=X2F477I8b6etR^R`i3R~gyyYqPE18AB4n_4fWmW zZ1Ca1z(PTDC2(BY^2}TfW>VWmkXwUNbugFK$Z;A)Aj`mGv2Dw@Jg;QKhYXkA|I!%N zFaQ>$T!t!mVdV#EX5Kp9EGW7D(x#}?t;Ub0h{4nvLV#|8J;H1eoc8`9ShEfWU}DfY zLE2UNI`t8vrE6`?olPXV45_)l>D4`V$QjeC7euMXB8M8RFmV@e)v$794&(t+c%>fH4=`#l-)pPMT(;0OantnNj@Bl|YjNi#GXDol-u zycJuvJi+trdV2HpY&M?#ilOsKHn8^U+Aq8DyL)g( z!Qk@5y7OM{OD<=NA@+o;7I-U#M|)5^LVlKDbrOiX7a=*Yd3K&@5BLTsnss#@tbB%o zqgq@WXERQJW^>tdOsjlP6{wdUJ+8vjY*20iM|uVQ(0(l~Av2&TGiSaY|2d9e=-nO? z16nC4BW4|c zRw;$B_>M(@F+S=Mx#)V?hle=4@6ie*@EDedjRxw_1_uZeOi{qM9xu8~FU#S@&^CtBQahwmm4 zs37SBposx`C7T-CvVo-&k4Vkt)zeTMVC*r887&PPGAp#moX;zJJK+N|FO#j@ZSTK- zk(5o$bxORGsMJXk`mS?g#$gr;@2E`1C?Cnmd+>d)n>7`h-813_LCLtkmd6>L=OaN3 zCJqKR^`loS=b_~Q=hkCml(wSo|B#i}p=eUIYwglQl9H$i{f0}ddrx;2TBtMTjcVOu=87&Zf)8^G@+kJ#^CZ!JV zSXWE&oHTpR5HU|7odAS(fGLSlaMbwl-T63`Q?V!x=c(b+_Vi{r3|r zOTWg0B=LcX$jjEksThKqWI(urdbPiw|3VJG1l3CW-V-?;RUoz{8m}5zo!S|2={Kz~ z7I8Pt?4@6p0)Peo{d`ORvlI^%RlE28*EUH)q@BP2vE@+J4c*&;Q@~8kS_ka8lLzsYHwIGi&%51Uwf7pP-JIK#Ws`YW&-}sSw4yET2#7TB#|)e_ zP#m*an07o^n@dA7&=_)l{+-Biq{42P%-i)G2#seMABxcB;3_lXevLY6OKwLDFO004 ztyCNlGw74x0_T$PsC@#it7`*`bZjS5Co#V=FSf3v(uCaZDW}>jE%sC@ZN6PF_uE2a zi%R<}j}bYi9_6RZ4W4|$*MBzsrFu#9*EU70mFl<>w^Ik&mp>UYUssgtO z*mD)b63W0T&7lQCvj~#QW~U3x%!H;n2uUiE-#0$~QHM`1%ILp0i-*E}bt0EUJx>`$ zOWY}30qJTP-s8Kxd1yXynj61fH1uxXruM^PaRpSQ#ih?+9*{XH2YgF5UTW!9@$7ig zvB`CWmJ&A0oqPDQ_#Wxun-kyoOQE`Gy&{DUSLt+%j;2{CY20@j<#D}IDj=!_rFrkH z24SiHH&p`+odHW4mAJU7^uxRYI}hkyU06gFG>u>|QU0jM2Y*oMmE%=I6*+M#G7Tb< z14$Rmb`>(6+WN(5z9$C+`iXjvu<(8@AwVG)Z^nuZ%9lbfDzWDAwe|KCuHHx7g6cMV z_(nN=mW4n&Wt?(gvWBgSmO)+o8gKtkaniyaSiHLq$eK2JAK7Wq`oD1hzZ2@_`cpqv zq5}-41+NLNPd~IH0-j(Dh39+~eA-L+$-q#zW5#M{JPqey+;be#@8*;#WDz%^Qd%;t zSCXpGQUVK2W9C(=>vJ7^EtLb~rr?k=5l$wfAczY`6ERWd%680WzTgve0_Neh!0E)R zfrGG=q@%5Oz(?pRcCI*{&ey-iDMfhujLFCp&2uF6{6btCz9AhAE!XC)HMDvruOC&~ z1BJU&$u7UV{{|1KtV}xEXA%SvVIkv81Z_G-;Nw8qi2r)T>SveABkRJPQIEgNz^$Jf zm#lO{F1|KnhUc*6I=!h-<3S ztW1wh>7yQ{Fky7*v~V*651p+EFdp=}hN}e*8K`zV6PA<;;NXJ-yH=s>z=Xl%%8eER z=fAYbkVtY{a3^|(azt@f#ic^bcd?1u2$LQbx*gxN3(2yZScT)d0DBlDhmUym7RaC0 z4Eo_r{Z%hT((uy2N!>al3u6?qb{VPDluEP)E2y<(?NS;P?!n$ZANEKlk;F=RVz zZs;iUKaNRA?d_ddpF;QJZ0H{C&Eh&dK9BQRy5})j}#%I0rNAiVc6CV|u&TalwicG>U@Vz1`2&L zE>GhG#7cZQIZ_*2-|pu^o%56On0F2Q8-6&C;bWvLP|FoL&`A?ZbUlTs7=!3Trs-+W zPr7V?(`0>FL&#$qXIycX#HYNQxco2k-iM+KoYsjx~~|LX4K{5WH&JoGhxB* z`coIwWEJdHRFCv+n`%DD*~@im0Jrov1M)lZLDz$Gnpe%D78~*d$TJ#vqJ5HkU!smt zswxL(l70~tO{6&R8yq<=(f4bNbz|EUQ&Tn0HEEpz<&4G$O(lZ%pm zV%X>mg+&!UuV6SH!eP%8od#%8XT7{{Bv5h#W0g@GRcsjx3A$ltnlXRJ}a{J`s1S(8LZLZy6+jw<+-2FWNNVZ;)cPp=s&tV@l~l zhw$SYF@mH?pg+drx#;f?bqE^^^0zSn8-uqdM1g=f%ZC7=9Rum&P~+M8J~Wwt?GMdU z2gkFM{R2pe5}#vWYJLtIQRoZ8l8d%rrk8N!WSv>{t1WitoFGp{%UXwVuLlMG9X8`# z$HXS0;Ng7$4lD!C%M{ZE@thb`q8GqYrZz@isrh<3Yb6Vl=aG}8-Di@1)OaU{$Fc1O=ov|^prac z1}wYrxWW4cgJKFY%P7o?*n&PGNr=LgqG!n2mt?m0()aDAkOzYaq>_)a-Vv734hm&n zew_puA}FZhLvXS8v1$z*aVVO2i{3rQ3^sIw#OhWMwJe=WtvLJ z5#-Y8HWBkNK#*I|*qUQtC@oF&IqbwwWm}bF1y>gUSC)b%uxUD$J0#p*Kl}=3r?QUB zFY0xe%(1~?@r<{kQJ2m9GIEAUvq-e2QSIk>O8)VyO_D?48yyQnVe(cuywQ~L3baU_^LX_E!Em5v>>}ojR zQUt|t{JY8fb-b04G5YAe*B|gUfT5?{6Cis4NQYkizsalh;l1&U$2Y-GO|nh2uCgS& zJ}|YvVIKM?a9>F$U9H>(H6Musr0k@Gb?V;%WO{QczTvMlNt9ZT%EpdFmqO@c3n(k; zY<3W=(vw<12L9TRu%syz*liND+8w0mKb1cY=VtXjwHj(c*d@xCyZO|%sr5sKmxt`R z@xmT8<-&RF;`!#dfT03>8}oX47VL1SOY@H~A}tEe&NttsQ4dxuv9aH)lF_tvz@A4B|D$7^f~Y%aNQS1W>slS=A^jaJKD7=b zEZcgipR)4i4%ug(L626oI}Df}`0j_YT5`5cXs24MDu`;+qkViUhvuTeWMu-U=eUKC zJ9C`NrY;QoG_k{`-J;gQmFJwI4rHIXdX)6lCPqT~fk6Unj#VK*3N?dqidsBZGDbuL zkeq;^+T|s|reaL2djzb+B*j2|B+)BL0Sy7oIU!lEVn%ptJ!h4@4(_|k7z{s*agCm_bg#Xt8QS^| z`@Z&UzyWDgy9?|v!Id{xw60WkpLMaG9`*m}N+{|D4iAQo`Vz;ZKcn$UPrINu@i1ny zLi=%a>P(2zp!U_}vsfJQi+0`#u+lzBqaZNL1koA;kM|0%>kC}fu44-#*XQ^~&(EF}I5Eh%{Fk;{ z%wJ$KfPRs_()b`4R>^0wKY(~ZWi!!B{2gKk7N%ol zmiGs!WWD22V|2+$hHg^IJHqBO1O^C#NuyH({qZY_^EP~+Ox~wNfb}O{qXG8mfa`J$ z1)`hWfa{E#p)~PV{)NMkFrjogQ@3VHq8svnJ&|U=%Heox}DPS`B0E}AsQaRkm7EDeu$yR!)Qn`7f-#m7{d)Mw(bU=u5YZt_z z{%^yfih%570PEKNY}9-v47-$z6zWa+1F;#vgH=F9>nUXImFCAfkqzdcgYI#y`Q=sP z!T@=+DH#Fn{|Z7a^hsZD+04>K!2V73J#D{K4B%|0iB->jmUt?h?49SsaTdWJdqOC~ zTJ}seEP`_LT;L$2quyBuvrQfse0WL@T;ve!sx$-_5fZ^AbIay7~{fQuCAk=Rt$Ky zL)6>=K3QRuV?1Uzts<~PCe6Htd=EaxWI&8TKtq%8nE)`{s=?q62ZJGCZY?d*;esFk z4oAgvDfaS=Xrp`Frg~2zQnF$;ziE*k-PE+Wtox`X22yto1U{;WI1p=#e%vAHgr`^5733Uo5nqKgk=-xKuX zwC2>1-GyjgrPL1KhdF8sT1^=?BRe_3!P_wJGX1k4kvy<&8vel9);84i?{{-)LrkK`GCfpV(ZW`8TFwYFIAVYwqpUW(OEE}gh0xMlFnr$m!8(5R5@ zMLqy?y*KAtv69e7Ly1heFHu}9HH0uht1WC*Gm`w|y0#a^q@`uyRRCY_oc1j4P=b?y zL{=_~mEaCp^Yl$3pa24)K3CJC)*%z?=Jck7`|ayggdtq-(HO0&-=EXhb7y$Lp8Cwn zZVOP%8&GS4^0wFm=f^!eK@k2xs~zkqYq=*UMiVamNnd>qR7cki&XL{hUFUNw}qz6J==EKU#vwO_!sWwFzGZzS= zDi)h2+jZcX!qZDry%FsQ^-k^D_ad9OE$do^ZM?tm4lbTCIRVq(<6%>~oF42@%OrW- z;+xpwmvgj2pfk#M*r6yI2)L4`m4{jRA9_X$s?z|7cda^?6(+cXk*SBly6H}JBoW|} z)jhQs~ZJQs?fsX ziieI$LLKAn-xAF7OyZ-@%^(;-G9matHLeArRp75efc3>WH!rKxY$vs?2dj465PVqd z$lo=6cEI>=n9QOmobrf9&A35>!Ro6HyDO`0iPQ0fO`wi`jdljzhWo)O zh@jHNF9dyN2vg-Gmm(@6HtBQE1M8I#Rz~T67KFpbi7qUysDf9;{DIw54ps`_Gpe@P z#!@b56k|gPl8lJ0#ArB@F|hCqS5K4@B15(Y7Iv{#LrZYx;-QKbQfo3bnkt13$JuZC z8xAefh?$o>y*`pN(nJ||At}aVYDY>x7ay4|k!e3XABd>Iv}pP!3N(=`#HPRqJQzfR z9F>bcWN6W1=<-(q55jjX>os{$3$WG64eEpuFW(z>i{&=v(GDr)5-%m`ResBu-mos_ z*(SrsyAlt8vUIvG?MdEti_FcvXqi7DO#NS{f@@t%%qxrtgV$TII;6yvPfKs)#r}ek@Mx&_u9e)|=M~!gcDlG!-=nk~ ztK!hn`K*A>pze0V@8Wm~kJ}uso^eXTw4m1z&-~-9sWh)O3J+colZkDeB0Zt$k$wNy zc?DGs6c5+#Ss{V!<9r>zsM zgoL_}x_P<4H7yW6H;<-1p2d)Mq8Tp7i+%N(4MMtZQP^ff|K0CRr@d#0b4+Y9hEy|; zNl-e;7L9p4Yvm}{wkSQY=#wZ?(0Cd!0<}HSRn2ypvTTois|wRqJ;oZO02MLB(kt8n zGjVBO9wkJ>B%#J-B_>a*szICkiy;*l0s^=$c#4Bkp`vGXU)#ff(+1##ZaQz60Of&+ z?Q&cb_GF9%k(&Racjd&nls!fy6;dhTN-07JcvJErL2m7Y1C`gxjEWyJuMBLD%YeETtA%d{_*M5u#tGkb;TSetTcnxZ4oH(MA>R|D%G@4^H)^iOR)eTv zrJI5GLjk;oe_#HC#DzR_D_z(>P&3T!iUQ|Bx|%ctB@|8<{wRapa-$P>PA?g1m13j# z;WMeMl?`>cRPNXDZ$Y_wY(tfG`N+mRL{;W=wCw{@RO>`EP8@S~U>Kci%YNe%^1z8NzB(^jWoz^aUSdmus3?FVG`Z+@h34QuS zu*^+>x@6UeE_pd!fPP7@NM>+K=Gbz(t+$RKy=F4C)lHP$;k()*mIg_R?e|?Hha^fL z$g8(in8Fl*NWqj&zzpBw6I2=@O_)smi0-8*Y8!~AU=O0%nA1WG$^n;U0RRRXxbhtx z8l1B`!G;zlr63OB2$;#wEbP7yY%WbO^L(3;jK|=s#%KUl;+8>VpL%>X&mD;xQg8m& z`EGtC?)Q_MxaqoJ4xY|PV3uVX&Ugd*3nv;ZtT9*kjhJ0H0Evifh1m_;qhV?V_fx?) z1=@134h+>HWE8s$m@Ns#S*Ju0d+5g58cDSCy$eDRmxS|-`j>_<#rq(|q3TICer3xV z%-Rvw)o#{sh5}i|#9WrPAo32@_F$o0H&@^%{h_`=Gwcgq2yE2lQ#_6LT|)kf5x&q5 ztJ5B(NB|v!r~c|a=kt-YU@@9m-2E;#q7Af{le4)Swz9Z5!mLMW7U7vv4*`KMAg+>9_ZEmykyR_ebeukbrH z=((8>@Q3Q+HI`TFJ#S|>@(dc z)cz~~e;`Jq4oXZ$D3gW9my9xE%yK+ zK8S2Yo3gI;?eWX*IgtzyX#!?1Zag?ckEW|pm(P>jNtIz=lH7-W^lL+7U;N#^mIn9y zdOkL=0kEV!*yK93GytPUzf+ktiee(*)i{Qfdwi!7FjS2LCm*0)V%LQaXPnHa*-U?C zt;j=6t3-)Yi<4-hw(IC={jGw-OO8J`o7G^>P+$2@zfe{Q42mo7KHdB!7LeV!VAhJf zwxmi7f%M-b(AKHVP5|X^Rd8YJr1eez+%9{KpU7t6Vy!9#@_0zXf19A6VD)$Ng`t;X zMf%;gx_JM=$m+Dos}5~O6S2!b_qMXUyG2%IJDSg*k$ZO!(Ly2HPb>cEPysi6gqEB+ zHV%&bz|`&d)0)1PAf=WY_&eIsq2$;vP+Sb_Ur<2>3Scx1RRAyw%b+F!=PutcH-9W) zgH|3R0-|E1?Vv+{`P%|y9e|qFnQ$}%D{u~?fH@XXOU*5^>x46&o?oo62F6OG+9@o( zM>#>VEbdd*(lQ8kxC#~HGvmaXc{gAb``kkyOX(*FGD$&JqFQA~Re28lTY8_ z+z#(C=95*CN_oUeALNHZ~W&^Dl~F}>~ozfTMn4D524Gdm0?d7dU@&eRm zAaQF|uFYdTn6(1xlx#xi#Gyz8K1g&!6hefF90L!3|Kadb+tgMiOsJauR$HT8;I!S~ z&ye#IwCE)vs*_V7coAgVCD(G-aX^xRknZf)sN_ZF3tZv{@VS^Lzeee2#DY z1m`}~Myq zncwg50p1I2p}_LYNhXXU5(bzRxB-Ey&U2isIlt&5rqlme%gt}g0YW_8;mmYiaoh9~ z?B4-f;$pk?ic(E~|Gtx)1|`;|>D~CR2=P{8et3$}isOWr4|*Ut9~-W0$G$14(mWEy zCabzC%UW3Z+UgOrRG+y65gpByekSh)B>Qm$uOlceEWXWFpbbR|3g{HIj_+_Dj@EwX z;%}_hWk!Ph#NmPHl=p<8#94vm{S!#6aNL8ZCWb4%^-}2wnea-ZRjHTIN4IT%g-R`(z#zj=|9>GABIW?>K>|oz;YD5g8 z?tXcJq@0u*!Zh}@Ly!unA3OW3M(Qm^n6C#+7g%fs$VC$@(#wuI=dr;53%u+wD+BAu zBJ^lhXhZ|WzgQz=+hx}=uA%O~MiAIe)&UWh)xb-q>h=yNyPSiv$m|fVI;LXhbR)EG zM>O^g4q`orxy;O=>2qo^V6<2Vo!d%NMH+otwQs3S9Q-ZbBsZ%eoDs^WMAfL@68Nzn zqm(0-p6@+~=U_6C86?3>Kd*~~w$EoucTUt)7-c)XQE3P}P)TMB4k7*H#=ZU1LC@Po ziNN~o8R7G#U`i0#7LpI*+akt&TAoT&_W?bITHXx>4HUBt*sBD&W?UyA?Jq}DK%p|- zfF3=neP5iGLuzXG$?!qd;{ReV4YlrV_zao;Q4T;fUkTnZX)-(#FR(wUl(??EVZQ4P zI2pV>etZ27f9jpE-H@%(WHT6ZY3uY%Vg9kB&7QF!W~SjhV;E?|Wu`{6Ym!8(Gb>ms3ZGP8w9!d2QP7F&xR5oz=TBWN!}}+PIR17>EoVgq&h`B+-*o;KX~tsW#(8R{PmrZjj{1+5ATkLj?g*vfdWC zABz;uZ0;jjx~AaT_g5@SY&3baf!V8@oQ5^eh(eKpQvZ`aU0wM@W~s!b<4BQT|E0B; z54T`#4gc#vDeCF1rL*+~Tzs>SXYFR7x*k@tHf7Cp3c)5{U;=vRaJAJe@+%#5wZ?3Xe-cxi<{ zsQDZl@5yYkpgQE8GQYhSv0Y=lN%`$qDT=RviZEp6l{4vy7OU+&=vnt(0r<^V=l>eJ zMmtu)G~9skp+4%;jkcl9VR`9xeOPQwdO8tItw8+o$!#%6XNxH9@wI>3lXOuaRy(@{ z`;FndauD-WtfFJM;hN^|a{b|jJVeT6FW|p>5hX1FN3AdC#9Tmp%Pm9SVO;j#(ElNt zY0SJJtr?_=GL?q06Fabs&MKcaEGhgHt20>z@i{1ZqdGr%Azlx7fiaJaZddg1SrAN} z#KKimd&-gYBpsbJl5qu=O7Y+-t;Fea?gm_Y6U@30EovHJYgz~t)h!r zT{p2G*qzwSAw)I+4+R0(_0maz<%lMVV!AJJGeJcP1Nl854H4wYc1~GGb-k*Cl#f>6 zJSi|z@t3ipNx|d`Ta7SKlt)u;C-_vS-5}YCMF=5{<144>X*o%&OtFs?-NV zX2Wc!-SmM67jigYyj}QX2UPSj7}emNv2bl}HhbR1hukE{7nb-lK#S{f&MABUa>@Wo z2IMN7{)!s+ZK4o!-{RXXz>DWTJ+5wN1=eLvZtds4zJTr-64qJ5*zab*7>FQ0G5cml zh$-n>44qTrHZxZfTZSCCQ(DMIB)LTbI^?qUBihvS|3@u0w=}5OAN_R+ir$Y{1 z(w#&17Z4B-6cD6KVrXgUF6mC;x%s`%dfxwBOV@Jd%sJ=YdtcY}*-uO@4Eg~qe;>3j z*3?=u;O{#`+_&PCX2}i`hV1b>rpQPI9zBzyjDS&CN^#`?{;F(YL;+S=9Ic#Idb`eC zo<45}jknN>^LoB4B&6Ko1JqHdS!HG9LvVVTDzBPsh^UMv7BUeyOwT>h;$RP7xe(|Q zKyQ)dz$inv3MTmOknbX{fHQ#Dy$7p|e<;on1R$=I*uwtCi>Qg)4#_OQ8Qs!DcmFB- z0tuyim{s{c)dCC?+W9*<2}jiU8#J~-KYAG41WM`uENm=IpZTXg*&IOYvSX4QGXU@* zwbyM%+}zp}m?cqV%pfNZZe5=y4GKF!0zLp+#6*|rIyW#}O4}s{@P9BzcK@4SDym6O z$KfDWugdY4dApa)lU_lh?aXKs(jf}VS{J>!*~77=T=<%>1{NfjAw!C>jW0k5EOt(? zU_%_>*#{L%`~UgNC9eTTM?b(mF#aT;-5yL0Wxkj3$e$*Bx+pMRh85UukM&`G+H3gs z;2@q{A1s<+%d|i2I!sK^ZUym7m#$AYhRx1Q55}HG-d*p{TmJ37(fo8Gn4Eir*X-^` z`-_As<}l$~)8s^{Ai$DD*p}SX;TilZJiiiYxNijS_WMFXO;P?;LxwY+{uS5ttaZTi^9DiQf>Er9gRAg~@?dHXA1uE9@`6QOmxOg* z3kBCGVb~Dlttsa`G?``3wb+KKc-Zxq0A%x!Np1H%#% z2u|Y3M#VNqJFW@QA)P?>qr}yN>9=W^|E-D1WuE;zxHW(=-8IHzh6Uh3s;U?9MIiH= z4+8#R8b+RAL3T{NT!!FAz?0hrGBan>=C<(btkb0P@4K}?hpr|Z$iv~8& z{g|>#LHUQ29gb-Lj}*W^0Yf9ZvuFTxMJh+98^*nEoOuK|^0*W^wGSffc_avp6Q8`? z{+BJ5X-V6}GPI>8uYrv)8CRC5eGhy0&(NLUggy2!FDxQ=xHug?q43t{QwLPqYKCQ! z?=Sdez}TgzDh@Dng%vr&O9~F?lxzuKjtKyTgyfC6@5R<93@}?zzc(P@g|H%F;U_T? zC_t8(76gTj#-#Bln53)g!$&^b68|(R7K!r*B~lkJXjN8)Q>OWSdqKux@AM@|-;FC< z6XGivXAb9FXUabUkqwcH4lp)$-0oQNbqsv7z)W;O3b^?x_vVSF>|ekq0V3H8?oE*l zav*_Zv>0@fxwtdL%ab-9(%FW}=fiQgCxkIb2(- zCOJuXg7)khI4SmKyC>AMr%Ft>u(=EuNyQl|WCkEvZ7`A-z4^sb_QWPO?G>-x!!XrV z&E1$x56;D;7T=W-R(up!=c8RR;g7hD^C%XJ+6XmM7-N=5|0s0N_~d|W=sr^|tP_RwM4wHR2e z16c9+MPwqUv&3vKMU**S?0M=F%4WeLr-QbX+TQ>Vq~#*~F;G;E z@IgYJ1h`g#Hp8Kw7Ff}}@Nf35lKo^4;^Ld{HfufY@vz9qNTPqo-^WDM zL*|j4V2;N6vXdF~;vP(`ZP*Zc)dFo^kV2O;Pgtv$0Wo21+7b>0uD710-I3P`0bDE( zwm|YTuvuCUgnIS6!@`7SJ#fa*%{`?fx;f-cm$LKBdHL1+yvE%*mrplwl2b<6#wbu0HRkntY)_$5`YSZOq9DkkhpV zObO6U!1P5m6RVh7?%`RR*j#BP?=si>|2>&ezFaDr@Gxl_1gk&nviq?TQj1gAwZ*yR zUZ^ZhsGH+Iy=a!RB~)iU$$*qV4^cYN=>-)cItN}qA6rELvwy1DW=Xr}oJo;>p8AMD z)@7rwP`-ur%@|@P3WuysW0Zk$!)S-&T)gJU9p9;_MPw06#F! zJL)~B0Ju=e7zTiluu4_Kjcz$#Hs)x`dsn5MDUVZV_N#r2u+UCA@k!z5;#XFc{YLml zxl)=PPyS$Sv5DSZRO$X-@*VR7{mHeBPq!PFn^GdOEemW~{Dua1cVNeE1O8)EJbnDM z3Ieue5I(I6_|N_eXF3e)EQuwsBkkGm5yH67v}SM2ON~d_oXi9HbKzgWw<~AnZ(ghe zbtQj~2frSn@jT}_rYO!RGcFnkT>X%4zBo7q_<^p#=3jvFh6PZ3-tdBUa(xv&2JJ4V zPP1wYEyM5bt;KqO1 zD<@|@?~&VSg?|Wg_|EDU`7}rjTy;rxvt?*E7TsA$z_@0$S|zs>GS`?aNQULVT$w?e z0YHpTHxE3mmzYwna}l((-^}Y}cQTFX5Qr`4NVq4=;U1ls#91;D1`{C`2INefmOIA!8+csC)lJAlEg@-5laVijC?Rc$4m~y0aH24Fw?hfsXx6OOum#|F+!h z9NEt6danwEu#B=sdhfpKQwO=gN?2Aw zP?SEtJ5?81B{Y7O%rO)H^YTJpp=8l#AfZ`}Gi~kskcFuaR5`MSMGhF@JFuUiiwu#( zsOxH0;KX^RKH*Xs_yDHO739ERmB&rj*Zj3^I}zjirCvi&*((4p$o=0srU3C&l$!Rk z(M}bg4(Jm=IL@L}?K8&On5}<~^|Xm+72na5q2HXnh&t z_O5$ACsaE*=QL|^W2bL!KboBHEUX_@U0G6DsiB_48-y;+OKs)Uzt?emfO&4op>fUNPnLXGi|Ya&hSg5~X}J$2fdTTGdgebnXbuM{J+@)($UKXuaFC zLkgMC6Xm2H#b%So@o_7TOL$$cWjzE+lELqTBD?8Oz`ygY?2Z0~Z;;A~WkTG`pi~CH z+-aJwSB>At%@-wC6^L{b>U{Z|LoKw5*MF;r@0Rz4rwPTDCr<6vMa?Sf?ZA?ldQe97 zQ8W>8m1P_WlRcbR3izE1A0&kS$sol^i{RCafZl0dv=Sk2+L>omtU4<7uI)Gf9I8sK zrm*ym^49s+tD@rb?>Jd9sJ7pMFw%Jl3(L<{nwzi|c-tUMqVA6@ zsM4zWvg)j+o!&0rnK~T_NiO9rvT#BVH~L^cdd`~mf^l2m?3xnX>pFu*wq2Mq%dUtH z5<9m|#f~Sh!&J?f^En2vnvFjQjH6VCthu|FyRI?wS~FdlA0Tm^)!UVcpy-xgg%1zu za@)x-@k`Y+LN!?6)i0gW+evr@ttvb2)&OS~kw0+AzsUBsMzqOlgaSk8=M?Cjz`=V> znYmJ|>QV_?`E`pbPMp z9z52J{j(_u=Vo-C`^I^P;k(zM=(uLoes|6G_M{s-%)aYzSMR|s-rX%rgMJFwV3hou z=;6XCUBxbW0hxBX@fP-J-eB<*8l#N>i$Ea%K;g?nbUwoG^D@r~x@e`C&Td7{fv_>Zn+;j-Q z)yIPoTN5gb;3mH!Hbx%ZXr#PRFh;B33D%i^o?M^?S7|X8dU1unTfvk$%AMu3VS+26 zm8{5v4NFu=|K(R!{-{-U+@dTw->L-u<7GJouH%j0ieqc_FAj)ddY; zgS_rD#bkRw7~pRDB?8fn<(x;R0Z@7cRbZ8FVdSh$r&ZeLf{>AU3CCuY_oYe3;0e{s z4`E$iB+>2FytEO>Dw=rZ*RL_zsZ5ytRz2V9%gs_2@th+{Z}^?2*?J#wY`OX$n+Bnl z@q*;h_r316Zm6YqsbaV7D{?}WI%|p_o!BDl0a`gPk*f-$9lE4AO4Ikj#v}5Y1m|;F zP(e>3>?ND5Rg7@?&QlJx;DQJqum}*{u{Zb<4Mg7g4{Ck6gXEWYEw`nSR*Iw%wCvW# z?E~wn;}HV{MK*xlQ5{HQN1BUTK3|g0f7fJWq@?|=u!LF;^7v889+XxV0v@PgH&JH^ zi%rRse|}7Z%0%IL#gHQ98gAZcf_KZyCgHkeSV(AuoCKtP#4XGAU=FXb&bm7%0`0pV z>+!u%Sd`;?Meb94ryBFEJO6S-F%~@hWSkhPj1j5~#sT6Xxcw=%gM(|}!*7R**-=LS z+4hPG3`>&DPRom-eV=azkz}5X?fN{5GjG#rLfF;V%=h^XzCN-uBFm;?NQmK)wOmaE+t{@;B%tYs6!Do&jSXd}6F2y$CK5OQDwctTQ1u&tH+&2u(L zdKYR%!BF7r#lu;M|`a-Q(guH$RlKDgCB+T`YxK;aRi7w27f3<(k}=Vf`8^%A2g9{@V^L|6?$R(1-p=8I6WvxC7_&X zED{sYkSAS3%|7=N+4d&OwyD*52w60&RH{{7=7y$NCCb0`T#FNF92P|b+0+kgn>(jM z59VD92W>i+Rrz$_KN!{EPZiYpRr(GmRC&&>C=F|8jBAW4)p##&vUtDkKUFphKc5pB z8nv|8ROmR#=Q;Yb_2m0;pqzx6_IIsNJJgkY_HiVAaxVi3ai1S)MoTlF(PHq|$>XRS z((Xu*Cu}vD%7bsGf>eyxBP92lb3QOsmpN)fy2==pG^TcHGwlf79g5}CEoS*&gexon zXz;EdI+1RX*%oO@hoVxd60t1WV^^V*ilVxsfx)0X{?*=FKPScfZSf9O^+l)gbt`IT zAH3H|{4X#^nF7U;(6LAck$+j1E%Y1zG$|Jn(GEJo3A}eqsa9?-j~6!O{^dA%mr*U3 zzVWFMB;fq-4VEch+D40IV~yTpt~0tRDv?O9*>Um zXOB@KOydup_`PDaxM12X>{Bur*k^8WWa8{mBtR1eVWq+?Uge%g*gfNm@Gy649T4M) z&@c~27E~-8JLID?MqS=U;;1=cPCk>$OdqJws&TirY#ms^hmgg>G&k$xm4(+_ZkRyM zOR3Hdzq(OzP`Pd(eg;`_{DCxUxH4$ zl|P>p+TX7zP7nhw!S;|dX0S(&s)2a>e;W?mN6a&MMtl4;5@K|gC8F;{2F!p9R&?0J zg`vB6N{C+0l%hk`JcE%UHA0;J8=?kmjDS0x8llDm@$H_+n|+^hJP?g<8dC!kew7}w z^X!XRb_Q8UyEv^PM*d%SDCd9443$VzL&7hGC2_Jw@;I~XijMz+jGrfrcBby`shO(R z@I(|w6k@wMj*mFzxkn7+3zP;&NFeE*yYP{);TM)#mzIa|9S!t8|WPGk$#IWZ$)RCf$eyy9)Rx z5fYRJtX0bR>9sP?BZn;~&GUr|d5G6@{YerE$s&o24^o*oDeyWsIr=)#WEaBOxxsQ3 znatMPcToWgq&#?Ysr+(juTvA@OUiFK5=u00uQI(zVHBrl2d)Z z#mDv(u-x>RTmyc%69uR*lfF<&eCkP3r9tzVGg&@6(x@mf@7^yUW9B->{s9;pMfaw>9MsCJaM$ zb!eqL74OfMT~pZXUCHV>P6Gye$jBu$zN~WxXzB60C={A~*})Uy2$A_v;_+|^9xKKo z5Pj;IomqZZeq5Dkn*}2ZrPNRT8$|{)HVfwjdAFYrNT=tw_rXojN zw7Yl-EpQmd12zLFW4#%C+fAmHZ$#t4jA9A?@~4H0#tsMP3l^lg4Oi3LtGlhqKddclD~!Y}I`TGXK_#_^9H#jiTpJiZ6SY`U5lIE*3bj!|x@EIj1gjir0v}-}yZLgr z+Oc4Cz(X=_Mw4Ur9Y#X=;LKcX)?{df2-q`U4_Y`+x}i6Uk)grR9)8lRs78nBm-sDj zB*fMt-KKG8{lG&Izpe%UkPM4H7iL%Du|Mc9BQ8^U_qvGo6^qEfa@DaTOuOgDY}r$* z#j5HtQV;D&mqM8rj$4J^Cyuy?-i{-5xv?4K#wl8^rysJ}oqODg;oPk1DjjT*cYB{n zW^jksPMtLWMME_Vjwur*7B9fYnY-(SruMlBbZ9(B_UqI!r*@ZX z$sJ&9kp@M1FDer7U7~gjirB2;&RF7B28eLu;fy-`B!pr7PO4~N2W;b0;|9M#7|#HB!HlwoSUn3axy@$b(wfiAZ z=KhocW-8V^KJ_k%3Vta$0F-7~Wox>`_97(=R5MT~AFs%dK9ZICoqa zcbO<&4XBm$Y^M&+zTW4ev)XgBLfutRXA_ZrAU-u!Lt{V+9%%#RdnmWgVfTJg?wI zx>9q4>AmAcuz6f*ob(buB=3pdxN9uC{JQ|D$&&unr-b*jh<>L53vkxVN@fhr*+eQX zd&gf!bbgrXiUfzVl{%YJQu4-nq^R7N-jlg7DUIF^>#mPpkB&lQll=t;_Sc+~B!{W( zzv#Usbt+T=f9R0u9S@{ovpr`{#TMpUt&3)LOgFY>*^QSP{*cC;O7Tn>yzjkx*6$7j zN&f%x3YgsCaCn?K*~gC`t){6`s#}hFU;W>aR5u3hcQwwbm+rH+inT7FF5Ra#cc@WW zjIWNUWk1!=gMw^-Th1tv!4!Gr6eS&9g-%sbmUvEM@xpay8Z)WTcdc~SB-*_i1~pjp zulPR3@|s$9L!&|~NEb7P*czVwkMGWDk_H={yAM$ik`!4{`^0cP#YD5QV?iX0PARuX zU3cR#rNJ^Vq9tP$j>#)BN~@OC0PEh#tl#AM{dr%ZQfP|ei+W*_A<*^P47}6(S6yoA zDR&*;4HE{>;mim>drZmY5vY19=q&X*IADyCPM~CKhA#&Pq*z$9(6M!3LDaxb&&w3=v}I zo69XposXN2;Qw2Q)GC{5Ja4D4+=y__iko0+1*FpdHbMZs03!^vkMqqf$;r&DO3wqBP$5c)a1RFL&>zvV}3%ATuL zEE<4VF|Bpb4(+a|E_nN~4{ zO5ZAHjxVIBYNdIKK0UI$_;hps>awSJN;5!;$pJpfthM5%Vo-9Q21Wy0(JSfE_^-5b zXc+W87rDRfF;pUQu-WYhi=->X+v0jYY}TPUWLhZy;87e1LtKeB`Q>8cAfI%HQpBQx zqNmAG8ZGg4u7_UP)K?8Bup1x(hUL_TvRsq^)2n%9W-S(9Xk!^jhV905ziRL~yJG$P zU9HMv#(KE!gIV~$=3mFUJ~h*(U~}gC&8c|@GLon9@3YaFRgm%n)L2{|2}vabt+AU? zKA+`b#kIx}<|rtZ8Kj>Gmr_KGypan%q)|W3ozL8i*AV zYOlMmR!lk8&QPobV<99GiWDb3y3+)cG8LaQo=eUWXs*x-GqS^igBb32oks-gE zm^tyjY5XP%2hR-?r%Q-X%Go5oh0_WIv| z*KNwF!o-pLgshgvu$Jz@n1n8A#&muh(?II0bgRl%c+;s`Rt&*!3XIJ14ee~-+xM9c z+gANcsC+9M06{@T*3CE--mXKU^McEm+qEDatA&E^`Jz;cVz#bRBCH|;(BW4zF;Aodqo-~dBa+vVmwF=;eY!=AYdzYM zax54&?^I&q`H6VuIAXenyH&tJVPgTsl zmPnxaY>Qu1#^TFSQ)f80i~#9{>T6v;DtglNfL!eQ_Y6H>Afu#_i-*B7oUPllXL6eac!aGnv+_+9iJyZ53e86rWNz2wP$opJA;;H5NGJSsWk8 zCIM(I=$vMF)7R~EP22i~UU;b4W>rO_9TO#R_tZ{N93LrCNg(grm|vwtps+Sbbol3h z0`KxOFV^?z9J;@?ziogMt%6G7*n|0fDx?rAfw_8dCzHu!zlPytHjG~ejMzb!hS(WR z3;I&opZ|)8Qdp(H%DPtd)fg(acmu=t?|Q|>)QH+FK>jy{whtG+a{=o-T=^HThDka3 z`3zT^@CHHCOQx^xfTnVBnyF0P-JZ!O_UpmJ2M=V#->U^>Ww(w1d{ILd7KW;6vsL8` z;?HKSRz&+~(MKT{n~-sx7;56lU7*h(3&)NzYs!C9hR(vDOU74`rUgxZLu=XI1?Ng!i0g^fo=HHzfKwbMB?A%B0Z7`Kl9q5+)p{*>3) zA-x~3A1RI_8f*Agr`zsF7i#&fAHgB)MHy)xNpLC@cci-DxUTCo|7q>;ZsWmG^{22Q zduMmYhHn1nUq3TWeq4PTy}|cCWx>csPY;IVbIAiQfw0~M90(_KKKw7C{8PD2}lEQAAr2DwvVE3YLEtXX0G&uuDEo6Ed8KAGd2z>1%-7s#4_O z(mxWBX~?A1bMUZ1Klc1B`;aMP2_Vszt>Cl4Pqo4LsM;W3_*tC!R`#pIK3)A9oo5Zg zDUXw7mpia%X(Xh6G*&Y|o#*Ws9k5e!r%!q{2h|bhPVXTAv#Ju84t%~1f zX>WG1q#otu704?|=KRWy%|)4g{t@!9u)I>MMmwt_wI>6GWS<5X2&zywlj-o2>%A)a z^nXSrpr=yG{8~AA&QFO6Mm-i~=_^)HL8ois&<5Mk32E=b7^*yG?DN-z%rh@E&n0(G z&{1lHgS3wk3!>Vaw{QSL0n-_WH3!tdFMK)?TE(EWT)2(U4;_mNIF@NROwC)HL8#k0 zd9IJ@nNWoX6Q?Y%Z{iW#Tep|b?t5PJdb6*;$=sGFdcqX`0PF?$N9QUTFqGnoE; zHLp4E3DHjeW21C2H~H+cO%6w>VVHhUeB!{i=&!i7EMoIGV`zVbN&BnX>+HJGbpp){ zp*n*#F_D|+EuYrnV)ftV*_3)8+MSo8{nuC6aZRabRFS#T;xV~p-|KOk)O{bq$rY&$ zFX`=1l2-#cBZXGpX?912ZC^bKB3Fjn9VF$oRs7bvPgzxlDr& zCWn@w6O&im#MV{);+g4aALv?OGs;AksPITk^ScX%YSJH@H;um3fAR@L+9o>OPj-tw z>gkky$jB4SgPJ$c@mf^D#5B!Da4ia_%Sxplc_xHO4lj;41y>zoIDr-rwURVe%DV^X<32GqQSo5@MWwqSv$37H-&` zhOCh)Hu+{iImuLREWD>TzNRpge_T)S&^4wCmuT1#tY>K^$0;v{9bU~ZX7?U$sa6Sj zRQBpk(H1fPD0*wIos2>z&e$5Cl6le+X#e2uP43m`Hm}+>vc}%$*WFmIeDI4rz2CLl zIA7R!M`8>c^BDA_^6u-dQhpgO;Yl_zU?C>dx@*6&aR?-zY+lHm2(wIbryqR8-%wu+Pdqp0C*aW!~Sx6+tZtXQ-2PX(m;ET3lk7?gD% zZ)!_mGol|p4E)Ike|8RAz2mQ(J-%#&z+GOlvL*|t53MjV?^XKYE4(1QJ(6U_d;;C30$s1ZjW{>vXlQBoOH%nV9i8QNtWE{s5~Xfz!2$bZc!kL(;a z>W2drLv5`^JdofE=yU#`ot44l*z30G;o*aSz*>YR$)Ts0sE?0Wfe_Ystid6Na{vWp0`%E*p<5oJa|l8V>zd6g!XqAlX%(Q6`(t*MUDj7$0il zNr7HludOv2Vn?BPuo4tefX#NS9Jf2vzb-J&q+A&^ZL=zc_Bi3Qb7t6Hhh=s8#)xcq zK(VO}r<{65Q*)nU_nMxV`v-f9*r{EC3uC9DXL%?x#W+YIb9JWUw}ihEXp4=?mF}SO z%4f96v>`-oW9L&_R0%Kjk?Yq8CRjgwIm#4qBQrHp_Z|A+i+$MNzT`m@?Vucc?rz$~ z^4@dQRdV5fr4TVT(2|V4y!2kz!12p*w@Cs=;c^ImX*GpXR*5RRy1~p=)hMD^ho!#! zunF%q(9>~S?OT4xkroK~=5>J+Lic6L&#bifs%C#Z0zZa6^1UwbVJ%P8&gnUJ`*hAy z=GeO6yDtEyvmTD6eMNTMGNY*(Qmlpr4^dOvk*AXJctVZs4TD3zk1WqWUHxyIbrx!9 zn!gLNWcJX{RbkgI4j*t*CCIV`<2&*bW;(-FVfv0Qqgi%W7VSFHm_ZerM$8dG#SvS9 zZ(M8|-h)g>@DmUPHcy*s9F$ivG8bHl^Cv-CK+X)qsa9_m43rwrVYz94+<<2Ai#|*MslggJbwGg z5SIB8PndU_HrB^C7e&BWnwg1@5rLwPfY%i>!(AwVs3<=mN7koKE~g5HZbtdLNItdZ zW4)|n9QyS_40Qxl=*WkW))EENbgEV9z{&7I$~#CO7k1T2X4mEQNPVMl+_jQ_{q68< z)MehK#^06+XeH0wU4F)zGbJj#w7y#0M#t(7^aBneE^#^|2viLrxPbT+=udLIwXLAD z;@4Rz)1y{5m&uMrn_Mb@tGVz^Kt7K;rJ{K4<#e=k>^7{^h|~4@(Njf88pEQZ@cS z#frEr|9>Tw0`mhl!{+{mg@1Ok1(2DUnR}#60;AHA+uh!Rxtm*x;oYg>-T&(sL1otb zV|dMqdZIP5rb~2qc}aaKNBFN7+!bSpMV@nFo0rkz=m#TBbtY;&>+42O21|o*DCn6p zzf4^?iVlT~uS*21GZ`&n_NTxZ-uLSbgL!FC*Ey6gP%8RlE-WbljQN=PD&%dNnyQM}2>f&Dq;G@J_Y&kFcY;BV(z)J%B4jk~)(q1HF5u=h&@YMDt|y0YJMpwMU=Oy^$_WdtLGb2=L9xmMQ?!!mP^T210JbHPYy zGx`yOasTh9;4G0q9xQ|1YzNZ@IpC1~+P~`VVhOsmn-rxSF!%;c2vD(sg% zKeJlL2t({pcV`8!?}aR|X{=ltC{)dNxfstLi*B53ZA(J(mK<9B!K#r9ojK-H%z_P%9oxtn_hv@_I*m(es| zeUFDKkmTln(T9gVcYMU{A^~%h_wUzEhIB1TRFE37{8x;9L|6gAVkfVJ(I}9V2pMKF z8o-{D8$*><$G5E1L`^os?M%_WV5g?b4l4&?k7!izJeAWd{=Xc zS48tJ%`t^fPWpfd1YA#tD8{G{aMktV1Q%9TVh_90?zx&k@hKXkZS zOr}xFdu*POS1>|>b!*h~VM~A}r)k_IpQmer2wZ4Fg=kAYLC~9lLuVdg7FG?QuFfQ%3=);eUsxnD4t+qMtwad|T zy+*O`a$A0#41Q>yFR)~R2#R8gLgKE=GTgUvNZe-UqF;9Q0biweT!i8J>({KTj{HtQ zA2uZvf7@Ub*h zSjyWEf&XBj!1I~+wFu#grv0{eDnNO)st~*fH7SPYGI8p@46RNd_%L2*RI=)F8r!K3 z5cY_lIuuWRN<6YW=NBC|RjOQW_{|q3c3fYki{<>xDn{%&yaP=@E|tgX|9gck{M&Oo zKKO-q9D8>tQmD*yaJBsnakMIv?Q^E>dm{BIad&t3+t%srl*qN^|1b~T-Q9YP?(z4_ zmRAqEsqU0~??45&f0NbntL5L%yJUlJ-GBeG+^?2!U$~w>FPz{1`0u%h?`d39cDK%e zr0CbPK4iz*zlWgLo9|$heeUj;_udUssY4J|5YPCP@ODhto&Vs=8h1>HsJyR5Iq=)j zOg@vWHSQPdGY{a;H)8R=`HTNpI5wN4LYX`DwGJ2(3z|}~$!o(hW`8Q1xiCn9M1YZ< z&W(g>mr=gaL1)8DBsY<=h3blJkp(}gr!(Wd9L7J#^czJk-;ORK3#6>T>`?M9!lD3I z|G2o~RcFQiRb}>iL28e*&i>`pQpu-;zCU#ECe=SK`^Ir_wfwslx}C5E;VL32{Xe zA2TyvVLyQ&&

