From 2c7a444193ef3c42f048edd95375c1c2d1e60839 Mon Sep 17 00:00:00 2001 From: Github Actions Date: Wed, 24 Feb 2021 21:23:55 +0000 Subject: [PATCH] Pepe Berba: Add size check before trying to split for GMeans (#732) --- .../examples_python.zip | Bin 90129 -> 90129 bytes .../examples_jupyter.zip | Bin 126019 -> 126019 bytes ...sphx_glr_example_pandas_train_test_001.png | Bin 42238 -> 41560 bytes ...hx_glr_example_pandas_train_test_thumb.png | Bin 35508 -> 35307 bytes .../20_basic/example_classification.rst.txt | 40 +++--- .../example_multilabel_classification.rst.txt | 2 +- .../20_basic/example_regression.rst.txt | 4 +- .../20_basic/sg_execution_times.rst.txt | 8 +- .../example_calc_multiple_metrics.rst.txt | 2 +- .../40_advanced/example_feature_types.rst.txt | 2 +- .../example_get_pipeline_components.rst.txt | 34 ++--- .../40_advanced/example_metrics.rst.txt | 34 ++--- .../example_pandas_train_test.rst.txt | 2 +- .../40_advanced/example_resampling.rst.txt | 2 +- .../40_advanced/sg_execution_times.rst.txt | 14 +- ...ample_parallel_manual_spawning_cli.rst.txt | 12 +- ...le_parallel_manual_spawning_python.rst.txt | 6 +- .../60_search/example_parallel_n_jobs.rst.txt | 8 +- .../60_search/example_random_search.rst.txt | 120 ++++++++-------- .../60_search/example_sequential.rst.txt | 2 +- .../example_successive_halving.rst.txt | 134 ++++-------------- .../60_search/sg_execution_times.rst.txt | 14 +- .../example_extending_classification.rst.txt | 20 ++- .../example_extending_preprocessor.rst.txt | 10 +- .../example_extending_regression.rst.txt | 10 +- ...restrict_number_of_hyperparameters.rst.txt | 2 +- .../80_extending/sg_execution_times.rst.txt | 10 +- .../20_basic/example_classification.html | 40 +++--- .../example_multilabel_classification.html | 2 +- .../examples/20_basic/example_regression.html | 4 +- .../examples/20_basic/sg_execution_times.html | 8 +- .../example_calc_multiple_metrics.html | 2 +- .../40_advanced/example_feature_types.html | 2 +- .../example_get_pipeline_components.html | 34 ++--- .../examples/40_advanced/example_metrics.html | 34 ++--- .../example_pandas_train_test.html | 2 +- .../40_advanced/example_resampling.html | 2 +- .../40_advanced/sg_execution_times.html | 18 +-- .../example_parallel_manual_spawning_cli.html | 12 +- ...ample_parallel_manual_spawning_python.html | 6 +- .../60_search/example_parallel_n_jobs.html | 8 +- .../60_search/example_random_search.html | 120 ++++++++-------- .../60_search/example_sequential.html | 2 +- .../60_search/example_successive_halving.html | 134 ++++-------------- .../60_search/sg_execution_times.html | 14 +- .../example_extending_classification.html | 20 ++- .../example_extending_preprocessor.html | 10 +- .../example_extending_regression.html | 10 +- ...le_restrict_number_of_hyperparameters.html | 2 +- .../80_extending/sg_execution_times.html | 10 +- development/searchindex.js | 2 +- 51 files changed, 415 insertions(+), 575 deletions(-) diff --git a/development/_downloads/bc82bea3a5dd7bdba60b65220891d9e5/examples_python.zip b/development/_downloads/bc82bea3a5dd7bdba60b65220891d9e5/examples_python.zip index 2a4cd41315dba6216f7645b5a1d42474342854e1..9aee8803c78cdfa14e233124e2343261cc3ca9c3 100644 GIT binary patch delta 303 zcmWm8y-Nad9LMoKKReWJIpi{eatsop$QJ*AqOj8F@g8-Gwg`fQ=%A^D1d)dC5J9$F zokPTLxIqWU>|t<_h7j7KqB(Nv*L!_0uS!#@G$lEg3H7Ue|26L9ZwW5{m2M>lkNfh) z0LyxOAzm0|hR18E6BSjSn%@{?ipNi_`v{AAe0_UA%F;LdaW^^4l0N?_ZpPs7?7168 zoj+e)N7#41V&kkB=2{{=-IR*()WJ|LYiI!$ronM_=BM1a32!|3BL_*#ngJ?Kt z4ifKhR>$aPXbNg+i+4?c<*N6TdQVZ)3E!|b^k4i={Z^pzuhLaS#pPS|YE--VFkrx;*hC#?Lpc zfatfm(DBWPMw^dcE+$aov9E_PEbrZq`4Ezx8pdf5S+BZ)nud%wwSuCCIFXJNRQlAB zkRn<#pi2?e3>Z>G0|V=b(6T9a)1@;Lds0LnCel(wix#$}h{_f=0D85si5Sh=NJpni?crY-zQjA-;>JTR@%%VyRiSRNxmU?*SIoc`Exl#=JUTxjFD4b9-N!V@E~)SiAF~%(uIm zfe<*r ppO!m_qDt8gV$wvP9V8`*)Gqd6(bFI`nsBg(79BfCpiVCi(*K8neU<ML;PR$E%X$vKeZC4K$v1nZ zf)e+Bq9LS3Ab{@}t2yF#0S^&oIijKAbq8e-GPinB-jO|h~~ zW*Zt(^wGwOG*R4zE=^>**nvu4E;MPPL9wq^Z(HPMYYmi@YR}*25kQx*H@z<34tw(}52iS$gtO{0Hl@eTo18 diff --git a/development/_images/sphx_glr_example_pandas_train_test_001.png b/development/_images/sphx_glr_example_pandas_train_test_001.png index fe2cddf490a8ea7a0a617e488365e97d065f4732..516b3d93594843e10d784d85e226a9f1ef2dded1 100644 GIT binary patch literal 41560 zcmd?R2RPUL-#7fTBFc<3Bn?G2Eiy8SNF}2rqmqd1vPVW{OGw#KW-24f$_!@VMsT)r{*IDHO_T zHC1IT3WeH>LZRwmSb?wXZuQgN?nksHoL{`vwtfJ2O#M?RT&6AuDZEPuo){EGFcCR4MXL%qf(F zN;Tz!