    ?$S$+J`P1C*NcfB6bczpviHFWN;l!vRwK8n9qf$~#cx*N+Q z2%jjb(>f{k5XN#OjH1Y2h=~*?PkP*#1y|c-J1I(~nEMxO%5Td1lqx9XD@3qo@RvloF7-ArwY;KmOHK+n5y}$=+ zcSk#D2j|X$@ZL6cNg0aJhCv3okAyr;Fo99KUc~I%#)q1YyuQ(*zl|$jHyeHSG$P5R z=s-PBYuGqyyeQG1qCg1(FlJ=HC44{2zeM(cY1$-UHrMT+ zdW}lHe2Ale7?91DriQ>YU~*t3BO{Wttof|U4eom59eT60MNH54{ZK-8MlqsW2lZrW zdMpVD-zVk-QVg{9oeO4P3Vcbj_efC&V{%Rb{YNtIeDe7vlHY3*s!561_S#V7M*q-I);C&+yQ&WF+w5_cW@BvfzL+@NJo2W)g+?Mm76vuf!S*e=)j;s zaM0VY>1wPU-_SsyP;y%3>5bd)K(L|+Xs5%!SEiTZ8V0Z$gpEf9cyt$g5_rslWUQ*V z7{u~a#(+UE`_;Q)JXo@TKn7rfV%l~18p2}Y+vMBcsRo&PG@Ef8(e3dv!fReO@)sI~ zwIHTOK$|FpC{+MP2}2H#ZBPB$(W0q!c49fgWPrK=!DG+fz$gJmgyb^ z9+<s$!|GoX>3LxJa zkFdA5w?BP-FgrE1v@=z8ajU8Mw#o5k!u}tz$RQXGlua_NXY6h6w#T8SNh&JUSM+JBG2cR#sJs)#4ZaHNPlg zzV#}V@a--4+?Wysi&ggxgj+wT19PyNaJPKhYM)!ftWC5u*Lya@k|(EW1Q=O+CXSZ;d>7eMbcV)-$ZJfr65u1Z#~$GOt{z&64=-MJ2^$%t>bkJiuNTb zo_c$hqu$6O{raXuv|{Rfx!1uW1-XE%!dIMyg|rDExIN4NOAYFu8m{UT(*9u>U1nVp z0mK&XgJPaWX}BO*?t%F}s9bvNm{{a?mBn0_QHJX_Wys#ai9u?9?8$OahLq{Ni(N9i zOd4BSWBtsAo1ySxyJ&b7LgKbaX>Pe|IJM=Z1N+nIF5~4*8F9<`6%Cib|C-^ByGywk z?3+%;&S0epiDRv3$b~Ib@ zIa~~bGyT!seBkCEl9!U&$rUcaB?YGBoZtu%Q6ElAmmem~YK0O_(26AiBVvg_R)j74 z8J)rGUd8CC6`>2IZkaLwJ!2%C>cj-WOEOf!eovAb&z%zr*+Tbdo%u!Q{8p!N6G(^N zJo!O;vQ{D|Pq5TP2@v(BtSw>7MvG3DMkwI1xb`vL7MMXDuNDh}88wMpNA&y%p_+R8 zAwjP|bX7DhNKLFqFqF`89h%zx>>A~lkD!(NI_?Cf&&D?G;l4oPlbmcjHHC=*nh(Bw z7E0GPrLye)Cc?p?$4-_MwnuUirswyH?bjA?_nkZV4v%WtJW`G|>2Dzy~3l%UeK>ivrYi^t}-sy%VD@gi^wyAmS2MfGK$gMuIRrqgk z!sgQ2cZh!AKb|v>qgCA4tS`$F%)oV(wH}mBN9gLNO8^*7paA@t`4zu|`DaYGnr$?j zy$gqWFd&We%bvz2Ix0R#tXKsVqE6=ga!C+2yhDE?|LoNR=kU_kWGK+O=BoS^3PUn0 zs8%EbRNU+1fzu2?sOuB_x+iV^gorMLUo6iN4;Z(8=v~FDd`ZI)^*IzHj{K}dThd&F(ItFH*`HpB>$?}7pLB&)1&_^ma zm(BNwsRZi{77cCC|gJyEUpYO5KsJk?mhDOQH47H$sv#;N|pZdZ2YQIxUj?}X_u2}USqUh|y zKIK17>Aks(#Cb5wPjPr}5nB+81bHH{gtl1K=8anc$G}m-+r_^$kAL~8RtZelc-;Q| z)*_zX)^b^D4+47SFL5u&P8qa`5i5V%?pQF41~lBax3sh0^8CURIa~j{X*l%1@KE27 z{bCRYHpBqA7=lG$=oi-{4f9@eCQ`@0o9`h+f7$W86RQ%vx^eI__&%h?X~oYu1s`WxZj7Fg?Qlj4sxcoH+Du&69XDxu)On@t6!@rXjCy9c~ zYPwiLjP_iW{D|Ky?$Bls&2n3>C|$ty7Vym1&r)l&H0oHOves;1Z%Qr&1PfP@qR zdumNRfx-0O!`?l=LGexDmhE=fy(YGzf&#VmmFh_nRY4*w8WD~5>i-b+-tk=bZ`glC zWtKg&Ge7nY$)3p!5!uQfSsB@T?|mUeA!KInJ+rbm*_*8U?ECxOkNeNAx(c87IA7;+ z9M6MWkdTE?N^NFP+OtjC0yZHA3n9eA1qCVJjNgN&CeisXn9UGx5KxZXm&pH9caDy#I&LIPUA693GhKA18;EuDQo;|S}S*U$dFde0!bX6O0&g`)gF zvN7lUtXj;@sd(7;*zPjq8HcWQI89^;p)sxVgycz2jWbO%d)XFs!`J{foO4F9N#$Ex zf#VuG#&aJqTUyRh$*Q_p`(<^5T5NIO5XZXSdYD`WPC5_nG@#IGZtN(HJ0RzUZ?x>3 z3KPoHzx*~P+a&;38N?f^MAnv6lQYQn4^KbAzR0toOI`!vggFz{U)<~Oj|&p$yM!#J zmV5EsZ56JTWCAn@677XQgp17gEzKFXW@Kv%FgdhKmdUM<`w!Mx|bLQ8pp=e6ds_mOh!J;8M4 zMVHJo@p`>=8LwlR3mva5n=D3~fyaNrQR^k3QB>47nf7fJC3C~YkBr{OVdBxtCzm3T z@5PL(<|g;uL0)y5SoQX&0k0nzVlt+;Rk$<)JSDqFt)&}CL^tTIRj{(gAk?F0|*H9E<%+APQzUhe)KeiY?$D-mk^iKyfFjkmI` zPf~UP`q1ioe=7O&zJ5My;-lHK!BRaUhP3P;vX;f69DX!`?Mw2=cJv#e!2vK1Pnw6$ zNT!8gyz9oDTNt2Q`MU^vPmGui=~qWj_nu9_`}=uZ-oJYvQgR@N0?x&rdCGBY4hv=Z zrG_y+nz|GrSyN7wVvk=&=lJ&z@f=Ddwbb!x5r|++{Ww#_tDxM%{@~Zx?6~~G{9*rm znqOIG>PeUcC6@avGwdFLiE`ydcwy1(vVwN4eEr*~Q3Cjph?ps-8+y`_9M%qvUf8vG zf;Vj)haL=iIpzgv@9>lQ$t)cokKi8$JV&KAp+l36Q6`%eCI$0*8BaR~9=(BLT1aYf zQ4fk-08vQMI~`39{NU`|tU@ksLEqd$)|=hn1rjz5#LenD|Kx79tbIqMNGW~X8!>US zB?lhtA>-hhnC^$VuMJCSKJ7Lh%CkO8Ox~Q3+KtDwoHtLjLJ6t}+*R_;H&IkVh}z*h&t*0?ZbLh_b06Fk(&W)j zA^ZrT*V(lsc!zdMJYl|AGHEb3c*hmH=_-VV=O~qSo5Bo)&?gFJ9(*$0suv@( z#l$C@%&;?cSuzgykJ0)s2zL=*uW-`%bKUnTGn)m&0i8!0L%yi-ZGlK?&}wV?_GU&B3eP%C}rU+C8&*t%>}m6pkl)5fX)`_XZ5 zOp$$d!cR>qH@lFc?wR)ypztXWq>i2-J5OV)#8AoM*3ulzT@r!60Y@oZ{ijGIPp^wx zeL%ri_&d04#WUvraO&`UnSAQOUpJ9^)RGjF3v(U&&Z+CXziWnowuHv#O^L?yhG@#* zwHN;a8i5Ht_=@3h-0P3<&63p>B3J3&gulu@FPg#ZO2z08mepo^E*I`T#2&cAg?H?l zq0zM6vwiP}`y&eMoD`ATT3QR|=Sd8i?lF-b+eRz)Hf(JkE-qb5 zOEiPeE)g%EU98lX-2Q_~4+gyIUv?#jL>X7nyW8a`#C=xJYjg=Eh!yI@=1-A8ukBIG|C5%?@_pFJHm~P< zMY8abiSOX-Hite}&3DG9X6XeNOW=VAfnC~x9Kv#-WFvp6(Y?3evJq{9>j~uFY;KY# zOc+wJu*+g7ehlrm;6igX&-Fpb(Y@=@8_Zcp0lO)9TW`gKtG;QHTyR!J`j7OD7&BKk z8@Br(mYqgHhzF0hH%jQJ;=I}xFKA5CdTkD=$OYVo?c-ZvR$Ry8wbqg`;2y?`lFhqn zD#qhDFv8cSvH7F!080j1xiY4DQIm?49Ak?!>Bn2;t`Ot(CbJVbHpg~%`pYI4!>P{) z!4WY`R0-3C_A|aLUa2MPk3P$t2zASGGfPK}MVFN_d%t$Pm>T}L z*^&D~v`J~R$ms<<;SM6oxwlV+A&m(Od*@6WkSh}k3E3^3E+$tc2KtC#QM9DlP~8qz zUDvYFdNJ6vhA-Dw=Q zm^>JQRLJpcl!Xi}sOzxE{!%8Xq*;oEgnF7oEEgkNj^FumqZa8df3gw_J|s-FzP-kz zr{<67+&=SnQ%!sVLsMjC(&Fs;pKtvu<}byqDI#m!1Xljr!+FBwDq%ox_FosSb=;B+ zn&2D!4|&-f*oFZaIba@T%@-jf%BC#@?&TsoX=%d@|qPqCj}q|#5qXpDK4blL^f zCekMomTYFYV|4?66(btR4rg9v?n)vG>rLuA@EG226bfr}rF9b1o4H>s9SczI_s83NWy;Zy5njF_51vF`(;~M3v!^1zs&f8>(6xi zC-)6h-{vqdgI!xVHw{VF9DVyllCVsLN2`SB!LncPrNq6AI~SVhPYV%n|FBVpReK2M zWsKH**EMdS>-Yjze)#!5M}GBH5RwRXG+ASz*>Reue-Rp%ubBBDP&oXH*sUe|Sma@! z-Lh?;(x8b4eJ5Sm)Sj#G4^_j`m}S_z@ykw{zub6=M4+&4yAeBzTF4^LH9YJnC37M) z*st16Vjj{}tC{yA0MR?S`xJJitwZ?Zd874=I5mGEeLfVqYc;^2%~zojyxP}*S2ll^ zM?T>fKE5({Jr#-jd->DqpH%L`e{_p^frj&TcKeG%6Z%-RhoV;;d!A=M8}meOPw+pP z4Wu=nc~n+b?tZws=@z|U_@9I!BO`M=e0Fi^b-Q;fvp8mRD&g)?GPtMzj3x-xTW{Z6 zF$NR+FPn*i@Cp8l_}6ny7&On^PLkZ_s1zmFn$QfDCLGic?-gRwvI7?)NzS|Y-p zZ|YX?RgE7LT}M|iJD~c`ySNf7NRI>{l~HFXGAfd5N|yExOzcGo zHaAN|U@_poPrrz1-<%Q#q2TL%+K5033vR)}%8h#)DMJqhJ;U&xtYG?ArF|*YDuw=M z(~|XU#wEjA-O2(2M{GBWi3sT*_nrYCudev;xPSzn$p&fm*2PU=d*q%-oe`h_0v>RC zGzf_v@yq*B45->(O9sux`gzl`S(jnvrZsOL=S7=N)niJr+JJZCzDFbsm(2BuU_?66 zkaL@<{nU683z>_a4_+vCDqcra^X3$}tHkn&FEy~q!1i2|-CVQ=F3rh%Y27614y1($ z2Z6(l2#FD%oV3y8%$CpTRPCX72|a}N_jE+=>kwt_EJr_-yI0m#OpblGjssWtN1E82 zda@*^L6TuAGpMqVIh*pK&Uk)F(O){*P_&Mz^vmIw{XIRp=f5OG+s4(i>2kLGFlUsj zlVzTzFdwx>BDnWymUwbS(WZ7jnlmGS<+f~@en}`fu@kEqF-hhEiNAa7Rv1%m?c*-% zQ}+Pjp%!~_J%Ro1rTaJ;>c9XYAj*~rAkr^-<$YQ6Lv`__9_jXU%!4q5G_!Wf0N4El zd7oXlHVDyuCF-^BEy^iTm=TeH1u&;lRbD}g`*oE<#`#+uhs#W@ z{R@j@=-@K6^JI%ebn6Nd+n*@obG@UX;Y5`%z@>+ilmNlwn~Q9@{&A8(ob+HVYgJ>g zV*)Co+%=XXqGl}R`*6yGCbt;FFX*lk)N)z89xiVRezy?pb~46Pd&VQ;XCqqS6XWr( zm?DoXdL_WmP^s#C2^}lzYlojnbVW&VI?xjGhDZYa-u1j@?Ud+!av0FjE9CL)<4-v= z{1HYnUEM+m$S$_U5_UPnt2pSUf!h}J@ZN+G322axj4)=vYIX1MSYO&<*> zXZYg^+0}B?VS=!jI9Qt&KgQNB{;m6(nLF6QG` zn)Tyw+m@u)N<@=nQZPvf{pg@RGKrn?@%B@;v95e${Wvn2WmC9}uT@uNhE{+6v8{=h zY)oz+z9Q_?aN9}P_l_a`%Og){_J^+@yt`i<$ur@GxPKwAVEwUg)6Mf~@fqZ1|G_t| z+@lY8Wd6>)O1%0-tWo;GQNy6(y`adAU;Gwzk$p3}Bqptou z87@8AylXL1(_|#7Xms}LP7 zv~xGi0ZQ#6A_@%K87||9gBjJn_)gqj9k20@sWT zbp){tLr3w07mD?7V@$+NueWEhH6KdDmeIVnqE@%U#ki;?+_%(LvKA>_E~r>`vbH0+ zMmRF_iyfrz<6EgA=To<=_!vmZ6=qdYCc&W!5Lv%hj_ND)B3j1XvpkRpEg=S>;6CAj z1rrq5b_$Dz9cUd+Bn40eL|HmDy^=-0l&s*?Sp&+&O1d92QL)A29T2!)6 zv-mK6*i(kj=6}-C`eD58yqifyDDEa2f+n8D%sd6VpiVA0GDT3C^ zf^bbkThRW>h-&&2pm!Y_PMMNRJ2DuC#qjec$lnus6Pa4X2`|vWO#y>GvH2%TsD!j( zkWP+Td7;sP1~c@%>f@{90>^~_M}}u$Xju~ge+X<#!efH7m{3%N+eIV|w{y_7oC78~ zMm0zX4)$)E43pKug>fM`Z|f68Cl_s;3^{7gjbRf<4M;=ZtP=4F3Td{Dw-X-3`%*tF z3bGE&>albp_gv2vAw^9;I(h=D-^SZZeh%K`!P{-;{Xf>3vkkqJx+2m&T*bUH0?l4G z_C{U%>+Ay#c`7Ren__17tOHf2-VKE;4 zAtHWQBY6v^H%e?l3KXhf|L=8KR0>>rztjnPX)Hb((#s5D z)i?j<8#=Ghg9}VO(FlrA7Y^m6BbJ= z8?{S1=d7q}7H?l_Q_O&Poo7;+=$Hvxf>nexMY)rcnHR0!6f!?I4ypqoPV=$-Oy`22qhb(t0m|atI{&UzfuYn@fk4d z{MyU9WAopuTR{xi)7PeMeuaTF#WhtY1BAP_+&ij&JJz_cS1p_6!(De^7n%Cs1j5l~kWO|LkX(7V)9W zQu(1(vo-NJ4zS}#MV}vs(+^rXUPO0lR@-Drn*46ZT8{H3;<9bOHp$-_A-!LB zCJtMcuH}a_QQ?)XihAq+?UgE5%9e*^;Mos3zl*pFCo0|HmF870$VlamF+bU|NOif& ze0Aq$)a&od`Qx*jf9!gpJJ1 zvkbsjK#Rg?IjYjY3WsC!?2(V(;5o1|hH}}5fdL|IW*y-=)x|3P-$qsI2kXGi zQm=2C9Z#D7cpU}7puqf#PasG#lspEKMj21eTQqvz!C+V0Qb}ZWt82YLTc~3CKD!Jn zHp4&YkW&-yvk`gI8md~0*ZjDTjI@yEpJD@fPUrlWVW?^*^%-Ur2|1SUVI(_faeBzE z_yGFnDIE-e+P0gTo4~&r<^edRQpkOp3o*tJC(^&`SR9f8ohOxDxr`SM-Tl#CFS{Oh zl8B{Ib#rOx7?m2T4Q>Goh~tHvw@{}MymA1Q+1glY&g}>hNl=VbIUEyM=I-Ozni7=-2!8_A0Pg9_H3!QN!j(UlTC}>~p+rw|@bLP(HNUMi2awA_c3e>e z?JuX0FrNO+?GxR<){M#|QWClxGf~l$Mr7#P=x8)&p9^sl3g>M zmP;qjR6dQp&cFx-2*Z<>PVnhp97-pi&53r#`{EQL-{l8P)gMQIJMgBm&siVcpGZwh z>IU|x|GewFOfRpCAcbC&o5e^h7>u=$Rh) zHUI14^5lQxTZwSPcw_I`?Fe_6aCEE!*TH2xIu~9-UQ87}AqyWY#9WPYTas&Na;R2d z9ksLTCl~c!53=dEuU^OB4c?=x#C;!gfOPVr%fezO4Xr>d5!oTelh|kmeA72~E#v3&O@}NDmrLZ*6v$>S0I*jkK)AjlpRq62nGzy{75{yf)hnUk$&?@{L zRv+~>&?tt^z#zqDcIzc~tzAojTL$cZ#L{qJMn<+v7$FH15R=Ve)GgAchkFh@!N~TH z+xm!Jz%1s1uiP7Iz4~gx%r0_oJ^m78&M~hKM zxbju=h(Eh){_^2pPiR~GGD+&HCL_)$Z$lo=s6(T`dLBh`#vY$X<$}f#BtZK2hm7}k zoeLa0=3{f!1iNdOwu2#9cH6(p?EzX6Yrey^tq&sf{(S~qy=8b%Ch|Rnn>UJIU1?lu z7@r~g`R{FkI7B+Ar29ki@pbgO8kCJret2!a0KiXgXP?)!GwugDYY+*mN9_s`7;9h2 zI^1_n$s|zUsCBwF4Z}_|?&SZGdpE7K@nxfNd=q%fAP%Gf-#eG-pS79fOPCQ5RB)Qrao(3W%nl0z6SFFU#8VGSVhWe zYA*8h&#FAPs?Hbgi*_}h6W#vr0r=2kL*jq>1;5SQ=V9}GJaC_YrR4D8?V>2kTN|55 z3?jDu=7*k9nKzr6YXj**|C4P+kGMr!=P!i3)?d`GLsH_Nop?gCv<0-hcA>+w-7VJq zZ`{356Fh!-IQqje0Xt9j6IrKGL;!`tli1Wwyjtt7(fs$q9`6Iz7#Ae_*EAb`gfq*z zch+dfAdI%9>dGc^3`u4hwOY_{ttmqDH{n7|Okl37n>H&joUc&gu3Sg4tkC8A$Odz2ReB+?l86;wE}TlP+)3;uOrYjV z5sF=y+sgd1-YzSwfGD@1-g|E#++)IXbg_=e5&8N{e!;pD2OzBIaN5TGNv>@Z+U0n@IJ#lcVzI2D) zOXKg*<`%o#IKpt9s4T&06FF zTkD3l!Rvu7Fn`}{Ij5~Ox^+IytQ%h$<&XHH^)$2EsjrRb?fmVGon2`cICd!AZ&695 zwqB$+>hJwemMzhrTv#ol`1vN0Q7(#r80P#J2MK;2r8ijIb+fX8vdZ;k>pQhh^bTWB-^V={10BCH;;{TU*d2vo%FO7>w| z80{S+=N1g-=!OhT8WoNJ(+gwUPESRPmE{1mLYi1^e4s0cjCI$D$v0 zz)j2#QUTLUqwW&KMwa~0V57P6c0q+h9r1?R>`U6W(7qXY-ax@OX)Yc%P41hK=wgrD zM?tMs)A;=SqjrF}!@|+un>%Wn0zx_q|Lxgx;D0IWeDxKfVdbU-&M1S0;0TLH7JoifPlREa$LtDvR<_&TUvEiyg$GZ#e`Xhg?kRAFlL{!iR7)l-Yg zti#Fo{*WT#LB9uU_al(!&p3GYo(lat#QPK+K3-oZR+6a@OFP_`_b)3tWYM4O_+^rE zSAQXR1Yb?_f}KKJGG40q*k$A8&r&u59a^RKQ(NBrBXET+^fX6hUKW>QUMJ;b1!ggy zDZWslVI%=q#UnYbtgsR8W7|J)^; z6c51UNwJg(17Q!|OJSrYq4^7?@$vEVF(?lIIDfm!?v;Fd+IVf_x>GTsrK`Kbe!JRu z#X5`JFiL(frDL_EB|yzm2@YxsjcDk#Md5^JuyaO{gTS#M`FR(vrSszh4B{ts->26b zE@-?C4m4m%KXDewXy4K3X^=Tp*Tu4;7~ksMyR+suTJ8$7^m5jq^%G(d^ks={addntn{gkFUI)mNi1^T5SM=>HfaGe{8wnJtav8Tn_tXCVOe+t1VPt z=k(0ngo&CDbjo~sNxrKV@&5BfCI`PQMk73|c-UhMiOJIvS{U1_|22Evwc) zA)+Vzn>@3Ov%5mNi2tDDlI#R`QIFf-ONqhB$HgTP5^?^mA(8eg#xMIpLvK@L&~hB4 zd(YU3m|l}g@I$amj9!I9gGb7=!P3sKgWkrxu2OWt$)QDjc;Q$VNrUil0#(S=pIX4$ zfRUJvL`nxj+iyuoY56~|2lySRH|XIq2FJzmAW6gu5TlrL9oI$qX2?i)$g_6J^L9Gx zC*75dIQi$JE6U&c(b>}O4v7;86qp{;CluRmxwOgXiTszq52XM!id;8qjjmW|=VzkV zJSs7zW6Ar|>^r5eI4?HF2$vVW#(VA0o{g3A#NTeR>xxG=ez*`lKV`ck>ikvCf}93P zWMX}M(XZ7zkg}a|luRw{^SNBeawm$NbV^=V*(aXCNqWf4{fl{<9f1p?frvZ9RAH3q zw=r(p=XU`JIb+(_epZl%hB5!gmZ;L}pNYknKl@=QXZwVjmz~|D{~H zj8QwAioBN76H(@#LbDivrWZHlEIxwIqoMdnzS4<3Cr@_d*qi5(psDuSjJtPCfgR+R zAkXT-{u$~^Ask$kKr63$>SlPiYU`dlt1pOJ0vhbL!ngtmiP!?gqxlfz`rrkEj7%0= zH@3lHs)fUwPtlazIy?e^5Ng~z=-zq(yq94-f()&%ICM^y9v+X0py zL{q8dxc&|G(J#pF3)j9Te5|Omeh{nSBm3a4lN&Y|Exx@%+;oao_b1nokEJzN_~N`n zw&Gu4wa_@s>+tudv5r&aAfOiu3;VQ}na*Ncma*=v_j`4G*e~-kqa1o}CnI-7BnJ~; z{86L)V1d{@t7OCL5HBz6^0~Z(7UM|$JinUeev2RMK*rw-?(+EOuKwK1yiNGu ztfz+FbaL|H+127hhs}{((bJPeeb3~F?hAJvS7o=>B6OSw-0x~kb;8KQT~*=T9&xC zX6uLloH0{A%}$-UBBwy>tADpYhGhunbr<8@9=f25$#~iT&#tcUi(L#XLS{apH;F!3 z`%^j)bIwYbfcxMG0~KPzy}=}@J_V((D=tphZI1kf9s?Ow3z4!>+mq>Kn=$r2V!EGm zaBgQL`5e?r(?inx9%2(-hsN=6Han$T7(amH2`!%v9$4XQz9{;jNW{7VJ)%2Vm@J)h z;xrJpt+j>U)k|e#CCyhK6+#f#@2z_kgSx#z+z{z~%$Xoq;eop%^a+`UKT*}avxN+9 zSLnB!q&z3b)HT*Ntg$RrE;Yx;tc?vy?UeYd2X5RIM-mB5L1GuMXX2yv_2(VI9v7e}j&> z0!LL~1P%`?8_$*LE!!^G6=tlfO+V?(-VwG&XG z&mk|QF16O98Ep3mBQ%^c_D)Eg%8$139mA1_n`i3aD}kBhLQ3OX1nd zO`#4+DQ)Qqt+NSTH@WWu@)(nzeu+^O*!li>G*c?t?~_)#p(3P_YqGrynHgjJD1#$1 z@j8wfsEtHvWYsKRm^2ux_P%pbkxmQp;p^pky?lp1tYG!U0Pi8Nou-!mfHX!R9U_y^ z3;Y%0`)KStj==K!PZk#>g1Q~W^kkm_>E6Y+pg}A52S=Yyz7!y??jv|HXRrFnYwriW zWhDdjPK!@{w%mkvnN{#Bt%h`;>6*XYB!wpon1mx0Wqim0)f_23BTPJeg8W|47oK3y z1!(cn!)+9?BHs@Z0f5@MHMzi>4cfNe^cJ_~50`CGMid#(Hd6~9ypB=p_n&gRWt+m+ z{5WvWYRigBXC2HVkTEqDz5Q|FV*tk3lzvY@Z5{TKx7Qa|Zp)t- z`?ZQ*ySsiJv{YK35f7d%?gcp%BnZFU-m9i|DbJmn$6%W2oM3j}v?dY_ncA&IB(R34 zk+jl6&yonEu!&T=A6#9FC8!~9lDMlTm6@PhpVZU}tXS^W={^tO_ zzW!xuyO?1o@j17$j*o0S0u-naW_Ee^wfF6B>W}V4Jwk&arF)HDJ5jUV3hg7ZWnpR` zqU~IkB;()D{l|NFv9U^PXYhf>bEEXhQ=`%ySApZ|S@I(Y+yJYD9MiqS6C6gI|Df)X zQkC1G&QCFCqbOZmf*Z&TfV1$?mVzIDZnCHnHnzwlxJ7oK3VL*37esO6gW{gb3WvW9YFQi~jv=_wPnh_2d;fG6Y>bZ<=!l)CEd#iI zOraXFQ`!BOl&>Gf-B7JfG}QG28#JMqCi>v_T$IBoVv=mS@pgC2qr;qs@|iIs{TC%*)wmRrP~p-k%)0m0aH7jj!GudcZ!z-@l= z%aZ*RB#WXFfC#`UmDH*-xneaU&j((Ow>@km&L51l-lfA#%33*i{gRn!sNV@$--Kuf8b4D?3 zH!i4X+oyi?mIcgQ20ulj9U7|D*Rob)n#_4Sfv1aNz*hniID|+6NmO^;hk3@1Uo+;I z#7YcWgK{Yk#0GyBaYBF-u+((kW1Ff{AGen~(V#Cwp9|0nibZeVzGFUm;#-V&_wGvNeOCY_ylOz}=si_dJZGE-X`gLshatxtA+^T|3;0o;m7n5VO%#{O1UrlzM zP)21l2^9hgZ7*HgI!h=VocIO-^h_bDZL-m!ZqHm5`S>t^aRuHu4Xnyc&f>;SDw#x4=?k6q7&mhe@P7UnQY}DyfZ?NY&tBk>-b@zR zuoE(fopW}z(gVL-Ka>p4j{8Lu0V<9{mr;d&@1YrXN0YkGSvs-wgYTHuLJfp#jy@Ua1flcX*`-Jj+go;q;ymkx4Uw%YS5?Q2P?N!j1yotB&K=wv&e($LG2n$w1Dk=8Dn7fOt;9CO# zDdkT$$!>KByJAVj{Lj(RLbsZEz0nGwrnQT3Hp-v&lB^|1!7QCFDq*)8^i4;o>4C3U z{=Ga~H#@2ts4f8>IZI{wbqhZ5KBozT4K!M*Ik;c3G@`#_m3Hg&l0Xb+`bD5Oi>GLy zXV?~l+I0$X0W;~3d(=?j98HFle1{=*NsP|seIGvN8v0X(c=GUU4$ChgZIhwZvp|vB zx$|9b&~DxxsaF{iDu5LmCdD8NDn=K1gKvgxN`WB}w1E=R|GSjEtWAk3?Yo&N#lMOY|J`E)Nc+0@R4K6V4hz z%2Y`_jVe2Z`^&1oiSgIv7-JF^lTbg1Tn}eF$akIlC7@ANu-eabccMiZWkD}P+Kxvm zZ$0EPAFqw46DcN+GwE4UN#9ETvtw$qeojb8j4&o${dJfIsuQ3rmf>*clWV{30@jCp ziAc7C;oeTFR(&@^f3rO&$cye2D?Dl!uGU?AZ1$(_$Eev7+O`UBNsc_%rAH#LqkwFS zOV1?w_Z&Sw?SNshh+_@ZP0@YXkuc}9V#rBWr7jmtXiI+4o7!~97liZq@=g0c|KMa~ z5(=6bsaL?$PdiSj4?XvN-Iwq(tMiRQmy`BxcK6may-qZ5bFk+{U;LvQ%~?lGZPtDp zLm0~~wWmL;%v+FQ0s+a_o2BJP;hlXp4J!a`Y8U=SXeyT0PdQBOJ_Y*zd)C0*0vL}W zdhK%dU*Wni1DuV zWF0GOewjW(*13!kqs1KY!{@GmQv6gpq`_g|y32VESRMp^{Ya&e7Y2reOLL)6@qWPvXGMN7Dv z$`ZdS1<$E=7r&6TjJ(_vdGO1@nLv52=H~ut{nU6l7v0MEB_RrvA6YUE% zF1oJI@1ChNWBFz0ynPSBuQT>IXoKQD%=xG&qY=HKBo5vbFxaV1ErB-=GKN=-t3XU0 z&iFo+GUPyuj|L0}+!*3ee@@RRTskHVoqtK(bsqVI2jxVpoPW49P#GRAFM*GpF054D z|Dvqjev00P2_>529(knulBDggp308lq1FHPmOGj1gJ0Ia<D_`<2R9lG7^6XP2j`FpST-x8*Kzri8QL~LJX=%L}C)V&Q&Bp+wxA=4u8&f{oCO0p3Ho#E#l{r=Z}GuPm=SJl|qC=x)&l5ZpAa+r_B4$vex~r4;4j+q-W#cvC66N(MqFP*tnzWx3z)d*HkX79h?T2{P)J|Af@#b$NwuWMR`uVrJj z8h%cv3}vpp`JiEG_*9H8F3>I{H#B;QOeax-oxYz-@x`hl?Mv1YhkRaxlC4J!Eo#LD z$mcqh$D1dbUpD4kt{J<(5IBPQ4$>@%&iCPRHb!HvWPGM+;hLuGGMq~LP%cIQoL%c| zY@ly+iOnzPrayz*vn~t$ZXCng>3lNR-BgzB0QpW*2-~1=8o7=he zYD&BdSTO5?>atWzd4Df|f|nYUGy%Esexf{Zf#HGts1417zwMVgg%;!fkUfD!tO`Lh zZryB}GJBG6=__jf9m|vSsGVYo=3iQf)a?^tXz38x_(_h9jL)<@BJU3i`;CA*E?FDM z5!Vn#kjwc3fQ=THT2`xf=y&zaS@?y-ssF-V5_=*%{pO*LCgf=8{9aaBel?Dfv?0%8 z3d##bP~15T@WIQ|O7WqT**?2FSNlxDVdZGGp8}d@1hv^0P;e|N$SFNtGwq0vZcX+? zbF6v?5B2u>9bOA=lMl=>1omjC#+RWypf*71_+(|N?_f1Q-SDEyL#X;vLO*}&W@w_{ zHnOtQ{C5r(@n|InJ*gr-GhMuT&7U;2d?jq5y?Xm3i?t!jn{vJf=IZ|HTF7&p1Bnhw z=@k>-c-P%-_b!DS*QW;t4}Qa@JK*+2=H=m)hrz2Ek_Wm2Zli0LnYvKZClM>AVM0f@ zd!k#s8=+#7^q0wkHT0#(k3R9SD~Y{Qp57WefyF-qL9q@`$ln;4;d7iC0%{)U$ia9x z4>ijjGlZ#!M68p@?>08hon7yhl(5|2hlKr1wcXuEXph0dd*OCHy7#_*G*loB&02pD zikmO0RebzxuePy0Vt7!EeFPSNQtB@*u9EWVPk*t7SLC(&-eBse2~4r! zI2^rg@of%!sr!1RMb*FFyHi0&;%|9Sm+u?P@3YuDl$vjrRJcG$4Nx}|=?NhFSi4>R@;TAG8 zyNbcF_?<&veltfDm#dFO0hZd}IeOar(1rcn6e(v?dn+&1v||5;V#7`1kS5|Zop0aA zf1oOS;|Q!q#d+2(xr|ta;O3(a!>7S?SzWj+Sh09moI3>8_Gl6svLl$H14;fq&U~k| zT~Gd0_PCE_n}){EA`s-iLi!BHjBBh7h#my(@~ljhJXYmXFW!j^jtMhU;)S=HaK-SQ zHli(?I@d1lR92`?8+3r*29DG7=AX2bZ=x^!Cr*?8ax(nJHd|x4Y83TKG_!HKXeuBS zy_jzZ%=EHK)FwW%up!T8;!1Ru4hwxZOsO&NRNQUYznJNHCZWIl`1l6u$@%8 zA}$Ha{`Q)b;SaqXy7OPQ%ho&W@==dC_42abeu0F&!4|Uvl&0pj1}B6YnWGrUn-QY_ zP)IQ>gt;iTCPWDu3(wkL87>3||16Y^T32lGYetAiKT+aAC7`C2iKiN9f9+boNwq3i zCB!zH{5*9sMX?_@DLy94aFgq&Kbtl)Pe2L{v@>cIPS5Ps>P|gg4rp;4XG1e9&+A%2 z-Cgd2X192TaSQi})=)&V3qUf}WwJ}X`;DFUgg}*%0xr?nPqGr2A83k27AEaAURiC#-%SCe*IH zJur#x-5^F!L8w)HcomXFrKZ*{ck{L-pHiDnYJ>TiSGj@>;i0!0YlH32PI$cR)%|F4 z@27de<#`bfq~&Gb{NKbW#P#!&M3T-@F;LmeSdAOr$2dwX%Op)DdlarQ~E;ok6qgDaNqxJAsw7})480w9Uvs!C!0hRqF zKmU+!Ba07tVtp8AmzEDDf6YmcHgl?1-dBsD$7$7;WRvSl#Da1dS2mZA>qN|Tx9Xt- zJS&jw&&uJfDpwTPp} z>%OgHGo0H6JhKZO%E<*H{pt0!#h@awrgRCMwP*W{wRg{j*!vGQUi&s)XT|Dov0hjH zdk&pn=sb>5d_I@>mEIr)Kzw-yK3P3K;&r+0)p2>RW6&d_t7K`D+z>QJg zsKR_174V<-9ynS)v%pC`_i!tzT2nJ?WYnWJZIU5p9v&*;>Y#GVi2+elAxo zRWX*lDP`uwQbWAR+uR8A^()%NWLN6yN@mgd^*CJk?u+OLv6%e0wtwGI*@v;@wM_X# zL5hQiSI=n^?R@~WJW=b2d_F;k&@lY?h$G1#{_%%t?+zXl5e@PBCsJa<93b`};fW7p zI~V?|Ey7S<44H{Gd>g{(yS12uvs*`3^+-??Karugs>6;b8#@F1>`6dBU6|`d^QW&r zje7EW0+p&r`e=$N6#+I>%!0{Jpk|cyeuRzeONe6J1BN~M){7A7ebybP)^TmCNgvip zXV;^*Js4+y;i(j4Z)-b0*<39g1njrT8bnZ+J?@IG}ELJ-52d#25E;iWN!ewNSf=uU>sYU zbFimBxwz-PfO1#=TcN0@K}Nk#;{>yPQm1E|v#zeO4T2F5gFwyF(rtIIqq&<);X`Om zS<>lFq>Ae(m#&fagr@#Nj82C0Wbs~ zzwIi@LE94@%YMU0+)v|q)PdufMEJ5sjL)fHO(oeM zLx+~|D((9$5%n^bg3Orl8VfxGDc{dl5_X$#*^#t-KGM29>F*E%=CZ^o z;$!$zEn+c*cnmm%vqZ66Jj@gyJ#jzRC6my&NI0TtG2fPQU(0v~hG{nwmN6xNrC)@v&H7b$N>c%dkK;|EU@qv|50ASxnYUU zkKTI*DcosNZSSNjqO#Nx@i}r$WS2&}AI#vtObyv$BAH>wV6w|cEcP8~#QK+srL8&6 ze)5%jZi8zpfb&#bbbxX5u#~AMT=iagRB$FoC@xfC+<&2sYs#u%uFOr<+suitRG|RR z`W&i^cu&MDp9HoXrltLQ(ZeZHmve}@)4SM(6hIjarlmxVF3)p0`tRB)G|{o6sp#eE zkMiSQgvZy08!<}CDJk!Z94Y>n0p*+t!3It5XK552tRKHfK1WNS=ho+iRs=fV!lIZq zl4;t9qCHw)lH9jv$SDP<4L5S@%6J#vl1HtQ7{t)Zwb=4$@-dO1r(`d*`+Ue};kr*7 z2~#HUKF<|ie%s%aNt}F)%2?JW-P;_gs^>Peo_k+HQDafUEahB<-qA*`XZ)>n%=4Vj zVBAmsO04MXcdhb?4DG0;DkC*VmqT1gYR$D5r)Ez(!+`_6`UB5m&9n%`F;H6*FIHMH z;E&(Gh5~t&aSaMgQ^!1-<~(Z)_}-jJ-)^A4&@nPwDCI~0B1CGo){~}#Se7DzX^k-i z%9Z{zv~Y=*6(t=&Q8g_vJ!s};^}Oiu9ujai`^E#kTl9?|a(eZ>_DEGyjQ*fw$uKCX zT05IkH9I*=N9DP1U7#+GJnoZBNuW!s!O~g3viDEPEuV8V7kFx&^nEt-z<*lAnnFpd zSm&2j_*g*yTYCED{B`*>%XnoC9A(baw%?Z{_8Li2`G#d~0@zv>kn1XhH15PHL!I-{ zj>z3cYSJdkn?=es2G1pi^I!ST+5zrO*|m2?bi1VQ{(m1;jZPmjb!5~WHBgdYwg%O! zbd8c>J#+G;&`uCYIj^&|`BdBkS7U3k7D;0%|6<^rv(L|K5;c7Rn`r_(G`p4_E~K_J z6yyLwO-@%2v$p!(u$>HWcjg%eZxop+@iC>6+NIciaPCXJG_rQi)78R1z1j-I!xX9!Li*1Wf0HkTg^k9aejR}8?2FDXwU-f?K8D=Mb>e=o2B0l=*XP(VP^>GEg;kuWRNRX*oaoK{l}lA^%N*;C-m4rx8ohxA<*& zrmN@9@z#c%iW*lI8Wp+q`8H|{!%6c=pfl4{&@Mr(93{SSb%PN#`Hk9&;foRn9;}*5 zQPYnL28>)~bfqKTq4i+LyK_LUWR6-5us{)m`f}mFf=Z z$NqWon|zXeO|onILOlKH=8RSJ={Gs(f4yIPI{BE>ItjqM$HUYH0j}c{*Q!IT5XKH2 zZ{VzTCx?}ti~3(na6i5=xolPQPa*kb<>met>mP z#qN!~@Id~|u4qAop-^DJp^E!iI$|S>f0VE}z5 zq%*4sDZ}LqQX=I5W=urzW<4q@q(GzIZIKcmDFx9sC8B^C!kE?)#iS5ri6!G8o1>6r zE#P->@XxO~Pkf^>KAV2F*hW5kT|AVG(f-gW979W|j{_cVDW5+6Hzyx8 zG`?%rzB*)jp#$5m6IgE}8~2^m`pSV2a8LjN^~(0yN{VVRxdPJFe7r_@$uH zkELQ$CiJ&h&xxf`kQ0GP;T=R~{q#~$!0E0JFWN7|wNVHj%k}ujSDWY-CAW3HV+OHc zbPN(hN2TDN36JP7owjVZRc~~MDs49|A2|Kw+nSJ%&LKICuX~R!wXJP6aP?oGrSh;q zmTfA^WE7w^LsQDEBdpPv08vqSWBAdpVx+_a<@Pc108y9}=KxT$j1uk!KC?xFax zYzoXzRgRbf86i{9qPOH2f=`Qv$}^b zBthj7ouE%BG9ak;fr6-M0VgB8hC+i+tKG}$zc*+Hy?4qDL9i}$Z_B!Hh#YCuha8p* z4{)D<)_4y-sNdBv%{>G@uJxLJ9qH%fDSyUDT-@{UMAz3D)aMt{fgaPFe;@H;*`-H?$(8Uj&eAoSqx2Zx`#jKlyH zgYpn|T>J)-co{w3xSCpqbIYMB8%yg-n@; z2~M0(IjHNJigzKVFVz|}Q*7xr$8x0*rKYl=cuMtjGiEld7rHQ3#PLn+k6Cfsz^pC? zU2jRTqyF^xbX7L%+?9rzn?p0=D)O+)`OGHc)NFLgs*;-cIV=IJ9(fLSS+H;5$UIEw z086W|XK`d{pWn?8Y3Yln8-kThkV;-9+SViba6$X=D%s!%!xrC)@Gnhs!)0=m=Z`wg z#pFh;bv3GMx&FsAj(2O<^)tC!NKRI(;hNEumiR@AT|vSGia+Z^x?G0AjO!69l5HcK zu&tXB^&X^-L(-kP`AD-{DkO4Tt3)@9A*KuHT6BXhYj3ipn#7_ss$~e6K<*)TPa>rW zcjQUL&~bL2EE>^p=LU4Ov?QL2@~()LM#1!DqtFE~LfFR7fn6akLK0O9Kl+cUl=%@7 zoK8F*o>I^Cx>+=hj7?lan^VRfsi6&rZeXWtT3zGf5 zKt{c^F!kJY3Cc2~-m*IQgk9PbFz{3L0Enc>4D!t%LjP zn)O%M$T+un3dqCnS(E)rYM{$--ffv(CWHepQ&9JQf$Tic!LYh$8V*Zx&bLvk1GHrU zY+|>SgAbGbtM^DSoC!~3YciHqgOewxZ655+lmwPP9--?G^b7V4??3LHfoz#tQB>Vh z5|H}T3^`q!WNF{(ymz)$&)B-ZFKazO_iNvn5C-@z%tjZ;Rb_N6)|`$Ny~l6_hdpXw zzN6CT%IJaYr}TVt_Z)9N@2$^vklBy1AaB$Q4b+DHY?k#&EyoU>_#ojtLXsa z@mtl5bdGas+*c1W4BH;!9McR7cE;CA2s=lgjU>9ks#9gpPO-zs2CNInEBieX1Y_W) z2GELRc$)M@(Q_Ij$u1U63@`= zJa3GPMZ3c6%(rT6I~>`13sbRvd0qMt9g)K*g%+Rbh3jN)aMas1kW`nPK=m<4I24w& zD#h5qiugw^h2tvdyk%|IG~qxR6z{nxQQ~`ql7r!PQ6wuN{`^scMR_Ede;)taXFFdr zAg~=Zv(vISFe3(OsASG2H3K;N?v)hEP1U+{Q0$XGZcKqg=cHmFqJR1q zGvfZopnWvf9Q5x4Nc$L}%@HHqxX6v+6f}cCX6c+k5E_?N%lI0!#cIQ|ZT?Hyfq$hb z77CvuxdmsHhuqGAo;31*Vtx(5{fu;jl9TQ~h0LsWH>AWfb!)y;Pe6;m+HuP>wNSfm z{Ms_~@9D;QmE1zxebrEcO)pSU+fOry2SHh+lt_?-Za~B4$w%fWLWk~gVf`HDs#?Jj zg>~wUFuS=V7A<=oPE`HK!49zbYmgeONw!MDHD4u?Dgb9xMwAtnBdH=lhg+bgr)R?S z^aOgGjPx-sE^_5{I|FoD8t_<+m?A0!J~~AW`J#c_V5ZoLSq3|%Hdy!L95Z^bQ>lSv zg$>tPx0qJEOOc6miiO{rWoVmRpM-*z$mI!j3)5Wjz7mO2O7l|sS!C5Q2L|@CYko{# z_?pDDW_pNe!a`>FTzzy=*a_(!N7Z|@oj<;O8M2%=HM&)i7m?Uy81cuTde2uPcXWw= z{W2SiR$}V|edc#2Bpj77bdV6$r44eY2Br=2jC9ORCgw?ycO$w1*aV~$;8)ptmk-70 zxOFQ=MyW_AG9Nc(nmmumpZ-~OM5`YkEWZJ0+yC;mcMW7Z$XV3A+@6 z;_Q$y?t(s($;*ccf{c`{`H2ZqOYc+5e1FskfqHvHxrjn0pqRFe87N?O*Use4^|r~p zP3Q>BQ^DO4cFzwXu+rBrcPiW9G~(5@ne#Fks%m%cMpmi!va$Q6z0x(VDdJQFPrt?H zi`7S}d!vzfiuPUyj$O7Z9GXx`J;;7$D&6k1DgVnVZjAqEt?f6P-X zfM{<8!n(&Hzf?HoL%b;LFpv%K5*up>a3mQwC`}LOtxJbo;H#Z3(HgF_3AjhsMc|At zGKne*8~dA4Q8UhDW^GD_OG{*ukx*#b_Ev|t@6%^y7lq!B0Tqn9!SPn?IP-lZESWeg zr}+QBP`mt^>(56H?Ekv z1>hM-bA&&@bznhu7-9>%xyBTZb;8=A=lZq|NT0 z974m{kjTC9`!Q)DR73h>keO{(dR>2f9Bq2_#dR`>UIz5rJME*y1E9(|)~ zSu3>&O?w(J#Y7a=jDL@h188;B`)_{t>%y)U&(qsoH(j{F;qd(*&bUU{hYj|&cBisI zSI@t?8AG9?4X|<$gZQc9bFcPjfvw#Ss{*l6jHX(yJg!T*$*j*5b*k2stqwsH#o%_G zWZziy+neKd+c54lozCA!t=QAB;}NV2D(2f)>`GhlDd^g32+S)3TplZ{&bN2OCRtdx z-?Au2_{Xckku;a_iF@{aat;Z&?39kK0MQ=>dLco^G<4RUI3_LRkin96zHGZoz|ev%a>x}{=UB>6IcZIc7O3YHsjxOvUhmCM+_jqCU}=XlLE_l`7L zIxv!ejlAyJN@?z0bMD z>)NCQeY@xxPlDHWToy2jWjR~6cXt!$e;pS1?Cd?3jmIo{y6QI?j#Ruec!2&Ezl=`w z{Oomh$s2l4x(<#PUtkj)nl(ATqn3#TpcU|?cxtWC#W$hO`B~OIaOg$aA!|%1Lc)dH z=Ko897%mf^9YnuYlCj!_m-E;!`?mx`yB?0BG`nrtFLBV7q;zQWxqD|2Z$GR{kt!p^ zj}t|fuW+5?0d918Ze!~X!NF5%vQ?c+*D*Q1Kg^Y%^p-T{rFxOp4F3{q%~Um!qQq5? z$OcR@&Qek?hFW5JO4o57l=_;r+q+cJXRPOtP$4u_n%bhGX$5NcLq-|DixN50WdQFe z;;&ZS+3pgrH=3xdrX~FGj+bw@2Lxj)dB3GGg-Q**t9SCV`GX!EY(rBdrpZL1b{S1p?ljtfA!OpG!Lp}XJ`ePg~Jojb-VPr(;zF6l< zb~4H4US>rl28lv|Z}e$xVH6y(A22-6gvvx6pZ)Y{n||}!5{rfnbmT+@5{eEuxkErM+~b@P)-dksUB4bR02LTWj1#@&c8Ywh!O}>Y%K>-ugTFV zW0%T-L6G4vjgCw74MqO#t{~(#BEZ52rhn2U$%x8h&<#t9iJ5B@K*w&?!uCGIw0wHx1)w<=nh|U9cdI(@Uf!KuP_iZ+>`dg-_mC{MM z>NRNEri|E5_NdY}_=u448Lvl@lxp$L+yDN~EFL?P83G1-&_2(~suf4e;a%^Ze8g>j zAfqpuHkKY#&TUU_P=PWpGi=#LOWZLswXo>`OjI}DkRAe@2$2w_+q1TRLWD>Kyq3u@$Dd9A4dWxVQw{)E)7Er_Nj##4w2ryq z0+~9O)*{0O*vr=7jI$mx2eAnFOxqk-;sdmm2T|!#D7il7SW+oOLqT-p#s#$II_q(X zTxd8)ZU!^NybrKGj};l6Ei>0!SRLnn5#gms);|; zi3aGrYYRCs)Y~ubN$c3R&KrdQDdbcvM8kqOKP~RB=BYU{q$PVE1vF5CiE(__^oTW- z5kIXYy64Mzq5lTMbnhCUy;iD^&@YMCKIC1nFp^hC^Z;Gg1#^a+%3DYy*^|AmKtm$0o^*m1Ww?T*_Rbz2U8?FFTE#D^o)VtHNAJkLmCi z%Rh>dlFvAtajfyE%9U+W(D9iCLmj$@VoL-C-^Xgr54R$%5)>e|EHakOl^x~AH`hBGmUcGU zen%~OGDZA!d-(wf7aUg(jLWduLWa6PPJoJ9b_#?$#SYqE{Nd50!&x*P+y@q`L36-%+BP4wtg%hpHq}^{VQiqHT+3%1 z3`T*+?kUj#9L8+leS}35gnYG1eEth;0ku$+9BT1KzsCKu=6$kG?wt?C#Nd{t9&|Nq zn%$`f$UjrH4vUOT0`2l5N!|3hnwBb_vzN{@KINO;bY3uHQp(-dGlynb>)Br;9C;K^ z*;A3}+VQ8A4jnK40Y3N~k?~&&F6~?PnWSE01b(v&a$b**pK9|?H>I-~4;NY>1kzeABgLu8Slg!xhJInJ{9@YY@ayhR(AcX*AD8EEKNYyW? zxN{lE2&gZH2+5qSA)TM$be~oZE|uBV%k&W1y^2T0;kc%{GCR$!ADD`IT!#NGjoIOS zD-XZY@$3HEokq0A7V#?TSc>V5#6$w;zE2k;sT($)#*X3WmNBVIz6HTOWhx0Wj-pn_ zm}UlTc5;i@sL~i-I4LN*iF8jaELED<+-=695aH@=hJ(nd$*tifj;bT{+x^ij<3iih z#U;>hjNbfRH_v{bVe=ry&w)&N95*~RC%b?v8iaGHId>74Dkh=coW5H!-9>ANC+Y4k zslGJQuQatoWn0`o?Ri9G!zXIq6o{_vml(uTl(O*U-vDLC_>d`<V46Y z@l_zE#MpNIL$39laNT_8n0e06g$>JIcq}%lL7_bZr5rG-*M~?YSX@|+b8I%-+eEd6 zmE_{mVIV6d&ygW{srf+_b3;(Xk~noZbW32=H~NV{W|l!4D5LXos&yX~S$}#$*KV#i zhV{*h%YEcTv)Rl-=5ijX?^=@_F*^1zR?6n#gqQ+G5M40>fyk=crf5?dMwn-78k>Oo zK!ETLxcNbhz5RHURdds$yPk}e`2@63D0)vh_|xAZeUx6@#80tVc>Tga%aJ(h$YBIN z#X=HBa+$9gXwz=CBq&y2`+7fJb{FNh_V~6@b1m5S!^cfNN3(s@pI6tSz-{)U_U&e& zFG7ohYWa%kUkAlAt)t>%WlccFKj0wz_fyM%`Ps+Awy25Jtv*((94yba@qj53bxJ;o9o4ks71Vf|{@v^1ZBly!V5Fm>{3n*12BpMxgwzWOj_AoI^C7>9c=6Y{KTWP?&)v^-o(xcJmpcLz64`O!*}Jl zldK$tD(Y+Euk)jj4N@QEJ|XIsN+x{H?<=2S;oXr3Tn=%A6FW(15JjQ>^3nO97-JJ& zQc#c>t{w-1QPEhulD;nPjWl_)Gu}9b?RN9y6blN-NEbQS$ktl>v9fBXRs8`+8b}=+ z(Im79!jjl+8U)PXh$1&bN=P0PKS*GPn-h00?)xkrE1#kwU%ng6GktYGQ`lK3h-Uin zGFrm0X~infzV`QbHN5Z;ma`cJDd^JG7|o!oz1CL8FAJ;HNjL5sT>=}@!`hLxe^yg4 zd;e)LB!x(Re0Yc%Og+YYm5@}d%ni5~UL~2GEo6k8)&-j3FQ%YYUEQQrbmQ+D5M_Wj zqKFHlxrNWtA37AXuY|0ZI8PA@t}C~fF^gf);M)kbP5nEdt_1UAnSJ$)(@muezPD{b zKY&gS3m79HWCcU4P;Gtz9aGQU)6O<9jI9e%7=lD#VOuL~RW{ zYAGcM@7()^bEkr1KJ)!)`Z#W0$Iq4PrfLT6;Ngh{8Y;go?oV-$6! zo|aKtLaD%hVydVWH;X4_Eh;z}2TS8b3yN#hnn5vrp0fO>g+D~Gf9jtx84*HErs`4{cz{* zn9>5n+fL6Tu2wPw32_8sIwVcKfzGvY!VK78}Qk4Pd}APeyz_QgBe?5&L8chxH;Aq?ObbS9miBHv{*cJ8}V$xrrYW4vtJMtBw=Cz)nM zC7EX{vm{qFr?$niEb4eBrL}Is`*#{5{$*Vc%jN%x_Cu%NlN(h{65R>=)(t}C!7<5A zhM_UbFJxp==)f7N-oY!`v=vA#2ec_zkn}O`gv9tsD9pZrl%s};Xs#s!5va-5<~G2U zc!clWc3As4s@rsFoyKYbNO$510PMaf;x0nL#=~_1UupH(1 zmM=8-tKX?dYz@I0{Kd&39Hj-yg@VJI@w$|{PW1Jw{3M9NtAeP{xlT6CL+_T>9A>wi z4kmNqK{nEGRhu~^W~I#Fhz>~9%NkScd>gPaqP4M8zuj#Cq+HIjwOS2N0@TWX7ZeJ} z#;Za=t}EX)-ObCY8W?s_w@3e1tqG8=;Ei;yg`h_u#~%pm1W`FTBJ)0a*9&}-2u=0% zaC(tbl!nGel&(0vMu(c_=KhsCU;kKk^xJWYhw-XQ+U04VVghG;I{hUQS8uDJLPn78 zXT~1cWK{h?Oq-3FZ4c6bJAuGBD{DIA6$$1a^v*dys9=4t3CoKNiUX)s>hYCR zMA6Y{J+T0`QtxWBkU_aAUJKVnQ;U#z3J?eLe#`u)^woYjWz$kB zZSeYagf8q;7gkiEQO^Ta;_p<{!W(xDPO(|<1)8;*c_tIw`79Zn4hU}ebJLf+PQmOx z?2-LvQNi+534B_M>~DD;xfKK(Si!pBAiIL6C>q~bPOwiewtB3H00xz2Z+HAm^6rA8a&(2ZY-FF%N=ouN?IsWLC z_%!L6wFA&%GbYZbt3kaiBZkvSwqr^K0UEZuQjAq2FYBD2r|lRyzi$$s|C?ig+6EXm ztg*xH57t*t?=TdMVtvY}4qEeV{wUJ~NLp*}M24qBB8!xDUbYmPe*?IZry%QFzI?S4 zfk6JXVFapTFSOsU(GguRg?nK+Dv}+MfP#!IS;wA zy9d{Y4ExjwRtROV>uAK&^R4^-_u^ZZd7{6db$xOM_6>zAFt5M&og&d3(O=nL z;4w~Nb#2`^+kQlRGwjm}{e}p>fBKpIDf?{x;hWA1*4$QS#02Av5gjGl24zBvG^zXT zaR|t>POBmw3P@vH+yjdqK`OW%;2u~kzS>0G=erMiHMwk=vJsNQ6V+}e2e^zZC#R8UL-|2l8H8So$HQJe1u23ewtcf1YK5Uch)^JDOkf+MS6Bh)lwY7Qiw2gwF(?CZ4=325 z=UDiVn^9qA%Xue3A(wJefM@^!eiQ8e&m|ND>pqbWYX469#t|^ z2b(~3yrGEBjD*Sj#CY{oXQeIzj0!p| z@*$o3LK5IhOfVM!ywFt$InToCUUY~xkmKHUee#$$W=ET+K$et~FEDq?H^C|*0`jH< zd?Z9zimFAr<^1Y+G81NnrkA_#P??^DiM*`(@0gMB28k4fq4gy85mZmE-q+*FEyIcQ zf96U%_kGQdu7!W7ZaVUkMc+oqWr)RCpX5WjRN-G$QXt*AxQvK+iS?adfvAZ&Xi}hs zNq?aQ3=h9cQ$T8mqz**Hvrb`J-TT;5gTE!T)5OXSSc`D1h)Su~LK%f!|HiE#9gj|phtnDNnZEm1MZ#yZSADyXuyiDpNyB4L* zaDK?RrkU%{6V<$H{FaK?#lKy`ON+Z*tONgQ5ECvV}jwqR6 zP1l588c+#BZ0Kg-IJw!MRXmwUyJ$7ccLiIJf{V)SZGrHVzrT4Y8z?Urh?p{6Uvpy5 zV$z9=hFU)h_SY3p_+tKQ=V-4P8&I@8d12OdZox(G$8ul(@cKDAy~H8G79wm_VsbvF zo*pRIN78C0X27rqEGikak!XV!9E=o57nWGC9I7o)e3N&IfgQj=Gt3!B3)T8!kV3+{ zj}c$Jw#y_(M;Btowm#^2wc9s})?>0>6c$X0jklB{WUCH_zh14nxh1z7`^) zXow;a0j0{jE?f>TLy(@y6w9j9G)sU{O@XEkdWbqXEG87GM>x090)A!QX$U%WTMn*E zmUU;-q%ybCKw#aryn})bMW{(5^3m{8xp)5+`k(*CGCVbCn5niA0GezvM-6>|w{C6_ zG8HkMZ~1=cF@$1UF`4rG#XsAWoXoTJFZ}HGN9z8-&i6;lTjNUelTGQwHRz@>_E{>q zQO5*0T!^sfshJ=Cb_D4sc#WlVL}QPPB==*DZZ62+%w)UXOW^Bt@M8}1qZZ1U~p%Eav`zIcvs8l3`pO77ElvXShsau(@h!EdG zJ0?p!i%AcH2Q=Qtqt>d|H!Wdh<`-t5By@iZd-DOvRs7(73)hoiSediuy`4yH@1C!- zVoV+E#aInQ#%yw0dy%vA;r}ayQ$0g~>b%w7X}@pFn9zy+RG?9H`=eve8b9TTq~e4x zA2A49C|i(t-Ah#qRpZqHaIA1^7bDvuMS-kSBOeWzhl@grn6qpJvaI=mYW3Y9opRmA ztL%`1x_PGfZ2=%i+yZ+(FfK(v&GtDdepdH!hut(9EpI!1aLOKBz-iyQCpAnuI~aZq z&Ux8{0D?%mKWoXHJiU;xZsap3QWx%1IalY6EbHHWwL?oW%o*+C6#t71+AyD7LnsC# zZ}N)Qc^q&ZaG{wg8kiK?jzRUj;`;*X(Y|*=aZUH7<#yK9qw7Q908!mu3;IkFPu2cU zA3xVZt!r!&K&`L~YzeC4JTLVKjNhUBL*ho0!HflX&8yz$hqWX?d!Aufs>hAy>E1OS zOTwO~f(krWpasAdH3Gek{jFsI9475Zj5;M9r_KwnXC)$DvXQkSj@WMgs^RYTRUf;A zf>VmM`X9BZ^+{^wZ`4JR={sa<&N2gDz$zQn9NiTH4<{l=@wPlzn9h2Z)Ao^ZfS9>v z*=<)*9DLnBUEFg6^G3(HSA8jrXl2zuuGPQ&_;<@dxqNh~iJe_z>TqQKyQ_pYaMoFJ;S|65SgnO}L}m z(z#*h4pwf$A!-M5rBiAuo_N~yhqb8L2H>&JV#mO7)7o}xm0X%>nob{2M|xTRD_;%! z)Ji4$+jDFna`++p-_eq)6MAubTy0a{sw=1hm>-9grj^f-;qT)g2B5C>GQ#L)s@WVd zh`c#0G>Wu9P?;V#GtxO;VB-5whT$gn-P)z=^uJg@xG@3|o>7>UCoXfZi^ByF2-)(_ zd1HTUmvdwBq#}?`SyV7yt@MMxBa#zHtgN;b^cN^xEj$(L%$;mXBxj?&FFWG&1DX?* zmpB;oh$|90N(5?nKz0{6X+CcJ#(GGfi_5Z41($vTshgB#vjcW7k)8zb-?M8rwToI{ zLx!}_abe~IIxMGlbq0dGKiahFKyXwQnTxxB6w@FnI)V!$u!*y=>+tXsqhW`V6#Z!C z1LRnGY6BARXg{u-F#}3of(`7TfcFVjet3+#EMgy7WS9#CuBbE>?(pD<;P=*uHDkfP z&eAIweeq3Anj+-S+S=cm6I=Ri+V6YqPqLD%|D44;BW*z9YWNF8Q(LMFbUE9jw`1ttjU+n+c z$(#5tnpQHM8#gAhgD;lCk~82(eO(jXtVSnCxE@I4p*XoM1?TOG*(Me66 z>mq;J2?@ATOVfb#>Rc*n1i;j_)7hNi>VF!P;~-h~NxNQHc075GO||sO?Z*rDrr$XA z-aaS2Tu%at%(O%bi7>}h5JukvAlah}{f}Fh9~?Xl?%4|+n9CantrI9W(cVT$jz;e_ z2T(N4GdbI~2O%!*kIWGdg(af*j_KOz0{OW8rSOrP6+^A$v?kEh#T1Txhj(!)y2^(P zfT{M}BKz)b?m{+WQK{3%nkWL=AKz)u*i=RU)&p#a96I-jGpo;5-=Y%G{ocOPwuE@NaG|F|xy zVvLjZli{yjy)7gTK;N@QC-BR1%L@YGlw4g_atPdv+4RBJxu)}JC-T|}A>fJ2O#^GNNlxkLqZ3=Z!@MJ$J;9*lis42*0-H9@9z(QoqMJ`oWiJ^O!i`$#OhU z0=n>V<7nzYAw@25aDPmiVA?C6VkvDH>0;&?8PS;|i?GsqL;p2At+d5NJYy%S?TzRN zuqaB;f3e+zYAPy!C&jm;E6ndd$w%i4^Lno*=@U`zn5}V6o6#`F%4eT_nKBGjY@W=X z$P5cyUm8g&u#qLSm?F#GDph9fcUuf=esQ3 zK%2fD2aoW{q;oVa%8mML4sRq^i|7QKF(+<(JInYF_8Rrv4y4K;Q~;SY3Zb;9XYUqU zfhY3f`oD9r-Kt3_O}`6R9$+bxP_(@m0@R9~@RZ>$=6W-nMZIK8FhH<^<}|Q=hqU)G zDc41{lc=#)8_Z%BLABiJ#5&QgLxgLYu=6}ZL_YAD*RN3`n6Z6TRU!y0xfh|s* zO8vYg5Vx)3pHW|5FX~R1_D|x!zC^AL8W|SA^LLG6%2D4^t(&Jd0pd%+02z~)ur1)( z%GD_z8;7TT99-IQE!rGG0df!un0a2)J-=>Ycn9Y;(lo zSBU%UF|OF0=8z~;Vkd{1PVi&UmDWUktl96;Bek~VY_p{=>|!Hni(1DM8v^ddv2;Y>*9(wrH8r+l z0{1;gauXs;O{KV)CyIdfP99>XYTFsD-6$nQEya%pK1Mx4#dXX9L>pWx1;<4pH-w;5 z-)%f&!zQf|9wqwA5rN1f6G|HL@}$8~5nCa|={a*kcZZ~8H_J>=I4!b|gRB*H!j?dC zr-c9tc1FyI>F_;`+}Y^To^zFuMVr?8gnDvCd)g=cca^I3L5AaK8gyda1df-xP0#Hx zLV@jN@woXu*Z&BZh0dSunPbmNLQ`&{?LtA!lFHkkaQMs6Tpt?(J-|$vPE@(DeK?yC z&h_yMS9u_Rzn-i4k0HKdRs==aZsi8=QxIiu_TN+AK7fG(*(?{l^2=krky5BJ8rF3X zxy}g-QUh8=P7ZhG$JVA#9C{g@PWWVeKA{`W6m-0N>frqi5>>yLq?|)?Ax&aTgdtr- zRmbSSiZ8qQT^^}Ep@Um?SNVma(wgLCk-qsW(YpCx9NetOQS&4yV|Uj0YxLAV=Pp5+ zLlAW5J6T`?ZJdf@KVOhAjTL_+N!I+b;(ajgGD{S0t|wnL4HEFoP3!%wL-NjN4$CXQl3iJxOWlZ zv->|J$Oq^jv~BUHO`l;E3REP7$?QkV3{RgKyQ^ zeElv&Qt`SaC@jm%swY&%CY?vdbnF5cq3lWm#K<820eB06u0N8i&`F` z-7|RaV#NA!k!!j7+3dYRHi!|V<`H@l_m@6t2Gv&?_A z3w5%tt5CcH2`H#L_{<0B-ALn%=;14xuwSjMt$ufn{zBe4u6I}ObNtTa99G(u%BI)P zbDxA=U0sd#6@HXm#?*akL;~F-sSh==c_;+m3QO(3lL6KJL}t)^svUBZn0TxC7iLsv zpeXNLe_nK+jmg4pgh&4k7@S*}oNby16s|*~?&B(QWHSC~I(B=7cZY$BA@U*wGTc1t z+FY%?{DHoRP7+@; zU~#WSUy@_+(kTrnR8R~^0?7~k4PAS;s3c06%&ih1*Um(c3!c?RB~;|~bMokwOOFhv z0yJs1p%*CbKu1D_mT3j3DB{HQVFiwsepRV&KGWTC7C@2Xyki}bCs#gmxS~YLu0@yg z3T4Gw0L+mm>q)?B^_fJikq5|2t>=gVzV3CT9IHLQ`XLh|pPRnlMSEY|{Ks_eKRYIW zSdBYXr#m{>Xo}}S`zpY@Dn5tO0mIvG5Zq^0rzIX=_~ILB-BNCiD83EiIb6!B_BE)5 zn7z3lzruWZv)L7SAE=ULQNQ*hQSWMB{oh=1%EU;Ro-J;B;*cTx(I2JhJCJYgIIUCE zy~U7{W=#8(k^hAeTbA0{WL@g!<(J=)!Q>5=b_cN^q}#*xeOCJM1x(xS@e58WWP7;r zC~tHckkB6xHG)G5&0tK~aNWH0Ni04;3+*` zJaX~2iYk!&U*HZxLcO4*C63RD_dN8;0F5|B&O^bHj_>s|A`QU+?f zP1h!tDP98jsvAdjvz9SRK#nfs3A`T`8e240JN#Tmj}caj+KxT`UN)IvO*;0rf2kGU zyx^W5Z0hr&N(hgklzXdZ98pi>c5I%vN`#OD!wj5IAF}|Wit#mTADPu%Z)0R!(muE} zWmSlYQ%R5c`zN9Z^tXJb>ybQHdNF_Zk^@7)}tiY%W z5%^Xcko&cKN)b>3b>~|f$7PKgD{n9;U!f0KiJTKv>Nf}Mw+KJpY}~J6K2oM!UVRFA z;@QtO?9Tn@90@dZt|lcf65dQz%}6z@Uv{A^yp0XckSq8KKpZsMK;%H8u5>5NhcRU3 zF?Xr|{vQ1*HsFYJ2?uKwIF&1plw>)b#nYHG4_+gPc(k*izo=oS08%_$^A8}a=)W#C z@1vtn5qY&-7yqnUe@4<$8$*C?UQ^3rJ+xa6#BEb0x{$kBamynmQud%FnjTu?Vy46? zfPs@GDSSQ2sHL{IOwX*A8$JWbQB@vrNb*535YeddJ}G&@MhaPDH?=ajq4pafl6jjZBj(hQ-`C zQw_62eZLubefLiSsNV=6Xe!CpT6SqjIA!a~VGCjD*s~OtY-nf%t+JkurwkY`H9^mW zt&>N4r?}QDXL>2p>9NRHX7Oe})CsB{d@nz?nQHMyVozv>{eTPdZa6`W*CKfmOAArC zrQ=jR-N5z^W4Q3{)Y`?NBLZPeMHO7ArZIHjpd4pH8E+V?>vpvJeSNooHJ$`KmDW0n ztSmYxiBUS_=!l%- zA1~>fS2D*v5k782OISJ&RCEFB&d?af>Cb_iDicP(-2>96>to*w0|VyAr~gS7B#os@kbp};DMjgJO%iY0lpem3Jh-EUK6r_~^1VM`fXq`204y&+FMVJ0K z)Rv<#j9)f!86r{4|4HswU+ml;UvnF2`4KzJki|buH)`_zs@AE%U0_8D(R2%j=YQ67 zm=kV;S%I#O2jhY0E)L{^PaRN69XzI@K73KaVE&@c@Q`q7JMg!3Yqw9AWr=NIk}Lab z0D5@bu{H|6z~a*30B_wIXwi|&z$tp6@UO84GM8t9fm($Sg}N*TuK2NnfREd`SUT1q*fwI5+i2Dj5`q0rlVRrY6X5HYbL^MT;y zx%Itaq@p7BNcC-bB$EWxr0EVsxfFrvS^*v-F)do~n6;a#^J=~B=}Z(HupqUbMuRMRWtW<03G0b}X)RrHz|PA7EE)@BsUV3LisGuAWC@*KwtYnlAW;BO zlVmfxYZUB+mY!G+5jOp0 ziGj8LVWixa?|mdM#Vzq^^>xd^QZb9!1K>&kWCP3F(~(5xjq^aN!*$6V6S%si@CiR( zXIa-yyjg4&lF=~qVqXPnb0Ge8X%s53E&1Wi4pcPG4kgh4rqsaDS)*B}YSA>Fj#6O? zryMpeaX8K6as`_q@Mc@)J&S)FsbEE5>t@V&D-jQadcppMdPH>C37I*&ZVLdJ?sQ8a zbyuHCKj(9z_o1Rt6ltg^DBEF^*T-(DUWj0+@^X-*g<6Qg<%u(T*pzH}OD}Ubes| z@Jds_)MqVZ2LQu2(MZ`D}GeI3s}~Xgd}49?-gc&2Je5l zPZT095g?7O+C7-!ZvE{HG5*h!-|b=6#7IWd&sza33f zhLT&|U!5*N^yDwR!Q5__LJAdlWo z-WHQe`7C(!2Zd-HJck9 zE_jC%3uB;DZ=t*KkEz7A63AfE;Kc)~&y$THwiTkVBKkpDPB9J8cFK;2!Ulx>Ds^8Y zqhl*6~}FlS_@jIi~*TPqx}aT zqxU}zDdF5aIloh7OqZLH&{W;Z1ybDpcXBDNHYJ_em4j9KBF3$J@W|kB$2`lt0hbyB zl$(z0avZCZi9itwq1o-(N-``-#uO^E5+=PsBA&r7LKr6-Nuk=M|K<>G6u`j+9tN=a zp7*iD*?^QWt~7Z0%zF@7r6=)Imr8~(A|n5lrLh&Ui5+JdM(ESNk>AbXhvlDY#J@86 z9MAsMRBisf+<%rO>Yww!)RV<#QE%sKp?`*!+}6o0J^-AaI}HHVQ0iUiD0pZ5cI`8@ z=YOH8S02RzQhXe*BUrFab$k1>F+xr{o2zrlkbkoWsLrfbjmltS(c%B8yXDcl1*C31 zlmE(B&B}Q0`8Ot9@H8~$C~kxA{yY;M@%AYg>5H5vxkFzHYXhmi-l6+1)P ziUU~-(A?V_ROf@)u@*vs96ze#cF(Y3j9o2sF;719ES$@gR>Y%nSbex7@+F#Tyh$?? zagAJDSe!?=neKthaHpz;135~ke~JY+SzvRin0gxdl=wb9Ik~u}8A)dnjT|>pkXl`b918Sj!K+B zr;<=P;SL|TGGAD`&?nlsR>Zgt5ix}9K7^E#7V!UR81aJx3lH!v76cG9=zfxYYT`)? zzCYVSAeC5KOa6z5gOo5}gql3J05e1LY__uxsMP!MT_OVoVF**CZ3L?5W#QW``g93; zV}{u7m#&@j4^Q+@#~v`*>|IU9*NQ=eyQ%E~W?+@=v)k2v!4(&i_@B3r(V|zrf8YHf zDYW_PGsU;=>pdvRd9iMGuU7ZfU&?l*6$bW6_N(R}T-(;zU-~(V@>D0_pT|^b19Z)s zDU>7zS_Z-!#%`96hv)Wu!O2P?JZavx22vHl`9mvV!j98i@0_8*33@L`PA49)46{@@ z5fjHSu-DN`Q{)#o81+iiP;Ads+uwVgbDh6{;hEXbzGJP=BH`of?SXYVuWbBYeyI~T zt`Y)DB_LZd!O4qv3_#EP3MxSFtq8QBjsKVf5kEV|w%bp4v9QAp{K>)!nkp&k1A(MT zI-#MG%g|?Y14r0Tb^bqVYN#J}ul(&zz$>u)@i5AS3`bLdZG_P&(P#j&Ta`|>Mpp~R zhmSPeslhu2uw1|vlSo8{4ruqUM)=`($`sD65SvAd1O&O3kt3ykG&)@L zt7~XhsBtTe%LtIiow}6J3)Jyvj|ZcV^gg#tPbU9n1Q~AI_|GzY9^G`^_b5J{r;MJo zfF;ELKPv#5@iw2wPnj*_TQBl8K^G(u+ok7bnUD}T45WO=NW+2fzQsdez_Y!XyX84@ z%x`|s?=vla>DDv-7cr_#x!>WZOa#C%{#}O7b>0&jq@Jo}Xy#iNg0TsZR5#2z1=Pwa zxgI$u{lGo%55mzXB6#@2wAhObq(c5#NV8w3m7`5kDrr9V(#ZsYlM8%|gM3E&;D5`Z z;X=!g-V$xKeI2mtR=W33D^RB4D%k-BXWV$V{sC8JITlsQbu@dl3aRhcb})fC(nBYy z(?WzOe`pr^$r%n-;XUm&*BDoUNK*d5&D!$5zvE>gmVLrZ!79*Zm7&B$ixXe@tk zceiM4T*M-fa*!LIyeul&vnIlAOP3hv?+=#(bT(j=X>Mfu`~@H^0E-qZd-IgLa%7Nn zR<-AIO)Yv+b!`X$Vu@Yjm+5QWK3g2Wm$h(xbEKl@N`e$n#eo1Nh0mrOoSJzX7CMQ5 zdgEt=ai>Lz!38bQ@O3c%la0Yo^rkO%6}eSMpiixMR96tt4}Pk1xNaM#flwSZ5)>W* zy^b+#z<~m2+zy~E5WHISnxF@W;fJLt*t)LSz-UYB=x9r0ukfJCVX%|`julu`9=O-$({#W*ER~E+Z${oY&-_1Zf?Ba+V?`%m^-*y>6Y=98ZK$Qn zkaLOBX0-=FM&9xEO@Feb6b&AgPB&nAsoYKD3gEsXKiVqCHjJ zUC1F5L^^Sz@Cq^z(-WCx-?m}TeThGU2{(WavJ`01#>xLQY&-0D9#yWoSC7$Rc;^n5 z`@p7Wkys_qp>7iogi{5TAmDQ)M1YIlR+Hztu>-%X5c9r!?PhP7atCLCUHbJsc~lZf zxJ2baGO`A%|H#RZkOoo5`w%l5r`xk7Vmp@7k|dOW)~xd5a69$@z83r-@~GIdv+;8W zejlIDv74~ey7~QEU?r$&95$TZbou52;DcCSgS3JG4~cL=zQ0c*wt0-_4pb=3+~nbk zC^BP^9^I}hTd_n*pm7I-p#l3P_~|hAE0?oPN$-<4KG8mRa!-3|508R(;!nYucZHej zM@vor_vD+c@UQm#=nHrlOTm$|VGqEu#Hkd-&hMg{DF(KJZ9wz^L-v32_#%)A1~u6Qgcg}O*IafVHnI3>+DnQugO3;X=j=Rjn75-i>DF0+w`$63QiPB9t(xN1OrnL zAlULQSQ^N8)V)E3L>P*efiCDXfpf27c_tv?@%JO1;0SPj-6#wk^-)oom04HL(<)SP zp!FhLyO+I{tph`Zlh>#!+X44}8$+YWVeg4GN~Hd$hP$9KhH{c`?K~xlDgR7ASErAjA{5LKT~A@Lae@f)b$J3 z-?NPP^vc8K7NFm!lV$sKz77ndcFtKqFw4>Em_OK3*1JJvsVplLX+9vKMMYH4}kx^V9njIylS+g z3HCjivo3+Vp%BH0=NRO56F<4fsn>ct7$P9gMog3_`W*mNOn-ConoO)JxRpeK!wF1_ z=5YCbL}g@dbmspK@APlU>SdRxUvX$~+6)!@Y4}sV28hW4NpyZny-*7_g; zkXxj!l}%(8TeJK3gDnyB6*3=sp z$Vp3}Q{#5pp8}`+aG}m^Ge-Pz>c@Zo_;=rWw?Hb24p&bUYqbBRXQAQgoO^`NdG|f2 zG*SXsM^_GkurIT|`d3S&Z8WDfs<6^cq%`u>2S36$Mvs%l9`tH5QgF&j?0e#cPJFZ9 zCV+?Gh6bppYR)|e5zhhsUH3Nu>lGQL0aQ}$?K-R>w4IGg%fF&8dXX?R+F4xbgnZn! zpa_7LPdEJI80;G3pGn3xR4ad(H3ojLhDyF{zV|5&fP{ZCUge-3*x{GaI~VnKJv=Q4 z%Q*-^GNV$Sdmhwf=PF@=5jqC6@27^sLb}YG8(})aC+BEK%$80hkF7 zsJe9Jx|s4(>c@9zDOIF_qRYMNM17?}v94fVZ-qUax_^$)?cc~_y*C~u03gf(${#%L zoMLdTr8$Iw4n&rxO?~a@z5^$a?ELptbld3=BIvL|)$=sTr2AsE_h~!s9~CUKZK<16 z+4}(5W!{|U0T6Gw8;9EadZoR&*0#`#;SA>tJ2*Fbtxpx@f9}1&`JQ6;s<|`uVtV3` zfqaQS>1p>b<}>nzWSQ>K&(MRi$0F-|i6ksyM0;Mp!Sv(D3c;%eFLsJIz}|4)<(`f* z$D}CfD7q~Rkac7EmPO%zgY{b6`_{OBaVpOcP`WX)TnJU76xB*KS&!520W|;Fh1drT zMIe>moKDBk@`~c_MApr3`Mlp{Sr$0eMp)}Jbj-d2y@=Fy5{Wk%_#|3bz35nY(V-8it^XO#C1 znCVmQ5JBx4FB9-I{f5i!X!$!}##<)p*Lpv!Kev(zdV08HOuD8_uIy^b7{sF5XD9Mg zaxkHV58xg--maH2ihuLZp;Ip!@_A??an;IPvk88E5|{Y^S-JLF=>=nXbg%B?r<p2n+kdD z;=x7>xIi=jUPi1{3TC8w_0t=;OvmTrYz)m1KOzirqXPa4-G35=wqsUUH=u^_?~Y1T z!63ubX-Ix4qzU=I0Jj}k+Jw<2YR>~Bl`M;P{Y$EuJgX?>rY)tm@rt(rnu-eEEk7|_-LqtUEs-&@5b#X2!~+QEy%i>rqd zJ2euJoc}YlFvfS(iAgW&1KJ_9#_X|cGTQFFi&BeBk~|P;Ve}@8R$7@pYp+<-@IC!w zYfeqHM*89Gg4{=(w-h%qN!c=bf?bhw;HmZ7&cRjCYbC~=s-|Z7yxN@b5lFzjX*nj z^Q_ZeBZftyQ6bq9bub&aA_qC*LNb5O(1TT10AM1+X&3jPuBXf2!TM;5J^~Qi%nA*C z>Bp4bE9D3xhs1>|ygUCr^L-)U$46PfQsMDD-WVj3B?skVFa)FQw?_P0AWLmlrTTcG zI&T#<1&w_Ymlhh2kdjw9o5^PP<|b(2m6U#RU_|Wq(i{uSZ!+;WL;HbS?=`51?9a`? ztr8R-{I&))hN%sRbyR-b#zen#9t?9G1F4Y?^CXCVk@V6;GX4rVs>)Q}d!UyAL<=Lqk5Y=C?42V4X+hVW8E9y+g<~3;`M}FXnf_E;*XB3W7rdE;d8?uW zzn+vo^(fi=ak&52xbH?iQa_!LJPNly-M3}tXL=L7Blwkho07Sf`4H#RF)?v0q}%qV zsr8SQS3|kSzcd|rE}#)$(p@&%?SYvm^-Y8W4R7HsE3h4)h>FEh z$kq}8N)zbr?gf&-u1D#RRf1WMQ=?34k=GIb4aPUpuErLPKJZ!^hxqe@bd7($x*w?l zyQ#tGyyMj=?ig{T?Q;IBsvtI`_JgAgr6j4W5)dOlcS9@xhP-<=+(}bfInr>;s*uWZ zf!Vs{nT8yuqB~Cv5Q`u!hs>CNK)qyNTb+KAUMm`~wjJiI`CJtM29b0);3`W86P-sU zW}f60h%`~f%?c^W!oZ~Lo*bPCs-S|{^lqM5MwnQm@ZbBZu?SRSpn@HDAqV=iL`t$% zW15`?J}<`O$ifAJmD>|CumIZgU`e+KF6---RD_aw1bpd{H-V~bNBl(u%J^T}#W;gb z2GwuZm0^)#Lu*A8b6%65yH*)gWi-2Szhs12toR*;+r2X?LMp9vU1?K$nx&)kEg~aW zDZj2R=R>XcX5KQ#1W+b0ru#?N?)3kgHCh@u$d)Ga+r$s()mbluLBp=#;&?^`K?F?` zup-q(!b`YBt6baoHUyjNhj(nQZ>EI99{R2YJ4Sxxu%Ws-*!+V(55R{2RG66~q|*+1 zr;6gS%G>!01sP3V2Gf1y0W2*2^dEws8X5L^Kv&924cLlLi%~UWBngKG2w0(^`H<)JUi{9p~Dl~!X zN(?9pKziUf^&ZTc2jV8?LV!U*<6JRa!1o%RNzHXzIgEV}*h;%p^^%VRtKK3?vJ>fw zv>5+f{&^Ayy9^u#IUI?94BegU__k)tiS3Ko^1l6PesT=MLLJZ5X!I=&dxe_2bM~~gQmGwSf1E(Uf3_Taes0o}b<^5hubgLU_0q1#6~``z&7{!qUH|azrtw5ob`M_PuI@ibzuDu?({B@n<5L_>?*ujRfdj-m)1!= zjFh6aSU|yU-mzxHvXg9(R06a19s#%$>Nv*x0%%O6KMt;jU>PQyJ_xi+HP$Nw48%{a z6YkVNS398v7VbJ_8d+I@taWP+bRElF3qVXPt5mOvtoceVx9Mr>HUbp)d*(oT2x6z# z=nZ$pcP-l|LfNjw5Wq4MK!MGRpk@Ro`!nwZr8G(xs6+k3&57Cop>i$^ED_e4h&4J` zUM+ISIsjRQgGtphGc&Mp2L|%S(il_FY*5u3bQlhAE(*O8#TgP5#QEJ;Hz!XaEUIKI z<_(>f2XC)l-d0jsu>3~ch$UFLoi_{yhiE#0pTTQtBw^JqXRk6pBD#fd@6)o=qQ_CqV!B_$;e{CjU@;Z9UL?bqG_VH{w(1`j6+ zCz>|bb8LdpIHg*4AhmEy1a`>@TmOav4c2-G_O-l23}A2o1D?CdK z%T4C9?n^f16rbz5OgF8}$$zzXTFdgD=;D5p=aqX9eGph1_cvhL97W;Zvut9@!3yl! zxbB}St}_*4w|3m9ZkisKPZ-%IR839XR?wDEzdw7+{`vd6FH|9>9FF8?5`5Xt6#FG& zyuAJ*5<$F8Q$y?WQ^DG?m=vf{5{P7oibU-({ub3P(@R@2s&^%jhB<9!-_j{fgu9^>`N*j*}NG?o?r<8kydEt~}FB@;Gnn6Su!-{3GTSTwwk2sWTNWR60GHCR&ioaP%I`Nz-2 zvGJ_7#$fSZ~E>yzS4+MPZ_YgZpFOJ27$wF zhBbrWVw@OxCn(wA)6fCFvRDzJSj9!=kCJPj8Kh_AZ%CMqPRww%!UbXml$lkQUFv)K z12E-EuIeZ7vidMJlnf4#UhlVR26o4GkBphEzO@*(rx^UPN3X;ahukDg+%WS|M#&V3 ztB!q)IAnK7N_OXdWaxYq!60~Um-iw)np*~uEQW$egvCp(WXvJ31KOS&%K^{>=|4Ji zX5B^XhJLt59+r)IismxRx7G)ShTn_WTE4(|Q#bC?;E~nWy@a5qh4uxHMQ!B2Vx%IJ z7hDiCbG)K1WG&&NCAIYn!;~L{KPO#8;kNG#%?aN8(HPK(5agL9v!Q9;k&n16W9Ax& z6>@+ClD`r*DI)#v(czV!-h-7(OV;&vo%V}eH)6O&YdZQZYB`q&W~T0+?0!~p({sQG zBS~L^^IZWR!ZlNZ+ot;)nHW5%w$@h350WkvN=bC*cWheB8bzja9~yIm3$@=-Xn%{W zuV?E*HS}dRUG0{@JSayhCBl4(VU4c+TDI#=)NH{v)Y+Z5FYV+tMIbS$<1wc5RfAGZ-u6&tXh`0q;j|>Z8x9@XC@Ydt;PgP2|4Rrg@1Qo1QWDGrz#H@;Fa_v+Tpqc?Wq) zXd&T;w98208F_hQL}4YG)OAL;M*UTBL_(dIB@1d+-FW>yq;st7r(q+$IsxNSBc=X* zqBMr!#SJY2JgVTiqo$Q;(0KQNN7L{d4}${noB{)PGk}c0#XMwaAmalj1x*cXM0rGi zHNc}WdCL-qEBJO|i&FA=uPL&!J+C)}ctg{nOH581mPo6y>|&f+9D$L^x3YSjv9$i< z?|bjV-lJ|b!x=tKa<0v`Pc8j>4g61!<4%@5=@F3;B%M|m`rBs&B%cIE1^>>4)NL(# zwp<>9$r|5>!L&jfcnCyBX{M1=uVum@=g-^89_Wu3N<2NS66N4cWv|NZB#obb#JxIk z6g@bMQH#r_$HLPhZ`c~&jz}gJcVLL%EtfoE!QVE%!?u%J-TQp6QogbepTPMYV&_Lh zd|}a;|B_kUR@P|Hpe8(R}o=rkx)W35i)(d?r+5AW{OOi**3Py#&k4BbnCGYd!H!H|Ff+pVI~-v zkK9@i9gXc-%64)0$Nr9uI~^EqXK%hDx$RENurmYkL!%WT*g^2gNoFTp_uN@ zzh*w`w=BCjhDN2sx?K|}1ttAyfR%2H;Ej1D`?yU$YzY`zTqGEZvAS*TznDW>m`zIs zC=p)EO2mK1>N$|Tn4jcHFT<*waoU|1ie=ZUd}~OpInc!%cQSX$cAUQ)0D89vZzt6trI|b5tmfsPO}SWaN5(w zp6@@fqH~$m*yr`C)Jxv3n)Bp*l&K6_Fd|_J*C;XOW>3h0P3!g44(=L?7RjCAmDlvV zQ~*nl_$uDs9i+ZkNa`Cwp+pGUw1YBzdX<(JBUjJVd53ES&$w}Q;HQMa(VET@jR|g%AL=jG|blq6y+ebLrcd!{w_K|gzMz!)pE=JnWVN~7hKGZD^b_>fKW}$xgSfwRIsEa` zog;{zHfgoZ`qHjEzw2IZ^{m0H;urd2)2}Fjo1GWmTQyc>WhUz;E1DDTOj9JR1vf+f z=wvJ%2qV!cX~+)Y$Sa2c$50kwOfGXe7dLO3a3Z9v?rVnbamA!d|32*-xIHYH&Jc=% zk$XUaGHp*F%(edHZV)zzng)?9H0CJc!3x0^#HmD+#?s2=PN?^&==yt4S1r~$M#zhx zmTJ`K{JH1dk)qG@3PE~@2b)HVd7zfU;Vda=pWwi5f;%`@SWj% zU{LKK(W|iX+qVpx>CG9GZh%;EdY$bl=nog-lx(vg?K%80BBY@iW!)Vyt)E6obcV5T ziFL|xRKrmGbiYXrN6~fZqy_6s?QLnw-fbii#Ofeo20r}*@u_pepV2AxzA`Gm3Muf7 zB|D-NAE*sB{T;0{?cU`KVCv%8!r!~Qo5IIlZ|IM(varKN% zOafN^F0E|+8)-*XPLQyfTIUFMhQTb-IdpZ??_JIo1cctW$8#&UXFG-%`!87SNaP897pycC9`P&V2 zFMR|n3Fc7SPJc~R0N%TrwO0mTG8LIk;lYJYXre5Q6*!S83@O%*Ux}N38`O~N78mwU zoxiS1K%twaKjv58kPsLRSo)acEY?-1fAk@3SWY!$U1;LOjMdY?**n!*q15<0`tRkIJk7x+RLD z!(b-gzYm<1xWw)sUnv>E&12b=A0%L5KL}Yp27lj~Qb-QqGI7oCc`UZI3Blmt3ef%< znKDA?xxXjFF1jw(yZv;zMh;scwgWW))5G;SaO2rL4Zm^K&+CZeYRsj17@z-&ExO(@ z^F94Xn8?5ksjJS5zBf@bH%*{I9x}XT$Ski@{6A+^2N-CFW4Ib3Y2!FHW^uD_EE6C! zvzkV&_Ice$V>!CaJUm+eC1Wh03u4m^um_N{@m#4nT)@8P&o=V6ar{Ci+m^;hn>wdY zgk~!@ACXGU;n$moLdBGB_G@rP%dYo$J|@yC_3wG$uPUTwld^l-kvaOHAC(6d1#j^_oSf%2iy?s_NE*$*p;bjB-O*0z-hX`ppNq&<&tvgfneXNO; zlX&jzfuF#EBg*VQKM;!=O<&m39E9^+0Hh_j`Io&40?8z`ErTT#MPt>=Oy>yR!Yw(> z^!Hd3!ex7u@qd4mz)XP2j!$tnjT^Q6Q5+$B-B&=;cs#6?R-ltP`rA)*?F#0ZPlp|d35sP z75WK$ePiIyW1P)-d&{3TU)b#ay$1IwF~4iH-hGYUMph6pS>~w2)q#eps%pLKDcP~- z4&UCTyUis{Yu2Ty-1;p@p?yrS!UKr}9KyY5b02OlK9C4wk>8Wln<2==xLs(b9kvc$ z)d5E4FGh^=`z-D*Cmwc|IB9AS}9%DBkHQh0$Vj4daHKCko~7QVVMttd z1nF}n*4Z>218_C3*wy!pyBm~;)bBYj?Rfy|o98^46egoJ`ur{;{UCH45{`+K_+R}s z<+sJ=!qpp4b7h$q!j|yHs$PU9N*O^`2PIRZxi}(+HiKiasot@C8LTM@Mr_>b5U>@Q zVG6chX~nWPP%9ZhRe_EEtsw&Mbn~Lh*}2l%uRrEe*kv!9gSD*|KB*BJIlu1s;^Eo) zYls1rDLBl_;eumnWAUZIxhh>amh&AWxaO=cb(A#>^*B21Iru_U6ie8n*twjB&X%X0!L&mf`iwwJ8j#o=+(}C_2ynHAL>STdR(VSPrki6S%D! zL@nd$1}(H#;*4Op5T% zWKA*QSrO6><(aN1^6ZyLja}|5RH0bgNR%vOIL8Ou&lb>6JN!vQ$CVR6)5W8-?LJ8f zV>V@L6tNlGitjnkXbPu*PA%LkGVbw2I^HDxj!W<%7U13qPmq4wv{rt@uAHEle(A*O9OtO!(C- z%Dk;D(JQ6u#55M@OOi(jhp?ejb=-$o6;6z!HW%}|4Zcj==^N$(qf^Eaf5cgav*bJu zj0%u0eOV-BFk~#u4yxuI##LgvAKb}q%%~7wTr(sf#>IPFCAc}a^!}@9_bNERQZ>`d zASu)HnpNR>aXL%edDm;X<=s=^Ylf52wkJp$*0r<8!KufnH5jmvwcRFg?7R6zEWcd{ znmxPKV)Yzda(I}~dpdvd{~W?`jx!+wVKCcV;{4*%L>r35cz|}hKg}t?XIy4nQEr(< zN2Wj~qXeq^laAz0rx85z`}R(05a`TUhh!Xk>|)1UgnyHhh{oV~U=$x> zqf4RrY?I1zGSk|&jzfn{660zVEMN`ijQW^t5M3?Yq78PFoi95#59-A=2?TSN~^ zx+7yN@)MxVwNm$2o%w?k#@K%nK(3ewKe^}?JPTa5vbj8d{OUGKBIpe(_uQhR zXJA;mx|H+US6cMC&U^}ZJS=NUl&V)45)+5UDJq`9BMEyvw-*@+b%NLvK0l`lrop3~ zE*YDw>HYLaAj%_AO1?R0UZ6dy&Chqy7t7AbINlb!Fs+Ir z0=(-`BD6otHzyZG@cthkLFTIq?F0o5a(~1F=;wxN#Lq?(Q}Jh*m;d1SK`02tq?CLS_#;mrK_Jem(}dtNK%xk+zhZ!O^Eu@&Yi`MW z9bKGu@eN^N%7%@n&?I|c|0u5$K`{#f2op`=%%Jib*9Z5caFC?SPGjr{N`k^26h@BT zhdQ&m0%J#6CY;+5a-|Zduf#3C*SbqT;kvw@I-@)njk8z%wYfwp*0VF_7}H&uoO+1n zHS!f*zj6uebrn@bm9Q6?*ApE$s3C>^WpvF(4N#$>b3*cFY6G}=_A~JG+^)nj zuZdC&8)8lLD9AsbE|Aag8hPKJa)1rK$LLU~^=+dN9);(nWm-wrSp}N|n3#%FE|d>v zbmES1RVb(ARJ{Tp5E!O_imB}ISSRVtH-B9Jhxu+weBrI-ya`>h!96dEPmay9AIVc0 z_(B7EDp=q=R~3}z$#(BBML=Cd8E;&zPWGxt7rJtV{~9Bb1Y|erzKg43Ppuu*9?#7l z0AzQ1;dXh*I=hJpt+>a5Qa}Ejtc1|OxO*gSZBQIH zVV~HuZtTmURark%+rQ81<8A@%#o_f0s0_do17xV6XV?r8ewX}U{0OWl>Mh^1`-n=6 zMT$CAGcU_J@1taMWJsqYnF#zVNX7|n0lcd)fQ(1jr1-dU*-4!`tiCRyOxmTg(a|?p z8r491ZWrk_v4xcCEVVlAe+o>=eVB$t$s9MWZ0E^L4JV;K$Cy2cm%g^@f9LaXbl+96 zCTw}g4v#s!^mlBarF0pN>8-Nz3e@czpXVnL;0PxbBZ`Bn~OQU ze&*DA)CKYw-ha~;7By_EMC|OBoK0xcu=d+SghWa#F+_#4-$#1i=Y6|FBs;zHkESwR z5?JptIP0z6l+=EGpvEZ_4X6Vz7+SoCUrWfYUxvUK<=;MG8HaRTb7XbSI)Q%LF` z@R?(E!pfwodl)~68|qOED)I=AhRl5sA%fwI+a{%vyUTVd>r&-NdTs}N2!;1}(V5^# zX>1STM~-Z2qzqIE{JiblaS2}ckAfv{b$MdA8RGG`u>lM7CtGWRg)mq57ICZH3ISW5 zI=0nC+00wT#3mf+e{EZ-!199pm(c9s!X@(A#^?@k=yKV&ETu(e=e+D~?^sr(VX^gKP7pp6?-gO0}kGX)=w#~pM3gE}SGEc=8R^jH+ zTb1ghG%K{e(n-}KM}l{ZMI?`eTonIdNCWH+njE$SHj5|$@Z#ZSO{0=f+<%2E7_9N< zcL8R&U+{G8aLfImt3gLZtuPGYDE{f&$*>Vc8w2VpP#IpIiu+uMd#+<;lBNxx{X2;s zM-4%OcR7OV!X$TN|2uh?o0dtJkr8Dy*z6G%Otz3Wf83NMKZiDLNYsZy)~+`S7Z*dnl@IkqMLW?y40}kWFq@gT<-xC)IODgK^~kr2 z`2!w)#}W`?&0RMwn%EsWhe}SXkseU_4D?VR8l8U`&Ud6itIyyAS?-afvaY73y_OzO zk4-E}8VwzjT2isUG|cH(R$HW!U`M&(C2n8G!OP_oxZs7Z6vx6I5>eI*#vGd{0idX+ zk7u<;=MU5!%5q23i2?K9)Abp^&S?O{LF;}N@eaFotZTl7Ce~u^7_wbD)pq%_kJTZy+9Ylq{|e(TpWbE$-b)?|EEU1jqO(C zIBz7oN(-R^jaW%f7-dktJs1$mj}p#hCI8a33p^9|M=S zzY1^3YG9u+s55h22SZ$>Q1ZRGqpc7NpZ%SzL@WfGji74lxp%bUPj*li zrO>4rJHFzQnEP;7;?zTC-i|gmkGK9($ckE0eqQ2-D{=Te5Bw0SsxIVcZ^?5vW=YAY+yXAVA zVET&*@INpfhd`gdKkBidJ6f7Y#|rG%+Wm?n1s6Ij zEc51kC=bs>6}j0Nw40P(A;bA0bYV&@Umy=BtOGP2Me~-Um#;j?_-j%c0k4`0HfgpNZ z8Ggp=kQZ+L8QY@#)&rcckzZSUQPA`CneV{kAk+=$td=}}x3Q9=s13h~;@Ff`;r@{u zQj<7_+iooQcavcl`5IS~M%Q6BIdJXzB!dO5lZ0C_I1=6!vP){#%we$qi@IkO^#pUN)3ICez$QN+Y5v zNve)RolC6}bnm+FJj=LPRXi*L?1YSV?eciwJSWkRzI|HILvBmW5U0L+DN@aHfp>4X zRSg=)?gXV3#JSzZ=l(jw%~^p{SLDvGeTAt{m?({yOiK@cvYixcqd;}qr{2RzJ0`GG zg)^xo=MS2U*%J~9iFRDXpMeUE@H;py)S3ioEgvmXC-CpPD#mgfy@lGRK;2X4)l!KP zu-AOrBX^YEsI;;fYZ3w!5{}D|3=wYKMGW4Jy=F;cszD%$IPL=55B z`SV<5a4~_s6KEAum^A5Cs;0sy^KnDt_&2`e*1i5$Rvs_vZ3&25qO>H(;Ihhg%bfHF zu-1}P&eUqqhyBra*gPN7Ofs8+sKOnHGDcX?y4>qh0n`FpMz+AjBrroCrkN_$t{el2 zrnn;LkO;9r5%}gv1ZU-im;EQB+WCe4n>)H0yL}+7vCtQ&!=^(X%etY_&|DN)EPa+$ z3Yk#Obu;F$hf8@7G5-YpsSt|F$6%u~_(+U9v9Mb5fMu=(f77^l;(veqiAs0sC#p59 z8XlOASL8Ts#;d$$c(di^_T9SdgkZkd`I`)=(hBt+D_l{LCp%W19tn3#D}Qyok9NEx z_5M!lZT)ydy!vl@LGpMK)Zn;>IXO95eq)0a@H~l8=lA_n9pQ6#tMuey3C zY0_g-*n*Mn{P2&y!j~DEe;ipzfkUma&~9=V)IT_a`;|)j%*w&rO`<(H;fE zZ7@(vW=LIZQP1AF0V97@@XOLKFchd@O%RQR@NRr3mE~3*H7e>b;ZR~up=%+^XkK>0 zYy21r87H`(`vP5l7eancv1X}r%u}dQv7~=X3j4g_HBgcBe;Rg4PyQHe2nIAa8@MijkF4Y%dZbHVwd_a#(-XR~Ow0C^vB%jiC)? z@17qhTug3NPG|(Io$pQ?P}yJ%|I!YOKi;Ag{MrMIZVqu?L8WT>NLycKPpCd7`oXRbwxDI)xXpHE~O_8Y( zEpHJiY)oUY`qKK!SXl$-)FD>?rI?)%g%xQYjV|_N%?mKm2jj*7yy zlSFP045_NTW5r=(JoC( zT$gj`{3p+jU3>X%67+80KZ}JJ*xALj-Mc(7KJAkH%}M(E@b6YUy?$I?$yqsWE8J<& zu$hrO5A*Si6fbuMz1Ayfb5?B8>_m>_a&=>;R|{bc^?b%HbkBeJQGZc^9FX?NW1AxL z7D60Mv-*U(4b9%!w(uBMF~L8fe@KVJ#(}18XU*!XG31kL^9UchGN=M4D_%rGcWx%7 zWwxb!3$Lf#qq4K?49kAi)DB<6GV=99%xi@&`De8@TI3IU%U!@c)w~iK3kS22MsZdhP%@|6E7|Vx(;oaWjyBlaxj_X{$G%oyZ2LDnN|^HwRGN?+`?TW9YbX ztu0?%8QYb{*Oiw-`K|_`WEDv*e0n4D)ygwXjF0{q-fAGvmf2!`OfITtgBfp;!GNVv3dxwNpMr~I61jWH zycY*+I0eypJ>k(bn;QgvIl3$H_%%#eHHA+q@9Ngx1C%N@E|ao1X{YI1nT{>XtXUNUF{rx*?3>Rc45G|6@2Vz z*@Py5uHvxwVa*}U7#iV__F|@qQ$uFky_Z5tcj2Y|Pty~w6^CFFFa13Z@BK8j71@z_ zn|!0&F!?&(3n!Hfk?1{}+if_Dqnmpv)l8mjpLP3cmJu6K+WXl_&^QJRBOKcO66#*R zfo72646pn`Wl@f4WjP}=m4bivMSb-go;>b$CYE%V0R(PWkE*z|_!HQgph94i!FI?ShRu=6@NpG%2(!m~PT$y!l}?#`9#N9f*cyoIxc{I;xf$ zpFArg{kz0w^S~G@d0_ndc^Rj*^F1Stug3!MtMC_@%+Oa$|E1=^CKV{~Ar)Rq?-BA< zjYCMoEh4>mH{N+*=E_&I4}hSd*ft_68eJl+-ssru0aiEZJbm+m(4nzQjjv7Bfs8f2 zlGypxV#IDrIWUEvjuFdqImcAt0xSjc*a-i<9>YeYk(6hDFC8bT6jGDnhcxFMjw|ZV zqE2h<_+Cc|0ITw(0w6yZw*Il;f|Pd6k_8!hGil|yd?Z`x;H zN=5Y=B_<|H#QOj1BlRA-^)|ag)FM;Qyhv8AuOEH5iCPP1xf9s97E*zsfd(m@j}mC4?bG72kr^{OEjq=+moi?YZna(bYF>1>xpWp6pFN<;}I zyZ{-i?od;l`#)5b_A4WTP7DnhQ$5iVZ*ko&$M)5(uG|)zEAtN!G!u@!&1cAnB|3H<*^y2_}m7G|x2a7gLy1_|j#r5h>f zk`n2VE>XG!Bqam{qy_u6Xc zEN|MRt4XiSj=zvJ)n)nY6XRp|231hP#B1>=O=e5hsV9-0w`SOpiHKxI^fObucD`8| zdSJ)Uid(uqqbU=#_@48$rwDd-E{`ThlxZ>$mMU~G#E#Eb*i&nzMX3Fap%KD|w>G^pJU*B{Y3JwhKP_FgFKTZ|%Nog@|Zu+Zr8^+;x*_$ft78Mv62(9+%mE~=O z(M6z<`_#n3Yr=nP3T#lZ$IWzO`QcF2X2DBg%%7B8XX5Be^x5688vqkhZ=KUaDc1Ds z&CL3q4}Ag)aXl5aA}%%)yFzQIml=sv?8miFoiDw-&%24IS3VZ@V~3lEJ1Lu?3FG=0 zSd$&hF>cwM>Hqx8{`7CN7+jZnsRi`+z3LyrSqY<;vzJH{dZrXYFE=(7(?Q7R*<#jc zcK?-uM?Pn3(k590lSTIS_bL2oVRd!weDecZYYVS_QbDfo#sQg@yztUXOTU{Q0o(5#CH)tdZsWC`tZfEfx$NQnA(m%#c=B?g}= zYlmsm%)&c{F|nv2sP~N4&c$W~FQFh=OTTVj*N_N}U|FCUgSJ(GUI`=z+O@LN2iYHV z$G;fzJYn$vb2gdBiRU>AyPw9qyAs<{7n;sKYVO#pcF%q}GdxCp`{y>$aefG$9eOkn7!cRaVPwatRerI3 z&USRY?jJ*VaC?zfA=_+!-PR!DViUB%_m>IB=7j9#pvD%;#4^a%&3_sXQF!d2|C(66 zz3+W-f!B0Rdv1I!i15XJ+-Nm_>VL1cz2cN_+ujSamUWDH&tY$cpmH81&=7-UzJ0BO zNC!t}>(NeWxkj%tx{(-%9mb|0^_BI51K$R#QIac-V5QrHp8n94bNgb zuDb&Xv{GoDf`STUB~@ukICL_%XDB?M^|a)Zx$Qn4cBZlWVcU`3C4iarNtH^V`ig}h zzUaBUe9O=fo{s(_G=>6nEfU(2D#@TDuSZIp22Wtk1L*6VoiG&lj>qYZq!u)w4^anF zHHO2mYH>@hD^~lDbg1#)hh^F;>*(>G^JcdiQS#EJJ8%}odS{sUp&~xIMR;x(hO2n( zPZc}~toF^6)*g+7H{-^|rlaJ@E@{tZS5->>5F4a9xJytpPPd}rwh(`Uu*hX6(~u1r zfIBDAP|j##=vWOHqTrGmwH$TW^Ow}6k70WTRpj?yM1v|_BrLZx(e<3(^Hqrd2_^O( z&N>e|9xS%ZG=lR+bFX$AV7P!APm<=umqbBi!mbf;F^_UBqX&tJ?=j;anwY3c%T%rKsdCPSDyuo@QO3_ko{g+o~$Tkv9zIY~0p7&o6C z2829$SKRn(GCaBaGg->O#~!ZS0;;&!N*5^7J;ad;brL0&HeH`S&G+0_VeRp*oOwef)Fm51L_s8GtJkS1|__mUmaV=SKX4iH7vrBo~I7E ziPt}QWl8i!elZZcwm_|)c+$7aV(_^-oy}8fIV$<~T)I4kz637Cjkhd1W%10Gya7z+ zer&yiJ`=*Nl)D-*oN9Fj@P0Q2j-R+E7Q0n-aQG@L@4k6c)cv} zKJ^TS$BjAru=xhnV5W0K^4IZdBzv^sepb%`d2lWq?Om+tzu&nL4j)AMxZ{7ZA1<@H zJqJNsPobU9sfEMN!5{KE8i7LOg-PY^mqJhvzANbpurPd*#QtBBne*l$BjFw3PtZdw z=HwJaN*-L3CEHuABNyvr=jC70tX29`)}Kk9_>wx8h8y!$hi|Jy=bfnntF60Dc4^k) zE0Mtc4OgV1w;#Iiw92knAkGMep9javRm;S9KY#XCDwRcM>XK;in<~y8n5X5` z-o33U)TdGW;QHMfS)*Ji*wQd6riNG4+#|q~8RkAwWSxZSX`&cjji>QI}?d$FhP92e>x9bEeJVm4e@q-NR#tSvYHH1}qVmNf938_dJEYls1X#8#!*&u2_rQ~pg17 z3)7z^KW;09rdg%R8PmChnJ@^qbjlPl_Q z{CAIL_JsB4$?v~H<2|5>`t7_^XhGz~DU6VKTGBa$Pu$Uqk0uwSPxEYWE+{FAg$q%& z$Ge+OaS;@E#pw#BpwRSmv5k(%RsA7J6u=Tbm~8*D0eD1?>sF3~(Wn1Ly${2UR^K5@ zh8(U$KOMNsC-?m~;rCBTG@)dB)@#4vx;x_eG0^Q0SYA6~ED zQ%JOm{wF#=Eqc`hO6BkwiCBTPz+w=Gz{4*0v3$N#P)N_L%*N3y_t_wdK%L;1R8^1t zOlDo$jI8{!CYIN01vK1xT={G0z#M`hXhlYUmiTb*z2^Oc9WQVU)EB7=G;td*BEl!o z@5B~f(k0S3o%v~4P{d$SIQln}IR>zkPNwyiUj;r5JHAg+sG|i9CY@DJOtMID9-3F7 ztORa=sf4<~leAxFG!zZvCWZTIgQTlU@#{>BiyBe;P1Y1EnkfZO2y_zch=BE<3Af)8 zZVfbl(_<}UIrr@Ko@+2g7;EU4w@`}4&c76ZNZ6%i65&~N{YQ9J5%{w{VPoy_I}uV! zqJX-nk(5gvtK^Sfr9b~f|8A&VM|5m=V0HP%r_VB8Nk&MSch)_P}P01G!9YN*|VV8rwNG(_|lPN5)2jax;Eq&``O z0hcZwD)3Rd1TRJ1{8CM%*jJol)n}%g@SW=9uMz#F-c|J{?0^z-zV~>PIKmx9YdqISi9F7q*;tZIN@@=>7NgM8!R zp5|W@(*hf`pm9=80uRfxTu!{v5ol~rBA(+sHpC_s>cBK5@rh1fQ7`8~O$Y_Yz^Q0? zkgTK}4(GbC_F!!8tF3A02S*75pzv_fY|;4CAh-79KL7#2#WRFgZgPU*$=FywpMZ40 z=y${@=(6K`?+ReBOGNve|D(co~SgD2cMT8 zwT1{N3qDEfJflrFB(z_rQ*!+E;ha2uy;&n@(CGEiY9z&TyyIbYxZ1!HZMf|?D4y&o zw^<2WDK;asGM4(l>uM8umYkDW|9vrDGRb=9oYtZ6 zsjWH@7sapcU??+vBQ9~yNSGq>T`ebtn^}A7F^vi+x!s*AJ1fVNf}@n;zM}ZKyCxzh zJiZeC?rMJ6W~{wQ=xNiq!>sEtbqqYlWPenUJ$rZW{=Iv0 zlFv1Glt59>zK2Py^pew=K0H5F)_RJ<9aI=B$)!psvs4z@j5n|Ckvb_;eNBbZKX)Y> z<0MwWYb+d8LOw)%1L|_UH_e{PH~)DYS^7wTO>TMG@mqQx@4>}RAQG%)Q(HA) ztyb<&6cC|Z>@SWP1l4RA<5AxVT_*1ltPD?-Jv!y_r2>v;Bue;fSp?H=XWlD7ito|v zy8n|Xt4MDl+6*=2jb;r@ju1El0CLg%fNmM(-!=0T6?4aq??WVUF!aN^#O6snAr|+| z%e>U#NoY5d#9T%L2gA4(`c~0^+bv2@STs_Vq}`3Ut?cLQ@t0GN$RuOwQmI~TN`v46 zzVtE={eQ3ckOSOEATygGrQzlYFa`u*lCU^h#Rz=b@Eb?hlK)H6uwaAs@}fpUe(FFM z;o`rJA!ym)9-&gU!XW!=DEsNzu*R@v;CdHhJlzNnb%a`nuk3(^&Nny<39n#SZjZR; zS9ZB(gvXiz0?)PRbZN0KYqWpJjw15Q%iVkG-CI!4uW$dEpyF__o zqFYQrd3(`0H8;0bQn$CvopFhN>PhZ@divJv(%O%%!7%#H0A=FlmgrQ|*Kj`HOA9FL z;Y#O1!o=~2ZV^g?s`F0FSLWbtk69*$Y?f7}z|)fcUs^LR9b&;-I=EmY!KB z?=_$PS&jRdEoBE&l66RNc-7Oo59It73Jl;M3f`*Gs{bzXHoMpFX`NDw#^q$Pjv30$ zflb_1LeF(Px3jxytFEbJN~?D_9O!+iXNpu}tkRFqrrbxkIYqrKny9OsXN+3BVAJx| z%nBw{3Zq>Z)GfkWiBpI1&nC(>oJ$)!YNzULPYuAV?8bqbXydg53ev96B%PLMUZeSX z)|)pdK!&vPC71EXo}^7bii; z$lT^W$r4T25>wAMM+Ww{9EFB>ayhWK3OpBXQHYG96Y*F-@BmA4>=SQA;id25X+x@7_fh8rOgpxoC#n9h> zi=OqtE0INU&85-7B=Ju``=eRWK|e1GT#k^WfzMED%X7o>dw?OZR{HEl@$KUnm`5_0 zl#|(XSwFFXaDb})(3DkT2}I8iU+5;3F$QQqjrucnKfVa0#WZ!GswV|ATNn677#A8O z8;l!vh_VEh9;MGL{~3!)!dh2)qm%Yjq^|!)HwZjF<85C-=`3ydfwH45uBz8&n8uQ6 z2i@CbVKD5q5F^&Nm>9;8eFMf>y{G>@sB31drwChHN3BcX)n?L@#re@8_E|L1N%}jg z(ew~z!$<2#POTY8i(UtS5(K9_nk{H6auI6Pot>k2p=Sbc&BWKhctY>=Em-wR%s_mU z@k%9@5A>}cKAkaP{cQ-SA@rqSY+V~qsxI7+Pk2@<$tmp9f>mTDm3<+PF*g}Kxg!XA zJDWpmffTJm7(T&d$YErq%ENneBL3cUco}};zENvYvZu?0H=80e2+_A263CZE^L`&Y zo_#TQMW)E`wF{SjxpEmv!7s$VR@8Bt8%fGgPk^lZ(06(6>hdz$$JDN?asF?(%>xgs zJ6F8XSuIMcUG#M+slaY9r=M$ncg403tCB^n@t*mm@)~+QlSQ%V{y(2!)z*O_^Spg$ z?~-O1hDG&?d}mht$F+^W%s#soX2i0aD9VlD#)lP`s}{g|DJ^r<+<*cmnx7RMF7BY_ zm(PqH-Hebx@|ErW{em$!E`mC12Dq^+OchQ{8up!tE@H0AR5><|<+)nZXhS5iWX;nTV)g*pQ~MU zVyE37R4bOzbMJN3gbVUDHoS*mh`EkLPFxt;ztn3*JW4G7S%*0|zxjO{yCW>l`C*t& z+9S#glZK6h;6Yo}UZ6v|c$y9m-j=7x&tR6lPXZBo37^cQA-Hpnv%cq+ zmU}R=f@HNkMSLbIi8)Ec#XF@?>2thp0%29VY@=oHPT_x(hut*~5=l%!778CWy3%s+ zeAz)*|AOnn($lA9@90|GGLnCx;jD)-G~MnH`fOy1)?mTUnNBl=&R%Kfjlw$hJX^PWn_8kf+GqsqmO5P3jCVL|DuKKJ5U z-kQN=vkimL8j%Jkcet9?PDIbD5nmxa1m_bH$sQvvj`87lDNfj{T@EZ&GD-RpinS?OaQ2SP0W}hUZKXFl%qEV9^xbX9R6M zqaFR^EHon;%%T4p0v15ch#s%|GSBP}^r*`Eme5NPb9I?mM7|x*ne{SjTTj;z(vA;h z#_K(?Z7u`GC8;ehOg7u0<3T<8iNsE*XBvx#F2$gPqi7(-ZSJDfff6gH7XP1b_3+`4 zChQ9m%wY@=>N|<^YzqH`{heSs`m-`6z3v(fR$4bHV-{PV5 z`Hpth&G8-oskz_AFx&m;lvR_r#xrI@1)ioZvFCrIHYbcrD8)A(^!e(OHP&-lTo5)f}<=C+=E*u|h5_R~Zw5hPEPS_r@oxzEZa*izP+3R5bSAfKKTlPCG5>H7z86L;QX;oE~CM zbZn!hC@#=b{RJZP3&h>#DkVU%85kx-A^~)RQMzI0Z;g4MFFoKmNg9^JG3mPCP_cJt zFkg{D85K2Vg~bM|!y5SPO<% zQQwmrshf#tGJ1J68EBbe#S@$E>1>+%m*9f|r@Kn&TjERXhZ6XDUyC{vhqKc8Hw6QX zCWzcY3tQvy(5S#%P|ygEnTj?#zy3KE1E`(WS_eWJakKJcwKuj_cqTRGK)rXxNb+GMLJt^NCxCZDwO@Pg}r)K9r6?r!lC&!JB=s zhwj(4nyDiAt9bC=2xe+kAuN6C-(n#)Sl#thm0Sqlj6}GzHvAzIl*rx=!Sa7cYWxi~ zzUWCHERP9*Byl0g5Q%~~)X_D&vt|xE<*S1+OD`CcOz=1j`WAyZi(`5%7EJR~+DGvC zyx1L69rm3b^5YdvJR&cx7{+C)4t5BJL(M^K-{Oh9fcQ1qvDVRCuuXid2eVA!0dPK6_<8Lw{8EaU)|;?b|0zc z4Wf8>Jm$AoX?Xi`Fvk=*fVi59A&t}knK459w-S4r&Qk+pM{-sR*rI}1v2$LD9!XC_$kMuA$>m*H=WsH|c)Rb(chbsV^l%(6nLC_5 zs-FOe&%6G*w*H@Hf_4egj@etNLNJv-Ru_EZ@jko`fvfi3jnOo@lY`J;ayyPNpp~RY zdkE_F`?6^jq(137+vQ_!Wj+qx!Rfo|10f6!KaI<$-$Kx&hq|c|Z?8lr>g?;OB3HyW zkL{mzm;cxLAu_#JcOo-&*kkb-zC^skKg6d>Q%039%mdTXf2ms=Ot1JCmAvSF1F17u zouImUIU&a|)n>{;Bae#|_2s#U`x_(!&FXP7XP~=q={|9>^j4+{jCUk~JNecrkV;Nx zKMFpd&j!J;wl^3b8FX$zHVwVCg9D39%gE%87anV56mHhz2SaK68tc8|^Dnng#IZRP zt4BzVpEg-1k462GQ5ig%a;^hp`bf!((q|3>j;Ag@YFx@_2o1V)EjYW|>7yG7kFGtV z$0s`<;VKUje*g91*D32$hw}$u7GeyU(kgSefU6iCA+b4G`EV_dPsxi66jX6QyPy%k zhXj&ns`wA=eJJ_eIPk~z*e`KS)!caghK$W9xM9S$ubep?Dg`ZSQb2kQ84*p#t3nE6 ztWVEdeu2X_Tkt5~48uipJv{OAN7T4Z{d{pzd#*DHATDaMy7z`mcLJ{m;@Ivf_Y-<- zYNrL{a2|=LFOVpvkU_G6)Ej#Tp)oQ~n-hKDe!*i5a92rXM^Zt#WgmE13FHYtkIgMN zo0PGN_-lf})G?MzkITMyxFH$w!S~V>k2$7X9wlPWW#v+9M$(piLiZYi=E(y`)iakRZ@EVy} zepisz`Y7wz>dx`#cuYRgB;OVJo)7p4`3q2UrA?$~vhRyjP366|TJHF#X;%-wso&l) z&_C}~Av`kR(=BncNq9^gWEhg$#X3<=mcQX~q5CzYtL~Ou?;Je$hNE1e!gx z83`oA5V~HCa-?!Z-%k!EUj8h-ASMLQ&+N4S?z`SDT-=&}@#uj??6ERt!&C~)ld64_ z7@;eOj3M30ERXg$o}5UeSC5;Mb@Z(VGK^@L8%`2CRr0O_DKv`4Qpgtkv~E^fzI~&p zgn70?zhguLzC|#3^p{91gjVx~y3c7P?=EE)hf~>BU@7@)I5UlzIfK@Y=2O$ zx83n(2sfLTwvFc{525|;i}F;SPo4IEE3LcFN^pB5Zcz7g(BAu!#D||Q!c@q$%NtCR zC{NzTN2jJ*mVxbT}RFH_LFRvXUb2m|B z&US<*lgM60R874vD$ouB*aTjXQP!Gf=*}Cn*xyMdDMR@$!}5=&2wgo)ESrrQETeql z$)XMHxsPbTPE5j+k4?NinJ;Rjz4tArTXI+4w2gaPl&jYN?YI-eSn545yEA=u z-j1q2b9Q6H_=>ycR+OT`#@QQ?RrXkYYJxYlO|CYtse%Dl2nAf0Wb(`;S%SEwr zBmV?+hoaDtNRIxTBeagt9bepxXdXdSZS|bU6!qP;%IG@6E3^i?#y4$yAz_!r4>l); zbxY(P0am>6{1>w|iI1q#C}53ddvxLJ42zg9Xi>XOsCHYzFayoJNpw+IgDL50*x2 zyzk?0r99i|2G81TVyMDurb(O!8@W&pmS1KpxVy(^b9*$dEaK_;Bo>MSToAQVA;qq8 zvbFIu2>PBVW0p-m9=A{!9kwKA0fUMn6FVezo>L^h+6ja(-7mbDZEv*2=?tt;O~}fI zD;={x08Ikyjf)hLT&o6tfWWfnj7hd|D@I^hcKU>%KpK5W`{_;D82ea#OK{XgjCrU` ziJSYD^dp@F0fBgWdh>>j@8b_O1Eyk?iJlLSw4HM1al6ozRKgu1{iS#C0{^fLV3HQk zO6R`ZsWAW^XJ169U2SaHdE>J_9QSQ%3SjB|#7zRe2N~t@%M<6B6H0@%IpkcR235O# zk8yk(_mB?2DDHRb+8EXJ;&dT>x-Ik-pc#M+!S1JTHRZk2M;5&O&@41`zHe0_QBU7G zDu2xdZX&DFfe@|(gEouk`pHyp`9F~2t9v*BPguoUeJd= zQO;kJJZ6-`fgCGz&1J1d_jn-tn$Cx)TLso)tZkPCGE;_Ypy9d}4*u)KzxnHPwHe_9 zD`Ukz9MCBb>htsTj?5%Hc=I=#8+>?%{cN}n) z7V&NP1tK&z%5SPYA#idX4KqRHzS~}VZw<9x11C5~$f}f~IIK$Ao$AA27?Z4pB)*_q zb@UJ|mnBzUuE&X2!NV!@Bs*y?{aG1aUuiPmGoC16+_Wq)$DKJIFPB~a-5`Zn)YL)I zD?^WILdjOS*)jz9y_uG_a(fq>R(s4QFr08v{dk^M_Mgflh5^2NQaJBxBXURFXc||B zcntJ54G0tnjA~hP>mRXd!Dt7jIH#9S$R@lnA1bU#&(JH;yGXU1A>4~iY$%^8H2f|g z<|Py7dRNCQdT@8=l&;6#%vcEd;rg8(ZAWCHN=)9Qgz(R$5Rrh@_uHDw*Y2dISk40) z>==)IwfH&$oPmAx%P|gvwPu%e-~`L&2&Llz3xkInQ|Zy<-i-b%eIa<}D6g20c$3s`qilDteJ|ota`Pu3eU_;DB3- zua-S;9S!1sx(|n9)5u4n#;?_II;6jEd$xP-x0^VubjDVa2Ktb{e6@3@?E=6zV z2|0LSOb6^Jd<@+{uPvweoQ&@Z6Gqui3#sD?@+%SVoIpbQ>v;7FaHav34rsorSt#8* z4t*Oe`h&93{s@NcXP)76k_c6o1Xlh;pKahWU6Q00CM2(|)pPcNF zMzI}bC-v5eClxZ|h%!FYY}+!)WE~HHT-tGL_3Ae-7pxbvv?cR-WmyndbxHfPAisL(mpt?DWWr%xTOmGf!QVOIa`Cx+WaiMxiu+Q^glxnu3t=j?lr*`Wbb0 z*$bSBB>+wC)On?`?L&A`DttmsXF1y-yn*IzMIw;_Xs*Pl-~cN@KH*<7(mEg;*zFz# zrq8Out_Pgwu@oAkvO~ZJLcYI5wXIHUy`h57TeSCuz@uKDZ}N?0h3Tsx-V(BmrISFW zzZGd%1Z30vd4+2hT2n5?W_^!&oBT7R*mYpyu;@fejOt_|)*4C@6)DGDxlSaK|ek{R+ zcHCzG#77B;C2jz#MWqaX@95Onb()|g_*ksBQRnn0uYbnh-+32z=ZU{JHY#HwR{88F zTc&%|rLXH{`EG>1W#2*faLDPf8Kw)t%{@Y520!?nZ6~_)XPL%BVJsxXvSSW-UtSjI zfMom5kM2lTF&;YkG=4>9zN~rz-Ft7A9R%7_S?!9$lJSx&F20r_tSAi=GRhi|eN4K` zdAqly34_z+eBC;yMsi_)**$(n5XvMHRw1)$m6K&WJ^-v31`f*!uV+233wQBT`vL;} zL%31n5cdbM)fN?ujpvKn$_(%zAGRlk+#)86IM_LZE zO52q{6z;&p?ZqrPI$i4>Zgp>uj=jRME;NrV>F5~B^3qt7veYSO6cF$9Mq;nXp?3E3 zvWKi&yDg58T&<$V2Rc~{+D=p;{QO(`bhoaXe3snZ4C8I-5+Y|eZa>^ktA7IF-q5AC zi#2p0BKEJcKP5dpNA8_!YnqYxs;NWH;^RA|_w&(md%#~3N@}nr1(}oGx}DPT<`j+N zNQ*#2IlY8Z6N@L^n8f#}K4erdZnyD$4s#reTQe!A8i&UI<}HjMe~;O95|Y@Hz`Jf^ z^g1%l7yzPLr9Gz#Nm^|)KP9S4PggjV1x*eDdd@Ui`D!ttmML?9{5;tV1M=t|0PlD+ z_lrM?oy7ZKk_SNxk%26^-#J5d9n#Vv2+)*&^?KmrPjUxe%dW_%{&#=K)CI{o@INQ? z)=A*$Sd_dz0^|G#RZz6$*dybLe(3}IfYUDvqp{Wzx{^x76dRU8?s)zfGqANAS8OOP zi{gX(ibe2!QRa(s7Z<5?