+D_3UU!2`E^p@$z8ZJDH5(=ZeqpGYZbdc?gP{Jj)W{aOewOZ#w8`mU9H2OUW zj$f0^>5-FsOjyVDE1RIybY_6?di9Ftx5XM4>ql=%y3C> zO=E)6jkQlNH^j=`m-k!>-W#Oaz$0^Y)#Uev>JLwj?Rq7k+(ONvkZ86zR?cE`^=efh z#}1qRs?fD*Hw{0I}5&`vR`kefHFI&v@9m7Gx4;l>XhICt)x%}ATL zudi=uRn-dl#W5w7y{R2Xjvmb%+*Liw`?Fk z>oMC)f9lMc{?NT$r9E$am^3I%ugyeeVqgCrZl$5Pxx0_Q-`h>0T#$&G3g5MRHz%*# z7}Z7|9=^!BrX)2E@)%eZ@19W%W!9)D1R0qSrWjw6~|n zOSE`4QTaQcl+>E6qUrS(txs1M7~H)0{((tLnhssWm)F-sUpWr1U}9oQ(H6|H?%pK7 zG<&`{zo@X#*ve|Pq@-kyWjlLagmBpOwb3pfe0zi5%d9NX=$M$~R_D<-2Cp0h3=9l5 zN7mWSO_<`LnsgO9U+T;g77`XVxp>k4>DkwPc-eD5S}bx;Vp){qP|>|71Y;F1|}%dWQ?f2z5VAxXAVO{ z!)MQ)mA<{RmC3Suac)xFecpkh@Mr#a^0InCYkT$#<(r}P;ai(jjEy&2T3Q;Ln)=!H zSMlxI#dIuA&hO>Ry&0LACRSFV>m)CJUGRL;V)5KzNK4APYa^o{bzWW`_ueZT+1c5H zWaE@|yicg?^-7VL>%GA%X49i^|NedB*|FYJxfYz7u?GUDe|AQ`dWz5PUHY@Yz{FHu z6}rK3dL`f3r!&^Qcu3r`E>fRAe}3kpweRlJ&YXXJmP4MtnuK}(Chc;T1K zDqgvbOG`_tnwnL(JCADH(ks|wCr!zF~V$-a~bvg_+(;2z{)+rv|-dgHSWBapX_u|xtW2atR zSV@Wn<=OM+0up&OVLQs}>zPsCN_jmOy?0;!R9aihSbdX6smSH`Gn-z;k@jqQBagZ5 zhRy?=POh%%qdZuNpR$Ztw8%}o^5xaJ+Is@h1I#?q+b97_H<*VkZv_UjQIs!TO3ATmPEt#ZU%n`Fb%d2t z@g&Y8E!%yp=ZzwNSm1`eSJt$D!m4AU^kGf;Mbua|L>hSre6+~r-eY34WheK~9d;i4qU@rgS~g7^?(>iX0z}Tf z3P5#^nLr_|)02~wJc%U{c+h7Br}HMp%Rcy+OO5f~Q}aU~o|Ki9DLM=`9!z@jWcc3u zP;nWVGas{zjP~u{ABeI~UH3Kb<(ZdP=57x4_iv4kj!tSV_-=$ke1nDe$G!LU^;}U= zQPQ2*xxSg1nNHY8Nmk1X-OIETHg4|wqfP}@F7s2V$9JyjD`%1a*v`w%z4P6>cgjbO z94Vgp<}y2$ASN!(R^&RvwLbJvNAbBzMkT_Q>&gje3MBO)e7_{XQr^vS5DrG-&yuUTwFhnv}0<t~9*u+-J%@?W*?`q|f4P0(slcCOtSXo!)yG2EJUz9N9lY2xe3 zP4XTg)wg)JqV;8!EJ@$oxSu*xmx+RR-n{V9Vt4ET=j;BfHc#DRWEbyyXUV4vz8J@$;k&yu9*7@!YvBUeU2dU%y^> z7rmc@(NFRFpMvrUvxZm|4UJWgHDd&0y3Ohi+`^I=7*3UtlJdpJc||8wl`Jo9Xm4-7 z)cQ20-nsLY#qCwOtw7i zZnHK+ubdZW#aFFf-2_ZSeItK|#{J_{E8VCb9lrHxZbaH)5D)s$txdvKl2TI2c+3t@ zb5Wv8p5^2yXBieb^pR%y?)`hF5TBGZz(?O`qx%o{TH_~VSvfd-u+MtXCQy25`uh9X zHf=I|T)i-yRbp&y&4O+h^YiG#J>kay!}Ovlr8 zg~^>WtX{2h@#4ke^TPT$4A{=4q9u!3Jw=xrUU~eHrj(*)q2fy$b-T~-NJvU1R|v|= z@=ShvANK2fhE6&c8qe6&(8*K{LsV7KvHOn0pWa7aIDO_!$bS-s?{F2Rd%lHnF)=4p5;nEMehf@FP8z8y}ma3X}|Se z>n`7-B3X-%DJQ;)7Zw$w%;I+8fCM6|(4faV9?349Uep~QeSVV*wFQV$( z`-hW1m$B87VzbL!d}?1svQmoYf9#4ey+Eo;4PD9N1k=)NKg;5Dr*&J2r#!lytdLuM0YF+Zje`?AB&s#$<%(Zy$mCp<^GOyhn zxz`OX)!wNake0n=n)z%vE&ivo{K-t+V8HOTuNW0Rd6=(Kcf}2T?4Cr>G5!Ty#2EzD|vN zWzM3S3k$r-Ba?W(`sVCNcEcF@__?od@3a*$nI9;UwWm}!2IX|hhVBp$^EVEtkJ?un7(S;4_f)1%$DP;Xwp zHB`V;4dE82MtQ78&Bt|KT_gQDR_~W17Y|S9iq-2?JF{QBz)lVuJ+O*LdJT}Y5&#S! z8?