{cZ6#Q|LhqUv(`lj_z`?G4LU3daF)SPTq1c>oMxSHp}t# z_(z$Nw*Z#rrE+#{E|Vk=LVCX8@@ zM2z#i-|E2vsBsegE)y>qZ&x!8;+|f{dH)^FSkLp_%ByzWB~cN(r1RU@zfP-KVQ$RX zS`~jM|I*SA(h~`qS1-#0X%xKI-h_|kMi$)NH;dOr(n)~qo`8JEeYL zFVvc8L%Bw-LjmNp&TiW;e)xs~3Z9`pO~B$C38$a$iXMj@W0fCjg{I~`51u&^(_Z)PvVp3luO zcHW|^`t7uqXPQ+8VaM$28J8XZtQ^(uElBc#vcY4rBljP9R6etIio?6lDK-2Jb;)dG z9VjxEXr%>f#2(aXj?We_V*KUL7-(dY+kS`sh-)N2Sd@=Xr+v_sXia<*&0+X(aXtr# zL5MhK)`89DtEk+)7j$KYjiH%vnDFH7SyKXP=lWie-#$F#FAIvOzjCRjeiz2ejR|0m z_`uPSFqirtDpG+GZ{dEs__`8?f|k2o@!%^>Su=vi1UV5MYHYo(6Dw{RlT`L^?kGG7 zt=ZR<8INQ6@j=^1Z(RUCNPNdfKtGPR5sngCZJ2+(nxc`My|%l{S8w&s>&8Lg_-YHa zhYj+bfrC7RJZzKH7ri8X%I1G2@2eD_fB*N9DgxZ!z8B=-WJv?VBo{wyGMJFmwT8?> znPhcXExR^RJ2%31O4lIgs$(c`g2+T^=na3r48mbuKk zJ;^xAh7_39V~>G!(O!t!zLUKCajm=VDZTEQIn-@3IknIc(i07ydnYqr3} z8NBP0D}N>3XWS6x-+qCxHo+#*J5MISbce038OJj;^A^P`N6`3|5eHZk;D-f=XkdYC z(QmGZ`lLtXgnY-)Oi^>g2pPVWf3JMnFmC$uHC${Esa9(T>XEl|l`Rs8K^O9j8v(Og zW~33}9{)MO3u2hS3K5PmZ!gm45js#A}V^JX96$JcA%4&=o0t zcIjkw4JXy<%forpgqxO=#47C;Ug;=humPy%?_`_1!lK+-&u45L~PU zpSQUVuBn+yhP}422p6ZFaFaB3i<@%Wo+~9p?R1l$9Yi=2%nYh)K2%BS*Oq;Q7gdG`pM z0ewe0LWJsTN}tWG&U4uZ0%ecv-i4ci_X56s&fB6O#JNcK`=@D!;=9thzXlo*7}Jt_ zh+&ZNxRwr1OP65IKK`@uGns?AmJzWFZAtk<9DjwRHGWKotk0aVp<Y7MkBU;9j;lCmYxgIS4@3Drl3F z?>rL}f($4t5!YhwOvaGv9_X@C3XF8z9Mp)Ii4Z+KAbYPA@ka*HE1wh64?~ zjhGatf8n%l-Mm{ue$e_d z!GsNbz|H0kUvDKVWLk+djdh~E@?E{j;Xm=ZN?5#CQd)Xk;?{t6ueY2iQu^NYWb{9x zM`9O?Ro(~}7QG{Qb}qJfcS|8oKCW_?XJ@+NFLB?^Myd4bVF+y!bGHdfj&0u<*jM}E z0$;y4y%(gdxELwzkw5zrIrw8f3W(`Z$*ax#e2*YRjj^RKG`ZqLqmT2u?INj69RN24 z_@Pu&%SX?_ZwAL!JT3dy=BPQriuR3AY2MF_#6WYB+#RxZ+N0HPrhU*rEal|c2;asM zKvtl^h0l8O`APY@{f^9!yFLDyx*3ox;6jxilv1U0Dwj{9gN6rmm+2~Ss|?wNtS=>T zow=X7xow(!JFHR2?FxQ9-seI5L5Fo?4#BO_7T|S{{G#p)iqKq-^?m zEFGx(cbe986aEA^cs^b9ZHp|jKU-oFO0 zZoNi%;xsks*$eyg|K*1`AywqeDA7U$T$?`j3}K{k3!XHta0r~0;MC(f?;|uxRU3HS zhsVOI!F?xPYa9`uz#Hfz1Zp6{RT?b4M^H;(=#@%sJ)9DOQhczR6hVF5+Tl-!k0RyE z^kWH-P9r|%6cRSQ&6`*}5$2`7SD~r-Cdk-8Blrj}MjK7Gj3Ay|UhRXhjR`&F_VkYu z4DkEHB2oh|plfer^W@h@geYhx3vKNUms1bI9H`9$+C$uP#Vr zAqIoCCI4TIie<7vJXSI9tN}`~s{Uv|uPJNoV{VUDk?gSUB)B$bHxG=B?TV9=iEHQB z6%-V9W~!n)DZC=MEeF2W*7j7H4t1S1oBPrCj*Y{i_j3j|AAU)7I^PRm&Q`_a{%Mxo zM8u|^GvMb*TUCLxt=4&%-&gz0b;tDDk zD$%9fqGjJFoR9#iqf+`)M=hnWrfb@Vrso5KvSj8IGmJ=xs)B}inI=|CGyGN@)=&?) zMe*7S<_ka1vX;ZC2aM~ez@TmPiO0~%FXNMzOQ}?$GkR{@bf;>E|z%%_|p4h!jE-XLP zxuG=0B$KY(&S;YC-V=2mqugPzxIq7q#ld4sqr-RDau$ZT)OTV!OnO<}BaFBrnl;6o zjc;oOwRi*tZ`akN7hMfjip$)9wV!g{oW3u|@&r-c<2{1bwaBVk3 zy+>3BZokUlVU3$rP$nTL#UUm3_AGqj9t3KAO~EB}mWcl&c>j6olap6_>`8#fD=LXt zEJV*^-Se!0wQ%pE?{4f4R|5xiQvxJhX7Zjv>-3fq(HwsPjHB6(42(-)NWfu4i7rOP zIswtD8UxZ#rWOr+VEZcc%c@75++7=@!SFW53X!d#3QG>exyu$#)Jsk0z-~uLB!Sbg z7CEm*+#Wy$h9j(y909*Jb*-d#T1+9~L6b=OP^-P+r{gy9oB{nsZy|SNZo_qfByt2#LgPM#*U|p(7EU?98U1C+A}dt67WuEk`t-ZA1aYv1%2`2E!wbV2 zb>3r|VjB62m@7g6WC1FN4FaqieR$~OLIH7KS#Ur`urDU4&;mco*v8Z;dwh{H8>4TD zt(OSIXkyWW!DsZCp0BpGrnV_%NkL1u{@fw5DATEC7`*M?YtrG_6&~=(?3?dP%k_lo z`9LIAjoz!ER&5^N{+OX4&2l90JJ3D_?o2Pj0N~$UrrVM~P0>bE&Pi zXYH%on>*Io`haCvE^;}v*Ls$im5&|Y3k9MBRI|>X-_JPt+p}>*z_YR{@7yNO)@jo% z9v|3E6M_R&D9{^*nlp)X4_eB(vAX;}kM{HH88VU7e^&p+jn*#u`b6nin)fjlXVrY5 zj3WR@AT|dRjmvYM$Z}Ty-xB;;`>0>uVliHr03RL4FJ)t7y*gTf5cT_5#I*sTSy-z8 zY!@(-vso&N&-i=_y%{{rMxl}EI72Xd7-D#JfjPckL~}Q2hik{uai;Mn4}A9W|7+dP z$t`vK^K0JhS8Os5YW``=eNlbW%@23XF&w^t$Tg6|-8l}3ets!NEoDL7aH>M7EZ{mcHae>gdj{sx94&CG0^O26S zoH}&{d}Y=Nr#s5p%mpCz>oZgS*U=IXKJV!A@~g0B#oxzUvkjqrZyGin1{-nq1vR{s zM7_sf03`$?l#kf)GCQTH;IFX+FkvOJnZuEZ!Ssc-Y(`7Kxv#VeKzP-3-pBCtI!a2+ z)go#zb!Mr|nq17~)jH`}T|?zO0fuob9i3c2LD-{~h0C;sr5G8CrJ+oT>*A)lDxBGeF}M{;DXnWA|4GHdC1!Px$Wr}1takBRKBJ!yWdKxwn4euD0C`96 z&-=L3aQoLP6Z&J4Ss@=qV;+)bMu?Gj3e6z33^Jv&Sa9G3+6a-Sh+~7ofCgau<~yBt z^ch?!OTMJxP?X*0pK_Cn1x>QH?MzpB8)(4|pMaauQ`vo{wi(S7-1-Pw-v7oX)!`p; zbLRhc5;~^e)=cYYjocolxB@oBrloZR-_GR&#agb_^BDRV>PwvBFWlX@c2V9ygjUdp z*Ad7IJnxepoKnC`?rHdoxS!L>tLOc%Xho|ah7jUaWpS8Pc(|)l_*ry(_UjisON3mX znKI?3L2b^jf5$3^ZgAg&!js>bBe1LkL+V;}hJcxO&aoNBX#8}8edij^tkki~ncEF+ zjS8Wro0W6NLA7MUs3UygLQ+GRyJ8`zV$^}Z8bE(>{BlqrrUwSAH1 z+@gD4U}L4Yrj%fCpv z8k1|M$qxH;Gon+AoO7)1lyh(?q`jY7{o#9%dBre#9Nr!dlS17WarrR-SMT74!A(zc z4gZPA|FW>H?%ifhd=?EIEIEB9U-LtFePqwSMh!_lF5g0FnP*9&a~t~hf*$o*>PMe7 z^bFA|g<-YJ+lupr=dtT<$sB(@Y#aahB$V!zoHcg7wxEmrNJ{h(OMG^&cd49cuA!}* zKLoc-7rBmfo965pBBOwV4gsGlp+MUb;`cg%%=Z5T&16QB&gSF$<@XKu_bBaOx@u}w zCa0$l%YLQ|_^6QMyyDKEuk|Dz-eslj|_^Oz5=^w>=6a3ZeFU zYnO&Qs&m8~|1TbopF~KZSoQ~#m`Dh7sVmm%0jge^wE0*a1@7uZU@1;W{&Kxy4>+FUf$At#1PsoUcxBf99 znF$f*^x5<1+U$(%(zWtUIxO-bVXEsycJ~d;wS1OR!II96#5itOn=!7j#Zk{{_>uNu zz4`3hDXUPff_`YKq3tN-J_r7}(AYl?x8Wv5!m2*@rVLzfrjVL#8|zy0s`6N|6AF^3 zBpgFYh~*6HX8QQUw)%vPP!+4I4Zl1kf-vZ}C!bGmj`0QWN*=@9>}Q_!}vwbj-ug(nZhOFks=FFdF$Z=LjxOU-y9kBD(2i*-aFk>s>U}B z>7#*51LyBTd4lt}W)wq9gY_`dCK9GoQ+tOw^_2(KtE63m&BR-m80m-y z9|_cr(C0BU@nIe~n>dXs~7MbsuewuAFIz zSCmfG>{ilD?E5Se#TQZv3RG>^{Bb41W7eiH&RJviAHc*OJR8=bq67}cjWR+IQ2he6)AVyC)%uEbH9 z7I&eVmx*e7j%GdYvws3nGq5HG(bX*A69XUc=O0m-^Y`jkt^`# zCn%fA#>zBip%i`X*W!(1iZ)xrP#xR?XOW$~0XKkQ(>2@h(1f2t^@uHDlt5dMz7{PL zFGKM{N5h~D%hSFL<|aB^WfxWb$t9c;S@8Z$uxe4DW7;9MqJ0(g)kWP-arO0`3jjVOUbp8*C;=G z-F<+HRA-x*4Q|2t1BKWBi*t@7{#z-4gCSuE*qfOd8m#Hs|E{IRy1n*pZyHsNPaO*bI8+nn7RFoL) z$-pvI!t3_zRy=~~g`A0&Is-b*xIjuFQ|wLplpuYzJCvVv1m{@t4_%^f3O5=lN*YBH z8iPfxk_8X4_;P)bik9_6qcx`Ov%K7qZd0Vb+QWj8~1C;z~1S< zBom$d&I(2H%;q6{SFcUx$izgpWYEE-S%POe+dRzYP@g^|t?Qpw?izN)x9+O9;nuuDnu)?2@?_`xfUksW*KKcHgtDjYzEM{Gz+&N}Dg$6v#}8AXep0Y1 zD5_wN?&tSe2Ks2>mXglAyoxc7f@k}*nk1a)DU`kraZ3;VtPfK-`wS;&LL2d2v|{~3 zS$uEP2B41*V)*Qaww%e)XP1jD?>UQ|{OaL}WpYZa^qZRWG)9Xvk&=&htFT-DT%cIB{1G9oZ_EN|}@79|_5lh1Jb9xG2 ze}K~wh`QGNZg)vaJ`->!qIIs#ojRKe)fbr!&Rix@O!SJ3%DWM~MxTq%Mmq4!A6^Y+}KN8t}%&@zojQm0f%*l@cOd z(|U+ocDWD8`jRuwOkSJWb&IVfqx|Y1f17K;>d~=I{dwm(V!Lxoj}3f%S}Ap*XI-TF z%bMo09$X?(Y7;|fif#c+NuTc>eVlWPv2yXSVS`J_w3OhU-ff?^j{f1W&nu)?SAjFq zo37*ar|!1I%I{Sc#~nQHeuXX`5!Yl|D@9$Fpjv7bCAZ`P_JiH0{7W_UgumF{P8`2- zO@r<%Jwy^@NV!4AxePZ?oyo+E%FL5SwH)}qNQl2D`ON~hR2m;n+a2bA?%*)}4e_Bx z>#|~>aT3;^rJvdhR&U>PWBaw_?UI`2&~SBANqEaJCfp`8va|6N>;yQnHoDzXn<+B( zPSH~=FS@OEdDAL<+aZwzzKRO>$2s!s`zo?HiH)vaT# z%o#`$QM}6O+~>Bw$4lSar5}4UgS0O?4O zr<*8V3NCsDD9V_2h|_G5gvHj8!kM47x)t@=QH#HQ6;1ds&}Wr6c`hK3wPDMb#lok& zd5XU1^Is4h#*Z)Ir00i7%p<&3JJ^b>NXm)sF)llq>I>OBS6>gyKg~tB>)P$IG(!FN zmwe2Uq?C%wWLqNQh}7iD_n90HP{XWl+|AoYLhC7HOSta-;9oj$&X9FzsPxFhGULD& zhDf6bHr9%GLZMtUKAVIW%4wvr2z;a{aa&v&v94B}%5PuI(W^l}YokorB4IL6k>Jah zbA}z%S$tHo;Lcr4DM^nqZW4{Iv|_OIcv}x;ZsPcEP0FS^ymkHPOK9aMyWXwe+2Baym0qx*t$@Xh@69Ye9?i7+d`5>gC9gO) z&6?6vZfS0nlVzy5I&lsKMiNwzyMCO$Unc)Kq|P?;vumZSvLzsOPxCHiK1k&mYq4|l0UoE(cU_ktC7U8=|a`1FejynwAfZ1 za)8pC)Eg-AdhXn7$Ku78>FhU(c&PMa`imaT#RD45nRuxh>VN8~I!`k8CH<%U$rzJ* z6U#7(CcTC0nL&;5gRiMNd)>mcbJ4}EyKNNypndWY*@!qys6CK3OF5~pQDvz81G40a zj$G-y%}!~O+>~4TfGsG?|0&_{q45hQ_q;%?s@fyVmUDJ58ZhG>E*Y+JacCNlRaJJi z_I*!`MwZq8XM!ACsn8nJPFsjDG^9&!goadyUrqk3#8Nw52`*4KpPvvTdO)WYdJoHK zcG|u;z=5SQaE+SDYSIN!t-sLO751m<=WL$&lQ96lPS(-+E|M3*bcV!GvYqL$?ofr5 z-Y4RT%7!MP-9o?DW)^11NRk(WKUBj^mxHP6Cm zBEPvSIbadx#bfzrAdAaQMbPLr7e_nzsH-(ly~~PswGnN!H)%Tg$V{HB_?P0Z!$g9H z-0yT|y5k_+DV%9d1x_6~++=7(8aNA;lx>@EzP8QFE*y#3FlEvFizQSO@ImKZyb@t4VU^6%8rIEH@4wq*HNu+WkQ8KBw}b+zlV551~z)N z!g3EdGGam0RI((EBmkc}goz_f_4{Nrg{%J?-=*$wzT}@wHPzXx+L|Q^T59HrxjU<# z2=%$rZz`O<+D7vG8i#ux!~7H-Lxf)hb*etBtKvm3kO2G9NCuas%q!<5c`1C#z?)8) zXPnL%1AD$8TBs)n(VWJKJa6}^kZyBKR4s?xtO`={e_R>Ui*MgJSvy+nNvq;T4@xlH zpyLX)3O~@Ok7ts-@RTPI;7r-9@4<8{sp*jCkc1UlbB@haO*}%IlApJWBvK3)#HM5ZhRYhho5)vEpHd>clB6r~iN@bUK zAr|};ij}>k968b83Dzvufe$#7nunTLv*tcdg(kTfmJuOjEGVkH&~AAac5n^y9a-m& zT{b?K?o9(+V}RKFxQ7k_9xtW;mfVyEdT`}wOk6w9D^N$aq1;0kxdYP3{##rfI=4Ca z1;l-86?$l9Io)1+a+US@>~;l}nvYbF9JcXCE9~)}ogK*uBB)4Tg&RiQKtzQxTF>qQ zg{IB1l1seQ#d{y~2_7!M3Rc5<9>@NUAvqHxFK4N(NH=Rw_^(VTJ#K{0u_2?s$J2yO z)z`??uTqwy>{L>9(4~!I**{w!ny%$#B03WKmu+fSkimj;|1HA~aU$A0v5Vb$KVcG6 zIK#M>4|E1vA7d#@t{`AX20nXT*w5$C@Rsfs zXJ!y1+I~gh)tZhDZh)Cm&^x^bv6iu-q)C2`w2c&f!*cRuN-uXJt|rFi>whk3Zb}wL zKA?k3j_QM)X-Df23MpBbnyqr?;$+e!M)Z;8499dYfw~(_!gJ{tMmdWMs5o*p@YD%P zFQJjEkr^ygHon6w9s=AcnGB|pdZ5+hA+~7fP#~4aQLroSC?XZhQD}? zEBWu$SiKeE)nG0nILZ%yL>4&6q!6_A>3#a&4ztv&o4=I)N`>ikpKvU?GV%;jy>cFe zm*4X*#BmvmOulMxV5{7;HcYJGv^NcM`J85__l=E_4}WueTLOTj3CzYhL4VhxVJ($4 zpLiAQI;ZC|J+?a6LM2V_zIQ*b| zoC!_f8ZcCv+KM!6YTVZYXXCDN>84Ws-$3=lZgrA^$UNzIqfh}AE;5xOV&iKhD3JihrC`h}j80{~UXG{IeA>Rm3r zY&t%eENM0)1=(?k$zs07IgvkPG(M!W)2Yz~jt?yO_?=FZZE${;14Q(q3vz`VqUOw1 zD#dK9t?t1`VwJB0X;JdD$+9%`XRC?wW0&c@;@s8-q_25+yEB-gxlwpQ(+>`HgYtAH zQdW^W_d~~ASu6F;qz_>+>0gYY%{3tv>?t2YqABlm*j?w3V%+36F6f~m($>Tp_TzO1 zOxCe$Tyut&xkTr>?akB1^|l&Hi&p#hl^9 zrHSi!F8~SK6*6;44rJO}r++y?IQ9M^(BP*v{pAMT*|$qp7Pzd3aB=PHJjf7LSrjAQ zw)T7CfX9IQ4v3QHfM{DBsC?)0ellULO^mg=)%Caxn9)=?TX9M+oeH$!k-QdjammzM z+SK#y{1wTaM0|krI&MUXZTQe6D0j!%yGc?sU-Tb(Ut^F+5gn1XkJ;L2*-}jg3(|n4 zQ48c=CW|P(jpu`tqo+CprljAchku&?#mEE6?PUkgMMFCsVLP%iYHH z7drLj2}m61-2Lx%F?4Kw!4snNadD@ER867kU!3tye=K-~JpDl_N$bsQ*ueE)wkk>u zc{o3B&P;7^gMbvtdpu-`f?3KXoWyXEh)dfEV$67Ldv+tilGvEn>PId(>Jel{q(RJ> zQ1mqgI31r|$26{nP-J@!S$FE*_#}DNUsRAqZUy)=ENGyyUCnc00~!O}7k4WqQwO(^ zdGu4SPawR9oB3)yOT4=w)Rx^9oXoy!I{D-5J}6g6ZEDaWVTP%Qt~sJ7)CKB zt}kY31e?mucq!rM5};N7+%Z$Y;p7QF6z;ekqrsKNr!(OUqWZ)01Z~Zi;#losC(*^x zSh%3S(j~O6hf43FlDxNwdK=|v0#?ZZOoywFUTe|6v-LZ~9ZoOzYv^vic0Eq_{>no=b7TN}{pl zz3+0uBmua|0P8_u>h%>~xv=phWcok!Z5{V=jDAA*_Al41k1Y>g%g| z@#nccD}CIzyvhcX%>ZG;;zGxYQ?}f}W`_A4kw#D4Vjl^q;+pn*C)}SNrH;faQsc4+DAtFc#j=oZ19vDUYcVt)yipWmKN5RJ}|~Yi@>JtQLs4KKL;l9e zOQbZCDc*|r>cNfLEFC#gg(J3!iiTsu;%G3?Xui2a*uGsvRNy6B$7;F?0B|bkSzgl* z>~}Ho>dxUg*>RN1 TogAEMKo6M=Gs9va3eVKE6DUC+qgbac3o;BQ0h*%7!H}XZ% zx!BReDvJYGJVBeQxi@W_zzY;-c-BpPuIYm(;RJ2*AD9y7X6bn<3? z$(k23hL-sd1{sU8SCKzKxB_)EI49{W9693+^`6tYBQ`>{KU&1smvj1i$_h;jdCVu! zGZahp>D{wtO7U%Wu{X5r2L55wthhm6rugNh$A%gv>!)s!hBNb2Uvq|s50GD%-0}Gk@Cfy zC#?ADb7$dQ(?v;(yR%?hO?r!IvyyrJErouFam1mNi7!;=XZ~EFR>lu{Xdgz3Qp}iJ zjGe*Eh2H0ib6uN^-h$5YmKUH`wO>=Yi>B(-gPS-C^z0N7mb1_(&=}(ywIJZo?&Z!J zLL&45*kLg^j26@hdeF_z%{!ZTn5Ok6hWgh*2z4M+v?RXazd$b!=Pma#M^xTbV{nN9 z6noMQp*UxaDe+=KJcj$_H+^H4PN=6CHvp> zp&oE?_SxQ~_w`(Nr3j*yaLNU}!$b8Qcte*dvD*MoIrsZv$rueCp2zq2vgxosVpw%y z{TdrAo$%o3lhP)QWF0>dXdIKqI}%Ac(q$W9b#=pR9)J1I$Ws{*47Z$b?MAlr?BDI; z=dzpaq*J6#-Ch#-svBkxcrSH1K|swmV~}k#^4kfr`2yVq{R`voL1XF6?)C4hY?x5n zwojC52bpe|M6i>WFBuC77RB_9IVW(K}#po3~SMv@#w5ISb!{69q zXe1vgeCLWBy*^5gCvIGUhsUyHN>94=M=Jv&L7k>X`O)AZBbw(KVZZ#TJWrHA$@V^* zj4V?z{(nO1gKs)@3=$|n)7az%|B*eiGEIS%Gq*`H}O{y{UM$<&~-fB zKSXTI6il&;S>qBA{o)?Gb(x~Orwg?rjwtp=Wzd-ahVyfQTduoM-JpMA?O))Ai*Y5~ zWPqxyf4{oW3!dARO3pI{zGQ-fEHCu*A`yaXM|LIy|Iec(ly6!%QkXM^8goUXKKwvN zh&r^e-+RQQ$$rtbq}o?i5O%OnS-4NjXGN^Bnt?q7&DPBxns5``h7moHRJZu$M4@X8oM?LiYZ?9L>LmE zFrRM}HV}J{_gsU6M4doQDzNyVZkD6>4MFZ=vL!u{ztP3g0%TKz?wRVK)Cv2u;yv(E zl;F_(x!!^R#<1;FMYflcDbLH1h+ZC3I^F3jD6T!*2Cr6_ms@%j6vm)CpOqmXO^)fy z&h~Y>*lEO{3F(p$=m9lT7MAba`{kk48nn)*rNW+M9%uHFX0vEb+LV8I4081ukFP7f zjFkgqXT1gcYv1ozcequ2DEn+6>P~6*zIm0qq*EyB^s{!+5^(ZVo!}6m(rXm*gzCqZ zP6$>-{j-n9=MpFv$qL4|Mu9EBT$p|XzQ@Hm)D$$z#RH!|mpeOg#xlxmMx3{Y?w~-H z)j|Q#iXs1sFQQnPR5oTPFqRS-a^XTQPXG{i3qhhKmphvlQ5_rKDy`dypw7TPZb|`x zHv8H7mlg(;)B8+x(>gOY$Um1jwiiBDjTG6eM;S6QG-*fMT+}*;z6;T3UCS+SH1g4E z8LcwmW#dZuD`$&QjQ?c^#h4%O(@@|L_;dgh2ka)GXD1tV?MScuA}GVI#Mk{kY-~?M zTs-}S49{fN`^{uX4`{k3jWpB)?wo>rD)Is38by~x(i~Ig9NNAy$^(6GJ#b#rmeBOn z>i3DAy0}g`d0o4c23QhB0RqiU$i*TnE}m~*e2`uXRAyka7%sUw=ot#o8ay81)A|bd zOX7p^PjMMa6NLx}d=T)?o?quHIWNU2nf(}LyV374eYCgNC5)@9XQoQ_+Docj!T@Rk zP~L(N0N%;q=iG_{1;o@XfTtA$)*8S@=QjaA=+AVBCi@t)7J+W{^d?{iLXZY1Zji&t za^iwm9C_UU=feG=aMWX(i(8M3wWt(}g{|^j9&X0MzI^2t*0AH^P!zr5Da=F3dj8qq zz?cc)Iz&OBvSyxlC!Gy$Sa?D|c@02L z>$h>L2mED7rRS`vdYe|^_GkBYq9{4T);M=&b(1{0dwNP1ChGMDb9D64AyO~tE_WXn zrl%CkIg>MlTB5?%oQ>;cal`hRWYn3!KP;Mp8Q;r9(+AkYNbc=|sdnuM12mX8D*+D` zCyT`@!r6|7sPE1R)y54c#mdoFMp7nxTVh)H!>U{-3O=o=1mLF1e6P~7IXY9$zH})i z!kV^#g(3n?k^?MK=5{9@ChELisranO0hao~Q3@kDxq91LH3e6PqS)dHG?Vq_$(-%0 zYXlUd+y$YyzKWNAw%a@`c3<-NRqQHQ?7ta1hugEGA8gC@ zRYN`(M1Yy$QY6Qm+LC*#$Vs29TK>~FOJA9M{QRSJ*4J?kP*xWo#>h;?iqkppDq&6S zA%RvhGUm6V?=^kNX0332#e23YC*%47aPf`|7&%h@ex#hv*4f(D_K;XvcwmyjV00oa!vV-@g z>WvhaIWA1i;aWEz#12Kz(t-7gDHuUnv)BPHXm@MM4$DIGt&{ED-)jF zhw}vpx3&EHSoLKPG&B#E8YD^CV(VZ`r4yLAS!zN5S0qvQ6=w)lAeyS3IWkt5@!cHjNk z`sk(mg{6(B72T9@SgU<+k2zb_`8&IKa4>)HdDP{DPJ$Nwc%lkXWT43YCuAfsQvKO+ z?9DTFG+7=8oyl8VnXZjp@4TXhz9nz(H~=wcq)QmQ?0cid2Fzc5@R<*-uHCa7WSH=^ zqAWp>=g4xS;$|KBu+Ste&d}TaDx`_K4mA)*a6k_)(bx6?~bH1DRwX{&BJOR3`nZ!Bnz&3fivOFaYlW(a^)O9tL{G-v;@2 z!ux;e5=oJg)dH3gB<~`#B{;r3K0Fm40E@m@0cC}DMNd~3BJRPheRsR?2vr1pK~*2(IqyaNxG#Tkd+9my8j8Xo&v6Vk&QKVmxbf3rudNfJGaJGq}hF@CRrukpjWh5;h%`ykE$4jt+ zWh*-pn+RZ(e)esaU@^?a2MQJ=-b`+7A$lV1mT#AKi*+5{eJvL#eDtODxyraE#$|n_Y61Nwp-zAnl+gaFr}7^w z&iMJs-8SRwDb3m-Aoyik_J~_JzBj2;F5gf)OH1JX#}VOjPT1c^{uyT~o)d=@$x_kj z9IAFS*XqWF=L7E1x{Tq{=~lrrxJ7NNYksfmi|0TDg8o4wMOv>Jro^VA7=Q6N=}mt- zU=2dLeCg=0Ipcfyzr^PVdkCZf3>Fyicf#N$ft#g2V)`=R#fum7tzOC3*IwAb>x4#fT{1&8nDokzbj|QF z04U^FFEnpCE@Sep7!5%4Sydz%&wxe?@MKNuQ@Yk!t&dKj5ECE6Ov(_*ic3xiQ=%Fj z0DNVAto^;cL!p|wV4KkKtV=l8fCvC;jdVC79ef}UF0l}aH>B})TZ*i~8xJ{#-7RI8 z_JsN#oM|k4%X*b!E-ks4ZT?HEVcQkwm5gE|r&d{`adYt8Y;q9`+z^<9;R|*&=>2bU zn@Qg7*KDAB$izFpmpS1=5gGq=il`;O4#3601I;6$D<8H0?(-bmvoKlMnRDtW2sqX*a51~+*ym?r`;f_vnXL}j%5u# zB0t>1(;TEsjzF+8sKjcxYoh7|&NwWDUawQc5QvY&ei65A}&s zzj7cBGced&yAk#Gtr6$Qr^28)n)$p5V3SC@_qbt@$G#o%9+2*`KOIsi01*cA43H}n@?@;l&B1(vseqawUP@_o z-7YnE!`Y!IoT}46^jCX-+vNmrv?%Okl;Gt6Ixcd8S>WY9yCw<7O6sB7f!_3|^=!XC zbTy{@^A4}OKSTmJGLFO?pZ){7Jb}}l+;(3<#12YG2#`zx1;g<7Uu)i`0rZMr$J946 z-*XS?AIQ9NJL_3z?D%tnC@7;v^e3!G@Lz_%jkNS8v<0KBtS?mulGUb25#C57= z;mv8~_x6nfKnRrM6a91pxqL97@-KcH51dnU@r+{=bM>xdkGo|1ns?wB6Bh-1Wks*)1~dvtNeq z?S=DdcjT0>f5+o(#|VSy39z*C`2}0%`KEq;*!aBJL-cw5bYnn^DaFTcsZzi3N*1jA zJ;}Xn-Ac@b!vL{+7Rvv)6U|rZ4#v}4c&+pzhnlS~HvOH*=<5lu8W%-n7%wzQBw5+x z%bK^z1f&SVW^K0Nj5?uAxDXhyb`Uvba%I!uyxfqFxp$ z9!IRFK(~lUoy2IwFB+SVzTv{toEmrlv>%p^0!;^2UcsRDme8O^TLG#mgS!VG8;|IA zaH-SOz~OiYl%q7ahzypl(+-^*Hk1pI&0mgQp|oX8em|fqQvh`^h-gE_!)7w3svLbg z8`wZjq*N|fAoreII!2yG8Me};_dk84wCrLK)$$Dj2ouE=%nn6gs`H6jPaYj{ zgsvWL%&`(?p;S=j;zp&d{{esfa-0>Hq76;y-@!(<7KxYNfVT(O9_A3#+} zvn)dOOpqF8XH53&2}9*rQfZ||AVx;$xQg!R&3o9%Tjj^5yjw=S)_L6hTw^=M=6*1H z-g|kg*zr&CZbJ2*;K@Oba230Bg(Z4krh1aqah-LyKk~32x3qRE3cTiG{TEXM=GhrX{0k2IOsuI(t^I z1-69~;*X-&U;D>fPJ!st)hIbe{s&h0c`h)IftQ&-IlB!$|8P z-Otg)HKkgqTzI$e)qh=B1X?$Vg7*q^&ne^Snrm)h8Bw6&R%A2_$0C1r+izVPiK==C z(C4q3mpCn9+r;j5%R&Hp{Hb_+z{(Jg-;M{cB}Ob-#IARRmfi-{SRZXjfY>OVriM9h zxg}mHq1iTV`~pHCFNKS&=RHwXJ6Vq=`SD1PEWOvsx?a-Y6*?~N^T1*U+6Y`>sx&uI zN(K@i;o*({yS9_ZVaUrJw;qpi{`b|7JWu z?9vrl9a+%(g1xmEequyXn0+nHa+ol3NPOU)I^59Fr3l1TkSVJb?5 z2!Y9UGxo*No1MjzjU0w~GE1Am;S6$zRDTZN+^j}PwK=+$%`yP355Ts{D$h1-u>hDK z@*0{wdFbQTn(@1HQ(F>#f<&PHUX!4>&bc85FH=j1utib+>yHRypKgLk(94li z#4d?QlTTAbD)U*A zGBkIPXuUSC;6VVd{RJ@VtuXxdEkX?7Oxgaj^z*@645Q6GIN>W(otnz2LGjPEuj-8= zdd-r)MqF9(_{h}aXti`>yku^0xDz6M-D`h$JqCPD@t{teKdd~(CyC?DQEUW+|iN}Y^)-@J}RX+PrP;HcTy z!^g)5f!i8>bUl{V-tB+Q{uny-$>$)S0@h$}cdIh%UOnYwIK{6Sq1msrasxscZ9b5g zyfdWibIBOC$=2V&OO|4*dSY(ytz!Y^7}p21e>El9tN%2@t2SyIvuS*%{HBL~2RP2# z)RlZ)|05OFaQNRGfZhsra<))Gb5*~RnEM;BuJ*7uuYitbtk=jH%JCn^_wX6FQDp17 z?X#c+6Af~5d@-PqmcCn1{P$*pQP85&(z#}?BsB~(bq(RlaW)~`7qa1u#>M;ewqIYD-fBE4i#l0oV7}ij*Cu$-UAGcrlbso%^Eu8NH zq365?!c+qTYD`HxzW+@5OA7+%-oxE81_lP}l9V@pw*8;-?WmUdmz0^A89s@jBc{$IVu1f^<%!oX9m;mD7|FRcx zZLtBRjIC;(J}BjQ=Z9N6$s_+h=% z?6ops(}1GWvd-?y+YSnF!svsG z#eI!5<(NRzro3QLQ@Q31CY+e9=H7;S;A2CrhuJ*D0{|SmiGj{7JxeoORf*#iT)OEX zNQ7SHlflG$ahxhdFaH5Jcifb5lwZoW#Q5RH<-(*kS7>y3FK>RovL5*Q$Hn)PuH9Mv zO2`plX{tIt91pFp(vJUj^@-N!BvOV`hK98G1+bud`b7|h&}n732+D9Y@s!TK&g9o? z4nBAeG^s#w)!99ay<1FCKlCsBHui6oylBz)SuS*m<3Mn6=VNydD84_S0)+Qpup{?o z&8duk`2T1sQoMlNt$b^J*ymT$zrIkm4gS<(0#h#c_V)DK!Jpyv_4S6i&mDd_`i%}J ziSZD#fAv%miw$PFo1i}0Uuf|dxV)PmxhKoJ>SmC6Y?<2Q;N!deGnKAdKJTy#bSx1C z0Y|8J4}7Tw9}^6+(^-y(^vNCS-5w^#>jsJNfVAun2RVWKdWOhzVX@_LqDil%Ku$$_ zpssVSoQyAq#Ek&ZiG?==g1YHrW={+z>P5ua+SeNAbY5&7mcEGn9Fl*4Jc{=Y$m=Y9UX$( zTuFk4+M7f(J=4zu=V}Y}xs*QDML93+bpbD?KY8(X?`rDy+O<(hy*dIa!As zwto;1$E}^^(LI`>(@IPyXbOb3!nT_Y#Fk}zpRP*NNaBG7Z^*UxNO8KBfM5>D7@zd_ zW8AMm0}unc-SmDN+M3JZP#V{)LA=yGfYVyZof`W4`IU9ILAM-z3TVyB=7 z0z3pn-)=X^qz^rZ04HTcL2p^pzto)>8~8GiFS>>zrW5xwC5N zQsL{A7D9J_fHJzRs!mNI&YtC^N8n)^tqIM4y-o65Q zw)LG4?cUHnK*~;gptmas@@5{lxjH6Zcjfq*z+V9GrCwO@3eZ3&N@x^iYwu)Ihzv** zAcHJ$i(i(g*_1yA1UZ2R`3f{Z(syWb8hGFDVcMj=@E;YLIz4oa%Lzh1#sRpxlx%wZ zki-{1O>b~Eo{5U)%yEdh3}y|G-jnk_70Hfr&mOu}@46eR?{hlNJQjNm5sxEPAwf^f z)bdVA-X@rbxAHVeZ1juoI>y5Z<)gEOg~io%-lG?{^4fHbseZdZE#&5~T8s^#HRW{2 zpq2z_pOc;=83TvD*mq9azbeksLau}DD%6s~Y%NyGu_ z+d@pr?8cHG+UM3dpozjLF-|BBVM$KOF&%^rtw%#N9fCV*K38LiHqY z##Lt$RcVWxO$R`tUeSAvmd#JWf|wt)FW4$YKtBK=INXqVD@>=><6QAEQov6EuZ^C4 zz{U+(=HT&NJ6;g(mzDO~=}llKtCD+Mz+;q`5U2`_7_sQ6RJd92(Hz#_l*ANHG_g2sf$`N4AT=B1j^n ztWB5y@Mg2F+Kc9Oo*>!yX4M;GeHJJJt`f2+_O!io1m6KkLMRRjSJPEoarTs?q6g3j zB8x{HT>m(?dQ>HV=Ka!=kxW7s7VC5ok)j|&xDSN=|4L~cs||WL>3Bc6)*Q!rcZ~D+ z?%X@)sr-5K*Cs`?MCF9Y|AdIvv={8q)xM;X5FWi=0$G=%zB~LMHHC#DS;4`^UA32|Tl9$kVS=r;6`t zu;(?9MM14$GfY<)@;rDD82Zwpiw)h?9Ti4{1L-jD3878_TCU!b1;8DnnU%Iy=>Su* zqd_?h&P+nLT&Ic|_eJW))B>T480d#V3>6s&Rr`wB74V8BEBX z=;Oghs!l0A(=vM(CmLlv&24?QYSsql;DEN2QkMfg!MF@0ZKKf0K=#wt&@AC})un~(Z>>6*Jy)7SCW)ocw-&5K(Lw*w)?inyKNr|@&e z6at*{dxy)TypE~S2_LWlG^!anjH_?#6k!AZLhGYZMxPyI;L?tm7g!xecXH~G!FU`S zc!6UJkmeK1oY2?eZV<3FVu4mQS-Q9mon;CJL>KZYB_2eFEd!HdCT= zU0*b?<2U5?xZzcRqa|1RH~@^DBQ5Ash+1?RKx0Cv%NBaT3r)FCQZpP#sSZmG3i`$gEZidS$|jk@C#}uUO>h;wM1M?nUzybH08YDX~Z_Ja|b93I`?L@d>Er~?QHjBSjJf8K`p%2`z~2-p%-iiMSptD`8tjDx@YY&I zMXWRf9T!O1(X7Eh3M&bxm$!ZbzrCA+i{%W;FEU0L_&H*r=&*!2uv40A?$&o@c(iio zs`bby1ETQ;P2!WG4X_R`-=i{Xan8lN=?K!-=l1;S`)5@EAebTJG)G*S8crG~>q=QY z&2;weKHwiE&!G!JLoBV8G@V zJzaULoYpBw{Pskm#f0j9gBP&zw`X{JFNyK^(D%*LYy+W7LV?zuZ7*6#Q)LT4ad3go zCbV1o#KK3k!Z2E938kPnHH0Z&hyv)-514_FtnRuS$<%^^0nAQVYy@O~CYkgkNDXVx ze|$mJ#lw9LeE0OV&IITN>}E!{5lM2#&ro{-ism@m?ef2u(ApI9e3|x79T{-%b}PjJ z`yuFuoZ1pxnaM#@qHdOGNf-ql@|unPd*1waDY33ivry6RqxLuhX9DjMEtdWysO{;_ z+ikDoF@fr4T+#4>QgsMODt{V~AMfXOl`ihNYnC`Ruj6B&f1rW(LFEVarV6s7?77T< zPjaX@&iEF%K$?pc-#|yV=O8OKIl!>daX&HN5c&1s+Mo;@{Qf1I1wRQEECY-B3$paM(t$;(eHsH&1hgC}@}=v^7>ca;Q!n@hTI%YiP7nd+Vo;5v zCLMW?FJJ5$3GCdolul1@Mp^dsuQ&5#(|6ZROnJg>{lHo-)7D&oOP=PxA4&2_Sg@(5 zsdY3POl4@LqNpdbe-E-`sex=iKh<>i6P&CnlF0V< zga4aK!20`Z!yzu7vX&w+Am_#&h!e|9eQTje-Gjb7{5769Ij&7*W0q%> z2y<9KDT{r!X97-ZpA~27R&pG(*4U`}A?QPaQ7Adu)x7QLT5NzLN|xL21ROy?Fx2UO z4eUkDYaCh8_{q?QFiJnTaI&sFBSy;TiPebP^=vHRl7}4#P-~vQN&{*7%j;xTCP>|| z(rnKWT(9{7@V=$(O_nu$JQhn2Ug43TS^*?2krwSxX%g7TBAD^O!P6U&z^X+$hDrS;@??7#Q<%0W_)fY35kw@*fd@{ zc>K;*3Ul-YU*>@Dr|d$Bj86)Wx=ITE-*uscXny-fBBMC&7$?~->~#mQgK$>VJW|Nk zvBG}2gDNT-mP}Ih_of>V6XzKpObw27(SmS4{1#cRQ61W%e8hkKKmNuM-4x*p4cJsZ zx9XK-PpX*#kWB!nZBjGoHJkWli|bhGvFOy_CrUl6&c9~1Pp0&>AR52sS6=x2T}0Hs zNky|!fF}zq|V+-U)8z3^4R|n`^faTI%@hv(dX_VmXjvm!t^- z_0o$C0(Oe5d3xM7mkmF-yvC~0d=ywXAbaf~JA9n^^sE4+AuJCbNvXpHWEzCf2^de?|Jcp+M#`th4&+m+M@;W{ z+}>ARvVh{a2f&7*E>Sj9WGM8}m@GL>5X%d1nJ~BWwZ!7wGBC)c;FR1L9-dgUo5a&RiFQpY}c=OBt)a&Flx%ACT2WZ#UO2 zZn<+sNqhNyj#Q9=og>*ih1Fk_hbPjb^y(k$_fQM#dwUaND*%@5?xP@|#NqYTl`#^L zn)sLytfb(*kO9Y5OPpbHcOU4k8CBz)UU3@_` zJItV3eVP$n&w333-|k7gch6Al<*sTxz_Bmm&)#W3UBgPxQ0`sVq)n=Jpeq;DDJ8Q8 zN;(P73pIOEM-)J-P)>tp)woxL)bKEzGGzMGd$^N29fEj3@!`9SNLqQ(b{yYvSzL+M z!f6qnj9Z5qCjaOm zb@`wJUcuG}!(50DrbCT;du-xIK7Bixmq-jwwiXN<0HtFPZYT+5b}JWx>wUn80k~sP zu}UuiXOI%t2YK?fn>N|6-XH`$LsL_LgXubQCUnC9q*13!T;tM5D)1FscBve>PWiO{ zb3t=@)Xk(x6iiP^-Q&^${vSM%|3}wZMrFA^U7S)uK`9aGZjep^=>{ojR8l&nK}G5A z21yBN=~PJpDd}#I?uK{p{J*|yxz2}k&O&|e`?;=}J$wJAO8TI1S7W8%z{vCs>G6JLYcWZ$mQuAo(vFMuKly!qu-$@9P5NJk#Hj7-nt z?V7rKeG8(N>t0y^a0&dk;84;D8Zh5NBM+ImdaKY9$XI~~rQb`TYg+^lU zY%tSG348>ZeQ%Q+!f5+Np0^+y<23j=G89ye@}4YA6!Nqh&CKKhUTz%qo`ld|OCd#3 z4DjG%`5}o!h@0&1Mg$lvbhy59-6+hGOdmkVS+H}<>k9GxovPyfAT54eS$D0n9o#IW zpSmAq5>&-mbDu7*aorqyU{>!vPo0qa_IpV1R}u+3@|0@BAp2)l+3eOt5TZz3*>|7OqYZR?D~<;0mOyqa@k3x})d zXw*?==greT;;cou)M;*tpb8EWCQv}^c|+Du18?G+V;qbuARpFA`^Vj+7vAWX-~ftO zNq9m7mU%;(FXVS2562%#H-CqGt-9M%sMI*{#in*9+T64PG1U1zAl5+D27m#tleNuL zZ`+kOFEBIAreh8fuiL*A@8p$R{5d~bbprg4UzpPFcS;;6j6Na3L~g8wSY*>h%+PNR zj4_q?5*dmMh|rnlCc>X*My0t`E2HB==@u9E;3|3uT?dirC z$bLUW#?|^f?d&^3h557@xt_Jup}X&9kfL(KCIrP=#`Rqn`Oy4VZ#ZtS>i=M)MsRidkD zH6I~e{S}P?4@R48JJA#kp~gw0VU)+>A}5T5zrJP0m6wZ!DAu^Hh_;rvB1u8ih zFO9f;=WbVfIVxn3&7U0~Uo#**_&Rjs9t9c9rVVKa3*55&OE>7IaRnV~!WQ*}pQ;HF zWLoBrJx<*|J|Iq_!U+qN9&x9MN;;aV_3dgt+VQ?I8#@#TV&}I&ebcGX{)KspoKPcN z9LNQFV6p*6rCgU_>;z5k#_#e!?2kuT^aj5>i79q3jq1skj0PUvC2fJ|1e9SAn_P2Q z4fUh*e-qfz&D!F&FaFEk6LN6i6O4FGoxF6WtG@*mq7r%bUL&&cUgu`fOaEZbE~}5R zTRXoDl7xkImfA|H9sz^Lqqkp1$lg8>90L7ZdeAcI4KBLh0-;U3gcv2wV4&W3_K1_4P4>=opgvap{gf z(jw=>i3hAq!uAMvj-R|2U_Tt@ivRD*=kY5=@IYxi?!bLCd~USB4%%J!L(o7!t)1v< zZ7-Z4Zfnzpwvax9NVK_T`tlhfWV9H}9!?yd{tcmlGY3YY6GshTr-HMRsR{!ce7hT5 z%!d`JbL~*l$N?&Nyz;TIWy^pea~Ir7l&T4LNT{!RV)#WcBcfCvUJ16RrEnRyUI(Y90~!;%xH`I{j`wRoQSkZ`C;A(4v(*DG$Lj?%Jqhb(J@Poc!}vge+xLvo1oXpKgTL z)FBreJWwmPCpdk7Pl>7!>#Zd9EXU#rqvjbIpuCoLn6-Cd?+Ix`kicb~3_taj*Ksa= z3giyg_tzhx8az^Hy1MxiKi*$vhkm*FteJ);sNSQXr`-L<6$OW#N*Bb+;er4*%`5JA zE29pt+^N*eIQhUcYU<4Pedy53=peq+*2w%^Uwy<@CRf>J3t&qWcan|H0uZ@JC5n6}&mn#eOrr1x+m5F}PRvYh*yzXps^Hjld%V>81xG`q7s%rGL0j;Ib^Evvq-Pio0zbF(u`D$VI)X^U!xI8tiw>;1GsU9PmZJ z#zt~W#|8p9V1e<5VVp{?lO+VivkcgkwtuTCwpJ>j)%kV-1Z8jLrPka~D|b@jsEdj7 zhp^=2dG{~{s{o6~qa={u7is2}Du%grB|6a)a7ex4Cp3j*+IX1^OM1z3+1Kt@9r6yg zdxZ%nR*qW`_sn8YRcs$scUgB@cq)9?x9HFkz$O$pnURWywTOCy+2a+gdhZU-7&D&r z2IsshZ2Y+9i;8N5(~nzX9huBqqEe(FJ!3D>C=Ggo#J5>L_CBXJKTrff z8(D?_a{TA4i41Q1Z!>&FwW%Cwq`|R{xd}F1mf~ZeA^7DC*qC!j;QM|Hkv>=pm6BA2 zzuZQ_)6rM^)u`U@hl*Ma20z=l1K9{of(GRUKO}G?pBr(iQ^h?GU>sOo886q(FV-YV zkaZ|9BSRz4S?7odVY7WIKOu%K;oaA?%~fycJjd*k^Pfu6V{%i)9KNpJ0X9*4aO}Ea z?G+uq>qqkuFvGP%N(jB37QAbIg(P1zYQ@;>Xm7*Y?{R4o6iu_g=n;B-^^1LbRDE_R z`~D|#eayX^3e~U?xLhjyl@iicG^nDDE){J+s7UCfJ()I)l3%H8FNfomu?i+>kJ_Uk zsK1fgWmWUC>+tkqi2yXCHdB^D!y0Gq_WKGsryZSU5PQe1+rs{t)I)fafX*RqU`5Y6 zw1NwEEnc2J8&M+6g%oY{tmC$6+~nDjLh2eGS}}wnfbfVj0LlG5qFSH$hk&QQWeHe zUujf9(nRt1$DE!)y!hF>={A^p{@+Wuj(@LN>T|eS!f1NqhMOnruhfa=LuBY*!Pse0 zA>`ggF9fiKM`7|XO&zD8sZZzNMJIn4rInji4Y{+br)QNxOn1LJG6^|a24+yRe zJAD1-@T{2h)5Vwt6I3NuzonBHO#co%>Abv92HA3LAcfj!O z?dz29ISiG0J}9J~2EJj*@#88nRo|CigsR9+&95F_yss#dD71+R?aWdONL?ZiK)RPL zP+Y?_Mdz@@4cQ)m}+f5;{UIHu_3;ZEH)NbH*{E#e#GV_ufy)|#02+P*<(mUgBh3CH1-*ya%mIh+$G8%qSjr$tjh1Gyk03TPA-*2uPiI;0@W z5XxU%Qg?&c%t3+np2^;Ri<*eiOpeI_T!>9T&Y5V`v3nAK6kIy&km_@Odr$a2cXA!` zlnBvneVZ*wFI<=uI$lOJa}bf5;+HVp4S!BOpD!<|8sG5-x=^yW4ZPCz|0)N|$TF7udo?7Bk(_bdbw;3OKa4VpXY@RpX0vYUDz`kE4z!V8nk z{vB2|-|(CN4OedJmH@)HDIf{}_Y&xD_lbylSCXp6Aqxz()UOhCu}O+6q9?QF%=z8| zT#t+qQnkQ4C3N^O%AVhsLI#uzdz0+0-GohwZ6GW)+M7$g{`P0!bo0rKDDK?5%UQ4G zZT`rq&(l>mQ!TiQVao&$jEI`f5(+&2TE?`^Dn8T!;?p#;F>EDr0NSLB(%?s!y;q0#DCD5~qvCK48NsXbM~W{};x76uz~Z|}dG8g<1KaDItg7y@ zr~h5Qx^Vrnm9Qrp=;^M9w6uuRv_bO@+zGHaS9>*gRq1#fEOxJ+LwgKe8u&J09tOVf zVvOoyM)H&tE$Ekvf2wqLe4K&ieQG-?9dP~I)Uk0MhEX6 zcD_8@V?*vIf(L(|R|x_L;vdyvRJ9gIjTnWT_-8txqUGbl-%yjqJ&*4;7r6Vn_d)KV z)$d}bnki1`u)sJ4ta|L;uwdyM1H~}>F&x`X)1wV)z-Q%Ugn(9Ub9)v*R1Xd({|i@4 zq(LhpeikcNXfsHhhzmlZG<6|4YCp?oQUr1!@c|9+9h`;E8!VsmlyzF+8{8Ss$&bCM zqwKfc>;znh8}GpYpXoyVo;l{ycmb(VX0H^R_bJo zDSzG2hxJp$s>ItG!|q_S-;*jXQrXnX6jo|Ay2-9Y?YrL40E-Ov8b!Yv@`}Z6y^ykT z+`Rp0_zWi1mO|fQ4#iDthwrN_sN0^kgYPr*(_hG9A=l|7EoWij!8$9h3|aawuyBE^ zOE-eV6?@GE5vEKxZWAi-dP1V8+KV;6c7oLs{%)tA>}TF2kfDO04zo&d=ELg)X8vQM zlxI=Y`GP^AbC6ktsm9J}7gxSjlB{GVUkM1~J5)61-JieOO6b0 zuH~UnNQHo{A~Ii`?V%w%A*i3AEy8eTAhCrp$O`ljEq(os@ByQv=tyvBn+pbA;+TPK zKnAg9!dEpyI6%G3_Y`u;{V|mI`#dfF_9&YsKdLCy8C7ZxhrSeL)8&wNU-{_AC~q>~ zJ^8R{?=SSU9>zW(R6*l|@9CKtxOqoW5ulrLy$29XZv28U_IEX=ir0;}cLlN#Q0xQA z$8b=KrhL4TvIS#h+kPS|T7|Dh?BVpfF(rOYwgAuqibw-Wfh_t~=DvhJ4NgFPJJ(xu z@9?(fobhr@|GhJ~=-0GJpk)eadzJKh!E4A97-HiU@DM-(%scTcb^4ny3GhXpC+?#gM0U@PX)$ zxEioXK}N5?526e-MbZ~NL;PQs?SblpMXQ>GuoP1B~#uq&A z{DKT5$e`5>3oeMvKj%6JUM#c?jlZw)pm3u+Mg~J0`h;OkcKLAWY2U6Hl(ffvF}mwI z7juk^7rOb0xzS(10xV zZNU7Jk$6AVH{=`=$`C|UUDtxsRXd7LD9M;Ta}GW1-4q!R>1T##>e*5XofJ^NA0h3@ zJe)X^!jYQ5aOo@9DH-Aa?@+u7ewW#V2o)BvDynoK=o2E|9dmf~M)>P=`3_p{;Rdr6 zxyHyjzyYT1BO&h487v7V0T@l6GQRa%4S1umVQHE>HV?n-2riZuE?Pi_9*y&;bNwU2_A4+15FqeAq-^0Fr6L=OAYQ-Fz2d&Gbu(<&)BF|^lwB+IaR(O1Ct+IfN|UFJYO>}L%x#?*Jm zr$#c(PTNh_Rdtwky=g#}f=|+h=ccy{C|j2|D3fM;2m^?3ej4jK5WS+i`}LcGHTPS9 z3J~0)u)!BTij8!XhcM%J(6iuo1j^+2{HMgU#a8|rp!Y}j1NQSZMz1pK&g2Dj7ffi%qx=PG?9>eMA=S?j5f?nKpI&)_T?`U3!)XB{4Fo#1EP3rOKO-||~JgFz8g36O0zkTq7K zZ`Bq0g~bHWzRz%*9a=&qPtii}BC)gI$T;6_KWx<&+`I)aoYg_x%CkV8Mgkprud5w3D5h48B57GP~ zfDW?;j{ExQOdHqSvX0$^H`g0p_lJgxI^B9r_KFZz{a(}d^SpZ?^_BF~pEEq*qwaA< z1%;U(PSb$}_wn-f&>0>vrTL#xb?Lo194*eJ!)u(sIDg&J6mFM<+Nkq-6H@6AP*d3oNwAoL2Eq34 z-!AEJ$D5iEqQ`13|6Mj<6Z@yYrVb37bwDKGpIHVVXlZ~Lm{34|4};P~WWS&x2<{E& z)V@O;cIO634#fYX7*$}*g4HozP1!i&u&C3NW#|L|NMGV=b;{0wJqe=&14umgIr=s% z;of+N1gmZg#%!;Y*uL9O%%9|JG=t}P`JOXTE1(oX!T)+}Az zOr;D&X;KDV?CHEo;UtDo^!Nk%GhN}oWrYtire{w@4JItk+(vUhOiY$U1j~q(EBaHQ zZ7|Su(ngO|2(R8DSD4C~E(hbFF8ts?qFk7PJshtEbP`RrEWp6LW(NkQtbQ+&p_;97 z4~4cihvpPVl7TYUNJ@dK{H|ohFIUXD2~p3pisk|ptYUgF(>;Gng>V>R&Lqb@_W8q`D-%A z6BQ&Jy)(gd6RDymo+uk};sIroTla+kjTffE{Is-35a}l!erH;Cf;+T^%G@tUGWd32 z(gd8FmvLfaM;>r5LqyBQ^d_YB~r zR>pmEK>P#q6D!ru_BO&*=Zdr7!216>#l{=GQ3Wa)E)1ZUc-~>W8L*s1i0wDr>4Is| z=@7{|V;*z6OA{`ro65xJ z6V$NRyvl@fa?U#!n8N5-x8gg*BZLTXrhxvC7cVax1Cq5TqxmXe#O&&Azd5+RZRp*6 zaZujd5hs4cH*eRb_KpYU$s&)pg!nCgs0~$k?gDb2#Q<8qSlAZ`28&V>d81ou&`slTaQ~h$ogYY($ zn(IW-)FtZA@YFTso9XcbGrAuatW-D}@f|H4Z4VP`e}Xl;>rj~r%X2g$IkXc@eB=~C z%*gKe?En;{D{D5=UI-W?ifF_Mr|MhGO`s~0{wL*TS-DN-uj_tw^7H(`09fc7NKPJ6 zPb+=4ff46p5zIGh+#!uUM%3y($C?1UoXC=@kCRMvoKI|unfCKIETCu%reXC)P}=^rUzM7;1So$Y z_dH2>px~Q?I&p>NX4%3Wh&63C&i6hL{ap+ z#TS0u2tvJTPtc1vu=Q{f@M%fPoPdO$SS!|GW9SN&0|<5B(CpZC0KS&G2BO|))7mTp zY&Pm~%5G|0@YBI2D40Y}*lJm>L5b@Y>zCsXj>SkiSX!4*Ei054IgsHgu8s{&CZpBI z;+c)-oABHo*^FM;88LL}l8f*WQ)WtR&5@zPQ2w9MHDlPhPcKYV<#nm?t1*&Ds#gNX z@3znq+EY__|6N**hc|}-l*2D;roqMru@jI`cj8tGKrDcPfIwg%SeMuCsb3vbsDu7p zO6|7LEDp_`P-|Yz)0wv=^1y2Z+d}jJ+jL!1x6cs#t{@UC4h-l`lHnVlZHj}&q`Ao! z7Zx>aq_4AO>%uOWufKm84(BlVC}2n@$82bn1q3jLD_!AN{~{Bxx8f+el9XqL`HW_O zz+Luu`&C!BgR$%IsOpqaj}{$8DGC(?5F|9>__IiUaDq>$@)2tZphA_s z(wA=KM!qL|Z++g80Vdlv4>lQ5tbXEmnj*BY!{&#hr#B|BVqv(OHvyWpe&du$Hcmq< znuG}hDVGb__yG{o-|v9=2`bmhIeWVb;J7GSy%MAQER7V%w0Cg@lymmX4Uv%tuu)>= zMctn>u(ePIBEj)PO-xxp-{I}gAO|(XdrS$;osT<>=kK;hQ`{HR+W*tq|Em)q{RJ@S z3_8}Np#59xhkqJC+-$_H1rSTI@lR+fCwn18JmQ$}glbf0`Y(#7TK}Dh=Q?ZgyjSZ92wp5fkmaap`sKRbO&O*>go89w8||bK)Zwix6kx zVRvM5W{Na-s-7V$!sZ0GFdN5Cr z$-fI`xa~22Zv@dl2=>B=C)ciC$CQ`4{}c6+Zu|wIil!jWk<$mLxpUh|7+m)~oxN|U zCUiRfZ}9M8Go;Z53axV`d1dK*@Q=r*_6AAOu4%D|;M-^Of9A7A{SglPM3yQ$#cA>r zEFRwv`Owq9<{l*MzlX|U2bsw>p9+>oBWF*`>mdCSO6m(E07$yZVg5LcVIhZ0r+azZ zU%2-HNL881p`|49W}edY?7Ku1%RVCRXREOu13GF6xPM2mfdkoM=X?c}sF-nNSLe~t&NOD#H*OlBM zI0(BqMAPWRmW5ctO^+0X273R~_v;%T!(?gpg(^sXPLHDChDdADg#q5x7-`B9pxpbp zC;P2T?d_mu!zJZo>w)5b()@|r&xfyQNMYwhqf=%8lQ*eog^m3ib|4u6s{$MzAXmUc z2uRrQY#r|L4Q09ubqg?rAW%%o%ND}^RaBsf$QXkmvUzNYC5N!&xgz+J!nS_eQ;zJ2 z(!*4j9bfSbY~?B;p*W-<4;0bg6U&ec|M7DPc}sl65%xFSP7a~em%s*WFbG^OS4aN% z?LjDNncK5|PfC?B4A0Qpf7(O8OWanA0(TFrBx8zJ z8Ex!c%VvQwqAwE~ycqV{h74cqjQHh5W7c$7fQ4buH47B!_6N$wi0XJ~9wi=W%@3sM zB04a{!o{PqV?S)UNUI!-KkYywaz`#&|DP7SWW|W^|AA&q+9$5&NUzARC$5j0>^8@_ zbVrP@uP!fszB_qvS_*tMo~3b!-q+nlV|j6YF&t;T2SSaG_)Gfiy}1R|8_N}VA$EU; zTT~zp>Er4rhcW`CY=fTqX7DUHC=nqJYZg@N?gC<^aS5&~SkR(tgU-tq)li)2l4n*j zzzy@2rRZn!c&=XW%&4va-vLuN?sVIV@h_m93ndXBUWuwHI~jX6&*gFEQ{4!>pBOk` zqux$<#shp}B`5UbhzxaD&(@D+qZ$_KV!Dq8Y|i$3n(LPGxDWAU^OP%6tpQidZS@me z)lk)cj8e{?YCft~9zl%nYG0cm0skj-e-ESj7V%-|1EO%{Twj&oe55}asy`A6iV))%Vk&9)zzrq=u!|Peppm09JsNpXDwqar5tr|*^?cYC?i}<`)=k&~9Mxsb zB#8BsSd^L2(IO}C{wwD|-2Yn145;UwkF56RZJF(I^3wRBy#}hL4J)tQg%X*RWedQ) z1G7Ca**1AO1hh4`5#H7%d|-=US{2v%-^g(rb2=7j=lI?A@o5XK(07}QHk+M|^4`6! zri-rnlldUsMvnwoG_-l-Bl_XpRqr*Q-+f|Hb@eM?k_6vi*wh#v>U-?Aw!2w@;dbV{ zjpAlzZLqHR;-z-fDY)ohlfh$fBnLBe4%gBY5C=6ZQNdmYSf5vjbL&uFdmDHXVo?%6 znvIVVhfjLy2-N7dBP19a5GB<(w`yU2f}y9qm1i@oDCl0q2L6m}-YDI87RT4S0^CtB z-LlOaUr9L+)M1zc3(r#J_uT}hKq_17?Do_-+@05>9!!jKU?@1LZ20bHOnLW4WA|D0 zcQ!O1;nw}lRg3bPH<3=Vw;z5GJf+BddHRO|X&C*J<+|`E07Vy!tCe%WCb6PYCgTa@ z3oz&MW)*kVy&!9`_ZTk{6Dm@XZSQDT-$Q$d@@Boi-;*ty;vR(_Sa2G`9(@8)tM{O! z0YM8_a+6}Z&xk?>=>uaQyY3D06=hGx$HyK9O0^-v?`lHHP@x`&PX6bh8T>4T2-pru zc!*fc@>cT0Fvlq`Y*>ZfPsZH&$_$M472{-yzV|mmOan=OTvE+CliqBVO%sWvUUp?U zA+i~$+f$#?+w9>D_Mt?;Mv$NtiTfj}F@CGX-MNBLo1Ghp$3Q~T^0|R@EhhElt50;w zb`R@#UJU#VlvB}_!A0}Ocd?yqtE^Jj<1QaCC9yef?<`tN<;FhnwtNV zR^d=%=D1QHccKlONr15$|>9|3vPxKf(g@2`^AV#}MQ=>g53M$xy^gX{GPgg0d!_X@bY z=GLf%yxi~R1cFFGO!EppFGt#w)~YNAKBbL zh9nYg>*U^%cRKH7y6zN7W$e6YSHnjmqbg+o^#fHvaD8|Zv8nLi&EaELkGz&Xw3C4) zZecqE-@jI^FHNMd?d@5*kQ%vUy}}1h@D>8JhmR-;e7Y}AUT^A1>UV54|3sts>l#v{ za@24^XW|_G7LhUMhv*p4bKIPor$=dnaen2<3KmZrM*0Zj+XzI80VdSkiUhPHQ zOP(M}|3zWOVC%@OgiD(|@z~yy`<=#a92LEQSln<2?H3s}bf5M(j)zvbw7OOej}K$% zy`_kfdKOTy-r3uQ!EZJ7HZ;%G8}P@bg-kiz?HVE~i`FWte%;+;ZE}kemEIIj)??#<=$69t z_6te7AAJ~F>!ZPw;h{@|1gG$SS&FQDlv-y}@2)En2*x>T^Qv4~k?K$}L00XxP?Ps5 z)*JhImqHwCp7S#G{GF6(j!#QnjPo9c<;_=iR!00SLtyCMYdR{Y0FoShiIsG>G5hn`b)%v=Eke9jd_@ajmy{GA28v+BRKklacK`N?`u`)VU;ZNlJH=xO}*BbzBG)$w4CIC&#T&?mfD) zjyKp{mBXbn1JPsNzb*B@Se$=#wqklB8F9gg>3nP^9^{pxS=6~oQHI=U7l2!Yer zYa-0}6ido!QC8i2@Eqc-D9ytEaoHr3JLhH7NOlxb z<$uw<)px5|%@|!GYumSlo^$U3UOJV`k0HSzxjI85tydMPUyM2&3ttHB$0e5cJ$twCL*DpUn5~8LLkCi)`Dvj%dD;! z!S#{#a>^BY61(xQXlFe{&Ek;=s(=>-Z`(HuUj)_EoV!N?1T2D53c+QsleWfXmm=+Q z!*p8Lb3&eS^iIe+F$J6}Qyhkq z6iHm7;h9r7n&5Jf$3d3eNX7jrdFuM<(tyb5nEcLre)-ND_M*dB8{{HKjJ)f}!}qYW>|ju7e?I8R9xzCdI{2U7 ze8T|G*K|@)w(j<5G`ew<`zi|7Bj{?%5UB8#m!w&KU3_`DE?Mc!eNxTLUtEvs9u(`xb*pO zpV4D2Y*wRyWR~rFitw!^lhMi}ceN=GquX@C?b7pRSGX)Z%pkL#<>2?JE!1il|%e)6fCyg(UZyr~|-p`+PMF=SWKtNxF zFUh$=!9-kbU5}KCM5pSNieIOO$~mIt8UCxJ@?OjXHs^x_Tw+tLl#tn4T=! zTXdVuNW@9J$fs#v35>>A`r!V_3wN*-sTSwDmQ_Z2Fq$@wu^W%eO%XUF8>L*fc}tx3 z=6Ibna!7~uZ6eI=AGAZu@=C@WPE)q6cYrySPFSkh?>c82BB>9x9_B475i%K7D&^*| z$N)`Bj!iGGipuNcEHk(k(UZf|leB8G%wAM?W;EXk{gby`cE6|NUd>pA);52&h&1@9ZM&Gov=snKjUVGvU=tSN7vZXtQ*MRZQB>d_DCUB0#7^jtdeHgJPZf%e4B5 z$P3Hlna8ENY;*}Wcu0C(w6X)994kkormyZ)E6aC2cd<-&RLb6FP9~c->75G*ST!uz zX0Wrzg2$XnWCo?oc|qc!AD=qxp$V zi7AGDm0gf_7QXB7?Z-4mqY8Tx`v#ZONM>@|lPFMJ=hEt)}A-`*(02 zxN4jsTuJO-x~*9r5y|G1&BTlmy6Rf!xV-L8@WB>I?yC~BPi%1;$%!4*%pV-QF;?dogbjx1Lo5tNdarnMRpg z9a^~pLQnk}B1oJp2hk{zel6iI4YB)(ipl;xB)zYaebS?waV@K+^MWRcdv!h0RYET}I37U_tXDL-LWc&Y>HwOLYA{Nw&q!_i17wVjuD1^=zz2*`{fu z*X!iZvJ~(Jj1p9XmW2`(*@oX^;_J1K`k5_)qj9udPGhUMFsl4!!$sjcTZ9tgTt zA@r+z#H}wAb9Bdv9XyKObB-0buem+a!-M#=>OF~hss_0=cY#OF7IxKg$ zD0T}ch2{%a%CNQzMc2ktTYG>_(cX>ADdh6aE{<<^Gt2B(Ur%6TDQU#Wbob+<%uh*r zein-FxdUw0HHAV+acI%}2ygA>w~Y46#!rllv2e9p9_kL);fciCeokFjNsV8z&3qP3 z<4Ak%C}nyNWLvk9Ws~;rYSfNeEkW3oXDqG?IhG9Fc!vT<)a2{Wi=cQHZc!_z*s^Ej zSR8&BFyxk+kRi#rd$+z?fZ`UMMq|%e9|lw|nf9tH8&*U}Vc+_}n{H*i+=EO@rHCyq zlJ!}R30@Ed^eh{}cZKQg>pIAZlwrIw^nYbdE-9KtJ7=FWD~ZHGm36gf;76r^i769x z=iW1+%O8%{HaEQ%$=jS;vtpR7Xcj>94~`H=)Klht&QpyCeRyLDoa(zj(7p{iAL_terLk=tLGn3dyAiP6Z^ps&K^73L~T@+#Fgg^4aw!R>o5$dXMaWqKIMf@x3%E z$`xjd>BPY9AudezpX;ohkvx{d zKQIiLo)|1je3ML2n(M5AsN(ReqTE4(^NkR}W!VJh*Z8KlOh)#wQ0P|gE+xw<#~s(X zAOF~;{B8YUZCpq~OeBulQdkt5y&$2Ce8E?S20tOVrGPKyR3+jAAsmI!*Pe-Q7D#K^ z)j?&TjTlR6XF)VY_vVki*2ZL^;CCvS>fthwE82Tf#q^_~k%4`mrgW?9BS%c|$gMGP zTF?ZL;~FBQMB?}~IpEObyd|>u;jwMg&Sd)e4ByTDqDq2x^C0>vkfAu;qg?*Q@5^B4 z6wj9hr%B_%M=-pjOQt+nnF$;Q-u7Q3ah(SHGt@(B*{ zWT2Zsm0*^Q-`8P>Xd1(T%_0XSVbPAG+wJ--24k}-4jwN{{YYDNt+dV)>S#^x9nh@d z+C^eh)7wS%(XBp^N2;kN~Tn$%Z%v-I=Y03%?4I0 zea>BPvRCd{8siI>rNvBlHN9GX_esP^qzbDo`TXRPzUAagGJzbHoiAcn*6!S3Rm!u6 ziSj{G#4y{Y3tloo1IA)RCF86rQwM zdw5*0RA%hDF86&g*E>Am8^X^tCo-wW7(`XYaG zCS`UW&|Zp>1tCo!r$srmZU~Q5diquT0!?jCw9#n@gtEaZWTDdy_F4)%Q1Ak3ejo>h zLS5U8#>@3?MgF=_*#@3>(YLmzEKVr(F|Fg#ceX+9;02IcrOsh4Fu>EWbA zeTJDGpWk7*){|ki>N~l?uSMaXXJ2AXaTjT`v^RSSD>lveR#%y{tHGcOm%0%>M~ijX zW%uu#wCunvGucix*O@s2YRaGl!W!~-_NA>$%l@gvDt**}zM?Z|_~-qNei@`WD9WPx zQFL#x0VW_dhm12DZFbUrBi3F>voa%)BB{o>8kDwZkB}=42;2oH;OWAC9cXS5313(F z*y2JAdaWPuO?E`NzrR~)dWTbr1jH!k5DJ?xHyw)!(Bt-gq%-IVz`$SpLtS)ZRfiLj zUvA_l($-`xrs>1W1*#=ki(rIvcXN(g7+Pv(I*6eA=cd-JoX)6hIa!fPVCSuHDfT?t zrekejm3!!F=-w>Zn`4<@e{36qTtVc^Fn60RE|D@(EKE(>t|7kggBbpo?wGP~_ju%Y zGCrZuCEPW|lLN8SQaDHOz9thPQEJPMF&eXB8(l?o(LN*WFr6S-q~(!MG;bZ~P1v?Re4jd5QMgWt*I#3MIR zOoMuWv-KX%23f|6(e1%|#>8mS0~@`Uyn;5<*T4VkS~~uH`V!c@O#&IQBbrR6c^I#g zOZpwE2Z;I~pTqKHCV2U+dgn(iKR8U_5I$PCG9UfwZnS?Q$nJFW>93FKP7&^=#;{Ky zKhnZB!~Jt7koULM1G|fOAFYq4k#-}OVmym*-nXi)3Xtzphd|vgxD(I#_o-``gIj@p zm2#g;hDsx&thMQ^eWq18hb>yhClKp|_NH%3h)oGE*R2b}kK4(_{S-|mUsgXA`5|4} z|2-92G!>SxVqT)wheatZE(b^McT$0!Jw-oFdL=PYph@Xc-%sVMg>El&Q?<_sSNSv7 z-st1nMJ^w0ed9c%=ZtUE3&n2@WD=!kNc zbC=bCsW*!Tu z7zSn6wdGeyHB4daGif-$-7T&>+vf@2fa-Cg@*!uJ>xeVG_H46XZaf0-6!6gIKS_#Y z^X+X1R=J1UA0Js8U{Y_O6BTWZ1y3O;GuBfFlzr;s@GTxns4nX@f$;{qf=VX`UW) zMV5L`f@`V;U^7kzReI_O96`Pmo9z>xPnNcrz3E=N1NVo^WJ5|#!AD!MQ!;}(rPcn0 zKQ)w8%l^VbGw_qZ@YU}ALe}ySR%W#XBs{I~mWg^`&C>vHhjmR{5j<)kDlT^^h%N(9tvI_K1Y1`uGk|@iZTTI>`UXN$Nyd zwDY-)^mdtDO$wPTZxhG-ACKMCj8E%UL9LO$wcEe{5wCsG(t&{`@!^=bNa(o?sBfo7 z+F?phYu+E>^~>ZaRzy%CMp&wil_G`q;`JFtgvPwB*!nW*^L3$e2oAimk_&%r{iPP& z5Ao4OF-wyyu_0f(Mjd$TxS*6pRF1T@FY1ujH+Em0lb|OR;F60rqG=mSmYliI+ayRO zql)+Iwx8)%@K zC?nMU^m+fj_wT;{y#MQ;(&akO*ZF)N$KyE8(#eyutI~0N{!>XUvQrmRZxdUG9S;u& z)gc^JJ+?y^ra z!3V^fWe>QS{0+B|&d*P4)5XM$$`8+_k^RahrNP4%cv~x<3c|*km<2HLUu+BLzFS5r=qpM;Dfd{p^+iyt{d3csdFsRFq{%P3 zmk}O)n_Cnzv4j}UpITJeoEv!FObDG&o?J+hli*K#t5FyDa;IaOQs9VjD^~m-SJsP7 zLAZPaGA9Gowj2G!V9JvbZ_{wvSwrW8)z*LyYn|(AZFrN2PV|12ja_KmLg}FP%BDuv zDTq>OUd-BDBtMYvB5Kimo1G4-vhwpen~a5jJeBUE2OlhYPWb5?-B1pkTH&M1jhyqV z{N=@><{siE0e8?;OX=xvc;qrB`(xD43fOG+5PLRn|NQcsRxUmHBSJkAEKF2prroFN zX{zl`0Zcs}b)ZTOJK_8e^j(q{Yi`G0&)!0A55#f9F-OGfjdr(nkVG)2%828#1t zNEx*ME4Wr0`8QLnO>an}w}~rj6L@%t98X^?wX;l8a~)@l(m48)!W+i^lHGp0sFupL z;@48xSrt`CH&E*XwZ*n2rR!0AS$Q@bVi|NYd|oRDRIKdeek!lIlWtR2r*(3N*12Jt zJ+^D_YMZJ167%l(q_+Tz=*P*gIF`~_@Y7O?_Qj>!_3T+1h^rQ)zbq6mB&ezE!DAYx zjA9NG+a=^s_TJ#9BT5wqF9bUr-Uvcb;k<1}ud#z5KU^iEC$24njSGEJN>q7LQE{D2 z&}08gJ|!a6BWuUjZR2ooHkrx=c1#!%sEat=Z7bcQP~k}tNgTGd|2%J@S(PysK_4S; z-&&^;Zq+y5GkRXY;7U=#$=?iuZe~;8oB?wwVlin?0%h)WP%uhbYKXOgoy!o9OkJp^ z-T9xVBwrovJZL;N6RvnWpHVC*$~cKw$zm@zzWI-cWu#CYeIEodI<6XKV=eqoUh!94 zGEdy7lgrsbB7zyHi^Zk}4#Q8G11+rsQwi>2Try{J*!2IhlBoTAyZ`%Ubg#b|1Z<4{ z*5#7kP0n+pT5|TS5K0mAx_K9IFOXhPK2zHT9eDb`77O6%v>mJ*^q6Tt%GQshZ z(Wi6vZX5c-q_hvXJOX=qof&p#P307wHu$_1LfHmSY@B5fO1(M=&q_gE7KiVvZp%B? z7le@tR}%gd^eZToAS|k znxvH=yF86?KJdi!r%VclkH?n5n(*LUN@lmh*tp_FhMtGa%VSJ_Yy<=};+*UsOAy8j;dkN9Bo2yGo)*zhgz8**9tB39GTVEK^{2n=xO` z;JOvU`| zjM=^g9<|%qtT@D4?QUMeUAd z_$bO{d!I$#xcI_nNOY%z!75c}__3$$9iulo4uUf~V8Vp9B7Z5hMx)KgyD=FBu7F#_cVutK9)dhnuf&S<>*pw@F!}C{YkA6G3z`A6M z9i$uka zdjnUT0&I?Q11%?e>Nk%^215X@P$2kvdu86PvG%y<{qKw5m04t&*stp|NPToIMokY1 zg8An2LTPV*_n;Yg`W0!U+NytU ze!%3dw2^~mXCEu>O5xSKJJlREHjB`DbrqdRQyh!RNt#w#l8iIete{@m7q~!Qr5?W& zJ>D~Ze}zGv2q9POfSLb=()tCF3Ka%GN13H1dw#orv@<6kObZZ3RY(8IPqrZ7^JU8C zEd`J#pQl(2HAtjX=qQC5Wie@fN36Dmd$vQ^m!R29_^e3UH@!kVu{Fcw8?2Rw6{9q3 zh!SfKE;6m7N==ij;a!{##;=hkPm$IO#Zo6vf}DEe$eXvjGL6K9Ec*bJiq>HnR1gtq^C8YQ_{c6_KPRx?}lx}Mrv0!Reg-Ym2b zVtnnXdANA{{PLXa*|#w+x%{8|yXNYVV_q*?E|iDN-5w}!d9UalMZx_q}L|Ez*-|=*J8Vaqe0x6`K4r(uBY++Y_C;I;kH}%!K#$X z$}nQ_1TN&yh`G5L+Y@El23LF*G8XniI=&+taE#SZqbONaScJKh6c$!!;?vT%kn4RD z$&KXJ=X_S_%(m#deP44V4&&Pmb0lw@l5h&3GbNF^iysAhbtr8jVi-BqD#E~HeMlIIDxy$SyV20=S>qA zw~gcoM1?O__r4Zx9F$2dqxDpmOoZXYva;Dx`=?8x=od`?Xj5 z(3EYr7HPe;?_f7~M-dy<i9VS^ZO8R~2VJed%LeQeE5)f61} z=w1*h<`A7*KHI-}Y=>t^#!gApglNT`%Cqb^#N-H98*v_fQjFr0S`PQQXNAz#`ynb4?+BUh z<*%O$wLTd<`7RrAg51s%>DY-KE9n@1Zi+t|XS_R)?h%TJ9orDP@5n+ba7-i#da}UD z;|J1SN?}FMo_>2CvGS4%joz-&nTQ2DPYRPY{!Tl*Yu?`EU2OlSR;5n{=Nke7ehG~q z1uJYYYW-@tHf{D80Ape9cRYWnJx^14P?W!Z(q3~|MrL}(&wi%#Z_VhI&Z6Uev^ zBr(_1{RDY7`wsD;X79p&?dazgRL|To&xPW`kM5yZJnC4)FE&ZFjl9M(1r<@iK0C6s zSh1>uyQqZ_Jte}kHSFw6JqL6H-<8dgLZy6hXP>=`p4&GPxzp*M{JXwgH2q&^lZD(K zPG}v-n9Y9cZI3SzE#`jvH;3&k=Xl9b&c%yR7n!w|aTI?o7InQEv7FIyzGkHaCILS` zTonuCOOXrs<&Qs)V~Kf`sw%h;^PrycQEdOWoJ%yV(jg0^NWIS#FusyfLkWokE#1O~ z`X#o=TVHtN9&o-eIL08;xJkpg+PNF#EK~Z3joOt&RA+Q>K>|&L6Q?YE|G9!t)#1ma z@fD-Zz-Fi8PcLZ(T~)cOQs+odxRL}h;5HC`@UY$5z0T$M^HxZE>BOY8@V&pZ*a#}~ zytr|~&i7+`PgoibFC9tEQyMQR%*kR{OA`iS-+2z$zC8FjP9^pEzP+zY4Nyp{QP`Q} zeEKtI-@*(v4cC;1wgAbp?4(T5XSTdDSH*uzHlm_N4QeBU{l?nrPj!?~E?s8KGUTL)T*d z>l=YsFcqx?9kamUFgk??JZ<1Tp?xGS%)XL620c}Mo_i5yj`leXP(xUpX;ZdMz`}lD z(*7}h4x4ep#bMd^-rX#d`rK$#fY4Yx@?Yt}T#g#$=+Du9v5m^AHUdBkOgB;AbAsRn z&u|AtS0l|FO~*)t09I-GVWL(gc64?bL6%9^WX%6$^25z$rGj^g{`r;cYB&Inl-B=j z)b~0aqoxgDSTWx{&Uopfw|Y3h$hz%x0k5{nZ*9<&ek-+cI{UQN08jdG19k9$o~n4} zA*Bq*bA=Z2sfx}#8~?7RwP0im`z;A@af#`V=l5wd=?=du z7ZuX*K9~W(l~r|$GzAa~J#;uU;1L1xYBN-!792RQMe9FGiKggF%H;ACCIfTBD3^h^ zqFg_&O(w_9B<{@WO~XM8#Yyb5*{8Qf;t#{nId6Tt)jX7>24V!RUD{A)GraU0V_LAn z=_2sTH1A+($E#Za7B$a~{;!cS)$GX9UPo?~x?-pxn zc44V^(h#UNbKM6QYukmn&pO?%{+rCBuf2oNuog);x_|EfmOhX%>vRg-iZ~3GM|Kas z3X*u(?Nm03YIG_Y{HM|Xl6Pw~>+|I=8?Rq`Tv0}{#kxAWN-67J5kbFyJ{{V+ZSiHz zor#!$I*&7T?#DkpdnTi(xmI|mNY@JUt^`9W)^=+Ybq@PA&q|3wvlw@_($g$AiF4Ly zgQv|+;_*IvyikLJbu7z=(m&&1c`pqdG0!gG>u(h#kN0R0FpJ755>)(hPHHXKNA3Cd zh(<;ow6*X2m`*IA^iyqUJ;5#G%kvKK{WVCpye^t2RLsfVxI9TNu*#g(75=o>wH4d{ zI1~SKrvq&!Xv)q9mKZ&Y?HOs zt3qH^k-6Tj;s|$q+Q-eS`kjHT=$GS!b1Wy^+R5}-yhi-SY*ZU0DfOg)dk3+u{yY7H zpGmGe!d`1|D{+DZYb_ftdvF0^V%yvb!R<83^rQf(|3C)yFP)70nU(a-|K|3n?8hi) z1P}x844N!`!8x;H{g7G_d)rSrKmTppQLD|l^Qk!;`Aa9!Z!h~%8QI_d8xaP*Ktx;^ zur83O*i9Ibo}bDK=den%8_f6J%Ul`_gq}E7jOcCtoxPj9PZ8`?Hwqes4z~(CirVcO zb*Ar#qDV=sx=B6@sfdlCQVjfRotEW>f7V#$BYi%`A7E4DwFr357zoRAIA=$j!pWZH zDKVU`CuW|piusj_9{0PVLuI`lmc1al$8E@G5EENH&GtyORF=Q-QM>ps32@y{e(1p5 z1|ZUS;ro_uJ}UEo>56nfd{-MQ_;k|OL%3qSx!_H#FE+h3wG@ezF4;;B(3c)9?%|t5f=NeeNafx*zjt%|b_u!e zcy+$XwZ4;zsBkzJwd(JUalcG{PW6HIT(P`%mf!BT-ncA@A{Wov-b4s^R1-*>9dv+e zC@Rii>asWasAOK^f)RMGhdY#XxSlOY_+rZt#znAO*iwXyTM~{blUwts-sde7bg2CdJGHLtzk($cq0`{Jh6XEOgL}I;2_xX zbdVNS4@MmL2!THz6@d0e&eLjKOCi~2`sH5-Xdo4K9)Wj9{l3t=3H)|MTgeEY>T=BH zc<1y<{FRrcK6sBmKhF{fk0a6f!004o77_4sKLo0cfQ{%Wsc z`%?{upqFKB3qC)~vMXwak6-45R0-O8MzI6~83Qm?oi8Xx;YF_uA(-J+4Hqjbl_cGF>&un4UrpiHV z21%@_#fFs$eV_of- zJV)Bc_7xbs<4%QKw5&p6qAF}=^DU$%%)^K8DMaG2*3nH!RHrfD$lm*JB@p|c2~r_s z-&(x?QhL*AW7aW0ZCNDwzkGqlndym=TK$J_XC-~*TQ4A|NdmhdTG}^=N#P$dh z2z_6bVFDADqh`WF&B`qsBV(!hIal-mAUV)Uft#Mg0Xr0~%k~egXYWOP2?(B8wTwW# zseN&9I+Lz(VN_4DRMe{e+FPLLU;r}s*M3NMN)naQhCxmmt`bmfk2hL|v*))fs1*MA zBGt!N6^1Agk4K!S6nvxZ0xgFol!nlHp3bQiS5E^(x&I&8oPLU#f5V}ZKBsGc+?l}yn)SE4qgJCrecHu30mj`t1p`bMG4*o1(wZ=Tz-d4 zb!x{AtiJRTDtP}QaPt-vOxU(VOuWAsiHKAgqHVZD`tgaKd5-nDs5lNJ#NWd<56Vo} zT>)RFyFU`2_;-)~m>NoABtTb0@itM`Z#rG-O{93r5KQ7QOdqV6UXG}iJ$X4=P@8_h zLy`NRmwWfxIswTc%F(UT9{{t6FNATV>xHeXFa>gs^8sC#`H}4r4xOl}gWt|ITJr34 zW9@IFNT)FD&HZ{g_4~)?$6B5>WBQzS&N6Eo@-Pnp_9hrb+u(vn(TRe9Y7|!r{qe_= zjrrFwRet$p#m8ndXHz(x0ApaIRN|lI3=C2E&ie_~XmH^<&8GNGMO6k2<_OAnM2VNY$Aky=B;cWOMf*@tc@5aP}#R z-!T#f)MF}Q+uweir|#(L5bM2743A#_uR0kCg`-7gkKk<)D)yc;xExF(tr-~{OVc4o|Jp8merCFHah_96T>M{i6XLp}T>oO;SBc^Zz+59JXnLe;j$Pp;N zRz@+GpjR87RxhP6B+TZli4RNP|IzJt~1WOG# z_^9#O$qrm*FX`dxc#-{`=Dg=|?zA8OWDh{Kwj7`k_dT84JggwHAUKY4@H=lGA_t82 z?n1>@c0Nm^p3wQMY0|NT0=~!*kV|m9RcDWw4^FlDew+PFwy1C$8$~1@u&MmJ$3V1b z6L?uUz%fNM#9r4pIoysKN1EmoKo)0L05>X=jBSf6zdIv{eBeKagwV@MHP~GQgvt&b z`2(01@r4gAyC6%AVdz`*I1v}vP|~k`TLY5ZK|Z> zMf^YF!o!hTI_+j@^$dQ~}VH4|(bcAxnzOf3W zQT{b3z26u`j8L^cF`Xb2gk)2DXd>hLPxnu97hP2;s@_=5k_y^BM@M0eSJT(&Pp?l~ zD*K1o@K+`{RQ>N?`>#p-2fw`jxvuGUWWo&FCAIu*JNPq7V3gTnGxA=oCOwspaMWD| zkv?ojC^77pPx*+e1Pc>@b>-}VU)N~qBu!ZxMv1>7lVNs2^!_{9$5TX+4y=7w^0aUZ zsX!DV5&IUQwm|!44_~SybEr24l8}j;`urpo#&x=aq;SOmmx&-eQI?LP@-MWk`_POA z`4ku^oQx!>^SIrMU5^r+XwcAayoT5gt>_y64`q+(g;g!xg5lo1b@mbEC|7;YOlGp(8 zL=Sy}iv%`Yc&5M)GVc?$S`8<`%YhtGqy=(&Qp6)HTV0!}Y6NWlu;0`ksn$sT&>M?r zbS9brDHoJPm8gzo2*S=E%9e~Es9^8l(#s(Us%yOGwV^-EY@n6Ft3IDsUU2J62)+8@ z`)Ibv(vqM3o-wKQua+C1xH$Fq?laxU<@({ka^caZDb4xafW5-zeD9W-xUXy~5K$4E zHR>Od4_QXm66yyyMLLb;Gzk#>kJWM5tY=eh*`SDw^&{j_t#Ew38@{>?COIC8{EyTB z{y#}mc}|Xi|I^lZz1AE)vbrr+j%PF+2D5C=DawGISjAx-$kj^Wf6~h2U;%5cU2IF0 zX(*$ckEh|bD4*r(LYSeaX(ke)mmn0N@|O&s^x8SB67~~z1|@}-5DfBV79I64`M_Q4 z{L6X5lB#LJ@5QD8{wywa5jT*`bDzmz+i5<4piAK1#;p~LgX2xkfG&sjK4MNgh@R}L zT%ckv;x6n+jAh;WyM@cS(ISHTwlQm=0@jjLTZzaf1f(}#luh5kl)XR2Wnc?ajov`N zj(}D4H3-Z1ux!`emSspK@l*S(@7Y>~Ff=GvWsXA5si$QYPCYIj`;7>$OdrS=z!UNE z+wZ%<>934uvpMeoLTD{^Z|Degwcnv5y?8O}n(2g!>;f1Wn~sF$DbGpJQA|ia2oWlz zP@FRW!=+0wWtbwWE!xRvyMbX6WtcWx%^1nSfDKa%lQxDaQ`X9bYf?Q85i4ILV+jWs zC`6dpu?XI@$y*J1Hd$G2zIOr^o*1Pm-7;6qP(r^pG4>LggZfK|*9LQ@#nqZic^cHB zOQWg!(Xp}0%dwyEDK6wPoKA-QZ}?%Cskt6vL4N`Q?LV3pf=Z*L#Bw1ZtU(kRF3PCy zV)^u?V!xhvwvTaA1u3FH>g;1*X(ap53c8zhv9`Y+=tr!weu& zR9z3+qa1N~iO#9xHLRtA(I_qW&FvGc*LzyDZunSyN5Kie1oH zMEZiA%Sg*nETf=j^rTlIil+3}QrM>Qyj(o_V0lQ5>WiijF57j(mo8rw zvA>nGHD6(|jv2h`;Lz7$MkvXpFnePYDAL<)C_8&&o_WM0u+ncab7I*&&u1({qAG}# zyPf~)#uAB+DRsWBOQuMvRM5rnp;ua1e)neG z6<`J8;Ot!vDDQF0N<{#mFhpImZG15A{JWrbw;T!qosVk9tW6yJHje)?`E12e!adjg z#qY2$TUl*AOofVs72|=|&e7U{l%5`pL=eMkF#ArgfeL8?j4cfo`1zZ&*`X|Ds;Jv- z&E4;cqy^fF-cb!;@6zOra^uQ{m|6_n7FdTu#=QQ-3P4FYLaWudzOW?5q^18(9H4rj z073qW%(91U&cE{2j5O%Ai6;&c37(r;D3H9vw}JHG<5WnV05@ z@E>Ag*OlCJqF%j8D3`vfgsq#K%)&0FHMZyBeMc#ijfy{&{?$UWfKw(L3)J=?Jq@dB zIYo8j=_($@qL=R_m|YX6ve}4!5A{^UqZ(DYv{zl>Tk~OrNL0k*+5Jw^Uo5FXFZ5-T zWij=1d+`ovQUBH5*2XKorldDjGODq{51yq=AA+0N!Q{)Wrf2bG?_;xkp_IV_&l6ak zz==Xc7zzK83@DZ#!pAD*;_g3U3jRJO2{Uiv5a3e}HzJMYGB-^}tM?KlBVCanISnTc z@ITnb0H@^v-aD*EP1U?d^6-#s{EQq6>gL_5fQ;#WqR9&iK^#hp?9~Xumaaj#PRu#= zlgYfXc{IVYfFJ8{+hADB+4hewsQ)Mu3P};EV0qcpIoV(mVmh^t^@@%C(PB5TdIKTH z@mJlvyY?1esF<{gv}@HI1fz)r#i){~)P?`NzKRBhEWgs-n`P(+(!pukqi)mCQLMn! zLQZzo(`&33d&d}{`b$_!T2W$X(U zB_+`$J`w4#sHCy5ccl6VFJ>mKtMosPr5i*~>nAZE)~xvwQ>>6lAFtOZy88n~)wXSD zxcml*Tza+{CKl?G(|NS6pSyHJGe26n{^)+yCDN8upSxa2+J+>qmhR!oE}y4mBiL6= zcdaq`z_45t@%mw!qYCHJ@t3@y%n@g)wtxBor%YJVX>s7%I1-As`aiF)WBN%b* z!g^>36tQvbn2uv`ZM;qTaG7qphBM;k7xL&1SHr&#AkF3$mLZWCf0_!x>e>W_AsL_) zDV6ZrH4Izbhds8u0^g7*;DXWilnmmo!cWCs^<@oB)z|GlvXp@Ry*0%0TAG1~_ zi5XV@$;ckP8eu}1h1!u$LtbH0!iv4{LIi`LxsL2agxGvE=JSeq-R?f!3{F% zlIlty%e=X-ji>-k!(N$(Yluy!w6nTJyxc1``|e%$z}DWEc|qV6`|UI?02&@{`NTfv zd^*ouhBf-lE2*`oi+xGNg%SqL(fWOCN+jroV#Z%v5*V~8jyF7G@@Vp&Q}G#1HF=b= zdj$%Q4tBSSY#sfGZkAwz-0pu_W z_^QF!?LoF{kK`YSjW6Mt!KFO5qZv&AI06>so7&kvdqmNxnhALbcrak-4<<9K!=i!n z>q|%vbi1V@u*XX#!Au8*hD=poRSyLPMS)0FHRhurv3EIpFzVxcpVRQg!5+r6MV7ZR zZ2XU!;#sg&t%d)#h9%br`TaMY>Ic8hAqzPOVbeZK!{z3v9Px^(xiD`4Ci1m}J;*nG zKL|$Sc8sM#5*@QnxlL0bm)ZQUMa8uj9xE?r#q1dZfV^7zF}Ic7Wk#TK=VUh zWe&5tMV8nC(&I%YtF}H2T9#c)3=Qh&9%CoHO3-0Y6V4JN>E(RWBz&$d5^QIy8WU-E zr@fR)laAqtztLWccX92|^fO*vX2YJL2u?ojs9i*=)lr0o%V2#{wJKIQLM@i#IoB|C zZ7yhM4Q{6pz)+mS%2 zI1~gTj=HuLOyu2C_I3LZp}K5w$TVhi_;+}+7Xrf_g+C$YOR@V-{6>qy2M_AX*ook8 zM5Io%?}LexClIHE(A`iT0^%$t!t*{Btt*7-#2}y_)lm&0CNQt=NeK@GhMKSa)WQRXt*gAkC!tF8JmJfTo)?ufN)fiWY0#Pd`C z2@^!j2Tp9fl}c0f;Ryb!f(;BMgln1wyt8viiYhsPK~JIr8$r@Oj#A8I?QK_29JvxS zbJNMmWwE`)Nxe};7Q54gBNPG-2)_VfE)Eg)Yle8=NjC=HphjAZc)I}n~ z)7gSPb}%z{9-LTfXD?+5FozFcxUcs2FXjAxne2m(AxEF6zqXOsc`ozpY^Uf0tJQzs zAus$m>krF>`NXiQ+TX@L)f2r)+>4KK?}WC;La0aT30-&o`7bR z^m6JKx#h1coei}zQpg#wR}~3YEOzw;3}M+g{4<-}o;r9OJk8**{TsR=$`(wjO>YE5u-cbi zH>KkX?4m;JK}C#C#R0naV9sL?ubpWxd5}{Zt@XyMljXH1FaH9bN*@cC#L|2-z|?@P zPSVuyrpu$#ve%BE~&i!dopG5V0ccbe~Te*_#XfUgqBmElhGSFpFU#$}3w)`Kj# zuIKOAODC3QGly{9Tl;p&TX}$P930P~0ZAr9!beG{9X7XFnr^usJ@@%YpI_ejc_kgQ-HK_TnK3X@VDp+y8}Kw$g2BsoFCVa__OJY%V!)p{ za`twC?=6V~o6AshjfA7JPj8^y0n_=!Sy5M!@N2?8p<3?IjAzak^8Ja8w0Er>B2J)DbnsIK1~74K3(jShcw*q7X5?c8;+T(eHHVJG-U`UmH;bkq2zjo3 zJA@jPC)x09d`dvUFt@L^e)xjlUrRYnNjWWWQBdn~LLg}Iu=p9F+vD6Uy^)FlK&aVF zXty4n?e@_H|047kXp<%Pt&_J?BtT_&Pn2yzl+%DUV46*RFls`0nW4eLh$otFa6flrn4`F(Mqb7z>7h`601>fIP`gnfg!8J4t=S`n*xLlGKXebxAsmVT zl*b&U!#cbMiYU%JgLv|#g3Qr!#Bv!JYa~m&%&I@mXHlE*i#Y7oQh2pJ!hRJ>1lA;HU(hsapjzXNa2$S*%W`*ZKHaGvC0Kk?-;)c5)S zXy5+fzxVd<+`rss$8LY|wkHbER=-shZ9V&2^l$ru_Mf&`vvJS%{9#=4kcC=ipx2vA8%l%r7PF|(cud%6}~^;kJX-S{-&+ufQXX+fg_%N+P6iNqRtKtf(l49 z*whd~XqmuP*9T%Pd&=H*A)sbGFY^KUE0eBSAJd;;v^0fpgY{o5HsWC{mFQXSwrM}#5Ahl`H-2~wwvTz@LgyZ zlddmE5a1r;Nr6BGbw~YbvDNAjDZFI}Gn{p|OS2fVpP~lAYc!i;m(m{kE~Z^lO2T$e z#rgG6;JPEG5{YqrHe_}0JBhXa5q|b-@a}^ka*=r5fw5N|xufA+_X)gw1HxG}a(>4# z>P>QDg{nI3HGOD4gqDXC_?xPw$SK^${A7AHRWQ9yuubF~lx$PKVA7}2P{rjS-+MK4 z=&ouBY(FUbnywbbvpL?n<}$=aRIVm$9V}b-UwkK6(cj4T#D`$9rS8x9fIo_UZ ze)Hx`itb=?t!>*#`tNb4QZoZBmAx(>|;5Nv%xZlH$_+(V1n5ANO{y_+&`dla}E zO4S)b(ki4Os$z#Q32cfkquT%+fwYoD?dEQMSHPp^jl|mJNyu}mRMequNEY`uE}%AJ z6cm(<0@(&*bq*RSbWJVIx=-uI>)56&lqwG+C$=FBWNKmKmVSqQl0@*9(rTW_Q!~fJ z6vgMECG_R&ksQrB!lGi9DZV+8zt79bmQ1CU!^5)hE)D@pVP1pl zegGRU{|T2Q;Al^oR>2w1sUQMsK|U4s7IPS&LAO&&)!`FLoY?q48c{+;z=Ex04rz9q zlSo=7o@O_YMCgZoQFhy%Z@=1BjQqK=?eOj;lfFq7=plIwcjYs__; zIhnj@>TQmyfzgOd#;URQV+(5ife94Ql{`&kQ-h@UhZZyglZO?Kp7xElNpyG#yWLXC1SYCay{PI?dL`nM3 zhoqxvs7S0k_$rETMWI)B|6i9jaY&wdUW4UhFJFfcx(Y6%=36VL^|K(ujv9K&V59L* z_G)x8S$v@;V8yNzxFu$DKi)97qmc3{4CFzI3qJU0Fgfyh%l|#5l33dN3~GP? zW{qUPtG<@jar>2l+r;&PD)Vw<>Yp~;nTAX!t;(EiYH*-$D}zD|KHHS6ITet@!Lo)7*+K28*fdi4)3pO$=R#O{ zo$rytthATXAFFdkNYWJt8JcR1M78Jn2!{5D+y^`w7)K$#F17uU}Z zNx{DgPcQ!O^2(Jtv8QrlM)j==JEmP-%PMoW!I%BFGRY77zEW};9w&Okgg?I{p8w@e zsTyNTzC1zI6RSS0Mfo%gh_W^U+smkkVyn9W0TD#`3pd(jQ%cSN*hTm-V$K#Bi{|;V5G&Ez}zXcQ^ zI5i$PEurdjIFCpS{w_wC&x+&6G2^KrafVGltXAww!3y~A{RRFs^~Do8P3<&)7q8xD z5-S_PUcSAudAY$N*5FFu<>MA#Jwjc(bv;)s&zISqawptnGejfKt~aR$qd zuAzv1hL$dE`4N$ZQ{(DQWA@#^Lr*HmJ{b#~M^usV`P_Lfk|x;2X1_OZi#iFRCT1{t zuU41H0{G>oO`)^a79~m*3Ww4_U~7f%=kmzRhg@*f8Hw%R}TO7 ziVko8`zo`6Yk7t`DS12=l+-!rHaR*v>K2grx7|wujt^@#{>g?}ur&B8Pp^1Hucy$EKIi7x={*wTY6>&w#5b=cDqYTjIpJ>Le=yTNL+#~Q zqAFBH7>*4?TYOjaE)A|05v%~f?SjFv>{Z+( zq~?M_^`;OIPd|{G5Kj*br~_Y?LOru64~JbY8%V?F=~bDr`KDa!L)fi!@OUgmC}rwV z%UJD2lw-e$RZXwNV&B6v|D!FNU0%)}T^drUn$E&9GmN;h*$IEWA0j%!@5jwEcyHNY zPX6RHT*QqyTyyHM{!d7kLZP|v`ImpY1~*V;mIAyEemTrvgS=<{8@@LT4L7f6_W^Rt zC7v5;h_CR6jjZ5rSwAj({%sUp694@m^G7A{?{U$yhliNOk12C2rGAMOny{gue#### z$sJx61)2#mG_w-;9;tf6>;Ng35cB_%zooRHyjW?=CK>cfJ>53q-mt+uRVO6y^60Uk zYsI?4v6P+2p$*gdwq)>MDUBz(TklwNQ7t>BSsG$hLwikEHg}w#Ljs?6zcuK6!SnH~ z2Jc5nfsn|}PwDhol>f^igxa#x3b5E#ZeMKE8a%Bp4U7&8Q{ zQ>fnQWJpCE!QOyx;1lTz4JYq#Z468lNv56CsfOO@#!?MFY6_uve==qF5HoEizSj05 zY0SWN`SMhwf+^E&k!W|8P&^qdkI>pYKPRlGPVoUwDtokW|8! zto`hNm8>KG-%1E?T-PFpSzfeQuCM&NcsBVi3=?*=8ym;|N9UJC=jRJ@_Zjmo*gV^X z>{|-gmre*mpcY|yetq+|v;@I z-%^_JT~vlK6k>3O_(Gmwln_>dtg2F0+-N5JX0}z#K;(R*@s0sA)w_B>E+}V$#C{R) zL_a;)ynp|AjgFDw)xTE0{QL63jAq6^2sA>GS%bx6uWp;NQN}pCuqJkBZfv*5eAI-L zAC}bzZ2_{WWk^OCkU2k5L!G6SpQ8K->;t&WVf)WVp-XasRvdP4E3H(mr@o<7iu9p$ z1IX0g0HfV>FG>($m4}pw061E@0n;;TPYGeFS2F7gK8rDvj9er)`XLd$mL9yx z6PvNVP3n?OIeTMU-8vJ$$?U^UC*NG>U0srO6+TxAViq_8yDd;n9F_BzWw_UMWp641 z0F29yXuE2UKxkpm|7T5`zd<_-TfHbKyIqjnVBw-a`4Vh|ui=E2?K4|1jTSe2a^8AB zEreSea9Vd4p3#{rWXv6qzIV-|He=;TSi!QOV~H-6WvT+r7LB!k1_4YDseZ{rwq%%e zl`JyYDIpzz$dA4&sMM!}9?Di>F{4V9&HiY^AZEPhJ^9_&j~+<#P}e}J=FKYs>s2M{ znjEk?_jN;vmD9Z=!ovZv7+}}Uw|>NU?`{St3J8q)A12_VpO&qKvJD(D4O+Pxg zm(4pC+kuXf0$${Gt&3&^z-vwpgC8esSNPRd_I%aS?0QxMZ1;Q2X$QRyCUJk?FTq3* zAAdVwHeh!`ZMgb#@1Iis@@)*6F^Lej&HqDF(YDj{(%pn|JhfDMte-0rBK~&GNh})I zMDXTWV9M6irr+C6B}mK}3qvIuka-@qgBy(lL=X%#so!A>RsA#raoWZAnhPDqd{7f_ zr(nMmZlYa(W0W*4ltEue2zW0xXu5;9hC$f8RM37E9UN2G3wQI-Tzy@%C$dDljjiik zJ~pEj8nX*{qt?H6h7Cc16q^yt`kA$S9UzlX0HHHQ3Mn)w&YS%#3_FJbA3K#gS@UdL z`$D7tzJ1Zw)cY9(a8fx96z~f_o38lZ3vI1)ZqqfuBN-qKPVicURet3|FHN)YG#dqu zlS`b}115qd)ER8+@L^-oDt4$sMW6#MlTfcjP=)SMd6wYDeNtia!&Q^4>cnCAcFkGZ zjmJd$WZE1Hn0DA`Y}O|#Mz%+}itlvJBEyq#o=7XR5 zRongtDdHaaKOxNa^>QM)Dr?lt*<>sWaSa{dFo`g#%R}yJni9j?h0YvLR}n(vd-!HO z!4+ZT%5QZ0GwdfS@ z`LMp1GoE=zrb^k1#t$v$eGz1!nUvmTh-HLsU{7skEMj$gvgh`ge2@qTU`m>uS4mUU z=1E67@$Z`F&9(md#Z?3y58~?~T`Wg4?{NHu7OevPy`bLu>>KOW*=Q0sfK>kH_DQ(o zgd!4m%h^YT!fd=SBDIkTi3)SynQ&K!R#gaV5V}*$-byT0BjFxn5MA91zlgP*uEotP zryuP@RG@{@{i52Sac{V5GgjW)J=BHh2MP35COIlgMs<=IaJXHM%oMnRFkb0SaxRu0H#Qk`*k9XkDd33PcL!DjwljC3>! z`m5j*rqHG6Bgi;zikvuiiEa!QhOywnGwQyhSfP{-gStLUajpbq!;HE4F?_DxT+r-e zuXk1*i(H;sA6drIB|yH!F=v&f=Slp_CzemZbO&|TfbuxfN>?Roya!OZs2&I`2A>GjX zXuY8bdDE(GFZ38$@DM1^Z&4Sehl`RzeS9gvE{xUm5EBPo!xwdro`I2S7f0S6d8>FB zRX5#Qs&q66bwMc0J4IQ}p~o7o5a?3yfS6phwH|N!7}WGm*?P!0Jsk=2PamxOzx7>J zdz63BwJIIc;CeF5P6W@S*-m`RH}lqYP9EijHWj%{g=ZhS58Uxk&PFzcMFLEE>T0mY zNN>SRbrAkWE}W_#C>XtQc5wT8hfkET?tr`F85EK*7+m5N=uVHi#b{cD& z>jbJiwWL^eRVBGRhjjdK0hL*wSK^Ztc?kj3{@3Y{dHsWqw@t4TQnN?}0(9t6gJtvq z8oUBWz*pgqt88v4eKeb=x`i$liz9|1SFXe}7PR`NK|Cg=^E8p@?y+%yA79@Y?H0h0!)L{P=KGVnUIvzfiw zh&s`-;6wun6eeY2FAUJ1T?v|JTXquB`b3oo^ad?730R-V^(Q2b+fTw~5r+^5q+99k zknTphrMpAv5>Ps%1*99Kk&w<2ksJ`op^wdaxT^1ka!^|&E>}T)i z?EUOphYB(&piQk6ueM$hpM)MvIo|5mn(WC`$xa{pIsv_xb}WB}79>3!hQv=iJ^ZNi z?2Cg!1+QC{UYSdCf^~zsX=8~dXR__{1GaeCQX9YIDkNFr99N39hS|ke?TuVcZy>HE zISBu99wm`u*!6ANxy>36P&N=bOJ~~|B|NRLV8DLAf5YnR@Ch7w&E-chVkLW|+Zlt_ zBmg(^S!tqx^kW*Ei5(3V$Wu*E50PW-C@bp3d$<`@)AFe4b%i7Hb43U;W3dB zSv<7<0HXCqjgiAZpJmFFECmQ1C{4JCV{^7Zrvha>rh`~rUD!a>7LHIEvt`s(8F<|@SIa|XlaWk#0!W<}6DL<)UR&{jU*RQZ&6LXmPjk{g~ z-`X< zCu;pcDrw1xkGg{UF5WqT28x3iJ)N|K_%n1uZR(Ha{l+28Ru&8F^4Paf`pY)k#7{8y z3@J$eN%p2uc8~oayUtI62DKIN<{&+PSfWo{=j+zfqn8IHK+x3N`}u%tz|UgNb(GIV zLpL|VWn}>ep~XtRk;qh3KqK!Tj9jWq&{UgWQll$xER18R6M}P8(vozX-T3<(znIgi zF^36I%kl!SoHDPvevYjS`z6Y$>y$trfvDfzKoV%<0!?e)Rv@NB1H42LCdCy{jJ7ta zfz9@@_V#lkGDkW+F^~NWnM$ORl5ncja6QFD29EGG`qlU$k_e&2 z8YHkb7s7JQg6buM1U6a~?1E(e@n~svLJmu8X@xBzJfQ;bxH3svrV}8Hzj`b!>hg8` zIPyh>*4XXBIyeBRq?P|MKTncKTU%2D+7e8fsQdw$oC**$pp8B~J3m4bBq#&IXJEdALvQ z{Xp1tfyBL(7#s@?+CLHzs!valPUxxkb&CelX&3V;xO=Xt32=8wKZ{((abayBsZD5B zn!0)!sy*$;3dBY@w6Ue}@z4`;_Eu%FB^kP6G^E5K(!U6A*hkK$2=O$aLU;-BmZ#g% zO6mmv7}~;JfdcNA5$YoPWi&iTp_^b5mXV;UM?m;4Mmq@zQ0M4XxxLRD1X4UYMHFc- z#onX67Eh#QW@EF+*m!#7QM7>B!>&dcp2_EokA~7(b^k@xc9>@TB=B3LY0(!;Y#duq z5`PJN5rx(tk#W5LCX+#(2yneXp4zJyH@iuXK?@Xsuqx2WCP`2V)<9V#bk?q;IeUmrhP(9^*Wk3v(HD{fu^d>PLA|5P3#cU2iON&<2d$e7>2cu|` zGT1497Sr@W;z05BcLiFufcBuH$UyarYbq@d86q@Fh9M#-)qUS~(RftDAJ`b<(+< z2i;}L&V%B`FRH0A^F{2{jv@*ju;8Ae`a`wVp*&rWEU!>!Rno4%qQuJ!lQg&yGe9^N>ax!wpUiMp+J;QYJ4#R5(Lq#Q>hz4Kr%MM9ImD!BvdzBZG(VWnD zgqgEr{L}J`33Z=rUeXAeu_&x3d01o1XbDoNZDyu?;sX&?rEf8DDV@^8@`*SI99ko0 zY-!+?1oA*Jte}^rW`~5eM|?)FG}*T(77;eey;oXeNsU|&(zm;cnay(b~Dt~DJgy42mXcLKlB^TEFlDQ}&K7c0x) z1N12d3DSx>WbMA+X7ik#CG-!q^B2nGq{pPhpw*jbRZ+gN;A@!wlMtRv0%4N$llbLLzUfM zA4MF=NK@`$xRvSVPiVAy{MO3!hyt;CVv1de1CETZHNq8_2hDXJ$F1E<824c{m%z9& zC5iRz9ft9|$A<_tQpK0tgkDArla3E~nY$1*>WO>Z7Bh1O&)3f3_AVqto-0LQ$%K*R z^5$kaO7@sd9=3XLC$8Sd!s^C&J5~=)G zJb{in6G8dRm^9Z`Zhc+vWzJz%F0biXBRysz;HAaEj1PIhUyixf7xVV+&qHqA7cN9p z?qJQFSBT5`3OE?~$URx#ds7>V^?TWr!8dC$`rW*@P(dM?niI(&BmJI0I3)Z&TIJzmD!xIdR& zXxpZ_YwS!2m~(O>F&;cQ>M#_g%-rtBI_>6PYR#wcRwfCmvTv_lg~B?#gQh67CP`FX z_To{8-4=E$A0ORy%Xm#S)|3~8$CYQ43gQ*fk*-VGhs>KMN2n#cFb6LN)j2#RU>#bn z3z(C_CkmX?ge{#-)vwxcwZ-z*@5ymRZubn)za{e^ORlTYLXFH@ZDcqg_-J7I>Phva zN(7exo3s6BZ`Fy%(~^k6Y3o z|9xbx;NG5igFVqxY1Eb)MZmCfemyicW;y@Oc6X_hA_$v+zQ(jWgm;HREP%9aalGxI zeP`0-`#{Ut@jlNS+_TVKn{qQ^4%+;2~3 zlG4&--@GBxG4bc22)HoIwAh<(h(X@Xtp&>K0Cn!Tq|Yci+%B&!nl7!X+IX>aff3M| zo0UZhdUto{Nk*~`w&1TA4n6C_h3aMW#pmNp?}@5(z=r;vEkfP~ORj6&)R&l;0(2cvvAP;L0{xgV~_* zBVd(kybp{yIXT&tlhV1Ye^r}^@jA{+Q9}N9T<_a!p8E)of8zTycyYMud+`0dX3jzQ zY}VpGH-R@QW4t4>WpGDv-#^}R6rJsYw`~K2>a*mt`9$}Dj<8#oRC03gP%tWkh&(dZ zXa-wq#(f$DE9>naX;&u)#F3jCE(t-O&e)~QrGQtRsUJZYLk;}_V z4TgvlTArl|FZA>lpPBs0zQ<)_(R76BoG=R#sMii_)v+C`n7BE2c7= ztq-RxxDJpxEVibAK5GHXt}G)z4$hG+y*M4`xu>g)MozXS!Cok;seuIXExk|LsqW0- zv7csl-%tuT&RqI8YY|uLju_VpA&KexcYWJ_wOzj8((|O46yb4@0x^-=KvlskgzBxR z8sj~b;P}*RNq-f#oUFdgmv$qf)WdBYEQ1D?uM9b5>f3Y!mU#y%)% zlPa3_A-4@wynD`HsGxaNgbet6wQ!Fke^$;c-t7?evnfo~*y7>>HB#qT{15c(s>WaK zKZQ+rkTs2jk5naWaSt9fyFm5bAc*NTpMZ!2CB|Crm7@HYb`vBq_^Pz$7B)lW5vl0v zQw`@QMu~`(*1T{f^7%+A>GZcP>(%Qy^n{O=k1soFgrPX7U#GD#LVdpf;o3(~%m`?v zZ(g45FOGn1G5gJy;PmuV_YLPGZEbCi_ZKcs&C3|ZKFjFz${D?2>gJkVX*xll&j+&| z{z65zoId~l@?L+GDOlUsD9RBc#T_02f}NTM1|y+QMF(3wcS_33d$^Tn}h*z`ZHxPw8HG$t zOtv;Q$RjOmOG``sY?b~vid;dbcW9xnS=)9w!3>3K4j&yK!@pBdu@cHZ5c(^{ILshx zkjV8;is0rvmBuFz9BnP zkLHL7Y4iG>*eFeYt*T;e@PAin(wUQccY-XTLznZ~D5&8y?Y>-=ZI zio&A*qZ!h;6B3?W7~u5wmA;b=aw_8>91veMm4r&_e0+Jz5UIey5|V(X=Y;9+ZrDo@ z{qV_aYL1wVX{hot+CV5?NCLld9&|i$nbAnHiFw$~P-^ujB-TwBs`Tk8^aE{)b5vo5 z2~XGRgSbV?nH}omwNaXc=Al~gWHs6dmNqP%bc>FTE-5QBU;Yv9IDP2%eKboTDU#gp zL$;8&8{Dy}a2Vq$`Dle+{b!MPyd$YB7AKn%q+$VCO@I7ij*i@lRI;za2gtc?Af0!o z)x<(x%q%P{3xW5y&5Qe5m!~r(FuF8D2}?^lRgqJ|VDTVKiuVx8XD|SEeZLA7(>W|K z;zX|)>FDT4Mc;qcG4>6|B=-qQOiUaXHj>EV0*j0ipKs2y0==n+a?+6@wZ`U?0lz~$ z!W}<4^S#d|T0*lte-0&7{wKaXB(~r7Q+n^SS#EY3Dm7PTkFpmbx(Wl|D6`mYAN6bM zTzPcu1>r$To_AKHrui58$n|7{51LXx+FRY{k ztzx$oJKJ#CELquD}f%RP}?ZwDcF$71(M_EjxKV}1bS%>kil=sBf* zvNKbyJQw|p$!E8Ap!uNV`U13l92yx}jb^Gc1umMk@L6@hDbs%I4r~8MVo6)umq=&< zzFDbT54+Fllupa>xKPW@(FifW3#DQjtL4?nR_XW)^0-LvCI2+^$3!k8EKLwBv`u&u z+l-NSwjmzjV#o>V#=^T_?ccW8ueVVzL~v0nu?hb+G6?B%hp&EpV1{c=OZ4A@)Ssdzx+XZ>)T1v#S&yIx(w51dhNQ+~Zt@@_Wnk zn$7oM7_3)%qjup%bN~TrD5H2(zE))de)hq(k{uccGu^EsA zUCxPXW(ysL`{PR-W0Xx^Im!C%pYJixmB@#~6ps(zk^cI|6xM80saKDY3mf?II&`+l znd1DYs$FDzsB&goqr~AB2jM*bDG@I{g5LAqC)_F%FR(|jD)z7J+{zhVT|Bu z{?l%(%EPsA{^Go(J)RGJN!aFSPm1%FYwfxF@;CRD$};A~8ns%Lt~GF!!|i+QFepoHyDNDcqcQ|hPGx1n@Rt= zLwl9529!|MnFPG|ha6Xm;p%*ww9D>Y+G%S?r_r1;ry~jDFC+}VzU_+KSN%gXk%GL6 zV=gb`!z)r5H=-x#QUs6>h4x>+*Vm&IDEi+VMBgcqYKZ5|L{Xg|V7pG#!}lJ9^(^y- z636T_km5cJ41|R>$AgPJs9uciA)?6%;yRg=%aq$g(QoSPF4D=hP+NMR#aUbh`JQS9 zy|@hk)<0AkhCq#^Zv%r$GdBZjaqz*nS9L5toWIyf)>!$if(jkJ27Bi5YXm!>(J@O+LA z_I>NOd-S{=k`KBs6qJ;F2nj)5Ih_2H!2D~}sc9rdY@!f6wbdg-ml+*kElL8`t_?ZY zq9OT{&FP)ZKu(m(*OP=0c!+7kKbADcjVAORq;=vJ+i!p~$R(V;V#?xS!|8tS0xgeRuk7apd=@{D@or$1nf; z694_-fzQq1Ksvh_DtR1c=ThLjXIWXkuedGif(d#O__qo~0b zS)a32^`_~3lneH=GceGQ_4#W5r`6l@B~|YfzmI3{bMFtiN^MEX-&AhTM|*MMV+uv~ zwx7v+e@sGCdjN^)ySSR^96#^8znx6YEE@VS?vB8uKqeqr_gxnlL^ zebKzRBOq?|Qbuok85No>YyKzQGX`25c9Hdr=}k#RMTKVS{b5|7R%=zc#XxLfD(Gh| zrU_=`70D+rvnTIz>gqU85AN>{wyI>}G}P7eHb&Ev{G2k1Ua_*i5xYB#o764OLBw>x z6kej2fH2I%*5B_@R44-6XU;Pc%AoT=y3JvsIRTGG=4Y{L?(e!6&g}`QsYIfeYf0SG z71ll=W*-E+3UGOtjas!bK8{lo#nf7k5P^^|OTTDGFo{9c3XG?1#ay5Dc$UE0`ntNh zdbc}FBr;LGdt7eC^jd!O+8j9VLxx@XMzLf<)AXAtrHFx8GDTT1{4MSXPODLJC8{{@3*oy!HudN61M$ z|EvJ*hSB@AM}MVv0k^Pv26q-)6$D|j!%WAc$B$LF^0W*LGGFaDjw2RgU+~3BQ6m{3 zDCgTj^b#XjYFb*P8MG8OgN(V}ty}MLWncP>X1lKTAA;QKYN>*W7&}2WumU8_jS*X{ z94h!-F}eW(q99VwuB$#=9XP&NjnmZ8k$wFd<$-hiAqH3jI4^iBG-D@{vS2NXfMsc| zDjqMe8CiC5nX^ngoHlSS^efa)?K5!x-Y0Utko0G`5Y(0Bs#@<%SH88jHqjcQkR#n? z#y=KR^^S5)eDH`;pi$exf(FEp;NWn&(g3CT%<$Gj!4sP|)*?-4C`1H3XsgT!4 z;KarYxNjJGh(WV$!TdYSe~YrO{+{~rBMz_A!r;@u3(32!+`FjV-CYlzYIp{pGkHo% z%11Jx)ad9(cdKG|p=yl1WZnx2`(>wC*4Lu<``(=ejg6^HRn4erBYj{Mb|=y)eijQ1 z@MFrc!pDT=f<3uK#8EYJ^&-ZpvaU`8rC9inFCzQ5U?eV?hRN-=P6~YQjjyloHkcdD zLmy%Plzo&&2hcp{(~IJ|y1L|%bq&c#Ty5ZJswc?NE^6$ z?o#((okEe1v!xoSQ6Te4Lo`>__q#EV+nU_zaqhigdQtkH=;HL=?qddy>f2vrtK5ZO zmpYMlOUjx0drb6o=VJpme^PNPD=HJy0a%bQ|19@B{ju%` zuh!c$xUHSt%9M_YG7A$6OJPw_M0C>xZeONkR;NwfPoh+&iyuZ`B1f)*$UL$;PXsCPVl+$Zh z7qDr`ukIHQ0tVL8OkzjYsoB`#GMzgFw23~+q>BZL`d^>*fp0o3@Pj4e-G9}7HgErt zmTuH|5ETIaomdOvf2dyD?jw*d2e7?NRo@`$&|B7=OLmh&kV4 zfezEE8gSv8e?7wYH^<29*knW$*;W`d?SC6%2)rCIDJd!G+VarQ((3&Y{uoYrpJ88R zw!hGV+@@=5Yihc>gFR2h7OLED_nZSW!7DZB5ycI>WMurS(|M)cc19IuqiC)>(^mt` zc2Vs8rR=+==h<@Dt~mkM@TD?PQKYxG*rwwTY>XWUIP7{q;0<#tKf^-%4PIpGt9;V$ zcL(2#0f$rmrrNlY*J1Wcvc@(5hVPs>k}Ue)-*3-kmWPChOOlhYtfLv+^F8u(Hunr3NtJ4T1Lor&l}G<#)H& zD({0+Jqa}FpFCXdtq?$@B9 zP%2LOrQ`6Eb4jLCtNhgO-z6CtB+ov{OaV&i*%#5PO`5`F4cS;yb@DjbMgQ|fJ5Zr& z2RPSPY;3A5#_jx`H|5nG`j%E!W#Hzzdvo=&B48pECb^Lhm3wMfZPIB>9FZ4GE|Q^t zHq2DbSUppY8r&t&=`Dd3WoAU&^JCd%`+|puXS*=XSc5mS(g+?sPKW(v(_@!EfnBYBB_1*S-FXXm~hFcO>rH$K21u(TZwGXZ{)RKP7P;Pwhd z&Di*lRa<^OHE_x2JwJlgm$W{TcHH&wsT$x30dvFfC*XR|y{s6razGn#Yoyc59<;Gx zRivER4_um-`@3scX>7hb@YcrR{}(Q;3GUzT2-70R!Qj9NWieb-ur7=(kmfI1!w#Hi3m<6EuTusyQMWNWdS|v)si!#b)M0A>bxL*S3$1@*-| zKL!)?;FzyGamq%m?tkcV2BVizcFUVAGIGsYH&D}AGxd{2!I+NP{WqC=mz;ZlgRsfyueBK9_u7SaoBnG*XBk&-b(SC$ zSppEB7lBJwmZee*?2is`N;HG?>#aTkD+X}76il5qutcxo1`7IP$;y!^G=B&7?HeR2 z<3>uZudkOHIJMAepXtFG!Lu{9Emi><@AnwrQbnU9yeL`l6vGbK**34r40f{+x35%S_l9rHe*rb58NO!k%OXt3Gf4_6? zx#z#j^Y8$hwdNXg%n|Q+$5`PiO0pQ}r056;2pIBmQfdeYPy7)O5LZ!Az$d(8i+{ln z0T*c<7j=7c7dI0pGXzBw7Y7@A7n{!?UqQ^AoIl&!akKHTakIR#ba8QT7G!6){eLfD zvv;y!AIy>(0gIqH$mu#GAYhrmzY&W>3qKEy?l`fULA!9*S6(5-@2wMVmjhDyj8TbkQP*gw{`|mS$8szW)eUuXaLgZ&901QKWInCcYj$pkNadmq3K6x;==` z30U;bknxVZ44^LtlKtczthha+iOcjtHvN2pt4Ee3#pL3cX0-8xp(8*4m{Km6{JB6p zfIM3fy`h3#JMbf*v?fuB5Khl9q`X7_g~Bg#SbBk#_(X+2xW}CCm-2$;)v?1YW7%&r z{YONmQm4~1j8}98v|W9VUw;3V(*5%)DE-=Ts_;eI7U7eC0L>=fa&cK(UqqUtRt0D~ z83DZ#b|S8_rFR|E%(GFVMBJp8@+#jvdHr)bU2hCun2S>;gJ=O5^>io@bW}jZ`R#u;RnByWYqtMsbb_v z-m>)W(5rUk^XSh<|K=CI#!-8mugzniJ`6uEAZV@N>()KLifo^nK)9C$E|k|rnn|Gv`i|Y*jXh<&aRI!Pt1k6 zHK$$_?CEt)ShCEx9@09X24HbUdT1a#)jid-E4>YcMs>NpP(gUwUn& zbeWn~Fc7WPKG)UB;@?26Zr!1%1{pIdR*ZydB1(Hr{haOJ6pLCK7{XNZllzA!;nB83 zMQCsEUcOxTy%LR`%b1j$A+@nDD;40Gr^KA%E5ANlU1CW2VIjg^j(9

    S@SMG z#T`EH=^3o5V|P7JjVOEsm9tPA!SL{h@Dx`(kOjVb>l{b-ctjl>n;M9)90UxjXX}^C zwtmV{ue7fga_u^29-9lfA52U$lwb@HrzVzPU3AlE7%d1s2055!jA!7uuWikLChxuA@##1fGPM{ofrf-j zxoHr%Kl2Ui5GUev1#!~}o$E>FDt^1a@VKBBL6au|m5{KuO!Ip(4)cxzOY~jx{an_! zoh^Bd|H}>Or=8qsuu-9mBl*HwZ*Gr;;)I`j zeD!;JSkJSb0wS-mv;W_6Gf+<>t~a@mw;WjuT;Ej3z9aT_quh;bdBgG`3df!bWy?>r{fw3is)QlLz^jj?CvO(OiWVl`gU^#N3Dy?gS+&m zla<^QDW<1&WUSvo{hx6)W5rM~5i7a=ORfW?dfI6TkM{)&*Ljnc$$O3md5#_!nD3fd zi>k{VleDO?QMH}n!@z&c0UcDR25|C9@$`YD17w_Q?D|&Y5J;DI#P08?6eB-BzWUyZ zK&@niaNi|WiZ_h86Y5o63%`xJ7pjmLs|+zp6#8JFMoZY&Oy&}6!Mu`hRxrz~{;SsQ zbE;1;&rpS7*KY0GmY^ard(+rR^XzL0`QsLkwv5n4bqFx%Xz{8k)AuKF@v;R| z-nRqmpj0s>OzlJ6oBxLDOh%?)$ab*VT-ZjGNrpSD>D95 zY*N0OGIu>_?RY>92wzJH3-BiL$pH~0f}Tz^xCYVv?b5roaU>{nG-1A_Y*o?wWM<~L-5z2p+w1QCWoRR0sPAj2Rjju zsJNL>PP@_F_{jWq6k7k}59<)Q%Y(qh9xLn!s^73!9X^uJox;2UZqe?`XQ*Y~{vf;0 z)-x7$y*R`Xy?pAJj_|ew`(9FJ#aV|mGE&)8{|tMQAVREQgGT0{(_o8OgaoN#iJQDe z$vcD8spUgJP6@_nRXe7h%&v`j{*)DM!Yq1QR!;K|)Zq_Z4yN|GZ|gg={L#U_(dY% zhG7cLn=dax!4^Zwo|thyde!*Ki$3@8ENQl~Y5}(R2N`&sQG!~6hFuoojVu`zM-ENZ zh>qfk@6!~Q{zsU*Vd1wlq<5u&Q-%N^)^JE>#mqwR{q7l)etD7ORmUKFxMN=&xyp6}cF=Nw9-}Z0)(6!p+zpic;$m@_POtH+(rwQmj z;aMq~rkc!=%7-#*^va#T<2GUlol4o*q*js~mIZwU=rU6VVYn_kgRhUg^`~*N5yW)z zgQrs3%FR*$PtvqF4RlZ`tL*7c;OOY>MAB_VrLqjjs6b-pw?=?uc#dfwj z-ThR;riS4->+Nd)mYz|n0&w$}@=~W6yb`2uFo#Cq=dB9h9uN3u({kXg8u=nz9CR&Q zPLc~Cp=GWb=iz^dlQee{{_$~6yPuPi8B*~xg2lQ~*Bc>D(HDgsms%jrgIp)1NVSAH zu&Wd6Lt85syEke6TkAp7_+f*voTfLR`*neYIu2G3g|8FU`>dHsQYNmFb3Dn}=bbnV+Xj7QHQuLMZFF zWh&Hn{uOoP55^WbFE-Di9yUkS(=|h3lvcyplUKZ(adVOXQHy&t3O8sWn|DT}D4pES z472U^h20SVN!H~?K0?nXPF;$ z-JYeU!@5Yttd#v_8Q!`cz=+94iXO-Zk-y#^ z^rKs)>?pKi?jaN^GQOkhioS)3hPLZX5I z;gmwaeJ6OJOiK(-#NX8@WlrNXAQ;%lDX+v^9BvV)@uZ!f2E;FY;6${!K52{Xxxu56K~TupvYfHdz8`{>(q z{M&E;wEB}l#B{bb1O%J92mT=~=N;ztwIV~Z%USvl#*MNaox49D@&yd#7g@9%Ch>|6zMd=7LeC)6h-dxDybTwEfIhu6XIvqX@AU3nRdw) z{=A3_2adaYc#@jL?KPVs8wbBNm-mXg>wyR)-y!d0Xhm0%sL5z|K5^!h*u@{=r zn}U17t!VzXA80BOGPw4ywSagaS3^%X`1gCw?!E;CE*7J_l|y!rrWbRNn0f{aV0NU} z2`Qw4?msr86|#yH?D|}+FGN^Yv>k2!Rv7(N2# zSkG`b{Vr{r2d6cf1*ABoRxYz`%J^Sf`vKuZmYl{$e-Eu#nZ(vsHkW{G2lmMrD%yyX zX?7D~x+JEdjv&J!Gd-iTsliEsKuqveJ=CWwOUm32WjJ#lJ1h2rjpJ=BPsi*la$H>Y zXf?vgo!zqI{>l**&`#n~ZV#`yoP#%UD^gc{Z4GNF>h0~rb!yTh+ufJEs3*3+lJlui zVWDDu;?ME11zo3<91p*Q7s0}zxL#EK%D!<|!jEB@t^Hm74MdnHBe{iz$iwWe1Kqly zYTFa}fw2>b7~ST9D|A;;wU1CkjoM0myW%hI;w9ME-bfAyq4XGr8@*BjZg`hz}eEs@Wz-@;Z$OuM2%4Yyi6H#NyBiUQKtQ>0z4SG?=1i3tzkGi_@v|ae|#OLzB z9NNG2V0dR>N#76>HHYPRY)TNtIsPZRr?Sonk|{I3I?~-akpV;n3e5DE=yLA+!IxWH z;l4XglTK2bS8eCy$JGMt$vb?oV!54VN}Kttm|PCX;NTz^kQdp`*5lyfuDrLoRR*mr zCGS>TpIE!s1}6Lx(mkePSNK3X#r2|9Gpcc3RBZ82K(UrlVAsDJiksBb`W%Aa=6pvx zq`sT4u*4>ge{b)l*PG^DEBqYO?0$^JNVsLYuX z)gp?b7fzojSCkuZUSsnrnt(UV_}5SZfYEwtemqIIcP~H7J=52pX|Pam+buyADG zODdA({~);V;dVdiP+m?B9}0~*-<>j>uJ&K(lg?2Q%c=gM`ngr7q`2aD|6W+Kq;!l= z1t}0LZ1&))Z>GOK`a_OQ!SfMrW=gZ;;f>Hm1VRkP3SS&&AD_vDa*5X~Tnb*6w7cZe ziD^l31&hO=3qcp&9Jw`p+$Y_jq%_5d78Vjh%c&v|#R&LE{g45tBW%dqn2UjMcVF+_ z{wEF^vE^grD_5G2U*#79dLn(a33d~_O+szv+4Z&>`d_1KiA$hSQ#@!QbOWs z{);$}4*OHzJVAIs;b9`O_Oi8*eL9ud47fIoj`pS@)L>|)xZ3M~?HXy~^_FR#^ zQX*7duJ|<*hzS+IH`z5P0LCXP`9c~Nwk!z~PbP%AQ3xdIfRJW0Gr5`ZxU zUrnL0*l+GeeXS#rWex`shyMS2lS$>}RT`HM*Zw? zk2%)%J%_tV%O?fhTQ50p3gtVeu-b=BM9NKxOx=Y>=-1Z_)oEbJkK1Ehj?+(ppA~#nzl#X?R*C(rH<{CW zPI8NUjuJBjX>QJM^t+6}$>}geO#awIPEQheQn{F4y0-V*i&mAzVnaJ$)bDh{d6GXZ zkMpUhyKrzkUo$>ob*gx%keiKMHha9bdHenk`cpGD;RkG8(9S2^Ieu=8gCi#ZYwnuw zrkQUJqvtF}gNQM=@`sINPjz-K&tP46kD{q8%amh{oXWzQiN5#8nT;pLb+a|DX81>> zDE?dM4)@+x1(i=>i8SCNh%zsoaLUt#wBzDLp2TSUY})MyID-~|zHV?{*4DxX;Ih52 zxo2O#5n}jE(J?i?^uC}*dTxn#M(Jtyjceo-*a)b{VHv2@hJkERLd~v)N$fq%yyKem z_8^aU-3uRZsLV%EB9%5U#4XWBMRV|&RE;k5d}MUZ7!Ps7&a)|X2#twB#=N~~{ZI^f zx8@xu>i_saE*!{si={FAg=o6r_Pr}6Wq37vP)>DAedpErheQy^h5YxO9ds1A@}Vup zXZ|vG>R-&`Xa99CH2HO31#83L$-N`X4mS_i&Gz#p=Io4=@_`yZO8kc-Vla2+Lt_NP zJ9~EElr;Pu=|iKfA2(4+0Q%|SM>({Ebgy3 z41^c}mUw1L7PjFwZ%A9E?TlJZ8$&u0*mfPyJzl|VigT%aCx1} z$(r;2?j_u&pd8g#$EX5Y%RF*LJ9~_|kNPHNER}CJ9p#{gMxzgcF)KIibdd2?Whzi? z*(qX_GGlRy>|ikM{z~|CMO2q64G~jubciPBqbzcBgFqa}a6#3vBmg8nA8=wybrpPV zo(LiKeCLjd-v$0eqR*n3J-t80GBemE47Z#WUk`VXrhfR&yd zo!83vwN@I$fr{!0l(p$&xx5dT-vySV`^7tGSX~e(8!IY=&%B|(2Av&udJG$zZ?es@ z&_91M>>E%!W|}DBIv%}-1pFA%S0~vpzD277pNgk6pF#Wl5oinZN?9fEHoiM5 zY9mB^mcD0wGU8M$?2J&`<{JXy)UqHh2^llNi4A0zN%~8gPH^TuH0DHG9g_M69O*T+ zI8oJQ0VHsO6WnN#z|MEe{FbhtgY?I%xH>zDE6rGpCn(Kyo1AxN~OMh_i=T65~m_KAtff8zBCWYi;3Y@b5wRYASj` z+KUy&#uL;izs>YwpvRW^L8^D+HyUWc{v3v3XD9{PHX(F;HxRmsCC7d4!NJ5LhX8@z zV)u1FJ|uuzT-R;Aclw7rUp^)ZsKr5bj!+^i5ITC<584gtIzHbBd>jOTy(Rlq5(wWm zK3T7^LjD5>{uewgIaBW)M}okz^F<<#my6*keS?x6p}%|FK&_-C68@D7ko3RO z%;wMB53lgfU^o<%U$#bFc$?3uFpS#&JQ}`@4_Fn@kLRU#9bzS>`4_nQ>O)weIF2QU zXu9%06q%RG0$!fA4{87o&wN5;u)oDUKtiJhxH`9G&H_iN$F3u#-{Kosko7QrT33Al z!lkvoG?OeR^zBlJqhw=Pom1R-U6EaRY(Yo%t_+AO3I*lCx&~1xB_rLx=gB@mVci1*NJYwh%VINGDKImP;T!^h zJW-xHfAw&s*NM^zNzRZ<;7+h{j{U8Q}c zu%G+3#)r23ut-(DGQN0O1Ru23FLvq>3e^fA)`-22H54u~>p1EJy6To5C)A(om{z6Rv-Hk|1M{e3rfG9t1$_^U|@Y^A2&WB}6A9NJCE`L53CB~G>mhO~3_ z8fHE9Ez+1}yI5~l$G=yNVr6y`uXWfxGv7A}^V&YOy@N?;q+%I0ynjVSwQxtoO;j&2 zHP^$=Nz0g&;6a==RT-MmF3Q+?!%gB(=eY6{*E4pHzL{X|PV#klBt;i2bQG$fX(}D< zG}EpxLmwa=|H*>_DA=9!s_8M2*g$(1_Ghs2bJV^a`@ zN;l+agd)F--nXYqvl!F7=@_=&P3g28|1Tb6m;sX`Sg zMnLwKTdQ@^&BY4gcgKXk`Kc3@=>d_^Vf!7=v#o`xs~~w-j4O6P;O)M)@nWelZ5+f7x$2|IMLnk;FMs)vd-b(MtK`YCQ|Je zKmbIiUcZSiEy`MnOOhTaxn5v{d``HSIksNX!e!^IoF~d216c@pJij`X9*S-P-8iBb z&Mp!o1IpP4zf2hXE@|g{kw#UtV#1p^Iu`ylCOTo%AX_K%sE{_0wXHrk-U@bt|BMxA z^++)X=EXJYUXEw}i_FeJ$W0qVhv-;R9L<#VIoK$o7*krGQJGUa#07hhV zmeWImki%#ZQ;%{~G?H?ga;P5+yd@cnMh)rMn>QHu=C7e0$0>Cy8b6^{Qxr9@dIzLX zQHIJ>o+rQc^1Dp2OBIR&3Jc z?cIg^uzt`3$(V_&IoeBF)?A`pa?lo)jNoYFUpS!ge+`zRXV?=p(=f2y44)_m=v1Tb zH$SN+dTjmB1|!lR0vG~mRhKu zhggl1p5Du6our>vStb4}gcun&JbNWBJhf0frggS0aA<*=%b`3VMnd0C?5F4}Hwzm5 zTaUnTX?>bo91=bifqz}YZ+u7A3+X92t@5|M9U^zXipf%HXpxwJrcw&02d%yzX!fmq z`Sc|2R~_$_^4E{z^u6C7S(<7iukymZR$qYRsglzxk*VPWQUKB$H&3T+l|*3?xYDy= zjY@pE#xLb=NPc`WBwVvrH>6c>vTO1;PNG&-z|drp8-uCEuP%w7^BE?aJD|)_1;*Z$ z_uA7~oEYpwzY`U+TpjwJRr7o=Xx3`Jc+jT7R`pUIokg~rW>C&YzU+3EaVNAz^N2p*Ew*K0=*TfTnlx^Fg9VO|0rWx2VmXjRJA z|2d>ejG1VW5{*`|6bA3Zxi5&M{O|@W#=ERRGxf%M%Vu|Z;f-$#+4^(a-nCo6YfT8@ zr-rStJgwN)BS@6S~M3M`qAo2KMx~d5dDoiPYUzC`*(M zKLS%y$bC-+p1+){)GVvn)${jjCb)40Xqr; zDRxgs4idP=5bfkG{MoXSPDswT;)9Kn!|NkQr+V`;7PZc9J>0KDby;fC!hCnvn^`rE z%M$6rKBVubDnr;5`58&G0c412c|dx6FyrENrUI2LISG6oKcL@>luXamlsovC!oeQW zDpAd2#4WczO`xzV?>E(tY>5`E0t?a2P&&q+W_uae&b?DhM@NS!6HC>ZKrh2-KPRBB zu1*tz5Upkk!F)=X_@V(-MV-;))Ui9~q3|a`-4}oyDW2w)|%l&l&C5O^`{r8YAO* zxXbQKyINdtVLVIArhz!~Is(u;(|efh?M3mq*y|kn%EM*WhiwM^7_TYc<_l>;b2mQe z(t^(+x0Jbm<8T4h@(=w+42k+(f*$jt3x3|~=^GSCW#Jl~#SG|@D&$^op<-iu@DJ8R z^CMoZ#))=KocsTFEqMDv08hPJR-W`oksVX0EI{$E#S10c7&N zGt%Rh<|acQpD*t{AD)QIzo#fI1s5jL?-W`hKcl$mkn9=kXFK9=`rLNr!-O7xczL^1 z*daR(rwgjgnHmjvoo*}xS)=WBn{t*26Duq4qzQ&Kh@bT|S4ih1DB%W2ASz4oekOS~ z{o_JW)|?;S&IePOg;BR7d`RpSl+aB1fichMVFGp;1W@Z7)K1!se>J^(IJqY$C)s1$ zLw?$H&Q$#-YF)b1O`de#3q0c+A>oMqPT|VeL^y(4TnE=Ej%ODZ&w=7v8qm2a4YXOZEl#My7tbDI3v=nD*bR}EZczD<-(j!`<6jl2zQb>*X2ZGYV6F_mFi@WgqV}Ij2d3k&h`Xta! zw^+Z8H6BMw1R)}#G*J(qihV(P^ZRxh7v10UVGmxq;|#{T-y6Tv;5hfk?LkX;bab#` zRezJqrglHwe!S}o=rhYPf)>Xo#JI8WDX^nq#=@K1o*{8Pjs4bHHqIXEy}j|TUUe+Y z3kk0cvAsIL+^9(H1R4`6MU9nJ<=;MDvwJ8@K*+kh`#zIaztu4Abrk7xH=bw@uLN4(zx?BRBaK|hlN08;WlWIFw>u03n8;M}UQUZfE4zBbzvz64UUp9VmQXR^59_U9$<)13*e zY)5|OZY?_del`A1%N20JRDsdbU&K(GzO5~E3MyCH&7+LRd+QXV38~bnMHRh2Bck@| zIeU~HOk(T4J#6=%z19EWSz}Io@_ov%TljJgX=x_OEif=}y3vU~(|e~x@8Q7bur+L= zOpEd*Zxf5I9S{HB4YtU9sBusJ|L**yi^uf@&8m3Z@cQ=0_5Z zEznVhtC;`AP`JNz0ip@yky9o?jYyfK@Y?SV|=?d|(sF8T)b z^hllU&ytV&sOG|Dt-K}P_ttUc<+Lx9v;j_~_X|ApP2#?n6? z+4l&2C&sNjfS*{#(o$!JeM7Xb8Bn@p){m`el;A#0ekq4hpkMaOwOCu}c!i3SJB_Q0 zi$L}Kyfld8MI(hgsTY?Z*q;s_%i(MQ+8~Z@v+q_26#Ndr75$#;Lg}6okhf#peh8_o#HHU9MoflKG%*&sIWICw zvHpm2!%iGfo{s&hECtX9_xXg4K+CVE$+a&Wfvpzi=acW|M9Z-!uja*xbji^8^}sNj zg68|{bK7#!)w1+ZOBBw8e?`b{x#=<#+DrLeJiAhi?pvza_==@iu4m?kBaneG{NRy^ z`%DV80{53G$z4~^^(DBb(`SKAv)Q+I#d!UhjhPt{f{Yqj`<#G_9o(_tGlw#8KVcL- z|MeNt>Q4s8@>A!{Dr|Ll-|PiM4R|&1=;IOb~1y5s-Q%yR!`(h=_>Q#+``FkO3Uf53Vu4Oh(7Z ziVURh^&yq-$x+pb3T_n*n%d^v0DyIEwHroQ^A_}GVXN2{z87@6OpI!u>In>Tds@yZ zAyjge-9&LX#;KiFD8`D4IL#jIP05O&o2ja%W>(&fPwnpgBPy=+d7*En_ z&Sx8z@u{K*9DXPPLXW=gB*S?_d(1D53aMhxjA!Z5TS_u0k#e;3*+@Q$0qI*O8qHIF ze$t4D2y(8KnRlg2EF{gbRzr~tzE4j;z&KDqovQZO1OfLw?RS=z zt7TPf65!GZ#CWn?N4we>;qLxE=KrXA>!_;Us9X5Z&7r$dK#-J@ltw^GLg|oB>F#a> z=>`dD0qJf*y1SH=?);wfd+&G0d;fF{4`-jf*Iv(BbImyy_&INYVs|zkv^J$(iNWlX zD9qKer0y~*pijr96f~OnHA_=plt5tgQL)fg=DHiS-!%W6{(cb7(&vwI#@xJwJHNUr z>ZRI326dbKglpWQpy34mC>Ql9!`9JWDN9^~C*>z}BsyYIsHZC*%q!zt4hlopqC`Jx{hoVpUo=W$L>G+CVkSFqfTp{G90Mr}@mrvCs1rcUOXa63D_w$lt$zyYAYR29}m|@)7B}ic~d> z_OmK+1UwjSV@Y~|$_Db-?7TSGS}fv(lSSWUvCm6K(#X4U?ZvZmKAAr zZK2I^aAhC*6A5HByQ0Zwg%1x4dt+ho!s~H{R=-3Iv|#~k zaN7P`Kosl5j8u)0EVgd`TFHTq>d)(BBD*9>L%N$cMeplHmD}P}R#dssuXThyDWiXeAl4I{;KsjVB zciC@v*qt;xcs7x;t%lz$L(PM`j&kDc#nh0(R^g&qHEXd4r;Qm=&uI{Q?5rA zfjL6}#Yb!p_sGo~ZJ$f@LhpKb=bLZ*r}NZIqK-)2SXhzK7FIAgjjE z!@Gz~PN6m%+g!UnvcHiVGg69enTQKI9wgy#?ne^?a*>fJ!95 zF`d`=x&~u?u?YIff&7!#Ihx|rrC=YMCn?U`#i^F5gsLn1V6)knAZeLs9Ha*nYbalbk!!Wgqj(ko^r*CGbHDKUt{(X zaBf|H^kuzoLJ2eO2?|Ru)Qi54LfD}oM0)Z^(6YVSoyLFt;x67!6BVuJq%EzE2dUGz z;vqUi59$fk#Pq(@%ec2C-_Uy(aO=cslpX7r(9F+{rU~+kTLF+8@|nBB!J1omh`6}; z@kS*3#2-DDTp<4GK4f2;ZlvyFjP%r(GtvV%-@w0v^}R{B1fq(D+%dM% zlbB#4Vxd-hpMfq)_YB>P(Jd&rvvcSyWN|qlFjt+=Z*phs{j=!o{YaMaqwxqJ&V(_?zvt;bY<1QCBROzIlVXvsGmTs9*bgZ+tcU74Y=S`-JD<>z>Gn$Bcd0YhD zw?{Ho9$nMcXuc`rGuTcz0yYB%GnIDLQ7de}0=N=0N2CGGthgm5vQud^z|)+@EvEU; zOtq2m7JxVV7$$xyi?`re;}R%1($%sDzR!nBHN zKr(=sT>bMP*_gIjDcs(S0oBr4s7i=&D2+T}R$ccoZ z^Ynyb^tT4T7Bt6|^#V7a>PdffIq(Zo5HE|zY7f5t7`B4IS_9V#Izv&>_N4f>7)rs7 z*UBNkS zkA>Q?jwMPf<3Wg5Qft!8m%U<0a&t-_(01UdtGD+SF_sjy@{pF~cBvKoq~4JmyUpRg zvzYei1u@Kz* z;U0rAm1U5AsWMFI7w5-8(FKE}QEg-OH`(5nYu;-_!SW+E1{*a1HfPq7S?p{=gAR5VJ z$Gkz~{-F+MkJqMbO=cj?GEq5MBY$(}5dwMY6vn-~;Btzg@;4UE5Z`b`F&raDd~#hG znU0L!S(!W~@`FfcAYA|ETlKp;O8wmxjIqAE8y<)PHCm{(aN8>>0&lMovPUb?zUw23 z$TG5_n-c+$kmdZU(39*tvN9O6fD1?T$@I+ApHgVJL54K&o`Pfv8^JldAu1j&hvjci z;BZ8&?)V6445aL9!-;wYXZg&>7f0%&Ny^Eoq?=RKFkOkTrQF^cc}~@wuVy}h zpGPazQQI9GmFEE`A~G^O=h#3s=$id4)uz{b zDnxOY?3kK@mEP!D(8gHnhJrzMcie7l$8-?_P^%+$yin`luw~M57|o?UBZ!E-3b8xV zD`sa2t!PARYxRU{aKE6T6?gK^m2rhC$+ot3u962YB^vK&agbF|K9Cf>VmqSBT*GxK zX8-~qR?oD7e}CL|=1I;`_rq2-4}$cpIui7k``L=axw9AieI!^NAE^xr;K%y#;Ss9J z{=Ds%R{!;=&(}^i`{{Xj2!XF&pNFiG^zV0;)^jIl0Wu1m9r5S>@(VJP%23U0$Qrw2 zT7U;sT-Tkmg5sUjUawk%(@_kS*wbCd8S1~F+)<(65f%JgHug}@B1QW{nhK~Soh^^1 zV;p5YH2SOh@eT#@sz~d2uD-r(f$ElQg*f~!RxdTg?E|2_Qca&Jj}T>S&S(9d{q0E?$GF6CYat)h1B}F}QcpGjw<3P|0Rp)O=#cI0 zd>v~BW}g57C!Mo57Vpt51#YYm))lrti063FFiRMW!tsMBfcHG_cW<`x7W?<`us+>M zy!XQa;`gH%mH4NvOv-nvtjzA0x4*x{`F4@=>%3DC??1N3)IR2hZJSPa;9jvA(Em%X= zhlwKpJ-KF%o2olfT*c}GQX2yp^rX9Z$Do~M0aqT9<(#=Y72TA;M0&x_UFRLDwZKC- z5ik!3`Cd!{?qZRd5~lkp+IgER?|wtj5>JUjL|+=2`Sf1W;=%H=p=dszkjzCOTQll5 z-!lm0^fJ36{^{QTAk(63BQ08z4z6exW>LVLuwoxjf3?r;Rc}r|#e;>3pEi=ZX(<`A z_Y0W+r52pq+S-O>X8y796n`xGSxB&WRW5aoAGx-*?hX3Vf@lZtKgZz_(#{Ta_pQRY zSFJPkmA9vah_Phzr-nG(UL->)LA65{Dr~V;%4#|dVIjZd_&q%7XBmijN3cmQI-XIK ztLD*ca(gTb;u_+Iis`Bb+fMdX#n^HIoJw;OnlI1{xn;omg#Nn4Gnm#uR*4@;4m2pB z=-pIOq>6EM<2L*?Xen7wm9)IjXO5K9Y0v@Sm`EP0nVgmuiuw6@SfLU@$by517XXGi zOCLh%{w1n7U~9hTqy1a*+}{2Ipx0r;FWOrEw9`{%2X1n#E%m({cq48Fdi3 ztM1#BW!m-Fuw3?cG<(&-^Jt~@WZo!+#b^-_s-1C63#)qd)L??CRFs@aAmn8Iw*$wC()de3vjc z1l?>%7uWKodh)4?*Y(RhQC;|>tlYKN*n2-Lr~VS;GdqfMJqpEuf_vD<2Jaw)plmZu zay?kpY1iiFX$D-Y@8gXbaAn{l5%m$u0!3lc;@!o5Xj$1yFnFz%_)l&zA2|m`$Lj|3 z3Gc(Jbl4vswXSs;6Nc7TULYQ3iVtT*;G7NC4F>mzt&lWtd@g8x5T5!ojY{tjyq4_(X@Csk*AU9?TgR>bC zP}HAM&!HbxZ`$r`%Y@Z6=5{(J@&UE#XQSVy6b}vvz+X+)L{-xF2cnDZ#%kYKjXciC z16AmdCp1rf_=%UmUX22dMl5^47WI(aZ}N^U;wPlVz6ox0xc=T~6##c&oD-jw6|=Us zMsB-WYk`l9Nn%je9oHO}nCU;^NSbnbz%@4);W&_)0v-JdhZ5`Q1#~N zLn@z#CW9`NQHgv@zqXGEGIm!P zzLWXy{X-^*x^@}k&$s=V{Fi@_GwxkjygWi_b1LCK-kvqY`5-ACVv`8f@$DBgsARp5 zjxp@o37}iQX+M~rQrz9$bpv4(pPGtRrxopwfMWFL*VnL!2(B606y*{%duQj~$x&aF zU~zu-9dEPCT!trj2GKeaRZ?%|gyz}e?-KVT)HLyf9Dh$UKe^H!(zhA;FU7v*WA)k$f|Jziroy%SZbZwC!GyB`@9k_{l8>wSQ}x#Uh>8 z=t5CnL2~f#L(2UKJoDqi&h2Bn(em9@QyQ~yOH1%)v<6+IoaScF(kEIgOUngErU^M< z$&1!nh&vw3N^lVwm7)kri7zgXsCU?pVIP4}mANLhxcxzg#uUZtSPN>_kR`pP{11iC z{*FF3krEba33fCZtAIbQ85Mb@iaDVNfK%-Sc0jI7x!&v%62$~4MIS{ep5P~XSdqswqIV4gNxfKkOs5)WF1_UI9v+|^P~ohT2xG6*9xOmFe-J} z84-j?MuD+7PGkou=G@cfw(@n8@o8!7WcY=y{SU!k0s-?G!WDh@{lSx$BgI8rnw5IJ z`<3l6C{%6`LPA1_U#sWU#{JD%pO8YjLMj&$sD%dy2l+p5Al`y3_TqhEPFY#hM+V~! zcWm;_*^ZIk1lZ(wR}*S@_S6ceS1EI#ZKr%9GvK?MmKJ|J-)w(4jfS6fPfY0h&))kn zdyeogZ~prf;HUv{M(Ezk=N5BGdmFO70e;Vt?8y$gtIs;%d_ zV3RH2Sk~G8^kB!$%e%4E=%~O&iVrj+KBJoUm%Cw{HKu@1hggvNlT6$91_#^;gN+}= zoVSm@pgO9KkqVOnAtccyW7lmb$KN-c)*%pM@EIAKtS$-2OU-S^I!5%Ei}8{2%i;BY zT9X3lip|T9KM+Soo)!-oxVZ52eQv&0V^1<fI1{)(VkTtv_KHizaSWjStU7mR5G#%{?l$&77c&p{LJ;vbx zu)83VQrC$(KWggqQ$HMN?$I_W-#4PCr!TuMq9=_}KY`FT>+5&{tsk+8_fz~<&V(Z`klGn7r| zv{>A^&?;NKp@vCc)>WKb`j%_4|^=1{u#ZM@Qq%f60vT@NKiU4;SiPK$QQ2Q3U+D`f zKZ`!GPJgS3-kILcMoD@ZKQ0XcV=kYT(_bvG*)#z6fp8Y&PZ)r>F)l;RGXo6V<&)WZ zK^WP2W{-_20}2)_%@>!K+srfk0k4C!xH$Ywxpt_@P}1_LD@yVu`a?^&+r>evFNh2At*|pZCfQ}J;56q*z7CqXu(t1+K#G9o`zwC z*#t^8UR7|O`L?44t^lpCp%qIRk(l&dvisGtD~vsbh=kN>z>#A%n#Dna>2}onV;Ra)1IRm#j;I@b?VQ+)YX~&MT)Hkx`*LY(n7!=u< z*20g?%n+^m+_7p@=!Ann6ED{=2E>P*iEokB*yE=3(oufR&4Pc2Qv<)UXm$ad2=;#g z>j9UXeCVa7HV-dT_2+FfR7xI%2bnRwvaRfIx^fa9#f5~BvHQRjLS<4*{Lx=8Uu3j!-xQ)%jSEOc~nW#zbP>dOi@cXwJg zHtfpQOENlo`rOIgu~JQT>(w^OhuaHd%1ZUA3!b@_eMd>5Q|=`}L_mIcspjpBgy#a9 z{z#TQeQj)Qnf1(QJR`Q>a)e*n?{OYq^&9kD1GB0yRluCPcCCw94jRd}?q~@O=IaH; z@*3bb1m;SFZhY0$Yh1sCid;kbV<@}(qRFG3i+M=_OXKq2V*l3Mzi(i~Gn7@yVR$Is zaQmTOS-^rkvyk)ztv$D~j3A#X8zmWHsVz3}Zz?&7?qB*S?r9G1?Glhy}MQLbe zA)7+xZ$>qPuI)#Gy!h?gdNkik!|o-FyLW%m-zN|?T?_#Xy#t7q_W(poXfx)t!P1H>nTzJAX&=e@bY|%-ksk$J`jhY(#su=?2hr@#fJqKU^e0Nx+*`mOS(KTZsieeS?WT zUYBr4J1g50?>uofyu4rMkHZJFSiL#+I!b14VZ&l(=)|ZA!vvaD{*) zbwG$#|Gg+6Z}K{z6{xPWz2sV8j26#*?%(2eXGT5D?wc+dS^0(E8T0nh=@c}6^5 z;KMRgTqXvqxW6tMZ4Alh+T$LkKBIj}8SzAkr5VBTuba4-2T$U8k=#k8J1%%8Ql0a7 zPDd;U^2^em-z24^41tB;T${I`j;=272zPdNyO`F5A;BQ7j$J5ppkRDB9?M>kgs34` zIY~!rB24DsfFp9G(%^~?{Hk%pHeO?w_?7`?cE}4m5s9M`Oj0Kgdt~gNmwa}pw9*$v z8@QZ5Fn~>zQ7!y2j3|@BX^cZb5e4oU1frNNf~Bvo4`vta;N}^?Gy@jx@OTCr8H~Hp zztF+IAI$KSQQ9ltMA}&X6bh&Uv>R=q z;QYdzN+P0lpN*}8qDl^vvl!&(xQGTVvA%018`SrKtPZY|ytV+qG2$C_Q@TFIol$|1 zkH8YTH6}E()!q{VFMWuxv$GSXk}sVL;(W}q?!S5#9#RMpx?u@4WZIjv|LQwq; zhXDl{=o8qcSS*lWvds|4Xy{$ zz1d&iHfQ+%)~|$r*0EK;0%|H8dVY5g_J~J?o+&61NU4T`f;s!sF@K_RnGE!LR>HZ9OA|zI0o1C0`u+ALaLcN-> z`i_~j;A~i@c)rTc-OyWSWZ+!v4OKbgJ(AMVCau{|WEZ!`h3B zX-OIjlZ)f7VXuJZ%MiS37qj{>CsxQBn2hu!zIe~!ac=JB;b8>o7VyM+Ep1heK}Crp zBt(QDgZ1CQy{Vi337DjNi8# zTfWrc4+E-K4lOtmO3LNa)l5NGX~6BVw6t71JY>6l71)RTocHh^GgJC^hac{Sn^Byg z{E(uIlpK1VzBeha3!s%5VPdJP&pllf?Oe-phlH%Qv#jhquqyx&Rtne$P-K3}Bc00AtyvWNR@RdwtZ&%06l{O7 z3v6UL6Q&~XRKCXh7yn`JmNulk)59~eEE+kKm>)q%Ieny?Yn(v$pe<&v@B=nnOpg$n zD<@nJY@Gfb>NiMhx~2cSR@zaR)+*4G6`Srv2-ADS`}Fg_Uo4}_C!Xq#G%2EmNgm9v z@j)waZ_*Q&8@PmF)~IAEbVa@BI(l-YEH7!tm{ymX!>uRcRASBD7>zg(O^(`=2*qi= zHv#^ab=t5=T>-=+I*zw6) zV)zw%_sV=Q5DqcijWXo@ol}uy^~B|R?JbKtp_ic-yLBWIY%Gf+De?rOx*!@5b8PZ~ zjmpgUtz6|az@0jJ4(I1n@Iov?zyEv{Hi0W4`6K3e3X~57TYH1Vd^M zyg1(^2M=mXrEKwY7Itw<33g)fh0^LKP?3w@uk;#sQv4W%_Xt|1(O zF%PY5UH)&AoP=()I3g_9jveMY$$eOne8=3&7}=o>`RIez}T zSU4*fmW0R!Ei>4hzHV3KN$3N=uHizuN-}@i4bK(W2lby(E(hNp$OC&Im|=b}nPM7tSU$?^GS(;n+*mK6L|8Gfja>*MT(S$0+5(bNzXol*dlBY+_3=OYp@c#~#T&FEgU=V;&6zd* zdz^NPzJP8HoCuA+ZoKDv^Ikm|ZIm4xNpUU$F7_;z*qPn6u|yKK>}@WjTWKM`wD{cx zwWd8yAE!-&TnfP*k~Gx+l?|Fxqx%{q?P+pS+CISD#y+@5TlgiQaCdbUx1hYLz*#!D z6b)2^uwPoJf&o}CswMoQjOG*g)y$vYwo4SL8Qpgk0f|ikCE#hk5Pd|!ljXRnV+0i_ zJnT$ja{$KLrU|ZvB*M3^K^eov4KG_Jt+QbV^VSH1mDDu)9- z8TWUQWc>Dq`4O?OK2dgCgY*#SA1Y3}Qi27PBr1zF+cJOkQk6==i3^;Dj6X-L`n7g8Y2O~F@><62$z?g-dop1otsc%sd6N57{ zHeO#_g8-nZ<$OYZZ2#gfmfUa*fQ;rJ5T2>N_#c};+5ngP9qdGFB>>70y$4%Z_*>y_ zO@$9K%8GiGHcMJ}UJZl;0yo|{YK}%}@4IwCRt5n~Fjk~QeSLfTbBTzO66>p6FksU?Z5~;0lNGCdCvOY; z17_pR^}Yz?jEqs<=VHL>6!#?%E%mUk1R8&UFt9bm5-ELboT&M;GqvhL&w%B?{=|+G3+5RtbOK3y!%~UEfh^>A*DrY*qHzmqj1I zh)w10{$GgPI}f1=5f~jf=_#;l65p7rEgLxEB9^w*V!q984PASkz-iQl3i1mQj3D{= z@BmJc(i+C86prrz8e}m0{QTj6d6sk6s>lA>-VV)|iCwYRc6WCl8hs2G&-D|heO%Y) z1SwXK&l^clUq7ntNgpITx({X*g?T$yZapn^keHPX8z1?F!aXOvyrb%h1b@aPziI7D_YWn}RB-UU=_Cz2JVvT!OE~P<3uZeq8nfKZQlpmAo|N%JMUkfi?jFK~7;I zG7=IJfaUnTZ^3vQh)=+J0&z7p0*}jsa2QbvHkbrH@W%kLgEhI_U5xfZ{f7M^>}xm# zK`J$7FzaUn%7{Bctj2FCkLz@@Hi!@LZ=%XRmV|VDge#faFpW%AU{7Bzqfd#>(fd_bL+ zc$xA;5~-3#3+I^zNLXTPm?2iZ`d3t_*&?a12zv{7kW)O_v~DW|n4~knJi@4R%0%7% z68}oCVFvgY8l8aTz36*~SkdZX*rV2@BQ>zhpPn8PkiE&V8(p-%wf!G1JDuu@!#(BU z@&u`1g;Xcq`1&F71~6<@@&{5a`aY0UwBEsn6uJWLme7b9M#H^OcJOblZ#y42>F7~_ z%7lml7_N69f;}CPy`<-JmqRl4N1~8!Mj0UW3!|Y_yaz`;I>$qPZ`|N6YxWZ9=$W~O zC7ApV2t>S9Bb>=&D#iTi;^0KSg2vT2%pCc~gO7%2FlW~Ij-9&8dyNJ&Hdoy|sFn~w zPj`-3fP7fkR_C|S5(jp>ya+K%;V1Uh5&q~$NzF(L>RLvmKVl@t;JMJ(N$=Zx~WoYEO*Pp7XUIdA5x?Jquu z=+O2f*eSx9tyMiXb2(LEAVVlbRl}>;*rF2BsDQZJ2&i$a^{?Psx`2ZL^B35IFUkdm zK-BG#9e0cdpN4^8EDQoFD6qf<9Yq`X8&n9@qsJU#SE=0FU8W~ABbc^u084 zm|cJ%LsAkwmWci`R|VXRp5Sv9{@PsvWW_xsPh!E0B~L166Xp#0!I02WkK|R(okI6iQn^?Rq2Eym6r+uaIlXY`UN(*6XwH_f$2dnYi z8a{B0#iynOSBX(_I-k@L8GlP=vA;1FNvb&QihBESygjOUvdNbmpQRcyj_U&m7AWt? zXif92Y`ZS0S7k!qCV=Ny5IsUn+4Wc{A~v-Ts{o@aN;HrJ`2@!g$=>U#g<|VIYAz)K zLc&pyEeY-}a;icA%HN>Q%0OYc2y)UwZgyZ)ZwmZqTpll9+~+YGjt%6(PDds)#|h-$m<-gBZxIa6q<5!c_$+LXCdy<4Fv}1G#ClldmY}*oZX1~r2Wy$8ah#CwxjZEk zBRmj92M-U9l59R;qnsctxkO2z`R0g}Lcl2tEZI0C_YUCQT(6qI{2*krf-vaY^JwK# z=cvgPurQ}*2h1WXRz(AS4+!`@B5R5WXbbHPww1;bHE3OWy<|E}Q>X%4pc=Ek-e~8t1YBw~A}{ZZ^Mn)< z4d-_t%>{H391&x5u+R`pMb2a&{>Tpq>u?x83WKm?DX<#rT=|&s-nsU-z%y@O9L7zy zHw?-CPe&&DM+Q&@l1V?ALyWG|X+T!}6bK@Wdp8;S#(9^HfwhRRJ*XDhY%T8ep~xQd zLZ*j)iXl8D8?4N8kU6P%T)saP*~(y+1St(%AWHvdWsNC`_x4oj?X&dzbDvwTwWytr z>)WVcQu%yk^{@F()aBRD3+jLd{;icrfK@viiKiVmK%nHNb=dq|`A*m%uYaDs{Oj!i zy_IxoUBASxvsC-^dgFpv$zbxR(aps|sWja~EPJY8x%ORj*xe=u5bR5`_@G%J1!_bF zjXq(;8n%KyQK7_XuUKl=t|MWgatuyf#(p6C60n< zxGb-&@LkA#WbvJtRNl9ih&&ntu>TJS(K5#j}E(=lIwGa#tfXOC@@DMe6qQHG5N&t6#5Z6 zFZ|2$xqy*eqg6Ocy%=*cy_d&J@RUEaBotlcImsZ?>3bnk8P44JOT3H(Vp0X#!}!XM zL!Sm$urJP9G|=&`CjMj_Z70q7_&mOQXcCUT|9ayDY2(P>jRpMj<}WU<5x&cROsTzp zKBIzKZSE0GWYO*oHiSlyX1Ah}2fJzN;2D;*Y9Us#QGrX=31t&WIoUuQcKZy^9j$d; z>LRB92M#FRx|$lQV*0@<^Mc=CIR(>dJ#?H!?;D7orM~|`6Z!7VqNUuXWWih4=r6$d zd+(>;d;YnuQ7O15wpo{w4fmBjjVC=&yI3S75w^=)^s>YFLi`jkcjKo|HHy ztQ(sM`a$08ew9OXtp<3E5$dh3Lg};-(BhJC8X>klJ>I4J_-yo`fi3JX^^cUYG7dJC zP#9yj7jSdLge`{->`7v075onhv>*kEDhMz#s{eSJGh1^0%kQmn&TEvAyk@Rp#=YwR zn_Pz#(-NX^m?7GzO%R<{4<5)GtQGq+O6_@2P2L6t6kUKXRGADBF+=RuZzERUvRK6G zi%ToU!q(4>E$CX@;CId;;s6DjF0Do#A{r zazWS*mL&LtCsPXWvzTvo(ii@(!aOcM^Sf5HLFMQGjV+MxIPO>3(X;k~H-Q~7AisRT z1lF`r@C#uUzCd7I-xKHfW%;PkTJUl(0qLQ@7VR* zD8OFw|9(#RPgDi|DkLsJ!62o4!uB2kFhl)heM{t_j!@|PgTMhL4PLCLl&h3%vj`h_ zLm&LAP@^k&#R|D$i3H+?*4FiZHZ3&?0Q{i`oH1ByE_l>3`F&M|i9nf&KzhiaWa7tU zZkreB_>kTwP{uH*^*$fCUbniIg!b<2#)G%R$YEO3YAm+~$jeL_2j7Xy5(_lm!T$JS zUQP~#hldB)TlfJU_wHm7*pwj%tiTiSM=}LN2L@y%Wn_#8zdQ#fB?yp#Ph9y#sp17? zOj7RR@C@Z26j^-2rvXSVqsp6eI4AYru<>@Ri^GVLpAw}}e2n_R^*MVpTI^^(VTbSY z9kWiLU#qrVZb~{r!ECsUP5<&G;PYmm;bh^v;+c(Rh<$-TPPg3~{;6cr9QOBMqo0kUC+QAhV@^L@a)G3_G}QCS029EBx;|#6Z&eKnRZVTG82n*2FB;LBA(+&tp0&H zn8v3|LEVK1KI;RV9SOV5p_nlAR>47>7x5Cb< z0JG$-#I}#n;6PT`1O5FjkBFoG4RKGo9}p}52@g-Ha>D)XPN$JuQh|LZ;)5aNM@r2K zbd4W`qvf!IBQFSjJL(8KB<`F*ux*T?<_tX8^&a8PeGs#g5Le7viJYJ$4f8s|bqhj* z!AnvNKOsE=i`j&Kc<37voNaww1=S!Cb59!gilKpw7q96z3TMsZE*GD~=n{F12FNgjBPcCIX^!YE5${@dQXuZ;>g(7^^;5C?g1;mTSXWH64y z!!K2EBygto?U5CDKfPW;cJ4oi5{c2pSApdhQWHG95{Cwv)K?Q3k~IW=shVbK_auF$ znWLzgBzSQJ-gPnWavICk$#^2#*$n1|1}H| zWpaqW!8{HbA6Xcxt=&ZC0_v!Uo(fj0H4!%suxDUc0G(F4mlRYkC-`I-zc?-erIZ_# zL7A|SS5ipIrZ;odG|p?0Ta~|Yl&uWM1P_KXhMPNKxbGRNK>(}psAg-Sz^_7);mD>)v&J+D&vu#LPb={2IGD7Jodg6c(s-rYZe%^Os! zX`;b%sQoF^u^Yo74HwVS+mRZ!IU3IL?gd^47viF8I`+a!5nyHgN;evuD(H1`a;Q?7;)KV@LC)1rmJ|bVdm+1Q;bl; zyl^Ge_D+Y^#s@RO&JCciALEQ7@>{|N`%u4la1vs#WdmfwdrvIb~xg{-1OX0myk9};BHO<%xkypvS|!%K_e`WD6g&) z5JlY8C#MD^Ewek~Olg$Y<&ZXd@TDKb7o-PtbvWpf zz#+aqUaU6vw7hMg{^j3usyjN z!p*g}$9(X#AsqBF`frpz*9+Iv)3~H-ktIgN^>{S;Z!r?jw8c@wkl{=i-4z2GeCn`; zJw7AbJAQzW;b#7XTlG3Ui_({uaaUYsoTLxxfZmDpW)7E6cQiwF#jEjeII*j)WWI5f#+s64x~%pH@=rT9=CYp z2D<|K>+IC7wFxd$z;P#$_5&SxID(8zPED(Dh!W~o0rYq=#Y{!%PCg5gvx%4dm&Zv! z^7zoc5&4{iM=^^Mt#?*_eKHgO4Q40&7%J>rz983;$%rhY22WtF+p&u=o{gx=(B-W% zwW=bIirA|5#|51(_*`FZyz;~9gjY7oIFT;|zyQ`P{$+>bf-GXN2ps^NEdw<2CCpME zjgveZiQe~JB>(`|0FEiQX-{tC`gsD4lK_SMO2l`0_mrx?uRjPlgiywFerIh)kY~Kn zgKzcuMkMSxbcV*n+WVFUZ`^{s>Mo&vjc|mt{nL`A+)$O>GK;cSn(?oN?T`1kq}3Dh z%ngI*Xf%+VipkDjY2Ml)1}tyih;H)HKqTO|UMnXnbPwXM=9nKrNzNReQFsX#05tA* zaZ6H2jtq5@K*%#PZY*V&4P|DDYDi+oW4C@zO&~%@>^6ANiWhax{HG_#Og1lZA4lYs zUH+B?3=kyhFbB^DpcKT=hHvbf93L{Q4z05G)_4dCdOgxuo}J<}am(#7Nxu6v{2G3` zf3<7>gcFrQSZ9x4ati)}2dkjODuIM$C@J$UIIq{+5~V@4_2#j zjr0D$%FaBV%C76yWA^fq0EBc@rq(oEVk& z##O!jA=6X2BXC*c?z8ppLIc7fsFuwSK6789k_Kts^0eS`use4>#4kg;nukOX`AgbA%0L&(8wY$A~sfe1wXUVsf3r;CXgb0)y1pK{Lm~ z!s_m^^246v+0)X4L&V*E;T7C>$+pk?4)EFEt>Fau7w>@9v zENwQZMEm4Hr^cN;#|?9P;r8}nuI6#yoZ5ZbL1Q@-%Bh6&m-$veq{{#Yex?qaJYTEZ zfEv6novIq7nB_l{cCR*5&W#78a=o<0!CN0iPGPwFmP`HJ=ch$|Xu2#(=23iyjXK=zgwzcZb?L2gH0(Aj^v$a=mQ(HpXhJ0= zC3m*Q+{ToL#ifF;SXs5PlLQs`P6D6xQU9xK`UX!P7nL7MI!}x8N}6yduS9M@2e&uA zwb<*W>VT>Zzs?#GDUUx=w(|eU%%v901&Rvi_3Z&!X`AiOa+5MX9HP(bMgJW9ENx;U zztQ)=Y`2c@pzOSaQMz}b8pGkksU^l8-Gr6cG3OG66LtBD-eg6lr3fVz5q{oj#L3j5 zj7x`ZmJaO=Lj@#yxiEW;lP#L>2&_cEqSvI-4}3!C%j%BSV}>JTMjv~b^TZ0@WH-9h zH1;TS;@^Ef6rvV2G*l5&S=OL^MRPkt!R_2|Iq%U{Es1!cJzd5baGB-Dzt`3z?~@Lr zYL1nseYqSC61`t-o{>NJ5^zDq6K(V@<{rGxR!5mliA5K0{HL+xC^~rbzxy^(TGy_@ zwC{J;*v4F6dyZXxK>@#%6cZ?i&WB_N%%NI<{0dp!!FaxdW>7T=h%5{{Y?>MyOIw`e zd4J<7Hds~D`axfg3kI9Ze=PL+cuu7*Vt2alVjegE%<^~Kr$6Ply%QB92@PAXo+^fR zNj8x84h=B_Id1!>nUe1>3>I5kgi&miqV2 zz#kGFhhaTC=N&2e+?9Ql-s8JFM(PS}mW5W-&=^lcpXI0j@RCuWuI%|H{reIX=Z!^} zA+McdSe!HDRdb+Q3~^XfgXiW@h<~ zR=mwXC&i?jmWHj+ijD@x(sLj(s*e9AiS+4Z^kDup!Xs&-5tvpeX4`uOgtc(VdoRD#qH$*E|+|tp*!fNh&JygP^({DhONzJE?r_%mBlPv5S02U!rad&*J}3{Jx`j1A(&RdT%{6Cd7Rf% zMReLZmXI>{IZF{IYAX7MAE%1*p2kq}t+v0`_Yhte=^!;wnts{>ug3q#WR}oIEN>DH zxw+{6%8z>d(mUYzv{U*|-p17%H5NDDi3@T&U?NxFSro6@5#UF)lr1sRY%dD?&|KD7 zB6A`0@i|Ys#sostlwF)zj707lC*K~|rt$mi0q;Ncc?uGT~Oj`O7cDF-JSqpi^ zsf-ikk|X$vK}l`&r{aEh6eFG*)@bZ&zox7C)5mSq}K3#EnS+aZ=uXB;nBB{K*_|V_ooub!3ZP@LOs6xc! z^?J7Ba);cducy12){b-LzBu~v zNdN1z)anpGvPIiR!mcn33<=#8sK5EVyu99YbhH6=ZsCGZ6m}T7!vFoVUCDCC^>Y|F zF1Pcj1Hp|y&6Z3XJ_<^SqWIo)qMI|Tp|YHDfp*3=EBD^%iPD!Ww`ubGxZVkRGv^qLE z8%tl9Dl032a%*@^>ISE*i+Zi=xQ(st!;lb^y}i9Qch@;l)LpH-J{u_W@|#I>NVmiT zvbV0jelkg4RRgM^5g{8`Tcn^2J4@)uug48I5mO~>$)!2Y0COi2q5ldA@e2tRWF~Qt zz2FXq-xxrmp$w}5X?H?c zSQx%V+}Q9|K3Hu>lp7l#+S=M~8W=nTsKMzZc2)-m2SlOEi$9PoDJ|{m?G1qzX#M!{ z3y2O_aZ^9(B9sD0v7w)LBBwVySMT9@neJv>N4KI44n@;!R-Sj zcez-tuq0u9enCMD2_BvXcre=f`p+cNY|T*pD%?sq8UR9e8tJQ?2jsV@nb}Cu&WRlS zN1f*+*y3*ISL2HN-iG7I=qTJLIq zad8NH_4e(wH}f&i=*bfj63pt{`3?>a2yu2*FD>gsVdZ;zzA!rlb{M#L@!~_%Qta=q zZd9{DEFs)20D{T6dEwV?a%SfE)W4RojS6%%;1z>ZXzX15tI?A2AMbi=&T87MO}%yZ z@@fa!JY3-+3;^A9>C;eDW{8i$IoxlY_f|x;z_RPwh+RCwJ=50K4$;hQflexT1d(Jf z&Vm%IBJ#%{m4UmS#R8lWpEK5>NfG6lZni2nHH+xe3kt*tJwu8dHE~5n4!Fkl*8<3W zh$+tOuFp!|>t<8l95gZ`It^uOJ2d@rXsmB+oRC>BEh^F`z08w(C1zw~R2i`C`t@}X zCk}^0g}?$l9R)3yx}hOsikQV`TF2O^+~qADkFQWbc?hCUFNkwah$NSY32@}695m$@ z7EWwNUs6+3>&{SM0vR4QwSVW;MuzYD%%3qFGE@*%k2LvvaTZFcKv~{Rk>owELveWb zx>HR(pUeZPXQdUPOJp!X>MwXfQ%3)WYIo!t>|U z*47g>agN?J*xKWRSv5pswOQ`=t?5xkg#@A|B_kulviDse{>XTiogEKja6aHU{#Z#z z9gxlv-g7qz1j3wK7hz!jDXfS)WCxj!x}#z0DFx;bDkuTU0E(l%eOstKrIwYImG}L{ zg**zJ90XqTost)l-|w5-r>D=1ib+eKJ>1{!{O5Lc1&qYAEG&Nwm6$-mYGs$oxhAnw zXmlG?_rVeU=+VRc{PQ4>56#Hn(oL1nSn$*O@aYpRBCCUL78n?a!192#ONJ`Y&%WfL zI6Xvk9@Z+yy11ZF5CewS*4Ca)(A5kMR)s0eBzzaLR@^|j*z+mqtscsH@!|zw1<2sN z?d}qK0FK~H-cUh{ETe&L zD!%ahJ)ue92crpZpX~kHw~;@EkJ|UlP>j%ST{P7HkE{ES+Y|&xn8?l&g2A9~=<0@t zg@xI#WJ4E;(9Ff3pe1!P6-`KbpumQ#4p{S0B2fka%I;tq0%pDt zomnGk*vYA>sgY3#GdZm*SHgmu!C=6-CH;Tfn^{;0z+Be6j0LE2S0Ha^>*)CCbq8ewGdfx1XP%4W#H|zp2T~v*C~TCn~+? z4doRSTF1w^Jv=Hk?OKCs>}jY6H-j9Vw<0$R!NH^|`iOMI^TtCiP~iOe zQ%6TfdvAL~C04jLY)?8;X-DxXTP+@h)!>%NtpnFip=_Xq{Xk`n7*nL! z7gB9tt$dsDFlLaOK~!RJp9o6;ftok%EtJOAz{aM?D~aP(i-Ylo=)_yWqo-pR!P?pZ zoCq>?z2ald0dgS3T7AQ$FWsodz%HqQv2T0)h3#qg;TWACa1IU}5A5prWBIsrkYYRz1j-%X{a&_pq`qBj;RPT*6ID znKda96gbr6M{9Mm%etic!4|~NKMID^gLz^Fy?y%8CgFM##@?QwvCo*WHl@zUfBE7w zaceDIT^i)!6B8MOR0282m#HN%2xLrv} zuD%Ci%Y>Aa&qba3@FyU?Lt+zFT*y&7ySwAW6~L9Q0;NGC-!K<;a{#7B82XIU*81`1 z2x?Y(Ha1Eapw?UO1mbf_N~q*qzpBGB0~zWBn&$qi?5HRT$Xed*4d~8R<9#mYhJU|wK4pQZPVD`4Oh*(1&S`&NPZDY!9%cp3&%?q(Vd#E559avpOLKr3`{p$fP*z@2 z5^7ldrYlJp7!{ml)s>aI?LnsHR?j|ZEc#z%|xP4p3hhfwmtE@&T0pz+c^md z`kI;=vs%|Xd6kd1jUZy=Y&N}ccCQVJ^c;FRAXaz^xFZmz=E7#nej9z)#`uL8hyq}P z>@S1*!DDUes>_$EtJdL&JYsJXo~ea`H!!5Cs!Aw;jDm(O1nR&cP@aA117O8SP*Z?E zq`Bk{mLT*AtN05*xrps?L2sg@qH23_^~uJEV5Njps0QzOa$vvqOm8d>)4@tXIKAcs zb!tiq8qmLf0Rgoa26#PiI4wUvc}7M?xWRAsV+;xNlY;d8m)RjWa>wC1U~1#>^F1>G z)-*&!ZjgdIV%Xh%eXqg4^!N9>FOSN=Uc^kmD?){gjF<(&Sd5O1eG9MaDO6$%TLnN} zDhMQyxBzJeP+dfTFM|Ny=3~0dNVS80l0V>GSHV=+f#-bp{yj)FSSzq&vj3P97qYVR zfCG-$kxI7-RmkU`KHlk6bDw(iNNdb{@$(sEp9;jwCnhEex$#zmL>9JOn5>`8x`M;W z;+97v;EuriwstQaWqzCO$&LrRX9<#V@Dba~br?bJf3-fun8*b)l>Hg$R5s|X0@tp> zs*@h+HDE$UNO(1v+B;MTLUg-oYFA=!o-n9AIVs&$~d3M%sZ@y3xJ1VWb z_J)a)k`m_1j(OkIQ3#uTZ)=$vTtr<%1I#&=Urr+^3=rqS!6xs1j^&bNH0;JBV-Zqg ztgTI{tgKAW!h+V<@7aIg!k-waNy$f`)xcmnN@1{oo)@CZ`<_h#3~4-ZWPODq}GA4gYb%;$%$!r87omssEKHKj4jdyQZPa?XQA@ O(W>P$*MoDq~Ry$xuRyl*~fOSR`c5u+8%jl?o{oy{3>PQ_2vMBvXhG z37Io{&*$0ue9v#4b$)A|^WWKPwRXend7tOLulu?_(-VG9>*RJCb{Yx_itVS=RnAjT zY>LA#HtH?-8)uV8o)i>Ed`_tx*Y!xA?DKTdU05g2jHW0gC~Q(@(SKK&UzoL@nIVUT zxjI7QN0?A#M4Ibn=I0S)vQkivexRke<8o8MFPl^AWo{z1=X|BrUR*X<)nq`!C{DeVnnNIQO>a{0vTOPLJH)J~ppl#I&M zj10mId_fGGZvEf>a6%~6yFP|1$FLxvtIN>(!@c7P0%s_uy(+xtTTj~eSEk&%$M(B) zl>6(;Yfa(11ecmFZUod1ecxD}$}}x=dmJT*ujjsfE>}fdRMevJwyzn?`T zrDbx)gRRW}dsAzh5dGZB^QmTZ88j@c2`-X<^5u$k%mzwS#nCP!c zZEQTPxH=*E+I=dfWt3LWn=ix|i_aW_ch zHG^_cbVGt*=)^m>_gh+%4%?|+xgyLR8~XOG^1PSAmcUJkO~E9RP{i9;PD378Yhra6 z85un)%$#rBc$Syc<_pw(ZyWteUG>EI$|$dN z7w%K=njfg%%9DW~D4VKGisq1szjdp6Grjzq?EFfaH_vo3mzuBpp16FOKmBCv2$owd zzf;nC$??HqJNZ&701)`n!2srf!qU-6f6+r4}D{tGXo($e@>{!BLc zEcTtWw9M!zAj&!}wtduTux1;#?~?gzm$A3$v5JkY=_fsZJEtHh&Ay~uFp*M zZJhr8?!LUIgyTrZSCm(y|K_bfdrOPz#)24>Z#q*sbL;8pZR8qIe6W_p8tWPu*xfr# z&Bwk&IBt$j(wdIPZ|%@g_unHXH*W`qUvD2&dL(0+IWJR?-wr> ze-Hyd?|EK4H6{PQe~<{xK3YyM2e4(4`>_9 zSxAmZTcZE6Q#s7hrJG4zTbr>h^Xwvz^@7Ie%_0M);MrMc&K+CFJ94w4s17JoH@|8>pbhvmFylq7>f0KO?O$UNw@%LW=#>Cj~|yMIN!l@iZ0&k%+h7 zDsCbz!lAKcZ2u`nc!4e2(1@W=P{Jv!}_( zYJ8XDx=C6l6IEi5s;k~%CnqP?wK68v$7yfX&R-P`xo^d5O3nBX-*KhC zK$7;`8c&YCT}t40S8b-?6QMf_yqBFHdQ6l?mc^fAIxjrxFZeK@6_1?DLNKM)ypPe0ip`WTH-M+4l5|_jL7Em6Ipu-tUQxd+>nf?`G>EqG5Iw zSk%t#7 z=RO|Yedux!d0E=N>&?fMqr&3inXg~V=@tYtD4RTrV-9QjG3zI%bTetR_ks$CjDzL+ z%0l`4XAKJZm7nQs(Q0Tx^}VGxcH{nWHxw^yTPanwg~Y@Jl$4bI*G1IlMw)RZtF4Qi zW`|E{3hatVJEy0oiVasx=e=^}iivBxo@SEt_RO}1sNIrXFRtJ*clY{{*NNd5!*z7FHD{Pmb76T*W zaojC>zxBWye-#y#=NM`xVyqY%7{YX0HtS?+J;}+5!XiIFQITxXOagc_+B}$5AD>B* z-pKd!+;5+)pL=!P`~3Nxr%s)E90hQ|uWrd0$evsJ6gwaz2=ha+&H=}ievE8;}h7(0Cf5E&hdhtN$-v2QOrb#%4O@cv^3@2XQ}yA z6oMvbYQ8%jy!pqTl%2i&J(R~|b+TkV7EQk3dcR_PLc%g?Y%TVH;q$-Wh0-Sgi=a+s zyeb|?5OC$8vKy82+LDuqsHi6nTSH^xV7TDJfp0gbYA+Wsu(H+%(koIQGcn;z_1idt zqibntIgRT9d@Qd|`JL6$+Hv5*%bb~VmPjg9ZDnE}*HF$96kkiOpT&3G z82NBKzq8ZJEVh0Z={-tVOj$j1M*7;<+c&2wI?1kOZj-j1d0Z5WeeM@?Q*rrAgEis* zsbs##|G$g(zd1f^%FDw>Mn>MV4T5_G1e{TdfJ$qz>q|qi_Fd2Yv-4g@@SO;um~NKo ze{R*pf_ddf-iTs9EOL7W@Z`&h_j$(vEQwufesFkbX=bQ=rjBEy-dmAJIw=}wzQA|g zi@Zo)Zt+7^G)?&~9)0aPu0J~WKvRH8b=!YR#(=jzmZu(I8w*EN{7|e?OrL`wKR;!P zR()}&S!A=dMQ5JrhSDw`o|d}@F1&AQ8pNRxr>|bIWwz}mbrHLA z?mbOLVPX9H_v#cV+laJ*8IP-LQ9YA+GYhwcbtt-u?O1P&e*AIWZ)On>N57-R^u^jAo<0?_oa(euY06Z}G<`eN2#FdxSd#H=8|pp?WcBUz#tdq2{W zdKQhPwzf8k?NC4{k1tz=S-z_jpUNIS(N^&jXkf&V0%D&9peLG6;gvRl%Jn}Na?`i* zu`>$CHGSGxUk#6pwD@rE5XD|WK}qwse@Q#^W;sa!$?%sv7u#%QWhKkGgG}SAr`OQZ zGKyiYqNa9PI;p$T=V*9%I1?-D(1Mr04)<5PrCqVLU(X^Ojn0aKU1X0VbnMCUAB54b?VC>Dy++1;kbiN6HD8) zQW}pN)SqeiXj;~q=X3I-1K(32xpGBu%KYC7Cv`)o|RY!py*K^J!J>pI4+l z|G3J!WhgewZsW{1a^LHfefgbDrQ_0i?V;axsz$O_Jy~Wp4O}q}Vu%i9Qoq+__Q>Mx zdj6-!H(0;ihdx2fRc2K_35miH=CHJZ1rHCWYSG)>yilNS^A-}hy*+yG_{P^+8L~CI1Wi@c$(vk<=mI|_niuRjP9bu94 zr81RQ;>`RR(hkMrhtW~@`I$wvjAq}^Oe2wKN_x0H9T915Z7sGoe@2REzq(IAKw#j5 za#-D2n!TFX$kfGxjEoG8dn*5Ydui1AYCqW;Xn+`o91gGiG4yly5H(;F?t9<3&~lr2 z*gSs_L-QOgnu&8LcUTLGc(5i_zD%UF(ScujVDPH*rtR{`| z7G)`23J$EmnFn8FZ}`6XdlTmoXO(xlxE(c`VF{pH!P6QV-Q}K=j@A#RSTA~44^#&p z))EM^)wE<-mp~2G6I86+bI!Ky>GtmK?)kB{Q0;WJD_m#(y@RKD6@QGq{!BFFnU<-a zIr9Xa!uaG)90b%_0lxJh4p*)P%13zj=Kn*jh>K$h>zTC1Ky%F#7ZMSws5Rn2FP}?B^8}3h^*U!E)Kks7Q{DAq>jzXMlWpPWY_&axMA1d55EOp+ubqD9b9RoA-FIn1v zm@aZ$CH=lf(cmU}O6X;EL7rRzoAvOX(PIQ1YT|M^ij zs?Q`nQJi87|H~j5CQh}?xYb*UiS>s&O-_KO3Z8wqS4Ji=Ihpgkjt(Irr272X4F&+r z-uBwnjy$)W?cm>=Hg7qnuU`kc@{j5Ol+(?uj`jtaM3(qG6&02IpDqg~X69RW?ohp1 zSr}hl9!&*)9RY%RGdefZWf4ozcW5>5bj~WMy12OHj=IWnW|54?SBV*OVBZ@Vi{@|D zb8~a|mHZSn?(T0D2>|P+0pYT0WMUCFi)z2RUd*%I);fOwUZ(#iS!>re)%4N1>QNf3;fA%-|+B?a?o89|FA7BLo;znNs(=1 zET} zBY~CADlQLGU5x(eB8S6XI{NVDJ*g|_eJ;~7{>eC|5@=v(_#U1AzNF1ZRpzkzq2qdb zQEEe~%0?zf0y(B1vSoDGI z>{8UR^(QPXhpEoiA7-QT2KWLFzkw+|R2o*0K{Cx%*q4-M6 zZn`a42&?0d82I?xJXE`!%lcSde*oLc@>NiRc-Z&7zH{&1J>yhfQ!&;HFYT)@7ktXU zsKliD9lbDF-g9Sur^dfn)l_IG{GiQ2wol{YeJhN7VloiXN_v{n9UaU1Zr{Fr@ah*K z0nK|9$w!VmR0mL@Q=iw*lSqwf?#k4y6hS%1j7uD%>xaxS z&p2fr|HgcAhPn&|xE9Q@z;J(#adE`jn)lZiS5AQA*a8%lfobRQ_s_pQFPp;l}K!=e|h? zKn-QrsKkM*p`qbJs#4X*$yZ!ELOJzB#Ap>$W1+H?n_bU6#0?Fm>Bn1p=}s?AJv~i< z1oAJ_uyfj!-jW>?T=GgvsQ|V`kpFV|shv*g>grCTU22<{m<+7~ZM(=F@m-Uh{91eh zWNGDGd!^6Kk>;e(YF@iwahw09J+6)KO!JQj4>z9~tS#0u*JTQxn6Sr`tHq9oM?{eH zc)cpj8czfzuhH&Owg4@~7k*hbG~J~JK9ZG1jR!S1=L6ey{nnvS;sHIJpFd!D*wW~d zZ~%@p_4YeBRz26M1Qq$X)2qY0{M|zp9O$(YlSW5BRty-0)6j&*a(>U1Nj!Mz&EG3E zER=)|fu5>YQ>QZ5S<){cC$JJA7?wqfsGqE}l`{R*XGcZF6buL)2F=pzDa#-o91AJS zx3w?aO7}W=Q)*hj8aQ=;=BLZRoYV0e#!OV_?lF~7*?oEMwU=d(oPevJ5KE0|i8U%6 zbWabDicr(@A+OVKQcPWmyi(3Oy_JbdwY6ZSX%}75_?Ssmmof#!SKG$Pz=~QL$%_}l zt1o3a9eC_$-5GL2I3nQP_W@gL0j{HNHRtN3%=Gk}$d^S|i@0=jEl2MT>sR~n4HoW& zY8ztw(zbduHSevZM7uG=Pq(t}m)AJl$|~wCP`m*Fl;3<;g=G4cERUxz0b}v6a{|oWcCej(lfwsVlEey<+UR5wS zUYQi5VDU=7aVVa!vx0)sgfz>q11)79N@^~4V|SC~e3hKXUXsP6dR!Zz!T3Xa=X^Ri z_N%_%Wb$T_dmkWJYUK83wvE~L=b2`i#bgD7#`EuGQZ;{bXT4>03ARZS3=F%zr{|f1 z8zUq(id<>yW4NCcH*UNh&l{rmTRM?-IWm$^@julZDCvFsvo(F3bJS5Tg^e!6cni^ZK6JG-V8_*IL7vqn!_Z*}i#PjO41J{bW4gd9iz(+YN z%wmCk;XeR4s>N^`*%ib=@(9^uNj2zPdQZ}32RIy>yfa`GaP(ivMpkmyzsZB40|9c% zd&KRQw0>^e%1=W>18-`gs~`|E?xVK$a& zE(?!|csm!Vvqw*FpM*rbU48{idZp9;5IQ6OWLc*G6gH69hXRZGduWglDr@Ye6A}_m z0I?Fr2~gmNIt8TzVYL=FJ3DoTA=?MXe^4$6J%2rnU@G*~yZv;XOqfL_& zDX<|&b&hA3vh57+wW#l!9a}x@YnItYz{MThase&0%?Z24I&wL-RBY1I)7B1;j81o# zzE7X40xuv zI6Wp7>_nVMF0M14o~2dCq_2Pb@bpX)RJgZeE+HZ>p;*NAC6NF-INWYU7SVt!(lbuQb&XMwbxNn6Ra ze-YvxzQon_u;YmRXi=FhrQv=S@{^wKdcb`E0+4ga=h8{JbpemDq!MluhTvMBf4Xh{ z0oh{e6U^(MVplo9?GC@Z(mKAtspx&rz29^3gACI#g&PI}N1jj#q;G>t-F;a=QZnK8 zFcYqaC*xpkdhx6+EGizJz{d+YGyxHCh=#<}w3wK*mxrcdB0FrEDyEcxZ+*o(S96tyU7pjuGnA08a0 zRn_)@*Z16TKg`#MH-8_Y3kkWA4+&T-q@CUWFh8YT5LNc!fD84}7Tp)gjn$i13wlVN zp4A%jKfk4PyCjn0(}L%xgM`#~Ad7ak$-d99!@j`IyqAu-JRT*x2|z?ecjE_Gs_*g-&qx z8}(f718!x-F-%hbm>{(QRJ2gT9J(qR*rV0VJby5&MYF3yBYgLZ><(KUbgC}d)ajrfTTyp>E;n{n2*`4EKpPw}CTlIm>0LIb=z^d`*sQ42g2GIVo{u}#~Igh$U z!MA{-Ome;bsHkTWid?c;h1V6XeS6_y{lww^$7VhK2`B;7l$C`n#$oDja#bz;7K}wZ zu059Ul9;7+Xj<+hCu>3l?>MCV^m>1#@k#3Yzgwu`Ad(u_Q%9(|(`wM# zOdSqQcl5h<%&X(l#{AGEW;ItQu&LU>tT_ z`?4~QecXc(0ZM45X4lziIL4vvy2^=7wa`;MAr1q|*G{_4jU-*a$|Y*6pJP~^N?xtygGENiW7`_{sI+NK} zVAI0=^lU1Dy5D0#Uc@jlo#!2GEw(fG<~hn$7q$Bxv%|S#$7W_^1Q9|ttC@#C9^lsP+ZnDokET8330*hyp;tsi1Pw~< z-H3=~O&B9wuaH9)bq6td%)Dn*hXiKK+cn3t#KnS?=uE`C3Y}mtCzm2(6Vktp4rV&vI zZ9c#QcN;Uw@P#cS&fX80JXXKHJR^8w&V>@KagR+2uDqiK?o(zgVkYn7_)cKNz4Uu* z3gb4tDwTWp?gq3@3N|TQ1~h{an6L!9oE>gZtFmw`~k|<`XuBFu> zXI!xzqg++{)l}uGx`xIOau~|_oj}9z9dCEc{DNf@0k=(m2=EeM zO1fAh2)=%zXe0q)D~9hqC3CNo0#-w)o&YEi!{ncz(rWNwB|}c z=1kQElgnNeiu=D=j;E2X8g74@+H~n)&<{bEN80`0maoI`@7kz1{D=Npv`nd*Joniy zy7v!7F@RpYkjk|Pg7L5;X}3mI27Yu>+B?s2{brz~K`eLd$#J$#35Vh?exLCW+P}Z% zAIay;11Y{edji3i+R{{MQCm&bfm@eno5XQm>xO1P6u15^pVR7fkU>6U++zVCT1d-w`c&;n4R0+!Sh(pjI-kf`Tc2$nDn`;g|N^0VrEY z5(0+~-NG?y%Q2GV-?OJU#z5SyECsHzj){q8%R_~+-cm^bG+jNt!$I^8g{=AqnORt7 z*XCMu^z}nP&c8cOPrsv=y!3`5H@!WnZOrm>#wn8<&4+=X24_5Mzmlewm>IvYt*%)7#&LJ?VedjpHi=eh4;Q^!l+&Z`P{Bk3_YK8v2JoxR_J+kmsyrZaS4J9Q#mu9svafuE6gf zlxA@3SIF)bcX6eyJl<~}9S?+fOb>K!K39zor9gE}hVMvFZI5YQnSSr0j)DMwBmi*t zzuL1g*}gZ4S7l%f8rPF#N`qa|4tC4WzTdNV?_LH38~Pk<&|}S=l13+dTw?2oQeBw= z{IJ`_+gbJ!XOS?t5S-Z%%^~tawFh$coQ#>Cspo;4rBP(vOmv60BU136PggDt(h|i~ zed!V~J9vP}xZ&~d3tru?T}3Z?&ro4Px=en(a}!Ct@+K-NUJKsGj&2MU=+x$}Wtm93 zEq=Qhi)0xlbPHVGcfS^}U$e8b&y90y>gz+Br9Kfod^FWh(LPVkcMPK`6LJsTZV8of zq2q~IPXZZAw#cWu-k!U4DDDyogYEmt~ zO%d0{r)VQ@7NV3fqR0~|(8H$Z+s@i0i+F5|`fY@w_de)xD2v8)or70G1m7Sb<+{G` z($LVbfQtzE8uAu)+gyhi@eH(K{d}|NZu`0)&bRK~WnrO8>l{CYk0P5h@wJ#1^Be-; zlVfl1kO1A}$Re$E<;L?SkcQByaPCe4Lw6Ti(c*dUpq@_WcfxO5&%XE0iqANfTY*i< zS03Qj_~f?N7?RvR^V)LmzjFYPbeMw2^Q#`h-UD?hj@cz8vBjAiPnCGl_dY@l=;OJ@ z#e)rksdSM>hK^5p$%}sEL})y~SM2&!&Iq@dd3>ir?m#Ou0SxZ$sRV)GTG{tK*Q=T_ zhEJV6JBrK=edH-Fn@O-jnQtC}aPA44MlFhsQJUkTzJY-x=DD-8^Ut0V@y?5WJ|`|L z2?zeHenb*cOr`&amkNlA!ipg50=4vl)~apmSm^nmt$}`PLp-u6T2N?_RmsTM3tw3d zZ8x%IbWWTzheYBR6x^EKe){TF5_$FeBMiUo9MaS1#})_KUXACKz4~$Y!rPH%Hvp6U zX65%lDsK_OEvh~9aYgr*9CQiD-9b+@5?NzINQ!ipz4+_W0*?%j)UmMAq-Zs_+5e{Z8?n9E0(J(-fnZvP9 zd-38nI>cu`?rI?L;usbtL@IZP8srUQ@1^WI=t_FdzTuq38LnY%cY zeH3jdWQ-&zDz;qtX7F6#>hyY!rXY8$pJ#Fkx-@2zMMM0)?N{2}j-i(!UMqmG4B8@% zs4g#p%nyXhLTZ<`9&>OIqgPzwMFSzyHP9;^J5AjS?7JoK)IF#v0x*)B zU0_=gU;y(T87B@`e2-X!ov?gq_9nl$+8zNZ@>W8^J6NEO zvYf*|e&E9#>qmHPCi}_~31z_8__UGHZkb-k&9G8)ItqT}x=($Z|J|3gzPgAgQFz-} z#`EWKFo4l<)NzXMOJ8Hh16U%dg!@FxD4lH-EsoK@9=Mf$1moWZ|9~!zNYVX+=9FA= zF1GW2?kK8Sd+E71o9Q7q)Pc|3L!g&L`V2EVcZf>!>CD4=XiT0nwX8?H=7kWy7zU6l z-&h&Pqh1`hU9c|cxqsw_fPtCkzD%u@%P_Txqb!)}eIB!E2FI_+`NwGqNlCOqL0F$S zmV5VGKY#*&uabqbe z+fC#jkazG7J%(B2RMtmq9U65C3XY`B6TG5FwkqbHa<4a75SkM4adNAO@22{HcKNqWe3I=mix`n*f62U%$3Y6wf6+!^ip_pAwF z8HiwVz|knS+t#1YDQGZww-jx zFDceh=;Yr3Lx&(IJU3i~n8I(tTm7Zn^Tu5H+3U0KhSLsk)ijLj>ZfkD^N#Kx5rP$3`G(XoJL501wHvpbCb`o7vWyXL=M`aOT<6 z4!QH^Amja$Ed?ZE;NpU7_Bba;bKDSy_3q6_Vjz%BX?;BAdhxHBS)!sEN-kCLfe{e6^Nc@gU#5As#uwQ%*DAK3?52F_fsQ$3e? z(HL)XcOJp_0mI?&q`4+P0x~3${`plK4*>0*`+XJn_Sf&#WDq!6ZAxMz?Y8myV7O$k9g8afHg_uas9K zct+-&52j@WyNErftzC^gRy{qAR~>R!mB#Uz{HX5U5%@W9U175(%H(!6|zTZq|z!W+vp@Uf6fXgEQ?) zY*K~v&}nib8bw`aDPdmJ{b|evLj-#Aa21J3`LEb0Xg_@pqmw25Bao_i<>Vd^`pj^` z*^p-6(@@{qvkfpsPQi}deZ)DV<5mC?+^GcaMU(#oM(t4gg9X7?HhrDv!PFA>>o_z? zB%mik7}^mUh&ql^voNHq@sj5zk|y^KS*(?KxJ`bo1qdUiKF}*vFT4XGkPr@WO==~f zKZyF!ZWa2cAm~L14Wc~Jq?ie0kaWGWRZjmLhEwIrFH!OX77X$Vuj0CA0mSWFgKQAb zjp~)~+gN+v9ikQ%qCzt)k4X-#Y$G4yEPM`j0UGY2?kEz;zW3Fw!NJP_V;c7Mn419t zN00XSWottV!bo*>#dU+Im7GoexS^j~qyGv;fC3JHjE!PSq8XgK*KGY1(K-P75DZz* zxe@v0;RNG)ng@tN%>vL%IuEM@vI8~XzRv&8v%Sm=8ax8-s-n#VLB8&}9Dnii=bw}$ z8^#x~Zm`uq$?8oLE)W5tU=kmK-+qK%CG4UgdNRO*Dy(24CgvYFH&UFVh!nzNKK$?=2~oHbR((|WC%8T3wePMFF}0| zYck1W$KlYEU+5zNtiM$(*Qn^JnmK{>dV5W_@7l)r(2{Og{(sUo_zenm9H;^@pc(O?C~lQ)&!~N4!OGw<|pfpeSC*7 z5<>Yz6E{D|_OmUM9(0gCyVf?QH}XrZ{VWP#R#d$0yJC|??kG(Jfifz|?o zMF3|sD8fy{>Ri5j`9+L?is81@*tX+t18+7#JFG#!hdI5pYbIFdvd@9pm74;CP*c82GPlV8Y|9EuD5+Wr+MTCw3 zb_>xX_d)8X*}Lk(!tlX6r#a~O_8mC pvgf~fdFp?Alj`3;%#ta%mTy|$_$huG?_*M&Qq@w)Q@#}NKL7;v?`{A9 literal 13887 zcmd6Oc{rAR+pQAG5K4$lDMQH+DO2Vt^Hh>Dl_;5#Im(nFLnN6ZWR_GiCz%qGR5B;Y zkRdaf_PXBZefRgz{*L22_CI_7@f^n!xBI@X-*ukrTx*@{4$;+CrJ-b@Bq1T8QCCya zCn4Dqh5wi-$ng_r(^L-<5^-{MC3!>lq{+U^=7u-=7iXs9qt$75Y*V0YRg&|h-&6Ni zpTVBt-kv?}U-q1(H`S{P4gMZVp?|67Dd*OwdC&Uu1+HvU8Vi1`C?`y#Ce$&KG(tvu zoi&=j z26yw*aRtzwy!YS!Lu8EYd-br3Z3CQCN)%iH8yRu|bPCH#lt0}V zn3%5rd`B;FjVFMP$tKEw^oD$gSpUtX^BXgfzI1!{?s#*b-(a-2?8S#Bys=LdcNB~F zQlFdmY!k15@v~d8htC|ftfP43yWx?4I;DO_Li32Tzj$fJ2aH?l!it~SXhV9eL98D-1?lym_;nNNx4p#f6YJZ zy}ronKI?cc$(1RoAj@}qItg@ouQmQ(j%BeuX<-MQGnclm%$e4o5FCppe)(?+lnhzIN z`n6i;xm2X_m6{6XpFZ5)-fqO6Wy^BD++}d^4#(5HY#hFW+HI11_wMz2{w^preR|6O zXK0$^#5a)#LS`T4+GHc!ZSv<&XmtcfMi%}q#mj~8atjL!Q{VN4Fa2@R(Qk1v%qJYp z*|K&i1pl3k=BG0WZjl)Wq`Gm_TT~}9^-N0+Mm?oF@A+FFg+@jJ8>sIe@ zfdION?t=!LS=z~#Ka<^@>i3*6oiDzv&eW_< zH+R!>De0D9q|8XGOgb#+Q0wI&*lt^dEu05nVD_LcQM@}RQDkvT~naPMd z`5nz4WtnyR$sHDYx8IWwTe)mZO>bwj(`v_s>4pvWN)&{pGE?v4m#ypO9&q$uiC)nW z2q>*HJ(^;lVEMzaES`x`Kvjg#RMVG_Jn+*eeeHd+^0-aGzfOGLoy$kR7O2MNR4Y)> z3kb$<9s4*)`St0_-KeOjLrZ7{9Jy=$kE|3Q%U><=0_PSjiZ7++UMY^NFk*Pp-HBs1 zcWPn?t}*94bSSrb)l`sab!obB()G+)HTUH|7L=5f-zwZ3im7(69=oEHD1L2g!g&g= z@pO$$IUfxR3oeJs8S>M4#iwqcNY)l$q?#LPD|8M>vt{Y4aJ&4YF60K=Sqd%}rjJ{T zy6o(FUWJd2+LXIZPgR{aGK$zI@ixaGOHEBJ_4>#Ml6{gc!7;o#KW5z3G&J&FgdIP2 z_3Pb(8V?M;238CVtzVSAzj;*o422UvmGN!VU#3nK?c1QLjb21o3O9DqJVWy~*6Pl+DFhuI{6Vo264QeZTcIQ7ijJ zMPrQePCMad@unZHmGr5osZofCh-fBD?orlTo~oEOe(f#6tr}5hCvH`2vV(@^iQ=7| zUrsvM*kpSm--{0JANk!|CW=eVEG>P=;kzcHTNH>x%eb}9&#`AuJ>aggCslT1 zdFb1u>x8Qm?)c9i$G5e$XUkpq2fXKKRMPL^aX$B6aqhK0E^6J9?aKA2&puA0g_1b1 zkG7SQ-NjZ7clY)edM!?^^C@=(gnK6cvoPtA7Hy{dp;jwW+I42%>tbX>rn5QgCY zul~UwrSsahg9pH-ZD`04DZ6n(U0t2TxZpIS(1n(np+?)!+4MsV;oK4u@&4OsXB$`@ zzPnaKYoPoH8=W zXjlV%eFbG@5u7FatEr;o{Izqba$lsWsa7#_MHF+}KRqDiTc5`75uIR0ONje{; zN;TG%`Gb1CFk8)*Y<>&A)*`Ze$`(X^vwyLAQQ&UOuzPxXW;oY%ghrAxc z`{w45yLT@(KR6;__BttE^zx^dwg&rlZfB3Yvzu3&j*U(0?Ag6DGc)}o8d_Qhj~$Bz zV2j)LGXGb9;83p?Ry|N<_t*A@^McrPkS zPFb0()ATwGhEx9e3Pzkn&m@neB+D&&ZWYHbMrY9EM@(K)7-G=U`4HtCn)b2$#?|Rg zdV2bP-x9QWcVk9I#3fdT(a)%^iZoeMz zVlC(vGnZVoI*f}f$rOXAEl{)lJtHmgwb^>1zrWe?=;q>Cbliopl|zRP@$vC}pXhqw?5Tl)bQ`_oF3s*B!58Y6Y0DR?Kjvj< zRN&I%PkWM>ZM?j9(37GzA2~4%DBo0Xt~-3{=-?L;qBXpTC%8$p;sG8WeO+BSJw5t6 zv>ZJ9_iruf(em+mz2qg$PRkzIxOxLsNur&#JF?Lr$5iDma}BFQWeqMM1k}vX4)4Om zZ?4K25)wkqF8xrI<0gYv$3tn4qXWL1GJE&#)qEr!4@92n_nOu-F*#*p!>1#&z(B<$ zcmUUicTkCB*YfuEjvZOQF$lc-sPl$WNsnP;ZAA9^?}8EntX*8hfSE%b-0RirtY;0`jhrPJDxzU@{E*ToySFRj-{P?kv z^|PGZ_rD9PKl~Z2Et`1W{86mn(>hN~$g^k9%I_Wuu#ww(fm6X3y`mMqbaSSjsn@yr z$jfUzuXgU`U#El&isg(P)+M@|C1>6z$K{Z*SWY*{Eny<}YldT$F3XXc80vqU^y8rMC&4h>zPe(CB| z#opug`;Pa!bAz|Mu`F^#agP7zBhtW?P7)*qES`92*-QiLrIGVob-v1!KX-l2G2oTF zF`nT@&80+o(CYsJ1h*WC0{PuoY4e?JJwA|%k+h1NYLVTTq20+YJzCW|H1o`&mi*-A z+I8T=zX6IYUoJ_TSE%yOR$@TJ=$ss^TI!$c&&oZ7uFN+s^4oLxw7Y{D4)1E`)8R%A z-;3QZZA<&6iv|1GGUbVA<5#N^2c4Gm4~RhNHrMScMRU=8`L;9!dHy?P<_ zmNPzWg^|J^Ql4J{X&?dh1gUeM*3r?qyfoE^|9>}j1ax6L=9HeEUO%m8TytQiEt>kY zk5kN!^mYn4V`JuoOp6y?!FTW0T`Beq+s=9LAepk>JCIT#A))^;w>@gVzZQtZYkGr) z?2~f6d!fp6rb9>8=||lTz?r7H{GTy@Hn-#9(p-A_PR4&jtu+I2{|DI%=ApH#M8sUWFL~rD;!ngz!%E1mX|H^dwAV1Twn)fG;dE+ z_Eg5t$sx8IBG{TMJ?1EAX*UZT7HqAf1r9L$Pi%z$-eCCef3xEo*^_|m!@0R>d`52R zi|*2JGMWq*I!!yo7?g7soxp6k$@a4lC|6|Do_0tXyk~fL81u){(lXaHK(j+^s%(Uv zoQB0P&MA=MkUnRc{O`{>yMg$Iv0Fu0!t+hbqSw~E8zMO(8;5dSsxxgd=00CC~Z}eGpm!5 z>6=`cKu2>%j_P7x`HlPwRSD0Y3FGSO08_uJguqy7W!LClbhVgm{yihwYaQR$rd>WJjd&p@BjDZF@_dVq-^- zi7-=NymZNFbA73k=Q&+mz^y%Mr%y9FIXPuKc|y;|)(W8>`sK>Oqer7fFMlvEG9E?U zfN6eTUmD0tOY@6hlX~v8WG`;_?G5Jf-jm*?ODh}e)4p?HZMxtUxWH7)FwfD&9)~QQ zl#>KVloe*K=igP~ZjKY;m6c6tWcSMNUf@p1G&(1MG5)JHah11{PF}#A4BA_m`9tfj z(+u?$9&EZ}10$QAldhs*4AkVL@$vBlh1o(%PPbSWZV8qiOX$|h5;cohIV?i z$80|Z5ar{QlAHU@?$x0ZR%&vVV^;!d2UBf3GQY5w5f@VtdY;0`2}lN>1nr}1XjnH` zdnY6~_|2qiOiGH5sp&q~isas2Q)g#qiXA(+q@|N)XPwj1)16N2Guog{f!PB%g2>1} z`+`TeNSTzlabXb9D z&fjoxdAVl9SGRfjXgoYgQTQ|Z>U^PZG2A^ct{y`{ywD6TL4XLNPnlnnSZgYReX1=zy~{n#}odYS*o;q}cCI-hE424ybr)-^wc zql=Tg`}hAy`&tH&theOiFDgsw-sQtZwm%@^RA|`BoQ&^*{nGo=o7|n!!zfG7+dqr@ zQ<9^ToG9o^A8Ei42$Nv;@7sg(<$n`QE;A`mDp9aWG>1L>T=wvFUxKCB9q0Br1F=8Z zMa(n}VH_KV)D!(q_l3P83Y`M8m53L28IjKUgueakdw~9)o=vq$VH!#3^`3bhfz^TK<>VN&l3su|{dg-3+?sOErB5cn@|6JU;v6hHye=dx?XYO25eS_rGoB zI(VF%=k@LoUj3Gs?sB8>rFEy}Bc?Ymm0UT~czK!8fzO`PtDV&w_4qlk{w{~?BRJ>Lt%=9yAllM$5BdJ>NMRN>mm@qN zCAsX}Q;@sGOCHkf((F31*Gx#L$rb&(-^!YkMaRW8zK=b8w$zbpb#c;a@NFRAhdI4n z4Yn(X_n$4`%*8{xX)OEsJ$hGAXH+T?51>;=fZv-p3F~kEa65aO1L+f>|42d z!=GyQuI?0`d=i)2`;?EezP|o`Y+OuqlBq{H72QC_j>6Y}54E@J#j@Q-$&0}fBWj}l0|25O2ro8-8ltGfp_S(*h zR5`J`my|1KCf1Dv4e~t=f9#Gfb@Ojta{f5 z(O7+ZW&wGHt;uJ(df5A6pYj#WesGv*o0{4U-+ayRuC-~nS*SW+pANo~0k6)zxH#3q z3st(sX6L6b_`iFn7PONM4uH**#+(EdJ3H>Qp}Z-D{47ub1%<6{{T{pk#Ri;q@AbB# z>m%CWdyTtwq-&sCn&F{T`H!NV)`o?AEjHFxY!Vt2X=MyAt&x6c{q!lfX9$M-xGs!( z8yrya((tcgJyZSnf#+xrQ@Tucvt>0a8ya35o*X|GKKhV3s9%ygrpO}ynXdPm@axg- zU3TISGdwXnjEvgFTBYdhOM1XoAGTUgFQo`kgw^X$&VlEOST#^H9x?f;VGp11A}-)t zkyZS02X;)W>V<-n;ceT!sSgMUw5(23HOdJ}Ym(+BcVlmswqeWMs16@&obCUx`?HNA z(@!J|!GbVHm*HS)N*v8p^eY@6%!mu_gJgzA>+9P;`=#+=%4FIyQwOD<^G)NUBq)05 zQWbfa`9|0J-zu`-ZQ4FU>q{oQ+DX}q<#RqB;c|tfGshzvYvDRMN+xgdJ>p*@r>(sc zLQUKtOPi)#rWDjjsA_%})`GH4O-);bewJSpPh6R87J{b_(|#()x$9Pt=D%!9kA*L1 zJjR~H`AsQ)#q;UDS||cbNz!$K*>JO3G+vX??vp(wpiBXhD^=9Av?F+%&8l5FDZk~` zT5ZHW;VLA(s;pZR2$xpUZOZg=;n}!^;||)LPtT*pK1qcRu*v!)jgF3SEb*DGl`WG%tt^Y;YCP`dZX;j)U(9^5Irh$*2zg;TS zO#Sv}&f~}9;K2hgAfKQgM1 zV&QPBMSa%XVQ9}s3^UP6{~>{sHt(~Jy^X4aoF)WxoT)tol=8FZ~!!B5;5yFiwX9OUKY zwTVz5r)GZhy~dv)p`e!|c&o>dj-HLPVbC;0b)%bRqlQVqrUdhmqhLM z=Ql$$@b7IwM1pg3O}!?I!6JFIlirPWWGzITA)dO_bY%=~bM{A=P;_!~f!l#<*b5oi z*}Dbvn;FbQ?_cB22z-M1x`4S3k?l}ILf10eDr5rmXICf^jI7-j?(V9CPKFnfS z-iAh(U=$EK2hGRs{YM^BzY(rRYY+|Ve8h<8+3ouN_>Fbjqt=B^vo>NCL^Zi<_iom; zm3hz72>6nB=K4_hapzi^$e=f`}MzMHE9Wz(-$gCiooiX?Bw-oG!5i_O$d zHW~QJxLl9YDO>n@4y%(6snE77CQEn#J9q9o@#f}IUzTF-DZ%gp&GA!OowOfXS`G*b zK8@)394|2b zJ@ei4fy=C>uHG(np@7)Nf<`34n8x}J#d>Lev>hrMQ<12<(|N>BW_r60o*l6i!i=~5 zIIYtm<~s4M26$leC3g?8J%I?r);}g8A=jY0>Y{AOi(bK#4p zYThwyfkh3@y&bHM;cZxjsW6^iM~I`tGXqFWu;xT2!{ePue|-$;|uShh!;0mAt*ZAWn%o^q4ecDZfD`*bi}YFv_f2 z9*SVgtUGNp(!^OVdkxT^k#PVEx*?fOPaok|kLTQ_;p+VP?oUfTTsBvHwbQvxX6erz z*|i$4b82eA5g}_M71OV+U~<*f*AF_LU>3Ee*3J^;>oF@3pRhhQ&xtEae9#2b6ORN5(aw#AEdF9lu{!qA_H=fvfrc}b{3}e z7p=X8{d=uP{N(C{C{~Qb#v3!;H@un5h0}`jwxbVS6&RiTjq)tO1?|b@TX?XJ=zUSR zuBo2B*gnE`fT#`$52s16O>H~5Du55AN=T0|Tm4f@YuokwAWEjHUvF&+i$lqCSQ{NKF$n1S{K)LNi&s?Gv|`CK}q> z)}ReZGG2^Y9X3cEePn?3MGX@PPajql_!V$>yYg*VjCf>S*vZ25tr>Iqge@R{lsTj= zxqnT?sh3=Zj8(dDj6t_FlTO@oo$M|GX(8?x1r^(FQ#Ul@enw<_v%*UtwIi0d9|0Cs z>C5NwX*$v~+mPZ4#ADFbV}QS@fF6EkEa2HV!@8F==XR^L6|QWbg!49KJsUi-Ht9J{ z-Ilk0*U46@H&?51t1j zjK?+CBi{ma#dJ3pPh?%Y^AVP%T%6$fW$44e+QBzAVn1LEB5!fL&n2dR=8CeB(e&FI z3_a}SchJ)E^7A)&c?t6g3Gu@2Jp01h;%Iy+I6~R_Vvql?TGxTsH;I)5p4p=w`-FVm&H^2RzfC--u_54I5?h{rnQ`MV3Fe=SB8b&VC^>GkUE_i;noln_N|MMH>GVHXG z(z9y*n_*G@Vr~!4QOYmT|!S+ zmY@hss&##ktzbgW0B`c1mcN(!QkXg$R=1yPj9`Nz=#)sF#^MfZzTnW% zAIR1n2l`pm25lj31Y0;_@3lZpfmIH?>>CU++BRN(QIRu36CNH_8JUBEX8Ng zpXS2M=)t|n(AfUz7-`cPUq(<;O-HBE`UO2JYct2jpY8Tl3#Y4wRx~LySO~@3U+Doi z`<25$MB~sPxGcPh3&05LViSUHfjW3^tc>*krbm!a8`EJ1lz0~CeSLmZ4_oul=HdNP zQp91%;g=RAJ!4oTR(UP)VB;_2wHTG0+!}pQ5(T-!Mzy! zTEL13*bkJ!a6w7`C!i)VT3GE%YgR4Fp=7XaRmP~tWT7dSgZ)}$EO3`uWa|mHmzCD7 zERgH(+tXE_$oZ*b;ClSLrwaCIjroY|lk@fKcrnd}BZVJ?EfjY^(;$3y^$i z{Bw?HV{S2&Sx1$Z8yKP-HWa8Abe^!y$JA8j?PFapc+q|o1m$^io7Cm^S1f8u$8+=M zL5V@D2*$JTgd_4Zr$CGl;mQCRquIF3gxz_)C6T-2fsujp7q)I;7Sl=xczZU^#cK`~ z)P(HjbsvsBa{}s=SRmkhT2f?Fu=E>aD}Z`s1>yOboA>kwHcf*l9cxS!>A4nBPu00F zq3X40M4BG9v}o!Z7yza%5UGA+$OTfADlGsNgGWZ32fJ!yh$-vb0E`m0zmjg8Kn zSH>fr(Og@ggbnLlS zLRK%{4MI#1ypd!#&uaU3r1zO5J!TIeMTeCj6r~o97CKBvH|Yocez}W>cl-Wr^W9KX zSKr~gHpH^%MAIVDaByP{Z^bC_oJfT0O4lb zrRy3SF(V0cAJ|L~U@XE=p?i;AVTe2Lx;Hl$FN;g<`XmD+M8L{YP zE5H}ZlJmfU01!RQ-oVBogtCBA{%LZM$Q(E4=>_AcN_xUGZRHmRS$6MMym;{dNZs3E zXAAMfF#x@8l`7XbsYKucD`D`t|KWt&nD+AJ{ovr>zt65_nymp;D;K-3qJ{k6J~)ql zakTqrfHExvGKreOb-fchf-hS1`e#0yaP zI3KKUf)nk_LqO6jt*nStIHdn^T-T4Xkw-&gSt-b$1%TqmBqrv$2@so9H5%8c-X?^S zT2W+3sexwCfEU3@5Q3Sy3D5)1jk7g6pg|p~78uQZ zRt}p^lasNCqO%+- ziL+H!JLp|5QfH9kz$^M9GHo#yh}99iaKfEJBJib6yB{($q_`xcZ_5x3A!?V4iwn*K zTCS|D45a$2mmz<^AC7;M*rw=%gve1+Rz_dbKJxe#pW3CPZe#>mei-7opEwUbI$38&2E|E92vIk3R1)q&Gy*s}*Cn^@UezmVV~x9qb&j<^c} zFZ~A6VCjQcP7snLJ2$j;kcia*+&*Tg$B_HtI=5<)x3Alx1uEx0NWtj33nPwT2Kai# znkq~$i+?eQWH+s_G(PNQRYnXqUR-S2g-%ilV?2Ve|7ECH`4=?dbPFNqO0XoyioX6r zFi+I{SCM<0#sZ9DT2_GJpCcnLz@xAzB@PJ7?0$oA_&_ilP^K>02bKQZ8~V%QGTomH zzXt(SXb&QC16?!KwQ>|` z^D_2ex@xTkxiwG@!r2UhQkp|3Qs2~+$W9Vs^h)t8DvA^yoHiCVREz>2@is&T9xg$q zX8c>2=3TF@u|9e7#IteN{!u`(ImQHHdu^)=m;=ijtJ60$f67A0W1Euvb=k zrU)w)f6)au4sjk--UIAA($doYb0RF+x$l3}hphmmgyS_~{P-g~x&4dfOXL?Z)8wIG zMte#ebSK_X=^_Z!5-(b%de*JiX*+_>U!@+?WaQ$@ENbtAv zOk08u=9`x7f@cFE(gn6#SUDTo-@dkAT>Js@1yPS4MYP)xp{q>H6ntZ#Dt!mNq2EZG zt*jJg4KWo##bJaZ1R;0!Z2UimO?V%uvf5O6|A)sNF6f>=JVa!@AUiH0L`4FQ-|ywb z&lRwVgC>Uh{O`_4q#7TgyAU;Eh86V~2L`0V2SU8!OD8CmM8pG#wg;d#6R}tb6nC%! zeBpu>5rqFdw|~M`Ha)M7fHxf_=4Wfdu?~1iN=iyZKFp-VUJF;evOE;ISH|-tt~V1n z2atf@#w_J3fFvD7ZtSAMXQrdU7f3;Y5az@=6Xk|)5j-vXm5};PQ{-FMq$`rBaNeDU zRFIVQvz#~;OcLGaj#&P((&;p8*s`Vmhtc9q+DJ3zG^uYFh%bhbs4HtLJykIG`(MyE B&1e7s diff --git a/development/_images/sphx_glr_example_pandas_train_test_001.png b/development/_images/sphx_glr_example_pandas_train_test_001.png index 7b73013a5c6a11cbb07dc673f48a2373eb45c3d4..9af8ab031af44af02906b3246563b185a1a7cc4c 100644 GIT binary patch literal 43264 zcmeFZc{G;o-#2b6*6Rs3?+ojV+mzUl4Q!9 zd7h{JIqv)SJbSJE?)C0>ulL{gS?l-QD%W+L*Lfbt_xqW?$HNPXvRkMasVEf6ma}p) zDiq46|$>&sJS;hyHX<5b|jlI z#{c9-)_dDd((X~4+k0yp`GZr=!Bw>62aYTM=ZF8#n-KLN=X(2UMxXmNQVU#7Qx3z; z56?s!^j3!{vGcLo1pE5Ztl6-&a)j?5hbr!7$0~1n?vv5A-(H{fW9K=-!SUeD#W*SF z3nyu9Z_W&x^#6F%oPSfe@YMDwxuD=4HB)m-i)Q-OOYUB( z#wBHCy^b4|bgo`K%*n|)xA)BLsjS|6iHY1lfBwv7^4WI!C3&rB{o70a9LjfkBRs;@ zb)DJj*77A-^n6dw)-G@rrQq8bw}0}amKY#RBuU^e@=`HQ_^t9?bjb{zIH@Tav{8jRn=LdfM`ZZd?TWFj+e0$A?zrRur z@bK`6h=_d4vA38WY&1%#F7e*wJW(Y)HZxP!+8X|x?cDchSsI?pS^6ohZYsoV!@y>P-3l!TeNJ$k9!kHnlgJMwEQ~c-yACe5@}nq9>mD1-EvoZH=UC z-}ji5^z;~)seUfqJdrwk;cLxu13wdQI5?b1Zm5e_KCnDfxMCtQTpcEUF-m3=)84&r zbaIbP^wtRTTGz#H!JYnkVY=w{nz6Alex){#Ej@Y86Qfg8B|m?@c=~jkii%2*gtNdF zMxmmTl6A7OvRdg^OP=f%7x1?b2o93=kV?N=|EaoqtD~c%n8Tpl_3M0;MD5I2#W1m8 z=H$Xc=~b&%(IlLt=hl+(VLbXiJ-wu^&TspHGa4U0tXsdnqpM5i=jhi<|+xAwAh>O={TDK{5z7(@R z+*#(kA=0qqQBPsaNtd%fHD}wVaW9nm?6Ld%Z58fUtJ{puWgVUD>+L5q&W6>Rb)`4x zc6zb6>ks`-msnYx&`eq=WAXU*<{~?zkXeyG=f(G_sRHa;9?Ns=K6`}M|M~Xn)L=_) zpt_!009KD}`=@odHiehRtTt}i^b!9T)r_UI6CZR)DcrL5_f9&x(`8Tg_WexUBYAVW z3)|qzr+b@zyuIX&hh?I@%X=4Z>=_@%yx9)#zjk8o3q!)Kt`p}K4(&W}<}qJ#rt6%I z?#-d2SAWER{QPj|4SW0UFV7BG{{HY#%59$V-hMz$*QtG7`3vrfc;#r0i?P&kieViy zZ62mS;*}dqp9Ppyym;pC|9K#}@Ci2NwQJWtfBrl=)u300TY7)%UU^GPt~S?+Em$s0 z5>8KZ><2_<;)K%lNShL#XkSAz%PFs|-CbY(e!SDH z%WJ_i5xF_d<#*_O`LP02ACwTG-{}@*d#v+51`C>2_AZ4>-h7{t5v!i8%XK;H>6Sgm zzG3%GWMFeGPB&RoGl^_VRNGus9<gpFRZ_;yV77{ouia@14dBwK6QfVnJ~|@4{7} z0GKtVvPHN}Yu=w=)5*NnLO!_7V?`2cGe-4|3MDHy*Yu{Pb^a8+Nx8oPHt}FvVMKDl zJe9h-`t)$iIZrCOAbz9uCr+HG3_0o@a@2w>%!v$qEu*>dZfZuM2l%iZ%*@rh^jtsU z$I7YwGOuFqZIkDWxpVg}U1Y|!mbd;Y<;DVU@Zb}aqt9r*%QPz6x-NdNxPwL|4GoR@ zEnIQ1bL)fc2UM?kTtPXwcx(P|v@cgr;duEG`RLmCZ{NOI8tLRZB(DB}JC}NyT{2uV z?F#4JkC7-OF@r-x_1G6_lFWWzUoS2$svbXnOCVUGXKKfe9jYad=q@cx4{`TMnza?U zQC(PB8u6%_Kskz~)Tf%9Lj%8>;*O6Ld>0WK`mWrcGdjm{B-~2UnC=wb=B?_R=g#xP zExF~5jhaWzzss;4I;8dPrTgPIZ{EDcJ}z%+(ms9qv`LPlOCBmo_4}GtYu0mETU$@q zxhxG#x!8A>Zt=Fic=6&T8=KUUy!d#I?)LUqWNA+1NiWZyT6MMS%d_3nfy{L+xsCy0 zVPPSB26sxvaTgDxdeQCL6==|8hZ=d|*s)`8v4YCYghF~f#!7ZkU1)P(NOacgE)S>} zbzhwA^rgChnxQ7oNw;TD0yb(rHXQfQT!*0$n;SP$f~56}DC^=K+uVdJW`~6>esZmg z9~~W~uE@*JufMfwO=VqQZ`0l0>uFc2{Le%y7kkkN*PJ_l{!({EV5XB2wztx{c$7KK zLDRa}^TE}-qWGTk=(7%^r_nJpGfONCrXAPHv`W^^*T{ECKRu&%Z6g)c$%J|Vn=U!; zIW(u!oFynFX)Uew^>nwe`1aoY_;e@-{crMb?OpsiEHZMRnBCu}L-Vq}%-yIxlYMnw zO_|oV13$U1wd9;ei?eFVFqs){2~s#j!2_>q+D*OwT3f+++yJt@N85{cmotmm#b?L- zbyrkWTS> z<4P5y5aX7Mu?k-=Tys%C3(cGSe$I7eX{P6zLUipH8tKI%G}*_|(MB&)@C|(Y{b|qm zGW!J77wT=m^E{p0kY-T4exkr-^6!ZY7q;EFaieF-eYSlAHnwcV3+~$=TncW^@Bl>| zix9@%#XbEF)S{4^)#lXcGk9cl6E(BMua10+@2@w>bFQahwhWJ}ziR&L{i~Af={hCp z_KuE|Wc5FZK5=)wh^VNE3)4y3W6vp6Cw}kh>90?4o^CYVL_@6lw-O3aYzzLxY~jd29yJ6nO;&r{iEqp|GD*E5E=z&B4l2cg9*X`^+V*!zFbaOLnhK*xE@!U5QlKJI}oLaJO6&`{hmtOkSfb4FrgrAYk z*Vxw10>5$He>OHfeXQ;BC@@8u$BH{?amTD%D=m`qO9va%8Vfz7vCMm{P~U%jFy9&B zKF>+O(YMvpk&{33Q5`iedpi_Pj<>lCa1-!_^=$t0-EOQJ}+ zot?$L(#vuYQf{+DnQd|k3a`=RdhEXs+{9i6a5!{ow^&%WIy!IS=?bH375#bTmdi^c zZ@wBw0bXl9Sv~sRg2t1B8c6=mhqcN0yPjN!kr`~W_YOl^FSs=CVp-;ROrxbCF*XzTJu*u=0UxE~btbY6By2i)KSSAWrmV67` z7E)cNuHL8KZJ1Jxy5ijKxeIr1gGED9)#zzgX+1qX%B0KEshtlZJeGq|@A+;{TTbM? ze*HS`n8t{8;nEo!8v!h=OtT^9_uf29L5krLXYthpxd)c*Q^kjOu*n<$J{s1z5D`G$ zKtAB`7_MC-^Z<>+)cpK>s`JE^;pS{Vt0R$W2{B3$Qe1ikp-NJ7_v{CLnl!e!7Xmn9 zgQ>n%{VE|1q)5v6)VDNKrJkAyB?Sd)>BZ4CQc_a*RzLRZ-U2r7y*j>0>F1V}cvm+! zauc|g2p}`TOen`ulL7dXjk2#!&UpRWdkC zYoku@E>|pE?*Di%9?P1+=S;zD$7b(2{CqmPHfY2(QT5FZKtaJmtq*3aUbh@w&_AN; zVxe=Tr3im(G}T{E(3kttyh)S5&&U&Na4m$Ua3#&i2exk6V*aq~?hP)D_xqHzP6_&j z|7m79WoIXZ0+^^ij$A(nTJy!_-zaR@>G8gGVQN5DRh5B69CjG)0%MliZ!cOe;b&p4B|gfXK`^P zIZZa8zD-5@+cUUz}^CKdquv12cQiTLZf&%Zo&l!mGW zZ;L8G*3xEruH(_Qe{kU=g)8BG_9sADDEhzx*glclQRi~!B{84h@atPiFIBd)MEsQeRHr-h^-Bcg}$CDc-nyd>~jegq9``)Ho9+w)g zn=gj;Vbqji<f)48-&WpZ%~J>}LJuK)n)&(5UPNS!Nm zUz%NW&*POY%DMa)-aAmwu6DeOg9tt9N60rh4SIm`nSsXZLiXHvl zTmE`~8;`&E|k?q_I)r^b`0)D3k8!uY56}03js;c^f`8_>+>8-zwjg1N@Nk2fG=GKa5 zjqi^Fb*X`kec@aAXmBYt)qTn3Qm%uQiK%IvtE=k|_6XOgf~Dyu1utsNLihZut$Eq0 znVIS?`MO81HEX!x?$Zw}f_}YqTbL$5TvSZ#E!a}Ry3O<&?GCbGHC3ZOKuxB@T<3KiEr^J1H8PvTsnP(1*kp!hViTFx87dPwt3M# z^eg4my0vRLcJ12r&o^>&tA|3tUHuOikd-ZyeKb)_Bdv;sbWu%Bjef*hu_lxAVl2n; zmOSS=LwB_lS8VsU0BGf{t-7M(;t4=oZyZ~lWp(mhrk-`sNA3I05l~#Vm8gN=P~~f| zORGFL?-FQUb>!Z*8Nam`HnKjV#L(g^yfXg!TtG2wTgR&|#^d<)&*-+erIOg*f3VOO z=LeGK_CDVhwe2bWKmQCl=QtP=LC{sgZC#zd($ynR?``wE1r3Twk|mEHui=0)xly@N zZuS53hc7xsN=3#3H>Ub8g@%Pi^xGcx#BYwx`m1~{E$!&*dl+zO%yP5e+R;sy^Ihn8 zd6O5no+5AR+m1cq&#Na@So~$zbBfd|Q&ZD@Lugx84jCIKEC}MxwI+V~bz_zOL{zv_yj~`d%>+-TFX3O;- zwf@h`4%jcuKAPy(E=lXuCZ8L{@XxKn4?)k!J^SYeps_4pl}D)EkIxvndyQXMe|J@w zqAZl8R}V7ZKXs|vIaXmew(CJX z`F}p2*3-rQ`t?YZYsfHNjvOZ?`0=WJRu@J_N3Wx$Vk_bwXlHpj{l3avzRUz5SK_d* zE^psdh%l9H{^1z8vuE4EXzzJ>b@ukE|9x`e!G^P|Io6sddK~iG#LLTzeLpT9%ETY6 z0MwyxYRay6=HCyVc1h37Ec^XC1o}vb@2Ll$-d$Lv8*a^iiL3jACjwOz8_ zLE_j;&vQ8_dI}np^YUCTVG*J(lN`~qzE{3HWwmV0Ys{-A)Camjkbnu57Yz&1*wEXq zcb59(iBaR$pM0?T)rEt%!o=)5qJ5>J0Io!}Jib0>BQj-Un(4(vt)r{gta0uRP!AG! zOmYqrwe8`v`+I@3EPx5kRO3xsw{CS^7|L|EXE^!b<_lgusAm=#0}5ec0T5)Q0-VA> zLqvp32{Cu(VL1dtgVsFf>>U@?sLq8^v5xCL%UgdPk^nG3wV^JW4z7Ov_oSKmg^|Kw zksDFY*#QA`1iRpOG+(?74OIYZaTYstXuaH?)*^krF0I8eamO8nwx&q|fo)Kpm;;lq zTdgdwZt{HI-z9VP<+0b73!eleJzdn~@Z>2ue)TdF?dTpgW`9Pyb@I>9UtbI`7#Utz ze=1|3>!D?T`qGi)3%O^uTv2*?CA{HV(@SqJ8Y7lnvhuErMk5Y2^HU;XB3-}7e!t+Y z@zwLFI=5Fmq}OM#&dVS<@A*ypx3#xQseA&~zk63yPF0m3VJ5V)9KP&mEfl42NFh6I zCa&68;FbR;eLjGT32~;h$&rZWMdri(uah2`t#%sveN;k1f~&{b$qBvo6cC}ZvND5D zsX~LO+q~V2?&?rcKl2&4(YPikCP}R#e=_X%#AH}iq>odr-nDP|+pEQ`2hPQ&nkf71 zF?#f*RO7hck4m#uM(qsgrFS@`nEgL7&;?A1ojuDD&EI4{F0VHAR^_7d*RS;a=Bpen zEEJS}t^Rw(WZl`b41UkU<3ksMJ36=w(+g+HeZ|(jU#GJFK;0oB#vl1>cO*=*8$t`Y(l>|9s45+wF}s*^FMa2lMhc9EpR-+l@Sv!v!n=s|6oZu6g(v+3GIAS@*v}iTw0U&uTPrp6 zMwtGb>=S7bfAaBwtc|c(NX}7YQIt+qw(3XwJf5aHV9t1 zKG}7adi@&vt3SKa`s&`O=VoMc-BKT!a&fxpe1k_Ms4wkGihJjoJ1etm=I}C%YffY0mb=30eKvs6Z8? zpf7)uGp4f8NZ>~MceYZ6i0am2ue1CNqtlaJop{=_m4cD9an)f)-1&zkxCMS+T+@7gC;mIF5j@^EnCI>SZp#3?xa`nxo@0Ee^Xo> z@W3-a-|b0tZrn$GKB8v-&b0QmXPsLtx9*d4D$#tVK&kNOEQXZB-J?_JzBgaj7nE2l zkv>uFWuF*S-mj^bQTZ*ctOP4FGcu~{rNstf&({iDg^&$!_hZq=$bItm!%^*BhI@zn9^MOL=SxrW)>1A?Ej$*T=q@?WimsLT0;Sh*r2V#i z-}if-o?|CRT3sh=Wx2GopT88g273R}R2P?qZu;T)yLYp$eJa3aAN_r$2~DO3)(sK1 zuC}*Ld5d1kjdtfSlKQ`jMhML-}jJ z&Fiktx>|oY)@^#Xp6l2;w3SY{1k`)QXx)MZpjYi{%6a7L+v_RiW(MU1#HRzCgoyi@ zapwhnx9OXhmOa_B=RL^P&`evl{Qx~^OKHBVv()me5xwgi+pF!{3F81YUGoQDKOjql z@~)*N#lik4OH&jcGz)x;nUCq3{KoaOrpdtEauz@??V07a5i4tp1&z+9J=2cL%7>;@Wp)-_ zsS4RnOKZ$;4Z&Z?;wLo)oPpR?(?dZ9D$*Ox2> zhCG{tnQz@aU%f2k=jRtJYI_KTSTLe30F@tfx&!h}7wE}`KfuqiV7HXKh2dOciXCKQ zGcYxkm62Hs<1Y@hlY(0uToHkH0F^naCp~~$43?^h>(R_}N^$1;0L(&YA_X>BCHS)W zkNEA9E|U~}xL>&9%8m#w>`#!A6Y!2G8c--;6nFmlcvt9Jvq*7@Vz7WG&{JKawlD<} ziJY9=Mm*>4Q#*@@?}5u1Yg<`vXttRH)%_N8ZkN@E9bk|hr?fT82mM6z1oT8 z=FOY7n=fi;Fu;q`N4x!C-Nt;YcR2l9%tC)cGS;~X6pK8_3~-*-{ORuxv3du4YWL1V z3V-U=_169IQ<5@(a8UVDxW@2@=Z((NF)YqCe6Yyi=bbP!i=PYqDvx^#%Op-MQ47Tu z^v_c_S=I;=LvmqhNr@-6*4IUo%Zcu86B)LFTn3+VN5&(BTjji`f=z$zWvYyVpNK{F zt2I}(b7-v7*}h9|-%v!xR&*YSc`j3fo8;S9Dg{GxZN01;l1;xo*lwQaC;w{L;*IK| zb%&Q`EPLVvgZbDF9zVI-d7L*YfKJW9K~#}1z=xZSM|YptG5RpSi{WfRQD&U9oAiP3 zU%h(O(+BYXgjw>@%a?l~73+6=ehBvHxdOwRLd_x-3M=*wNS_xxdLLLrcUe3ZpJ7`E zRWJx%p}{D z#WD>rXa(u7-1JZ}E*e5nk3AUhBbd{$Nz0#7O3TW2($kk>(d~xe;_Qwj17u~IMB;ra zgB#e6Z}=8}-nnL7RoE2y%Cgae?wJ%M)AJ~XuSZRxcw9QX!<`LTuB**{%f z#{44&#fqn8WhWp)jN+LSb$MbDB8;H<_k##^e8okA%9yn=sL9u;~vfxih#rsN`n&E-?@hg{)hdZlTkBe|srGLEDg-E#v-7PA=Y*@N%n8+@52WkPo2Fw`PcugCtAYxf6A4&M}oN=S^0_Xcaw z;d@q=M^=dG!60g5oTPKg(L*Joq4!}=tNm>;VPVVhKWFzHK1z2{CH1sQu-{t2qf+4& zuU`3c_pLwsl}3p#;3V5Y{mKOTO0R=K5*3? zI~p=9lc>$XCYv>D*2Gk(8=sA??aDfGtZ;T=!N|hmoQ%x9Z0{NOzD<9M;fs4h$r^># zPCS1YC}(h|-{=)ev9hwN7C08mU6Vh5o=rsLSMzVjp32>z*cR6=1E@aqHIV(O)TuKfE`q-7n@iOkD(hH_LwDMTr=sz{b+I4FhA7lg2gSlJvdR$O{Mz z-SM~#frL~OxNKqA;^Sybf-qsP!n=U4#>YUt`*~-X&(PT#zs1*@K;J6ggTU5SoUWj z(c?RvNN$k+&?Lam|7@(YjHs9wuylF!3P|weFXZ>94nw+djW3qdjH zEm_&wlFECHP2gD)xfiZsRIOQ-!w@3{|A?MOun#;~IH|1s{QQquq@_-Ihag7=PdW~w z=&#?uRXSR?oS4}o?JfcL_hUmtAaGo&WupK}{MFj-m4mQ(&!b+(tHe+t{?h}TAmF%X z!}|59`X5&lZTOI4=mT%>%?mRlacFT^g3=C_N;cuN_P#ImdsLt7sC@nU11mN2ZL32o zw2#=?H$`sqY=)pp5FL_cU8o6JIXNn@Lg0nwdpXpZr)v>E9R6mu`;r(uSrP;48RH?g zRgzAw6I4|5`nPoQoUmR5^KY~(i;9Tw8GKqhKiO9dwrhreL#E~YivgP50=U&1fR##S z$2xD=*}X=S?b)NsoRLiOLAbBbVP&~<0Hrd zKo5Wa{=K|+!~1xC25LB=KgY5C zfdLoyPlarF^l47(f;2l-v8m;W18r@dU7AJzD5?8rh=9s53GQN0AT|6ET`_E2Ja2yj zZk6WG1$@nMaS2wLV??)=c_r*Rd)=jVrt9%Sw_Vn=$=bEdj`1NKe-TK^$g-GscecO# zcpK!=f8G(k_QCcq8)%+La^B;Rc)eNUKg#BROPv4nAI5%g>lHAmt2bCS1S6pa`093e zY$L18jRRP6QD1WZ4OXIW_FT@9eKi;|uh2h&@ad;SJN-eFUFGA@C}mhpk+cK8 zh2`@Zu|YBWe&S%Sd2idRh@b@7KIkkYXPD<~i^XHqx(w5f1W3SG;8U4@i(Ca-(bMg* zG_@;HEB#YzD>DSoGf$Y#y1GKX!xm(5o7}#%FjMyR>n1pqKa=%puq>VXVgj$**hD!D z{iZjG#me97?(Y7pv2pvhZKP_ZO8&$K3<0zucpQ*f^Mjf4lm2)_cql&-)Ms2x=H3tU=N2jN+5O2G4{omi|M;LudCBnkI>Zed|%@9b02uWg^ zw{B6QqM|4ehpxcHgLT6Q=Z564Py;KQVhbBcP7n$|>c%)qv&l_&NcQ|}%-VK#A6Bc{ z+1a^!sYJ%SejSh7`^Mkje{n0@xrYxQ9zJ-GB#xHF>x@+niw^e{D#S9CSPC&-g4r@Z zT1;~Z-=rSiwW@|j5Xn%brl(&LcN|uQ+<)QL)$gw#{?4|ILqqgX1aYa#lLYL(Xv7oZ)^BApYi)&zlAWFX z2HsD6nrY2j;Z~32EDS3JS|Hy4}0q zpsNXUq>E#elfDI4UYC6;L)`Mn3&phn1u5&1rmZ z8z3$dw{`{sXcz2(W~ORoSxlVWCC>NtCe)g_zFnv~AMCD3OYv+M%!qt8VjXjEmFsGo z)!hmPv)9Wf?@Ed)zTupYTakZKpcWPtOc&%$6ewIbeET>g7hG$1WeVmcoRK%Ro0Ep^@J6{U?&O-8q)V99dV?hZi8<= z{b}O7IC}$a$fQ-5)AOtGek7~0mrXd@ii_9W0&y`3a>S#@(pq!tf21r?=&$r;J6Twi zz)7LeT>1O$RnHs}d|6ppU0DS-TCuvx8}$Da-6lj8=nT=|FUUh2hvLI*;c+~}-fi-) zGA`v=p92C%4AkopaWDuswX!;o6((xm?_ZJwq9(M$%*YrLJ%K{Fh|(yd_HOT={Dir* zHYWK(dTWFZ{Ew(t8wMj!iZ?Mot)>04*FuPK-_Y+9a(k|koCoocu|)(-%4rb{I*)tv z(A(Px82K@is6cVS5!Lun>o39n5iL?Imp~~gpiwa}YUnFIXjvt_Fc%0$lxA%tA{MZX z(r$E~L7L|bu%S7kH%5A=0(Eqnnwq55f@y33+g8HeA8UrOoP5x6ZpU%f)Tr89KApu4 z6|&3A%P3Jhwr@W{B9UB5N)(n@kZS^mGuzx>!YqakCjbjxerbLRkMk80-r0M_a4!KF zUTQC(q8DRdRwX`~nSe5c_%x#1B>pVh8tCJ*g>oi(?3GD~!XZOL!^%1&24Kq9f;H$m zchix(j%eL=TifE_zkf$nhJJaQM6e6A8Tj*B_pN|i;AI=&D>>b~xkjIlLB#IwHuR-x z8@>7j^_uBL3{dDH+NS&f9;%?jphm0vf)z+8_Adbpz|qk9tG=F8+p%-!ZooDoVxUWP z0iQF8**$=6xrX4OkYiTzh`^k>PyMmB_8CIuuo223xQxl9Kr@}dCK;RSjfk%61FU=v zkh(j^qYlKv2bs+dr0oFg5fwNjA`*nKC&UlGp#l<+f?7tRB(8JgXi7-sJvR^DK*QXH z`l1jj@(kwI1#}w}TQ8VS(o2&&A=2{G7!Com;`^J|My&&bLZjJV!N9E6u#;VpV6wcq zo|nM-Oi*Yby_^8ACsBXvys`C=Z_28weBkSkB7Xn;>C+;R^|a==v@}61*^2Q+Am^e} zt!%6^&jQ+ZvC?0$*=}A4MU0YXT7+Lw2!J%tRn{a-kll9pC6a^2=&eu7GJgOLf_DVH94_}$91 z{ppeDEB9-D-8oZGXtK}jAH&p87JC)g(5RFelu^J9et+Ma66iBNT%B1S9D7;seX+LL z`Cwbrw>?s>B3SR0cAD3=BtPGY=r#lOeTBdnUr%`W>u$r`e{iy;Fk&FA-tkrbT4Bw}2Y1M~c@&T2OB!|s97MgL=Iot5XGr~s=ywnN z*U-H`M|5|vSdXaGGM_zV*bNc!j~7g)eeWQmh)xKFU9e&Lz&#EPVrWX^`xREI4)J#1HyY~RH zbEhg4$yb0>Fp@X174d(({yun$mcRY{q&a}r!?3Wus5z#Pfsv-fvJ329Rzk`TmQrXJ;e?u@R#o0D=!A(Yq7smbtDwRy^dD zlZf;n>iQZPB+!o=7?mLEDg{~C+wkwvr)YfGMMZ-*?L2e=xdT8{67a`u65v&`zSIm& zF9Aj*QfRf^wH@L4w8vOM-I~iuaY@ z>+&obco>DRJw~4c4kO8GwxdVu^CZ}N)z$n}h~$K-q;Fy29T&$ADpxrg?&R!j0QCi1 z67|fQnKPrP=r|$IZ&YG7Zrn%-Uu>p};zM%d0T)M%9N$5SsfMMmHN^-b`vCon|F%fJ z(f@-J_wOw7(WzWUU}?CgHh+p%Ni9uYj8%%L#`C%T!MGg@wG=Z+ShJ&$na7qFMoe>8 zkZv4r{@07butFn}v<)B><0+P!C9muHM4U$Vp@9*W>$)`6(9;chVz4RG7th`nfP{p$ zQSV9Oi~_BDA07%8uWbiBJ?QHH$~uOCtCUbt+xtMI-d*fRh{}ytY6Q^3B;^`}Vzm<# z1^15YC(#lBt$UE%hcaFVc^)<=s<0_?3xB6v0P`L`er(*FbwhJ_1mgT_kCkO6Nf&=; zOyA>_Sb!f(5%EDR;tc0$eSQ5GO>rX!1O%P~x{`rje4=O2o!aNuhOITP4;0`Y3Y5UWr2@h7IpOG_~Gwl zSzB96bpiixZm<097tfzZ;Yr0|k0MmV1={l#%{L$@$SizU#E#^vJjruE^u{>HL?1Pp z3BAP)JA7Ox>pE-kIF!ctKwX!w5=gdKkeLo|dk7S-4=Dsi`m0>UHj|I5BYa?D94WNJ z$00zdamJ9&wfYBow!ezJ+ibfR8Lpr=(ao_tyQ&`%KpM&WxRwN9Ohj~y!-athE+LT; z6p5_rFTvh*A9yWG2l> zfYC?(&4-BwG)TAkzBqal%wqk{Yk}bufOztJyB7e8HT8E5PFp67r8mtPiNqgzX}`P^AD+zy9v+L+3++dNsAR>oD&D zdTEk!4FSK(!rbia_K}eYgRs!770I#DQObL>rSZ|xeVm-oaDpr=oJaC!eq~y-poAU4 zkYvvs7$qU<*npi~U7se!CIqfJyhhg}iDk%7>XhGpQM-lT1w!Od&;%g_(nPc!|s-KRJG z@*>=CY;ltC&#-L#bZ6aWBGidq-#3wk{5yB-QN}HY{Q6Rie7wD*0r<(3*X|c!&C@9r z`Gu~DY841HB7L8(@uGE|$p5XXYiC#*K(wd~mwcHCb@k!Qics@P_-l6l;HrvYxB21R z5u~bkAQiku3+kCmKu801h5R~XzjjPAzSB%gm5>hq(HX9XhezrcT$B_<4ak@skp=+; zxt=$&xBvZX#vj&zueL4>Xu%jA=8yi+(>4PM%n`kUQu+b63(?e0jO<`luw*lVU?Gh5 z8R3K~ZsnP_#izjlWO!DL$ew-cV;<@3`ec2qGR&goU4p=9f*Gou4-}G9of><*7&zHROBz4e~yrBwc)UavhOq$nYE5 z-I}7((nDnnt|}zm3{{#`DUz5sY$Uo4x}SByTJ-9&BChw0##xE%pZ~|{DdZS}488I~$NI@IK_YJg2=`PJaB4cm};EL7|%2p+^ zRLIxv-@ktr4JpfcB35*}GcAfh86;$4nxL;hcqzt|4}~kIVOZGk^G4(xPK~tYi-PZ< zDw$&@0-3RB_qP|#Yd zAedw7rx$??2>QjYi@?FaG43l%jz|`th2)-*f*vXW5i(XG_!DphhBOVpn&G_hIgRRj z+hc^H8c1*)Ap4=oiS63+7M!2QTIriS@FiiC&(cp@V*uC9oxorFP-NNp; zfw&nyX49>R2o~HB@^w&r#y@UgF_!Dcdk|X^9k(3?7^szc!5PkUwq4&2GNFji?IHRZ zwm%fp^+yueR~R)h5lyBs*_FbHD(*Vd;z$6>(2x(A`(97|2a~Es=naGx1LsfpaQW`h zz80E$lJ?4fvBk8TGuL3SD8SGU5;EU`%ZY_7>wEbH=34Md*xkH^DWFQ%zukpcbI|W$C2!og;M&RV+WPDTDDhH1b<#pG3YKG&4dT-fc zf;J6C_{lJTWub7z2)dq-**9{3$KW3YYcs)EBZ-^7`h;D>!^5uVIHGU8WeI>y(krZn z83c>?-CRAs7X{Ga48YT0{Ob7-p>{l2`o!B5bi|Ujwg~(qnWQ5A(qJ5_1%afae@+0- z7n48_RIE9cd+go){pGkm!c>7iuK*a6F;#yq%^kN8m?y5#D8L<=E+X@@uC9waOJ4k2 z5YN1kWw1S|@!-FtcQXjO9z zoTuK#T|dc|1pBRf;Oat9}4Ygcz%&A5EIG?6+0wbgi;jH)R|3pAN>|K%rtC zPQ%0y!D$l{2QUH$Dup>0Z$rPuP0+uUMOL=#JlRDeIuq+=$uh^klLWQzB{f)uCENDU z6foO!Ja4|R&FJt}U>`&f;sCDz)x5=$@w@I`>@q0_xsjw!!$KLAF=m7t9-yz_YPfQ4#Z;&~SY(9&zh4RC&A@M=Z3Y@&&MGJg z@I-wH1&x35nz3s zANcy#d|THH>H?eKtN2LXT|_L%EHl<9y-ApqTL}DHL+Jj{9LWIGzb=MJ_KF|7(svB3 zlLat38mU+4j=FWEY%DG|7NIj@&XLK+yEIbo&9W7s?4v_M!`q6%TyoJ^U{w{ox_NSe zJUV351y2Nf@Gb^f;Zqf1AZ7D$@VIYgLYUR&Ytn#-{slc#1Hokk@xZ?j;Qy6v%Z`hI z==UAK4RO3V7(6&OpcB)SSnO-q+1Y_)KLcTLmAk&*tPx%N&k#C*9`Y1evqq={qHhx* zG{F${#v}?54BBQ2B)W-l45Jh48txF`k}zGEM6MU*xx(Q1w@co|c?ZbweBjWFt|e3B zx~^lVLH*`1O1x?ogqxV%4h{~OGkXY?>sd%hNOX|rwsjX@nXOs`RwbzvGJgYbilB}! z3=oi{QxIbW-$^5_QLr#9{(?tG9!;?^&sh*1zyuu(R!dEuF3vCDl6q%5-j>H9<*yR| z`Ey)>o=?6cCJbc!tbz|i8qBk@6kkARBk zq_GIP;2Yk;ZY_PX_vO$sKCS{MPLw@mJw>n%+!Tc%zT2o3<2a|F>o0@aJB^P}#Y92z z(1pl}7^?9XZlfx%-p0T{f>QuRr4TSt&c4IsPz)8hjfO>N9t>vCJfw5UZ^14GflUE^ z!9Y$msx+p=(0)w!RG=4$0&M_P8$but(9|T;MtJHJCv+$>{1%UqIm{{kLER)w3qz3% zkiM1|+Ez%VC$|%$_o>Y_IBR4Ulr8wE1w9&PeMPp9)1G3N1W>YX}gI-zOUhGw+bWAhXfgAnE5PTA;_a}gkVE_`!IJ?6(irRdI zX{Bvti3M%tR9qdIog#Do#FhvCISr5v15J!VCY_h7=uXmJe!I=AIV**c-|(LEZ!@98 z7_dER+f%8~z>Bsr4{M*R2ZG)CsiCHZ|K=&|kB*3mX{|aeCN}@DoU*x2FEh5Z*jc6WB#(xySqBevEpobqz=em8ph1>XG0=gxTX z&$mz+=m$_d<<1B3oq(N#j3$xxAPx0&gT!3ArG;|?U~VCOwJsit14qoi))@p7uJSy) zzUQld;HfdYP?H%YEZ2*N{Ju(9BX0K=-y5@5Ji2-DAG8v4Y`PznH~<7+g8Hf|&xv}( zeH03uLPcAOk=JTfRn;G-jIyO;ai@BF!2XQ~E(?kS#j8gztE#(&;_=*B zjE6^Y6(OfI+_}K@S1}J4%(DP49gvommgBbI5L8G@Q8BdEUZ~HIpFyQd0P7(afMa(OaNe2ls z0tk~d1*=FQ6G}CPrK=6YAy30_4J^sS$F%qLokijM+my+R$+m0{%E_)*;rxlD19v~(QlWz4Ff4E}BV%?Q zi%WkBCi85m8bJ?W$vUF0N_5+Fh-tj|M3EmKjXGcd6(g)}hRTsj2 ze5!WVTNwB)I~wva2!#61z4-^Usi=GITjk0`1UWn;)kG~ipEGx158hqBr30AvXmTBz z`NRkcb}XI%Ori-G(*jPTe-tV(K6D5fqzXO{q@j^M=vux_%TFYZk!`8a`N$D4D4H0i z>axbbr0)k8tTGU}D4@E>j7J}V$)#Z=9C94KQ;&zL%EgOk&z|L1imMT1pvKuS7f?dM z1Ti=gKll4LzQigb2w+?dZ%P5s*@>wdbUiZf4u7lS`j*66vk$-2ui$+e3q1-;Tp&Z1 zg8$9VI^p~hL>$3Y>VUzho8qi{;Ui$0_HSJr4ZcAqr~?uHdT8eG8bgzSw5>FWYTmVG z2d4{WSo33!96RgaFN+;(P;{40sE2;r= z^dZ%ND<%8`#OQ6#Y4!Rgawryp z8hA}}f!iK55OT&4aa+3GVZuQEr2?eaOcMNm9ok_T`|^keQE0G4bCBKJdsX&B(;?B) zt}g%f@!NOgImyXSzi>{%UNO5!oDx9L0Uo(BW<kE23A%+ zy2-r+df`bxHSs1x_ka_&72(jxUGkZ+N&d85s~|=w7Cm9drM@h_z?!(sMWivfbaEzN zB_0$Ddjjkwh!mTy$CCY47O6_KbJD!wcS7pG$TJJ%f{&0C;vsGbTeo(h^G9N(k;FJj z*FlAShTE`>j;;g>H%=&8k5|GQL~Z$%Zm|o}CpKKGE43!3zPmyEdqCJwS~`1rt}Jh; zX>4qaTEFDI-YYYz)AVroJwBcau)pJA+VrAutFWM^%2~oU*%MumbMY1mMj$Y+P*2yNIU} z)g6E8jf-#>V7Zu689O39jNZWyK@HvdB)VY`o}W&R9gyP3sB7OncoD}%^w9t?fjlkT zIvk|ahn%8V7>}&pBm^gRtVReYQT11MAH7OT4%D&E#i>+M^M4Ou)zn}C5wjKr9qA+< zfI|a;V5fn^%q-VA0X%JTW|`ygWduKn;6nbw;)>LqA-X@S^fmYuuB9k}o@Bmn>3{rZb$*#~WHnp0mgpqdw&d^{ z;zE(!r+M9>2_II#C3+SPENg`jp@(QwP>^LXuA@l~TZ@kTzCj`1ZQ&Tim=BhX&++Vb z^(!xUI;lXiDM6MEMfc>XQ)IC~-{v^>H3D&lU7q__-TUxSKdpZ}f8`B@99DM-8eG#j z0wQ7BuQn+gW71jx<^<$KvYg1cD#XKo1d6pJ6k+2Gj*@Ygt=BX3vuc6sTpYu*7$8(K zGjEbJD7`XA0}kh0zI_wxqqishpoom?LVAUA=#k{#-PcD>DoE2={y_IRXjmBJ9Jf5M zFSXpzQ9o##^Ntpqe>%F+bcD3cZu0~Gwf~$ zNx(EjK1mt*R${y&vsW@v_`fGB*w}??=F{K;Ot4{zV1*ta#CZOGZ=f^>xGU^clyh%b z*ysb0qwDe(k$piYrv|`QbOZ+a7%COQkAOR-dlI%qU4Q^qb)PeV)FFa@frCbe;^m&PP>2JuNV*ql z&H==1@OW-4&D*<74+eJ{k%1`mU-;Al9?Pz9K#FmFR=UiXAw(-Bl%UL)B@Rr0RBaT5 zReX@wanwsA4*UcSA)`khu@{jzMR!?K1O)s5mh1B3Tw^JDL)?&3oR&roOaZ?H@0Xku zIdI@WAMj4>NHH>OPgjd=4GM1oGie<+q1 zL3hCUqu%JFpm70S%!CKx_Tp%uKaji0mw*HVL78p;{yQM-D3rJ1|5HHZi~wrMF*P8x z80tBJ(Z{MXU_Un7M&vGz{}y!6L4cFd8)6(F0pJ1v%WkwqtZ`uL#sV5_R~$O_a$w2; zH4vIuG~OQT-8Ps44Vnzbg^JmiUoMLUdR#W4Pb7?|>F4LfmVOQAD=3-5gV>75y{#V%WzQlmaii(Q;XU+cy zCJbTWFy;TM?ybYRT(^GTAD|#8A|RlI2ugRiDBTDWN=ivehlmo=Eg&TVQUcOlA|Q=O z3ep|YB?w5I@!)*-JKwY4eXhOF`RlBU>so8B`HScG-1jr?QQyyiLXLo-AL1eOnsxSr zdp--<0od|Lo~hR?9V`U#AMo~KtBzo?x1sM8GSe54Y7B@h97-ppw+d%-A7pmjs>Q?O zf(~>b zRQO9~=*W@PLix76>S_u4u~^X+d%W-l${&ypLU@p1=?X!(fPih_On$v|2nrP9e$r6P zsP|afi z)zCuP7X1>33gTDkX`aU*3&2>Fqo2k_J&5w>HPZ6#UtncR5*1b%(PvKEmQ3GJ^0K?%AG%nchute5lmG___t(dtHwmh7sTo4I> znxhTed{=PcI$g>qCbxIl;SOCN>~6PvvU>-qRgsY;NC%+-WT_t-9uWl>Q^6;sTM(d0 zmyu`++7KT(7is2bghH3Z!_HBtE+O^!*Ak-7LJ-kWzRp3!%vG_gN`2>yecYRnD=LA-2KWAax^CSdq!XNOD=J7pbM6gY$t&k(MNfQ00C&oij(?n6rmuw&7o%mmd@Fq;UW z3%;-T1tt93|6201GC~q7@ChPFxer9mNW%)WU||A~R10EuXk`%xJ271Clv9;q3-$vA zPj3tus~yNo+wZMDLQ=aBhctjeE*@X>!6qE4abbhj9i&?ZtkM=_**g?(g7fhIrvAsD zLx%caRR3}gFoXP&vMVH;5veAqQILY{PT_47BEt4KJ%I})hO`iJu0iR^Qi4j$6_7mV_d|DO4;1^J1H2ecPFElbcVfH1 z19kwO_aitM;ol=3twQph;}r2JX!T5hU>{1+kC5~)G=TtExflp(R1&?ZD&d?9K81h^ z@dmRD?K?kr505Tq)^q+NmvLCU^y59zRq%tsS$_aevY10f8Z>PKI;B=GdDeJEWo@{` zA7T^&QqrJ;0-L1OwD+#0yISN#zRy{*k_rE#o4yM3{sp^acs3x*=L5NS2(yu73_QkH z6XujbKoR`qz$Ok#WQY?C=QxN|JHTs1B-7B&v0@ZWgpY5)k>2KA5D*Zc6ZUzti5n^i z%tp`Nt-AqXT@5+_eb`rEx!?isjxL5p1&EDV`Pby~R|Ne~+bnsZC1;JhLk-$DgclS+ z=P0P_MW%Y2jzgrqGC*J+;%#@iK=4Gd0Hil_$6oo(6>27glS2T;XKIqp7+m!^hudIS z8IO1Ft(Ou>dO4z9yf<>~S$=;0!s3h|KfkfSzTG_t{eY@L#lVo=b2&%lifrvd=og&= zIR=PjkhXYu@$elL$$&3nP+waIaMUGF0c_@u1(6Aq9`T?^#%?e$7fR6~sY<$dJWGhWy)SeCfZV~GA1ohxddvO@Gu!G+P zc_L_zbb^k@DTuP-^UsQC5FZmWKfDWNCP*M;LZArp)w!atNWr(Mf9vb?SDi4q^fyr~ zFB8<-Hf)2^#UfBpg7SwV7N=RyO+*_998_Cd+bQtRzBwL4B)ttCf4x->rjTE10@(CD z2v6hTyfKPByTnhX>~9}#O4FknwKczVX(e>y6Dgj*gQft?7dXj3fI(Pr1%w$=Jc2{U zq#8i3obdCBci=omYL_=^6p*_$S6k*^FlKpNl43)+0hXby57^{*2+J3;{czM0?}!Ks z^FuuOVHB89?7+uQa$UF%mEU1-I+2zYkO>rh^(k%Q6c88|rXVE5NY`~RV{c28dn8*x zmYp_61E8#Qy&XT;!whmx34@0&mp!RiUiO$PT)XsPY*HCND~C>fim<+w1DtlG;Q%rd zK!QR}ML6u})+he&`Cws{;pPT#_I8APsAd0?Aok$u@?JeIZft5P|I$@!7cod9v_~By zkF{)-udJ6c3L)2mn**sQ;vL|~Dgo-0bG&7IJQ1=-2tgbUC6MUOfgR5P$2eSo14%)c0nlSly#kLhaprBvE<-q!0XO!cw)Ub6za;YW5C9oGftgv~pMLCZTJ8Rg z3j8!&j-#us(OL2`hvdkhtM@u8s=WzPf*`oFvJ9KjT!@dL` z^VjO|PGCnVfb9ndc^h9?TCRv4OaCsF5t;u7vxeMNC4+)d{cwHS86|4#Fy2d6D%h4Q zpX60=97N`0(34T?or3{+PkzDBmPM!rrU(s}bA zkHt!Fj!tEwXF?k8@!O8XI%RQ?*`onVtYkH59OQ7#j^JftW4rGArVamnFh9jwaBnq- zmD-*9m4Ea}dzvDvh*O3xdig9<5tKg}rcZOEAxuM_yELhwb((|_;J^$hf-TSE068t-Srq2EM|VrW<<{le#4xYE!&sZY<3ySs z7*ubJ)cr``Wz&bl;>eBs`|aP)ZgU{c^I&0|F+@IBR!aA( zSb!npfEhI}Lv-A2435AhQQYevxU}hb8HmzU!^`W`SO`xilBA^{d?NCz=3$VGZ15?` z3q!tZ^6a~O-%yEoeZ6g7;~|*iH1i-tS-=pNLHT8Jv*dL4C|`13NU(S5$vhu&->8$* z)87Uta$ebaeVaAMiNJp8;$*K>@WcdZZ6eQexAEHK!Jli6{HAfSylYmbp%SUe#{T zZo!HyQ%jwR9CFib%ov|;B2&QA!7z<)qPeb6Mc`kOw?1jS)^M9OxQX@UNc-N>ZCkN` zRHRWxA|=|G{Yl?UOc71jHfg2D4_T#ej9&d;4jcr+W+yeuI|<7>34~(Z`jwmoOT&Aj z8KJ@E9`e4=_vIqqS#Z)l>3wwD?vYb+%kAqj?VMg;1wt1li7QKu73IH-kM1A5X&q=7 zd{L{d!D6RW9$Ak~g+qzl&v40cvOcPu6mi3K<+1ey61T}}h88;Isa)=d6IriiHJ9pG zZ1HZ}?G5q||17L#^Md-;nFQKFu_{UKf{HOB@#V-sFi=xGw%4O7hpeg};7g znn1FiY~z~NShvD2gM5u|80=JG+9+B4a61{(G4~N|avHu^z$duvoOiY-2S2&B>pgSi56ljXw>HWw zOG}lPJd)d=URjnm`O%^FU9(BU^pDIR=Thg+Q1L5xu;Bw*uSCVgpkf>&^EJVLPkA%* z{EL%AB#AR$=aHM3h1iGDp@+lwdo!p%=YKYDPmCj9Q)o3ncrm#&8T z<;;1%@Ji~YikzL$67OPamx;`tA#PE;by`W^blUHfV$1nb<8GcjlY&nUu8ta!N>_Qe z!?3pk-l#4R->t1Z!iG&)E+p%6p@!^9{Hmlsej<6|(xFx;u}y77)hO?=>G_xEbMxks zCsM^e*ZMq@2*gZtMVUZyR_yB4-u7OdPYzp?#%zLlk{e2Wi3&d|`W{ZtubM>69aJCA zr2TG?Vv4P}>I7DDE5MMTzuKcrgOuEA?vNNeXApOr_} zvr9kChn=*k*SfT^Ed4XDRh^N@;T`&?i-v6Dbz%W@v2kzP4u0t&gn9$-WGq5Z?>km*0$jX6R=w8m?@=Nh4|YMV2(xLmM^UEgdk^`Iz$x zKA}OxobNd9tYN2Q2; z-vlxhX?6zcJwJO;f*5G}pOQOXHrK7dyX|)4@{P!!f#`|^_2@qrGWeC&LOTu3)hqKo zb7Mqb(z)n1)M&`QbiSb!%VVAzyFkx5F*A~BgXwC$dm3(g}FWh4y~M3Jdf3=0$8fAnZE=m~F2Wz^mX z#u>80`b8Zj0uhz;whA${xuwOR%w$Vi`4^s;uWhj|7kGNhQ!U_(>0rB9 zz1P4qJH&jGy{k6+w5Q!)oa~E$+fP9QX=?)KU$p9^u01~wf-0Y1t!> znCo)KVEYTnjGH_RMyhecOaf7J91NJMglN&_!UCA7Z1KSr=!|G%V~3mX^C(KzQ@cv% zdk5@A64wX^;;*>MGBoEkX}_y+V{NQ&xAW^v4of*RCq>uvntu$$ZgdqQb!ft)>aNn@Wxa8A_`_)fAhn3apU@_P?uQiRD zhl{%191fNZYVF`7DBUTkUd>6hL^?eAUGl!csieh0J;`s$pxFSsrv17%kTtZ(1+te!s4D zgECI(bL`I#wD)ufnoN!_e6)J>NHl$*m*>x*Y*oaEp{fMO-;<`}6S1q3G^XwhzR@i~ zI9)`XW3R!WH)v_^i@NxUzUDO|9u`<>kM+vRsxKB4%VLQ94*pnYuuojXC)seZ4j*~ zxSyFv;xy`NuyVihgiBLy`nCPV+0$omP zBWRbb;gZLb$)EIx<`p@os;!y_{5mIH;ju9oqmfQWU>Y#1x=b_Zn|DiiZ!*((Os4Hn zu;rn<%)HT!Iz+O87@DOQPI;3ue*XiagFBsnIewx{HTCzz`nIvv7l22C8 zY(0A9<<6lfacT>A9LlEb*Er(dI}(vp zs};01&sH3`iSxVMBIGYT5pF%Hlvs1tQ?r~8?E3K7rGGp`@xyHw**>%TUF&A5T$Eg^ z=IrUD?DQD2*|OJo;zgZ5%Ji7^`Hd90y!^EGAc{(0kW&Rv3~mK0f-Ud3-$oh*)VZFg zvm|^w7gw5Kic%%K$%-~}!{L%rBFoUvQ^lL#WYZj4Zufnfc)3DcNM;_=5jV|Ymf|8_ zMe0H%xsZ(AMQZxdO|7-SXFjo_i&xU)=spz=X{ajR!5;CW|A7not67M0u;ZiJ*XIAl z(=@r_-a9NlK4H!mTB+IYywmnmf;XvBswYt9BrIUYuIpwfx`%fRv8>>jg1HN0tNGPG zYnR9?I1HKTCml#JG|GSUjOaFWtTSrWFbxgqHJj0R@QN8Xf9qmtEU~Vos2whOiHEcS z3FaikG#UNH6v>X?c_sGeI59Z=d?CNRy+1GE`*}0|D%w2t&5^*;boPDitg$;!h3`!+ zcCuWK=nXuVLHCk`(&g@~2LtZAat`~J5t-1dEZ?FWE9sd=XhwSI+nesxsGSsX7(Ra+ z_+Fh;Yg8t8H9wB<4$~-^88>b4K#;9=!jJ+8<#G>a74;J?FuC2`=%myU>fP86PB zKag`E^)}AU#klpMvv#J7DP8N45ZnBT3CHOjfuFL&f(bR5JkDK1+KHZgk0>y>8o#kYcaz1FIxo6AlV-nkZp8P&*a$D>B-2V^ zokNU<%bj#T`x%dFXL7bbINz2B(;s{*eq&ek)ou%u$v2Vsot4u=ZBx6BVX?+?qO8%6 zYkymsb-52K zG0yagP8G{)Opih>tOv3*inUt&t8HG0uE`H)h>e7z9W;5OX@|0e4Thb+rNTgsV_ZAJ zZzB5hnR6#!pYXGi&T;?AyHQCGNeTKo;c}H9UpxF5oR(QGVYu@N}Q`=kZG| zwx~8f@UQd76pd#CWq98O%*izAzQ5R2nh|S_RWNFmQM!cbRqbT!hM}{8Ni>OyeeOyS z+$AMH?o5<5(HBK1#O7cue@-Q0%j$6XcE+c7X4{4|pDbfKx$zY|)=k^it|*NQG-r>R z7mx+U<8i5UWs?ucYw*!MS0DeV+HnU9L#TC}X~VAWwePdH%tL9LqH5_6+Pw`_rB@*DyDoKHOlFi`mq1G;LZfyanwl`dw3uYSpRzedW(8m>8ODL#h?eP3h@bawH|-nm@AD zhht2wwv^u995}rj6_>J}^r`4BZE6aVTemcP6R%H^9`V3zaU&_#7E0H} z1E~-7qGNfFgRcp}&>uHh^c?_7NRDL)nak>ffeX_OBq+W;VkEmXBog}Pt(+#?eWPNKYNe!<_$HnDQvQ)A zhzq}s#{8;S?l70Tr_xYMUjObl&Nt3o2chJ|zf4lrjLmph^R$QJjyEr7x2S>Q|7=uR zi9?hEW*3cwJ>v-u)s`kdk%zAXcEmN#s{FQz4pI*+<&Od}nOf=;(Q3CV!eZyG0*DhT zN5(>PzGZaKc9ioPYBGis-VMd<;OiKD2~AEaA4+89(LG3C^By++u1)!U`rf|gC@gpA z^|``;N=G^`+~1L(XYp>oRAh`v->Hqc7@JnY2i0VW2%DPf^K!?&t9hlK?0 zu1S$_jws{q;gR@{G&yf=y0X?aC}3xeU={GZz$BeenCjUe;dj_1T@=sbr+nh8FOElA zcOPF9&wor%71DoIil!JM8uiK;{rNnnpOr^=yxb$t-NE&xMbiQ8Jg9DGptTv=nfyVc z0F&}&nSUhn+1!BP5lB@TGS*ul++&AEyw%k{ty-Aj&;jKP=5iPby9mwluFuJ<7-shB zWG4felo^)3di|XHSxTj8oy<9zZpX1eZK2%~Q$d724#ZS z3VJ^}S3v9N4Grk=nNHQOR4Ce8j3Yza<5_E9MOdhQ3?Fv$h*2AT+sP|6=d&*@Sie_e zaidZo1F!3yf`Z(F$-H0s_uE}ki9C~m32WEf_AOUuXBY`Z{lFx`a=kJk9r&cCbBm zWlap4nOkRiH$o=+ZE!w|aw^pO&L6s1$T~mk=+lOc`-~0y6Q4wg{vX)2ZH$}PkAc_a zaeB-L$`|hLlH%f2C?1Df?h{Py@7%c`dm1Wsfqx)frjEoxiB|Q07|Nem=D@) z5ZN<;Ka8)-pUEFi%Re+XrQ`bBuwS#^6^NC3Fzq^Gb$HE9U0yBYqqh2va_zUe;cO^c z zo{uL&i`ySj2|9l7tpxBeMROKgEjz4?jRCDrnVxpazWp2 z=iK$;MMY;mnNKOJDVG0O&2)V_v`L%9B|nyNle4+kp$+ZK7C3utJ9787Sy*}(tvDny zn?Lq4ykq(>HJA8G9qpqs%+I6S2#m&UHQFz;3ZU?dZ2CGmDpAV zkuW3tduS6dgQ1WA)Wm`B_8RHj_XOQ!{Eq?{nG8bShSAXkgdz=#W2&|OKNp_vTPeSP z2M!ye^?-WO;!25nw5pD*>j5dtZW7sd#5Y&p{uJwF!4KS#%M$6eeHW8z+&Qw)un@6j?97R4!kb-zFosc%E^ zOh^)3wY-#8PX0sD(%r+9Z*y*c+Jo4rcYmG3IpRwMCK*g#dkh_I3$B3mgmRs>BlaX4 z^xKF>X4d}pT+My{38X1VqaDm2sJdE3pT(^~dPMrX$Iaeoa!2h%lt4gZpKE5MtrER_+OOG_$Go4sLHh~Q(Lh9( z0)0jctW&U{o}em;BW!>MQKY{LI+v<|cMUCY_h1ev^trweQrdESWS*BbQp)TeD$HNY z7diF*Vv{6IiNnD4%Ql~7W=R-lepFu4(AaL{gX2I_9%^B3{~bLV+N|(U&_Tznbp)2x z2RK7OC4xTt^U!Vr4Fq4H@6Sqa5qgwXxp;`HOU*e?CA}_1= zBl(Hq*Uj$roTJ($bdHM1q4J}v9yZl7v#imZd5d9E1ox23koc!0hmucK}ybBCWrY|1IcZ>Ak~j(=#vo(50t&GWw^rpPP}Px`>7k@}*HAo2p# z(dbJd%}afecTW(`%ZQPu9S+8p=UQEKW?Fo&4SKj=%_}21NIYSvH+Gy!c*rrdW9Q&X*yFFZmg^c0%)NX!;znfBafGcP7I1Xd@ExEttu^Ac zIGOtmazwVfwl_Hj>nTq~zI7*`bC?xV0HM53rSge>+ie)hC9{?PC~{j}-u5W`D>)9% zVoUSG!Ebl`#07*1v_4F!s^;firLL2OB(zw7PUgTPl>+hehf0=m15Zp)GL?qk@F+2n zrEF2V{zN+92w5G-;LrXvlpjSKaCNn!$kh$G78$atOW3iDhiAW)JbFNpbfq~4GU6Ag zwsp)YMKTg-da4U3_qqnhYLn_WE`}8u^xCD`(9XF$6T2#8kBfX@rdS%<=?9Zd%ZD*Y zf^@6Z1kQa)iMFT9WjS|`!zRufhA2`6VIZZ83tMW#BP(VHL6o(3%tADs_!P2(>iBf$ zJRa;h>`n2!i8L_sX|p`5?Y5Cvn@}umYfuQ{7Wjf;+3IDmI_C8$OQu+OB4LHl1R~D* z=mTDW5-3aUN8-eTw>@*sazCwdk-S@Ly#G+uGIyXI!vRI=70JJK;qAmOE&0Z-JHHYK zuhvQ3ct4daT2O4U?H;yK8PZPQ*m5Bv0UiYKw;uCH7p65%kvdXnheysQ$|%XqcT;w4 zH@5m$zMy5SYa~oH6V)`P)VZ+_X z=&!nRJ~BGm?``*+G<)wpavhJPsG5Q+&ij}o%44aJpIt61@a&RGm^8pqq5r#@=-;|} z-Qq+u_+=sX#C1GIrfA_dwdVq$8cvqhpW{gtu0#Qlkw zE$pLwAm`=V&DY_sUlKjlXOBp6*#U+#4)fp3e6BYz_H*~1k=EX3V~bwvw}6N42dnJb zvB%;^<8w!sl>^YF{k-tu*55WO(*V=qtA7jc@)4<2+k{NljmoZrvo(;@WCZkO82!=3%J1Yq+S4P=i%(FNI})Y+vKN!GKZ zJ=TwT$ba!lOez>RewjTgpSq^#6KEN-tv#X$^qV-+-s$BGBa8jr4O4Q^u_SW|^e01v2R*fw!!%@-pRcsE}$4OUQmHvKU63jP_)r zcb&h3;UdwO@Nw#yWTEdX_r2hn;LO<(Qh>HNU}C}R@d}*^Kd5&z{(Ad80PNUf1s;5I zN3T=G@$Rar6?)_*eNjC7P1F}@L=vCbsp$${&Ixpo6`Dzn9Nyj)%}sFd(T+7j*62pU znO%}Vq$Qts<@!zK2uWSC1G+|nau(OOXIuS;c8{+|&Rjws_;7{4AByG3dpbFh=r5_h z;eqnN<6aYbU*ley8bnLR%JeFQVZcYdgB zhFjyCkWa{)l@`|UpEd>u`mSw5RG_Oe22n(4;r%HV-#h{URT`?Cw1xX4++L)b`63 z?RT1PL%2l8{Kv5)&x0l&LRZ_jx#RQE;%+S%_BOz$rF-UfRYmf*4Ur#|e(oX@#dFaye0&ZsvyGLI4!L_@_JSYYv7}U5ZTGYt zxyDJ&>nR~2fn#rG9a^|pV=!c_&+SwsW#@H6=(Dgdk4@9Gy;c(Z?&!0RQ^Ol^cKQxMEgcbk&oY}9qd$vu_v17zR<~tL_;D}64;JZN?wsN)WD$0&dVE@8&R@ny zn7OAfwcN|R?_bsE;z?F2xSl{YZ^v|tn);(D@8y_hk9ACi4it`w1wj`J~5MN@R{0C>FzX8-1e$Hr?K{Jily?b&<(k_rdtg4cHvigpY?M z{6B|3H|)$sm9F(&ik^SfsNFT26L&0g$2Q)DFh#KW?CX8_t4F39+CN`#OCeiL%!427 zM=2`gQh_21TH25Lf7AhO3B-g_&|NmQuz>JBQ$Z!Bv2q*kld_-# zT)cDZkU;J9@YnNKrkc91KfF;w87Rb>TAbQ9M5Br^aFY~~Dk5S{gk=P}fa#T$U?6h9 z@YCI}f>RiMgz#-ZEj|UpX$0s|1Os_KZFexa)GEQX8x=W~inaOVKbvd5Ve4EXX|5vR zt{49*+5vA`)jq%IYZ_+OJ#J4RAU^|?6Fy9pgV5kHh(Zd>%Uht!bAA61vIMDsb%17P zPhi1_iHTjgaYOGZp1$G_SqTYat32VihTp%|+Uoo8?~T|<=?+-?>$-1+w;gQR5w+2)_Dj;TEDt#1xSth=H`r%N@y~Nu-2*71n$!7 z#Kcg*rv+R9=I<7OJFj0xoBSq-_825uAR6d;Itwk7zGY=jij!}bK{N7gh=yCPQ~f&f zR~9ymVmW+E_1lL=&cTuY(-Jy?^E+?xOjT|>7Jn(DRdmG%D)@B6ya$+@)~kS`1?3BZ zyYvCQ9HfshAv$TWEU5K^;Se=?8z93ELEz6xpp9m2lc;yVR{9v8lz7)?U%g7Cw1#XS2EfJM$Y94Q(XCFCe3YWVzf%2s5F2t z%)@nn*)u$R9Y8^#dd=o_pYI?7*u{ihJka(a?=X{{nS_o4P2T&$!Yc@X0ulmtnk(l} z^78TzwX`O9K|0liS6b&Kz~EiQ`1emd4Ndr1cY3&lD9lPAyiuF&<}DgL%SrxMZtIqz zo>-%e9e!1s)4W3{R`jC6!n+_#D*_5h<3ke@8c>CYy?_5+i1mS*+BvS0WgEquTGu;1 z0b>J#fdK&uiB-PDXpMq5scElJfUZOhCu~iob^FmD#4xLAY+F-1MzwFCo%4j-WpK2= zwfXzEG)!AXwEkDYt72rtL9qiE5`ZX8H;!e7FHX_QdSmsYN0f zOWf#M2f|D4gIFZW^HZ_v3~lZ7O>9)#YY+_;n zIzB{G4XQR|$ate9IdpAjmABe}gaz14alnOu=g0?ucnE17RBG#!dURk##TN&&uS<3R z^qs9?ou2Y5Y5V*PV`bvbrEWdepIl!s%EKy>2PKw!Zj#f~&c}9<`$LM6H+bnY#uywL=l|3xHU^4Zml1G0Z%SA)Et*d8g3{Kz>s^0KR%m-N za%xDF{b=e!|1CO!o%Z2RW0|)|hdfi^X##idv)!9rv`@r+7O_5JpV>Mh^WLr-w@wBK zG198*M;g!%9yRYzr%Ajxy@#H!&&uuWs-`@I0+M@nh*X-F%X_AluBFf$DQk~E3`~is zUjFR9dvh;W#JhOL-Y8ZE$LQ?DQYF?9JSWnJKV5=8y*}&HA=l9RlmyOnQKhx7KDHxq zQo*=zq(*e`I2E<@1b)6ISVTsy#eL7t{dzf@NMM;w^K6H}1Wy{r*?}d2Lb*_y`gG$+ z^aO;lSA3u87=Dra=!*ZE{yPa3_joX9f=!5V54cn+$o1=jxqnf?o}bG`LWQ&l99dsY z*BW~%+1{t7_O%hI>OMZZHx)&8g-!Kz)sN@u+)`b&h2BJ~J??(X_3&Wio({j=x1o6z zmLfDT*Qug&BMoS917}a#l*|lG!&YL03k?j=-S_$NT^}`r)3L7VT}5~SdWx_6w;wpzTW0F8JK+kDsX1{UY|J=_{S_Ug9{gK%m;FCVf1{6 zy2aSRgkQHL9Mifg-I2odDM1F~%h^w|NPomcCd}Q8C!Vz9l^8{Y;~-zO+kZRPW0Ad> zmH1kX@FCgR+Ngw@bCWu5T80J0-92~b`wc+{F5{&3#${Lk!j&B3H)B0yH4=w}Rw&p; zKl7KEOE>W>!vo+5nw~`bt?}4GtHC?uqw!&KN@PZne?KvAn5RVS=Y!vm_e}G^6fvsk2$`4wtYTw<<*jN91?l_BAY!gZ%L7_%h<$sD)5RWI6UoUX4BAo zZ^4;Afj_{&m3RHcVTD&_-NnmRGU9#f^8ADzM5ctr;0Sz@TG@tk9d_}9EY;n=>mF2C z%+vaEdgAAE8>XXAoae7IR8>Yi&`NW9LmbPbmRNnZMAVW36-AAk=Hn4jj{>%f-|Aj9 zoPC^qUwygd>;_)V1TX7*$Ka4jPr);MWT7HD3X!FyR=s}aHAyg@xorV5CTBkzKl{?z zucD4Vb0#IyInQodfSMn&WB;2syP^Gf6@Wr*@9c!?0N-q7m!6SP%-#J?Ct&k+mC_n? zqW}IiT3O~VyVWea>4XlU2F32(LqpYn`}VCZ8pNt9ibPkh!sPLWA(LyqQs2i;235gY za&mIQL~g85I8p2sG~go<0vmw6LAy#;^G@o27-aw9!FK^*R#A`$eH9-s*zGraqh5=h ziwl`V6QV2SZD3>5jYoH$UDM?3Z=QYht;$ML9pkc<8|;SwwUGb(Y0Zzcv=Dh!OiWA* zYlezJe#hgpKZ9~dzW=y=e|PZz#%=r<{ppjiQEZP{bW99sjgM5|KSxNU>JX|=7eJO5 z0p_y_c%~VIl>&Ya+Sn&i&VeovboD?k6FHxNxzqsIM>O`)5yOA3C7qksQ_Tour_!Jy z#KgN10wjxB;B9;X)|1`Ik?X*OT1`HT;<^9=f2sTTuK)pN3skREoSXy#0s?SbFf!LZ z3H@`FM=xX0z4}0!ot0IO2;%@Kg}f8>`t92wy5tuG(b3U}d>Lp{Avz|Fz+eu6tGq=| ze*yH#m?-3IM+T|%0?;Z~zwQP#I;_>07}>RjkC%`?xn18H%Pc9F(+(&y7}a2SZ3Vy{ zFz_6~GroYiRj7LXESH8aU(f;LWb5qA8*&~C>lWO7r0fL59ZaYFMmYedvx>yRna8`Sgw0Oroty7@rQ3g@g;}=I0YGngove4n?IKH z`R(T}0O}zWCOlrfdKHB#E-prBvmkgTQ#u-4a;!W(`NIJULlEszpq|AYD}#ph0x;t0 z;mouJ(kF_qPAA@S4ax`gKwE_C%QIl6qw}vC1RZS+;^e|2rRC;cLOEm{HnId*M$w!Y_`~! zFJC0P`;nH32@ocm=zV>C>@fZV(6$&b^&L)mKmDw5k-clMq9F0{4+*&>?qCLwD1aQV z5)obBVTsEH*YT#XFgdbu00#Z}^u!GT0z!SF6;j@4C;&yafKGQ4bUf2g%0OB3P69B~ zORvBm1{QHlzLJ%bm4(5i^zaQcv$I>s%YYU zLXz-x`1%GwfT6~OV?U;*q9gwZu&b~)Z>}N)AwLs&Il2298ki8{+)}q0L0lZby&%pI z@MNIuje+25i;FoMNjyQR4_stePg(?meD+QtgTa_A)7))E4baMPz!XmAhlMEM8UXFX z8$t`H8T%u3OB76vM|`&hEpecTqfibG4!~8wM?7V?w%76T*eD zjSxYNMHQ{_MF2r9Qgm=H^{J7xB$e9Z=&jLy{iso+<~f^<{H*0vBXQwHXB1&ob-fW?Jl`{P4(4Ap`CW9Ls6%q%R5fZ|~S z+E2lo=;*+j24~igI+qXVH$m-yX{H@`SL51>BD+1I9Ya3k&aq z@R+yH+Oa_fH?WZW&;+reTl4benriLe03u@Oc7zZ093jRUVtt?wSUPN z#C6ovkqHT3b!0iLQ0g!y&C-QjSwZ0{egq7Kv6uy|JONlXgyW2BRCk)XpT=ffc93J` zF)AD!0H8b_fJL$T`uh5@`Az;g=Cn|Y(#au>W&{pMEW~}|<;)JpD>{-AoLpQmaPuL~ z#f$TK6%zzZOiVDQ;(&sS$RMBEgY5?#TEj4CEMUw6CpakRHZ!vVcnj9rF;%L%vjU!s z$c(|8{QTE|fB6N_6#>A_K&uqkGJ^mEj z4-Lps&%vPBYohL-rW>&H>?9=>xf zQI-P+r9cZs28hmqE-2O3mjYmX;!g4UzD=LZ*z<*V>s>dA8SaMF5aC^65GsxN77aOdCfHMLz4%ini zyap`XL$I(w7*aw^2sC`gKvIfSFCj6J1!=`l_(N^)aCqrsjg@AB9t$-!4Dg7CS&Yv; zC_jA2w+CWrF_;86ZkLZ=#=WgRVV?5U;~UuB)4G3u)1M^t3PT|7<68(jgoBSSmM-a8 z>d3yb=<#g;23&LG;vcATtn1=71XLPyQ;t@Y9s_rLHkf2Xg6I? zkALGDsXO%bvUF;kWoaN$6HQ9Et5-eH1__{>Y-~vLOAFXwz>*>;?tp-4ohVp*fVedR zdZ17TJZw36`Cfo(G(LoxX)Cqv4_d7L@!lJBvWpBbhGby-fCEEKMTG`Z|5i97UghR8 zBOsoorKPs^_Iogf8ep{SFjy&9ua=ZaBex!AkODU0oQ=(fg@e+6y*LV^wdd(0RsG+o zk*1OoE$9nEIA_d!@c$KV0d*S@LGU0CkgF0;FAP{ zD+?oM)4)vwT$0N+sze>kj<`|qj>6K?CSc5?Hr*rt{n-Otd#p0mEnheZ_0p$Pn6L&b~<6%-64D5oF zSpQ>_RrHsC0>eP-R?MCNFzv`Z9zggs{rI7YpjJjLVM%YpgHj0{PY)n~FoEnT_=LCM z;PewGfjI@Cu(}GswO%=(h+}<{a~5(SQOB=V$a@BYQxksYP)1B#+ysUI0920!4)WN( zK2`jx-HXtAr5Y3*EIBv$NexnDeJSEt?O(rgvCO8Ft+Uw8fZd|G)j zkmZgFvPZ{(x?2iQ=+d#gtLg_VpJzo37=i-Xsb_WknfCK%fxk=fr4 zw>Rfln^)jSto1t$|ABJC%)}%{$|LbL2diAt0yov}Wg2BfB0tYk#EOuuf!2j2> zIYQ(?2$V-;R<*IIsSyw%TUawy4F2;;m#Emh!hV*7_}>n}!E^a9nT)nMk*y}eYj<8$ z7Ja=*ZNdF)(UO{zF;r?N(<2;e4KM&2%c%R&X%nIHO+LP}O{TJPlltRDNP@Iwf!~B1 z4teB2aGt3EsKEZj(()pJ#*N-cNqjfkf@`}Tos*L@oeW_CVB*R+w6#Y^FQfh5n50DF z9?_F6JQxP@rMdY$^o2?p7*IjDfMhtJV+aua*&`k+V05l=8eagIEQHIi0DJ~Fg6!lo zFwv15HL!S*p=i**sPgb(0GK!i~W?FufX~zR?5GI)FWAd`a}~N=lwb#?U}Y93fjlv}|3b1%q-BP$>)#JqN9C z_W*BH2!!eCQ_8y%ACWvGX*!^uzCa8K#hxaxYFjWy02!KraCO1k4}n=zkhw_B%7Qck zM8NO-n;I7X5 z&~|Ll2v|6M0LKj-zhP6O-vt03 z4Lq5sHi&W8AC7KV?%zTN9|A3+e^Z#2Rw_3yk498?AuI=pY#lY-7 zvLuYxaLDD4RAXRZ%!9LZ`js>w-~^`|?RF|=HWXw0TA_*okbD4YafHBRD-;UGUg4ks zOIZ(@f%Rv148To>YuT*Fz(bN0(9j4#`-ZgeJ2=wPt)h8GUtv z?tC7x1b8sSsG51ac^VhFxJoRH)XOvgd0V}908pya(i_yNb>9A-fm!!B`S=RP`2+9*j*bosHOqmA>Uk0pa!3OGV^5ki9-I{oQ574lSu-N4DmhSKyK{sCxj;2f|9rJ_<4-(Kx-Uy zCI`yYLY6avQQ;jwJ|x2~;Ni7`Mh3}tLC|>k|0?o(6=Cd8B)E3mQfC1Q3`5{ z;%AdUW>wV}Ngsf_o0XM?;Ap_3+YI+O!hplYH$MJ4;9rVhgbsiLkpLc&DNV=}4k~d! z6e`L6&>T?Qjgym4G3^dI;i1Xhrn%JT z5^)RTt9ODXlf%i$Oh*j)huiWM8z*~}%GOmyMMXBTqZa!1`mg+wsnN;2Z$C$``pUR| z>EE9|$rNZw@CuoCdXKs(_4ebC_Lmp1uQtI8_4H=6Jnq~Aa7m`xZ;WY z=eE7bCBc8+$V2{r`q%h~Dhdf*p^fkh=0Bz$wpA-L7fzG^ZnrX&OcQ^t1QZ z@Ex9dQ@?_Bn|_e!an1$rPM3=1x7A!3%GLQ(Y=o^vO}09gr%@HnZbtO<>CkX%bO5#Kax7ZYP``=cg~`O3cT((`6Dh1u1ZUxUc;w@n7oCFu0FO;IjF6w6j3q z_SKuZ8LsmvY;)7ne(g_lj!Mzy{=WWFUs|(9s;H8-wzd_)*I#KF8DWu;N@LB`-?v?) z7j3zVRn5?%M0`YJVFPswZI|SE`S_f+TdAD(M+}OvP&SnYj57&U!v1&Bo*4E#obQai z?kS#DSj+sFl5%_U;ykLpUeK1CWboUonUrAu=W^k^5qtGsm%TrH_&YcEAuJ3RpH6A^ z1A*o*yZgd&_xN2ogMxx`)GL^Wi(L-Z(-bnK%d4tpR#zos+0A}e*knk3k%(g4+HPl3 z$W>*Fi;JUHE2Xb--h1@u(GSY;WMO~VEJf4N(!eM!cS2H9(zYljY{Ah|GpE(>Eu2o< zk6~3BM@C{iJyHCJQ}1~P8-IMb=``(2wYjzRETdnpNMEYq$22N!8~Xck2?z+52eKN+Dr|CB;M*nOr)ZWBp8nnY_qiJ^lkd3< zx`>}Yf8MiX8^`MuT3pPUE*bN@@gtU%gF{Pm^M|2awIaRtNcy8Mo%-`#@e*)by(@c; zE-w993RJgEA33w)zvL+Y-U=i5@$E+F1qBk^78W3%PqYa zH7cj(=YQ^W3nZEyfxZ1)$*;R5*zAX&>mfn7Fj8}X(vP#?v0r_&yVwi2HS_mxgFjQP zn5rsbf|&Q7pk!oZzzhfl++8E?c^4gb39(k z7%9}d`QjtySIrvd)2$ZL>ht3j^&01hks^bIF9)5m9815ylTS=cNXBvA!N$f03$Vso zmZZdGs@}ZR9>rt;7RP%u8^)D>29LQkR>6XGpIsNWEpyP=B&o#h#QqDb(WUzHvy+h$ z6M}BO1LC>%D5^(~-Z9l4zAH5wwceh685bXKw(WK_7qta`(iTp`p3B$U+iSZ#;A@cJ z^l_rbrAWK^2Bl=QAZ#F9!6wgctC>JcHd~1y!Ts2Xn3(u*Z&=F-KL0efvwFLYZphaE zF2gh!dy-PFs^k||47l%Gr2HMndn-%B`J|}(9OkoG841bi71q_q%h`uVM^?)NH0~#B z9GY%>gX--eVIOW1gocLx*!?VSi-lx$-=hlV=-S}dfmoHC`SMo85SkVJTF4u=rNZjMJeE9b5+vG&kBSP7sACO zXjLX#nwqH1&CSL8)1@M2XLVzX30tBQ67m#tUdv(JxFHX|SR@rDH^FZ9M|Wfaf^S4p z(!-ULfMbq(m~G%lW_{@y8FX1$S?ulbR($Z_Ik3?J#uIQHd_h7!XWPg#y>J>zN)d=s zZQdBTrbEFG_*AW|tmJTTa0*Rh|3cLFOG!!T`>rF}tjnwtrIe0~);VH6*=)qd z7X%0CE@Y&p79-@eOxkn%d1SxAHCF9pgDg9_NI(Ijgp7bv8qOnmvsAj)pMl*T$xyU3L5mJ4_C-qX6X#vS*tv_d z4G%fI50f4je8X#eyu7HxwX(@4M1d9QQW6p=%K4h7`=b^)YGpw|Bs}w9&LQr`@i+vz zpB-B*bdkWdJJ&|bUP?-)g4>;fjl%Y#AUoxZ5(bK_k5#;wYm3<0+??w9`a)&<0lR5* zNg6eava<5|PU6MuNgi(QzSNhvjGEQaCMp{YFHBA8%Pb}#EVHXuJBIxJ{kp!dkbso5 zyU7<9Hh_K9z_y)~-!&T2_|E`Bo!m*6{#nuP1iqqTMI%-sViFQG3FVpbDu8W zpJonTXx{pWb^l|-n>P^PhTOpR{QPJ`iMBLzI+x4%A<4e1dDeiR8L8i_LzINQZt zUthOf>}i&QG1X5(Q+y#w)C5uEla# zF!r25KF09y@E98#GmRY1lxwVf@Q{qmYh^fJO$(mz68(YO-s(sg;GmhgIbnF^b-5)O z*tyC+o6WqWQod%VA3j}Sjl-JeLRb9dH&gXqknBdQk$@_%ppfhJ%G#P)AzkwOM9U&z zm9jDp$bLhtF|Tr7KOJ?8WYXf7_&m3?6q9k1Yrj7B($J8ak&)5S(Q#^Rt@FM`HQF17 zMu^ua(@L?8h$z;hkp8Dku*KYV%Spp4G=N(mdF5zS4W&;os+W60PSGQ3+tkv0YZIKWx@^#yL-x;5nT?BY$uGc0ze9`#TYj-K-wB~WG);bM%%)pqre1(06P`S}f5iS)bTjIe}AgH3LFV(K|tbM7v&D?3ed%%=^ z2G((g9(7Q4AnVg72z5@u6-T)CkX%(vu6jl2t8AsMxhSpa*;((53@X9MqhHKrk-EQV zUSr<4p$&EoVR5whQUbr*pUMaH3_OJ6CZE}&4To|FJHN2a)ErFA0IFL!T1YeiWQ0k= zJwVy%bBEk7|sE9(*BSnFIS?J>q^}T&hd}9HmZr(qW@kF3!&Sqipfx3yEO>%w@CWDU|ZmjckI( zMhEZX;QS!sx!WjGjc{}zDdBImtj;;K=WcFt~q2`|#bBXZjN`})u! ze#>LmxE$z15Nv90{ti(CFtX85PK=Zjnyahp4c0^NPb(iiWXZ_LO#c-7LfV}_l<~iv z7H^AovnnbsuA?o2&IumT5vew+MS_T5y1G`Etk6+Y1I}m!o6`&HUP$yvpx6jF$zR9v zskB{s*Qz^R)XiU{!tb(gsz@7QH){g-gN}t&Qma~Oit$>cb7J&HM6YU;28Sj1EZDaW zB#eJv7Wp0G9r(cyQBpTun>yu>0p^AUR~{Th&h*O&FoX~Ftm(PF}~|I}sP>f+hZ zRf$SSV3Z-h6MV%84bR>JwjXS5XSZL*psE%ue(2@blij8FRaHDtN=?I~LVmpit6))g z7P;p341n_$q!NId?Q5^0<9fxy;-3;aNC`8Y9Fva$GFRHI6uxb|=6*CsfMg`Im#wYS z&HhKHJKamYDc4~M;A$)$=dN&*5V2eBW7o&4iooTsVczp>cr%rqU)#nWubMj_Yf<~v zW}yqJ9RG&**Ku#(t{==+M#_L|@4aBF@jWvVoc$;yBBvmO!85=razLS!Y&ud{5m}dH z3!5P-Dq3m3W{l-J-<=p79E>d|CpTmZp9aXpV!J3y#9=O3=YF=iyF0tsn*y-(yW^Jj zfH9kv>(*6BGigw2U_RiDww`OVI^H#cD$oKV1U5?3@$Xgr&M(3cIRH%~XvY;mJ#w4n z<>kB)CxF?tA;ZHGy{Afa4TZ#9d%7)QJd|UEYg=YA90Wzi4%A?l>tkFH{k=y_^-uQK zis2t2THja+Qz6_&$>UL}kA8CR;=>(fPge5f^ zE4PY#SO~2H#XR*Gj!D-rFo)Rn$pGhbsHzqx>jbcfSf?r$5|FR>^-F9hPeTGhJg5C( z%7h*g7PUu|NVTJy8wntKp8FR?9l-oX1T=TVuy9$=qLc903uO;l!_B%MFHu2#+78~N zHg$rZEQa6sONUH696m_vT%!qir{ifS+%8_OQubJ_o0=S+aE0AUWM7eiO!LTy%GU0# zB2wGU0dP@C_X0ek3|T)7ax5KfM4P^N^x>i7T*_vVwSlaHUe&+hiWUgn!yupbyAH5fKS)WyAvQ^ zYN{ff(NFX2*)#EtiJAxixN7}EqM~%~uVX7!S6AZ!?t%hIk_(nLsNY(b!wi6yS-5J6 zv7U9pKRd-3U(UuOB@NJI+dr3k3iS~ksr%tq`5I@t=H6a8s6Ums9oBP*p{9|jC3W5O zxL z8wLi3+%+sBT^o1kHOK;tcS^FZ-Ra^H7ZmhNR?0TxpR7)>fX>S+)Esmw*xPMr+lRG0 za#>A(%OVdBXe<0ri3#0IORzFn!oJ|#-Q>seG~y3Pc^-P-P8N#gabV1^*(bVl=Z=a< z{S7i9eWV%KL@p?Yw>*?90sgF)z)jZV*2)JRK{-DPO3Fh0P9i9~er(OOfM03(Rf#?K zkrz~j&S5g1zmHE6q%we2o6z;ynQ+;_cL?#mo#y%9{ls~+|837P;F3GKeo>6caNghf zd8O3uEaaU+=QMuLU0r$4&(AXl_ebthqD{Rhw_hUyMA58)iS#CC8vzp2Xw|w}5v05p zLml3RM@F?{=svl(T^-+Rs0+YqXhFj79mSs7VQSFL!~v_np~noa6cs@;)6?jfn8lhc zYav%WvB^?Khu=KmwL~qht_C!`p|06 zRg$p(FFnkVzTxfQ#EpBAq)lDOZ81nLa;~e)lNIx;rviJBjF5sg;uk_?m%R3g!<(O zpizzyfZwj)-*sZR?P#HRO*S8|gydia@a+fpzZLYs`Kri^kqW^a`VL&(OLY(rX_az* zK^=@K2#p8$?DZmpZor0^p5Sj!O@BYRhW)^FTpzLu_?jnxlDntRkbd#=@Y`vRP_D97 z4jYuLtONQg5QKGp2B1A;U=K_tYoJX~L`tqV^F z)ZA4gmvY+~R(6MqX=`f5NZak|Hr{S+id&OJH8JCth%%$9-OsoINwT*?dFku#PYz&w zanVqcQlZpH8rl^)wJZi*y2raqDv=hy3(yP<7Opcc0G=<>(A1xytY$ZJo;q!+8}sr$ zJMpi&7tES9^TWWx&UDE5DGzrtC%3Bm`OZY8WOhkj(b2e^e{!eTfy{$Hk}Jd{a>T?B zV^J&_8*k+-#kEPOC@An9?)Z(96Qb@$B00l;_4UdLG=?r+zKrz9uDvJgK7wWhyZM+H zY*wM0pnYLJQ!ASZo>Cq0P62g*nypp)^NAfKn@)d`^Cnwztq^6;X4hxeD z4SPzJak{gUctBIS5g}PaYn*bYq!-=S_o^0q$#KG6Q4*^xBgf;TulDxO*Jk6g2IVbA z{g!OIPdtXyBDqrR``#<5r7}dPHJs(yHPfVAhgvlhEh#aPl*4?iK*fIMCl&w$X=!P| z=&VFirADWxr`8?H8U0`TmkQ~JjZ2QWD{THqkLD15)bD)2De(3!E73@qIfpO4M+XizZ2~Ky=P#qSH#XQu^=>`s@1y5oj+F}y zeWGW4WOYfNQHwG9a<3utRsSyb@rj{>u9(WEcow@5gB_Q7PldHv?{9dCmyc>h?xu$- zB}{LMUGs!wVgQvEdpok2VD4y^P>#KA{AfB+9Rr}|a^#5_yTwEYvdQgziyDiu}6 z&em4ymoJAV;rC}NrkGZ5E;2M6oG17{y$nk-S;~01dDJGe&y5-sSN0+w_P1i}2{fcq z_!Jk*tG;jZC@nc(pY;|`p$U-p$H{@v00BQvz+>VV@n~|LW> zZ<2XapDEtDWvH&vTVDBxo`Wdx@kEXP=!?<plUmx8mu7%qH2;NzoVg z)2j-I>dDjKf&SIW=CxbINUP7s&+id4b6;gGBnqggBZoCz0xN75 zkXn8P?+H>Y|AlBM8N>Vm+5-yE8AV{1-Wwl?eId9JO8z3*!ZY(qQ%-b#+8C$S z%Q!OU8LwDI8Mjg;bHAue(!Gp)gD?DjwcSw2H?W!bzFJa??A7uodbG6hj1py~d+w5- z#$McM43n8Y9|*gu$|xs(sUC`5)$`ldpT`yW|CE}w|84wa)9En#E2M9Z4oQ>pS&CDO zK0kZ!1Xj6tE#y<*5Lf+@=5m^d#yu1%Y4RqfLV~w7eXj2hUxKTQgns%n!66h28@_@u zZBrAkCD&ewG5%)AP3r&5;%-3oTUgw&WIMH_GIf-ZmiGNTN^9|VI@XsChL{6eU!AVA zyq6kSG59G@{%cm}b16eUOO}|V*U`Bxa}*~tT#}Ij8R3!L@cZw?`hU%!?*FPGW*Q|b zj>F;sAlt<~=P&GLZGf_^B~4g~oKDutAW}TbA66(c*8umh2-AnsAXAYxRvDTuH&34Y zGY~(GEOb=V|1STV_RA#j#^l!?`^gBLg@;keFl#rVJMS(wfccyC!A!yRySn3$OIlR1eIxZtDxYWi|LjNEQL;1x48%(RP9%?02P4qXd_ zDk)=QC|oA=W5U7|BJb7$Jo&q^A%lD?4A*=E0_YDf|3hKaZ;Ab?PzN?A`(`jv`j_L~ z+}x0gp>!00&Qp^i`Uf7TRxslGUG2m|r<~UWUGIKYvp?a`50QhB9rVtk`Q5m4)yn3f z_$jZb(2KQzYeVmG=l}q>=Uf7Go}(9Z+Qd#Cj`~!G0eXbIE3;f~`SR>;ZK!$+#dk?z zDd?5UkA3*n2~!qybo4jFc^a%16JwRGr-xg}kQ3>vjLbt+Lq<4AeH0)Tq=rv%$y_nuph+`wAUt6#)7u*Y-IzkB9sNp&ja!~jHABJ;Am(BoHrsRNLqkIY zOyhojWZ-v0Szp z(ZtPYG)Hrb!u>XSJ%VEeJox^=0YO(dZao?; zv&ewj2par9gGnu^gF@P`SE#a8eXQA0_vJr=jt`E((u5dMO_^_g zsRs3WGHVWxIGACPc{m83r`^vF!qWDeGH%iml7sw2ozz4dPBk_}I{4(w1r zQup$EIPo0N))!!69xX`;Wu95&$?>r@)O4n07&mX~KtBkXA$WUx7eJVTPPuQZZkt2G z8w`4d|1LrKK8d6}?QRJV*?(4g$BF8HZW$cq&K%;A^K?&MOLAk&e|{7&Yr}LE?Tvd! zJWmvq6>`x3QKZF(4k~2E!>^FSy5d@Qm->t7Ckx(QhDE`Sn}mvz^c(LZhyOW{9wgbh zZkFCidHFs+>_^PmD5nCtp18O;t+zU`hDcG)PEOFuh2Gi6&TU{FOf5vY^%uZ^D_c3A zl7iv`kHh-Z#s)HQ%z~y|?ar0x|23LxLpQ`#QY0k=NF04%Ut9;CP(m556Z!x0fRj-q zSIsviXT)unWYc8ZB75H(bc?&97J&)^jg%2cppcud*PF5z!5Tt`KW3#Ax)Z?B2@oL{ zxHx5jH0PelYsXE(9naWqovRd^&-D4!oN8MH0y(4&eyE#~M$CiMAcX+Rb8dsB^ELIB zx*q=fM;#K+Q0Pyf9ELhUEJY;HurC$EX1;^$>C+JCFJFH0rXB?|%xEqfN)(Wd=AdVS zL}pk6X0t!69r`R#40YQiASi`eb+mh&lBUzUt}5XV+B#xZssMwaYu*SsKAKtY#&Et? z2DJCUQzp25$eEdON{%PdIw4C+0v>|gGQGSk9>u8fx=`ci8B!q$jt>e3kJq)MWH%6f|+ZskiO8Z}?9d8>JBb7maFz?_jneIVjO5y(C zAD52zc>lvB1!b!kA%Q5-^(dP4Y2NMsit$3<)h=WXEItv{8V>ZGsr~*RuQJEtv!9wR zonyI3t~WE?_%F6z@@tYBoW{L!JaxNU#pqkK>(jrl{ug~uE{D0&WAxR*v;09k8>7|t z|5YMTv->4)wqQu0?kP!BdiejRaG+*4uy}miiV8#YI-6Pc5nzeckN@NSgkb_@d8;3? z^9Cek)R+Ggl(dWZQ%;mAJs9Qx$8D(B#x}KPat_d<=aL;<;8XnPCg|ZNVwLD62nkxW z83Wz^!#-?&M2-sYtrM16FNFYw_B!F`=jcdjSMi_iVy@!cRu`uo)%5)Rh2@g%eVyV~ zq#_Av879#{xU?de39+x^mKJA0>-iozcA-3gERK(8{n@*+a??v?F7L~|2W-RpaO?0< z_(m639wrxz)dh_z?){u>%<^d?XZ}}6HFuaQiHQ|qwI$=qb6QFW@7A_IChQa@sy1Sy z9otnM+r1ST#W>^8F7qONGPgahxO|zohbugY$3I|6q||&weAM2om)p?4iZeL1dg%KV zkLDLh)#Zpja@FFZv{r9Y<Cw;{Hpqb{fb2`XdEw#e}$b9Pj(<&|=AS#`&JbQIz*5 z+sMLn|3<32IBiO=m?g6&y0M;2Y&a=p_8E=SzwKB3a^I8B$I z#^6tf298O6=pUYWDNPl1Cu8Kg)rULPXD-2NL(guS<5Xjid1Jx77LZdGJ%4Vm@Ge!K zBV+XJ9mjRf;*+m!GmA;J20~d^EFfdx!9|n99e+apcZwuL^6+>ug6PYHML< zGBW@Bbeanj+NSQBb;r7b%sUP;?_ZC}7`%3#E?k%m`hPE89+$2)i``70`=pvi*~9R; z?Lh>_7W!8|QT*q;&n<^57Ai>zawW(}yxgG8>|@$Qd0)ltci%BbfpEbUkLT!B5xSC( zc-hB@ru0s$6CC+k%r2>4&eYAk;*g~CK1h*HEzoZrzn5pxzhL$e2XZ@s5ufrto3hGv z4hQ~hNNCo83XIw|D_!xCHhB)(#F3%I%EX{|Hnr{~*2>JPj#+E=s@%w*%7q-e^8>4o z_*K75(I`GcY#4hXhZni}-S*-AYq&kZ)%o%5qymH?55KN$3{yh_Qy+6rR8;IAEyGfGE7>6_v*$FxSqUXkYPwLX2I;CiN*; ze|f2_5%ZbVDO0RXX6&|2>+MiYY#uUY4l-t6KPmmj*88Z_3>Dd@Q6lJM=V{b8IKs^T z6whn;RMa0u?>x>h5Qs|9OvwlpO{4cpNc2y<;%txj1M|__Nj*vZ50v=rvYp+z<^JT} z1qu$K8@gD#$=$dX0p091O1WvtF2b=(uf91dHcSqZ2C7m96R1GIY!V2dWD!{Pzmil} ze2zipCunM%v)2Dqo54%d*4VamiH#QP*~f>mg8798dbH)Q>Yp)0*@ie+m!fY4V|h$Y zDY?>W=5hZpKEijf^1dDX*}M1(W0Piq6XqYd;W6>r2s3AV+Dqe?%+i&!R#jr&ym%5s z)B=m;i1+W>k*mI_B&{&Pm_rrx5T@3pR`q}yLzbF0_^=R#$Xt0~oqt{DE^P!KtwL|j zBk5bx!mq90T7cJF;&dQS;3L>bmdjooEq-oAAc`*cBQ2&6Js7L3bXKoAuSu)bsZW8x_7k>TD7L8m3k^vmNhpLmK@%%$;6|vZc|Y-r8F6`TXU^%*M(7D;4TXP z1jmwujm_FA#@J@QRCB_&qvVtPSUDSKacJ&}^jh1PhV0Mn%24#jcNMbE_YSm%4SS22 z2V(_@`q3Y!r|;~1%|`87+&$g!yYJEHNAU0yhC)%AT?N&XYL3^o-TaOn#6sM>stqN# z)4WbC0B2sY5?G1)v?H4MdPac=( zuKM_TOYr>NAMwDA$hz{3fkD8Z`kDeBXW7LyhkT0dg$rpbX9qm9<5ww?6@BAw-;aO2 z!jbRKnw@*@|JkFqyi@;h@0G+R!Eekqj(6d&#RA`lm*)tu%ug{>s%ma=O>Wp|-8xo( zCv-r3sl8(bGb!SF-pvpaVL2c1fa#7k7E_s#u7q(HBz|rFwv?Bofn}PV3O7qym|5Ks zJH@464ZGq=@!10(`!w58R}}}7*W4)N4;MjDz9%bg+zEQy;D<<^Bz+F*cNGcC4mtI` zQc)upYMjGe%>}39Zmj4xliy}MBqo-aR9EmzF3>GYJ2^Pge+FDL*BDZDl=A-jl>57? z=+`dBSeOYJ#&;{O`euEcdfxR3NB+~2Q~Ic&$-niL z=w0h|&thv|Wyu!V+PM)|<8>~rY%P`;Cz#1j6h1lUHvM9LRCA_wfPIc)RkdW)ahi)7 z376Q6ZY-oXnnt@SY4q84bi0kIq>+yy@S^m|Hxi93_chAp@r8yFmW6dQQDuxr!e6Um ztvMu;92n<`w~R()zN{wMKm5&bFXJ(l>ad~IVBxE*Rk@h$yg9u--M1W%QS^blw1Nu< zf48;@HcWmW;E&ay*VSB8(|=xcr^gVT(+N-Y4yL9w?~yeLz=xE%$b)i4brmVkI}wX+h(q`pu0!wiSZ9mv{WVy8v7rLc~iT?w&*kJeI0*n z$VGIE!D~G6*{a^}Q+CrttiWq8ilQ21^JMMw<+IR@re3@WWM0*<37JvLw_LB6Vmxz; znjfc=%eF(&+O?XURm6X8tDK2+**oUASZF0RxbO_iewOByXXBr$RwI}-7#Yb~!!zqp z|20`qReN9K_r(?e^wfKd@q8i$T7&~e7$euC=WQh(#^9JZ@nN={Tn#oaMN19nVI0H> z^i}t%cw^Su9<8vUZ{1ZU9PYr7NYQiC9$O@%^*m87rSp8&#w?Dx^mj zvj4uS)#X=kI67~?Cv{`*5}zY|{W#8U4vB%v$f+K+a)#s0*XoM2Jr$~&T(%yufg(Xv zx#R^B1Op=_3Dh_4g)yM%*dGY$k8%?x+QrihhH9x+&ovL8l1ABi+u!Ox)O86?ja}m= z{Hl>8-=~lhMrm+sH;+QI-RiyoK^=W}RqmqZ9fMq(JCW)>eKMEoMSVqX+9eiUaa~}q z58}FAaq||FSL5WfJ*uyRCXsh?Kh#tGsxQL5Z>2qozkg~Sa{sT@Dd!BzE|FShCWCf5 zlZh)Mwl!z-Y{Dhsq{@!6N#vc&RYRVvdlCoevRU=LBiq(HogVy4SzNYnC-2iodf)lu zv^r7Rc;}BuSjcAiCVlX;s!+?TMcQ5V_nD}eMi<7=g+_E$!Tsp`EQ^oaJ3zx87<{#X1lZ>W)(-&Be z6{a6D*t{W3q^Un$$k<9e;*iSvY}*cjAaJNJ&8((-E5YUQ#nQU8gJlEV@uRE-*627s z2D{Hz9=aGLUvuBYXwOZwBthN^&C>-?@u{nE->K}Pns@hsu$m)?tHkBPR})pp*XbA; zZ#g(PXzS=ay|;bteJiEcu;Qp(;?9Jt>rQc+#NqF44=VQkT&&!mf}QIX6Qp)qN|)-0 zD}Dl=MXx)1gDa=Z`VB*BX!>pG73~FLNmF}voP5UR{w{A-50XHID?|qE5^JB&(4UbB zHP{SR{<-FS!Ap~pQ)~LYBTbopve7>M@vxP9{$wzY5n3?;|KQh?g`Rb+-)CIJ>Q^{| z8oOW6zZX#rc<0=$R=MhV--_ncd6x*e{8si+otJ>RiT>9Yv<&jZhT+SC5w=**tc>lK z`?)eDL}_w1++Gn8Wr#@>EZAZM_ERW+DSrMZ=JuoaVeiB27;8Gb67q}kCBM)MVLW2+ z#Qv&Sf|{UPVqCqryYG(n(gF2^Ct_}+e&O(OEko?10Npr3q7uKMSJjJ3-HGh4+$?Q> zO@jDjTBFzSe#?^dxBe5OKOeBiO@9}7LE}5J{9=_9e`M%8 zI9|HB@k+P1WdCu~MSm_yVpbK80>Qz1-ib|jVht9l@tKcdBA+TVAIR+9?(q8&&*Ojy zoQyFfZwe=@lq+GkKm7UVF@tB{CBwS7cEQ-;mqxtrZr-o`anR&i9h$FjvdTM8J-PXQ z9%KJ#FYQ%hC9g^qv7QF0yQaXf-+H)54Oxc0@OP6rr*%y!-SJg&-hD?@XXU3Po3_!V zOzImUTOq`iRz8g!*fxjrZy!xRDoow6+Wz|0;swzmds3~88?B3C7kBH*7iD^artQG5 zt?07ZPh%wS1u_c@nRigKFsc%;QU*%Ksfk(V=v;SzoFVf@5wCsfOYxO^=ID> z`=qIrvD-N4cbR=XUf!H~L7mIsxkSlQ#WeAD@2?5ctOEel`)2y(o~GvDg@_N=k5Jh) zREdjP`sb}I%_KcBKM9@T?gg%*18!8;HBr^QZ_npMR1$NISnqS$90agU@!0Ojmg3ea z?Pp3}PP{fiqxNaBE@kOJSAdwrCZ=>|SM~K!w{;xT`G;wRFc=@hR7K(Qr(-dBybmC^ z0G@xUTK?zoLvAI!cHUsWk!>ErIs%7=ZINeW3=CMn`%*kG`(8|(eckHNNLyn1Fcybq zTz48YJOlY!q}QcxT~I&JdP|tPsBrV61w&z0Wa?E}Rn*$YWNP9H;zlOXysgpi)aF#F zs>4?uIeSa;1jd(3(n2?QEdR>1|N85*X1VLqo~=p%f8UV0naT?f`26~Cs6v9@ z^!=Bnhx-=NYeC7aMfm6o0c^i{>{sr!E|p$5nGC8Ly9}noz9QS3=b$lW7a0>AC_=s> zo!fqv97BY?qFHu2;rjS+Xxdp356JI_hlf+EtLn^5l@!2Yq$DFl12Wyfc6iWpGCTG1 z2dVD(!elfwzR>%9C&~Z=lepGBQZ~QdUnS@yd&c%&aYQ_{r5~IE|IQ0^S6b{i%iZnG zdx<*q;qhScViV2VZtpcwuiV+V+`|`Ff>`eO%JrUtcT~$AGOL+5#!ebsC?0(^)wZsj zqU!2zDwGL~59hpktZB~&SQn%f?=vP=OC0hHb1AxC7CpUa$|;q6I-Q=GXVx~$<*+Y3SQs_;NL<>z)F=%{doOd;b;h+av9V?ht)&PrM z(Q{NJaNbs$LUYE_mGjedBNs90Guz5F^>?(2idOq6wH8nINc|g5oaw3T2_Lp5{-z7_ z&CyGCHNm|&z3i^Flx_<=LqX`jTK-x)%KvCBo0n&%k~*r49&-7}o%%6t#9ZQ*Q|Ci# z4q|mw;HSF|Sr4251ZuY$QL-o2HY_&||F++!6zQ+?Qki)pQ#p7uNn*`9+=?bC)_DAs zK41NDDuw0lkld~DV$9#1?kk)$l%rI}oZm>Y)-+bud!F%QW9ID)Yvv!W z3z>^MPV&Z=>YaAxw?H^!eRgbz5aluw-NnNwrK}|dK=BFM(VLIR$w9j|4WvxH`Hq;y zy~qVi=~(taP!NooB9c`ghG}HBY!&oL>D$NEb$%g_yi@IKbiw~IyE5_q`0~}B5_7IL zm%CER^PQ=&k#9CW>ec@oSu9dXSX;`o$*6U3Td}2QYaeQo3v-eE=Fr=>ezdG;p%j!W zA!Bo(`pDya124ltv^QOgtu36c{N%Q9uUfI;9pKBg+BNNgqV+XQZbgHLX$r09S^#(> zq9{-_!k}@MCvj@(4Z`t@eyVdL$Mk@f!H#xSaptS#DOGtP>CidB@wx0HQm4aAYJ9Y* z?YVYB9(#IZG6UpUJs<=j^uPHILZI{)rh?*cBZkxJ(apQ`NiYwO<8z4ww(?g{AhDT5 zvT1;-?RT+J*j~;17p<8=iVCz@=^mm>w0=K&+rOW>^ZE&#*EWo&dKmoKJ{agvv*)TD zU=-EU8uo}x$Bnux`nEj6ww-dS>Wd|t#23^sN@69!0^%2I67)+3zMYPD%P}^^Pgt3!f(etVS-3X&>2m{`x;V>4FtT6^JhDQ&2}Kk-LY?%&mo%>!D;)tG6< zLGo-}A>IRo74V<271|+iRaL6&8DI(COgH(e^lgA18^jHWsHA>7(GE1QBUKLh{~<6~ zZ}idMx*5bYwUd%)P{-WE>}2%O@y!v#>vIFSaC*8DaVfTL>-AAIHl{?pPHMu_G@GZNMkr5D$Kf{o0h57$w zR@%qHLRoH3J%eG`_4;Oif?QlC1JFHj0ec&!L^!}0;|&Q3sfeUtV~YUxVJyMxTH6P^ z5u^5$MKopFcyu))GUSOOn7M4>-GAJFMkc7e{$oTlLlltWCg{?}8QH4rHaj;ryDr%B zmTmD#>NUm(K~3Z0^TRShh36|XO%pFWY|iF)7m%m=XHV9u8+p}w`% zw@|O08JMp?7|&S&L8=%i)DW3J=)&L*5$3$SynN0|nc3)1pjyafDZ+yRL%=Y12AHne z?6E2ZZ_r?t1UmkYAPxHqB6(m|z7!LC^Y_OG5HZaxEwyIKr9dJWIs={z3#egC9uNgy z1MM~|QJ|d%uo#+Q=;pAY`TWHT2wFeJ$KydFYB^Pp7F&%1&W@LO+9OWRdm!(I(QcM< zenMvj3s7J{Zy79|k%A1n)XKUl&q3+|H>Q;H`WY}FkQIl4@ha%8W$fVQx)fyiK7iT@ zlyQh&0(2~$mFI_BGl(=B9ukPvhU1lNAir}-Dm(-3Kcc#?(d-8O@V0A$Zk!hOu|qz! z_*b_UKEM1^SAzSofzP+TUGpt_lJAis+pZ6T#G6wfl>-!dc>Jf7_UQO{-my*-m@MUP zC+rYup3C8Zf|d~2jTY5gAK9cpW~BlV5r|0Sw6uN@mJyk}bR4HwY^+-85d<=pcDMJa z`(PczyJRpK?XY+9#HnXJFd8~|nl&|z`h(Lmnk5p*Erq2_HgAkMI-*HGXK8`?t%w_k z(Wt_5@h(B|cvForEhB!wkeZ0~x5-uA;%iioAAgS2U(!~_`+%2n#IJUjw?^qqFa=BC zc##~@Sn$Jdgi8cMbWs1*H#avshq%lHav&5UI43|4M$;gy_5pR><$}{1*o;rWLxs|g z)BUu3FEJkUCP0q*0qU7n(BUHwj<7h>qBON9s+~Z3qr)B>!{@?oQL}d!GQnR^gBsL( zqOltFd0(6^2q2V5&}%-0VJOVR17Xi$0Gyioc*5;K1IXf^K!XG_=@f^Ji6QH>^mJ|J zn4Am4v%{HS$$0JvZ2m(}(5G0g{(cG)^;aOJ0Rlm1Ne~V$?$SUOE{ui|(hg`tVtZ3W zS%3=0e=*kg$DEbu2=1cSkQK3A(5S%F*B5v%$Q^b}9t#ro&mcgILRdSCJzq~I z*pUZ^VRqfw{(bNR(1Q^HQ%hZ)7zkY{kUxu!2mK(GUIiuD{`$Ctq$DPy$zU9X@w*eK zN5E5LfX?K))5(Etn*jT{;EWlQmX;O*>NsG12|GKZ@yi_DIe0kPOvu~5o4&W^AV+%Q z#pmla#>}gfq}O&>RboKFkLn19Q8ly9PfY%cQyYZ%2d9EK0Xf5IA>P4pCASQPEEJnt zJhz?UpJGHla|)Y`Nf>(eB8y7uOB2wf{*mfI-;fH#F6>k4^8ZZ!m+~CNkjB;bQ{J*i zxISE2El*ox_4(d&*;)@@9<&e_zX5c?pM!&g+_Ka(4DrVs0*3^{joeRjFLwnwo%BnB zAaQ?n1gVw5-Y!S(90BnIk<9?D4bzj5MZc%k&7~d(6LbjpP)tFT1v$1JaNt;t2hcr% zPNlYUv0Bu<2q!4uQc8ks9dtKHpa+KFQwXJS-UH$tATqmA5AnPaNQH(I)m&ga1?$Ku z9FM7}W)>DcY38>WvN8h~<_miXug1K`#R+MN@!&L&Ex=K(z@Zx=Dc{e{+%_AoyYBXi z4*5F*Guqe3=MC_*s^QF#ilKf0MToW%QOcgIf+s*yngOxI&*5Q$TqS>SBZO#;#7FQp zi07X$a49zdDd{}92QU7F;7j}J+v}aK!v&_4t86pBYmb-dASj>^<>S$M)drB9e+&*r zP)dC%0O=eUN;@d8a^`@y1921x^dK|^+pyW0mjYs1x64M2D5Mh@+m^f?!>_L>JsEyha zMxY?h!|o{NC!CN!N=Z(3oR2Xu?drsYV@3EO%%8%V57qU9s_6CbLWwCN{{cKuZC3?~ zJzALs-(+gIx0(6*$OVsbNNSeW*3*!$%iLvr;`mlex=uy$zFeN{>DZ%9XPmiNY)W`> zWu)kTrK!w1PIjtU)CfaLCgdJq4wi*I01=w*;pX4!qxsm8uH*H;f1g2Y=K`@|kRBY7 zv1nUK-(I3>Rx7;@l#%l}Qu&VtRP6IjrF5%DbB{R4r;qIRt<-53lWMrT_e_{$;P@D@ zmz5(qbs4Q+>K{)K#vdGQ0qAywUIq>V0EyO+EAT`N&iEeIGnf2;)RP70P=G(^!A;PE zA^}hnAWJP`Lq{h*Pqvv7-tgMC1G`KNdt zHkt^sG*I5DmGg+<2qEOn&LVhf##W**mNg2 z8H5<{1%<72HWLst;kW_#^v^IE{?@~-3r&>8Sb4*2YuHGo9UX_o1n^u#!o!;Y@Dzrx zO`Nhs8WjHkH)*4k0*N7)^KNEmDObF}LG}TJ`<*@srtelWB7iR7$chX$bYACOY6wAH z`#gKk+J?%lbXGR7trK*|K3Z-p#N03W)5py;IgU*^xi|QhNYT)*(w=GHDlgG%{yO>F zC~i0-q2TQc5LcLzbn3ImBD5idDPtd-nwm=Q(L-2NO2;Ls9ryWjJ!tMh1?ka%uZf3I zqADD3@1^){p)n}2%j$2B6wV{!qpcd~w`I^qEYEGsJ5%L;472z&F7Ou3#@Vy>JixpF zOkI_!gAfiaB4AWUnbxf`zw->ZIR(fB2{E80n>(2FFo2U}=+#OC9`HGThHE17Nl=uU zZL`OAvMVI$MtPW@xXKc?Ackn-|Mp|(q0mPcCPu<%jWzAo*>FZr(`T|5Pwrv5f+CxJ z1(7j8t1lXabFfh$1^mKcVP50*HEHgkh?v`!8jevxWDTIheFEne@Sh**0I1Y+EB@2i z#%o$np4rA~usQzCx{Y%ULP?n=R#* zv)AqukWxM6j+m_Dm2R%og!u)288h~f9?(#>$MDtELHX({odG1MP~^xFmBc%!2^sLp zEY%WPBr-r!)dPr%$Ymj5Si(U&w90v=VH2k80=5L=&Xse%41_yQ$hlQ;u7vSGW(Y-Y zem)b(_24*+-t;P_e0Z$^WFKOZlEv3BfvYBztAy0nCY5mBOK4o2DV8+kllK590MUDb z&xd6hUNZ`WJ}mIj3*pEc`td;c)GR=dvRkHAu1Cyp+(zlkltE(~hU|tn^^=o{up58k zc;HPPc0q&J@$cRH1yXwiKEQHnpPwEfbpqg?0+0^}{LCSD*ikF}#3$ojKt*w~ydTW( zc5Jya!~lmr{Qx)u$oT;@4a;s}0>ix6Xe*Z2i5YwpcwIJo%dddcy98UYQFD;M)(L*K zI9kR8XY2sOHx>>F`VNQjJc{vqhL?Avq-|=H`wnT^wH9_Qiql0i#>Aj>qhY@RBjpDr z=}p+~-7J6~VE0-~@@qbhn5F|08;*7;v{{e_rE1A2GgWJAD{_Vs@5yQroD35Jtn~t@ zcAfWEG3wz=7v!7)a420sEam0p$fmHH{(iG_5Kan8VK|~;3k1wlQ&aUIZ36keN)W*z zfM*ssJ7sKq9D#bkq$K9F^aKH1tcy+24hWT5?3NV~%Ld0mxX)0IA;%4|U+(DZ>w_af z&|xzuK|BsvirIQrY~?@#WQjn-qj>b_5_A>exTUxyn!AkZzd#e;0QCTbX7xIEl0yfg zC`gnApb9|D8&DLS@ZcPIw*=Z35FI2T4nf>^gkuawx}p5)0<;XG2ILSadiC$o=cXs;m~sT# zBNfxU2K$;BW_8PlN*yOj@uBPS4im^OgRI+nYg!m$z9C38p-TDbR<*=RgatJIkQpr3D+Gdq-ag12I$#Sbk`y5@AYY1-s56>Qm`$9rOx+C2XFMR_8=jtxbm>{#H0^o;g;OG2#^QX7W zF^+Q)%H`H`H$b~D9nbv~YS;g#w=a*UvftX@c%;%KR7#YRS*1~t22&JmQ-#bVL>WTH zk}@W96v{joA!IC)u`(v}TnU*n*YEoFJm)>{`~Jqie&^FU=Q$^P+xx!1_gdGw*0ruh zJejItkynYk3QFzj2jl%jtqD@)m`W?hpcvEZ$i$$>=3dM*tQ$ApgO>sP64r{XJgl#E zGLI>{yF;Vc>tau1I`54%F+~%lBZ=J^6?DeU;(tX14!Ar)rGW30bRi?!XSCYQM_9+L z^qiTS;mXgzSRS69x~Ll9yx09PwJ%_&#I!&c^V;~G+QSnLOU^+-;Tw)`pOBAJqrM21 zD77j0H2oru^+#Dw%HwwD)!A6p zkvyGUKGQkDn6fzPA`S0K?x#6}H47ejlSYQG(l7Q6E!E_o6<%elF(vgALvb zAZ!vFpEUP7t?zi!XYQ5fvQSNJ9Bnb4hga=*4R zL%P=u8Fiic{Vx$)WqnR_iEQu~n|eZ!BxQbWc6s-JN%RJuUAY zUQ77G;r#7r*$;k#Fe_3@9Mr5v6V~*|n<(EdNG}t3z!Lhl!_+f&=Vtj%O`nruw~6*r zYywp;0wcSqW$f`u)g%?}!H?JD{N2>tUimSPb}AUNH$FUT)N9VeY_(&Bez-LwBlRJ9 zorlZ=w8Ik;HrnnTm5)<;YSpY1|CmvD^awuiTNUPyRL`=mv!!MMSM=}juEIB_R$*eA zxSYV+1Qq~f-aGX|2CXa5T(nXWnSsJg_iH#S5{eKs@bFKtTydC2$K;dlo=wJ|o^J=g z^*p@`W8ZkqTX0{ng_QQ=IIE`@ZR3Q%PihRpeW1dDIT;cR(N%wGPTK;L3+hJ3`ow!NUugsh@dxwg#KQ6E9{w=NLdIpVhm@-$cZ!Xv%-8# zkihvhg<6Ujhr(QT7RRCEFfqfmYo5u=)4nv;o)?HY9!#B`fk6TADi3&ZN^E?*2vQta z?GMA#q)dlRi^j{^*;JR`OSZ(WN+AKze`{VOC%30u+UxRDGHfmzt?NSC8Up(oa;=2? z`)Bum-LN702_IJ%dh)Et5%8Rzj35C9;qwZBXmwW+SqO=mKdYdirVuHXgktpfs}E*s zL5+8!UBYVDS{LBLq!SwmLwM9w0on%P-~2}+6adImz#nd)KZmj**{ma9bq*t4!65Yo zgw(U1n`^^`a6sbsoS!8u1P8!bR1pg{927~obO4qXfYgYti4@lmb@-V|P{JSk31SY1 z6b=)&KmHkEB8EY`ix-v1&rAT$^DT2bfn*;zf%L$SSp+I3v(g(Asi*e-wlZVfD69e# ziuy$A4nrVF;?xm@YV}i)DX_8}s^PS;;)T(pahPbTLUEW1G)J8ST^lT7SjCG6Am3su z$|*&fAW$NFFm9;=2%88RB362TEnCJ9e}mBVOiWMBVDvVJqKZ|D8iYn8{~v=sZhn5b zJoILqs{J)C!5r-ZFhG_3?!s8|g+*_Ce>j0x2w;Zo9E%hc=Pqq_VL<>Adu8JBVu-}% z1{oc86^{k z!p<~X9e$R%6uC~6zp^ENQLC7fdp+gYU(hbb(=t+&nOO{zpMKF!T46723x^;auhj3K zv#X8f0RM@-iMrcueA|mHX_sE9(WF*zyi<=2qJ z?~HUmFE1s^K-$aBOyM@T2+{K5N_j5Y2m$uH?akb*4Xp zdjK`4s41MgZmwLr_B>?(z2}3~W1&N!hl6+`?Ot!r?PNR$xM|b1bopIcI^1bevdmiR z=Z{&r20VE1#5i0153Mnc1M5{>Ts#3UFJ7++3kph06Vvd82u|(@cqp#dR}Ov@+M9Yy z=X=^t?v95uPlR~TgDeVgOoQB*YOs0JcDannq4$B9HT+|Fh&g3yv9r_g0xtRmm))pc zDFg|ebYJNMunq^9OrShcK7xh742)}B^#ni!s_e%6!f0NM;9>OVj-Q`m$RegQX%Z1{ zLJUcf3Kvug>S?(Bn4ML|vqS1>n{OgZ@5{s`L8Rn7 z>X+^M)W^Rc@que_1T6Nc|Eh%K5Z2=(^%o}R(|jB}TcdD}g3C-70o?5m{MgfLl; z95JoBT4leOK+UQgY{aw}bK9nEM1X!cyvmeQB zAteohLo9N_etZPre%R6&KAHmCfKuZgKRm~dko1uAlTaG}bIs=u=JnUDnSn1~mb+F? zjWu%F*EZ;PrKzWB{@91q-!jPx{8=b5lbkL9977`sdRMsf@xpZavn>i$l2ND284$vi_NrK z$?51k>HYF0kwk73YFSD5P@M2#lK32&ae(|A<4`D6y&5Yr-M7*X_5VS`-pEp>nKiFr z`uMbWbToYtHR&HGrU-?EJ9qE$V;U>d+-hvwIwTVKhVldBE5kjL75%XRkdx;z&KH(& zGhD)@X#J*5i3r1S2-Wsglc+z`KmjJ;?D8TXUg;_-1kb;HILEX(l?o;!_3+`tyx?*2 zMkRLJ6xs}{#i0f1rI4VEFcgI5sfNtlE*>5M+;JshM}<#=SgX|f(jv;H?fWrPsmi5A zJC;q#4Z*Kkm{Z*(%`e?QAHZC1$(|c{V%aU0KhgBWHm_(UmM~4eVr21awzfP64{mTP zeK0hFlZ~tvgXzeFGp9Xo`vX~=KD`~bA83?Dw+u7p-HFqd-uS#!=XhF(`ODYaY#!Ts zML!4+QaEXyY}0EjQ%IK{d4!$)MX}8O|5oO_d+9}{WzGUE+J01e+eLrbc59+aY+S6> zp}s3zMpuT`^=c7pELRA|9>$O1BPkfKmr}bAW37P;_iL2Ddc1zBmU3Y>aqHee0}En zt^=YGCIL zR{#^HZ8<_{@$o$A`+|~Ym9@82`VeJxI>Dx~yJy&^w0cFhv^!tN zneS-^dKS9^&G)m~j^E*B`SbSSpdtau_(%0vQvL?{sDkfedRD*WtHOMWWXFD>k6I{$ce2%lcPQhlC-kpCTH`*07t zsdxMLoD_=&b>#hOc`paLG;1Sd-Udpo43v&3egFR1xf$wXfaGh}-u;?LAcv+g#u?CJf{LiwWQ?!4A0pCq9!C|_yPl1_T~Xy|am?V+r!3=W!C+j0!SGWu{z zL;_=W4-HiyKbcJ&ahl&xTEj59K;l9wydxKM)N&`{tDU|5c(aB@Yr8{mcsMbigE0ddw(i7C3y=EnJRZG|*{0{=j*ceYQ(!8b z;`<&R%R#0xxS|mb<_}_+j+bH}%)lORMwmt9#>de^R|C3%G%qmBB$T1fAvpt1SP%!S z99}q##7DmWVFhFdxWc+XF^*`;6)gR1Gi%Rfdj1z9E(Dw{ z!Z0>G0lU*l_}~rZ{|2fcSLR#Gv-hY=E)+Y9qZoKMo?#{$T#1~ERI=B0R1+LjIoi1T zmn87%(G9Ofg?0GG_f4?Hj79>6IDxyvV+>5{?)#h)btt<0{$`pCVFAlZuaCyDNE2Y@8Qe;b ztEjL5)`L0|u2?FBGaro2U6J$70m~ACk8~SA+0LTgg=aPJ!eFk`+hgz?!6FDTaL9v5 zUu2+~zyhK#KxJ8p_MaUj1+(}o8hKkwTsBh39q>cNZqQ07L-Z{f(a;?P-f)ClyCd9S z{`j1KwLDsEIf-9I1SF&>Sr>7%0{JiL(yJVsC080cVkA9_9yNj3IFrHItWzhd2ETlH zhaa4S4hpS@r(jC+B46SBM!X0S8PL2o{sD5ZJ#4k9zrP(Ow3eLSProJR==~4iQDOPu zapakXu}2%`oM(QvdB12DRlI_ZqpYGL8vBtM$LyhDZj3Dt4-0!a1F7`QTu4x%a$Blq5iZC`5j2Ehx*b#%6YT8{(LpAo+cE&?XP zkUm5sS+PqvKPGme5avM4cM*=!z_kD!bRkbj4Nh2OWVm%~Y^R~NNvpU7i(J!AHotq5 zpT7e0wd!vvpvkla8Ee{h$1RK{8<>KE`6cnPsqprAMdOf)~M zk)bC=jx5T2S=?P{mdXJR8yg!ntLIT=Goy!bIm+oSz9f=?=BpdN=s)iJa%|ds=(-x^I14&%b*8U(%`gYmEqOjP-;B?ca#4&6`0H{3n;z)DF}9#?;6fGIcqg~DjC!?r69nSm%)z}F01 zDQ?ZX)(ZH#$<1m`W@7CF2(zXr#6lIUOY? zenaVqn1PRWj4(7k@hN6Z^88Ag3lg>Mij8v*7dR5uaeIQn^rz!t;Q9HpO+#>@RsbH! zXbF)G7vMCyNpAy;nZa1+_v*AJldGL6D*QErixNx3H686gLXup*cs^Y-&vEFHs0&^U zn*^wI4i1atQ&6$X!Fv(e$q=>;HIGFDanc^5GbBFs%lqWu`<**HD$OsNM>P=hZSYN` zV~ldPc>sm7KDrnr-r-uXql!AV_~Q-xd%t_ZU6TT^1_B-T9Cagkba6pzK=`~vAz*g9 z^;93^@`NRFY8nv&DZya zRfRO4+%9(*v*hofU#qe@Z+0En4hTB{_ZldG<@W8{7m)hshDgg$Si7hOK`&K^8pa@D zkbumL-7^8`bFs^)cD^qxeTVXmXn}B35P0=P!gB2=cOeJW?e!xBrq8BQ^aY7I2561T z$ilE~jGx>SHgPaiLsr&f`dEgKuuaUzcfXbvUeuh=MKcM$dz9m7IFaCkCN2dY=7aW8 zYsu~hSb7H$<18eh*3>poPvG&o;e?eV{OYBRz;44dYRod?hXJ;St{&W2@8F>H+{6H5 z|6xoZkajNk4|Gkmp5pl?K@5lk%CFX(tBN{%HUrAVru3fAEf|$5nFK1-z!#kn-7=b)S6SB|=J$nh{ zMWx6S_E1h`{xyxlo&D$y9~|XtFbzXbm~M-f^PC|$Um)2I198Fvl@S<%i1{w6zn{>@ zP8O15A0NJc8vtwqA*u&TRZZ|MoY2StN+TAd_%NYkRvSxN zyJcVfI$(F>c>nu=ZH86Kgi*cR4>6FukboT<3FuczoXpM#N3VCxGaK9MCGLZD! z5Vk<<{-_do_TyX1v(INj3jQ|pE`e%F8#hrJr@6J*r8s-K76#<_F~ZS<<0E02xPsFV zH#2ZIWOa|Wc9*71gVAj9?*$3;qEF+n5X)LDRT)BjDFII*pO3>440#d}-4jQCQ+XxS zCZrn=S4Xr^+l+pkI6*)?Ae|1-7Eo*5yh(fRUJ4<`;0e77KSy>_fX}UnKd?>*PID?L zYQA{>da$YiFy+N}o^9J)fqpYAx{eWDKk4>kYsEC@oqGdVH$!+d1aN{m0DsA%n;;>L z4X$|m+sLUQ<1HbD$ws^j`?X zLVTOVy{?C(=ux-ga{r?dfplp%Ri7HkyX5?~3lT_&5q&OvyWv%g@thg!$<1~{b{g*M zq@;eOv7EdB>86H72`4I6f-iBgD$i>HQyo-(*}ib|Lz3*ulcxm(#V_PrU%79ig*^tn z!dg%H`o>;2JZmO`lWRgTJGLJQmKcoc4i%L_S7l~_>dtFM8fVWp@6n;)MDji;KrwQa zgFB>SK3Z*^p-EfL2%UJER0%R3B)_eS$y)XK%NWBUZjHUQmX$-G`l*EQ^;tjJ^hi&m zxmOEG9S2=^DXK~iEgHAn;teBJILk^f$Y66|pY@!&zS>|dq{`T(C4h=pAT8!@{3QWu zjJ@cMMeFcx{@+htL6yDwRbofiY-RzM- zb_;{*fQHoB?rn!&Te*DpUPpiW4>1t!p_+IxWT?~Rq<3WS$8QJPeLVEb7Z_$IT@t`u z2!Lfcy6ul^8FkhEH74I|6H6u=9#PZ62H4ukOrP~Pj{D|CK9xbgEB3FvE`bLhWJCG8 z@=G#bo`j1{-aJ(xkn11vxDGO?@ji!zJj;3W>l+otqW=&M+vQv>w~vY)&0xA3_3Un^ zR5coniy}kIhl`IXEOrF-3P;+N!BM4b2QjB_zTB`O2nDSQziPU2l9&flwFqRiw3R8b zE7z<+lTZ{c+Els3CVrFbHQjSBA5mYOrSP+A9=7%#OBmJt{rOtGuf2;x#=1QJD>`@V zBx@s%wu}y?RKM46gPuShuxO>AG1)@}nv^~u^f~9vjY57iY0|aLG-le)A(-d*G-H}O zeT9p4_-18;WZ5YKDLJTs!|wB`>JIU|D=`~jFE>0g;)^|o+d~ttZSsBFD}1|Sl7CEY zCS&^R;n)qr97lT16Mig&R?Lkw#7Jr@f(!CgIzw3AJhJxU)s3sjsbusLj$v>EH2O+w z4r&EZ(g?a!lv2wiBqUJs8wIvN1w)=gI98!r&jgG?3l*Kpy6eAr6dpeT1(uti4_|h9 z#I-yu9gD1v!Uir7!QgZ&s;j*rysC~L5W&as-CP89_4|;sI`+216MQyah1} zlG;gd1Q%d?3|n`*~ixeGZJp6mVQ?GN$0TKnxSHa?e&>m}%Ac!%y=2I(U8|=Tlw89ib>g&w@WfK`kXxM@_b4CCYDXb_55q<3LL zWgo1+h)@>J%xs80utSVRH3%m+v@I1-;d}yth8HZ(6#uTZ`HlHTvGFoy0>hBk1EH=) zjZKO(7nn>&-q%HDA?yhd&2_NwMCF3FKo4mXvFz#x@PQt175p#(<)zS&fH?oKYO+cX z5E;fmeT#q1GvfQB6emh|2-65%Foo?zfDAg209#t(KH|8LRxR0OMhFepIQrdCLlHOh z37}spN=@)ec@V5YOiGHbQwa^@(9ie*yIZ2|4siLP&zUq07&skE2#&^8uOeM>@Y}pF zpG+Tc09+xP5Q~5RI;y3m1zYIIewVtBfB=yBoH~A-0umbxoFA@}?m>0806Z zZ5ntrRI$FmaD-SeeX?o~6hFVle*f|lwHhSaFp%492*_AjvI3`X5GQ37=P`Cy6jp=k zTGZ!YNB938O4@!@?QviI_)+%GO_gCzEmy|R7$zSa4>s5Jx0T}?C+iGAo)f+tMOpNB zT>q9S$gtGVP)Y_T7UwuOQH2?`Ao!c!tD4k;%4g*h2;Gi-xPk6u71D5UR#q0nXNCT= z&fgA+ie3Z&jI9;blRKlLpq8T5zgt;PFS6PRb4>K-@R($#Zoz7?`ZSG0!wV?8$jY_M z(+$w38os`>0=wa=AaG76gg)6MGL5ML6^bEH4E~1nCTMxV%&DMX5e(tK2F%uD&PGD( zu0|OEkuxLYLKaIvrN(Q7YRC+4CaPKSht_n9kJ0XA{OFM(-d73m zP)|7r82eK!>1dESfk%dLTciT+hmJVQd4K;lPEfYTtn_pkYAwJ2| zDli}>yPnXQBE4UL4=l$yQZWSpmSL}*t|>Y!>VoqQ&Jm2oi*yT!_0jfV zXRWD-`XHkYfu8Qf!TItF&X4n=Fy0v$ux-Y|t3B9DxclD=6IPWFG=)NsjDlf_V@-fF zel;m}@r!9f9IlbAY*xE#+y?o+`&CtXn%rBnq1t&;F6QHN2(y9f%K@urq20H~aLLuW z=^E%aMv7GUO*iT~@7%fb1BmQSNL>Vn$srhX+&A>w7i3 zS)}Z{ziL2Pp#TDiR8{~F2G|7D>?p#icw=l|h$^5nmXRV!xg+Pg9(Yib80vF%U)6cY z9!Q=*20@c!-X>{h$UAjd zE=NiddsO?Wh9aAN?bleNg$&qp@asP3;+e%yAP-Qi$D&$w<-XwM;ekalmqp)aUJRjD z%$VaDxi~*FrbsF+oJY*eAa@>v9Fn6C2%rZ+yfufm865=xh6}|EG&jC~I)P`wQb+?Z zgH*Ekd{sF`9D|%5y+O)LgKy0a#_+C$$!WF3&hoQE$xk~|a5Y@5pSChI2Tw69;Muuf=J%#ouWppzkuV8I8aKdS7{+{uCxZ-VjXLrCWdX|=8b`a7Sn`w9RPttWbXkm2#SWIXP-!_XOM>F~qP*F+;nE<@glkE}I% zk^M^q%CfeC^DNx*;i~|7n!BKWIDxpIh(L)>)FOC#L_{*T8|gT48hE~xtegVUg?OM3 zq8nV_kJxrZI1ManIfHK56#!z$+R2_>kO)UwGKs)`DAHjKh*B~liwP)vz-|OoIG~EQ z7teslJ{Xg9? z`!PsH)v+jP8Dt=$0IbAdoa|~XKxd?2x>;kc&K3y(lA-4LV;JoNF$dL-2LiLzvH!5A zy(f6-L~qYPg0r%c610ONfWL9c8Y$pozqh^gBeWa7I;cUikCw3OWLA%?O|)t#Ev3QK z*(0ka{6m_W>7^WKo(T9u>>y*$WB>}!Cj=GDZlyY_BSn7okU0mkJQ)d&06a8{@WvpK z-n@C!SF~gOR(5vGr$}J&CT=){-lVEPm$Lb4sNludnA@trRVOn$fM?`bf`Nq9E~pyP z6o6S(PsR!ZcD}{b@1M^byANof7 zBvZ6hm#2@YCN2p5OC!krO9Oko{^f5!EQ0AR^n0#gUN@%=Yv~N<-0Hq~DY0;C+ppAJ zi$qb5Xh)_EakI&%Ctw1GogVe&Fx}eMx4GW=-0H`x?w56*F&Zh*PmQn*`lM0MYVu4@ zYU2+)yx5+*4G}yVsSddG9u#oH%RB$Cvp{sE3j=(2#J&9dE(5y4slFFWRIz3W?BVsI z32?YXvM-u0L9FHjxi{VoxDa1M7;*6bp(FWZw3uwklhWiGPdt~TN?a=BYzkY84?fm+ z(c0cSyOm3^BhJ~Fe)Ekr(kTKL=`7IUC7&B*!8s!^5C{ zOv8P%&{FGo-$mglufgtl`Nype5yTlJ@2Q{I*)oNoSqF-|NFKv;g8&B#V^n*T+MnfJ z;vIAknWd=9B`hCp6{ur!;h}eRP39n8ZkaTBej)F@iR=-tEG28sAQ>m+t=x3s*F)KS zzEQ~@(kX-AS~rChzla&r_vc*YfS0s)3>Zu(r8dxcx zFxu09-}GT^J$05h;O`}2n+hI(nbNx&>730G>0B4Pb5rX?#}&23E}C?0A0aRrw7dQ= zM%zx=)`BlPJu{MK-X9NI8K=kcoNT`Ex-T6QuVqZ1 zy#J@+`)`boJDnmL9MY}E-wAD&Q1$;jQU&4T7Nsk@q9VypXAbnH$1IhEPqBBci`sUm zUg^wt&Fhf^W8eEGl3tZx5*uF!da0M`0Mg+jnXMb{{KFbqeHH&VYb3v%YPZOrH~IaJ zbk>5R%~ZO2^fR6eqfsVjw1%(04D^0w$Hn>g+aPA3TdmSw&Z`DwLv~a$GY1Y`UAco- z$VW%hBRXCwC9$+>lBT2xL&E6V?UE z0l-GRMH>hj3_$PKuh>Gy2;xN#2?;YcWK9wUgaMo*(CpxC$s{HM(8Lg>126^7qlbrw z*w)JmQE#A&xlmxY7d;B^1Mh1F-Ycl9ZzcmU zGFL9B9xMqS)gNxSZY-oJZUaqM&&;#?lfyhR9!0`KXHWCQxVpbPaWg#ZnRbU-|H9T| zFV9ADR&o5VIiGEqqbeuLVQ^7olo`W?l4w4D{qU3y$rdD#^3#*_WWpZa0c78|Rfh|{ z5tb$Y1!zS^(1DT23>6lN)ROO%piiy|Hh$`YU?Rh9J#X%jw*UZLM&{s1YYFfF2J?a# zwj+vR2tpKqj>+&6mT32(-~SrgAP8QG`#ZikY2RTlazCOlk~cD)rBF4R5~2=21^vW- zZX$7tf}l1dUe|u?9tgqfC^kX;LBY74g40x)%}%%#P)P#BTL=9M&BB|(s4wV3WFFd# zwud2a7eQi=v2nujZ1x>^EQ)FkmxC*=m@XUuc+kCibv1=p|D$H}#jW0q8t@bf3xK_#ksH?5D$SRa zj1O3J7APgWsjaQmH8bDS=afKzki-|H|KMke7+gpIq7tE);NpFn6&3^H zr@Q-!*bKP4KJ?{?(kIw)tYZ+HesLQau=|rj!6zl?`a+g5HHr2)s*<>si{Ni`Fu_?h zD|7ksWo%6+o9iz?7!r{?Bb1cjOed7T`r661QMK8t`XY5@m$`nmOeS7#|I0HZwC8gn z_x|bq^P{^u+~~JaMSXmRdwk;xrzRW(Qb^^|kU%;h(9kge-veB30uXoV9`5MqkQdL% z%zTaNoEyR5%{feX<`S-WR1pF`g)Rt(9px*{~WNn6dhmA-jHhrZ`s zXpsRZXd)EO8;N7&@dRd)DHLJ^LS`Jng)+d`VEM|G{4XLDzv;Gp9Ufkgb-8zssPVvU zkeOw!ZQCdq%ejXFlF|*Z^E@Mi?@$|_G-lEmY8pgTgg$5$MrK5nK7j`nY1_of=?5Ij zdzI^UbTk)K)zJuwe%V3>7iyxe_-x#jyJMtGbke( zFf-KO{{;9P&$4dVP-PBJzdM~(vLaZQwvLM5Jbw`fMjEynP{iCuoxcqxJ-A9R)oM7UsDEA!bcdXHU1en{ z$d@0G5Cz+hkPW`v#eu8tU0N_Q?)k*FrFfC`W!?VQaSg4Xa<^?rk8J*O@B@?Y8K3D6 zDYpvR2ZVbLTV`WEMpqVVQ>=e)kHK2Ug1_@ zp}3C^$Jj{!FTH6@$=}1|DPTTYzr;ZU#mf_-CrW?Q+`IutqXIra<9;rSbYy`RAf2w6 z=Hm94236;qEA{pJM4n+LYajGDnmso{W^C;M+&OdW?(N;T?+w_tJ5aq5LDY|#nF_E^ z*a&?ek9M$wS0V1D$Nl@lO&hjuUA=K*sEE|mQkxy(D5{rl{`03*IIb?;++$TG^IKQ^ zy0OOQfHm50le*v}_>NVqrHg5#FqP_O%lvW6E=3jZ^0G1=ga<6eg2~DeaH8@Nd2l01C4lah93$Hs6Gp$J_4K&Zo@x1_7}Q7pVEt7GioX}M3sJ(L&vX~|L6}Hm#X-DjY$VBgMeie} zD5g#KgG0o}nzw)1nzQy64>M=zcIrM>EJz<4WfSC}*_m8kQ&U4G(j8%V@~*D#F1{qT zocmxA4C$r&H^()ZjDwWWg%pLTUD&s7&49)ZqYB0CjFi;0G^VXveepS7!*2zFZjT43 zf|HWn{rz{q3g^8Z@Zhih+)7)@XY>V?6yY#LYzqqt_ea_A;++wt{l3qvzOuKgNLK2k5FbxL3dcJ!uPyQ;&Go>R%gl{4`owyFBAP?cGei1?%e4;B}zO^q>WWLbL)0WHl#el!&c=V(QeC zHEO+(g+-i-skyls;@=DI@6W%)OVKviarp4;t@o-;`*%x9vXbANyhlVN`MR=KW6&{iEGJ)E zxRssBKm2g!!!H~KySzNA-pnv0%U__Z?-|`Hf|=R4p~!XAv#JxnN?Nxh3U~AAaIw6< zby-*UY5T^PKzjoU&S%P%jr)g&cI@8mryP`chb?88I>E{WZ4)Du2)EqbrQB^*wkHeW zEtmY_;HWr;(kKfaRN-ni@Qh=1y5O z8GbB) zsj7XpF1O#R?E%k>5zXvhIOi)U01Hi4il{=qP&?qNIyg8uKYCZoxa>i77mtdH${m2x zlE%g<|G}?S2ncCuLUobijQjTOV|6fo`0&~M!wme%$3K`@zU8`&Q}Fup=g&Gk>O)K= zJm;|D_0y+MVm~Kv91o02NL_mE*i_*|{**g5ombv>uyKbA_o^4);Wxo0qJwXakFjbM z<8g6f!+;vi9p%H9R{}Qc|I=6C+?U>J$Fv+@-v3q)({a3#i|!2$jfcm(lIN72*rqM(I(S-^=&%xtYo?_B~F^R=RO@1ZnSUr!$&cd*x;&)SJI*-3@0X9g5UcG z2WfeWwD+j4HcCxL(F|FsJ~T@N4Uh}qI;R##{$D#gogdw$53z&$KD#KbE8BVQ(TZ<+ zMK%nKCHy~N*FkUr&~Pr+RCmG)f~c+VXdegbYgd-M68F>z{0vGqf;a(=(Yx0s(kPO? zCeygk2qr-YF%%*xU$R~jZCO+``#wGTc>ciOzsctVbDr~3zS!@@$xO^(#9ak149U{Q zFjz`?c(Aateob+(q1~s}f^wp)rR6*>Yh2by$E)*DMhgPDurLiS#ID3)h0HMoPXOOl zn3RBK;ugO-^#JZGUovcM=w@*Ey7KR7ALR^O9DAhT?0k%XZ#*?(8(CQHKy|ANObHmW z2Ptu_pF}jc0X~U+`ZjD^w(Quxod!WRtG*dq=W4^j)s;X9k(>$rGyPfg` zoEm0cB;la62O4uqH(#V2+E|<aY+hG=u?yKr&q*7f}KSWcCyC?U`&5aJ~JU0NU9@I7UGPb6q$RzWp5bhmE zhXECEyyGU3KAuo~Iy5{;PXvNYMm#ciAP>N&+wwd!^CZ|*CSYwqJ%Q?n4tEzg9^zji&aA-ibmUP@s$K5oBbz5d;<~k-Os!1Le26lrO1qwNzJ(HJ1 zNI#TU-F!AbdnlKoUllOEt< z?zNuVO6=j`;nAR#;_ix{yND-dIkxsvsZ8i}d7x*f0|^#n>TjS&qENs+yagsCrZJ-x zepu+f0-Y!T4)O!&KK(fc0s@SPoy#a_kBW31xkInRjo}_Vygkrj5bsVh1`5VPMl`qq zw+d4!YkGQmK4IECQ`6jBSWr;#@UGtNsAfMD*jth6G$$vAh-sl|xI->5loLcX4I*nV z_$)!~qQ`6!cQLL(paxLUE$NtB*gV*re#!gyubE=>Hr#Oj$mkHriXLesQbSc@WvFbb3p0A+-QpKE5FFI*P)^WD35>(C-1Y7WE@Ify^ai^9#iX zSg~qV5X2>99WmtPO5aCD46ztf>B5D?vC$SgC?40tbR8jY9RmXcnWzHipsuN@*^fn+ z>zL5NVP65g>|4L%2@Ree?_h;gR#hc;1rB~2nfw85yx;|CU}Pkxr4@+~PsO7!fQLI6 zaZd#gHZc;g1U@L7Dn7_tISbS;*9PiC`0D2@f0Xc^9=zx0fb(Q8TzL2}JlrcPDhkiy zCD3`?==KJnPW?9KC}atnUu-|ln#k?zP&5sM6qrOE!ABw)v2}Jt1#6($O76aIFkjXDuNlEa?Xd~|JljG%+lY^atJcx;Y zbY_|Sdx1~-5ij&`F5#$&ENNh9SP8`&o>$38mtXdS8n+hq3G?$SeTEUY5O|GXU}paE z8>a`kxKPK7plgM!;E#@(ns$O|7=D&IaSZ!DuaGf%NVQK&jv76F^r(6%cYRg$p@Rq2 zj#z&obY=)dJk`*%$6|t@s^}(Mf(JDio>PK)*H$o`mXlL*R*;olhfzO1Ufu_a$L1t4 z+rf(qzzj{bNcF(L0H4LYN@{@*77GMNp{phY?Ff_qD~lhXgh1=^VTgTqHv2x|t1uhE zy~q<8fliN=$sc?$8)V9`$EZRpO{#zN-TDIU%Bx_r@fQLSxR+AGt0BK}iHWg;5&r~>DA(SM z+Z4n>x;1x~qV5^8v$LlfeDCgd1^X7PUWD{<_*|Cj&pJYVly(alg;+~Cn{o5tWWj9 zLx)0%_DuP`={=r~ds32c8xbZmBny&T^{>%)W1uP)c^$2F=7FHICr;eL07PNq*M|-k zwJH<&NMoTFwbj+b^S7qEbMWZ+Ll_WjxXAy;~0dJ%BmI#G<+uT5i$8pPx<1 zbdk60^$-+|0YO2rtICRISnMlBL`6k2F+Knt9~1PEdk-8?U1r;G$uDqx30g@$G{KdM zot^GaI=J%G9>xPlo*V?~=q8ha-_RZ=C-h~P^$ludYC1X=ka-Fb43AvFXHI&$O6AZd zO&VUVOc-SlX&yR=Rgg*%cQ-tDYsY{5cmOMnOLJ?fADvd)zklN;e)=t9aRBU>DseaX z+1S{cI;J;|bQYkeBY>zLfWgj;oSYEAF;CP+NQ4S=dP<#}Uewf_@w|WExjS_8sq?CA z#qhr;>%&LitUbrdCL=BFh39~%O4+&+_$NA$Hz6aHB)$rR8Zu3Dw0q!PgR{m1T1ZX< zCNZ$?_C_qqvgpzx8wD=rTPGo_$^g;HZyhW`{>MP~Swe3!^*kA2NJ{p>y_S;f$E`-n zi8JZCAO7u^qs@^BsG6v7E+Qsuy?uQvU{qKb9}bX;$k3CK z%;Y2b{=JOBU(%DS?1137lpJ-H@o}_r;&vq`J03Fow2iC$lr*a5_|U6Qzfp%6kK?II z(k?E-PWDWd1z^4b;xm)(yq@n^(=b3hydJ|X4Pp(5fSWScIPA|!6d{XwDpdSX{RlvpGAR}%&#vYQEW0|d$rW*A%|*& zFa=75GNg0R1Ld`~XMxs|#6lw?goqsxN2rgg2J9X_wY7yFx$_HXUKL@S4ONua1ZL|z zz~_I(5l9*j!f}If{7$IBR6olNo{q`e^4smhu>CDv!wxZB^GlBU|W~{^ZCc0ka#VSieMghI} z`uf%bw^YFr(QEB9!G%3&_9 zlgK$Rctjiw!SSw!5j;0^HYQ1ixN~GVhT&jb41@mLZ#N%1N_jmS9Z>xi{N`WR<#bcN zL#|nCCVksWi+ia1QH6dibg-qAAkFQCoA!kZ7l;MlHA;K~UmD~y{KHIeXE%j=9}fr!=pGnw$Gv#- z>C+~MpWjOvcNY+|8d?g;O@L+>E?(rDdAu4Wkd_t)X>g*h!}!}@sN4x>0BDtv`pEtC zUR;UniGd}9F}=6n@cs0PRIW}rEzcCe;T}MZ9fT$g?@SLX6Jnjvfk?qahtALC8F=|) zY9QodSK(wmmAu1X3a;qi7qux#jl~rKC)22QGg^hI^*7)fid!CvY9*z9xM!rT>Tg!# zU-U-Ok*0UF*U;u7YDcA)srfTQ2=wwOAIjU?HG!509D*NN@K9i2pds*tCG0+#dR*=@ z=#r01KJ=f@9jkaCnNsua-2)Up-jGtQ*?L6Q#Ka`51+sB1Er*c6if|&`DF0Vd;Q0osxUV`q<#M6$#D|gfcyecCd(t<7^2@% zm9?F_%MAUJpar&&ntLo8Hjq4M2{>iwG}F2Ap4Xqlj3fQ`sZQoIshRGUmX;>{a}-n` z&^%wnK_xW=T$P~$Tkb1OM?tR!Jl4~R7arY^q(9HexvQ3<+Po2_E}nRileE%;`4pB6z{oYKeiP7@t#vU zdoE^W$$IX4uSuN5C&~oeReE1hUS5d`MgVkU5V((Vi86hi|8|8pGch@Fx~IxwWR3{z zVEnTTwGpz$GR)-pkahtMb{WdA>5g*sKfmkWztkorgI))~1N8|pY=w0d4R{f>J4?|? zz6)g<2O?KNTrD#W;(xxahvvm87e$fk;qANQ#*G`KS?*+;pzvRROeMl(s+IPS0+xbUAYK)|uaFSO^-&En-<9u^k12~|wdD`lSldcW%LZ9ck; zuw@>N)EK`%BqFs59OeI#RHWbbhh`%*>wn`MRr-9{Mc0EqYP3D%;qh%%r*62%6g15$ zvx~TV@OM@E;!rn_1`!u3TZyHqK&^!nk}9lVE&a7F5z{$)F#Hd(^&P^_po73s;3mGr zm`Y08Y*3_O_Sd?ouFn4(E!d|Yjpee#9zF~brANu;i^xEPcG5sL2q=uGaqrBMK6m^ASd6W=|1_m*Nplu%8B?przNhWeI)cqQr zw{e(ckZu~*-5e!cB5Co$d>^D1Ed>~w&^up{)(|o>a8xvl9N93WO7ZfOyo+HUJa83| zOLzhu6-?F3uVcbS33~iJY0UxtUWd7@^;qXt3h8)Q6wNJz0RA;-rVPsgIl+sWu`1d) zV$V%mguizdZUJNT1_Lb?#O{OiUZ4-Yhhj_*bQCe5$!fa0YQi>f|I8&4xxaUVUZab*%^ ztAm3BY)|Ag@WKBCFnx-M^Wv=1u=B6EAu?<4Xw2#1!2yQcGf~ab*7m$}vq?6wTEtpmd^A1qyjaR`#eL}loJ-&o>K_nr z8@vDloKrk$iaE^M(XQd>zGuR;cQdWRQ_p7 zpH0dMNb&ae@}f`xz=<9eRhQZ~SRAZ}DHWEnGO@9FB0^xAf)#n=6uzH-c(}SbCn1^8 zpXA!JXB{-IC9o$T!b+4xzy0Uc>(%Pdb8%&7fC_gb?#hqF?AN1OGloVu$puDvH0Lz$ zz;Le@!jso{C6Pqn;xkcn%*<9n0bmjV8#q@q?qCpb3O3F32wz~FQ!y6;Rb_c>K;!zIvs}u=}ToSP2aOPflBw`KZMGp^IaNxv3k#Zj)blZ*{r}%Pl zod_cdfB?oM8hjx64QLx-XNN0_J18au==D{}!~#T@?r4t^(wICXv8Mx*&6Xq$a!C|9 zfgB=@t}i_AU=sw9>|MxQw`|z3fy{sW)5S!AN1kC+?!>7ElYJD*CalaNuFdel>4uZZ z3A}?Ami!PIGijU>(K3P>S;D2-JVd&T5{p0Ri2e&vhe*1v+1R9IPBZ)W)O&ofzv;xq z#eXX1V>bpa`h|XY$g+|a+JBCeb#$_lDsd;Z}uhUWrlIbUPZvPK&64Dd^ diff --git a/development/_images/sphx_glr_example_pandas_train_test_thumb.png b/development/_images/sphx_glr_example_pandas_train_test_thumb.png index 8ac7e629a74c77a07c17a12c47ad768ba7351def..db92d30fcefbafb58c646d2b4fdb6cee2c5424dc 100644 GIT binary patch literal 32938 zcmc$`hd-9>{|DTvGX~8og~?d zuh?k6a^A7S%Ub5@WfiB`=|1}?m5%LC3#)P6ab28zT?U$F`&lQCDl(|vlBiKT_-SqJ z*zp{R%a^63_E6MF{&(=|e+(3FZWn(jx$iQ*v31hH@V_IGKXnAMC!&oVm}lLZsyBOW zXZK5yTt3wPOD2RtMk(%1`>0I%fisU8WJ2ujJ>P#7Urav|ErCD2p?dNE+aE_s)ipJr zc9@B#)C$El9awyMBa-vp%I}Vj2YFrQZu6h_85$aDKkt0r)SQ-JFC(+R?d{E^#KgoC z^dY~`MN7Q9^WT5}+0FIGMe2F{)1$r57ZWYwy!c<&(~Yh5x#^#|N!=D?zTR^c+wrBP zrAz(gb{?5(?8+(fS${N5cwTA+UQf>$EgUBOpkK9jczF0{p(SliP0gM?du}NzUN$ph zYkbLjC0Xf3Y;2%zHZvDjuvEZ_7g15yB_(&o2|Io<;dyV-!^cB)=!}q^L`qxSA1b4~ zX#9nerlyRWn@A89uVhNw>khM>>PK(L%fEGA8vnK8qQVxw?%eaiqH4&hrQF@Mw5-fp zD2`gt#%FoiZrASJrad3d`zJn+jJ&3)c}guKJS603Vp39Wm${0H$}JU@tG;AsE}T5r zG5o$~hFZwZZ+hBXQc}{S?QPI{Ilk3lu0KdN`5Y_j(@&oyV&$2I9j0HsdE?{bvuAbv z#Oc!kg@yc5Qc|O1W3Bn7%Fk%UpQ&Xq($jkn4&FI;?i_LVV`F1H_kRSYrn0QwKO^iA zI67+h$lKerzf^GFVH$>u7hBKFC3tShR6RMgu)3OkVmtS4t$_9L9&2lBo(H{AxPtF( zZKhrC8Fxr0y`aDL>|;ZL>*|BW#l`EgvUrDG86EYXz4w{6yxNKTNW9k&v1i}DlETdn zb-g3h)N)flvP?VQo$=m#sPfK*=W%gCb%u%W--iqj8x-43N;*3W3Omj+h>692{3zfU zSmH2~`0AC{cw@}5Q>Qe&EmKuG>-O0Ece~t8@a~tup;}r`!=>@Y<+*``q-(*88%xc3 zhIL0pL`9vqH&;#DQ;*=1v7|W;Gg|)s{wBEO)jmgBzL-NXjnWz#C-aONE8E)I%G`ac zKHD~nUXzt2Jw(NG_Uu`&H06|Cui7TRHaAav-bXuHJoV0Y?r*ypZ+LjP$U^lo6*aYC zD*=t1J3HsfR%w!xlS@~A+&1B%B0D2g?X`2a)5b!rX5oV~&7!N+eI<@5*c0YIa~>*) zZ-(7}SMGwTZY7O}5 zrf<=gPKh{Oz+@ANI=Y8M}%Abvn zjt+~6c#reQapHiYqGGS-_9lm3c`U8x#*4y!mw;d`tJYxSw zj~U#(>rC8Rj{a_3&6~GxxoyYgLPA0~KNo5hzwsgGExNwa`}7!d^-cah1|M>RuJ`v0 zP#+{o=x}DvKOsBACdU*?F6n2S;I4+dy%yDI)LL*~{Y7{gpfPuCC@9gdIegbUx$`B|1@ZOu6<`YOQ(33W~bAoDrNlY~3F$ z*s(c%$R*{Xxup(L3*7o?&i5iTl)l)0is^k`UPjHJozUY(qhm~=GMO5=lG?V7yp=;% ze*2Fx`C_Grg+aS z=Y_BI!G4R2HZQ`$7$VN!cIb9QahKF~ohcY@d3^;x%zf#S)Ihnrl(TbD6u)KsueOxn zoG$a>U#&^!goLy*bxPDo=&CIW`XRaVfA-j zU#r0Ev2@bqq}G;V`}<@xBG<8_PxG0h)>}_y722R;T*6U9fh=0>cP;wUeZSR&=UcpJ zOwWUoppx0*16F6gs+2ViRrw0K{k?Eld?RPw{?OjtMMXt&@gmW&vDEom=TVOFYil`}es z1N>*EX9WM0XZ>~;SaDBZyPedka{uV&jzZnrLR`G)TzaA^llkrrm&JqCAO9BpbH;(#IcQNI zQS$oA9?M(A3)vfc{BHf8Hr|||U}C~T{K)$1+{8jH?KMS;M~@z%<6SMNuRqH;btbh^0kGzG=g zhKTdgmyF4<6_&A;yQf@SToOCX>YAFEgoL`|mOIRNaqcFn4vUXsZ5X+^L;UYd4sl zv$yn@xymRg7&pZV&VE>t4x-An8j^hQacD1g-X)`NXE`_mRWsDAabT0$CP_$0?(~;B zFHdy_pSCQ0fkwXgr^oUx4^>@#eWF5w7!U6JgGJA-cX7W_Douap&^>*Shu$9>Ei$_n?Pzdv3Y8xx4RF=VFR! z-0KDK!@%GpzV+98W5X?iLsJra8L%b=B}`=TD}5lf;L*^!tEfK2vX94Dj(6YBzV|Ka z;-0;G)dG5IYklu$mqk$OIz1%Ldv^Jn|IXce2PY?=rlc_E=H`m5Pv?D05U2G*>nEq7 zX&S8yooq`vJUKbZW7!|eXVHC!J6hgVZ^yEW=+@Sj8-T&VGeTiszg}N;H7V@bUMMTj z$~qY&t@XiN#?X+VS!|udeQlZU{Q00aZy45=Cv9~HZl}$@=yS@J0LtjaJ$J}|bC~@8 z_}LlZL>AKQiY=jk|Nd!koOmlACkxQ5n9)HT+0luKJXApRPoe@6-8M4v5|)LE$K=+G zJwP%E8JQ8j{Y^^BrMq7a5~rrSfc?By{#hobCz^Ri*2}*X+1S~Mr@3?I&a2n1U2>e& z_74cqtnd)+@9+P+zJAI4=Y=N+PgTCX8S`ml_7ZlcY7LcTuE6u`hxzhPCZZ2 z9idD&4O(7ZHt#Qu{{CIb@fhx;(d0+wDgIuos#D?>=$5hiRZnv7HJsRcnC9E|)~fib zJ6fZ#W1l^x`}&{%wBwHVyUvLYkBkuL?fCKIIAe*OQ>S>%D0FpoQ!Mn7TIcZ$^!Z|l zg}|2%(uz^X$zRJ*%lg%kLAe7<)9W&oHM^SRIM=Uj-=T{A+wVMa2C$_sTT?Y4oRh0Q z`k6%2<)C;5neSbiS!!z8x{W1s`#u(n=#h=31}8jCWMN=rEV{PY>8P%G916!PT{kAJtcaU2d>0MBlH&-g_6%v0<2@DARC+zuXI2u$T{^ChwY0Pl zKZ(|e%KY1%Up}R+4(RRr_3NoKx0-rT?M=VGk+JZ#?q_3TV_{`Y;}g86LrFuU%N5dB zR6OjWzv(U;P+V`wt$O;1u3mJbk>)d@>Ia2-C&s+i{+$-=EO7iCz@EPMoa%&?K#m3n z<%~!`BFk)1dZ6^(GSLJSA?c*t{>a_h`>ThnZfR;d%jha7QizC%jM_0pvVwNr0@Euk z72%<}S>XJJlZS2(9&lKAxK4iOM+y{S9O#vDYDp3hI#w>O3WjXF4Hge5x9(kC>G?od1Hg&$!DP8`4!#MT{l{Ry0 zMse*Adw=3dCMt*B;4}GZR2Ui`uRFuX{5<}}!x<6RzWrOy^UBUr|FNc} zZ5JO3=%`;f#%#9iK@l1D+=K2%K!s1jwea*)UR?Rg#yan~e%~(Le%sU`0R&Xo=Wtq* z#Ky)Zy)QB{vK9belVjYCj(??U4hInGENgqn5*ouA``t%_8l~S5^urfvLi38YsD<`FP zhLh?SB&K$}QuFSRb&)0A=6B{Ea9d+F;UUQgUwqFU?=gMxt=!A2+Hwc|)uuc)qKj?V z{U2!&FK6(1*6LNOnd0ufDaYi+CW6o3wi1Y2{?!+gIBNLpjHv7tJ-trb$2$tB^m9LA zpIK>esDy=CIZdfit*s?4Ev`)o-zyll6H<)JOx~YyTq;R_#j;{(WK62IDXvc3C9Jnp zr1H>S_2JIRPeY&db0t*2dAf=p4=0r`N);8k)ov!D%67HGg()RA#!84fRep0|Qsn;9 zTV;|x%-3GUZLH_7E{%?4G943&n|rnw~nf{OkMUh{l+b6rFvY@^wRYi*5DchGU~G z*^ZV+j~@M*?=H-koJ_4C^ZKUJ(KsQy!4c=Bul0?L?gL^%j?;cAZBH*U`ws9uxVn>D z{!8J#S~9jE=?Byoc4Vq8OUSqgiEnIN8asYGwcSjp&{DzBNuVNAH>k!e*>j-$s`S#c7n>koVkA`mJ`0>FU0V zOD8|Ohcw5!ndZY>-;JuA3-6{{ckjz_o6#bby)oHWbgA()ztPMGi)k@Czdu>G+mbDA zlf8XobB;YUcEe5RgQ<6-TAs^@^f}2ZMdgl``C3_1Q_kFJNi6TG?H4_zk}Dq+gs5v= z*Ecm?;rcRwW^<|6flYn!$XV^f8JVfoX1QmTl(hG;zS~zcoaTMzjGfRKpxa0(^?5dX zzK0Oo+FTxB>l8a~KxFZ)x-22FLq6qLURNMADHPjo!RL^ynB-$gKE(>!n*7We^8CGf z&b*sKzfkWx6^Vqr0~udQR=2?w%0P08i161di;`0l*IWQji^ft_dD)YySg)H5-jr*J z4$cIWt9<6YZ?ZpWAFb!MXqoGZLAUGNMUM?9GG^wbh5GP=)EB%22Rs@?SNj8Y{gjk+ zavYMR`toHstz+@`qyK>LyeY@O=>spA9NIhUHhyZ>b#UjO(a}4)c~5RzmW3}@N-70P ze{&Jd_Sm?noFaF5X2e_FO++tSvudGN``z#Mr;aDM#=DH;(;S}NRHPVhifbsZ@-0fY zxUIV}xLYhrIMVV*_QcPHk%JX0YW-Vl_jkqcCg}&9FnRRo`gE)JXvonM*}69~?!OyK zF0w7MT{f|?;G=OH`tJd)=u7cGvr>6?_vw^4jCs$M-))-i;+g6Q2>Gr=h&|fte|+}* zcclA0Blf18PL7wOQRBID7moy~-58ne>#|*D>2aKXWty#9Dq=~qxwdMI-JtS&g#h~7 zWea<^S3S3DhuT%fx%8U0MK|;B`?}g(b6K9(H*#M&?$~d8*dgP%vG-m%s5cZ@5kIoD z^jjx?ezc@rqC7wRWa`~W-@m1W)BMkp>gq~GY?+$H7xqYoU$M(N@>*YxcCZ59EK zSl?^GU$nw~bX;f6YK6hMH8`9&G`uESlTzK>6qj98TtwNb>h72AO#W@@J(S%;d_{pG z>rZxo^Z~6yY;n&dQ(kE+noyjXNiQ-hc*mgTTT@-#9?<>0C_Qxl==@NX`9OIb5FW_7 zUzhp#;Ad|DvDloP3wQ_tUFJ+s51~J;l0Fz38k)Vw*9=UsJ;9cr9+4j7-|AG z=me#I{gBley7Z1rQMKy!1hT}=ADI#N-V6TKtGGHl8M zCgC~5?XAsH(fcQ=%1T>Ic&J5fe82{7DXD$oVpsnTiHIWHf448$3q6&qP|=D;o(U5y z3;OcGim?+fc}y$Oc>`;V=t0D;(YjMWko)?AUZ&xz)fq;1(tt?L8u7C`Kt^n2Nozwx zP1`@_3d@)DHPOcKFZJd%heSnv1;OhoaOL02#U&kh@^h+U63cl`qn>AH&@BC4y*ewD zZ`nLI)j2XW^iVnZ90=vbyI%;20}J)l?+E?;($Za^e!IDj13(_1YklA86wd<|*tE60 zK1eMR1#x<-w=g(l*ns%Y@OLFD{s(~oj!1N~jv6!2QFx8M$bo|vydG2es~31CkPwc<3SS_p#-8rJZ{gs)o0z2WMoZd?B*oSd94 zKnnm|4i?`MNO1piijk3#AYv=!wTB1Sj_7`)Kc3R&p6}4p(c0U+wIRJ^)^04ecuew@ zTG~mgszchIn=2%AU%!1D%_{7-8L%wu@_Y8o2sA!ZuOfbXbIy|xgQ5A_Kzl1uA6r^k zk%H%-lm?0Auaj#@a85>qauyX!O6Qc$gd7jmsyn#YP}P%GSPzafD=IjFN))SuJON$P zvt!0QR6C*5fZiH_fC`0VcC(T^tgZVCjbO{eWA>+f)*%yKDnhd4h9q_I?%o}3DL0b< z<$L+eC|p-(YYe&d^Sb1PwK~iSW)noJg$TTtzb! zV)!)N(2Q%Yq*R%67aj9cOZt})8y@~EU(2WM=|G+L$(Rn=2DL1w>D*c?p}2Rtcu=I! z5EU#6NBTv!hA1qp^DXvZ(E8eM7)J zYxZDQW>-bz6t^n#v9Ce={lqVgnGbLqcE96Istr1=J|kvnY567alx^K`Nw0|tDOE>} zaP1|V(d%N{8@8ke4p<9NSJ&2-G+V1?#d$!FB)$x#aA9eQ9%}i6zTyQ)G~|?&zKJZo zjsxx*S!%0fMP}E2+X=z!N$oHL?{V5(>11VNBkUXqM+Q7p;P8P|y#6%-l(u+9u)Zqa z!^{wj&ZKB%8O;xVCOQ|)5&VU^j{R|HOe2uQn3T^I>Gd2v^ewDL@uK-<5v{}bk+m(4FM(4p{h zqNI4D$G}(cX^IoRwjkMcITU#cfGH1k52_d&eSb?32OvJ`ZAdNN$|!B z&z(LJu{Q4}Gbw8Nv@?IHq}po<6e*1iMBlh^F+5_}v)=e`aQ2*)SDW+recxk4c4y81 zgz}ypsiS(4!DRPkx8P0_UX#korY!BqGU|J+Lk~=YIG+hDJu;bM&u3$+&#)9wXd~S(yWc z7Cq8%C;!g~!*e-?N2`@Jj-MwCHGh9nFdV<9PlvEfQ1P)rCch^ifaAGIefaQUqKIf| zQN4csI{!i6T3}fqOo^Kw9%3^+h0O4rz*u+?87It=eNORy^#I3=GGwCbl1rdX8|B}zbzs~R+^kT?5YV4tHlZH^(W>??K zgfa=l$$zjMkjLF;-7aL};R!p&EN?aX^~g(pOL;px9;i^D@s5e-Sy}aKpPhjipp|c8 z-Oc^QSV=>}Pc~U7>x*MK7MJz>`7CwjWO1mmj!R}|=sS1+sUec$_tlrs^ zdv{*|C6|N3ewyRQYfyjWPtz{dvuA@rm$)pHrGechSPg#K3Dwb|ByK9ZA|5?)_q%^l zoMW%Vq9wL$iWr{@b@?#LL`u53mAYzK(CyjlJrromC%V$Eyd!00KBK|q&vc!ty3XT7 z77{uV;jVUA0S^ir6oVhRa#6F#xsQ}O4Pg!IrmHK9R&dbc!^RF7ZEVdQ5m0tB)x>kB)Yh?-8&WB>_54>DyA6 z(j@#Y?D=h)Oa`63hPz&H3I$1DF*0JpbFmNpukPzt;%H6x6gKNz`P$TEgkw!D?m=zE zdm6hVSk(2;$CBN~Mn>?uDxs^P>@YAh+hQ3$@%EpC;kpS zg9n_qKbQ|evYs`{fizcC!t9+<+xH{uHtN(a?S@mv_wE(dK2~WQi3ka?p%WvMDZVo* zW4GU&DMu}KfX`0%m1vo72#OV?J~vc12qFvrCK7DhZt^dDyVQK)&ZixJ<_4Mp+a^(b znnjil-h9bJhZEpBTjUD~G!R>nLP~$EK3wGAXlNjf=u5mc=;kx>N7$Ey8xOc3RrsI} z4bu=3_UQOH;irCib|ye8OB(7Se8m%7x^htU32&g%XFp*;-?bN@#&;TUM-v_@8YGHC zBrqcccjsTPeSelXa-HUXz`({v3Iyihz=y~I(S6}cnDvFjC3c=Inz$|}R}JF=#<|$m z-@9PH(oRkSyZ0VEd*Q-!N@lVWwYEL0WCm;}ouA6J##f@x$^Y642 z!jqwOUp`{do&Wmd$0$_SHuxz}>@@OCjzDC(nx(b`2hO_3qHt(trg8US5eX}+3;ca{ z$1KbLF~tel8!Qah*!^zbk1L7ySTlttO^C91!uG*aL@$7ncNSVXg!&wql!S5Mm?;$Z z3?=<}SXeclm-9?P=hudYBqSuJdy7JmxS;X=?3JC(#ozBl513nZ=K@g^9MuPuRgq-S z(6|mu>Q`^krF-}8Woj3NpxPq>5ZE?33XT7*=k^xyaMktP!-@65c|heL#9W+zBj{7T zc5Q@0y@b8fu;*OIDei~YTZWnZ%=MO{<>KV$#h0|T#lko}MFrFH8#fAWwsX(ehv7fxL8=4zWA(b(I>81`Np zQf)|ol+pF|L19U=h27MTAe0IsE`UuBJBkQizz0a`FzXB0Cm1I$$8=1R1RyUW^uR4f zFl2c90DuHi!5g7-;bx(Mk5xZCmT%q_f`)E(|DnqM{rmO77|^d?Lb6+gw_SAXMVC2I zo{%?bf$jHH&g!C%n>`gu~txOT=G|YLXq5m6aa>W9FBa8IW%wVh6}Kw86!N!r+JI1+xhXJk-Y|>7dHy=EG&W z%_wTXSFn++kt4vfs=CxH;vF1(819PPOP>9pI0R2xTpWJwOOuFeCrTsif5)4HDhMX9 zzj*P2C<-2%Yu1QSyobjkA1m+>2Y`l#2Hp-W30)NSFIEj8=@ERxm3*ldY_qR*b^5p% zk&XE(!l**6J%MY1r3W2Cp2So2u_IWDvHr9*(O9`DyNzcrDQ(8*x6&QFBTOq?UuC5S4 zA5{P8SZ4Rk)YMn+-yiitsOP=iPR@N7DK4oOdK)ybC?Svm$(n+$t z{&O$9BpT*(K4$@5fP>rID_Tu9YWE;y(F8aTS7O$_GD9V3Oh8pi>OZxN;{i35*r0+= z^Mj_%8EoEt53*0(?;zW5?;$Ehk7dP8U_L}lW_5K`4+yH3m3Nrg2d^NEGV$c}15^gb zUEDE^vxY|8(dlJhdW&rT%~u_UE6QX3^SPM&nu@Dsdhs!J#&_w9aW~=p7u3RlhM$(f z*q;8z{`ZHQOra&z#_QT|8bU>$a_Xp11w8@U&ok>_Lqq}Pm`KKnAZGF{PB;?lgN%&6 zzCMvAK-g*?Scv@iaVZ-cZUxa5ium|=Z1Ekq$6Dl7Zc#iYdT7SG;@|n54b9EQi=%a; zqoY=+O;#w~i%ZSoOGx_cx&Xr;5r8kSHl_9T=@u3imM7bMQ9hQC9^!_zhcwF5~Zle11@9+o7tC+>^pQ{IOi)W*QU=bWoz@0W*BGoI)Q*&SWAvQr7_O?y9tONPN6} zFpVe+3(FmxTf!v;z=j%e5JqKv16M_0tBGNAyeL6*prBm9UwkvVgd;NYq36L};09dv zpp}3La&l9h*%RmhgsF`X)lOuUu*Ytqu@O}J&}lxX&*4Ni0Dj6_ts<;)G&n1;KHhHu zW?io5wg+MAp$fpIM&?Sa^zU#0ULNeG5^il5@Fo$G0HQ@eA{6)v$C9wA;I-ncjt{%1 zy%D;?ME;ca+4iU2GTVjrcJs_9T@S`*PdM7z4mYOsG5ZYq(t5lyZjL`lBXZK~@c~N6 z_yBZg`S>FC(Yie+G#DVY6C4_!&KLGdX6u#_MGF)h?ge%+EE~jn9$lkx_Cfu<=)PuG zjtexqdBZ>PmX=mMb}7uIiGohuBvd~*@xDm$?8xi-2GSQSoiv25T#EDK*oL^u@n-SuQS_yWyk;@s6ejUBkI?;B&oyy9yBxIlwW{g;Ww)3%Y5Hwx<5C5Z z&&L!*K8G;gh~hCl+NtAsMktPqZjYFlSiV^YDWH<%l`AN;uMwO9;DhdSO-U)FB>H+% zs}+JsfztHID^{Boa2tMo-uA^pfSL?l1?}6BzYY*xSwrLN>npwpGZCIQb`}wbAjmoT zYj574t+rxXFekfTEj!WuArMM}AHo|1;<|I;I7>jq%LQvjo1n8 zKYSRB{RkqANT{MAp_%0Z6BBWqf~BRUXzqKY!J>ao;!xwk^AmduLQF}DgE~B%I9pYl z#&6#kur(2~L1$=AlnMX}VSrlk>zB#2!}_V(w?xPj!KMH~+wsA%v6?fEy${JB0deet zn}6BGMF?%NrlBDKcawL&lM~BBMR2a zlj{1=_uyJa2lskDdg%Yv^4(uoDNI5 z>JtDGOStTSY;czqdSuc%%>K;wH4tQkmGyE)2UOAP0O4h>tAy+e^aO~5LY4wBLTq|O zTT!b_O-*q?N@BjH1F0>b3f{eN@@JVVKY@++kx>s$BzV3>UKl~M2<+**1zLFEpUnt6 zu5V%w$B6*fL4yuK@AO6WI9gPBqM8wK3lWWJ2jPnCEn)DpH+VyW?4aSo6u}#!i>_+T zfXW;FneHN@zo=E@R8;=D*|lZ`#d@oA%2_+Y-~ghs60s<-mm9jeG?y=5CZ5{zbk{LF zU=%{lT!a4*gBnM`AsKHm8?_TGT~ni#z-Cp8LFl{qY>LJ45JK*Tync+V2OYqq z;4yl5`_QXnTUu^y&24W5qu!pxH367UwkGYvr6rY?#u5ZvElbO~;e6pdj$KGXf+tKK zh}&U^!CbmmPw}95k_lJr4z`?T><^-}AiWU-ebKs+xARr!RMFPj6j6|z zVSf_<3XA_1fe(UYAgzUjNwczo=wr1E`-<|&NJ>aLFsx8$`C@`lv_oQIZh%w%f?xwZ ztaS5F51~)RSe8daBzf`jWj&gODZ(UBObh_fW>*1-{{ZGyZWiHeztX+Qb*>|pfM&(9 zPi4t9FQdRyJfjnR*$E4T{i~qh%Y` z2WK!=-nhU-sqL4xHgHZ#dF5khDCjG?WiA)dyt>J5q^Cf%_#KALfSu|pAFP_uK_sCm zMV8!BU3iel#<|qbF~B8iIIhc#A@?vXSQB5L;_#H`@>>? z&q8S9(8%#>jNvCbEta}y@@CAmuER31`mC;x=D=BdTSQlJ&oXml3|Ac_+wxQ)J@ zB&;JO+lZaC!?D+TA9R5+`~*Rgi9?Kbkz>+&4uRK?|HflZaU1%%#vn*a6cU2BzI-W* zjje$~g3ALuC7SU|-usB@?8I~X+}w(*ZwWH zDIAfs!W|IFZ(#IGgpve8ck+_aK^(^+Kr*T9PGk&E8W$~!twJ_LNYh;)bXw& zTV@mvUZOWYeE6_H`_Wp8O~Z+L^-PJ@ADPC_ax@nvdnmIxb();Ekx0IREZ-#JY|sX< zvQ~uZ1gwPEViEGY(dhAg#rAiHDjx$NS_2dl0pGUd849kjpu_aazz2%bqZx!HpTq(iz2waB~qSEsg z7C0JHZBI`O5??U`p4)Lq=@Jq9qo+^bfD#DSINL+xxnYekcLR9pKWql*5Q9LkV*tP@ zwi8X@7dhR31^{Qllx2Y&7r<0;V8>7gMPC4gu z2lX1MJ19~F7bkEWP@i~~YjWG64T`;IwTcuZaRXj58?R!f^#4KM_ zKljykPv%Fj^-UT9tFt)oNRfGCR}aIjB;O@2E)K+a6WRr#p9A&c*jz*e7yIc~e_6@8 z_7g;TvEQMJ#sa?{O=?92@Dcp&*^w@sZ; z$vOZXnC1NWG8S>bTHr-=h9%Lx^)gF@Xsp7b|dt&d2qM8jIaHN z{0FczsvvQ>`wtz0DnJ2s1tK@{&zL-jr{m$FuJq2yv-`s1$+pL<>7|UNUaN#L^3#EX+l8-r37|M2Ojuz*99Ssj@L1s6P#iyw#e@QSC8Hy;)dWBH%T9>KeOb|m z+`O+i9Krfkts@xhdj9;DMJtU}BR`Mxq9FCy#l2EcVK(V7xazT?xSB{%&w-SzXfin&eY5!%!T$;MFLS_ zN@aerfoo)D=BAR;Q6T7X$TarNH#=Y<6(h_+P&_zWm-k+r5N zGc(CWeFDqG)W9yh#$Dua2+4zl?&CzfE8@vtAj_8N5|Lmu7hb=Oko!c zC*OsAsGD7JAz@t*4;Zqdc8jSkg;W|}xQzStvuxq@qKr*riA{}1mukeA$fv@S`E0b5`!zct~0z)T!7#S)e}=t@wvq;6P0TX$pCjytTHjX>T2g{PwqW-K5_o$STW2 z(E|EMJxo|wN=+|1b@0jd;>CDC$RB#6+8UJ6sIRa}2%!aWNKcb z;xoUFg!ipOim!Iy2e$$(_wKNHN;AU}t*r7l!j>|{ zQKQ%GFmanE4Oslf_7zM0y{=%rkS1Tbv)>u-As`M*2AcB3Ml7N0q8%l)-32*E3sx}W zX~N9S)?LaQd0pBT=3gt|=0TR-ruJs&U?xOP9aZ(7bl&RqZ%I+Q2`7V#qe8- zrPM}-h2_|c)!T|0D~4Y{=Y#Ku@t&1H8N=D$qW`6SKe)cFRqewP^IAQ5&LYlytd7vl_^^3>no#7PyEQ8(pmB{xKC=$XDuq#Hn zz=kM^(~XehdoALT*K%w;kIMk zgbK}1ZaubC;1>TahY^v=@~@I3ie!c zPWsW#@laq|{-Bs~eEn6D&+zv(itSi2iAD@=pvw7>qaNA-tscXu@YSn(FoTAs+gj%8 z`2XrmaV1Zsp}hTSp+kWqC=H4x=nqCDGiF|$A=~%#=~FNwj37gB7zK!iE&m=)1PCU^ zw_m{$Tb}8OL?83UwDfG*sxHJK=nKZ$0_kQPeu*qZx{DYSI)D2~A`6d2cNoS`2yOia zS6MZpS*ZNJu6x!7crn`pNVf#U)q>Cn;gsTqpaR*6j|1Tlqw2`H3fccgYhgA)o&=PG z9)2#IuIDi^Q}JitL*?gPn`W4FgR^&}gTX76iPGV@dU*PaULaM%r*#8tnmtpFM27+! z6n-SJiDLi+NtkD7##Io0;T|DT1icZG;KYk-G|)~k5b4m}T82yt#)%1t2zwL&1YnIo zKrqdK-22+X51!)o0lL8aQ*aB`78eg066|6=pGF;22jP$%M~@u?`WM+;Zo@Ea@jhxX zbZ5f*Dzcp*e(VShJl=*NI=km-elG1~M9Am$n5>(vjK$c^H?e*(P#Miw!) zMVO8tfDJHDKErDyyZ|TAP$B|n();luW|ekVZ2mb7wP6R596+&Ltqy^^Z>KOrFB9n> zTmJ?M(_3yd4dd9W^K$8GEF7Gi1aiBFU6C?#QX!5JPTD7(fFqLRCr|p-YX0C&(>gt# zu$BEX>%*Hj)jIdFo&ZvqVrreVo7HNrusEPykcq0h+RifgG7mEARA8`pq{UX7t2O7S z3RA%i`FrPNwiP>K6(%Z;@^WEQ;UD;%m8XK!GaMpN7~t!JSPaF>Ej-*uW2I2)%;Xt7 zGPlj{Ux_(ll!0fi+%;H@c(+9v0JI;5e=K{_i!CsLKHXh#0Pv~r0pY9N0W;hF``5E) zd|)K}O*gDXl@vU9Zom>qIvw8{DYZb)K;s+=dgSBwEL6bmf}cJo`It$@-kmdN{6i1J^bb)G18K$Mp*!T_LmrT`Y5HhU zprvD}CS9WaV=!VY^)_dujl@iN%{aN+{QCX}Gvqhz20d@znYMAB%V;m6x(ojGL!pOL7ia0|9`k5$fdeZ z(hwPTw;$jCVcvW6};|yZ|1KN0LhOe{1i;@a)^1oabn8 zIr!KCkUFr3x9|thKS3o3XAL&uTjU6l^4tNh3lKp8pPqu4^i}Dt4$etv^C;2#Kfy4S z0L_3FR-jsH8xb1n-C@QkBvedX5xyB8YJ!hu!Iq4r#Ed-AT!E1+d~I~$`T$L(U~>@T zaqJu%V01o+iRrxW)c(Nl%WZt(ZuWf{^A=A%^>Pr6Jw|#<4C(!-?=c4 zPdHeD7i5F+SG2!>z*b$Q&X@3+Aa}rw5Z9$~oxVtXqy>&K2K_HU;xq33&}fvwPaEGh znaQ6UAH;F3&!#ABH>bNM+j)oaEr-C@S@dRMBA<>grJZM3(ZK`VK^zLi!e+PW>FFms zvuSq_;xcfuXTjmu$nN0etcKLG%6t#M+xS}KyMJJ*I)YV~+MgSu?kOQ~z(Abn9Ww>}b`Yx@85@Bt<_*3t#04 z;#Jhiv($o8#uuaHuVkyf?$qto`PqHNnYtlkuzc2f34hEP|KdI$rhuks+p@Myu5 zXI|swqAuy^F8Sy>=_35zHD25}THLsHm_9E~{<4hq#fQGDy2BybcXmNrL>xnJfb`=@ zLB&tm`)rFQ(^)jv|Ly}E_%3*hmGt*gEJ?GW{Vmf1WmD^0rn&0d>!aIaMxDu(21%9X zDZK_M_`OoezT`|^-&3{Z!8FyOG}RIO`}*IMr9u#C!P>W6p}0pj0lV3rBB~u%E)lI^Fh%pU)kurl78-p)uY6ZAukeb3TQLrn^-cGB$AcpTTNC*K#|gYj$iF;`BcY+3evj=UV2`q*-@!)y!~*Kp}^dIvj0=S zn~ynOA>WS<4^M5iUyWoZa;7i)=yHVPe#Q-FSDe|E*EeJ~d$EUww~OUcT&Y+W$LLzm zldj*Nep?yj3SM~mE!C6#^SG6Pqd>0Ue|)~jZq5I>H8Pb}qn=$;tL&Yf5DBEyr(-wKBXZuV z@%^+FDO=XNKikSN_UT)WysJN19Qlt3UeKC3dH&s$Y{u@SnrE%QKN&bCs0pICSr033 zS8C2rVxlwom1;&yy!pGvS)a7K%NeJ zS6Ao|-q*vWQ(mlhAe1Ry?A@7i-GJ`^ycHglN%&_dyb8s@=?nYoiPlMxZ~JuEig6v{b%GOxwA^V@;kAX!K*h7 zzoM>f`FQFV2w&{Er+zBUL8Y6G^}_L6CTt7^9O1Zd0VOw|{6!ugauXG*e75tipWLF_ z$1`3WHDxk7;3v^6;U?;~@S}dGk1;(kWKbI`3x7|mtM&$Ga)_OnhziXw6`@bzEP)R6 zUB|nq&kNSSNTg?oWK=fid|Rn?`Ek}Rt}M!htp%O~W?#Ji?!4-BjogTY{u}$jI4$*t zYV$z zr%M4z>MC5r8^eAp0m%jvg!3OON#j4Z56>%AI|wV))d^LO7oXHYdmB} zO8UJa_vFkwk3qg;KN|;+PrGv3JuMd-xNiNgvne-;%_4zKED7=5?ex60k ztA1j8;|HEuZJ&$Fo9aLZKX4zHxCP%6)>4sS~a6Om8) zS=QV~ygEkDGO_w)ybEHwkmzviX_wjEz=hq9JZ1OB9Ttdt_nuB7d2bxougyO<+Nmxp&ISXl{aM{YZ*sD#}$?DSWOX!?0svS+Why~RPc zf=5aR?uN;!u|NGY(lV*&H+ATPtom^Nsn1Ge=UHtWCdJ2=a)Cx>73W%Y)TT?6*Kag6EduI)Hn4yjX6sX{*2{g zvj`8nT`$9V!-4VXaFU^_q2dGflwPf89r}#l*aN@p3@Q?vbunS}*E{O@&Qbu3pQV)u+tln5Z}7GssbwP}%2a?mDYL!8{>t|MQd5kSyO1?!bT1 zVdMA6j}K4CUQm_!sznwdo66x6!jq%6HKVkXEP#FJSE7%)&-IT-!?-O zbcqUe30^cqzl2`AW{r9pTYlyjNsw{$NF(|(|iisu|~Za5#cm7D*i82icabxDoaL)(L- zOQmz|oVS#-hO!QGsoy*jhVQx4E;@oE<;*I$gAcvu6n-n_YPMUo7BOGhw*E>?{f~n- z9t_?guec|iH++eR%;?L7rqp!ET{O8iU%Z?grrm5u*uhIVA&%ynEc*NE^=SlZ1E8LRo;BXCR zqs+G_;$5ptGdgp>yt=eE*XmFZ#q+dYd4o^UgjdREnPZ*Jy+_%pgCG2Br1Dlch5Gaw zfutLBKj|!%Eo@o4=_3=a=c=394mI99mHaKB)w7GYX(wG`zuoNOLzp}I9&}8nxpqy)z-|&$g|M^IuP;;A^(2%I! znVmupd0*dSU9*8F=i1)65og)8@6TQy%zgkfY}a^~65ZNsxRgxGs`8tzrS9cce=?=?omy zFDMLclxkYv&{4`lADA3A62)l$+i#{UyrcKR3pv6n!|5ltzGV;ZT*BuYEp;Eu+k>qdUj7<#IP^tK zfNgcZ{~-p3Unug z9LW9lC}iA9PEhOKt~{UKkZ-R}zp^`^H|W&aBDh+ZXv)Q`HNN~~Vw1tF0h4sn@I?s) z!8^1UGZel~l@_08XyG*r+{(a7S*20l#3*;4QINCA^j>EM)t32scdCtddPY2i^>(v< zQZ{#!t`a&pHCkqJmpvvaA<2~?=y1`BZ<~oyBg&^ zp&DzNtLoMd)>z3Vs@Yq=>41KHX_5to#49UL^(br_3=Be|5`yC56K~c}-=F6{bJLG1 zzI)IvYUgwz)+BmEBWCTVFCihbNjNLtcH)OH5Z=T7?#rx7WX`14rj6Um4UkZyT(2CHy zDe{DT;2rB`+*kcY#w?~Ru=)g}o|W!3F76aHe}u2oj2WsKbh(?m?=bSadaF{uRX#TC zUl2Z-Mpd8rj;C&!?xc=Mo_c~{2F-x{XNTtPdh3skq^6vSshjXjIlnpC-N zyYkj6NAG?{j-X0RvL{ogA;VUPHP=b~H=WZ;qb|o4o$u_*nO(>8((g3opP6MJv$n3% z+E=~r)a}e?ve`I%*z9Zx>Yz?)Y&{yd?mDxQb{$v$SH`=u2lA{v1ZrNgZN4+1{Cf0) zP3ym*H5cga@ioUjVRRlHoNRWOT$bLpPg8(p#GG1KNa#CJuEY3GN_NO?lL{PAQYd4R zvYhbg$H)g(K}17@q=bJ9UjR{EK@$?tS*TA@PM7^-nz?Dm@7cP(HS zl2pEZknMralS8!^sGm$WO*$O(j~lKKt}7{x;bp^FrRakRP6kvqob`9s-CgG%?x@-E zs*pq;Pvl;@Y+v)x*Edq*fyYm^*=()BmU%zAh?z%v--J@{F1!{9c@um_q?tdUHUbLr z8rLRCk=r9jm+yZzE@yOJJe2z*o8vxfQQDLlwTE~hyu=V9Dxd^N^nu8?zlYy{@3#8U z8I#L1&Hhl=LfDK-NubIjBvS(kTnchyNyyq!$M5epgCiLluJ<-l`Ho$(Ag;om2-e?n zwu_Ju&Ja=Da$0t0MeJ^Kgt9h?gcM#8VGC%9uJ6g-C0daEAsN6dZ`(IEto7HeHYKr) zvqmP=F`Pys@%4rS955o3ePGAP62 z;iKMr{$)qizyDTPJ)eS)>tTb9G)k$2=!Zl(|K56!irmIwf*^*l2We91`-wiLN7}C= z6Y96hXm;Pys~S2*Dw6k>qOxu=v|Ku+=n|Rm?ndJ<$NoU-`8t0X{?~Dr`z%XSx38rwlMZVZ+4scH9u{rZ0~)fL450h9o#$U{MZ`v|h&DYy(OobAQ|R*r*$lI9t- zut;Y^$SB=+sfB+lg%%oe(7F<9rQUIK9HbZctw#UaAU$t@VsBw&XzOPxRmSeJ!3PT1 zF2_>yfhT)VUWBmK_Z(DsiV(<`m6hSS(LNN?821-g>Ec;EKmNiG^< zNkVr-RgZ|@QACvXp4>%j5vbAqXi(*b7ap2e*gpq|vj(|haNfvh4O(YC@fFpd(b`b2 zysUwk8!N{J7UBv^ZzhX28p>amqj%U*U+g5M$j%cZom}Vp`+f>Z`JNuNoR6-ed1c?d zD1tczX%xv6>+0%4A4BXZK!qoWo1*SUw8)rYsk)f}e5j=BPQ9aHf*comy6D#*lHS!t0rPVxZ%YXZ@>V+j16<_i+36WVPAlY-qN9)IXY1lg=6I&eL49mO7Vj zGo&^v-=MRSkZ5T@P?77&t$-5dO5RtV<^2UJ$|j@csm5z#^Iu-&Doy(}{*Syr^{iycFFT&Kjg2)YoVz*Ryfw5ju+qNg!Fg4O&|go3nWgNvs*N7mG&LPhSy5-#PKK-{ zJ^kwwo2J4wE;-j^-ioHAj#aN7Tr+l*hy@#tr{~3f|NhR`__D#NXYJXj4X|<;y{vf% z?d12NS(7Non)LFkh8$iSk9h<#((w(SLGHs*Br^O1m-rYPd%9&M68nvF_6!=$G*%Hv z>yJq}=^w3bcX>dD32YvIU-U+$K+PknTwHv?J5ICg zyw_KX>rjb@`&-Gt9VvDZT2IfnWglKz88~0P;lzxOqH<;_CXb{G3B z?`+|17DuLhc*Db)Q*O;3oASK3nxB~JO<#Gjmn{{JZoONc z4BVAVlKkGIe}*mT?7|1e!adp_EaZRlo{62-zPO3#;Ppnsln>II+b9_`I#gSA{JI!r zUo$YG=ptp;@jX8=&!G4fkr<(Zm{b48c&+4~ptgd2w+m8sx_T^facZl*&~^wFY<9_~ z*No+Rv*hl+qx%kz_6udIZzV+$o4#?T=QrtgJXH6%lMTaW|JPmZp@Gpadgtoo3&k~m zR807{n{sP5YMp;l@XPyjmKG@uWMNGV_IxO1zq6wIz_9(otaRu>%SKx@`IwUc*Bn4Q*%%+UHH;Z(P{OWB>VTVe8We7Gft)r zJ`vc+(ZNBfs(ZQLGjINN-<|550)PPBD!J!c>&zvN(b6N;4{K%IIXJZqcbB#^Y8Qv~^IYRo zXAjPJ8DDp7hfCvWhpBqX+1WbBua{l!{Ni_L~qDMQmU2^kqtHr6vtu7u~Qkph#vvymDicvW4{%>z5 zj4G;4gxT}5KL5Rku{Ta^H2>6R;4*X5n{g?o@=J@Cv%8qU@`ZSK4gXBHZnmD%X zDOTOwA$zAw^o!wQ8xNzCYcjVj^KQJ&-@%$@)H5)u*wPcZePK?I%6~Q9q$2ArnOCuP zdO_RHIeMpU5%e5*?$JiCHCCNry1MPI3DZZvyPr_fBnzyttJ5ho0Su{ zh$X&FP8RLw)%Q4=Z2x|<(oJ}3(78cOEW7~V=fu0~B0AVi`2ocziS$6C&W?<2b zb(cIYNXrs4^tmjuZEQ{^WOs+_u(VLrD}A0PO&SiNUX{?mR}8!V`fBVng)$&;o5bI6 z*ms%=fRNv)Y7=h?wtHAW2J=4d?1Nmo7t%h}9Q{VHzjmUJg^@TKZ?K1}WIVQfD%5Kf z`mAq|?aJ~H6~@wyl6D5BfVME*B-9<%H8n4w;_MIU8X@mMQ$y%skddIH0@UnNxB}4s z2t5gcS&6rE*GSd3wbgLq?V=;%ECkNMen}wfLA}UK&0|6npOrhBnq{PSIc&xr3X4NO z=i5xg2dFwheYKoqoP2<3!RNWba+IkmJ2B;0T-_!cX7jS|qidSRKR+Jvx-63k@jrA6 zpr%0#25kex*5Cy|E=tr`#5oL~2HbFfS8PLpp3#g@U8L+oIA9pmV*5C{JgBNce7Z@=2Ci0DK0A1A0ywqVqMH^Wd3 zaZ*=DZUlyos3-$s6ySDBy3PxSD*^F9#8JQkb;r}dmJS*c8#pW@9x{l?&@dwn)%d@m zWF{NO2ezAC#Z+$B1G^}Vd#&t>e4W{PYL^vsm_6)$*=}nnySuw5cmG*3K#%~zGPES` zalj#}R;a^ay+tT+0>KuP$`iqe9g~UwTfG#6K-m|wJWy!qE4Osmg;w-ey|FDhB-uOAnwYFlh#DSkH>T#5E z8?Vb7y91Hj@3kFS{4W5g-d}V2#7)$2nt1PAXhc!;=)zF1c|5#WbJLISB=Bjlo-+KXJYVFMk zL(_{Mx$CIwDFzZ?rVp%?f`&5`=PR@k%k5VoZ0y9*f&ptcvUZ zu6gpa|V`S@bkKoJIqmwguod2USh_my~$&ZRI!5h(ad=37Vkh&JP?yArRLS9YAGiQ!YHrdHZC{W^m-bCIEKp^rZP#5YC6 zarEKSN5=E010mNG>ti_!RPg}e;m%J4d&eW$!L=?m|+s#i07F7pNGq_c}SQY>M_k=7|t$+E~(D4yfCCF~g^Fh(i5pRQM76Qvn zi>J__a*jSsB!s8{i*yeAw>?M#C!T_=Gn>~dRf;e)rJ$w#) zGPM#9oz=}~Jo~dflkhHaXI3}7uC;=piHYiv?hri!y z?mqm#&$-~!uzNnf46%6QA=$~@`;CR{JuaItYsfPJfN2i$u{LP1k|#!%o$yJdF#rUk zptFHO{wCY_WfTxZ*fq{}JX8zV{W-8H6&qweKn_rw!~XCCN?bHsX!0~%#cQ?$ZovsK zBj;h?TRR+I1WSFc5T^YomBs93V4>+QK zVeB2X{7Io@*!m2zdDt$X*E*4Mq{M7RWn_&HW7=D^kzs&9=P2A=M8yle&V#~Z3))$X zM_>la%+Bry_o5f)$UaEPE#N*Z-~@*^srD+xKpWW)9QFy;(E|HDzFMwl&>|D=477$X zJK6x9B3*sFp-u;~hvYr_fJRd_qmhN3{Ub6~qf0(FVH$;B zs0waOWG@H}J@MmO+{^N^K;0vUt$ zV)ZTInJcl z6|i)|m5sJu>Ub8VOTQRkfg=8DeDqGAein2IID{#T0Yf=m^$6xcWQ5?L#q!?SX#(dc zG1$QQjUF=lox0_(tjt>z%Nh)pidcS0Hwf9}+`@7%3e=W8&ff&gQq+=B)==^wXGCVqPNmpYEM?^>CJRKktOP?lgSZKc;rm*D2A$g!Bkd@d6o&mre zRC8!M=Yuf=@9bc}>LNF^>;;@N1l*7AMLW?`K>$2BydJCd6J7KJGJePuZ0P#enU_QspcbFgFl-QOpN%rn%ReFXI z882}z3ey!SEYj8l>E^v?fkhnI1Y880=sPH`VHP0i^#ZQh?aRnciy6J3gRc<$Gi8Kx z#4bZvc44s09CZXfkByBDTJB(@e`dpVo9`IrtHj8A9b(T8cpAF(vy zP7p{6tog8l9EUYwyQIZh5*m!xQ-}c(H4aN?{3ihAUDDy^?eeTKB&hTo zHuOfxO+0|Prhv=$0F>)X(5QBLw3y-oag0K*o%4WE%+1XqpG+F0V38$+Lac_=WHvv2 z>a<67H37}_i1SA!iWBK%G`o1_Kks_bsr#Q)A#$Arb!6ZE0;})_oNEYy1)DJ?;etV~ z(1CyDzo>&@w*|hMUif}kl;}ufFM|6B!yF37-WGo^oX&Gyc)x*U(Xi z;~K&NtfIphAY+4I32z|FO2pe!I8SVdsN_AeG=DGpg~J+L@dy-1*C+T?v2y2@%(k~P&SYmjjw;3Hl2HI7 z4?wKc03<@fj7}XeK)f(=NIuuE@wCMa>k2aG=jyZcME_U=TZT0kXbr?S7$V0VLVfkI z&=GV1oWqDpeP7i8=mL}n@2*``a8cvTWGC13Tm)b!viIY05rQ=QH2yG?+r7?FANqPP%IF_nq>I$C8MWjB^ro};A)wm*$%1-tU#orYoCnWZ0yf2K5tGMZYa~7|oUuutM6?N_%mN3cpL`b}SfHEBUws2m4A0Ll|Lq9yV9zJXAO52Y3 zOOuVvkI%;nFmkxTLPz>TA;pAEQxX+faDm`U_2ga(rQ6o z41pnuAFxP}A0sq(fDNmo4reZ!-{=E{Vh zKp2Kzh1Bl=Kq0$0!ci&@aUasP39;o(JQI>?z^9_MNClkExM{$e-3SZ&PS|j`I}?c+ zqwP+|vjREp%NJz>Z3#dC+9#5Q1A!&ke_VhHxdEge1EpCc*xBRoi;nSv?IWf6hGH-< z(I?dk09nM3R*+<=AO@@o7$!QSDI<(V25t5S&*vEiHx9GmYi+^thZYBjsfbkUQ0=65=bBda18}BUnAHbP#=g9mssaO*}zhG1bI!I zp^~s=J}Nx6q6$RTV7#&8c|0vVHV{EI;YlLgc`_HsNd&2xUGQlWMnGq0XFKEkKg0?P zloxp9{#R3lrbkE*fR6}C)G$=<0HlBc!UgO#Fr~KEozvc82Cf$mrC98f8E*^z&WV|9-tD9!YXiP31QCVP;b6kik?Np<%(q*INriVHH!E`Z-hhz z3`i2_JjM%jdN6aUQRFbN#x_KUGqCZ)`^`A7N#IHa*KORk3kF=VU}vr> zgGxE;I!;MMab7Ybb~(<#ELtFcWieF$ketqx=vureBHi3q<`m^;TQ8t5CBpxav6w~d zHx+Muev>_@5+|m?wJqL=u!hL2|Ih@;h^Q`VKWWblBW6CtMv z`|1rGXT#uBd#d%P=%}9FSu_7B5?AhZVhjPR0zxBc!D$F+aiChpkox?5|65 zZ&vvb{^O#ftKtOvV9&vJ4jA19*tsTdu#D2c2aJHS63>qKc#sCY2pkQX>E&zH3C?Q6 zj>B|#nwi+0;lAXRkx9hrMA~V7!Lgv7@#j5y9&bdw#J36$Ei6Y7@N(}*(^6UYp;H|_ z>Z_3;lqz++u#E%dg&D}BP&F;B+;Qi+8YnA{BXLtf4(((9+Jn6S{IQbg1POUo94-pD zv?6oNN{rB;FboM5RSbzHPw4|-mmeXq!r#aR=G$gZY2Df?j!z*MUv~H)&Lm<7JX)`k zZO>-3v6bBcMGw7TAD%0{GGoEqm597F={kuW=L43l(dlAg>kD~?WEljJgS0gB$n~2l za+OVf0~jLwx)Y_VSC*ESFUj#`{^)m~V2?%IWh2!)K5mL6&LP;7nNzzboGAb`Wb0ol z>FUuhGI?vPM2E$?e}OY$JxM;IVRxnubxhxX{`kMWyVFFkwb={E$P^Wp-%P8~SRRYo zt!_O911Q0E!I^|^4~@e^fG(p{&VKO?>5zgDtp|%|-2N&J11aJv(E>rmwjq_)sdV{Z zLqh}cy3+9oiHN*+eEA&25uD~g9NWkt6^6ld8n`H+7Q@V*dP(q)j*iycK_{%P*WVN8-bR=)IDI1KAbcb&g+kbBFFL*mLm4K!2Ab6U3~v*KgLI zfF-pu`f$j&h*J^)Z^7|P1(NWm>f6vkHv@JPgMndmrG;;}6dn17^9S5z;lQQ>#uGpg zB|6~C$e|rE4mO5BW5=Qp_|FLV960uaAesfjqYpjq?KO!={G`c4yjRUsTVteeL znEc&pRhUjL--WxjrXE&?r8*Dxs4GSCQ^vzAd>e^?bA%Qfd#duqORhq~}}`UWLY%h9uj zEnR<#-fax{{r(+#xFGWaq~G1g4fFn2LI!+hTYl%ZP&hxvNUGT06{*<=M|h>n(tVya z-`;7vFP;6^r;|HsC(SwHTJ$7KgjVqZbTYf>+)KZK7tf{~Gg1t%qwcor`#uPLcI$FH zv}Y^B{M)CgLQRD^@ipn|f&#O$bamLm`wZ_73V(Ks{CL6RwQ233+xQ>9NR{0)zK0!N z8rNFwmx+3mFSh0S!&p9_!;fdsDK@%qBz%*&<|1$gIpVLRLbu3E6wg-dvyKe7`?G zeE);*+bobxHJ(lQ-o1cJm8bQ3EbtMtq6z?3{^p<4o6=*OT z{4!tB+bew*ou`)k$G2zwVE5O}(zvXwK+{8(i#uVA>%V^8d*`>t?IiL5BVWZK+6GNL z;%!orpj{s`W8nEtV?b%w;@oT)lQb{&8}sKUuMXBnMtn6548EW5szpXcp$-o70^8?z z_^p3NOSHFG@C#W)e)xIs9VKVEdEmv{FJFYJo{TFgDq_BQ^JdgZWOsLWWwe}CBJ;J> zvqOuo_qlm_ms*KsK0K`R{!mab*ccc{PlW9_QqpF@-&df;q|PyDdFEPc>NHw*rEXGl z{m*Cn!F)oF1l-(yoa5lpcT&$*hKk4yKT>9DQXkiSbsWhlzEP0jj>p2nVwd)_x@LBM|rw8jrpFXikNl9(j=H=&;k&(&y z`ii%;wRx`ey_~FjYAr!4dl7hXQi{8XANQcf8rSxw*?qH#VFOH^$`E)d?~s zysX+^GkkFz;fsFp#f#w&d zu?j}p!lBVlGn}x-{(p|oHM)7@DF)*O? zSo+;;!C&UFtl1;JOwXb9?svtbE+6>BYeIG;@LcCc%mW|Iw!F%4`*{s{Hn0_T_XoAG zgUDr_op~V~c<$c4Yhz>M+R2{m+Da%Im!97Bq9cj+Gxi4!vARUDe^V@`<@k*l_!m;GnsGRo4**IPBddP`OEtIOR6RFE_RDfFI4tQ z&(|)$vp(5f{PFXrpyMB&cY&9_upw&};?RFPz2oxYtf;scc`j|6-U*3` zKL|x9nnb7lTXPhnQf}K4wT2Pf!e;!Cmq$uU3J>SXv!ks=xFil?;kUN$d_$3FhM0f= z_BkB0T^-2l3UoD8Lvgbx1UT!GCnqGZ_Q;_8SwcwQ2fx-_9FD&tk#qX{MKzk?j-gnl zCj14lIY;>Jt~-P% zi&8WVi}dBOHGHddmKJ<{`QvU{0h9dX7{U43^bj-|nLrAPn_gAgnYI|&#w04nr#M)z5ykK1!V%K7Eyig@?Jz%;H621 z_h0**Z{H-gGkTZFm)|`r87;F6CXoww`F^5g`ut=O?$Eh@N6D>Qc!a)+FTI;%s}c2l zr%#?3H>{Nfi;$KriT5F`Pb{p=pq31!k(qBE{PNM%v(g@K2bqHYT;(Wup@qZp18$r< zl$eQENQ2zyq1W5vmE71661fS_L5;b|r_+?RwYA8zL-Gk+&i(Ug)J0a!!Jh|;8X7UM z52B7w*Gq}-h&qX+i|zfs-PV(N2cF=@bfY-|leFp3&`|h@*)t6SIuUia=QnTPvfuye z!2bO5#1@`l@{@%0Vzprj~3R1QoO z>2VTZVHkdV`~E%ig!9wP^X28`+fV)qIXF0=8<=YrB>euZ4h#0P>1^Lm>e{ty8ScNh zLqbEb-hI5FC%VXRK)LYKtm#Jtpe~N;_XpIVYLwgdGHOa4=-;?;W7|g(*$-Zq&tWNe zjLTls*GoP>-%;+l^RHfFwWOpZKR-Y8B?dNnA0%Y>MprTVXhx~DwkYb`?h7j3|E9X- ziKTu(!RYAiU4Em?c;!5k!|!12RlYrZkJ~Tq0(x)f^AlsHdj`WzZp3(a*C94xB{4|o z=%QL@E&fe4Y>ZWgg)#c!Wc7v(u729{Rp|~RVCF1xX}m~+1fZvF)u)J8jfD22hd1nk{C=Y_r;y_sU&o ziJ4(p8PF%MpU=%Z^L?51e|$89*@r9QczZg>ZiBd;O6Fb zemo!R_3q=O@}^>yNXqbc!!vR5Oicu@dTh*T`MZ!;^JcF;=*CM%FfQt#>t6Y zMaRIP0hPxWk`4Eb8&=yh&0dF&<;MK9F-T=M{CpoX=(|~|ZQuL5^-!F6Ol#tjZas)k zN$CJUVK-b%xwqWQDJCYijgkH33q^w&irN-OIpCtN_fT67M@WN}hbMYyNZ-tNkrMF9 z^p>*2HvmnzPsS=&?c&2;`!oKm`Tb=q7P z6pV+6iy>uI;)fi@Tf0DpByOnhkQE^eqoJ6?%3~h$6(hx}v$Het?OReZvY=sywprJ> zckg;0KAmiPYh)Gy54nD?r*+eNe#eLAjyF%%^Hc6#8I+{Gz5T{iLpnZReH?%gW4=FIG!tR?c-o4LGqtRO*8?(!OK<7Hua30tw!XUFRM$r2qb7}P0Kzty~n zr_%u|o)Ul_RPNogI^Lc|cE05COfUp4L-lw!rIG2~SVk$It=eT8DL)~6DjsGY9)j&7 zt6jeaG@2MCD{Jc$s3ct6+_RA6@{CH&0Oj!eAG8MzzT~INX4$f(GA+_8u@C zRJ!f$R^r=Eqx^@P(}2S1bY=SwNqvs;ZV-6SV-ZEUU+_!IA=W{^BqkX=EPoHZl^= z@RRXffGH5f(M&S$1gw8#|g`ED@Q6$_E{YckLM zXXeb-i$9iFL4o>o|7)a2k9ZijUOwyt^t=#AdI)q>P`C;oTMsY~Rt>_0a)m|Met_-o zS4ZW?k2#)BxM9z?$6{N+CwQ*^A>1~y?M@NEs29pxcI5E2Yn_xjB#$lqxaEp zv4OsU0cLTBg!hIDR3-7VjmlV`a|Eg#@64Mt_z5p(K4m}FH{i)(Ud2W9PM1d^iTZ^o(dB#P)Iq`T<~lfGH9>##LCFTz|96T&@SUw1c`V|h{seXsRR@K7Gd{U+ zR-#{tAIJ;M*h#L*Lc{mL4>K;InA#9P6QFYmt6uWsT*sxIG@-KWRnKpa6Oxy_ozfmW zU#Ruo7~dMmQ?nQf)O)In8K)(E5(2FSg6#dJ%`-WKgp<;_?#1A|wsv&<|kvoe}v z5pPmcRRN>YNnC4xHM0H)w&xe9)Y%E{2u#p^_;AvRG^a$0fm!qU<}zDD}|_sykk zj1_IphkT!8wCvru3I#&_4n_>bAb!+)m54mpmBKgW?a5@IjT+?9{V=k1o$oHvWE% zf^Gx$cH92yV5}HMp=JU8Z#F-+u%5ZUL)?#V3*|Q3b@R$_=v8)Vd7ShNNxV6+cg`}% z#b;K^ebdETN5FFR)vH%tW;c0xACFf(fz*2kaA-;6rQffvE~q!=2$qJ>Hg)f0_wv&| z_LnB27b7`7gB)ziJ7Vd`FyuY$Q8x(}CdAUT-gb8O&u($C?*{@X<&E?ePVzMfGZO=~ zt|Sj)zJ06D#wHZy+}V>xtDhVdIXX)Ij;YN;w)}p-$>$XwLyC{=+s5U_+P@!DWD;d_ zUGACcygm)2z|0;TK9Tk@pe)Uq**%H?rXig$@kX0MZVxh)Z@N4Vp1|iR;ik6B>$;-=Y#-;e>bLHKNyrHr%j`UK!)QO_PsYa3`&2<4KxZRa!8 zM>N(@bFjA9pjTdNvymHK9j!R0_N2NU*||Y{j|$b$gGUKS!IxEw0xqr+TScE@| z>L4Q2R<14G`)>W73lGA3ZOy^m-Tk#Ann0>L1tsO1ckiB0RE_n~K0y&H{nTY zdNsX%0Nep&TD!E+uEp!nGKID36cDoAxDg4I!IoSc{zI2*5M;1=kd-ic?HMGP z{l9Y={t_rkc_uL!_K8>60Dya~|IslpXnW0Y2PhV#OGdx~z!bB9 z0|QfDYDmExA|fJXK@a5QFYB z$X*(vT-);-M;6oU&P>&K=R{S^e$^9F#$HlqGoe_z*`4bXyn#*bm!xGv1^Ba`b03T4 zD5y@eJZjOesC#@n&tqrN-uDZ9^1>|EeOqZ}>V;JwgTIq(|N8mepEifs*~~X1ha;zG z7l_pjZ$=8^1jM1Hn1+H}aS3(IUW-c7D;AttpDA+*uLcEQlrpR@4~KvJx0b7e6&D>% zaGjMkB0AcpE9sW!=HItaY9S>;%9w9Bnrd|tx$U*454jimx+Q3(5WYp3(f4ZQ*hHU+ zolh}d_e!#6WmjyzaMU>$M?#?ZY&cHz&QAN&`LIN*klrxY+Vkcgi^Tjbi>LEbtEYn= z*ue>1n|!xwrR<2Xb8^Ufo7-D9mG+MRwKYHM-c+iYToH*g)EJFkRQrQw)XZ3|I?N2>Aa5-@vQyqs_{g#|D4`mUeK}sx4@mg z`A@norvBf0_kZZ6ygcWO3b0@8EwAulk1QOHyKqWK(4w(iy=nMq29N|`*=U543JJM7 z<-ex^rQ=nbl_fNI8G)B4gc%r6|CdVp-^xP&=L1Yw?Mx7U`0Lk80Q?E-4YjqKCTcxu zp<7)AqO#JqR|%&X;N{9lDHHVde7Q<74oyR9z#U7{KE!1c6;1Bz)5aoZR0krh27bUz zBGdS@A;e-@em_9V5E4n~ziTF)p*wHWlDYWt>+Q|j^WCm%5}tOMPaM)hH4Ef%UXq|Q zyPB)%Bud1h&i(Xqxb9`{i!RnTF`bD2Eq8PPAd;pgJ@bPxUB=uxEm(8#kbwKWdZBW;7X0G&mi{2l6373YPDERs%` z)jP5ftFc+Tbl_J$zNsNCla{YzV$!+PolYmg-LAMo>XQ- zu^Pxx#D`j|WAJuv&I;lfEBH!mdoYj&RpZX`IL&Foj!>bRt;#KgXmu!F0fpu-&BU90 zv#g=8kc;v8u_Z+M-cmO!H+O_)rUYh??kymOd3b)Tdd4Ru{aI)n0wfP?G=Q>^P|aU% zKp4qGp9^v5u-mSrLjhe;5oCCPZE(p@Tz>!l{n(>q%t_>MYf=rsd+d5S04sp&Yh{jF zdVf~Xp=H9$yz_MF^_{Kv#l?}1CAFc@qD8=4g1);p$c}>I)Y09&2n0>Lji7+XlKO%U$mrKnS8%<}?8{Q{O(hhpFF!t(6Ts^`lGdIclvv1z^eh2sB#SoY4# zX=bG|mhJiC^#A1HNdaGyBH?udU<#{{P$E1D*rG^7gl3!JhK2Ca;^L{$_@eV$wp@*j zj0}&Cb~0>}hyDEXQ$HpNT5i8e?>i}sSfB(jP%h9G17%*kcL}X86hG9*1(n4!a=;El#onG9=yGNM&%ja_7Z*$P0$kTIG(0qC(}@3& zV4Bz3b-q~Fd9zZ~Qz>_8Hte&=Z^P=tbswv z_frR;0e|c+cKIF*8x~t-V0$DR9uXPAm6t)jdlU2+=hLHkQ0zLfKHQmI_1mhvD~wWwBBW9+u`GX z)(^NM-G>5hM(!q;in4ce^D*xYrU)0*Hup$aNW3ZU0RxP zJNbS^MFoi*5bSEErt~7|w@4Blxc`F~7u|IpK8zvBVW|k5fTm}{`N+~BK;v!qKj%{ymlgF)v z_Cr>H84B0Uo2;CiVT5!dz~89>D+7BAxd;eUAlX=?PZr4kR=a4yQ?s-%}SFY%KLyIM>3gZBo7VwviOM55KeA$UCr$HkqDtc77{P*d}7@K0PSfz^*0ji9Y zSzNrf6NM(B51kMULuP=TodwdJor^0Rb=HWohS3}#;Qo?_cP@__QRNQ9H|FN%knH2v z@J=;>W9NLYciy`$Rm|-=@bk(ORU_*cUBLzR_bbI~{+|tKzT7@Pcx6#%@Sn7_rdJb%v9&qSdVCr`ODe(yh^l00+9a_ObMGc{P!3bs=8Q zinXpLl=G*T{mKU+JPkn#kpdiE$Wc43udnM`%h@r|P4ubSQ!KnSj%Qn?@iB;@G|Ag{ zWKb+C(lMMmU;a-^DuLzuh^Qj!3FpO3vwSDob=7!Jg6Go@mBPnldl$k(HSguJ{0Bt| z96OI+(R5)78!L2yZ=*%>-+pO|x*t#I(rrcMKGI!1@Lp^ba<%EgFKUJ%)s_J6& z-Nf^oEI0QQX6X}pc|&&aY8r`;0b!kT+tRMi{I1UCuI~J>JUD0sQmme@vp$DS4KS9SlOzh4P5&NRGiVUtDi8DejRs- ztB!SX%hsXg(=%5e{S8LSu<@|XzVxoJ?)lcOU74!7fYFH?M6tvyO*Va&B5P$d`zeGH zzpH!h)HsK%AkOoEbWaN%zN1y)g<$tf5^#Zqc17MB!)1f zasl2dNfevA>z}qg{gL+j-}d6r){nZI`#K(Fe+$-T6sM?aj?c_JeDvXxjE1+1&`a}Y4Tzn! z4vbh&gkG8zkT?yHKNcpl5+QLAAaf8Pp?1jEaN=jdW(rG(zr zQIaxDm=tb)poJwEmbWnk|G`Q7ISo0KcQdr(!0MHhQu1e^mhtJ zC#GZ%UN=T6x2+x+;SNt_Fitl=Ls@5W@Y8u-O+BaHVorF;44-+Mwk&P`3r;nOlOR0- z4pvaNpWJUHIiAa9bkQi3%Yg(+f~=iv`9{|P64f`#SG6{85ly8j8gcbA2n_h%g>r2CyGba7gYE1bI2=2edtHb!s)#1otoi+(Q7?_- zzXJ&ZKL)Dc*A`JP`J-OeXh)%p8r#ed$Q^{qyvx|&iCBoN2&`PhjA3OG1#808S)uf7 ze&<9@Fn%Zz!e*ESt+dzt(R}GQQlEhP?`hjNhtH{>6~x{cX_g3FZg$8D9+n;E<@2s4 zE?xU~i!G$_-uoV@%P9qk%%I`IBlCsNm&IAGAKxq#G6zaEw#oX$k!JP=Hxy@huYSfL zY+DMBY5y9lagfSr5Pzv4eynx+4B~I&M)B+c<+DOpA0iPv$C`#4&RLON1(>u^56vh` zIrvv8<$hxY9=ul6DjPHZ$K>=UfyOdBQ#_F*s_`4==m*Y@b7e{$*Uf-UkH@V70S1#q zbZ3X+s>!)8^2jx=#4a^2eSKq|pyjP7GWK>XvGy0b3#puiNJ?$-p1~KqC&Moyo)`_lID=woY9w+u;d6Xd(?&SS<#`P_1>uKM`yAiay#;|&`RCj>%x+6k7s=5 zg6ATtl;*ws#uDnnyj3@8CGNz$gF#d|ZE~zjHKT=kY*I+dViB|OE$MFM?1nfggJ+|9 z4Po`gl857mmD5#Oa>^`sLz&~{5>yB@KWO9*>r;%l+8^SmO_>(HV5HCaqox^xli zF(}me@u#ZO;+AgY6X%|P!xh;H*Hx7lcWb#kDRk}lYy!KVdmC*&e!A%Fe!~N;+Ac-bb1x(lL*2{_EDPXVT&g#JVFm(@jeJ$!4K@6|NZ)wN_3n#f6?q% zy-4wdL85rq`4fso6B|Pt-8r7-f|G3rGXe<=ZcFYju}-}!e{$_9|3q@BQ3(8@xyD8N z0-3u-2i@?dFI=h`9E7H3K=o&?pQ{hU#@Ee9PurZ4=lGx@S`2GFB47@@J9stk%)#}J0fiAe&2I}L%OR4Nds$z&wk5J%@mHcPh^|=krw~o;yC3STmICZD6W{eUUAn>A z$dMHweAe-?hqY897M^}bX=i)kZ8CBS`DpggA8`t&ZAYw9f|-A2KjVsqSr4S!l-VuV zpq=0s8(Fu;HzY0$zxPOf*)YVU5R}6#wq?P*bMg;`tJu7*iyI*{7-&j&zY66tLR0AJ zcjE4GC85V|**w8&RoxiHaaA!``+{5>myqPWXs|fJr`gMAYBa{zi7sW%J%I_d3*#_)pSb*#$?Y|+_ zv-Kj&{k#hqG@Vvwds4FPb zzT*6NiZlg31&R6b*98W4Hv_51W_((@X9+VgSH%*he>4KM$?_&CIQCPVB$*#^=x-Ox z&Gqfclep&``wfio*yr<`#Esv`Ya8yFoSZnj+m_4^m4CLM=9@i!Jf|gD{BxNOkLHiS zOR-8iDio6^4W<;|$M!!znpfQow*NLi*~2EUCX^IbJ`RkLk@elM;0ylMfQ^xaAxVT1 zk@VjFc7C(@+NYPrUzjsf4dsX*ST)n^D+{NKUsY$hB#S$lY2e+#sHmMjjtsJd9tUyOV3R?SR<@yzl3p^aK*9;6*rJk^{>c4}B`L`}xlHg?t7Y+)Q- zKQ|J>37AodQ+S!YFT8VEj*N^i1nZx2f7u|sa1PqPec8{qFyt)2RuyA0PyFm;v6ZJ{ zB*}HH=8r-(fjCR&bi8@zYYYQPkxL5WGeP~$;HasRdE!O;)ZJ^qw281}_^%&F|?py!R!pJ-XO2K49cwxJHbX7(DE{ z#9tN?RCMUJ(j2dalM+OP#r;txeE1U8H{Lj`QoOKXb_aU{o9hd8ym>?dUn5jcgr-M8xFwI=<@?IZ3~4Li1`&`;^MR(Bg)(aL082g%M#&f9LI5 zqQ;|dM26J{7o>?3mrWtLzs=c~i+3B9_hyKrvH7-tHKTI(k}b5)pNM01G390aec@^6 zig)!xpUiHNDCXAZ5?X)hj7d|^+caU|eqSS=hsJeKr%Mep-eF#gJdkIL43BjuB$>Noz+ zh(o0D8%jf+se^^DZyP2XJ$mSjIc-a!ySn`+^@X-e-)u~uSlsgagRna*->bsY4p|mx z&OgpYSetTal&;+68qzl)Z*atqoKq5@o)@s$lV4T3&#AOK^Gnj7idg^COUm?f1D%++ z=w`9hVXb!+EU(V>ePO)MZg7Tbx@eXm(l=o^zavG$)lGcIU)5zkYF8c!drNSJk}_BoS9<0z4a>g# zAng{C-Kzabw{jotY{z1QRMjSmS-;e9`EQ<{=L#i5WDdraG;MJUJ{u!N4(y3%BnHp; zjrVZzb?wOCwv0(Vu>L*$qQIZ;-jUk*2z$2h<>M=DG8k*KtCBVsVs|IcPWe-s?6BC= z<^xzt8;sDhT3?T>H`CHCl~(PE5qX=s(ho$;&Y&E}!~9Evr4}wTn&lZszUOmU5XjMd zW;3~djdm(@zwrBq&^$6Lyyg$L&(svmq!PD+<0k^A(zlr#dX;~C4|v~OJTfgR;+Gs% zHb+Ks=VX3@?DF5!FZ7~bT-RhZL&6QiXNfCwhacHo*1Q<%HD~@QM3>-#Mt#_jbX$u_ z$szGgY))AI>GMf4bbR6mbs{+Vkf$KHa>p9Fv=3=!P}m z?{~^}l>2nz$p_^xtbb|c3)^wmdqXsnTkMHJA43}Bf7cNhxbe-z#KgFyq|iSdgJ(~H zL`1Yj^hELT@#iNx4PN8!`lXE$8d3}8YvRT?Do$LS$C*$^qbQ#ZujAmCJ!pOy5*lHK zTk^NYUvpH=Da?d?W3LUoi)JaOof_z4VW3ak?7)uY-~PxPg;|*oVzgJE%5qJY_pqm3_^fsg<-C(?BXGpC9F@#}hQ!58)UJAU)DarK!z?f* z&JL8qew!ofp7#2K=Bv2|A*qqCZ%1`5Vl&PZA{G8`8t6xAX!Q*pIp-d$oPcf0? z&&Wu4rTem|71g2jB%CO*rhn*LFpx;(pyBEFWk}^*@y*c{J_RVG|>3X_vz00}9 z-$FuGw4;CK^K%(A+gF$K$z&02-a%^#&Hb9I-n>D=rOkAGI-u9`5ZPcTy$^l(C4lAG1R@u};l5AV2BxmsZ{C%XHjV+I@$J2UI zYHM?^Miofz8oo+Nkx90r<Hw(=2`e4a8DDmcf~Fvu$DKzoYo)lZiZt zQ3|r2OMo;)hGn(*3%)nipY84>^gm06Guy{2Nfga`^L}pk94JVe+ed4PMelY^iG{@K z+H#vvj(xgm+La%#q5tj1j-6Q!&zt=%AL;oyzj&&5_jFya8@4hvejm?Tvz&Y?z;pUJ zd??NMG&5Prc!9}4CrwK`Z}WwB=If*OKITMgW4>w-{(*e*6{z31wlhE-0wQbEz>5Q* z(C2FM3UYGLS*`;0WMgYvY1xX!`)wts@jQKCKo^lZ@z!k!0NhOFh z(z}1c&?i+oK*GB&v*4Xy^6#jIzUnnufBd}e0j zyR^@WJ!Dr#b+lU#F@}LV0S4sauOjI+h97()ud=Ff^fiv3;aw17Vgep^r$G8cu0HN! za{2p*1=jk?5=vfdJ*OjtUUw}yu*@gY4g;)CHV1j61N{gal&W$Do38F-G5G0w&aDt8 z2OfxL;P56#!B7ThNsz^XgaNh>%xgMSP^K0z0Rf#6$h~mz_hPe)3JYZih2ZDV$6){r z!>63wTo{4eH88k-{W_w}pZxX~M(ptW{r&x*(gv2&t=1F`h|&%3I|2d%%1_S9$DANl zf~rM_0<(HNh9oF0jTU|xz8KLOfvkkzZB79)Da_5VnpQn?>}lZ=U|a)=15!B>kQLh4 zuz|LgH!?@t*f_j>o(0Akz%oZGSu=CB{rJHgVgY)okgzZhkR>7%BoLq=4lRP|J8~1C zmeK#`E6J#DKa;%HfgL%*^HLV{ALd<~nbai$09EOZM52~VJ-d@&I`URez^!c_t zOw54VwT3}F2y5o{h8t>bM3U8PgM@_S@|Baf?LUrE3F4RUT!UNUs4nk5LZ@``C9V6l zW<;3%K8`l+mw3c-pGeLvmY*c3LNnq~JSY9AHS52xr{3qzi#OYRDtvr`s(RB<5>8a0 zY!$w(Yw%Fj+xw6d)ib{X^fO(J*yXrcz4951m!y1seG!EpaPloJEr_NtR{E3+W@7B1 z89*kXF#p>I`SJA-Aca#w9u*7%s@;pD>0En66StTX#XAS|FpISGyPTZsAY6|uE=Ix$ z+I^X{_mKZ2qY)@_Q*B@jq^1`59&Jpq#BdAX$JMO93~4On#Yg@ z1zGLcR-G?QSUW)_1p181vEN_p2VqEt@$7J;*-mJn+Qs}k>hjrE!;u*xSOxC97rYPR zAOqs&o7=rV2$uA5XXqNOjjqpw8a zxrgYpu!ayVTk-sVvHf-*-oJmbu#ig-`Xq?FlFN>O}w*mGy<6b#48PYGTJ$gMvJU!&igr z2cV@!%hYU#nR++aF1o=u5t_rLo+cCl1Lr+>7Zh;q-viE4Amu*!`z8C^w>0oMWI}k6 zfcOt`@ih@A8W>X})eMBSh~!inb?$*=ZP;?1paQ{ff)O{!3@3b-GYLSj1zWP&!eXl4 z7xct~m9|>Qw2iwUqov~wE95Xmoj#!$OnfTW#kWRCR6EzqVj=oTFE3#*eAxa<`-Kf>@|grq4FN`tNpf!Ww#S{%r#Vt8tmd z6`6~Da&RAT=;f<7Z+aucK*8I$O=?_OKx_d1Eani|(h)sVQ*}c_DnzFWPq2N_z1*T1 z9qe9i5Hzvv^Rr(^%vf*TiUEBn___$bpRU~m1r3bYtRWVW#08fd<5=2|H2l$M54796 ze;&ACqVK=C=NXyvesC3sh=@Z>tj274B(Qtd^%(oJk^();3!IRi@RN;IE*TB>i3ibX zedLOFd!-FwkUk6GIwV4kK zjL9G~=MJu-zntwG05L{(AnFp$X}l_?tgI}TY9~ONNweU#HbehHNNZtwPKOy&?;4-S z=-YoR()zhxy{*sgBScuKa_PumsRq5CaytLY8Z|>e+WTj^$2xS2_;`3K>gsGVGFf0k z0?F`QQ1?Qh=X&!d}%vfn@yDC_Pn2!IU{@$x?Wc2yc<`>7-h7!eB@ zR1RHTU9MZV*u}(BV7O&nZfrOGUFy-JM=9$0P1Dy1u%M2>H>RY}fI}j4Gm|cU|zYfuz<+wcNY@05M49mmtGJAufp}G<%6ymmO|rBB($hM1t7`{-Ev>B);o*fN zCkN&pV)UaS&@BZctTAs{jOaa0yb|)-8+fn9tb&MG0xNf)H}Yr*G90v0}jd zoi?{WJckPm7PGEm;C0#GnoNhi0gfkmOUqeHuVYvPP*fnEBt&%sTD+Rgs&S}~OvfPg zvKz0u)s@U=JNF|38T)&!8$!W?^b3L)67=eE29<>I&5{IVma72W;KH}Qt@9$E?BgQ_ z015`n{D3$myw-mFS0n&ZA^^qYcFTazpmc_Q`ox2zKoFs8fz?ncSD>u)@0W8E5Ez%2 zmruBN-2xrA6yP{HdHEBl_lRf-Ru!t<9?0bStDZbS$}NJOL05u4z77H>wIm)(Fi+7C zgtBfe+ocU0-5b38W@OSNL%`VgMLNtHCg0(j1=g^10CC7DC=|fT26YhdF(Fg{)WtOF zO>%OWW#kX|f7G%sj_Bhm1BCB+Ur8&Sd?=E;qBY(?uTpL$GR z9D&*8r#*&dtCfHUnDuscZ+M@N1@*$DnCeF#J011IBB328Hp{v<$!A})@gvZyoD+qW1$s>?AdgweDJ>ETgEjs0s zc?AP&?!XTONOM2wTr8T`@xxt6d%;Bba%A0dMi%9c4hIFw>&?2^rz%u7kjd4ONxLsB%?=A4xu*2S+<74e7{&W*d5}&7VN~SGJ(>tjlqhL z@&2}w!;M5gr5_yEl$N{Gl|jcwBkV9lYR>l`iPay5JN*i^lg>!7JldMv@f8w$KG}Q9 z?wi7c^&7^%op=wi*h!smrDhu=DHOvx7x+kVSYW?5OuZQ2lq(p-^gBz5=0N!cYtmI|D*8A44?VSF(=T&GfjkoBrK}UNr{{`G6xCBy%YZQZospseQl+| z=B6TTR|^^6XGdt4o|xE}gWn&v2M_0?YaCQ-Xk>abVVn|MoS%T5#vi*n&q6S@Ux?Dc zKwyQ?r=IaQ$8Fwfx=c;nM1p-k$iPIUBVgv)pH9~(ERNLdpWX8XbP(Je-X{bEk#j7a zHh-$RU2$Wkdcg=J1%cGd6^#|XljHGI2N|t|&L4*i+7RGKMy~by{_V8< zS@+u4_Z!U(4MEO#$6?sb+PZSAqpK?yL_F;QnW-zxpl6O`J)srcB+J?4QO zTmID*5uVh<5`hgf^XQS!IUzp$GzTd>p{NhWx3n)BB`8o78t6VS(vMzmk zx@H}b23_ZbE5%Cw{^$&MykxnsKS~_DA6c(Cp2G*>dt1Q?Nu;03-}?6$4VvOLffttc z#oerSG~M5VeGRsYokRMx_p$bs@_G)3g0qxo!~-@RnqcJMXm@-^Y3O@t&vH@W#^~3# z8yP$>sMJhPAN++)>SaifG?UMt89t=n0bXR>*slZYpD56N-Tc+Jx_|YRXpH?wVU4!U z9gDB@jYTq=41HmG*!w5rM}+k5e_3K*_Zt0N-h0`msF@)`%tD$Z zOOp5@FxNN6;mzyR{74Q1QjX#L^@L~z8_rIhMfpQ>o zkWi&j_iM2Z#)+z$@hZ}%kZ{$1miDlhd9{%hBYemSY%e>j1zCS;nf)5f5S$4)`?Wn? z`^2j~W)_8n2U$PpZP)~*!{2MO9^Me8d_^Q#l3!^SHssTRc3l{^z2dPdXo3Dg7nA85 z4N^daiGk2;|B?lQ$a0&`cx%lOP)Q;^RP4#cR{|{g;GU=tD-=O3-3mXkt@+mqZ+Pn( ztR)WLACS3D*Pln;<6ON5z7NEw=y$l$2@p0_)P)ha5TrtZHmCoam!p}_EGFo*5I24G zq&MAowF|g&rkd9e+%Hd-2TRRm5Jl4O$G1U>35MPzs2l()!Fc=(2XFW3PNsl0*4Wq> zV%kCsH&Jat%@*(L>oWkYy@VDJd`(Ruxa4bBISK|lQI|(DJXH9psi{bXLHu_}=LdBN z;Q&Ai=>sY_&~~cv)`oz;HWl&607e0uiJ`5aR&rMxK;W@j4^D6(%!8!T0&ITupss~N zT~fb$Pg8u60`XV_wuQE630fLUu#B98^BadH1%R`Oi3tKPnH}(avEF*8L6@ozOWq4CG2Hx*@5i!r`nT!PtZN-1AZhs@}-DQdXgg^ zySH!Oo?o8*`<*Tt3jk~fvaIXaqvRdL84jh>QZTg;e7*3L=7A>q0XlQgc24=s6C%Fa zeD&0pndabHDE2;Qo7K34govNp1}Y-}UgR8vP$Gt3P=4F%efQ7@pZw0elMI9i7)d4b zwX!s!To+^>Dihy?ZW26a_9G<>;KH0q(2{1kc{2)p@~KGw1MOxqI8gsqJ?R3=)rGZ? zP|U=HDLC!jM#aKG8MY0QKtz}Y@DkV#$-_}=q@w@{9~`gHff&tUA0n+k(k95D&ToVB z0TKE_<5LER9F%jv!7~4|dir@6v{=4#5u9sJGcJQV9h&U==PP{6jcVP-8?Gv+2w-rUN+mp zqivhtiAziSRaEfq9gX%Hm8T1UEn}d2N#=>sT(GoCQ&)&|D&jT zaBy%HAP*vO1`;P1nhbEof%k~C@Nrj1$4rJt4-4=gEb^hq83FqG6i8Qg>p|55c=$O$ z$qn{s5|9qUJ!p-(LFevRh^rTOML935SeN?o$K)ATHH-QPHimmxB)ETL_NO)D78Yy( ziX)OX#9{;G5!gg5X8!vVknUlN=;`P*1FBF}Q9%fa37`2G(EMR9mF%AQgJ;Fh)zfgi_3Xzlz-erWy`0#-Zt;%Uk&d*OGE&mOGVo+SK zj92qPskd6`%hoqE#6nk>lS7Bbav5MOQS`BN|GpnXc0bi`7Oai8&NreqjOEphTh&+g zEAFeE1`{w3;68=>yA6jIIM*&x0n><@8rHze zz)HXkAripws3`f;5$Fc(`g6e73T8(rLO=(_!x0A{=?CZRY~;-na9zG$S+N6h3)*5! zK*2mF6(NuYz=8UwwK%g!a!>tTz@Z6v1Zx1$_`(SXh*S}df-vibh$n|mWyO@5v1^DI}MHmJ=YR}shveYBVGNsVCyQP*VeEx~W^C71o6chM<~A9H^I`1c zWH$x5o>vCS9+~*-D))#>A}-A}%b!$^0f!2x5jCMH@z4Ux297~Vu|MjIzq@(w8Ak#) zzk6NP(ZHK3ojW5*z03IeI`(OXw%x>GtuH%m@HQ%w%u0a=o%62KF%Tv(1-2F<2Xc45 zJ@}iTtXNR^Zi+ZApB5XWgU0qjL1fqb&eZ`D3W^XC^srXaj-%|8B7?ess5W=?t}{lL zwBp&q!?`cM{Av3T^r(~p#hzDQzZXo6xcE&0Jh!HUgamSPOHUdUZXmV;6Bw0#cL$`bmUB3aM2#Jx90Up8AH zR4ORed&K6WTdR!d>K#TlwJGv?M2Ne!K8Koxs}ziolG*>HcWTm^&9CTq$v&jwnqqSJ zM6E8OnML7f*y%aa~A5x}KL+C$%bT z7wVX)YU=Kmsd0Y(JMe2~*Cj|x&l*?6s)E+l@L8FWZ{I2iW6piG1?FsweR1=ehXju`-t(bT0KT`;U)ubB_K^_gcqF8J7CyBjXy_-B|&&TeD-<)%*3`}ynP|VJid7t_;x8!P3N5TqT7&F2bbll zvN1rNLavH=w_@yRR=U6GtR|M+nXaGUBh%Z0g2r&53{WKMDg3i#Q>s7(D(WCC77$^kZf%rs zs0qS*!HEvgM4Ni{EB~CxlaBbA!9P4QR?@pXj~smiDHwSV zA*&&~YXeOIsNmr@PfIXIBVJKB{RNIe>fN4gMWz`z&FxHq1WjN)1+TOuFd#W)WpP06 zUeOqYBHpsRw*zDfoEAhP#}9^n!$%;qv_e@gDk;IT z0LIxL(&&%2Hn^E5Y{MU$Ax z6*5xx)EvYru3mrh@J)AtN!IS8!{mc+0ci)^b-$i6c%5lU9ZO?kOL_%!#DOzfx>M(x+P!sc--nIV~*$`yh&NSa5)q1v6SSt#Bl}S`q@xL|mqR1BEXOO9H1g>AWxQ z0?-43eB>Z1AQHf{^0J&F?C^uG!CQFC9XLObIn=;;D+p=;)0?bLVpHkP-@Azjlgz68 z8kt}~sf2TK$Wz=uB#{ImqYOwBSwL1*0GL9?ByCoRwfxbKa8e2?stWhTdvGij26aGs zHx*4Q_^N&?Qa=pIx92hcp7B4OorznHYt;5LXGldv8f2cQk|ZKS*p-ybk_;)drDT=} zDGC`2NfXJCWQY*x(`fJFJ#k^R4RA7X>nfJa z#{Ew-D~*{XKM+?XxOncy@_T%zkk!*{&sD4&Z)VoEQ>Q1~lQiHCtFZ^tRejwzPp>|A zkLo$DA~b3xdpw`Jh8dcY*Ks`wdRR!Nm1J279)Y6c@n$|4T+c4K^krL(#XaKZwCZTm zes6q|&*m^2r?+~R{yI)gaol&vb1^Q+-D9Gg+ul^dqy{->_IkIjNDFOe*XV#giFP{I zj+D3?(I5!N=3z!3eX>7;dJKh7+l_ywkM%06zrN9IX0U5kxG3Q>5R7V=~RqC)9%IuqL%y8oU!L zweEvD+rY7(v587{{Z+A6!=l~g(%h~7i8imVbqk1Sxn}?M1fQg$NYy~i-`PF)W}X&+ zU=>Jkn<1QgDC_1Q&Kq)s>}nYfT}6z$V-JBl*@MuXVCvJfzKlj1MOb&qWd7T z>7+7|z5@24?|=C08MRsX2w)3Y1#Hpj+^GG5fyz%Fkj(=L8NrHS{OmgkT1|3#Qi!GP zSKzMQdA~B9Z>0GE&wOE*0u_3zc-79BF@sIcXV!osOO?Du=oGBH6gi zdq8pT^7Xyr9KWA;8yy`U9?qm2PzyH#e=>&WUQlRhrS;626RoY=F!;$!-;FL(fCiB$ zz@bCqEwy>t8iiOeB*;!7x&@>3P(N5CysBrQ9|Q+)NGVtqe*NOKkO@`49bRq@Y-yVA z=&n(cSdiXHBWc$3XWJ{4|4wYW*W{tXi|?Z7K^C7reflI=_s#m!b6%fSqB3@6{Wcqc zg967*P~D&EW-n_6F!~1-EsUr1OOMA$Y;^Sgy?c`pD%@V3u9TEHq`_5e)qe{%txbG4 zI{uAk2@L+?%FkJ-Z;Z!E_8U)9y>l?^WBFQt!^0hGD;N1%1|Lo}`MS9DM_tO577=+z zUUs|Ox_(Bv9ohvBQ2cX~0!>2}bC>hD<< z!NspkyzCq!RN72UYd0jKes`&=V}#RQT$ zD=s|NXHts=nW^(0zMl3t=z<&nG5r>2U98_(H8Hki)3cr}JB|+TF~)z9%U`wep%!T~ z_ve^hDm%RK<$#>Ag+W~`wK9Ujt1K4w-xs*2RoM&A$%S28U&eee{7L?5CIPIWj?(oiaYuFh6+OYAn zE7yiy55d-uLSxZ-&XJOdgy>zv%us6E^A>F~Ii0HW5eGZ**gUwb6_WOV&9T!)|LDj8 zT?Y8*T_}4xYnVr9?Uv(HLS{d>uT%A5^^@c`GavTpSK{q3|K= z>k>9gI&ld=qC;*p&pi9woSkV!T^ZoyJ>X=cx1p~Q=fe$;{v=+|vi!NY$th^ZTNg(j z3DjhXGvhJhDM#RKln&}<3LBS&F1siLm9sA|y)7OAF+AWC_-yV-(GpG(5rBx4-E2?+GUAng z^DOBei3w#i`_lSKXGlXyT#CwwCH0XnrIWTxTrX@6xJf>{|D1xg3)7?B^qZHceyKUP zMd_caOUqX4Zc4N0dTzt=u|3Pevq?Ts*$M}SFNZg^+Ac$X4+NRocwGb(t6@p(IyddU z4Ia9A^6E3Twx>U}v&uWuUEga|pEjFn_T892iUox|ByjIuCb0{Iu47L&CQgrrJUz@z z+0L_WwU|mI@=ekQk&PaJ#BRfmHEP>?IwAtyt&HwtRghi_!GH1bOpW2BwhHUVUot!T&Xf3>HNqw%S=L~HSgGw z(%l^HY7keR24n{TRwp+9cA^bNcbBBlIWE_?iwG>u_5F^H-=Qzq;mp{Ofb3eB8m#P1 zQoWwXMCD#w^djNGrOmDbOp=a{Srygm_lew~)86^F^0v5}>L(~*^CHG`0Rr&Nh`GG}`bz_(e&T5|@X>*O7*xoM@NE^Cqm1hM~H}KUqZ~HZ?VEi$7ogdZln> z`iGoNbDQQML~FbT7FOacc{dyB@}mo_wEX!`f zj;QBeY{hmb9Sh*PZb3xjvsshj@SND5FkU!3KQ&&W1aY7=`CgwtoD^187o}m4LyAvw zO=}n>tV8$kSf*vom~TPb1(y^ZSC{j8S2HDzar~fl;IocHoz=4Ex+y6@wo9W7y~c+0 zP~0U@O0rxeqYF4osN*r4DI?LXet~zSw};ucN%VJI*j{7Bg5t$mOY;Vvu$^D{{dGoZ ziO2djZ+Bk3qnTMez%kV>>`w}>_Jm{!@r(oy`?rucv=~1S93l=i36hfVRUjT64-K>+ zvFr7J|4g#5_#{KY;Nf!_i8dLRlb3$X@e1_R9{sDxZj{C9ROkGQ!vp>fxbVKX^)z?7|+oI)?6-wsOW zT(j`zq!l^K))}8jUKSMDWP*Lsr%#}gR-!h0tHjK|HA>~Dw@Pv4?_`C99AoX@zZAsH z^XbW9QBg?bRHiiEzU^5Xeg60n6~)FqY;AGIbj6Xz?yRy^yq?tALEuyv%GOWDjy1}u zKA+U)MOVXW|F2(W&wH5g?Z-pA`KEal)?kR2_4CX!mtAu!TT`?)>Z(U>ss%2XX00_l zlf09zo=2>oyAchIE+Hg(X~u!#cCg6k07ZeaP`;M1U0&E5Wq@3YMh(JaVs?u|4NHm$ z`%(@lvW>Q-$;AEL_sK;SQ_1fNZ=_f=@IM&1E=mkqun%?WI&mF8<+r*}`RS#8jm@{7 zcIqfCd!SLvo{Gu0{{nNlk>Qt#YKPXqWm$oDlz_7)mmdj zUT+m5n(=jE>Fi=;6okiD=v{L9w&TXbP(!1vs-~90Z9#>8qIjIkwNK?9zKn;<7dzd>95)m$bC=Z}&N#bMeKC#~*n4Z76#*f5bU= za#SdS1?3NPNYN_CV?Bg4zx;st{+=h!8xcSS`_%#W8{Gpq>l8I{=cZV-@n`f7PO?$% z%r;03leiKJALbuN+na5BckjNPKX{R}X@kp+G6M(!^X1F?k;&SdM~QVTp%b&Ox}?HX z{UUaxQQ0hs7{n36&Mmw-B7kg39ygBDbZfuV>&tF(@sd4`Kk#-}ZjzXq@wNovIf16K zz^r87`n*sAux%@|=dCFx?h!A9+bjF~2ziZ3Y9vENHZdGC^d4f(6z?YTjQ}muSaB4& z+^X{c16=zYeRkrcNn@fiT!GT**WDb=d)OTBZ7%Oul5^fAj*$FE629M%2^?dW7(|U0 zR)9P=`7k6qb|>lXwsZUtq6-Nj07#4Rb0gr4yxS1^YE^Pwj~LV=L@8a(-IUqjBz+58 zcw2)N{+3ZETUqyde0D+VjNxB?U)f(3H9q}M{!$OyKaLTqz#EB$d~?0RwXPO4PacZ1 z+LQh|1NXQLh~Y7lJxp{`gXOQ1;YN<2AkZliN-3m3V+}POvL#2=$qDjrgQZJ#y zFk$NBr-~noN9sLp*$?bp5)1u?uF$NNwspqd{rm4guA=2~Et)pGzpv>hr=ST4LkLq| z@y7mUyCz@AZZ=sdC{inXKIq!h;nl5usW0Z_YBBY!$ZW#Glo4onWn>Po38{bpQb3)t+yRO#P^54B1 z*S&FEO;%a$_xm1w{5pC3NR2dSOy7hc?TUbg52=C=V68WrpRE?q4~O#d?1}~0lg*Al zs-`Pk0$=su<~c;}AJ|{DDl6-wTgJOz`#!U;RFRoB}jhm_+;^YE$UMVniFt0I(Z~FZ+6irUN z4#$pZitqA&^@o0TH;+IONPPUP)N1AU7QVXYIBd+C=aWZN%( z(q3>F+|rTZZat(U7ipaM7SX?O5{QdgY{{hW(m+wwxidr+rY?B$L4(X)2M2&R3UQoM zMi0p#67MwJ(YD;O9;hW~5c0#Zmr(gpD4qi??lv9q6{Qotz~CY-;JXym2E|!t)#>{s zFc#K-6|Cl9_%2%F$sQgC0VAtAuuq3wzI*_X;-mM>a2uXO5mhi#m#(h0T(W+f|M{_j z6H8T}?6`Nmw&rE)Q-P`7s+~q9)>(EVO726hx9jIuFYA|H%nH@FP&vHnXKWjA8Lh2c zPTD6v0t`3$G}Nqk(I*g(=dFIDTIWR0e&GnHn7&T%hOgT(oa;? zwW+DASZ=V^ z0oL%=vt;As;gbRz1`hsvJ%>~?qM}BH3>=hqKxHeWm8kHb zZQoN2hCHF`s9`t1MvE^NkJiE7Kdj;#)jKO;6GTGn7?NfN6Nr=WXK8i-m-Yy?YSr`c z>RPME-+`!0P7)`R7*n|f$90HvyZIkW93B0GKv(kOc7Xv53=UBt zyj7qSHjeVV8Lw~bndg>%&^tkGs|IxTV>~((i%mHP#JpQ>U`3+wWas3d8rM zsH_|Xr7kTh9O{pXiss77J?T7o;;AalTeNV1*2ZHc{Gz-i)EyC3AgnGXgsN;sm(#kE ze}sEMo)xoQTxYn+2TS!?g)`%pC{YQevt+lKdHVwWD?=6NagW5JGilQB<@YmlZmF9N z;;;v?uH0OwM?=URfPqC0??h)XYSVA~*qN`eeKDHUO3Uc7Wpl>QreCnL;M(%ex)NWn z+n9?Zi;b{iRUI9jnS(_*hsc#6TSBe)k}YT?ppyXn#i$rNhfU4hIm`copAN3kyEQC zJ}9)>Q*IpSugvVVHN6|1GH%b{6a{^YjE2jW>NksyJ{9eJvh5g~9^T1Bpt**2gGYZ1o= zJ~ORIvt^>4=iEc~EBXax#CjDT3@JRIZW#N^$ue(};iJi&p=03?W7m9p*Y#z@;e!X? zd)z=Jdo-gjOO<7ozG!j>&j&778IRd$uJ^;B2~H`meT5cvb1T*-iqfH}Npjfm0X*L< zdqL!>UaTUX z!L*ZOwhuJ+fB|(1cWX zdMC|nOH3B|?nao@AG+o)*>?7L-(sD2K@qh6egM5Qp@FV*8CvjRD8;~ih<`9!kS~?_ zzu%KTImx)bwnFLn?t)X1krTwXDZgLBoBY6Bn^WC=SV%tvnL%AH+`a(1~}TP*&uhLJut(w!DXZ`GKy!~-GT42kjF{?;W5 z-V!oGpIh&T=7`G(OO|9@pY!+|Te#{x8GJ}p6Q@ieKCSk!*oBCbOw8=NML%H3Wg;bi zhLGXKpG6-I9I!=EcV^PY;RtZc+gJ4ArQ}!x&{n$K6uDBIWkX8Za>=(7@fri^aITrW zS}LbdkeUeVKw!a&;*Yh<=z15jYEnPE(mxOwtu#*YHes(1@gSg0F|ILq_2=K9A!n}6{venSn?syJ_UDL@rr)dE&${ZOh4!l> z&7|0CP%)K`C3v2{cu@sB0W$#wD2`3phh!Ryd&)hp4$w66`6})n+$u|O!iq9HD{je9 z`^SG1MYfla)}ANUZlxR#!A!8j@`cIt5qHl&C|JN2CQ73GJScH&%N0#6--auECz%NI4BchBxVWMVR9eQV_Js#CG7p zgIUREj18irFL9CxnW?GCZt+hF8;S{19H~Im9g{zppwY-ELSPSz512+wr>a5o1NG5_ zh4kh41PCCWjlcbEZ3SS<*8yBlF(XL>k4)Jh87Tfl$az?YMp2hboT?fu0xh7*USd8D z#IHVgWdq67gc*^UtwRONzj&+A^YxEPC_AJQI)7j zfEk30(yLu#J(-0GrLGjlyfOs|2mScVJMRg)N_A1nS%4vHzJI2#Eu8I>Q_B?%R zF6I=@j=6^^Z36SIR<`kvS`~f63yy1>%Cj|KM#Wq$}qv2cNrnEAm zrbN+%;CF3%DPeKkjI`la8pi=dYzuZAcVu^A2C%G!MMer_aX<0zyCQ7tVz#E78RwP+ zrUN;;iN1r5-O2Ei8JJ?!)M?YYd8;r%?t^=ab3(*aH6EUW!<_KU+S~-y-6?VRWiE4q zC}9Y_yQ|&)I0vZ&~9#B=?jEw+C zvA%ZUt-7jUnNCXq^ba)FX7c@^3TPvi80F>p2Zmh>bQ{nQ2R07!WX^7DSows_Qfd{B z01Svnus_KOZApK=E~KnL2MV~qAD|17H(m&edRr2392n$)(4#LnkTDTqJpg z+KjPt&P@lP2vTKC!7i+{9X95>plSj9m{>Vn4x_pqq=cZ+x!<=D^D_y zmX7O+pF6IA$iF82aS^=<`^}6Q6)A0}G=7%In3c>Eh(ktLJ(d-;pI(?*fXe}!(t-05 z4)Eay?ZrS>t%q{Jrlvq*bN4P?w$e%ccPJjz-5`!oqZWw$Y zDJkKN%A6%LLynOFfP*YTqx;~<_si579Srck!9@`BsNcn1sg#1` zFas$a`y3VwvB0vDAB~DAECd9WzP=jvf9lsgcqV^xwejObu=bRWf4rs7*gOP=Z=@5W zY!Ec)0*ot@)Qgk;b)2J!xC}O!-r8KJ@pk)_L!2B5Oq0DR5{@80-@a*UO&>Z#_mID0 zmk~t^D8ow)#SruF<+mvz>k2!9Eri467oD-DMaKWS_E}<faBX$!J_=VJ6vs7xqk> zJCnt*5hvGNkJpQNyyRA*<_;dbk5VI3*~D$!ll0{*=LpURQabwP)4FAE)LfrCgKO2!w}+`F%JC~&VJ)9ji2@G z*}f`U*<-nnWB7r>J(qdV-fMh{_MrKYm5aHx0h1asdY9$g9TPafKqza`Y@w-eU$)XV zJ_7gk95dpCqapODQfnm6g2j86MI`$Jt%VrCWEwWZVwiL@(B-h(UVg3%$<|#*yU=m? zszvtZhfz{E%L%jt$3W(M4`xC*1OY7C-p~Ngj?(ek`;m4H!duso7j$`W@ znGfQ62YtzmC-mcYnWV(b#tdfAxM6pZE5#bhlXZvV@NToN{xi``nNq|No*zBy|LE|> zBe>JpY|y^5(wuWu2?v79HTDu0|y*TWkY z{LbI0wrh7!EPNDn&}JcTCi2>~4uA_Hq8AMT+2`%BteRTK#wZO2a|sjtHFrfv(=f;< z;(o5B3Az5kw=Y3H!0!pi55oXrK1k&ft}71RDKpjZSLB;-gR(h)y-sC4YuJQ=^3#*m{A%oT4#usvndFz5Nl z<+b!=&`AV2sCfly$>Sa7g@egb$w#Abq#Q{jFEaYKq(A<0S{`()I3yU|MRUTb#+fO9 zt^$rEnnH$e9FMPVfA!6(mh_6k17m*SF*GHY0UIs*qIO$bTe*4kfxV@wta-ayod!pA zX9bq%!XZZuF}i6OMtELeFiU3lc_Oa3ynT!_GlhmRm6FTT(+zhZA01(1Jf~-A7+p`b zE{J(r+lewFER_hGXj9_NSg=4BpKE7nvzY+eFt%s;5$JvLwWUYGmLT41P5=~YjptVa z?ir6-Uc5*<4y8oYHE@#*qhP~wV6c>mRgtsog7h&%&kPNH^7wHFG8<4>(8pCd`)u%< zuXC9?xg+Ca@Kc8-yf)n2%~TN=ONU`Dnn97SFK0QbYH6jS%}eK5!`3A8E1l+L2CFh=>=uOut{1C*c9!j9RdwMZB!c-)C zItL>9c`W6)B#Qmiun9wRCOo0mz)fEr9rBaTV?O~JT+?w(6Y*>@n!umhCeMaAVD90_(bjk5%{Q6&lWD-uZDaPgF#`gSknvjk(*tLoD zFx>DS@GK%}<1X1p!y!o{_Z%dSgi$$M6mL#P&BA#v2V}{JJfc+``=BP?aF4LL za;K@tY{-m)(~{?(s-wX9`1sg!$z>~~cDvS9X4_1kexIi9ALKuZBG!|An9Jzj zUZy`9<)r^u;Sw$EyUl-A$myqaTL`v2kO5X0l}ng;GKl)HN8 zbKaLcoYEFP(B80H4#Q&+!rx-Ll|vNq`|43^85Nu8>N*$`u+xG0pV=Y@!9R;UK)a0k zfSr@e)nGKnB2rRhd=35n1m_a%u=t)=Lk(TW2aqWNJPW$qG1yJEK)#WSAWElP53wSb z8SKfD!%%69$I!WA-0gV;D1pidhl&2dH8KI-Aa@1u)SsLhkn}EonYy?(=`D*eERVOf zmC-Q6Y(^}xLMZWh`m<>+#+RiOoF8Zv_IdlKRo6Mkfga!xB>`GZhPUM;1~K_SasiHc zYZ{vd&#~p?w0n5AxvntWepp%P9p-MT%#wq!iro`N-@SG!^K9D`Pxd5-_}Pv0I*Kox z2jU3U2|0?2tH@mOokc^2es;MR@0=Ddo^d8G5Z|OOz*BvciA0B3rXsY9UEZ*AF;m=I zZcxGOnlONHwFo#p<-onJ6Lu3AGVHqB3O))!4av$EM6AUtL52fm8GT4U!F8_1%#7oE zu5vDd?YcspjCm$$xH4%%80R4eu|)8=z>#VV8O{3l76><948Y-99%Hgx9aNx z`0eS?z2=r^5Z z^i$H1Kq#12B5#P{_#O}VK=1EUx<2m^rE})s(WAX(YTuQ2>nmY0-#3=&w`XGa1Bpy+ z1|0r}GRpQCy<_s{!SpM8M0!iXDV-u%b!}2r2T-EXpoqy+r|zS#Q`-M*VI}*z596Lb z*kgQX6k6(jKCw)ghHItgZ-7jo#1yaQzO{F%8vz~hfpRKal;2tkUBk5O6UzW6!iV2+ zxhm8Tbp30qNh|zemNdpIoEiBVa6iNKb`y0)j>YwsGb2m|@Q{Vqf%2>BMCH8loa!5!?B=8P>{QmFmoj`;&_9>j zaP;``JuW9oOG-ellMe^S9k8aw3F5E7qc_&tNy z{T;@1!s8`zXLjt^v2^U|6O~m}eS%XX{dG*VS7c}P4R{d7_BhSL!s4gLt`mFw{iCs& zd|GLkNp-vV;Mampn>IN^TRbjtpU^3|@-r(p`sU5K)Zr=D=bm31P|-KNz8wPJF%wU1 znr>78_q-X{Aq+QE^<%F6!TXiPAMz&Ee?+f?^$iLRUY%#Bv1{D5mG2v}y)pV2Gkw`j zv){U2qdU(odY+zs@{d~?^2^N))&7Nrg-icju9;tQ%Y1N~U07+|@({wcksdHEi(pUE&kQ zNT+`(n76&AW4F;M(W0gR4wwG>uOm%IW_EVi0S6C{_Bh2lbV&YIjR9UpidU}Odtv^q zRr$#cU~uHV;7A5X)bk(Wn?8&AVUxb^yOue@tse=H50xmx6w)FoZ$qJBDa+dV@ z^8)};Jg+p|LrhH403Fo$E}E_Nh7W%PjsQtxjF`$nHXI7(?A(HQL&(&P8#N=;@L}p3 z7+k`ZpK#*_|AWbR`=LYax85c;Z@A{j^#^E#Crp^oK}$=z1XsJkx`)ho9;^>oKcANq zYQ=F(t-9<}Y`RTX!;oj`n9=GMTQDq0`U@iQ+TTCXO8U>exmGnojm{(@qC3>J*+2iZ z#E)}1K7M>iBk?ImI?;XsM$`3`$RV=!U1_*G?_0pL*cTzgyQJjpQ&2to^2Lib?^kxH zsR;c?f&90ePi(k&<`fTlThz+u&@{Ve+S?b`$0)YQezL=WAse}B{xUoQ08 zwMXm+!B}>LwB!V?LB__r!MsCY|*=`_. .. code-block:: none - + @@ -359,31 +359,31 @@ Let's iterative over all entries ######### RunKey(config_id=1, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.07801418439716312, time=2.037977695465088, status=, starttime=1631282181.557564, endtime=1631282183.6159637, additional_info={'duration': 1.9398164749145508, 'num_run': 2, 'train_loss': 0.0, 'configuration_origin': 'Initial design'}) + RunValue(cost=0.07801418439716312, time=2.2497713565826416, status=, starttime=1631282346.1455958, endtime=1631282348.4175165, additional_info={'duration': 2.1327102184295654, 'num_run': 2, 'train_loss': 0.0, 'configuration_origin': 'Initial design'}) ######### RunKey(config_id=2, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.07092198581560283, time=1.763808250427246, status=, starttime=1631282183.6753135, endtime=1631282185.4621637, additional_info={'duration': 1.6652922630310059, 'num_run': 3, 'train_loss': 0.06315789473684208, 'configuration_origin': 'Initial design'}) + RunValue(cost=0.07092198581560283, time=1.9583194255828857, status=, starttime=1631282348.4759932, endtime=1631282350.4595954, additional_info={'duration': 1.8516414165496826, 'num_run': 3, 'train_loss': 0.06315789473684208, 'configuration_origin': 'Initial design'}) ######### RunKey(config_id=3, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.028368794326241176, time=1.7897744178771973, status=, starttime=1631282185.5725982, endtime=1631282187.3866484, additional_info={'duration': 1.7171096801757812, 'num_run': 4, 'train_loss': 0.04210526315789476, 'configuration_origin': 'Initial design'}) + RunValue(cost=0.028368794326241176, time=1.9696462154388428, status=, starttime=1631282350.5766225, endtime=1631282352.5707958, additional_info={'duration': 1.8882865905761719, 'num_run': 4, 'train_loss': 0.04210526315789476, 'configuration_origin': 'Initial design'}) ######### RunKey(config_id=4, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.1063829787234043, time=0.8260533809661865, status=, starttime=1631282187.524149, endtime=1631282188.3726454, additional_info={'duration': 0.7510147094726562, 'num_run': 5, 'train_loss': 0.0, 'configuration_origin': 'Initial design'}) + RunValue(cost=0.1063829787234043, time=0.9009068012237549, status=, starttime=1631282352.7145653, endtime=1631282353.6379747, additional_info={'duration': 0.8192369937896729, 'num_run': 5, 'train_loss': 0.0, 'configuration_origin': 'Initial design'}) ######### RunKey(config_id=5, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.11347517730496459, time=0.6848156452178955, status=, starttime=1631282188.528923, endtime=1631282189.2361732, additional_info={'duration': 0.6113417148590088, 'num_run': 6, 'train_loss': 0.09122807017543855, 'configuration_origin': 'Initial design'}) + RunValue(cost=0.11347517730496459, time=0.7428398132324219, status=, starttime=1631282353.804658, endtime=1631282354.5776129, additional_info={'duration': 0.666534423828125, 'num_run': 6, 'train_loss': 0.09122807017543855, 'configuration_origin': 'Initial design'}) ######### RunKey(config_id=6, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.03546099290780147, time=0.9079265594482422, status=, starttime=1631282191.873163, endtime=1631282192.8069694, additional_info={'duration': 0.8317694664001465, 'num_run': 7, 'train_loss': 0.04561403508771933, 'configuration_origin': 'Random Search (sorted)'}) + RunValue(cost=0.03546099290780147, time=0.9998452663421631, status=, starttime=1631282357.558601, endtime=1631282358.5846424, additional_info={'duration': 0.9264123439788818, 'num_run': 7, 'train_loss': 0.04561403508771933, 'configuration_origin': 'Random Search (sorted)'}) ######### RunKey(config_id=7, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.05673758865248224, time=0.8366022109985352, status=, starttime=1631282195.5994413, endtime=1631282196.4592614, additional_info={'duration': 0.7641079425811768, 'num_run': 8, 'train_loss': 0.06315789473684208, 'configuration_origin': 'Random Search (sorted)'}) + RunValue(cost=0.05673758865248224, time=0.9400296211242676, status=, starttime=1631282361.897076, endtime=1631282362.8627753, additional_info={'duration': 0.8574907779693604, 'num_run': 8, 'train_loss': 0.06315789473684208, 'configuration_origin': 'Random Search (sorted)'}) ######### RunKey(config_id=8, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.028368794326241176, time=0.6892211437225342, status=, starttime=1631282196.690815, endtime=1631282197.4048796, additional_info={'duration': 0.6128628253936768, 'num_run': 9, 'train_loss': 0.007017543859649145, 'configuration_origin': 'Random Search'}) + RunValue(cost=0.028368794326241176, time=0.7487592697143555, status=, starttime=1631282363.1226318, endtime=1631282363.8961356, additional_info={'duration': 0.6748225688934326, 'num_run': 9, 'train_loss': 0.007017543859649145, 'configuration_origin': 'Random Search'}) ######### RunKey(config_id=9, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=1.0, time=0.0, status=, starttime=1631282200.7430394, endtime=1631282200.7430398, additional_info={}) + RunValue(cost=1.0, time=0.0, status=, starttime=1631282367.716324, endtime=1631282367.7163243, additional_info={}) @@ -522,11 +522,11 @@ The ``run_value`` contains all output from running the configuration: .. code-block:: none Cost: 0.07801418439716312 - Time: 2.037977695465088 + Time: 2.2497713565826416 Status: StatusType.SUCCESS - Additional information: {'duration': 1.9398164749145508, 'num_run': 2, 'train_loss': 0.0, 'configuration_origin': 'Initial design'} - Start time: 1631282181.557564 - End time 1631282183.6159637 + Additional information: {'duration': 2.1327102184295654, 'num_run': 2, 'train_loss': 0.0, 'configuration_origin': 'Initial design'} + Start time: 1631282346.1455958 + End time 1631282348.4175165 @@ -635,8 +635,8 @@ model_selection.GridSearchCV.html>`_. .. code-block:: none {'mean_test_score': array([0.92198582, 0.92907801, 0.97163121, 0.89361702, 0.88652482, - 0.96453901, 0.94326241, 0.97163121]), 'mean_fit_time': array([2.0379777 , 1.76380825, 1.78977442, 0.82605338, 0.68481565, - 0.90792656, 0.83660221, 0.68922114]), 'params': [{'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:pca:keep_variance': 0.9999, 'feature_preprocessor:pca:whiten': 'False', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, {'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.9331254454871041, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 20, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:pca:keep_variance': 0.9967857433838874, 'feature_preprocessor:pca:whiten': 'False', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.005069923784737444}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 1.103855734598575e-05, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00014375616988222174, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 229, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7895711479212801, 'feature_preprocessor:pca:whiten': 'True', 'classifier:mlp:validation_fraction': 0.1, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.002766772136115771, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 180, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'k_nearest_neighbors', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:k_nearest_neighbors:n_neighbors': 4, 'classifier:k_nearest_neighbors:p': 2, 'classifier:k_nearest_neighbors:weights': 'distance', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:pca:keep_variance': 0.8047274080856589, 'feature_preprocessor:pca:whiten': 'False', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.008015420020402715}, {'balancing:strategy': 'none', 'classifier:__choice__': 'libsvm_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:libsvm_svc:C': 100.5905006626969, 'classifier:libsvm_svc:gamma': 0.011333066835975528, 'classifier:libsvm_svc:kernel': 'poly', 'classifier:libsvm_svc:max_iter': -1, 'classifier:libsvm_svc:shrinking': 'True', 'classifier:libsvm_svc:tol': 0.012391313886912093, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:pca:keep_variance': 0.9290439925152777, 'feature_preprocessor:pca:whiten': 'False', 'classifier:libsvm_svc:coef0': 0.08087614244138486, 'classifier:libsvm_svc:degree': 3, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010000000000000004}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:liblinear_svc:C': 10.369811497206404, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.0015130257264171173, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:pca:keep_variance': 0.6661824659281315, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'decision_tree', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:decision_tree:criterion': 'gini', 'classifier:decision_tree:max_depth_factor': 0.14069368736662313, 'classifier:decision_tree:max_features': 1.0, 'classifier:decision_tree:max_leaf_nodes': 'None', 'classifier:decision_tree:min_impurity_decrease': 0.0, 'classifier:decision_tree:min_samples_leaf': 5, 'classifier:decision_tree:min_samples_split': 19, 'classifier:decision_tree:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7772788812704434, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 526, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, {'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:sgd:alpha': 1.0333981795670597e-07, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'modified_huber', 'classifier:sgd:penalty': 'l2', 'classifier:sgd:tol': 2.5846457091661748e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:pca:keep_variance': 0.9755563101648113, 'feature_preprocessor:pca:whiten': 'True', 'classifier:sgd:epsilon': 0.03457277874230573, 'classifier:sgd:eta0': 0.004635634934629576, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00015788887334393744}], 'rank_test_scores': array([6, 5, 1, 7, 8, 3, 4, 1]), 'status': ['Success', 'Success', 'Success', 'Success', 'Success', 'Success', 'Success', 'Success'], 'budgets': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'param_balancing:strategy': masked_array(data=['none', 'none', 'weighting', 'weighting', 'none', + 0.96453901, 0.94326241, 0.97163121]), 'mean_fit_time': array([2.24977136, 1.95831943, 1.96964622, 0.9009068 , 0.74283981, + 0.99984527, 0.94002962, 0.74875927]), 'params': [{'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:pca:keep_variance': 0.9999, 'feature_preprocessor:pca:whiten': 'False', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, {'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.9331254454871041, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 20, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:pca:keep_variance': 0.9967857433838874, 'feature_preprocessor:pca:whiten': 'False', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.005069923784737444}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 1.103855734598575e-05, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00014375616988222174, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 229, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7895711479212801, 'feature_preprocessor:pca:whiten': 'True', 'classifier:mlp:validation_fraction': 0.1, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.002766772136115771, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 180, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'k_nearest_neighbors', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:k_nearest_neighbors:n_neighbors': 4, 'classifier:k_nearest_neighbors:p': 2, 'classifier:k_nearest_neighbors:weights': 'distance', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:pca:keep_variance': 0.8047274080856589, 'feature_preprocessor:pca:whiten': 'False', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.008015420020402715}, {'balancing:strategy': 'none', 'classifier:__choice__': 'libsvm_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:libsvm_svc:C': 100.5905006626969, 'classifier:libsvm_svc:gamma': 0.011333066835975528, 'classifier:libsvm_svc:kernel': 'poly', 'classifier:libsvm_svc:max_iter': -1, 'classifier:libsvm_svc:shrinking': 'True', 'classifier:libsvm_svc:tol': 0.012391313886912093, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:pca:keep_variance': 0.9290439925152777, 'feature_preprocessor:pca:whiten': 'False', 'classifier:libsvm_svc:coef0': 0.08087614244138486, 'classifier:libsvm_svc:degree': 3, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010000000000000004}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:liblinear_svc:C': 10.369811497206404, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.0015130257264171173, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:pca:keep_variance': 0.6661824659281315, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'decision_tree', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:decision_tree:criterion': 'gini', 'classifier:decision_tree:max_depth_factor': 0.14069368736662313, 'classifier:decision_tree:max_features': 1.0, 'classifier:decision_tree:max_leaf_nodes': 'None', 'classifier:decision_tree:min_impurity_decrease': 0.0, 'classifier:decision_tree:min_samples_leaf': 5, 'classifier:decision_tree:min_samples_split': 19, 'classifier:decision_tree:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7772788812704434, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 526, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, {'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:sgd:alpha': 1.0333981795670597e-07, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'modified_huber', 'classifier:sgd:penalty': 'l2', 'classifier:sgd:tol': 2.5846457091661748e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:pca:keep_variance': 0.9755563101648113, 'feature_preprocessor:pca:whiten': 'True', 'classifier:sgd:epsilon': 0.03457277874230573, 'classifier:sgd:eta0': 0.004635634934629576, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00015788887334393744}], 'rank_test_scores': array([6, 5, 1, 7, 8, 3, 4, 1]), 'status': ['Success', 'Success', 'Success', 'Success', 'Success', 'Success', 'Success', 'Success'], 'budgets': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'param_balancing:strategy': masked_array(data=['none', 'none', 'weighting', 'weighting', 'none', 'weighting', 'weighting', 'none'], mask=[False, False, False, False, False, False, False, False], fill_value='N/A', @@ -1019,7 +1019,7 @@ The explained variance ratio per stage .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 26.563 seconds) + **Total running time of the script:** ( 0 minutes 28.847 seconds) .. _sphx_glr_download_examples_40_advanced_example_get_pipeline_components.py: diff --git a/development/_sources/examples/40_advanced/example_inspect_predictions.rst.txt b/development/_sources/examples/40_advanced/example_inspect_predictions.rst.txt index 79ee9b4287..e4c3f66bad 100644 --- a/development/_sources/examples/40_advanced/example_inspect_predictions.rst.txt +++ b/development/_sources/examples/40_advanced/example_inspect_predictions.rst.txt @@ -90,7 +90,7 @@ accelerometer and gyroscope data collected by a phone. For more information see .. code-block:: none - Train score 0.9954285714285714 + Train score 0.9951428571428571 Test score 0.982 @@ -143,12 +143,12 @@ in the `scikit-learn docs , 'balancing': Balancing(random_state=1), 'feature_preprocessor': , 'classifier': } + {'data_preprocessor': , 'balancing': Balancing(random_state=1, strategy='weighting'), 'feature_preprocessor': , 'classifier': } RunInfo(config=Configuration: - balancing:strategy, Value: 'none' + balancing:strategy, Value: 'weighting' classifier:__choice__, Value: 'random_forest' classifier:random_forest:bootstrap, Value: 'False' - classifier:random_forest:criterion, Value: 'entropy' + classifier:random_forest:criterion, Value: 'gini' classifier:random_forest:max_depth, Constant: 'None' - classifier:random_forest:max_features, Value: 0.7613645588909879 + classifier:random_forest:max_features, Value: 0.5617648009327952 classifier:random_forest:max_leaf_nodes, Constant: 'None' classifier:random_forest:min_impurity_decrease, Constant: 0.0 - classifier:random_forest:min_samples_leaf, Value: 7 + classifier:random_forest:min_samples_leaf, Value: 5 classifier:random_forest:min_samples_split, Value: 11 classifier:random_forest:min_weight_fraction_leaf, Constant: 0.0 data_preprocessor:__choice__, Value: 'feature_type' - data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__, Value: 'no_encoding' + data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__, Value: 'one_hot_encoding' data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__, Value: 'no_coalescense' - data_preprocessor:feature_type:numerical_transformer:imputation:strategy, Value: 'median' - data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__, Value: 'quantile_transformer' - data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles, Value: 909 - data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution, Value: 'normal' - feature_preprocessor:__choice__, Value: 'feature_agglomeration' - feature_preprocessor:feature_agglomeration:affinity, Value: 'euclidean' - feature_preprocessor:feature_agglomeration:linkage, Value: 'ward' - feature_preprocessor:feature_agglomeration:n_clusters, Value: 212 - feature_preprocessor:feature_agglomeration:pooling_func, Value: 'max' + data_preprocessor:feature_type:numerical_transformer:imputation:strategy, Value: 'most_frequent' + data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__, Value: 'minmax' + feature_preprocessor:__choice__, Value: 'select_percentile_classification' + feature_preprocessor:select_percentile_classification:percentile, Value: 21.624077480994448 + feature_preprocessor:select_percentile_classification:score_func, Value: 'f_classif' , instance=None, instance_specific=None, seed=1, cutoff=60, capped=False, budget=0.0, source_id=0) - RunValue(cost=0.010426540284360186, time=2.7420847415924072, status=, starttime=1631281684.9311593, endtime=1631281687.6964247, additional_info={'duration': 2.6453771591186523, 'num_run': 2, 'train_loss': 0.006539000467071454, 'configuration_origin': None}) + RunValue(cost=0.05876777251184839, time=2.6265876293182373, status=, starttime=1631281825.237638, endtime=1631281827.8871558, additional_info={'duration': 2.538407802581787, 'num_run': 2, 'train_loss': 0.059318075665576786, 'configuration_origin': None}) Passed Configuration: Configuration: - balancing:strategy, Value: 'none' + balancing:strategy, Value: 'weighting' classifier:__choice__, Value: 'random_forest' classifier:random_forest:bootstrap, Value: 'False' - classifier:random_forest:criterion, Value: 'entropy' + classifier:random_forest:criterion, Value: 'gini' classifier:random_forest:max_depth, Constant: 'None' - classifier:random_forest:max_features, Value: 0.7613645588909879 + classifier:random_forest:max_features, Value: 0.5617648009327952 classifier:random_forest:max_leaf_nodes, Constant: 'None' classifier:random_forest:min_impurity_decrease, Constant: 0.0 - classifier:random_forest:min_samples_leaf, Value: 7 + classifier:random_forest:min_samples_leaf, Value: 5 classifier:random_forest:min_samples_split, Value: 11 classifier:random_forest:min_weight_fraction_leaf, Constant: 0.0 data_preprocessor:__choice__, Value: 'feature_type' - data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__, Value: 'no_encoding' + data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__, Value: 'one_hot_encoding' data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__, Value: 'no_coalescense' - data_preprocessor:feature_type:numerical_transformer:imputation:strategy, Value: 'median' - data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__, Value: 'quantile_transformer' - data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles, Value: 909 - data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution, Value: 'normal' - feature_preprocessor:__choice__, Value: 'feature_agglomeration' - feature_preprocessor:feature_agglomeration:affinity, Value: 'euclidean' - feature_preprocessor:feature_agglomeration:linkage, Value: 'ward' - feature_preprocessor:feature_agglomeration:n_clusters, Value: 212 - feature_preprocessor:feature_agglomeration:pooling_func, Value: 'max' + data_preprocessor:feature_type:numerical_transformer:imputation:strategy, Value: 'most_frequent' + data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__, Value: 'minmax' + feature_preprocessor:__choice__, Value: 'select_percentile_classification' + feature_preprocessor:select_percentile_classification:percentile, Value: 21.624077480994448 + feature_preprocessor:select_percentile_classification:score_func, Value: 'f_classif' - Random Forest: RandomForestClassifier(bootstrap=False, criterion='entropy', max_features=15, - min_samples_leaf=7, min_samples_split=11, - n_estimators=512, n_jobs=1, random_state=1, - warm_start=True) + Random Forest: RandomForestClassifier(bootstrap=False, max_features=4, min_samples_leaf=5, + min_samples_split=11, n_estimators=512, n_jobs=1, + random_state=1, warm_start=True) @@ -224,7 +215,7 @@ Fit an user provided configuration .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 2 minutes 11.827 seconds) + **Total running time of the script:** ( 2 minutes 15.149 seconds) .. _sphx_glr_download_examples_40_advanced_example_single_configuration.py: diff --git a/development/_sources/examples/40_advanced/sg_execution_times.rst.txt b/development/_sources/examples/40_advanced/sg_execution_times.rst.txt index 60bfc5b2b9..77f9537fd2 100644 --- a/development/_sources/examples/40_advanced/sg_execution_times.rst.txt +++ b/development/_sources/examples/40_advanced/sg_execution_times.rst.txt @@ -5,26 +5,26 @@ Computation times ================= -**24:07.496** total execution time for **examples_40_advanced** files: +**24:45.170** total execution time for **examples_40_advanced** files: +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_resampling.py` (``example_resampling.py``) | 06:14.592 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_resampling.py` (``example_resampling.py``) | 06:31.489 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_metrics.py` (``example_metrics.py``) | 04:53.064 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_metrics.py` (``example_metrics.py``) | 04:51.133 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_inspect_predictions.py` (``example_inspect_predictions.py``) | 03:53.925 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_inspect_predictions.py` (``example_inspect_predictions.py``) | 03:58.328 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_single_configuration.py` (``example_single_configuration.py``) | 02:11.827 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_single_configuration.py` (``example_single_configuration.py``) | 02:15.149 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_calc_multiple_metrics.py` (``example_calc_multiple_metrics.py``) | 02:02.337 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_calc_multiple_metrics.py` (``example_calc_multiple_metrics.py``) | 02:12.088 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_pandas_train_test.py` (``example_pandas_train_test.py``) | 01:56.251 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_interpretable_models.py` (``example_interpretable_models.py``) | 01:56.130 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_interpretable_models.py` (``example_interpretable_models.py``) | 01:55.647 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_pandas_train_test.py` (``example_pandas_train_test.py``) | 01:55.822 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_get_pipeline_components.py` (``example_get_pipeline_components.py``) | 00:26.563 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_get_pipeline_components.py` (``example_get_pipeline_components.py``) | 00:28.847 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_debug_logging.py` (``example_debug_logging.py``) | 00:18.529 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_debug_logging.py` (``example_debug_logging.py``) | 00:20.726 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_feature_types.py` (``example_feature_types.py``) | 00:14.761 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_feature_types.py` (``example_feature_types.py``) | 00:15.459 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ diff --git a/development/_sources/examples/60_search/example_parallel_manual_spawning_cli.rst.txt b/development/_sources/examples/60_search/example_parallel_manual_spawning_cli.rst.txt index e984ecade8..9ac656dcdd 100644 --- a/development/_sources/examples/60_search/example_parallel_manual_spawning_cli.rst.txt +++ b/development/_sources/examples/60_search/example_parallel_manual_spawning_cli.rst.txt @@ -301,11 +301,11 @@ Start Auto-sklearn .. code-block:: none auto-sklearn results: - Dataset name: 3436c512-1240-11ec-8642-6dc8225d4641 + Dataset name: 9ecad404-1240-11ec-8668-e1b8f8e61eaf Metric: accuracy Best validation score: 0.992908 - Number of target algorithm runs: 11 - Number of successful target algorithm runs: 10 + Number of target algorithm runs: 10 + Number of successful target algorithm runs: 9 Number of crashed target algorithm runs: 0 Number of target algorithms that exceeded the time limit: 1 Number of target algorithms that exceeded the memory limit: 0 @@ -342,7 +342,7 @@ line. .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 40.073 seconds) + **Total running time of the script:** ( 0 minutes 37.914 seconds) .. _sphx_glr_download_examples_60_search_example_parallel_manual_spawning_cli.py: diff --git a/development/_sources/examples/60_search/example_parallel_manual_spawning_python.rst.txt b/development/_sources/examples/60_search/example_parallel_manual_spawning_python.rst.txt index 48ffbd1025..72aa63b5b1 100644 --- a/development/_sources/examples/60_search/example_parallel_manual_spawning_python.rst.txt +++ b/development/_sources/examples/60_search/example_parallel_manual_spawning_python.rst.txt @@ -209,17 +209,17 @@ which means that it is automatically stopped once all computation is done. .. code-block:: none - [ERROR] [2021-09-10 14:06:38,556:asyncio] _GatheringFuture exception was never retrieved + [ERROR] [2021-09-10 14:09:35,202:asyncio] _GatheringFuture exception was never retrieved future: <_GatheringFuture finished exception=CancelledError()> asyncio.exceptions.CancelledError auto-sklearn results: - Dataset name: 4ba460d4-1240-11ec-8642-6dc8225d4641 + Dataset name: b4eb17db-1240-11ec-8668-e1b8f8e61eaf Metric: accuracy Best validation score: 0.992908 - Number of target algorithm runs: 13 + Number of target algorithm runs: 11 Number of successful target algorithm runs: 11 Number of crashed target algorithm runs: 0 - Number of target algorithms that exceeded the time limit: 2 + Number of target algorithms that exceeded the time limit: 0 Number of target algorithms that exceeded the memory limit: 0 Accuracy score 0.965034965034965 @@ -230,7 +230,7 @@ which means that it is automatically stopped once all computation is done. .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 35.962 seconds) + **Total running time of the script:** ( 0 minutes 35.972 seconds) .. _sphx_glr_download_examples_60_search_example_parallel_manual_spawning_python.py: diff --git a/development/_sources/examples/60_search/example_parallel_n_jobs.rst.txt b/development/_sources/examples/60_search/example_parallel_n_jobs.rst.txt index bbc0821b91..4e6b74294e 100644 --- a/development/_sources/examples/60_search/example_parallel_n_jobs.rst.txt +++ b/development/_sources/examples/60_search/example_parallel_n_jobs.rst.txt @@ -113,8 +113,8 @@ To use ``n_jobs_`` we must guard the code Dataset name: breast_cancer Metric: accuracy Best validation score: 0.985816 - Number of target algorithm runs: 49 - Number of successful target algorithm runs: 48 + Number of target algorithm runs: 47 + Number of successful target algorithm runs: 46 Number of crashed target algorithm runs: 0 Number of target algorithms that exceeded the time limit: 1 Number of target algorithms that exceeded the memory limit: 0 @@ -126,7 +126,7 @@ To use ``n_jobs_`` we must guard the code .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 2 minutes 8.558 seconds) + **Total running time of the script:** ( 2 minutes 23.603 seconds) .. _sphx_glr_download_examples_60_search_example_parallel_n_jobs.py: diff --git a/development/_sources/examples/60_search/example_random_search.rst.txt b/development/_sources/examples/60_search/example_random_search.rst.txt index 09795dae4b..ca82b822d4 100644 --- a/development/_sources/examples/60_search/example_random_search.rst.txt +++ b/development/_sources/examples/60_search/example_random_search.rst.txt @@ -152,7 +152,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.13366756044911932, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 10, 'classifier:random_forest:min_samples_split': 18, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_rates_classification:alpha': 0.06835899987255477, 'feature_preprocessor:select_rates_classification:score_func': 'chi2', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.791639810538127, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.2949722712387337, 'feature_preprocessor:select_rates_classification:mode': 'fwe'}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 1.3202262453017803e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:liblinear_svc_preprocessor:C': 6335.658297960351, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 0.00035301468680188074}, dataset_properties={ 'task': 1, 'sparse': False, @@ -160,7 +160,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:sgd:alpha': 5.189696963506294e-05, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'perceptron', 'classifier:sgd:penalty': 'l2', 'classifier:sgd:tol': 0.0005024616279807072, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.477737759345916, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 16, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 14, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:sgd:eta0': 0.007608275318572964, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8953090913877264, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.26570274492806745}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'adaboost', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 1.6587261797143242, 'classifier:adaboost:max_depth': 8, 'classifier:adaboost:n_estimators': 368, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00031132126574883666, 'feature_preprocessor:fast_ica:n_components': 530}, dataset_properties={ 'task': 1, 'sparse': False, @@ -168,7 +168,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:bernoulli_nb:alpha': 8.843515731149308, 'classifier:bernoulli_nb:fit_prior': 'True', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_percentile_classification:percentile': 50.58615414999356, 'feature_preprocessor:select_percentile_classification:score_func': 'chi2', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7852218490061461, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.15162626175424537}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'nystroem_sampler', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 0.0001384744065375479, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:nystroem_sampler:kernel': 'poly', 'feature_preprocessor:nystroem_sampler:n_components': 414, 'classifier:lda:shrinkage_factor': 0.2192999307296778, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0010364937923091088, 'feature_preprocessor:nystroem_sampler:coef0': 0.9586161969293623, 'feature_preprocessor:nystroem_sampler:degree': 4, 'feature_preprocessor:nystroem_sampler:gamma': 4.85086661900421e-05}, dataset_properties={ 'task': 1, 'sparse': False, @@ -176,7 +176,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'qda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:qda:reg_param': 0.23910875621465733, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_percentile_classification:percentile': 87.86214879612422, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0015543757334360092, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7530273530198002, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.0792482460648931}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, 'sparse': False, @@ -184,7 +184,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:liblinear_svc:C': 64.64437157661465, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.013399889539803811, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'True', 'feature_preprocessor:fast_ica:n_components': 43}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:liblinear_svc:C': 2.285306370007781, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.005821344021856017, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7978382221839412, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1644, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -192,7 +192,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 1.040063255316952e-07, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 1, 'classifier:mlp:learning_rate_init': 0.0018475934154961247, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 35, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:random_trees_embedding:bootstrap': 'True', 'feature_preprocessor:random_trees_embedding:max_depth': 9, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 6, 'feature_preprocessor:random_trees_embedding:min_samples_split': 17, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 32, 'classifier:mlp:validation_fraction': 0.1}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:bernoulli_nb:alpha': 8.843515731149308, 'classifier:bernoulli_nb:fit_prior': 'True', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_percentile_classification:percentile': 50.58615414999356, 'feature_preprocessor:select_percentile_classification:score_func': 'chi2', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7852218490061461, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.15162626175424537}, dataset_properties={ 'task': 1, 'sparse': False, @@ -200,7 +200,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'adaboost', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 1.6587261797143242, 'classifier:adaboost:max_depth': 8, 'classifier:adaboost:n_estimators': 368, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00031132126574883666, 'feature_preprocessor:fast_ica:n_components': 530}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:passive_aggressive:C': 0.114391364050916, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 1.3440590734654458e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:kernel_pca:kernel': 'sigmoid', 'feature_preprocessor:kernel_pca:n_components': 1117, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.023878029144121318, 'feature_preprocessor:kernel_pca:coef0': -0.34481806774236556}, dataset_properties={ 'task': 1, 'sparse': False, @@ -208,7 +208,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'decision_tree', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'classifier:decision_tree:criterion': 'gini', 'classifier:decision_tree:max_depth_factor': 0.6228726042266908, 'classifier:decision_tree:max_features': 1.0, 'classifier:decision_tree:max_leaf_nodes': 'None', 'classifier:decision_tree:min_impurity_decrease': 0.0, 'classifier:decision_tree:min_samples_leaf': 16, 'classifier:decision_tree:min_samples_split': 19, 'classifier:decision_tree:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:random_trees_embedding:bootstrap': 'False', 'feature_preprocessor:random_trees_embedding:max_depth': 2, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 17, 'feature_preprocessor:random_trees_embedding:min_samples_split': 12, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 38, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 606, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:qda:reg_param': 0.0995499108996053, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:select_percentile_classification:percentile': 72.1351484889017, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 79, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -216,23 +216,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'nystroem_sampler', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 0.0001384744065375479, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:nystroem_sampler:kernel': 'poly', 'feature_preprocessor:nystroem_sampler:n_components': 414, 'classifier:lda:shrinkage_factor': 0.2192999307296778, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0010364937923091088, 'feature_preprocessor:nystroem_sampler:coef0': 0.9586161969293623, 'feature_preprocessor:nystroem_sampler:degree': 4, 'feature_preprocessor:nystroem_sampler:gamma': 4.85086661900421e-05}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:liblinear_svc:C': 2.285306370007781, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.005821344021856017, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7978382221839412, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1644, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:passive_aggressive:C': 1.4622203211010016e-05, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0017964371726429177, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.10392737384710127, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 11, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'qda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:qda:reg_param': 0.23910875621465733, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_percentile_classification:percentile': 87.86214879612422, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0015543757334360092, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7530273530198002, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.0792482460648931}, dataset_properties={ 'task': 1, 'sparse': False, @@ -240,7 +224,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 1.040063255316952e-07, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 1, 'classifier:mlp:learning_rate_init': 0.0018475934154961247, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 35, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:random_trees_embedding:bootstrap': 'True', 'feature_preprocessor:random_trees_embedding:max_depth': 9, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 6, 'feature_preprocessor:random_trees_embedding:min_samples_split': 17, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 32, 'classifier:mlp:validation_fraction': 0.1}, dataset_properties={ 'task': 1, 'sparse': False, @@ -248,7 +232,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:qda:reg_param': 0.0995499108996053, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:select_percentile_classification:percentile': 72.1351484889017, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 79, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 0.035543606049804645, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:liblinear_svc_preprocessor:C': 4.279105226196228, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 4.410651487451908e-05}, dataset_properties={ 'task': 1, 'sparse': False, @@ -256,7 +240,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'valid', 'classifier:gradient_boosting:l2_regularization': 0.009193751229756878, 'classifier:gradient_boosting:learning_rate': 0.6836522210129492, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 828, 'classifier:gradient_boosting:min_samples_leaf': 3, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'classifier:gradient_boosting:n_iter_no_change': 6, 'classifier:gradient_boosting:validation_fraction': 0.28817393948552533, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00010868227587711292}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 4.421745686388309e-05, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'train', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.0005485701552075972, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 36, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:select_rates_classification:alpha': 0.44455023733729254, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -264,7 +248,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:qda:reg_param': 0.01667385805274091, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.24966112905354662, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8911872287672372, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.27951285357994865}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:bernoulli_nb:alpha': 0.04662763358613446, 'classifier:bernoulli_nb:fit_prior': 'False', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0007039340780305985, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 493, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -272,7 +256,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 1.3202262453017803e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:liblinear_svc_preprocessor:C': 6335.658297960351, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 0.00035301468680188074}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:bernoulli_nb:alpha': 0.010232681621243814, 'classifier:bernoulli_nb:fit_prior': 'True', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7243940064641332, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0032991588967262613, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 123, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -280,7 +264,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:lda:shrinkage': 'auto', 'classifier:lda:tol': 0.014034416932373166, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:kernel_pca:kernel': 'cosine', 'feature_preprocessor:kernel_pca:n_components': 285, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0074025063474275335}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:lda:shrinkage': 'auto', 'classifier:lda:tol': 0.0004981675590462134, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0012702067069091537}, dataset_properties={ 'task': 1, 'sparse': False, @@ -288,7 +272,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 0.035543606049804645, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:liblinear_svc_preprocessor:C': 4.279105226196228, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 4.410651487451908e-05}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'valid', 'classifier:gradient_boosting:l2_regularization': 0.009193751229756878, 'classifier:gradient_boosting:learning_rate': 0.6836522210129492, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 828, 'classifier:gradient_boosting:min_samples_leaf': 3, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'classifier:gradient_boosting:n_iter_no_change': 6, 'classifier:gradient_boosting:validation_fraction': 0.28817393948552533, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00010868227587711292}, dataset_properties={ 'task': 1, 'sparse': False, @@ -296,7 +280,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 4.421745686388309e-05, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'train', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.0005485701552075972, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 36, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:select_rates_classification:alpha': 0.44455023733729254, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:qda:reg_param': 0.01667385805274091, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.24966112905354662, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8911872287672372, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.27951285357994865}, dataset_properties={ 'task': 1, 'sparse': False, @@ -304,7 +288,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:sgd:alpha': 3.816570529036228e-06, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'squared_hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.000896391087588558, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False', 'classifier:sgd:eta0': 0.043879389796003546, 'classifier:sgd:l1_ratio': 0.003142456770095119, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.013637118017627287}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:liblinear_svc:C': 64.64437157661465, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.013399889539803811, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'True', 'feature_preprocessor:fast_ica:n_components': 43}, dataset_properties={ 'task': 1, 'sparse': False, @@ -312,7 +296,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'decision_tree', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:decision_tree:criterion': 'entropy', 'classifier:decision_tree:max_depth_factor': 1.1387664107898294, 'classifier:decision_tree:max_features': 1.0, 'classifier:decision_tree:max_leaf_nodes': 'None', 'classifier:decision_tree:min_impurity_decrease': 0.0, 'classifier:decision_tree:min_samples_leaf': 8, 'classifier:decision_tree:min_samples_split': 9, 'classifier:decision_tree:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:pca:keep_variance': 0.9503612101678187, 'feature_preprocessor:pca:whiten': 'True'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:lda:shrinkage': 'auto', 'classifier:lda:tol': 0.014034416932373166, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:kernel_pca:kernel': 'cosine', 'feature_preprocessor:kernel_pca:n_components': 285, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0074025063474275335}, dataset_properties={ 'task': 1, 'sparse': False, @@ -320,7 +304,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'decision_tree', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:decision_tree:criterion': 'entropy', 'classifier:decision_tree:max_depth_factor': 1.7056696489196201, 'classifier:decision_tree:max_features': 1.0, 'classifier:decision_tree:max_leaf_nodes': 'None', 'classifier:decision_tree:min_impurity_decrease': 0.0, 'classifier:decision_tree:min_samples_leaf': 18, 'classifier:decision_tree:min_samples_split': 8, 'classifier:decision_tree:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:pca:keep_variance': 0.927211764000264, 'feature_preprocessor:pca:whiten': 'False', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.9968675728600899, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.29662315421901003}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:sgd:alpha': 5.189696963506294e-05, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'perceptron', 'classifier:sgd:penalty': 'l2', 'classifier:sgd:tol': 0.0005024616279807072, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.477737759345916, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 16, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 14, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:sgd:eta0': 0.007608275318572964, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8953090913877264, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.26570274492806745}, dataset_properties={ 'task': 1, 'sparse': False, @@ -328,7 +312,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:bernoulli_nb:alpha': 0.010232681621243814, 'classifier:bernoulli_nb:fit_prior': 'True', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7243940064641332, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0032991588967262613, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 123, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:sgd:alpha': 3.816570529036228e-06, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'squared_hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.000896391087588558, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False', 'classifier:sgd:eta0': 0.043879389796003546, 'classifier:sgd:l1_ratio': 0.003142456770095119, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.013637118017627287}, dataset_properties={ 'task': 1, 'sparse': False, @@ -341,10 +325,10 @@ Fit a classifier using ROAR Dataset name: breast_cancer Metric: accuracy Best validation score: 0.992908 - Number of target algorithm runs: 30 - Number of successful target algorithm runs: 28 + Number of target algorithm runs: 28 + Number of successful target algorithm runs: 27 Number of crashed target algorithm runs: 1 - Number of target algorithms that exceeded the time limit: 1 + Number of target algorithms that exceeded the time limit: 0 Number of target algorithms that exceeded the memory limit: 0 Accuracy score 0.951048951048951 @@ -432,7 +416,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:liblinear_svc:C': 2.285306370007781, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.005821344021856017, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7978382221839412, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1644, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:qda:reg_param': 0.0995499108996053, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:select_percentile_classification:percentile': 72.1351484889017, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 79, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -440,7 +424,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:qda:reg_param': 0.0995499108996053, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:select_percentile_classification:percentile': 72.1351484889017, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 79, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:passive_aggressive:C': 0.114391364050916, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 1.3440590734654458e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:kernel_pca:kernel': 'sigmoid', 'feature_preprocessor:kernel_pca:n_components': 1117, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.023878029144121318, 'feature_preprocessor:kernel_pca:coef0': -0.34481806774236556}, dataset_properties={ 'task': 1, 'sparse': False, @@ -448,7 +432,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:liblinear_svc:C': 64.64437157661465, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.013399889539803811, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'True', 'feature_preprocessor:fast_ica:n_components': 43}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:liblinear_svc:C': 2.285306370007781, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.005821344021856017, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7978382221839412, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1644, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -456,7 +440,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 0.035543606049804645, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:liblinear_svc_preprocessor:C': 4.279105226196228, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 4.410651487451908e-05}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:liblinear_svc:C': 64.64437157661465, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.013399889539803811, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'True', 'feature_preprocessor:fast_ica:n_components': 43}, dataset_properties={ 'task': 1, 'sparse': False, @@ -464,7 +448,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 4.421745686388309e-05, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'train', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.0005485701552075972, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 36, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:select_rates_classification:alpha': 0.44455023733729254, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif'}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 1.3202262453017803e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:liblinear_svc_preprocessor:C': 6335.658297960351, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 0.00035301468680188074}, dataset_properties={ 'task': 1, 'sparse': False, @@ -472,7 +456,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'adaboost', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 1.6587261797143242, 'classifier:adaboost:max_depth': 8, 'classifier:adaboost:n_estimators': 368, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00031132126574883666, 'feature_preprocessor:fast_ica:n_components': 530}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 0.035543606049804645, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:liblinear_svc_preprocessor:C': 4.279105226196228, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 4.410651487451908e-05}, dataset_properties={ 'task': 1, 'sparse': False, @@ -480,7 +464,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:bernoulli_nb:alpha': 0.010232681621243814, 'classifier:bernoulli_nb:fit_prior': 'True', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7243940064641332, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0032991588967262613, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 123, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:passive_aggressive:C': 1.4622203211010016e-05, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0017964371726429177, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.10392737384710127, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 11, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -488,7 +472,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'valid', 'classifier:gradient_boosting:l2_regularization': 0.009193751229756878, 'classifier:gradient_boosting:learning_rate': 0.6836522210129492, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 828, 'classifier:gradient_boosting:min_samples_leaf': 3, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'classifier:gradient_boosting:n_iter_no_change': 6, 'classifier:gradient_boosting:validation_fraction': 0.28817393948552533, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00010868227587711292}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'nystroem_sampler', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 0.0001384744065375479, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:nystroem_sampler:kernel': 'poly', 'feature_preprocessor:nystroem_sampler:n_components': 414, 'classifier:lda:shrinkage_factor': 0.2192999307296778, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0010364937923091088, 'feature_preprocessor:nystroem_sampler:coef0': 0.9586161969293623, 'feature_preprocessor:nystroem_sampler:degree': 4, 'feature_preprocessor:nystroem_sampler:gamma': 4.85086661900421e-05}, dataset_properties={ 'task': 1, 'sparse': False, @@ -496,7 +480,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.13366756044911932, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 10, 'classifier:random_forest:min_samples_split': 18, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_rates_classification:alpha': 0.06835899987255477, 'feature_preprocessor:select_rates_classification:score_func': 'chi2', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.791639810538127, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.2949722712387337, 'feature_preprocessor:select_rates_classification:mode': 'fwe'}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'qda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:qda:reg_param': 0.23910875621465733, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_percentile_classification:percentile': 87.86214879612422, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0015543757334360092, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7530273530198002, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.0792482460648931}, dataset_properties={ 'task': 1, 'sparse': False, @@ -504,7 +488,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 1.3202262453017803e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:liblinear_svc_preprocessor:C': 6335.658297960351, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 0.00035301468680188074}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'adaboost', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 1.6587261797143242, 'classifier:adaboost:max_depth': 8, 'classifier:adaboost:n_estimators': 368, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00031132126574883666, 'feature_preprocessor:fast_ica:n_components': 530}, dataset_properties={ 'task': 1, 'sparse': False, @@ -512,7 +496,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:sgd:alpha': 5.189696963506294e-05, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'perceptron', 'classifier:sgd:penalty': 'l2', 'classifier:sgd:tol': 0.0005024616279807072, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.477737759345916, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 16, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 14, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:sgd:eta0': 0.007608275318572964, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8953090913877264, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.26570274492806745}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:bernoulli_nb:alpha': 8.843515731149308, 'classifier:bernoulli_nb:fit_prior': 'True', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_percentile_classification:percentile': 50.58615414999356, 'feature_preprocessor:select_percentile_classification:score_func': 'chi2', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7852218490061461, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.15162626175424537}, dataset_properties={ 'task': 1, 'sparse': False, @@ -520,7 +504,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'nystroem_sampler', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 0.0001384744065375479, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:nystroem_sampler:kernel': 'poly', 'feature_preprocessor:nystroem_sampler:n_components': 414, 'classifier:lda:shrinkage_factor': 0.2192999307296778, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0010364937923091088, 'feature_preprocessor:nystroem_sampler:coef0': 0.9586161969293623, 'feature_preprocessor:nystroem_sampler:degree': 4, 'feature_preprocessor:nystroem_sampler:gamma': 4.85086661900421e-05}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'valid', 'classifier:gradient_boosting:l2_regularization': 0.009193751229756878, 'classifier:gradient_boosting:learning_rate': 0.6836522210129492, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 828, 'classifier:gradient_boosting:min_samples_leaf': 3, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'classifier:gradient_boosting:n_iter_no_change': 6, 'classifier:gradient_boosting:validation_fraction': 0.28817393948552533, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00010868227587711292}, dataset_properties={ 'task': 1, 'sparse': False, @@ -528,7 +512,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:lda:shrinkage': 'auto', 'classifier:lda:tol': 0.0004981675590462134, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0012702067069091537}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.13366756044911932, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 10, 'classifier:random_forest:min_samples_split': 18, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_rates_classification:alpha': 0.06835899987255477, 'feature_preprocessor:select_rates_classification:score_func': 'chi2', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.791639810538127, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.2949722712387337, 'feature_preprocessor:select_rates_classification:mode': 'fwe'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -544,31 +528,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'qda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:qda:reg_param': 0.23910875621465733, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_percentile_classification:percentile': 87.86214879612422, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0015543757334360092, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7530273530198002, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.0792482460648931}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:lda:shrinkage': 'auto', 'classifier:lda:tol': 0.014034416932373166, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:kernel_pca:kernel': 'cosine', 'feature_preprocessor:kernel_pca:n_components': 285, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0074025063474275335}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 0.018038793247120707, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:select_rates_classification:alpha': 0.3720251865973017, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif'}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 1.040063255316952e-07, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 1, 'classifier:mlp:learning_rate_init': 0.0018475934154961247, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 35, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:random_trees_embedding:bootstrap': 'True', 'feature_preprocessor:random_trees_embedding:max_depth': 9, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 6, 'feature_preprocessor:random_trees_embedding:min_samples_split': 17, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 32, 'classifier:mlp:validation_fraction': 0.1}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 4.421745686388309e-05, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'train', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.0005485701552075972, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 36, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:select_rates_classification:alpha': 0.44455023733729254, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -584,15 +544,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:sgd:alpha': 3.816570529036228e-06, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'squared_hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.000896391087588558, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False', 'classifier:sgd:eta0': 0.043879389796003546, 'classifier:sgd:l1_ratio': 0.003142456770095119, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.013637118017627287}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:passive_aggressive:C': 1.4622203211010016e-05, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0017964371726429177, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.10392737384710127, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 11, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:bernoulli_nb:alpha': 0.04662763358613446, 'classifier:bernoulli_nb:fit_prior': 'False', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0007039340780305985, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 493, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -608,15 +560,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:bernoulli_nb:alpha': 8.843515731149308, 'classifier:bernoulli_nb:fit_prior': 'True', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_percentile_classification:percentile': 50.58615414999356, 'feature_preprocessor:select_percentile_classification:score_func': 'chi2', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7852218490061461, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.15162626175424537}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:passive_aggressive:C': 0.114391364050916, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 1.3440590734654458e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:kernel_pca:kernel': 'sigmoid', 'feature_preprocessor:kernel_pca:n_components': 1117, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.023878029144121318, 'feature_preprocessor:kernel_pca:coef0': -0.34481806774236556}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:bernoulli_nb:alpha': 0.010232681621243814, 'classifier:bernoulli_nb:fit_prior': 'True', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:pca:keep_variance': 0.7243940064641332, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0032991588967262613, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 123, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -629,13 +573,13 @@ Fit a classifier using Random Search Dataset name: breast_cancer Metric: accuracy Best validation score: 0.992908 - Number of target algorithm runs: 31 - Number of successful target algorithm runs: 29 + Number of target algorithm runs: 29 + Number of successful target algorithm runs: 27 Number of crashed target algorithm runs: 1 Number of target algorithms that exceeded the time limit: 1 Number of target algorithms that exceeded the memory limit: 0 - Accuracy score 0.9440559440559441 + Accuracy score 0.951048951048951 @@ -643,7 +587,7 @@ Fit a classifier using Random Search .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 1 minutes 54.708 seconds) + **Total running time of the script:** ( 1 minutes 55.955 seconds) .. _sphx_glr_download_examples_60_search_example_random_search.py: diff --git a/development/_sources/examples/60_search/example_sequential.rst.txt b/development/_sources/examples/60_search/example_sequential.rst.txt index c8ef28614b..070d96c975 100644 --- a/development/_sources/examples/60_search/example_sequential.rst.txt +++ b/development/_sources/examples/60_search/example_sequential.rst.txt @@ -132,7 +132,7 @@ Print the final ensemble constructed by auto-sklearn .. code-block:: none - [(0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.3871420537981852, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 5, 'classifier:extra_trees:min_samples_split': 14, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:feature_agglomeration:affinity': 'manhattan', 'feature_preprocessor:feature_agglomeration:linkage': 'complete', 'feature_preprocessor:feature_agglomeration:n_clusters': 355, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.726182961545702, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.02260942170772907}, + [(0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.3871420537981852, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 5, 'classifier:extra_trees:min_samples_split': 14, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:feature_agglomeration:affinity': 'manhattan', 'feature_preprocessor:feature_agglomeration:linkage': 'complete', 'feature_preprocessor:feature_agglomeration:n_clusters': 355, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.726182961545702, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.02260942170772907}, dataset_properties={ 'task': 1, 'sparse': False, @@ -140,7 +140,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'libsvm_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:libsvm_svc:C': 0.07563955664363409, 'classifier:libsvm_svc:gamma': 1.9836355993007913, 'classifier:libsvm_svc:kernel': 'rbf', 'classifier:libsvm_svc:max_iter': -1, 'classifier:libsvm_svc:shrinking': 'True', 'classifier:libsvm_svc:tol': 0.005003173341372008, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:feature_agglomeration:affinity': 'cosine', 'feature_preprocessor:feature_agglomeration:linkage': 'complete', 'feature_preprocessor:feature_agglomeration:n_clusters': 58, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.15890408760884822}, + (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.4791448484072812, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 6, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.17184142431776436}, dataset_properties={ 'task': 1, 'sparse': False, @@ -148,7 +148,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'libsvm_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:libsvm_svc:C': 5121.989374401993, 'classifier:libsvm_svc:gamma': 0.0024386428371511353, 'classifier:libsvm_svc:kernel': 'rbf', 'classifier:libsvm_svc:max_iter': -1, 'classifier:libsvm_svc:shrinking': 'True', 'classifier:libsvm_svc:tol': 0.0706216214952021, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_percentile_classification:percentile': 90.1749860017522, 'feature_preprocessor:select_percentile_classification:score_func': 'chi2', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00017888891850981892, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7393440007191528, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.04986510953238}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 0.0001363185819149026, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00018009776276177523, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 115, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'ward', 'feature_preprocessor:feature_agglomeration:n_clusters': 182, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'classifier:mlp:validation_fraction': 0.1}, dataset_properties={ 'task': 1, 'sparse': False, @@ -156,7 +156,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.4791448484072812, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 6, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.17184142431776436}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -164,7 +164,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 0.0001363185819149026, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00018009776276177523, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 115, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'ward', 'feature_preprocessor:feature_agglomeration:n_clusters': 182, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'classifier:mlp:validation_fraction': 0.1}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:liblinear_svc:C': 140.23434217313954, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.0002944604673080368, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:select_percentile_classification:percentile': 29.807816607300627, 'feature_preprocessor:select_percentile_classification:score_func': 'chi2', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.034330895903523305, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1450, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -172,7 +172,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.387912939529945e-10, 'classifier:gradient_boosting:learning_rate': 0.30755227194768237, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 60, 'classifier:gradient_boosting:min_samples_leaf': 39, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:select_percentile_classification:percentile': 93.39844669585806, 'feature_preprocessor:select_percentile_classification:score_func': 'f_classif', 'classifier:gradient_boosting:n_iter_no_change': 18, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010000000000000004}, dataset_properties={ 'task': 1, 'sparse': False, @@ -180,7 +180,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.661377361743419, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 2, 'classifier:extra_trees:min_samples_split': 13, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none'}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:gradient_boosting:early_stop': 'valid', 'classifier:gradient_boosting:l2_regularization': 8.057778875694463e-05, 'classifier:gradient_boosting:learning_rate': 0.09179220974965213, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 200, 'classifier:gradient_boosting:min_samples_leaf': 20, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9984367650965825, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 13, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 18, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:gradient_boosting:n_iter_no_change': 18, 'classifier:gradient_boosting:validation_fraction': 0.14295295806077554, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.008542188583124829, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1102, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -188,7 +188,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.9292309396985746, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 10, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9929881254946676, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.032719158639429445}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:bernoulli_nb:alpha': 39.87397441278958, 'classifier:bernoulli_nb:fit_prior': 'False', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:select_rates_classification:alpha': 0.3094962987325228, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.09580337973953734}, dataset_properties={ 'task': 1, 'sparse': False, @@ -196,7 +196,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.49138075723513286, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 6, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:select_percentile_classification:percentile': 56.97947373958566, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.42693600390988135}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.661377361743419, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 2, 'classifier:extra_trees:min_samples_split': 13, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -204,7 +204,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:gradient_boosting:early_stop': 'valid', 'classifier:gradient_boosting:l2_regularization': 8.057778875694463e-05, 'classifier:gradient_boosting:learning_rate': 0.09179220974965213, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 200, 'classifier:gradient_boosting:min_samples_leaf': 20, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9984367650965825, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 13, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 18, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:gradient_boosting:n_iter_no_change': 18, 'classifier:gradient_boosting:validation_fraction': 0.14295295806077554, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.008542188583124829, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1102, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 0.4635442279519353, 'classifier:gradient_boosting:learning_rate': 0.09809681787962342, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 328, 'classifier:gradient_boosting:min_samples_leaf': 2, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.989729761503726, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 19, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 5, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:gradient_boosting:n_iter_no_change': 2, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0208475757765491}, dataset_properties={ 'task': 1, 'sparse': False, @@ -212,7 +212,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.4775492074518431, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.5662900693317384, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 7, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.015996368052062886, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7845396961078424, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.25545052141264185}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, 'sparse': False, @@ -220,7 +220,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.3793256905143867, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 20, 'classifier:extra_trees:min_samples_split': 5, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00010083678209087315}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.49138075723513286, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 6, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:select_percentile_classification:percentile': 56.97947373958566, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.42693600390988135}, dataset_properties={ 'task': 1, 'sparse': False, @@ -228,7 +228,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.387912939529945e-10, 'classifier:gradient_boosting:learning_rate': 0.30755227194768237, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 60, 'classifier:gradient_boosting:min_samples_leaf': 39, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:select_percentile_classification:percentile': 93.39844669585806, 'feature_preprocessor:select_percentile_classification:score_func': 'f_classif', 'classifier:gradient_boosting:n_iter_no_change': 18, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010000000000000004}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 2.5550223982458062e-06, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'train', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00027271287919467994, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 54, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.7171678618990129, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 4, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 17, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.017116661677715188}, dataset_properties={ 'task': 1, 'sparse': False, @@ -236,7 +236,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 0.0017940473175767063, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 2, 'classifier:mlp:learning_rate_init': 0.0004684917334431039, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 101, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'False', 'classifier:mlp:validation_fraction': 0.1}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.993803313878608, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 2, 'classifier:extra_trees:min_samples_split': 20, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.41826215858914706, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7305615609807856, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.25595970768123566}, dataset_properties={ 'task': 1, 'sparse': False, @@ -252,7 +252,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'liblinear_svc', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:liblinear_svc:C': 140.23434217313954, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.0002944604673080368, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:select_percentile_classification:percentile': 29.807816607300627, 'feature_preprocessor:select_percentile_classification:score_func': 'chi2', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.034330895903523305, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1450, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.4775492074518431, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.5662900693317384, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 7, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.015996368052062886, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7845396961078424, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.25545052141264185}, dataset_properties={ 'task': 1, 'sparse': False, @@ -260,7 +260,15 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5561389303694175, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 16, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:select_rates_classification:alpha': 0.48507733455436836, 'feature_preprocessor:select_rates_classification:score_func': 'f_classif', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1567, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:select_rates_classification:mode': 'fpr'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.43999367631975456, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.8134515743047006, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 20, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + dataset_properties={ + 'task': 1, + 'sparse': False, + 'multilabel': False, + 'multiclass': False, + 'target_type': 'classification', + 'signed': False})), + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 0.005326508887463406, 'classifier:gradient_boosting:learning_rate': 0.060800813211425456, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 6, 'classifier:gradient_boosting:min_samples_leaf': 5, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:liblinear_svc_preprocessor:C': 13.550960330919455, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 1.2958033930435781e-05, 'classifier:gradient_boosting:n_iter_no_change': 5}, dataset_properties={ 'task': 1, 'sparse': False, @@ -268,7 +276,7 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.9292309396985746, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 10, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9929881254946676, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.032719158639429445}, dataset_properties={ 'task': 1, 'sparse': False, @@ -276,7 +284,15 @@ Print the final ensemble constructed by auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'pca', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5137138356508442, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 9, 'classifier:extra_trees:min_samples_split': 15, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:pca:keep_variance': 0.9694955791292086, 'feature_preprocessor:pca:whiten': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00014078218950356456}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.3793256905143867, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 20, 'classifier:extra_trees:min_samples_split': 5, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00010083678209087315}, + dataset_properties={ + 'task': 1, + 'sparse': False, + 'multilabel': False, + 'multiclass': False, + 'target_type': 'classification', + 'signed': False})), + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5561389303694175, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 16, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:select_rates_classification:alpha': 0.48507733455436836, 'feature_preprocessor:select_rates_classification:score_func': 'f_classif', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1567, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:select_rates_classification:mode': 'fpr'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -316,10 +332,10 @@ Get the Score of the final ensemble Dataset name: breast_cancer Metric: accuracy Best validation score: 0.985816 - Number of target algorithm runs: 39 - Number of successful target algorithm runs: 39 + Number of target algorithm runs: 35 + Number of successful target algorithm runs: 34 Number of crashed target algorithm runs: 0 - Number of target algorithms that exceeded the time limit: 0 + Number of target algorithms that exceeded the time limit: 1 Number of target algorithms that exceeded the memory limit: 0 Accuracy score 0.9440559440559441 @@ -330,7 +346,7 @@ Get the Score of the final ensemble .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 1 minutes 59.586 seconds) + **Total running time of the script:** ( 1 minutes 58.345 seconds) .. _sphx_glr_download_examples_60_search_example_sequential.py: diff --git a/development/_sources/examples/60_search/example_successive_halving.rst.txt b/development/_sources/examples/60_search/example_successive_halving.rst.txt index 7988a0f793..3086f7ca8d 100644 --- a/development/_sources/examples/60_search/example_successive_halving.rst.txt +++ b/development/_sources/examples/60_search/example_successive_halving.rst.txt @@ -190,7 +190,7 @@ Build and fit a classifier /opt/hostedtoolcache/Python/3.8.11/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1 warnings.warn("{} is intended to be used " - [(0.100000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545}, + [(0.100000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1.0945814167023392e-10, 'classifier:gradient_boosting:learning_rate': 0.11042628136263043, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 30, 'classifier:gradient_boosting:min_samples_leaf': 22, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.05141281638752715}, dataset_properties={ 'task': 1, 'sparse': False, @@ -198,7 +198,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 9.410144741041167e-05, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 0.05082904256838701, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'classifier:sgd:eta0': 0.0018055343233337954}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 0.0002346515712987664, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 1.3716748930467322e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -206,7 +206,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1e-10, 'classifier:gradient_boosting:learning_rate': 0.16262682406125173, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 66, 'classifier:gradient_boosting:min_samples_leaf': 20, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.005428587241449129, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.75, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.23746960178084334}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545}, dataset_properties={ 'task': 1, 'sparse': False, @@ -214,7 +214,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 0.0002346515712987664, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 1.3716748930467322e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize'}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, dataset_properties={ 'task': 1, 'sparse': False, @@ -222,7 +222,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.7323115919225983, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 15, 'classifier:random_forest:min_samples_split': 6, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011901034843417571, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7818500358383581, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.20068746139723115}, dataset_properties={ 'task': 1, 'sparse': False, @@ -230,7 +230,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, dataset_properties={ 'task': 1, 'sparse': False, @@ -238,7 +238,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 9.410144741041167e-05, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 0.05082904256838701, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'classifier:sgd:eta0': 0.0018055343233337954}, dataset_properties={ 'task': 1, 'sparse': False, @@ -246,7 +246,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1.0945814167023392e-10, 'classifier:gradient_boosting:learning_rate': 0.11042628136263043, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 30, 'classifier:gradient_boosting:min_samples_leaf': 22, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.05141281638752715}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, dataset_properties={ 'task': 1, 'sparse': False, @@ -255,14 +255,6 @@ Build and fit a classifier 'target_type': 'classification', 'signed': False})), (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 0.0005657707133726288, 'classifier:gradient_boosting:learning_rate': 0.09546265146045475, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 109, 'classifier:gradient_boosting:min_samples_leaf': 2, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1283, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, dataset_properties={ 'task': 1, 'sparse': False, @@ -286,7 +278,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.7323115919225983, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 15, 'classifier:random_forest:min_samples_split': 6, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011901034843417571, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7818500358383581, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.20068746139723115}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1e-10, 'classifier:gradient_boosting:learning_rate': 0.16262682406125173, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 66, 'classifier:gradient_boosting:min_samples_leaf': 20, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.005428587241449129, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.75, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.23746960178084334}, dataset_properties={ 'task': 1, 'sparse': False, @@ -294,7 +286,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.609412172481434e-10, 'classifier:gradient_boosting:learning_rate': 0.05972079854295879, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 4, 'classifier:gradient_boosting:min_samples_leaf': 2, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'classifier:gradient_boosting:n_iter_no_change': 14}, dataset_properties={ 'task': 1, 'sparse': False, @@ -302,7 +294,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'valid', 'classifier:gradient_boosting:l2_regularization': 5.027708640006448e-08, 'classifier:gradient_boosting:learning_rate': 0.09750328007832798, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 1234, 'classifier:gradient_boosting:min_samples_leaf': 25, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'classifier:gradient_boosting:n_iter_no_change': 1, 'classifier:gradient_boosting:validation_fraction': 0.08300813783286698}, dataset_properties={ 'task': 1, 'sparse': False, @@ -310,7 +302,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1.0945814167023392e-10, 'classifier:gradient_boosting:learning_rate': 0.11042628136263043, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 30, 'classifier:gradient_boosting:min_samples_leaf': 22, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.05141281638752715}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, dataset_properties={ 'task': 1, 'sparse': False, @@ -318,15 +310,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.609412172481434e-10, 'classifier:gradient_boosting:learning_rate': 0.05972079854295879, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 4, 'classifier:gradient_boosting:min_samples_leaf': 2, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'classifier:gradient_boosting:n_iter_no_change': 14}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'valid', 'classifier:gradient_boosting:l2_regularization': 5.027708640006448e-08, 'classifier:gradient_boosting:learning_rate': 0.09750328007832798, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 1234, 'classifier:gradient_boosting:min_samples_leaf': 25, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'classifier:gradient_boosting:n_iter_no_change': 1, 'classifier:gradient_boosting:validation_fraction': 0.08300813783286698}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, 'sparse': False, @@ -334,7 +318,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 2.506856350040198e-06, 'classifier:gradient_boosting:learning_rate': 0.04634380160611007, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 11, 'classifier:gradient_boosting:min_samples_leaf': 41, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'classifier:gradient_boosting:n_iter_no_change': 17, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.05410260260701887, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7310641872341862, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.2836388190241387}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, dataset_properties={ 'task': 1, 'sparse': False, @@ -343,14 +327,6 @@ Build and fit a classifier 'target_type': 'classification', 'signed': False})), (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.37705188916038523, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 2, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 521, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.09884140378258977, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 6, 'classifier:random_forest:min_samples_split': 13, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.022834561782884507}, dataset_properties={ 'task': 1, 'sparse': False, @@ -363,10 +339,10 @@ Build and fit a classifier Dataset name: breast_cancer Metric: accuracy Best validation score: 0.985816 - Number of target algorithm runs: 22 + Number of target algorithm runs: 21 Number of successful target algorithm runs: 21 Number of crashed target algorithm runs: 0 - Number of target algorithms that exceeded the time limit: 1 + Number of target algorithms that exceeded the time limit: 0 Number of target algorithms that exceeded the memory limit: 0 Accuracy score 0.951048951048951 @@ -426,7 +402,7 @@ We can also use cross-validation with successive halving /opt/hostedtoolcache/Python/3.8.11/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1 warnings.warn("{} is intended to be used " - [(0.240000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, + [(0.300000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, dataset_properties={ 'task': 1, 'sparse': False, @@ -434,7 +410,7 @@ We can also use cross-validation with successive halving 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.200000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, + (0.200000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545}, dataset_properties={ 'task': 1, 'sparse': False, @@ -442,7 +418,7 @@ We can also use cross-validation with successive halving 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.160000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.160000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, dataset_properties={ 'task': 1, 'sparse': False, @@ -450,7 +426,7 @@ We can also use cross-validation with successive halving 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, + (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 0.0002346515712987664, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 1.3716748930467322e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -458,7 +434,7 @@ We can also use cross-validation with successive halving 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 0.0002346515712987664, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 1.3716748930467322e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize'}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.609412172481434e-10, 'classifier:gradient_boosting:learning_rate': 0.05972079854295879, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 4, 'classifier:gradient_boosting:min_samples_leaf': 2, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'classifier:gradient_boosting:n_iter_no_change': 14}, dataset_properties={ 'task': 1, 'sparse': False, @@ -474,15 +450,7 @@ We can also use cross-validation with successive halving 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1e-10, 'classifier:gradient_boosting:learning_rate': 0.16262682406125173, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 66, 'classifier:gradient_boosting:min_samples_leaf': 20, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.005428587241449129, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.75, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.23746960178084334}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1e-10, 'classifier:gradient_boosting:learning_rate': 0.16262682406125173, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 66, 'classifier:gradient_boosting:min_samples_leaf': 20, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.005428587241449129, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.75, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.23746960178084334}, dataset_properties={ 'task': 1, 'sparse': False, @@ -490,7 +458,7 @@ We can also use cross-validation with successive halving 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.609412172481434e-10, 'classifier:gradient_boosting:learning_rate': 0.05972079854295879, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 4, 'classifier:gradient_boosting:min_samples_leaf': 2, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'classifier:gradient_boosting:n_iter_no_change': 14}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, 'sparse': False, @@ -503,13 +471,13 @@ We can also use cross-validation with successive halving Dataset name: breast_cancer Metric: accuracy Best validation score: 0.971831 - Number of target algorithm runs: 10 - Number of successful target algorithm runs: 9 + Number of target algorithm runs: 9 + Number of successful target algorithm runs: 8 Number of crashed target algorithm runs: 0 Number of target algorithms that exceeded the time limit: 1 Number of target algorithms that exceeded the memory limit: 0 - Accuracy score 0.958041958041958 + Accuracy score 0.965034965034965 @@ -686,7 +654,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.300000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 0.0001363185819149026, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00018009776276177523, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 115, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'ward', 'feature_preprocessor:feature_agglomeration:n_clusters': 182, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'classifier:mlp:validation_fraction': 0.1}, + (0.260000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 0.0001363185819149026, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00018009776276177523, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 115, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'ward', 'feature_preprocessor:feature_agglomeration:n_clusters': 182, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'classifier:mlp:validation_fraction': 0.1}, dataset_properties={ 'task': 1, 'sparse': False, @@ -694,7 +662,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.49138075723513286, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 6, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:select_percentile_classification:percentile': 56.97947373958566, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.42693600390988135}, + (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.43999367631975456, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.8134515743047006, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 20, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -702,7 +670,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.43999367631975456, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.8134515743047006, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 20, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -710,7 +678,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.4775492074518431, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.5662900693317384, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 7, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.015996368052062886, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7845396961078424, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.25545052141264185}, dataset_properties={ 'task': 1, 'sparse': False, @@ -726,7 +694,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.43999367631975456, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.8134515743047006, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 20, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -734,7 +702,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.43999367631975456, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.8134515743047006, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 20, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 0.00021148999718383549, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'train', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.0007452270241186694, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 113, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'complete', 'feature_preprocessor:feature_agglomeration:n_clusters': 247, 'feature_preprocessor:feature_agglomeration:pooling_func': 'max'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -742,7 +710,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -750,7 +718,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.926283631486858, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 7, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.16265262021972576}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.9292309396985746, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 10, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9929881254946676, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.032719158639429445}, dataset_properties={ 'task': 1, 'sparse': False, @@ -763,10 +731,10 @@ Next, we see the use of subsampling as a budget in Auto-sklearn Dataset name: breast_cancer Metric: accuracy Best validation score: 0.978723 - Number of target algorithm runs: 13 - Number of successful target algorithm runs: 13 + Number of target algorithm runs: 12 + Number of successful target algorithm runs: 11 Number of crashed target algorithm runs: 0 - Number of target algorithms that exceeded the time limit: 0 + Number of target algorithms that exceeded the time limit: 1 Number of target algorithms that exceeded the memory limit: 0 Accuracy score 0.951048951048951 @@ -828,7 +796,7 @@ subsamples otherwise /opt/hostedtoolcache/Python/3.8.11/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1 warnings.warn("{} is intended to be used " - [(0.300000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.387912939529945e-10, 'classifier:gradient_boosting:learning_rate': 0.30755227194768237, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 60, 'classifier:gradient_boosting:min_samples_leaf': 39, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:select_percentile_classification:percentile': 93.39844669585806, 'feature_preprocessor:select_percentile_classification:score_func': 'f_classif', 'classifier:gradient_boosting:n_iter_no_change': 18, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010000000000000004}, + [(0.280000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.387912939529945e-10, 'classifier:gradient_boosting:learning_rate': 0.30755227194768237, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 60, 'classifier:gradient_boosting:min_samples_leaf': 39, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:select_percentile_classification:percentile': 93.39844669585806, 'feature_preprocessor:select_percentile_classification:score_func': 'f_classif', 'classifier:gradient_boosting:n_iter_no_change': 18, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010000000000000004}, dataset_properties={ 'task': 1, 'sparse': False, @@ -836,7 +804,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, + (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -852,7 +820,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.9292309396985746, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 10, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9929881254946676, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.032719158639429445}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -876,7 +844,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.9292309396985746, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 10, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9929881254946676, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.032719158639429445}, dataset_properties={ 'task': 1, 'sparse': False, @@ -884,7 +852,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.993803313878608, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 2, 'classifier:extra_trees:min_samples_split': 20, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.41826215858914706, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7305615609807856, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.25595970768123566}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 0.005326508887463406, 'classifier:gradient_boosting:learning_rate': 0.060800813211425456, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 6, 'classifier:gradient_boosting:min_samples_leaf': 5, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:liblinear_svc_preprocessor:C': 13.550960330919455, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 1.2958033930435781e-05, 'classifier:gradient_boosting:n_iter_no_change': 5}, dataset_properties={ 'task': 1, 'sparse': False, @@ -892,7 +860,31 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 0.005326508887463406, 'classifier:gradient_boosting:learning_rate': 0.060800813211425456, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 6, 'classifier:gradient_boosting:min_samples_leaf': 5, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:liblinear_svc_preprocessor:C': 13.550960330919455, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 1.2958033930435781e-05, 'classifier:gradient_boosting:n_iter_no_change': 5}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.562561668029056, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 2, 'classifier:extra_trees:min_samples_split': 15, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:select_rates_classification:alpha': 0.32106218519214325, 'feature_preprocessor:select_rates_classification:score_func': 'chi2', 'feature_preprocessor:select_rates_classification:mode': 'fwe'}, + dataset_properties={ + 'task': 1, + 'sparse': False, + 'multilabel': False, + 'multiclass': False, + 'target_type': 'classification', + 'signed': False})), + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.993803313878608, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 2, 'classifier:extra_trees:min_samples_split': 20, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.41826215858914706, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7305615609807856, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.25595970768123566}, + dataset_properties={ + 'task': 1, + 'sparse': False, + 'multilabel': False, + 'multiclass': False, + 'target_type': 'classification', + 'signed': False})), + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:gradient_boosting:early_stop': 'valid', 'classifier:gradient_boosting:l2_regularization': 8.057778875694463e-05, 'classifier:gradient_boosting:learning_rate': 0.09179220974965213, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 200, 'classifier:gradient_boosting:min_samples_leaf': 20, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9984367650965825, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 13, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 18, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:gradient_boosting:n_iter_no_change': 18, 'classifier:gradient_boosting:validation_fraction': 0.14295295806077554, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.008542188583124829, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1102, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, + dataset_properties={ + 'task': 1, + 'sparse': False, + 'multilabel': False, + 'multiclass': False, + 'target_type': 'classification', + 'signed': False})), + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:random_trees_embedding:bootstrap': 'True', 'feature_preprocessor:random_trees_embedding:max_depth': 5, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 1, 'feature_preprocessor:random_trees_embedding:min_samples_split': 2, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 10, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 937, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -905,13 +897,13 @@ subsamples otherwise Dataset name: breast_cancer Metric: accuracy Best validation score: 0.985816 - Number of target algorithm runs: 17 - Number of successful target algorithm runs: 16 + Number of target algorithm runs: 19 + Number of successful target algorithm runs: 19 Number of crashed target algorithm runs: 0 - Number of target algorithms that exceeded the time limit: 1 + Number of target algorithms that exceeded the time limit: 0 Number of target algorithms that exceeded the memory limit: 0 - Accuracy score 0.951048951048951 + Accuracy score 0.9440559440559441 @@ -919,7 +911,7 @@ subsamples otherwise .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 3 minutes 11.022 seconds) + **Total running time of the script:** ( 3 minutes 10.764 seconds) .. _sphx_glr_download_examples_60_search_example_successive_halving.py: diff --git a/development/_sources/examples/60_search/sg_execution_times.rst.txt b/development/_sources/examples/60_search/sg_execution_times.rst.txt index d029e1991b..d66fec5bdc 100644 --- a/development/_sources/examples/60_search/sg_execution_times.rst.txt +++ b/development/_sources/examples/60_search/sg_execution_times.rst.txt @@ -5,18 +5,18 @@ Computation times ================= -**10:29.908** total execution time for **examples_60_search** files: +**10:42.553** total execution time for **examples_60_search** files: +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_successive_halving.py` (``example_successive_halving.py``) | 03:11.022 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_successive_halving.py` (``example_successive_halving.py``) | 03:10.764 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py` (``example_parallel_n_jobs.py``) | 02:08.558 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py` (``example_parallel_n_jobs.py``) | 02:23.603 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_sequential.py` (``example_sequential.py``) | 01:59.586 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_sequential.py` (``example_sequential.py``) | 01:58.345 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_random_search.py` (``example_random_search.py``) | 01:54.708 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_random_search.py` (``example_random_search.py``) | 01:55.955 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py` (``example_parallel_manual_spawning_cli.py``) | 00:40.073 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py` (``example_parallel_manual_spawning_cli.py``) | 00:37.914 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py` (``example_parallel_manual_spawning_python.py``) | 00:35.962 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py` (``example_parallel_manual_spawning_python.py``) | 00:35.972 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ diff --git a/development/_sources/examples/80_extending/example_extending_classification.rst.txt b/development/_sources/examples/80_extending/example_extending_classification.rst.txt index c9404f7a7e..9d113a6e96 100644 --- a/development/_sources/examples/80_extending/example_extending_classification.rst.txt +++ b/development/_sources/examples/80_extending/example_extending_classification.rst.txt @@ -262,8 +262,8 @@ Print test accuracy and statistics .. code-block:: none - accuracy: 0.965034965034965 - [(0.820000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:MLPClassifier:activation': 'relu', 'classifier:MLPClassifier:alpha': 0.0001, 'classifier:MLPClassifier:hidden_layer_depth': 1, 'classifier:MLPClassifier:num_nodes_per_layer': 32, 'classifier:MLPClassifier:solver': 'adam', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + accuracy: 0.958041958041958 + [(0.540000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:MLPClassifier:activation': 'relu', 'classifier:MLPClassifier:alpha': 0.0001, 'classifier:MLPClassifier:hidden_layer_depth': 1, 'classifier:MLPClassifier:num_nodes_per_layer': 32, 'classifier:MLPClassifier:solver': 'adam', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, 'sparse': False, @@ -271,7 +271,7 @@ Print test accuracy and statistics 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.180000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:MLPClassifier:activation': 'relu', 'classifier:MLPClassifier:alpha': 0.054648061621061846, 'classifier:MLPClassifier:hidden_layer_depth': 1, 'classifier:MLPClassifier:num_nodes_per_layer': 187, 'classifier:MLPClassifier:solver': 'adam', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_rates_classification:alpha': 0.17677801820619737, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.06846183238648647, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8465036896999549, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.14555017892884228}, + (0.460000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:MLPClassifier:activation': 'relu', 'classifier:MLPClassifier:alpha': 0.054648061621061846, 'classifier:MLPClassifier:hidden_layer_depth': 1, 'classifier:MLPClassifier:num_nodes_per_layer': 187, 'classifier:MLPClassifier:solver': 'adam', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_rates_classification:alpha': 0.17677801820619737, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.06846183238648647, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8465036896999549, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.14555017892884228}, dataset_properties={ 'task': 1, 'sparse': False, @@ -287,7 +287,7 @@ Print test accuracy and statistics .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 19.314 seconds) + **Total running time of the script:** ( 0 minutes 21.890 seconds) .. _sphx_glr_download_examples_80_extending_example_extending_classification.py: diff --git a/development/_sources/examples/80_extending/example_extending_data_preprocessor.rst.txt b/development/_sources/examples/80_extending/example_extending_data_preprocessor.rst.txt index 2d45b891ca..6bf2a58376 100644 --- a/development/_sources/examples/80_extending/example_extending_data_preprocessor.rst.txt +++ b/development/_sources/examples/80_extending/example_extending_data_preprocessor.rst.txt @@ -186,7 +186,7 @@ Print prediction score and statistics .. code-block:: none - accuracy: 0.4195804195804196 + accuracy: 0.32167832167832167 [(1.000000, MyDummyClassifier(config=1, init_params={'data_preprocessor:feat_type': {0: 'numerical', 1: 'numerical', @@ -228,7 +228,7 @@ Print prediction score and statistics .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 22.960 seconds) + **Total running time of the script:** ( 0 minutes 16.212 seconds) .. _sphx_glr_download_examples_80_extending_example_extending_data_preprocessor.py: diff --git a/development/_sources/examples/80_extending/example_extending_preprocessor.rst.txt b/development/_sources/examples/80_extending/example_extending_preprocessor.rst.txt index 85e6a30886..5d29916c5a 100644 --- a/development/_sources/examples/80_extending/example_extending_preprocessor.rst.txt +++ b/development/_sources/examples/80_extending/example_extending_preprocessor.rst.txt @@ -256,7 +256,7 @@ Print prediction score and statistics .. code-block:: none - accuracy: 0.9230769230769231 + accuracy: 0.9440559440559441 [(1.000000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'LDA', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:LDA:solver': 'svd', 'feature_preprocessor:LDA:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, @@ -273,7 +273,7 @@ Print prediction score and statistics .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 19.502 seconds) + **Total running time of the script:** ( 0 minutes 20.218 seconds) .. _sphx_glr_download_examples_80_extending_example_extending_preprocessor.py: diff --git a/development/_sources/examples/80_extending/example_extending_regression.rst.txt b/development/_sources/examples/80_extending/example_extending_regression.rst.txt index 67cd1ef5bd..8ddd45d521 100644 --- a/development/_sources/examples/80_extending/example_extending_regression.rst.txt +++ b/development/_sources/examples/80_extending/example_extending_regression.rst.txt @@ -253,7 +253,7 @@ Print prediction score and statistics .. code-block:: none - r2 score: -0.2590000668320658 + r2 score: -0.1181707880517584 [(1.000000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'KernelRidgeRegression', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'regressor:KernelRidgeRegression:alpha': 1.0, 'regressor:KernelRidgeRegression:gamma': 0.1, 'regressor:KernelRidgeRegression:kernel': 'polynomial', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01, 'regressor:KernelRidgeRegression:coef0': 1.0, 'regressor:KernelRidgeRegression:degree': 3}, dataset_properties={ 'task': 4, @@ -269,7 +269,7 @@ Print prediction score and statistics .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 18.018 seconds) + **Total running time of the script:** ( 0 minutes 16.649 seconds) .. _sphx_glr_download_examples_80_extending_example_extending_regression.py: diff --git a/development/_sources/examples/80_extending/example_restrict_number_of_hyperparameters.rst.txt b/development/_sources/examples/80_extending/example_restrict_number_of_hyperparameters.rst.txt index 1139382d5c..abe3abac9c 100644 --- a/development/_sources/examples/80_extending/example_restrict_number_of_hyperparameters.rst.txt +++ b/development/_sources/examples/80_extending/example_restrict_number_of_hyperparameters.rst.txt @@ -628,7 +628,7 @@ Print the configuration space .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 7.356 seconds) + **Total running time of the script:** ( 0 minutes 8.164 seconds) .. _sphx_glr_download_examples_80_extending_example_restrict_number_of_hyperparameters.py: diff --git a/development/_sources/examples/80_extending/sg_execution_times.rst.txt b/development/_sources/examples/80_extending/sg_execution_times.rst.txt index 2fc45840d3..7499fae20c 100644 --- a/development/_sources/examples/80_extending/sg_execution_times.rst.txt +++ b/development/_sources/examples/80_extending/sg_execution_times.rst.txt @@ -5,16 +5,16 @@ Computation times ================= -**01:27.149** total execution time for **examples_80_extending** files: +**01:23.131** total execution time for **examples_80_extending** files: +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_80_extending_example_extending_data_preprocessor.py` (``example_extending_data_preprocessor.py``) | 00:22.960 | 0.0 MB | +| :ref:`sphx_glr_examples_80_extending_example_extending_classification.py` (``example_extending_classification.py``) | 00:21.890 | 0.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_80_extending_example_extending_preprocessor.py` (``example_extending_preprocessor.py``) | 00:19.502 | 0.0 MB | +| :ref:`sphx_glr_examples_80_extending_example_extending_preprocessor.py` (``example_extending_preprocessor.py``) | 00:20.218 | 0.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_80_extending_example_extending_classification.py` (``example_extending_classification.py``) | 00:19.314 | 0.0 MB | +| :ref:`sphx_glr_examples_80_extending_example_extending_regression.py` (``example_extending_regression.py``) | 00:16.649 | 0.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_80_extending_example_extending_regression.py` (``example_extending_regression.py``) | 00:18.018 | 0.0 MB | +| :ref:`sphx_glr_examples_80_extending_example_extending_data_preprocessor.py` (``example_extending_data_preprocessor.py``) | 00:16.212 | 0.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_80_extending_example_restrict_number_of_hyperparameters.py` (``example_restrict_number_of_hyperparameters.py``) | 00:07.356 | 0.0 MB | +| :ref:`sphx_glr_examples_80_extending_example_restrict_number_of_hyperparameters.py` (``example_restrict_number_of_hyperparameters.py``) | 00:08.164 | 0.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ diff --git a/development/examples/20_basic/example_classification.html b/development/examples/20_basic/example_classification.html index f577ea23de..c28a5b173b 100644 --- a/development/examples/20_basic/example_classification.html +++ b/development/examples/20_basic/example_classification.html @@ -166,29 +166,27 @@

    View the models found by auto-sklearnOut:

    -
              rank  ensemble_weight               type      cost  duration
    +
              rank  ensemble_weight                type      cost  duration
     model_id
    -34           1             0.12        extra_trees  0.014184  2.009784
    -7            2             0.08        extra_trees  0.014184  1.810611
    -29           3             0.04        extra_trees  0.021277  2.039354
    -16           4             0.06  gradient_boosting  0.021277  1.180642
    -26           5             0.02        extra_trees  0.028369  2.675360
    -22           6             0.06  gradient_boosting  0.028369  1.307391
    -19           7             0.02        extra_trees  0.028369  3.295428
    -14           8             0.02                mlp  0.028369  2.446468
    -2            9             0.02      random_forest  0.028369  2.046710
    -10          10             0.02      random_forest  0.028369  2.250306
    -3           11             0.10                mlp  0.028369  1.233877
    -8           12             0.02      random_forest  0.035461  2.323116
    -5           13             0.02      random_forest  0.035461  2.383382
    -12          14             0.02  gradient_boosting  0.035461  1.501771
    -17          15             0.04  gradient_boosting  0.035461  1.969007
    -9           16             0.02        extra_trees  0.042553  2.181164
    -27          17             0.02        extra_trees  0.042553  2.232793
    -30          18             0.08      liblinear_svc  0.042553  1.122427
    -32          19             0.14        extra_trees  0.049645  2.035171
    -33          20             0.02      random_forest  0.056738  2.228689
    -28          21             0.06       bernoulli_nb  0.070922  1.066545
    +34           1             0.16         extra_trees  0.014184  2.225328
    +7            2             0.10         extra_trees  0.014184  2.073506
    +29           3             0.06         extra_trees  0.021277  2.226427
    +16           4             0.04   gradient_boosting  0.021277  1.327736
    +26           5             0.02         extra_trees  0.028369  2.959632
    +22           6             0.04   gradient_boosting  0.028369  1.435956
    +2            7             0.04       random_forest  0.028369  2.323596
    +3            8             0.10                 mlp  0.028369  1.409992
    +14           9             0.02                 mlp  0.028369  2.771760
    +19          10             0.02         extra_trees  0.028369  3.601704
    +17          11             0.02   gradient_boosting  0.035461  2.215647
    +8           12             0.02       random_forest  0.035461  2.665524
    +5           13             0.02       random_forest  0.035461  2.771111
    +9           14             0.02         extra_trees  0.042553  2.479754
    +30          15             0.08       liblinear_svc  0.042553  1.217465
    +32          16             0.16         extra_trees  0.049645  2.258368
    +33          17             0.02       random_forest  0.056738  2.478173
    +28          18             0.04        bernoulli_nb  0.070922  1.208415
    +20          19             0.02  passive_aggressive  0.078014  0.912231
     
    @@ -198,7 +196,7 @@

    Print the final ensemble constructed by auto-sklearn

    Out:

    -
    [(0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.3871420537981852, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 5, 'classifier:extra_trees:min_samples_split': 14, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:feature_agglomeration:affinity': 'manhattan', 'feature_preprocessor:feature_agglomeration:linkage': 'complete', 'feature_preprocessor:feature_agglomeration:n_clusters': 355, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.726182961545702, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.02260942170772907},
    +
    [(0.160000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.4791448484072812, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 6, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.17184142431776436},
     dataset_properties={
       'task': 1,
       'sparse': False,
    @@ -206,7 +204,7 @@ 

    Print the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnGet the Score of the final ensembleOut:

    -
    Accuracy score: 0.9440559440559441
    +
    Accuracy score: 0.951048951048951
     
    -

    Total running time of the script: ( 1 minutes 57.393 seconds)

    +

    Total running time of the script: ( 2 minutes 2.438 seconds)

    P1AZin^|X zds*}T4@ICX>34{;9|$9ZDTE*#Zbyr^v7dQJWui%YwuaJ2Zg|aWNowZ|U~Ni;*5?_W z4`!Q(9|zV5-XA$LbFQIXUtgcB=8LW!6RG%-sh4NzMTUQ{MIEhzk`2Vz6;xSLGGONB za_#VbczudSa(yjFrc5O~RTI6!vA)%!(b85?hpHbP{_?@IIJv_P`ti45|F=*(6;>qw zx9y21i31CkYwuM;Gs`@)HuAa91Y*wMp9ZBf z&k$6vt>VTI9nmwq3exJ&M135p(DQ3Yz?Vkci)bDFj%roT`xGU^FXHlhzjyB)4i4iB z;L8VruC?!FJSl@26g%ij*yNdFmM$4q9$KsqUlAJ?^MQduY;MB8i5qIH z)M+*Op%pV#!jML_=XU1#mOfu?pCYereiL$I1IAY3XIwZTPbua|C|Mpe<>mKRN|n$p zCROsi`?`Sr)q6)6-+&{j;(0TX(m!sEIXHuTGD|7KezC99tr? zJ0?+s2pcaetXfMMa!Q3utsagVE|51Anah82I<~sKA3LWe8L!Nc)XsQ6%yJ!soz-jC zpsJUlu6;samN$DC)cs>T$IX7d&>*;d+Ep*A+~}4PWyLkLgyiz2p`_dZ{(aprvpZX8 zF2gq_E7VBUcH@$^d6`d%AUqOcV~dSsiRd;t(M}X7BJG9DYgZWb17|I=<6ryt=b}d{ zxI3#hIznbcLCu9*W%VI=B=2h*!=GAX6H#9ed_AA zM9988Sfsmm=>JwR+gRe0UeG+JfAbR#;ZE548=F_L>4NEeWMy)#&g;@6O z4}3Ct)xO$Q*zIOe-B~AhuCgwgT-jn@Emndd#f@!Pv}b- zf8$q4A!@#Jj|9&z?Fd^&E=@zBhsi+OEsN zMEdNx=<4=y8uH390lR+hiL7}^T8EBaL~L&;HUXJvwpO)0T5;>7G3?og(SH0B+Pf~w zN3qYJ8An8}$fc#FUG}G=X%&()pqx^u{-(iq0!CHYjv|%xJRAW-x&u1RXVxLEsqgmx z4*NfuB=GN;R}nNjm)@uBmX}3{knEs;9erNso2X6k`t|&KE4}9j5HbWkTaF|GWGQL- z;wubvs)}zzRykFx3=7VXj|@XyeX^1|5`vkx7c}*Air2SID--+8UHhYSud(q7eptoW zDzxXUMB`};Ip~21dF1}c1T{tY(7=3sD`+nnb@vctRPc<_TcyCeM|zF|60>zo%g+(T z$7qPySOUwuueve4%$Sur3%b0%$-1#t|4W7#(+sm8qe70Bk^CTqMfliAXe+iPVYg!3 zF5@`+d8~vUv&B$p8@n@FhZTyCPi`hVtQ7U5@Z|J@Mwl~@Ef57KeVRPF(n~axDMI43 zBq_>QqLn)o(FO|r<`fxrJgGKCeqs%4FVXA#C@~o`&aik#uZ2pljvvfqs_S$5%+>l~ zzQDzFKVCC~K~O9`v4S7}nQnW<{@nu#W@uN(Db2#k*$gf&sit51+qZA)_W8puGedZm z-nUY)B zP^4j&`#%FpCbha%b1dWnb*VoWA6`&6KJTD%jSN+Wt-m`nr!q)rn*M#8aj3CP*`;F? zX78UImQQ$2ERa_8*W8jP>#n7gpFFY5u&dD`TTMjvrr^QgVwh5M$Wd>zttbEd-{Phq z09&U*w(2d_wAKQ=gr+`~ZBMdQY#vR%v7)HyOXp3YsB5Lks;Dqf<)|j6Y*u^q;W9C! z%gfvL6**pg%@~*2JeERrd<*48nclX^yPf2GpVV{x83`yvzLIkz{N4MWzQE^gEBa7p zP8wgney$?VBKs&RS63)puRYBjwvzkixReY7679amn= z4fpRgMzXF;7E@GGjQx#uIK)-=vYVcNA7G`cNwq$Q1%k*m7`}}V2oP_^+Ih8&tzI;> zkQ<4Ro1cTC^2Kv$UD z=bm4s6*Me#M(AzMRl2MiM~fZZDMl(n=nE;nUH<9xB@}r^!I2p-ue9Rk3V59%QdYb1|N|Be9%P^?{yp^O3lIW=#@?LE{qlHEn zU2IMB0F#V4#!OA6Dm_cYF2{Dp`3>2_p-Vizp9Bx9v}#ca(?{n^%#yQMlX6aM;+K+A zR?HzQ?$0`K_OdkA(6q{KLK;oFG*%7|s)UN>J%V=q{6JV~*UZ$Ha*@fO=N$fCS~FJN z}e8Zxm%C~)%-m9lj8Ij%tn~-JS$a&RSs5O;p>wNC1YbMcr(p~b`ac1d5Vhaw9 z1=Ltj5`>{}PwweJED5HjZg>>-2co%+PIf{nBpQ*V9aW5ymCc7Mk+YkUSBsuftLbxk z_C7ofY3x-}QHFl((e92V-NYp`eWzt(F+RXO72_CkpNYKqP*@6nMKMgulmj(aV-Po1%!&&gug6(qB)nqC>|G_nu z@{F!v4}Fl9_Povb!PhHkPQY>_4;9rl6AFpQ{V=U>VD&)hZ)8CuJibzV#fbdP^cm_*L<{* zp%J;gQWHXlPEE}!LZ$L)izqf<5O}3DYrxtkyuH0M-bT_Qe|OL?bUWYLK7P$tK%i|X z8u?2s^&M_*_1qy}M5Iy`tHrb1+yn+pp`6p9ozcQKrzA70MBg=qa`{6w71}=iDt}W< zf#h$?yoD!PUkS|VYkO&&mvNKKA+e$auwKaEv|ciWk*xf#$=8JDf1&!>@f58RJk;q! z?;OV*>o*Uij1!T>K+dM{yrN^+66_7#Y4b^o-N7`Cx~jGqo&P5B+&e&Bot~=75ozl#}i)7ZQ%RS##FW>p$wj zLJM)V1nqIy5_s!VF#)*@iRDW@lW$&X3jNV#x@4#Qk>aep;DAy)CLvdJ_Dtw+gI;4< z^o=ZkeCEe0+b`c4X1>j{ z=+&jh$2RxMB(A8D$24E~tyMHUj_4Rl>IC8YcS>e1k9jfq(K~`g!VVXP`pkOd+3K&x!)Dl8R=&j*Gkig5;RC1~>$#{~h-zXD* z?**?^X);Bb*pa`hOdY$O8?g&{1~-10dtWCmm0y=T(%3IWSMWPc zmmLa$F-fF1h>>lP%I@15Ut)xB+!a%7WPpO42AZ;e0n!oUYNG>44lmaSDOw*s$yQ>g z{IV=FH@)O5`4_9EZy4hDfdPk+byw7pbnR4L?F0=!G;kbhO?-D?0L?@Az@5&S#qi;v zOn)-QN$E!Dd8*UH2dHU=dXO(ON%Ux&EV|fO{+`>pp0#Bb6_D2wH8AIE^xQ(xTh~NA zALPdl6RCna^VLafv`EFc6)MN%sg`8y+#0sZn#a=5F+TRIbo>uH8UIA^l)Vmw^n3C3%DX@Si$?@YbmJ_>NUg7dz20WHR1DIRt0)<)}j5?}yMe{4_1s8zbl)0t*B zOCAz$YgV;{6~Dn$73%dMDLD+1y%u`#{egh5bhbdz%GmEDQ;A)e8Z}iW+7|q0k%fhh zLLA3YD!=~Y-yt^~{FlXmV-eS~yUzOd_%PP^+tKH?Q^GqC`czsL#K8>wP$cW<{R$XT zl^#Kz-e)8l1C^ziWz8KIWFG73*mOHTL`urJG3K8spp@f)q3Xw4d}I&_2G$ZkH2()R z+frkCp0ot(z+yamtC-@)@+IvG$LdzNRUdz4#Kui`^T};{?`!1mjW(ONACoBzzCe9t zkC)h*x)j2C3mDKflY(u8>w`5{$OkhbZk%q%N#2;+u5-W4|nzTqoy)2v@QSQ+Q(fyC=#S= zEU)rOSaoQgbFGc>+S<@fP~M%ccFdpZ?y01`TjpD@g&AMj``<=ZeU0A(mZaaecofZZ zYEU76w~XT+*@?Ee*MRRkvdg5f=!8GDk86x5yIYw|?vtKAim^{#ojFd4e%pHc>nQR~ zu38SvmcT!@q2C^t$)R}}DeDd&%AvT#B_QB=%#}lUhK(Peftr%7)4ZYj-z?$3=MWsS zg|yw7kz|V2PHPSAq^h-R!jgZO8&!I!3UY-5zrJ+ywGc$x(>!PruH&YbFmnUCWfuO@ zJCgl-a{4^miFeI0oQ*q^uKQ+ZK%t7{#X0$?>>oHc>d=BGj0N;DBwtL_Y)s zset#Iyj)KhNVS_PzL|w;eE{jJvy0@MpiHzr_0P{PfU$yl3&)FB5Z2RI{3|2RmGE+N zwAgOGJ~k{C0jUoR1hYFDl+}UM0tc8jP`)RU25t|O_kzgez`re@lKsO<$ZSOv6$OVW zoG@f%VmqwGq-<`&#Qy3P&(|XJLt@u`pQpjWr4-6x16sQ7==jg#hthy48`(lJOP8gj zJagw&*^2(TzjU-U@Oq#WOZ4R?O?^T*oXdczwSBPl>4>ni6E~IP@TEl8&sv;<6JbE@ zX{GgTZRn2@kU#SV2wpzh5ik7x`=of=HBK$|hp*ypiv>V(8)M$=AkGSI3ZJ)|UMUmy zRo4H}SqnS!6^^$I?+|ySm5z5rG^--{1;9DRtx!SGsd<>CC+(90kPBR|a z5s`T3^roWyLiheY!>_6iTd~KyR!zqt$hNQHkE(SibGhLyLDx%{a>II|`bP;Dm=c>a zZvPGc0p@{u%K(rP0NC&_xc^c6DDn;fF>OJppz8+~k@dHTm+H}CX$-@1V;wcdv7AWg zhc$$26DkV;ohpH>bGYsP?LO?g9lDMTf^=Zge#GAJ4s>dq+7vsXqD}TtPQsw(Hg8(# zWoKFCD+Z=7Mdz3AzrB_%M?3z(fKJP-#jzI~TMXcvnQRR9A`1@e)eNO(>1;y=qNITz zK&9dq^ejIe%@6Vs&R+rRZ{!Z`Qc~^UO}lQiGKo^!~aG6xcc;>iDNrooY~!ovmeTS7vY0()zBiDoGS6BD(7 zKx(>uTWVppZyExYE-@QON_F<&yvPAydYKDf2E_HW`@q5-Kx}KJ_o<2CcL${pfH2^kN$XBvkbX7NJ zdGk4A}1c`^xE*vv{z2-k_ydx04Qc%I|Ygzj)clKZ77RG zM&y*0x#1-rlQR}@`7%)}+w-V9v=^@B!Fv*oGyo*`#Mr*~-bDscTU-_Y&zl3Y`Gwe0 ziXYt@WOt~X{8k&+IxF&tJ(?u9gvd<8P(FEZ zY`HjPizi5&54U-a)i~!Op<3AUY!oX9S2`gYzC0<{kfYkik^E9B7B%!=+=E#n=_K6d z1}A*1dUZuGSU|v&5G=}Je?+9~oxE5!Pnh%eu-SB(?#1!Gi{SY9IGd2Ya9k z<8t1W+gxgIBqY?Ba226f$a0+2i^a(cQ<6`~n+{U>GH3bA;hta8Vi6DuwKm58 zFdppFz60-eo;~2V!F=*$Xv)J zn6Y}#xMV4S%_^F<(O*D5Rq@~|Jt~6kNadzM6TpKUaG14xr8~po*%~UQt+-V6b!2Q> zUV!pUXKpQ_yTL8{f4TzktYr4#(ZEl*%?BHI^g0SO3Yb6MbP&win5S91_)5{5EB|m@ z1bu(r)8sUnhRrsZUz%G`6^C=R^aC!w{*{O$jTcCoUo{T&JN$DpK~R-{F~!$O^8>-f znoP;ek=g?3@lhN&Fi-Jb$wxl&g?}x1(|}-IE)m~13C7;jsXkW#B{x8lx&Yz-DF=|{ z2oL0o*V1_s9fNI^PM>ISdgd>r?W_;;7ZXcO}748^U}LGBnm zGLB7B0V_q+Hy=tWKAo*a@5FvGnc78rFZZg{;=X|}{?dD??RH5#_!-8io7G3Twd?)!-QRgViY z{=T!zlrz<35O)0hV5v2uql*;c?)jiJ0Fv>k}oa?FhGFBVCD?h28{84D1POhn1^@8p7?d@3W z_Vw+;&F%C_V?)`iwSV@SQaM5WnyG_ z3OWmrDDQKsClbP@XH)f>E4ZQsu>kGp>S|%4QLx!JMW=z;f#?T4WAtANC)v?3YA)&| zG~gKbe=LhWj#QYr90&$1`xIuJ@wHQImNJYKg3jYxq>3lQ#^-2M1}UJQ^7;<7rH0Q` z&=q}U^;PG5o!M&n8{F|fS69yl}`n^Hb&~V|^ORccf&^ zh``=4Y5kIlMHnzZoyZx>9r}ib65vEy@08ZMt0~Ce))m{OHAuUCRh!4g#zwtfb(kHq z^ww?l;(Q!KOYH7bH_(3vdPZ)8vDlpgz*8dv4C*PCgHF30RbJ(LI5$U=h-=7%^id`? zn%+Ihy>oRLIIgwyLnFD0)fDQb<<^?QCIpqt0O}}8F@-o!^}iZ*slM0QP^IH@!Jj36 zsB`lY=IS2Fl+2H*%5`NyV_&!Fz_`v<)PL32)M56}(%YwcnwUYTEu~{-MS8xH#s^fy z3=uqLgq=OaOarrDp*RomU9(X#0bdh#IjSffXAGmW>rXvvn{sP3g;MXgLqX}#f1pLi z0Q|mPtq)`{;TlKhmX$neDVox9-m1?JZ^+*^#;?Z7Np$6saNV1)uTSjTJA3NQ%*{tk&;>eR8LC zSLgwf`&Dg(NEUVMDGM(hAH`D8kptn@IPN_SHJbfQj0x7F!iS)%qk48xNYwX9{(H$q zdxZQ0m3sY4fM@$rzhf)1@Bc!17g3w)GQ|RB9{9>(Ap{CNIN39()a`4 zsWCb9D~1wt@YxRmcd=dg5&soiYV9cLT7v?4oO8E?Kdp&WAv)Z6**l^nSNQ9^OTqrP z(jV7&63Cb>(c=kyv++=piT(u3I>exQE5#M-N@^BHdB_6HYJ2>c`0R_ zM4&!hOo8e%g%^TrWC7BXKoxxCq6I_))i?!-v--Lnfw+1k*@3!BY(+T`xE0W6)4*Ad z!HY%0T)||=O{B2S;HTAT&4{y4jA`ixo z277gtK5k>RkTODVlChsDyNC^moU)yPA?}nONKOL?W%>cNe%6BpH9~xsYm;nMtCEE zExl*3*ED^Mau{S?g!WMmc+5YcXuu)ID~AX-d~DF+An!LDq&b=ktvgr249{F_C{G5R zba%i5O7IkG+1@%F$kF-SDoc{-%yeITDk4-+;mCPw&NWUwc73bnevYu_C?6yxgO@#) z#u(fFPJWnkP=k&=-|WROa*T5;r9sK4(n{u!w8#`+5&eQg&C)arOq zt;^Bc{Sln5Y%R|2V|RJHaVbKTpT6R!PK&BInqf3Xb<1UEH&K{IIhT$3P+3mJ&l??s zbcf?LL3whKveEV*FrGOy*)z5%rP!7mNiW zuCl`=slxn?ss#?ML|k0M24cY+GcUb!a=DM`F-(O7owccoD0~#lVZb+&Bb=V(nxfh- z#Nc3!NRbhO@vGQ6dTZJo+wl|Ui8JRzLgs6KWB)3QY1P_%hWC*qnsI7&|Wm+0k!pTckKVEO63e|!jo)l{T z0o%lOo@2E@6gw^MJ4Cor<>%`JPQRa;hr}u6=O60zD`D15pj%jZwa|IoU~!7seCms7 zZydA1M^{P*PQsF5^`r-E))V$MO#B-*Y8^L3qCQh ziEkV$IAq*qxf!>)(FV%6s0xJ)Bs@`Zr&d&0wl)@} zNnrE#C*s3e*X#?FfUjRstrubtXN-cgwMv1c^**~Z=k1>Z<~b|mPCIb9UOJ9E`YFo8 z+hX`V9T88c*GDZE6Wj7-6 z_;>)m+iRvLRh&x_8!=e{r#ok3&P*DOV(fQidtloze`*`B_a3ZH08;1xR@wKRU*-Vk znvMrLpJFA-R7volgf1!R9y!)q*mk;bJ);!$>(px~7@1N>Q&37K(qXf@Yd#LA7z5O$ zcK-P)8t$U^LpGeCqM<~31~iOi(XgOXZ%;xST8}$X^IZL<2TD6a>POtpRCv=+PtJT= z=7ntRIv~UBl9dX@AHtdr>3DqqX>9DlGa>7Kxk>E%kodZf7^kGNnNl<+6frZ z^?$QATFFPc?|0)fyP>-slYLn!FHI!)RilmiwrI#k&CE>7Dl-&V($hbg7r0M{= zNU@w*{vqXJyLs8;dD@|tCbHi40Q+8n@FLpsp3&y&F@LwAZE4&1>X@s&jSt=Mh_dXamm2RIR?K=wl}*!yDFjBh;Z+` z6)j4Cf*G5LBSuBq{ju1j|1!IHaEQ8k0--?Uk(xBRE*5*;i4pVJ=8b^O$b1lBD#64; zP@ScGEShPU&GZY(n}>hIQyzsUv8c2hovmcnDKGhzJ`!CW6OjB^iK>hOt!@)26eZc_ zE*!KcU%QbER$1G}(bG|}CFJBL4(XDOQVK-17KE%OY6!mAQCP&7StlE9>{CO#ura>H zK(bE-j2g36n>~S~tQ+6~2`01w8^zW-RtaVt92DphVrcc-`&67F679N(9lOeFYE{A% zKJk&vxqPCz?b7`=Fn}5sK?fkYjIg`t{D}i}Bb@HTG+C9_PMFo&qvDYQX43e<*lVb% z0jD7}`uFc%zYcigjaf#LHnPE6R#6kJcuAIHZ%gRM3104(13t1J0MU1kDh6)D(baHKhw@J#WA9wgkpSy=Z#d-En<4~~kcS|7%aS=&J zqT*kl{Z|UXfq{l5VYSPd_kkAoL!ptZP1+r#h$xrwTM6@itZwbz#Zx*u-06DOheG8Z zQ3jPm_s-yh#p<}CHVWa7OD;EUNiWFumleyDx%Uo(g5UTqaDjfE0u#GXPYvrzKrV;F zJZ0EBy8_5-Dub_62KsJ;^YLAigam7pFJ*MnAupP?F#~dQCu8Uhbaww7zW2PKf|~M6 z_vdhpn>WF3MG-=gc+z@}V*u83U<6Il$8jtbatPq3X>d-DmPXaXdTTiCg`^{i0%asE z2ei(!1mjO8HFW#vN%OgcLVx8GKap63$-TFZCNcKIX!AX4f5h5Lw&OvD%Xs5EMIS_K z&SCivADV}{_LUqWq@aBtnilXxM);EB3r>x`wn1}iI?Pd4`p4itoyJ319$!SYdo;(F&EwQVO!R$`IwcgW5iObr}^T1xqJmMHI=1ibuWg+ zmaKj(kxd-GxF83*go+5-Gnlx83<{o+doK;d2Ho{=z(C?STyipI4L_+*8E4`TcZ8^a zLZ9{LDH$1rV4~6eKmA59Bs`1Zj+yq;hSuk6N?ON8@8&`*1;(O5l z>53!S+YCFkN8r8H3kcv<cAcV|x4>Hzo--}*bLQK0 zysK580xC@=eg23@>g|($v;wBU$MTbpjAQ0h`WuBPHH0FtO8@|3(Z4Z%U-*ys;qS&% z8J?w5zcrsrTV07`c}e*FpwluBM!`%)Odqbp4GVW>Me^kHM@58^@T3A zxRp}$F_-tx$$&f%)%t)K>w(PFy*ZvlaP|<&zD`8?r?D_Aab1~*Njd$IRm35qdpK(X ztJbp*T?W%`A%EsP4d)kqmV3b8zn?A-=JFu;l^UA5-TkbQ-|k1%ExkodJ1VeKBvtXX z>>k5QT3bkNS094t+=mmsIT-%W!K2a8Uug-2Opwpn=WpP}D|#wc5+fS?bmtsMW(Ab) zvWifIb_wV1wPXLYsMb5qdn7ZHmJ_4i5_I3|^O4#2GQFa(GJL<>{(}L7ca`#4)ptbS zUzbMJ#mIvyAH8%gq_Psr*H=;htH(X+2S-Ovw-ui^qL0@!9UUN@oeJ`$2j4tj&e@FH z4U+OyYJgC&1$Wt5+%(&dSx|gjU24Fad!Hs4S&#=@&$KYiHYEpwU&w*4jZI1!&?~9b zBhd6F8)BFad7yN6M=WAM2VB)^+uc!~cBRqZzkhjl_JO9&YnvW@GL>fJ&_vR6`MNhYjwxtv8`nY5;Y$yKC zxDK>SId2Vi^!05A*z4-*!l%@CE{zI?91GAa)vES5Gq2M-B+1^NDkXZevG7D_iIH=yTzndsqc4Ir)?_=<@)4JW25+u?1 zac)N$g){C?R3yQJ4E8WI7dN2k_CgyN?oK_s$=}uK5`%@j=VD`Z zFGAkMlt09vU5S1%7W1EX46?+v#;PcA-$Y*z!8Gj_aVw&b4f6!HUkY+8eQCJ;OW-tx z0*wp52EC?soS z_*lzZ%4VSAoSaMSkY9p_X?K@?F}P3>_9SCo_ZQSHRt+eE7{X%Sy{c7WXbc*l(uALU zWyKu$k?54*!794fhO5SO^S}PqUJYFOo--eq%2p4*Vf>HSTUUAE! zb}JGvx{_jMd!!VBWozd$e`?%kDf3eg14(OQ|UE4zuabp@m;IDl%bngYCjd~0?%cQ%O6*xFLyaFn%^ zoWHI{y^c+L99qigYppbbXJcSHCFo?F)m+Fd20GFnZ#@>0Id^jkM}MDxb1;Q(Bd}GU z&}(w89ZYRmM@O%sy54OHs7w12$ba6md*oMqM2~RhA}zh~n3IiaKaRb&Hj~YFP=??5 zTsh;Bb=f)S?-4xIGfl)~@0K`$F*RTV7S(z~-VLkvQH`5#1G>O~98I@be3ox#y8HUM z{n)hG`)0>D5b>KqOcLkw05v=I!_P*>i#ui1Id}U# z?1=_>RIyM=RA z1n%2YBEX9$JyNAf)07rm$GxA5QB_74Q?*~KryRRR{$HTcQ6By7o((wI_{@68e`gI6>I?tAJ zw+Z;a?$B1nKbJ=Ns74Laf`(W9UK4B?q)2`+7HkCgw>HB|s?$Ty2~!ng_|X`_H*{7i z=<#*+TxulkQ6x>lV1XF8!BR0f_wJCPb%7$-)A|1fUX9gOvN-D*@C^|)xDDWXDv_1| z<78TH{zhfmTuRYZ9HmLuN$qV|p^{>*Yh=FrxcLnu=|#&W3c&M@N+3z!90ht@qgbVa zB+d93#2;F-iLu)rWvlhBVf?AWAD zEdjy;73nZup`SI=g{36)`u3)TqNn)MX3BYibqO%Qgp3HSQh@ZPZ(#ZOPf|JO^rFm| zZEYDYaEe{_v!h4Wg&VwGBw_1wtku7#dU{aDRvfX^Cznsaw3{f~jeoV9Xo%l;YjO$J zr;``wcSqUmpn5l7j~r1rrI$hi0cB0@r6YxY5qPMQ-Jt2@ESTkSC?WM>{UT19LSCGN zBZg&BtNX2el|m0QRY~qs9XJ{U_|vsJfzT9uLguZhRm3v_j9nxLUhRd>>@)KZUf@7q zzE>q5G`@eyxD+y0o^5?WiMy--Ow-W}m_WlP80Xh!cO&I_kyOEomgZV8> z_Aog+`D{?W#ZU*GpW}6+?G^e_HpzqVtohTGF|YF9&$hb0S}V(iw-R8c>u(*eKYQCX zb*Wal;Qoe8UObVp_n2-94o02j_7lK!bW9YKQb@ZCgf0z_PZ`%5{1Smz zQmH@`qVMMp0-q_qfsxp)e&FB$&1efl z8J=H%^2mw>U4zCN7JoqS*EZqG7~TZV5R%I!fhQqSQ8cvd6A`my=%$#bUg+O`z5d*M zIHSMK=kEHX3kwYu)nRKX5@lAUD)!#6G!=m1Ys*gw4Jx7V?cNBx0`2Ux^HBcvV8<-2 zul(?@@e%4}@O=mdnT))AIQOxUK~RTEe>HT4^C(OATK<$(15C9t zH?Xc2DjU(3$SU^^`f5aoQf1`tePR=T$^VevaDh)Fd!YeR2?aparYWH4%t)C)|1}{R z$Esid2_WmB(9nrm3*~zIm7_9+u;*1eRyTHQEm3Kw2;wIHf|%2?fS9?CpuBs}js+0g zRGK3{{u4yj|l>~(5+>@n<*f86FGfQY2=nTFRK&0&4-Ygy5!hz3T_ zsOS?qgP(`*jRm5eWhL=RO7O(r?iyp=Wil@}hk*!IOwqOLgoQs|pk4(ZV?q~uqhY8i zFmBwjZMZ-bV?*Cv{KnpSyzg&C|CITsmV1b-& zA`)V8`|X|BM+%^Fvo)6U*dqMes~A_$CQYmBTT)xzkEIYxa*$b2XVg~i=ei2~C?L-Y zB1oy%L7-Z9xuu9C7HCWYqfgz%$g6*nnBi{%f-ipZ81A=M{q)%g4xnHaJo`#i=e(^1 zW-!Jqd0dW{GjnsPfgSgP=PDH{Wu~$8CF#{zpw;W)(b)e~1a^W%Qp%)rInjO+8}?z* zd1RFmzX)(#PgOG0WmRh3V?i}2l1aX}uc_!N`3LdD(NHm5YnZ{cPwBd=Nx7hMY?9b}^D?=>L?XuRTW0F2Y$g zJ{?=E57KK4yb?};hbHLZQq4D`1mXPyWB>JX1!BGmcx^ZgMhx^fUhzyCA2ML9gQyAK zdR(m?dApIUZ|68|m^G6j;Cww`{OHuNKrZM~c4P1So3~-Js zGrKPNKX?!AX!EMmvQr)sPOn5_+O-P)206oX@?v125{y)V87&;+^0zofSB$jF?#A1F z(o8LcW!D+Q`>S@?=A1>gE7+qpyg0>}&71{svrdmS6pPY)^t(8MPPvwolarjXvgm)M zsdJX~q6T2VS6HvfXzZF|S5M@ooKQ!o;5%dY;wG8^P*M?=Y{w1qv@zXIMs1AX3j28ZSkV?R_@Htzth%8=GVhMzN4Y4Hhxz6K6JF4y2*Kqc?vArW3Euv^^)A-UI z4*V(Cp~CjJZ`=kLkGzI>v;8WA09ti{P*Wp;cLqNwdC|?bxUmC*2#LRRBrAyqaF72aPCVm=X5Bz0=GFW3peCyOy>!gB%p$&T|FWlGM^RIK$Yd z2%BfsvN0#?SUaj!s>pfg^he&hVtH_F(?Jih(euK}Vkt@e=I-vSm(2bIe1kFTTtd4$ zoM>Z&KsqlY=l5fE@Vt9eSl^rmrEFIK@8|Zuh1AYFW>oC`8p%I@59}h3<4{Mep$&|G zVUZT&oENJXBFHHwF%E|4Il5Eat|z>2w4d&=XX*C%@4P35GoLfwo6+nxDCfJaR9N+W z#up%SN_8sTF1LOubpH>=HpunMbrAh;@1M$x&6e6%y54a3fA+hh@zuN9p>hK+%I8qGM09IqHQ-Bw zUNVzScem#*{>g;0=ujV}-(WWE-U0=)tTf<_&Frt|>_5e9ZCTmd?`vw=HdW7?ooZ%a zzq(VMPcE(o0q|-3Pa~g?t9k$WG$khP%Z&QvTO1G0Y!c!nyEK$n4bJ~n<;uY1gZk(|x^BdQN9ntgVWFPhk!5;c7s_6bRhihc&mzsVhn*tMNOD#( zuYBe$iom!Q@bZIsD6=2zZpC9e({1?rdIk3A)(p8AL@rMO>FED11m3`lbO&WXIc=H2 zq#LgIH@22!b?vK4_XaihP=tz@ycS3%I-8O5*Bl+*`~PlZu-9{S_i!U)Csjci-k{&|E9O6;acJ@6eH^dIaKJD zRYR!L%z5u#)yb*G=CaZM|C9`;&D#FU6{{z2arNDP=0oKETgHr&Sm$ncWsFY7c}ggD zzzG8@nLIHE5;Wi>EgJ82b@W5MP|1>q^zvxQt78GOJHGjjZS%5(DU!d*?EhiwEr6ozS~@o=Al<$B&+YU6-}}rr z-`vB@J;>f`t!tgvna6Ql1TnN8*HJ7WM`@z6$(M!aqiauY|KZsgAjJu{9#bj96@JR1 zUnh^MDFa<-b!Cy~!&%e35e@z@V2}%XRg-~H`n1xHn1qCYmR7aWZhCuX=b`$?a=Yb) z1^;Qg#%RUr3W}Hr+IX*~Do^t{+7)+;J0Y*w`udDlB@G#c#6luM=%CPEhlKrRC1Maw@F0$vB`DS@gPql=V!2c1uo$Eu?~9!_tI z_dV%foi8zX?4>D7A|><#8AB;_GEN_zean3I7}~#9PVYp&%KvqDVG~k)eJWEYT5{>n z#*Q{PIJkCsx!4(VlZ+d!5g}eZ{!&1|cH(urZT-9dyMe2G*Jk0mfcKti;PfdshsQ`t z2oWL4qq(SyWvT&DgX1>@9CM7`$C24Krzq@W4a=4kx$4>i}wC z$XvVhko=Vk9#zrkN$Y7Og2BZ>M|RpbWz=r7ORqj9@v(TvZTpPXP%c@;5s4^SNrA{luZ_25fe=qAzvbN|T2Ktc>-qRoKw_DvR^#>XJWv zz_&1Hw`HHGMr)gUzWr?#Qf%c1Muu;TzXctKjbH@^5|L3vWH2Ap`dnc82iuH<{7%ly za^39Vd<>Qq)vSswn1u=Pe;q#ksYte1X6>JvrfY$8oeJ9Q_(1xX;8==+WxTrW$E={UKQK*iKbRtO(f#p zH(S2!ivvgghOg=cyR9r&#hpb5I5ZQGY4Kwht6WqDbp)@hZstYG5+?m=$VsJo<{M^{ zMlSbw5{p>I`0oM(OILx};57vIdC_frthG^M9!KlM33aYzT`r z&&f?b{7uHH+-lM4U}kfxr}ol5fQ#{d$Rv%*ANvyOJK_u5su<$SI8E6@&-PSM&8 zsJqHi9J=n?td5O~=TxP52=r7Ue7Xb?UXSeTIB$n8h4pPrRSzb_19IZM|H%ymU45Sr z{ru9Dsr_swD3#oz6BCFc5*0Mg@dD(KDN z{1$m_5t*Hwsea4k^oXg*p4Lg=rBEiVwys7r)fMJ|(1PAB)77*zrmPp&V~o5Wgf#Bu z<^jp6&NrirOFZ*fbQ-y|AM{x^la9MpTveuX+Ni0_7KpG&!CaEh!yl+VK9mjR7T8GW zF6XKp-9!u~3t${a`kwnoN}L8!+Eu;jlQ;`Q4MuNs=x;++r>?F(SJ+jRd?f)vfKS!y z7fb{LGKz8gr_?MVZzE+NCHXK2Rohd-)cX}Ep+ka{bB(z1tNLMF%n5zG#L8cQfIO5sHKNjjBB*< z{DAc7_KodK+r~f7_V$Ht*$VXrc8guzKQwKc#cFQ8z`5o4*UUP`ae`0N&d$!eHvaSH zJNq8uXq8h=H;lXwVj)e^h@*WLp7%9qZWNK>LOdYfEsJR$Lr~k}V!pGy;15ils1Hhr z0=pKFr->$ElRqq*%N%&llUO>O7_6jNa7jTIu*Mq~SGHK;Zi#W8aM*6Daelw4>`RiB za1EDZivHJwEkx;M!51J+MY;_n)i!<@HhP&p`ROpMs)!aM;o_Mj*Fs|-vU!ukBh}M{ z=@so{V9y^l(Z4TV>5nIV`XnzSa|NglK*9`z?pA+=jn3Eda`D|x`~MvT)qg*$%@J*| z6&EG-^=}lwmr-Bg^`PhxIRG@FTf52Z*IO)iRa4(ubqK_XA@3?o*JwD>CzZBJ>xWZg z-jQUGs$vE_TEptK$2wbPLos|omVbOU#D+9Hwy`piyWC~ANd#o%?K51YG3C}A7qlyn zYFS_=QA>YqgyxXi^Z z<-*8*^hsVS9c@lmgY=jCdRfQu;iUa|gSV%5xuvT5e|K~?h4WFzX;RRz$pzIl%33N^Bj7M`z!4n@WH(*g#~^V@kK8 z5tpv@%BO>?BR;2`4_V5d9aKtY?8F>Y?{U=0JO!L2t$9lbl%g4j=cM zq$?(qq=9_-(~d!l2Y3|=RVnA)Fve;p!Y2%9F~3GjOP_d;*Q@t=h)?H>VT+_r=-+lm zhTqB4nrhqXZ~L~A(4NS}Yc(RA(DVUKW&Ky?a;r+yrGP(`WQOTaha+kpm&fRq<>PKk zu{u=?5u)EkC-ZU99A(lx&rc7wXz5TX+?3 z_^In!D=%(NMilF@gDy<;Vrl8tWdoh}_Ja&w-XR>0fU3IyNtHjTnN~XOV!)EEvbcd) zF>c-SEkOtyjn+u{f;WD4*%ir&H1tU{Y=9+3C&uE*J}#e=Qa#5 zWNPoD`nBt8XQo`Kd-X8r#dJP>m@K9DwJIY=&qQFSN=ix^dT!jet3S}Tm`dr=uQ^00 zRb47r?XUm%dl~djPCfBe*x%^4r!x@~AJp^@sak_$t^pn*W9!r0qTNJy@NfZ6aAZ7) z8ImrSit1kWycc5E&Tc?{QaUkwb2unBRI+vHjcMuE%P_I~vc!DlF>d~1t;UbJhtKwg zbX7LF?$9v=W{vC&t=OFG(mp-r$qh*+^4RpwrDn0(^gK-%%=UwRRVNgco!hfaKgwMD zqUZY*Uz6XDEyV2_tNcrPYUF*b0qHC!xpdbG$9915qIUz0pRzx#DF}OB)J2W27=NCg zU6!Z-;p?9(K}~jgO)uZ^i_hfkwQo?yeY;WO`2&<}p`z;gVuQW*hod11% z#gg1>5VP=j*+#lOr{86k`S98k%nviX{+V)kraTll*f>#;R*~j(^;ujr&SZ{rEUfUU zjhqR$w24rRX=qv2@)DML%J^?2{>o$vy2JO3|a*6*`SFR&p073vD^?uL4 zJufd$Bo{~G2uHGUsYSk<4(1OB+`BhNN|x&)P1h>3K2`rI<6Y9H?VM{_l|~F|RJXQw zgfs6H-cN+6ixYWJco2I_&fuZ$6WvGhLA1tmNLHpAUbv>}7TWFRnAa2%!J3EGudm%w z`)+<;W?%qIHek^8&xKP~5Up2UM-<*>07e zhH@x*S(2p$R;aU0keppGFR#Y6Z(SVRIdPYrIkE7SdNh5soUfiZHas#y$ehX0jJd86 zqCh4b(xAy?%+B${xSU|LIAx+N0H5@ELD7o?$;-!gZp}q6k zJnCgmY`CEM$r8u2m?5E|!cL3Wzzv**=H5L>M*(j#s25L|p#XP!(`(7|&hdn)~k|2T#BF9A_<8&yKisCl~fq8F1Ct$#fkY9rK-ee?6=oPwwF$c(9nTN+gnr;6U89sgz!EZ_N@a=Ob{>> zUgMSG7lGlY1LUHmFHUq;@Rqojdi0L3SwXU0rcykqaJJggNoH6{DIoTxxc?T;_PsoT zk6dZU1QJ^N4EM?>7>}m65XK!D7gMM41uMK?H^^yKhcBgvgB!Zt%_xn$9h1jZor}{5 zU363?b5hdMRAJ!Pds@{p*JNEGg1S2EzpJ|x#A;o7-KZ@KWGRuj+h)XYBRDcUdwzY- z-kV=SnlbQIkESV$nD*njG7Xa72IL@XGBJzRY|=|J9U8QodHLBb)w`PVhEI2!*|)q8 z{ngMUb6M$sbFem=cCZ6Nd2yT5wW6r2g;03kXRG8y%Q_}%HUO>6vi$?n;J?EW19;~T z1w8rR+|E4v3TX>fawDOp-mqTU=&=>|N6P8lbE8HyqltZ+-euqO)a3dT-5v{4_aAgV zWcvb@_UM=@$rwJH)yq{I-zR_e^#OTr`{D@k>Ui6@0Y-?o*>z_NyRhe8gRIbPuN}rm zG*$7~sHeVh_H{Jstj$EWr#j_l7!1_h!sAR&jal=|jw~7-wrgYW9&J9*7sL+1UK|@> zzf~+L`#!yB%IQ?_4znK)-+SIm)zFjqU|P!ohVT(@z97{|bR$ejJMq@POIO0ulJi}j z}RMxn>g>~4Q59Ru5(MNOhDyF!{{%rMfswq^+y)^->uSKW{2neRmR=EI#)ukb%!Kj(SBT2%Y_q( z?sNBhSf=~YlR(5sq@|!8x@M|TTg1Dw@pAf5==Kj$bW67#M|~js<@aM}%F&2&o@hvt zT&bk;cjiIl6CE8Q8lP1I)?|G&4^|d5@fheS+`ByDY@zl1)bB=qLexAgyzVk`apc`^ zNp?2YL*qF0i3uBb>am6`vrBDD(T&DeWqL0^y{-r#<;>EO66rxHE9A|@-u4UsjjfNZ zqod~*vV>^p``KafkIF&?eid>g?Z!(+9?V+q#Y9xosga1lNQVqi#OgLY7Z~R&X;pEH zf1K+t#a7R1GcdSWS@VD3Nz2Hz#XftCoiqNa(*Hco=lM`fBoQ%r9w_s+$~;+KDw~V( z?O*?nv%kufblo5!hgfcTK>>k)ju+VA_ZSmUkrh}p)2MQwGyNm+Mxfg{aQ7Yl@^|2{ zp>Xo^1$YF+_i}cs693bhj9(48-ZW`f+oLB;(E~g8c!BovC$QJcblG38{(cv4=n*{E z^1gstnZN9yLqPqT7mI1CN3&M6SN`X;1F#u+B!}(h4V`cuu2DQ9azwd^G zggoiGn>bTb=uBMl?8jKnANd`ofY9=hq0;jdot;SR7xU$=C|CjmY6jr4p)caPsbp@> zi157>zv_?fC+>N;eZJQRTQEMWurMrBE|S-xmkI_VQfnhcCwpm^VV!0sFb>Q&BUHBU zL27+0HtHD5No_?T%7vtYZg3NmmaiX3MsYVtw%8{W!g`Cvfm?$(zMUg^5xmqDPlS)J zcDX~qAY1yP>$Zi#pXk=s*8cCdPf;5%OqM|)DI8Do{KN6F8!G6}l<+0>th}z_n+fpL zulHmjndBuu8zKV1KThNoDeU2OiPA7<+WM}l<*jr?sRURDsd|b|cf-~#(3?}&DmuYC zBs>xw&Z0{eC~km60(pkGOg-3vZ~yh{SF&@0;{3t_Xauu;60oH(Ha3P1F8o68s~HYd zjLR1_|1&PTZ>%vurfv5$Xmb|5UE)NDLNY;$uvv>Gr1?*qk%?GT-%uq@3s?VzO4PP& zpeY+Rw#y~M0H@i-*T=H^ds;9gahSkgq%E}U2<9#q~nHd?`cLnkF z>sK}6cL{tJgtWAMrw41}HO_1xa%#G}*ty*8F)>yBDzCV>*tZL&=hi+0$J#HEC|YBf zyUBM{hm*Uut@#(;%!9JYg!7yPjq~cL=tADpL+cWkFj*}vyL*hieDSx0HxhPG=`svT z&0rh|V!WvOq{@*YQW7atIpa}K&WYKyK3<-{W7>YjelP>Z3`P2FZ?D|QEi5eDioQS< z*YNW8p#Q=Lb;K*5BJBd1f>=qZP3!TR6CeWcm>)76TP|jy(LIaJt9yHYt5N3n$A>q` zMCCVx<_Wcyw29IP030B@;2<;<(Vq)`zhU%(rj+>n@_yBCnh5Dqq12cNgp( zRtK%Mt&M=xbw}7erW4EWkE@KIZ063fudaQC*^+OWwhrIls05nfQcY~t@}n_|U1WLK zfa>%^>2m3cg&;-fV1_)}Sy?z{y^*gVe>nByP7aA5Iy(9}SnwjsrNWe)?B-QKIjDeL zr#J^Ijx_rEW@Kcb0)ra_2<+?E=V36!1PySdWFhs6XU!+j7u<>NQ(t$H?XA-R#K$w; zKZ*7zjXoB830ctEo^Wh^(Z3u|7&Sj0UVS4X?sr|$GSW-L+wqCMK82N)Rd2&&7a=8O zSM)tax6{=eavl>b?Sj|{YSCS2%MC!`T(N+|1c*JE#`7ED+FjeC293hi_%pwZ%gYWC zTXU3DKZhE{*cJJwKJj?obKEe2SeQ%IF*;CS#0JU-6!3sxuJ^r9_vhdxi!CgmrZ1D< zZB5~I_tp&ETLtK_VmznT63G04<-XlQFx_Ddp%XMJK{-YDPtGFR7YoYsfk)6Yj)IM( zlM6`hGMyt$u-{)28Z9Z6?wiaxgN8muPb(vEh!~R(c6Jsz%I&5_0I(C}0YjiZqsB+i zz22g1vh>28Qg3HeN1@g#jM$eZgT6L8D=u}Mc8lM;B0Sep57SNks{dTr)&3lqKPoc3 zK!Ffa(i%OI`bUb$-C~n(-w7y~NIfC?QsBzF+J{F(MxG6GRV-lljuCrZh?h&!__b_q zA6G1@P@=C-Rr3Kr`9P2MvhngvQsngtDu}NaC5W=iTM!k=`H+&tHFXPr)kH+vDS)ELxiPp&n|i1kZ+gLuhO|#ft?c4H~u= zY1?7~1@F=>FRrTBdkor7F$1oKuJ?xtf7z+OVDS2QoUveXJ->XFpy}cDd2uhypv#>$ zetV)qFnWMGIlyK*@-~LcXt?AUaL2*LabXBw}9!5wE%ss3xj*n9TkMLw%&YDcTFdU|Wv6_=jC_6n} z3zju5Dw@mbLrR?oMeWltGF`=<3vt;nkecJ7B)|NP8PJ+?S?4@A^D9#8!xW<-JU;8P zE^g80&J=aiY%7KXSPbYPo*r&^ws-LH@$DQOe9_@@zsJlOIc~PN+-Jz(I3?tPySx4! z6Ld+SFSFmZJhT|keE_Mb6(s0)DWaz5n-DFR;o%;jEuC6_wcje~0bsKf3=L=WX#4v5 zEI_{;`VQN?6<4VxeRnOQnUteZRhk)JlHSgY(e}>Xi{Eu;Uyk=2vUjcDnu;C0zKK@b z6Ct}WF6#Fqn8EKF9!-{9B#ni49SjSo#N7G;i)PrGRbcXC+5Usa@avkRRp@rl-_+rSfc3#)`Enazvu!8)*LZ1U9uK{R39~Mb^`}X|u z@;=dWz z6;IZC3Iep|93q;_$cupY1)MC;S4X#aOb#;xTHO!%{qZ;3p*#F%&lNl9y2URxy!lMW z39`2iMBnu(C!Y7sP({7^7O0Kqet7G-g9-Yl=;-E|de4(SUt~+FxF^c}LHBDpkkYOR zVRZXSXz1j}#!yX!Z$~bZIT7(a4v-(ecVA1Z(EXBQUhc@ae-Tiy1gzX^H!WMlYmYH= ziyZL@=T8(zlTWDw0|K}$`|l*)w+U=BL4Uq8--f1?z}uD(Pe@~Ky6JM=2N^u@3Mv0Q zV7YOZusLPDOHXxkIh5?A^=5|t&#yP_wJOo?0+KcSmwDOT^41B;3a-os6ERgm>uRjh zo)$((%pp$g4}ZDTPD2$*W8M-5gDfF-@ncLP0Wb;~=e}K`iWJ+$?nx5N$;t|toqc||h3JD`2+DWbj1)Se z)>+Th3{$2nj{7i=3E1+@@1Suy;&npPzK#K1m|SAtx4#RWG$uU{ui_(!6s>03_gvBZ ziR91(K?WFPnS#Q@WuP~>w$}Cep}*U~u#P)uDUDay#Fum46KkFDw_%tPj zS~pMFOs#wKs&@S)VU&Kh>L!T9z>O0;sGU~P)g?nK zD=Q-=CPw=J7!}AlQGSJPWZmH5$sgq~@4q-GgQFYHQ7Jp`iC3sL2Qqm^YMZXVZ|Smq zn2>v6;O(Mjkg~a(d{{D`r^y7IqDOmwdR8YZxlq9b;-}aCfSkqs_qS(khkM(eY)yB4 z683E!MeJRE#-8JJ*?cCy6RpHpcYfyw4*}{{v*s;9j!eAqetg^dou4T4UdtLF|ec&IRQJ_&Q9h}A6W#Aad%8PP|;xmj*ZS7(%eof`Qw>B zXmirG2tLqv4dx?PDa?_J6hL`F?Q)V!w5?U!RdBM92_IY{^0n9?rOM6Cy~E1-H*C78 z*^>jYO`WZoLneO4!{0Eor^pz<1}QNpcvWKCr2S|;D~V|wolk!J^_Qi~^aI#%`56l@ z_-*FI6{9JflleqMYIwE`tD?RXT;eIZ3un^C4q^s4kOa;Xj`$o4YLrkuY@G83ocl9f zTW5~+0Xo!OH891+%-s|9OOLwofDY|8*O}m9B89BP>&7rn>^XWD+Gi?1Ty4mX&Zh$y zJ&+TejwdfG%)Kg78_k%`EOAGT1{FY&6~#NVgtTLzS#^8BlFSidfC^<8@SCpRm(PVf zLO{{KnMw~9XzS!;J11rWg5h{z=q-j9MYBJaA_xK^dYz6ex94JkEP7b%Qq~-YbM=0R| z1JJBl+4N3NL!}Qkey*Gq$CAFt_<>rr5gxeT@Lw;#e#YG|j+W2%d#5Rk`fy_-L2}fO z&oMa=`?65Af;^{K;KjSAf#>~2kEr zl?hvbkiF-RCr9=`8Q@I%(%#yaRxjJUGO$nakLKf6Pd(|AZnosY*l-G}-Kq7KM*O(m z>2FpRu~7yJ=<$biGlR$_ejo|G;Gx7lKOeWbtNcm6?~V5myeS=cc_Y3@TrWL{AmOEL_E*Qokr;K9{_X00o5 z=`AZE5jsmoZiO$UJnl1&WpS71@?M0a~F{j~A z2xY(m4Pt!G%C+2@KTNza4J34}iw@Yj*36x(nf4_BV7Gh?`Jm;nz_Sgq{0{^V9OInz z)|mBb1Itu4SX`5U2V)foGLkKzxQhKnUJC8oy z{htdlPEGh`4t`AS9kJj1O`F4#46i-Lc8PK{) z5{Y_a3&Jl2SXGigPcJImbzZyLlvhgMeC=DuM@{+KT;}mrw#4N0+~iWTzO7J;Ty8>| z)%q77o|d3{oh-$Zb3aD|E~#{?#d~X*u>;oZu8`0tsP2)+9g-&HM=tenPYpYCGLW2}Z`#MQ$<=**= zYggnHtv0_v%F%P5z)WD>+eoLga&6t^$ zDgTA_#VF3e$H(QrRtC#cz*-SIT86clWK(r$$%6JYk>ZDBDWa|t%ggZ`PuqX^Upv|D z;#wUkqJ$pN@|SqS`TC=o7Lzi5NBz-nFQ>hf+}*DJhd7QPAr;%NUB`dg8hFDbjhJ)FP$@(Y zP3*~`l}C>BPbfk{f>O8rts$7;t(iI=C)^E zz6%Wr>19UxogSh7=ghgJ;gl6}7n`A%*1#TUQ{;OwWGqiRe6jgNhyBhyR@jhz9 zixw_vQ;`d-nEpH>(4Qcd$usIB9cvUmEsXg#baj~2H>b~#L((hy-1b_6?=%%g^P?)O z9fT#HRjCLfU|S?`eaX-fBdECh!IMH)d$-rs1WkaA}S(9{?&@Z}Oq&@lBriuveWc%U_OIn6!@y{A6rpujOgtCDNczJpMJnU-cV*m7c zTa7g$m40=!?J(!Y!}mQA0%8FKT#^qoj=n3WK6R`7UC0|4_7_~Ztj@|3Y>q28nyRXV z=97mG8hkI2b?3WXA3uJ?zg(MJ?TY7O0(uHy{e_k&Hl-Yej!%+Yaa0su^wR=sNDe#F zgq^L$xPkzm@R{WBnP<+^I<$R?snAQ$1vYEvtDiTI_Fkipts!m5j$4buY4w9%F^lRy z{N;~B+L)fC8Buch7m}Q}S7yKb?CJTEk@0qF>KU|>YF)Rkeg@WbKwu!Rc{dp}1e!Q1 zrW_i({ie31b_?bkQbZNYk@^TQ12-?_O=mmvqd)oVq8Wg0Ld-v1C3{fHGqiI*1W~uize{;zY0kLH8r= zTe-bm4ExzLP2W-5K;i5*0gm-;Wh}n^|Y7|E;c7N-D!O&3S9& z%B)42cRT#J{Fuzj$tkxS$jHW7Gyzd>$;&g`43C3sM3wqK$4tCFCG%wO&s~>Qj0cEo zo2JvFv`%8LFfVHFec&l%0@A3_<>f`5^VquOxmU1V%445D=zzB)P^=1sO53muUD^e0 z)Nu_%Ejg{n~q4QpN_>?%!v{ zxM5XJpz-Zt|t+>!YsX9Qp z#QWhvXU3`eweYl(#GQ9SisMnd8j~rFj{Vw?BuaRwVuMNbYTs&Iwa?}2b7j>j)2Ft6`@1>M<8dl)ewmsfyFx3sa&rdm3 zgmi)GLPy(?Khh2IGz>LV>v&{OPJ|28M8y5lzlO;eA!F0=W>noChoEv}Y#2m(Uh+1J z@&n!9S6eh5L2>d+i5GE^i0g|?&i&KHBAF<+hJz`;xnzL5{O;^`nyzYJsx8!)D^!g% z)hiqS*0wSSG`)6wk?o~&w0GArIwo=GC}h=%VKN~-FwYTCVJo}!qkbE&X4~?i!^^w= zf4V=58%&uEo;Rt^5>w;fGB${*>eDNB6~LjtSXuBaxgA zA>lIhqa!$N0uZqshgUwbPd|2BzO97pYQYNN_saR~`yp=Zki7MKpJm+#DSpE887YT= z<*hIdA^pdJ>u6WA&|W`H+I4mOd$vV((E9S9&<#Vtq|+Gn`q(Moy{<}v@l0IJ8L#yW z1|KOm!h*cpjd!+~uc4Z=wW#K771q`<=@B>Ot4hu7J=L((Jvj^pGo~2)_!i^Ja_>RB zkHs@GuhR~dJUs<`^tZ;Yu(aB1QFSpC+d?juD18X@MBP5q{2b-C#k(-)2 z$0v`sJn4M8%)if5&Qdp$B0ET92J~If(%|EvsB@i$J&$pZTr za?31+yO@h%D={LnT{Lwzpz291lM2D$gra~SRgv+&+LrFx7`}#jRVhh=q^Xcc0FP>~ z>;jvnw$!trw&%~g<}Xcz66NLt(8FpjMfA29T4l&o3J($)W}PBN`v2OEqk942mecwq zo0fa&53k3eDX;Cl)+=L>2_G+5d~&+3kj(#q2XFe$yEJ^OEZHR z`7qSeHJ_d3M&QaH%T#;g^4RD&pCf{u7m=PkojSNLrc4D<;iuA+`95Ln3U#K*Zu7Ph ze1`0i3^{b0c#+jPkiE`}fw&Q+?|Hz)TPMcGL+lBMKEw}ZY15s+=AZxRjv##Bj}o_C5KCYV$#4l^G|lBEAZNJOXWyAQ zM-QEaALorkl3qf_!NI5quml;~$bE!bl>3J=RfK|NhAaCs(u^|QeOZi_dehQ}Ms|03 z^;OPKI9SjOT6Yf+8R4OseYwT}Id5JX($*xm1#%ov9d%bNr$$#ONu384eUEd#bf=~DmCUZc5c1JKS>OoZ8!vGA z&B>q)?UanKQ|*2<96)*0$U=J(HEsQ308Vu5f4|uwDIbvoV%Of|Ydz5ByY$y&oWZ4Gx%6SYfr5mhEJ@gL=~I0?A`?lTwYK z^tB#xcn`d*qu?Z|K6>~=r!iah^S;R}mBv6nHS!(&nJ@5myjXeh{(W^=dh3Ia@%(RY zl}sqT5_Xtl=e;`|bQ^h0FyMXKU+*dik^=)-)&DJ&SgG>Vxz_3i|YmYw5A!tyyGca7~NM%nbsn|mW4Ib5L1>NZNZIb4cF*a9x ziY@9ZpIhc07$&7Av1`0~t9(+MJ603>Pa7P>Glo|WIY+D+29c*IDbp&tN5O9*IDW&t z zDkSiRHw6W;HNf;Ys^_KowC_xZTxJyPFE=#Pgy10EtuZVO*IT7e<3+;Ti)c|)Tl8%J zxuxvwxlTEDkZ)Cjo)b(L_MnL%`UUM--HIl?h;z2wrJ;_OkyKTNxA0o$g%?lf;CtTZ z-49R`z~m+%CarBz4`u){$r0q`RqPDV3?u&jwa&=QEIIZ8MYli@N_;bzBSaUAU)%-> z#p-e&_tI^?RW2Bt&QWIqOrnoazaln{14Z_ZuFFT8`esFhQgpgO%2_wN@xLNjuI{$6L}@m`{u zedSoKH3jNedG-@-4V8cwP;5ZJ(GYyjf1jlKBHi1=$Y1@KY&iW}AT2FD)cEDg#n!Mt zv^&3^Z1K&P$pNu4|5VRSNJjnVvpw83N%u&YQ;m&Uodl>&_KGVqpF2{o@-g<;8VRD_ zA4OEXQ>_j)rbPv_C1$FMd~h{iOy z6t~N|E*v5&1LZ1OLqkKnmYKe@i0tEXi#a;v=uDd&%J<#7c~AEAaP70p%{h#z8Z<9> z_+vostRc2$>P68CbV|&}N{vyIW;lUhcPZWo^)rIt6cH`<{W3?|%;gys-LHEBdN_0e1;67dgTvx@m%SFF2%7!DA9c!` zOiZGT&;C#8c->!n)G6XwRG6-YFr=7EM_ppRQt8ETKr3)%GdlxxY^90VUi6;)WMBw* zpJ%@{ztHln(qe&>Sy}BJ{&V)C{d^if2%aLk)CGeivKu~X5rk+xmjt*(ue8c4 z5v5?5@J^s%-*Qa*`pY}|I$dv3A^q33G0*x?idfA(mph1Hnz00yBO|sAg8=+xGiDzAB^l+<1#A%H zy9ht+p-!h4JeWM>%=|N@;ueAmmdR=9WAbKikGgLOQO&MR@^b|pQ8nf(6fZztczrJL z?__P3A_Pn6ma%RDjJI{m-S#r-iR=2C-wwCZm~Fa!rC_OON(tUKu{wT|NdnL$i7NC)98`5SQJ4mRmM)Pwc{ z%3?pCu^*h5y3@_6E1j7P0ih^=iEUA?wV7?x5eI#1-Z`x#%earA$QjSbcK4kF9SmKT zw(3GEr24*9(#8WgV2(JDkRi%&2&*Q4YQ!wZuZj(IeyGek3<}8&{ZWghVx^?7)Iz~A} zrP5U)Q6S*W0?MAGg#6X*nb@DXpc@6jW9EVvE?tf9<2L`d;tLv7w@TLOXTuSDUp^?` zk>clh2}N>{q*YJobMjzY_};?3t=7$#z)@>MB*0su>VM~eOuSU28J7Bzcc zf}f#4rdU^i^DTqfTF&7Hywm}#ZVz!AN%#2A-`t8%*A}3w0*H!$ZNlv6$5IQRDmh>V zY_ovCF2q1INxn=i$HISnoXhIA=@qmGrZ7K=foufs%|axm9h~#xp*s=8zNh*w5Yx9<&y)$D7Vl zNP!5c!`sAPk4Nf`Zkwjnz6U}Y$|YjWrf{g||FVUY)eofv{0^#)X(rGaO(y^M4Iwi2 zcl$%LebMuO6*=8HW7N zY|oiF(@pk#WT%7;ApOL4ylpRfMVdbu-r+MwDE=>Uws`(_l3RK$=_o+@xUMB?6;CH> z(l)-Rrx?`r4M<+n2i8n$$N+rKF12+7akLEqQ3~NJ#SdZC=6Rnir%1WpNir5x)qt#D zDmgyARX&T9#IHS{f}Z}xh0!C_t=@AQd-?Kw9kac=zNNs!28V7cGVg0({|fY}`N<(o z{i!Q_wU`d|eT25>JDT&d`*-hhKK^&J>NERNTBtn~@x}%p%(n{b%xOe3#^~2sT~t!;mY7aB5@a9SrF#ZU9^AI?rp+Iy>~3k=n7&`rg_Fkj&A11NU#zjn(On5}kB z;G+!d0c8X7Ll%oacGyQgpLh7heUwQLbUKBbaG|CK%rK~#A5!pPGQrpqo{K*yFY9gp zu^QZP-Y+MRkDGDcpI(AZ9TZwRGUV`gjU?=3!4{H0si3RnS{qrmfv(E$wY7AELk^3r zwz{BR!6z--L|ooks)@o1!1{OR6y5)p6MbFailiiqEk$z??H5S463{WP;!{y6nVBtK zv43i4sA6r+3V4nuT3YuN8nVp_ik1p&kWD(H=jcyui$Hinc4NzCd9%$D19L?(!zjk+ zDK=ekKzi$}dXC>G<=Zrt7Z`Zoe9+4~oqCT1OY*aw=e?97|$XnviM<<}p zqu(i3zLPNr!S=t#F%7dDGrpJJ`T6;7=Q|xq%n93AYZ9K3=9Lj0s%&ct0r;D8j?9)` z)2CL*Xx$#|3Wh3@Nc(v2?b(N@MlUZPpRnURYSf%G_WeZeTkya>dH*AnG0;&osp)09 zU{%f!aN$CZCOGAQ2^a~Hp2YjLS#XNfYl}LZE#v&$&#&8DWF;L^{@vzRU7POXYaZuh zedISuWKq|GJZAa7CljxY;P9m{pyfH`wbv8>ac)@0=pH?N29kq=W5cO|WG?W3He>5T z<>#HfV#!p<9)a1gUqj;;cs*u6tRo_ z!R{o%tz;uX*Ue{;%V=FTsN}@Z_bZweBLhoaR;4TC{~6me0n@yr6bwS`3YiUTySAn4 z|3(S(^T|#|z<;2=fB*6+QK{{uz-HCLt&tKVRgll>J9GXw&WMQK5eS?&VdcZ)-YEI1 zCyzZhvmPso9ez}dQJViu;LWq^@bp|VFc>5uApv0;lgi0)08OF6?b7q}?-$aS6c*m} zJKUHw`ey%mn-jR32WfQxaI!zjH+Til4MCdQA=kA+qM+C^*~dNg|L)}1VwQr43J8T| zYp~8m2yh_<)xAXtQ|FThEa(E%Vgyq$G+3_8-g8__j{rXEO&RrG4^g8XP#NJSmWdjW zbPW7kCw5bhiQHuY3#v}K08O$k07H0;GvcQhpw^-YkR!z(Tg*)tENG$OwE>`A)NGzE zx%ppB00NJ5&EQ82ZCmit@CEZpe>ke6HYGM)Vi+9vYO~R0_`W(fnQrhuz9YH)Uqj6x z(>G_bE;#U?&VSOl)F!DS+1}#DzYpf{{>!!vIG$UFn@dS$WmOaJTH=&^L$2W|B#L}$ z!rs!q%Mq~cmHqpAi4BG=bdCrXN?dMMLdvi$Qj1sAq;6x3(sn@IL{7Pm-BGjYY?!oc zt+PcfYS_QcsvQ%2Zm-RIxbqbFw*mO!&5%8r?wO+?6sOmT2;f*CLU4OJdPiGF3iUq3 zNVm<{`oA5M|n{}$J{8N1(KHo zJo?afB_Zds^&6b*D!PB4l}T9gX;C%uvM8H^`2C|c{@#V|tu8mQv~*Xa@V1qj%LoV- zU!rRmpO=r7>WQsc@+*c{ATMoj|L{q~f6BkdJMWwH;HC$g%X_Kt0hf^upAx#tYAPM4 zM%)v9|Ax(-s;S#T5+VG3)wv)95)~H*I@ENKZUylzE-ghRCVF%lK@S5Hkd@c3U&p?2 zV=ri-8R#5<3Wk3tpxHE7lP>-!<`OSQQ`yB3Ik^f1OP7afO zwaRvCcD)LnpQ7i5)@U)OnAkI)POg~$*T>wZ=;`S>&um^01>u811jM8AOSqxtE_w8o zcTm2-G)hdr=w(9Vlie``8uuyANHM$rb9Kkj4rPHisK1wTBZo{2^$pv+5J&#=8+b*i zFRcSBGyDTpg*hlTU|qXLbaJ^d?Wy);>GIn4krX`}X?3-eI>CK~yor@W-Mwz9%VHLYWpXhuq2+ZNwgU4DcX#(sd=|Gnjy6GuF5;p8Rby}uDYQ>I zz6sc)scCBmf*w%@h^MGA6T59xjP{QmyNQS7i9f4$x&mU+ekm!`>>M0(prZoF0eNag zE-G;kVnaj24_!;8-@nT~fBtzWYG2mCfEr}b&=Zsbp z9FQT>pRlSM8F4xDr+foXwZAb*nw_1!y}K*r;_`hcY9ipu=QnvJC2|f9+)z%vyM6Y` z$?3Bi^EPxIGC@2GO0{;-Gu!!bjrO&Z#`N!ry1Zd)r4$j8gM$Mh?^FKhn3yuxEkl6A zJHtPd;^X_Zx67KDo6|EfT?4&Bxd#u>SlQUVL}U-bm^A=e4#t4^{@K;_NL%|hs{YP1 zT@7DZu@n*!c})F?>sf;rIh>#o930Hd&ffZ`Cus*nuZ)32q9HdZeC-z11K=rqe0;Ar zO)?VjgDnUIEr3`x*$OI<2X+OSR4y&2ihGrlbbX3Y-m9MU&V=8{T>*2b#8I-E=UX9b0)5b z5|uI4<1dT4t}ZiL5KM9N7*<1?E$_fp)=g^T2?5;nPZ$<|no- ze11duKwO~~5D?Jl=(l2xz5eL^Et$Sl@d{fc5?SSW#CiS3jeAPjPhZ;F&i(z1icxdW z^09pRQW_LHh_7FnnwrXr$SFrX?C!1;89BM};?F1t2ZtumpHWv+y8~}jM@#G7_O=5Q z=CmNn6(bTcGr#rb&)>DRsF)Z`;PTogMMV*SKG$cByt_&x0_EUtv+v7r2#TqsCikL6MPi zFJH22XlfeU+Tt1+83CF=ZvJ(RBKDioQf_vG8sg2(O^uF$r$8lX87X>NX4XlVm$~vW zF_9v7`0wq=i&KXw3-n_$P;7Xk#OS%Qw!737SvL*mFru_p9)BSOb6@vc{QWoAoln{} zMUf5*yaiaK!`~qmGYbm_Zf<-)wLAhnsiE3|)d>-MFc>sctOK#}8=zAl|M>A+CB_zj zpxm1Y?HwI)p9I1RbTQt?vgtgg)?+%4F*S5|7e*1307DCEmx>>gMVg5;u6_39Vr9J! zPmX7hW7Oyq`K<>S3C7IZ}W z-tobxk+GE(4jM}16GYe|K=vNUL$9Uurw2yd&+Hw=+_snN$6ZA(m( zDH~l*MAVkbM*Eqw&N}~|e~#s!Z)PpN?{|5g_xFD9^StA;Ie>)BtSo-_{5M2&{TVN* ziXGjKIV6WZD4}A+en*ZN+|MEB^!4pFGBRoq$3%O^^%gZXZB|oL+kN=3atdu30cLb* zm6bvH{zEx6jlHjtnj$Rxe$FyJh{fVLJPLBdaAFAG!etAk8NeQCLU3@fV@SyN#U&;7 zTdI0P-nF!TTl$mH9CIV)EB5Ei=g-}V(kn(@zaGpZM)z0f{_)GBM;2(0I`!<$x5aHc z6VlV=v5s@|^2!!>tjlsq&dgLY^=~^gbRxV%s;>jXFxp#U|K0la$v!uP9I_B?IGGU< z*;ov4@*rWKa5FOphP#qlI7A9b8sI|I(aGR)7w>xMpN_P(w-0=IKZ}rnb&&pK zyp{?)J7}|c^9lkg9>}e+pDs`?_o_9j_3c-Yd<}L1wBMPXM20FkYZ>^T(d^u z^y$;=*w}xUHzBQP5x;cyS_OaCM2^AUe<>&{YZ5NE?kcvGP}8-2jiTwvNz;&sYkZqX zn%o{AACq-nrKYd`{`1Y-x7DHPDlaQ@y3@C10tv)`v3u#AKvD*S!F^oengJOSkg{cd zK9;DdxmH6VnS))J~Mz;P(DO zj$ha_;TBF&r*V5tZPU42uA5IwwHI=pEGC11{s2Vn)vFS4NtaDsu8+&S#3Rex{@2$7 zE>Jn7076*P{yshmg&tMsGz^H3w{;y`rcNA(_u|F{)agr-<^1s0xX&(d>;jE!QaLHalElV z@V`8oR#UUSG3;5no;sPFgN?0AJ-ZrUiC<%{(y$L|Gw@$r0UkItHKeJcq5^0O`M8AK zD0{rJKvhpqSw}}lBo-S|scoJoTbTkW85tR?kmJF@3AC~fK$EyZnbPlRN=SFBd)^*T z&dbZQJ^fx6E}hWjoyYqGDE|h8!T{8dV>Na|!#_XtF^n?Zq<7O}|FR>ZiJUs3} zT#=WX+sA4}bt1Gs2HUogp*M!6&8g0>^#qQChwhw`NBac^KU7m9M<;YZmMHPAInvK_ zM=84_W)_+BCzFei0a^t8qQPdf_07#!ikl+4@qG1Q(sl3F8XMp3=~03}Pk>{|%$uS} zii1Pz;Lm;y!9>hfp8bBDcC4Odr=_K_7e77q{nhBaDxh@LyQg(eH+U7oqmvSrYnKcVZ5( zRb+1YKhv5DwE77?-36o@X$$#`a)cblxO2baV>JwLkp@7SRLRav5Ek&Qqs*1=># z<{6kDrzzfBu;K7!(?=}J@X_a&QEdk9bgc9qogIIIP*wm#SuxQfy;{AVU_@z+`g1N^ zLrW_VPOd|gS7~HU-`q;P5NM8>>IB~VY*j>2)kYSJ#YC+6>%2?0t~}o-Yhq%;M$5Ls zC5wh$FS1IjXWahGyLd4Ll2YcgTR}sO?VQ}@1P>37tNUxncS;bhk3#yUN(=r?>S$1q zptDm7gb>T~i0=j*B_<|H!i*i2p;7O-Zr^5{_36CL2$GH*Kc0b?bt6#aVEpJH)yDYV zV!NA7O|DF)K4c#!7U!d3gDZzlPKujWLh$1RzK5bZ_rirFkw}C>fqXA&IuaWf?YZh&6@8cng%HnwYB99E9UH5 z%zYZ<9zJ}CHtjUhxmphw^aMIh`J2yW+*}yq<1o@dRMB4mCXk=_T3$_Sa zt2_#m(9(Mh*%qN+KMo09AnT}C4~UtoEu>Hj?21!I%vo=5H9ViHrsnbk2M)-{%8ubS zhvLSU3fkMZA+U^E_!0#KVM3H9YB{qB3y*wE= zp~Htq-@nK3#OkkKU-K*mke_?$QtISnm=c+)iy*EG4%xnDj^vA1u8?(gbw{SBSGu}( z$Gos1x;w8suj-wqPocc{o3F2;v9Yny+O>RkyCHF$JS+_YH0uwxg0rol%Cm?W6qGXl ztT^VP0D_2(Ydn&lsW-? zt-gLew7w2Eb7T0C8+|_GKP)@CmWl9|A}twSF84vlO{{MU#d0Ia0M|-NijMz>um2!R W2Z~Ca$4K`H_;KI9i(X4(CjA95s)r8% literal 42004 zcma%@bySq!*SCl6PJsal5$P628U&<~?vj-56p(HZ1*E%Ekd!VF1d){P?rxql-``sA z-|t$wLH}9dYJ~e}SWNASjx{yXJUVUj; z{SlMyLVt{iFXBaNPw|UXshEk6e zblJGC=+!kL-w^6~arn>j&_mucb5k6hHW*)`JoK|0L<0V$si8WA5dM|+6J`j;f1hEK z1b}Zrr_~I_6#MUcSR_%N!aoWBl7koz|D@-a3WDr^KW$zNVSs;g4fp@YW6Zi?0r-wo zVV^z`3cPwHNtaL^D+zxJOaH0R&hGB=;UQj0-TtbVI;39W%^Qr5A3tjMKZQTNN!-MQ z77+<)_Ra@<_OZ5>2ePz1P?i%v%cUe)-rKn%-{{PTGT$tn^H@z=zKZWWB@l$*gXJnt@V%#tX(qPRCD%v49_T4wWueo#bhXeY|VdU=KG_W6lFb|&-J;8)g+Zh7aBkJ!Au$ZoltE>Yta-H-5MW9r%c|zAAu3lda$)# zu{!^4$d)`z2v0p_*cDi7|2tC9QQ;u^6H28G9v-6=#q~}X*%r!nDXd~J8XjQZR{g!f zJZag!s8HuOU3^vB4JIuuZFOyJceP2kId8UEoJEr*JQu7t%cnrqGDHkdrwb>`Z}Jx9C}$A&wv)E66T+L&4P6S5p6d6B7D> z-KnbnPtWA5Eq+sAQ}SbH`CUB8&C7Gz{`>6e>Z&?c1|9PB#U}Cz7Ou%jbkXv`LZBO! z#DT7&8<+dDdq|dj5P{QTcb(^O*VcDkM_o2zc6P9O^g)_f5eld!L(csro|%@=9E0*) z$lY3^GN=E8?@-!HJP7=Cdkd|UqIX9~No;z30?-3e4-nJGu9IwYsc+{3^1kAHfItg16H47bC(Q?3;V7NQj4a7 z?+I4lb<+i$5Q!KSteO;=znFFfV+goz{bBQ$$r}|bcsqaeI{bxt$*&{%8QrU!vyO3p zVZ~k=0#BgD%2X)#2 zc(*kRE><&y_#S;}Uc1d#@Uxuxpcb(CU0Erq)bBA@`%B7ywo@G!=?6=$=s#*ymG(L4 zEudNcF}uNHDZU~Kh#o{+CZ7BXmTLu@%Ci-LA5(CbsiA=NZH_~O$|To8>XrD?)bjL&-~fE^;C6bhr&*j+{<=FyfLV z$I_oH7cK4V0&BM}Xy*A!?taKR$z?CEqYVjL((@P5BQ#IIT!7B&^f$iGr9r6s{=GL_ zJShJ2=W%DsekWNuxvp>mdU8hk$>3E%`1!fM4&%DbSy#U!=(JIpTE5(;5znjaJ|ok7 zd;I*VP`|jE4hEV3;KR$oUn1z6)U;qnRBOLIi9JY~l{r?D5=BIZ$S1LOrVF}odL9{L zLt(^lo2Hg~gRTxUcq|70Bh-G4;JN5`ne*)%A&XX}l#b4mo6Ezv#>U1p z(olR;+ZRnm@o63quCc7(up;x9ywBFMc=;yG^twE%UCw*Xddr^H)rz@o9TB-@&Gfs_ndA!p@`v(l+S`W3^QiG~ zbjsL_en{y!n8BhT_evcT7Ly)}KyR&VlLH>47!u-mNZbYcWyhzkDY5+i`gCVUo_U$@ z=^RN%015EiDe`W9g7q|u;Yzgh1k_J@VYsv&uk);XCVLKP8(cc-dRa{9ixSCc%h=e0 zGuqpGjlTVGd;w(_hSkJ6$w(X`paa()K6)e+ceRJa#3mZHT}#$E@Gr=XLE=E}WF3h~ zATuC-xrUrKlyoqnb9w09Sq#-6tPeV2G}PT#^w0~wwEm@R{3qMK+^h}@jE6ihaLnvJ zL3C+rE8>>g3+HXg7TGir!C#xS8n$&ASq4G{y))Pv=CZxZYy0u|G^DDgxN0zx)KZwh zwax=O_b)nZCPI3UiSa|X*KDD-o$e25=VDonOivR?&i%&pjx@HBqb{{|YOwBCUNiN-xP0uKf;=^DN7Y_*g zU9MJtRvn#gN2n5+YWLIT|9*?5M0ePMi;NxKQ5~@g2Ev%zmL8*eIbs1_josncFuM{? zdK6ka^X??`hk&J-BZ=Lte)#Edbi5NfN>l`*p==sCwzsYFBTnj#u7cqe<{njsjtm{+ z-{SI+p-uwsrgi_hmn2EuY(3vRULZi+ba2w|SzDA%-fKVbe8k7p`@Jf5!GRg zxJ*0R3eU}b7NO|qd?x-bdi~{# zXUGtN*zSY8v>eu^$l`vo&e8dk+cJXH0f7b@_EzuO*imL2t*E8*HDO?ck)`?6hT?E@ zOj|dyeICq}xmk0)Mmjy)V&=Qo3YO$Av)lLeE4x#l_woh+ndcNR*5e?Ih#WuCSf16>18Y23dIcJVN~)8fIH0aO|Lz{8YI4^ zP0kO)JdPJ?xa$-E$QIy$73#<~v`3U{_;ko`z>8niO}?M_@_zW_la!(?5yB zQ*ZEhnS$q3TT3ZsiP{47jI|W}O+ub(suPaMw#Q>`9svJp^`(3-Xp3*|gi-@ZOf3cz zmwLr2NeQH9kH&f%_TV&0Df@qRBbKm_+Vtu%KX`3^fgvSwN38G1)}Bnk#kT&Bhg{g7 zdY8N+clcM>;T{t(>esAn#t@MEH5EWDS36Eo6*AxW{S7yNuQFw#*VW*7g3$#WvjlTu zO{^3-&(`^$vI)nd>bozcLL-uk)7W~?O`=P!Sz_T{LwjF{3@@YdNlk60F*GE8cE*Dp z!F&_fbWZYgd3iCxjmngko87XbM4k-(S_4hoSE9?TDsM?&5D4m!@7o-}&((wJ)HQ<@ z?|F*zh}t+yjCOgUG)X<<2Q(io2L+=anB0`!EYBa+lD|d};GyT4b%yM@3S45FK=UR( zzh?GybG3waGi@0J#Xrut(4r_R@}=BVSr%W>ld^EV7mZZjmnl*m<9h0gzAMnvZ&I8FY`IsDgO1|Jus5gLPIPxGM`DVX!zzp_I}H~_LD>@95IybrKyok-9WWf zyrFjXd9I-MgOJ}@Z!#eqrF3X8)J*m{n3SSk-p9NK0qOBzkUN{6udtho6)<<6`D7KW z#A)Z}52C4f3L((an{rv5p-(!6qr6ILqCqkPKFjKhMFF9+*5IL8&ewuB(OE*+Fk42#g$EwPcB=17@?suudhT zbL};E+VK|Tv#;N<2}H~xy}}pZBP9!?qBvCVu;3KShi+$grwA_G~fRy14su$Y8c3@o66bS z1uCB27#5G4JA=u~eqgIanN`yJ_{mzn z!|O1SJWeOVeG$on;T)a;$Nkwjw`k45Hdl0{K0Hfko}Fj-PAP#OCSh5%=p!~JR-Edw z3~Oj-cK>kD?x?mwWJ-}yaBD3K$lW@|lR3=Jg1V;fksuTzyQnGAw{Cbg1OV`*7rHOn^I)dhLzPc&+haUmvCFNz%-}CdP})O`(@B1 z4}bVp|Goh6N(di3G!5?lGnpzA`I#XRTU1O<(R+g!S5uNz9g|7*!*qLF=P=vZM6aPNM!AaDL986;xkdT0rxD zV|(NB*RN3U5KS3Lme1sT(|>0$6Xh>_#7&GjBNA2Jc`CHReVMy+@TZ3u5%9!( z&z?c9*8u?sJg`jji`i`iPKw)NRJ8~GBGzYZk<88N(<8=W7EDg_W#^gx%RM5G?1aq}fcI?1H*Q$w(C#fOnAID#HzfKWeStgXG04MpS6cDOP(zSKem$Wbq$u;Dx6YsKV{O!PFs5JQ6G zME;bV9M(_cPn7|4``Fql+||`pZ8O0P%HYXSS;~^M&(n@qmI`0bS@q|GJum{%lR=aa z^|(h<{Jx&@(1pqTfUYJqlGjv@T`4XOW;(DgFY|}P7mxxwO(T7bsi#it+{EYT#+sU> zAhVkJ{(iK{#WMYs2kzWBplE}>#{p7JM3m8I0kHQy*<%1AiP_MbK?{C^_#Yg%-3<$U6MjQ@RKfH`&eJp8L9l_G&zj_JUoaATIpYG_HIkLLOUstJtSoAk%=w0Laem^)9B^)FjEk%wVfAMF02PX;F(3k!e z$a8rd%*`%5=RNaRt_LhmN=oXfkPy|P@9A$SjsNw@y7sqsZw4=!zeGlg@r-Vz9`}RQ zt9Z|g8VaIcm^K1nDE0mRNbQ;QoOBj{GyDVbrN_0ZjECsEX6}PF1srvS*Dku==a)}y zJ*_2K_|ZE__zq!fe;>!;aPqq;6Fa-KloT>54n;7H{~f_!P3#O7ID_c&`G%PxJr%u( z_YhENz-apCCjs2Lst;|2esNHD1~*|X@4YBDAPIL|H)>?bW`@+2 ziX!HJiI!|x@wacB+uyZ7psKxz@=Cc{p#o(_WZ{ay&E>%mEOY?fnLzga?~GSuLL-YO zQQD{(%eu#86xI3?PJqg)g^`ZacH^38`XD%s^n1lqxS#4OwjPLq8HK6ltKk7+%@i zQ|{UBXnNOpL2Age(zj#7BoyL<@x4s}$HRYlqn$|A2$3;quw(o9HpdMemm+j|l@7js zNzUh-CvknWwr2`wG+g2EqEo@^L5Q*K3K94gcac}nVPOevz=eJUhA9NJB-fFGv}X@H z9ig2@H!M3qoSc9Q@J70~RF)m}bw)Yw%lqqIS4mb@!x0+)7~e~TC0Y+hV{pDf{cLiU zZVlgv;SO;+63fT-U4UdQ{wwCUERkKe;*NeYfde61^7+ejy#t%C5BBRT`Z$o={xpym z%|cAhYz5LH5mD2Z%Lf|^w1ug!+$8`V41hlTM&-;EJk2@x(NZ(ycea?6l ze(XZl)jOCBpV(`!1FAkY&riTC#`t+V`Z|@WTdayBS(Yi74w||^9IajQ#Pz4X#t{*j z=ko4)2L^+_?Mh+$<__061gVh2@J;J|_|mqUE_rII@h0<+5cEy<40ln!pk2!v&lu<_Zo;dLb<(0Z9bBR&?Sb_fsF9W}kuWU$7f*YFJu~}5%_x^P zNW+~*c>wO98yi=TtGJ!)`o}>&mZ^vPhUMa#QHlwGcUS>oY{lH=!YA@NUD