~94nZroii6=#r<5+(ZN9DZNZtxcsUb}Yf#sf~Qn>KCoTWV6&Zn0&!KV|6RB8`XV z5Aea^L(ft_!^z6(g$ijtSXWcC63}Cx-PZt3*w3fppH8v6_+GA)DZKNHUZa=|_Rn)P3WCeft_5G1WdJ|g z*xJ6)GjdP1FVTDY+2qpZ9pg@UJav(xo&rS)bTvn9Ci3{u1QQYxqz7DPeyv75!UAJh zw{D&Ef?ap#;TEGw*JTHR#G>S3d823hRc$@gn`_gHeH zT0J)@UqP-L;H9N~bZBU0_z^!prnOv7))rm%y83>9j9k|FGxIQ_>>rbx+tytSd?6R= zn?^THx!cu=`f)cbY#b1rGrt5&tU0j}FwZABc{?fn19g!~{9$i!>3BtgW5w}!3)B>9 z8k%1G9=!U($$FW=)+}C^sX=dSpMK!-OD$=f%p3Q4;c7Xtqr+Xa7_)JO83qOHG%Hql zVfEnmJ-_->AAHNn*_m@T7HoiQ|E{jCdUk`Yt*zF6JRmFy<9GMPFJZqN3gM=@eED*;yyqr!bMrQoX>f*T7A=BP z!>ug9(_@p9N`N6Yzklc~&V7#~C63YqDyyWb%5XqdR@`Ok(gC+w)^xqBL%7sC_wH#Y zUM-pX_7FQ}!-`ehUVFQoXvD?EPZhcB#+5w|bC>}*!6GYbHS!F_zIgKck*aIp!yG%s)JCyV};)X8bARH26Oi;Uq7+T$q}gnobqi zZSQz#9VZ%S`Qh>E^?NJ>@FunbIhxJxojH)DpUa3}rucA=)mXjEC{Y8RKY!j<m?jL6j{jJ!5IU@{2LFfC?EL%ppDtWpS}5!4GUP@lJQTV< zko0P^_MkHGlS5!V1|QS)j=deQL)Wqz|Mt*22&+uZbV7tCtQFLWjv{W=A;qWMTh|dS z>#DnI#%&4JM*mk zv{Kh_ad8n2d=4F`5BoRSV($slZ5)Zdw|F*hNjzfJ{=(F0`Ol2)!t_r!N#nqPiE|JJ zwO2FnHKyt8!utpt{>XOXxf9D~wiBEY4;}=?$Xp{bNxswg7LPx_TZ68!v*}QcP;J|i zR(7SkI222(9B>+HPlZ{WyKd9bEs26&|B@VgrT^y=aj^sQ(MPsy z+2Z1%$bb%8-qp2f#ftg%wNSUpbz4Y&5{5O`18~% z4u!veUH%{bT4xK@0lTjZcqa6&uC5TmM%tb~YMX)L7!NRv)pM!s86S9XT-H1EOB%G< zoog6D6sdM-M(hyg;a-Xx$VHb^|7t>Oy| zyTnK^8@QjAj*f5NK5h`2gZP=Ap&`N}i!;P|gEbiV1YfZwLrW!)YHGB* zq){TPcwVq0$J__C1)+}xJ-iG2j(lwzUmi|-YWAHO{%{gVC}G)L3 z?XjG)v>8=I+$x;zxZE;-u*c72F(htW(!)KJH^tz4kLfC^9ox5uo4f0r$km|y92sHd z<;}_#mXq5g7|w|51e7EuB_;GMBqru;!tdGvySD=qZk?znb&K)=fof5@dKMPBe5*nz zC+$`ImcM5){QdB%tgLaGmgSAw)%TC2>vw(WNIkj3_r{H3OMo3EfOQH55F8XPQ*#}# z@7S14>ME?S6OKCD*-P);TN5pFjTy^{=63eGx&r&}tQ$5kZ8p2~sk8HppuEST)8|)? zOp+JhmA0hoJ+~V;vIxS5N00!z>mk zMBW=y(lc@gczJmKSMgz|rCmu=rbc7DwkB8q=)q%igIz^3^|7*NE)-EwQ86$uI5mC4 zt+D9{;Md%NxxKiQ%Gn+^Pb{$Fc^t5E=9Htds;QA#)-4`jK|wof_1w8dh#9OUu* z{Cov`8QNYOaEInPAWOX5M2|o7&_D=i-Vx_U%~w&!?1!h6qNo!{Yl9ZZz{scwLAE}6 zzmIOF{u^*G7G61_XNzd-V?SSZpPQQ)$akBQsJg{_i;8AN59B?qs0R7vji@(e=xsIw zwVb5)5*qo;ZEj+M5mpO6T|1CgY}+pg{ki|(!QUPo(VcI*l@M|u%>=NR z`(h^4g@uLBoW{?kzI%SYdJJfj=*C{z*^(<*HidK*xvp)`CLWeH54Vm3O;A{PxF5>J zdBCpbJv1~lgz7{45gn6-dL-@VfqazvZ(ism!R)&FBKuA^HpuKhCqNYJ?CQsMHC4OLm)|7^9^{3DN= zcX$Ci`5$`Z4Rx;mDkLp~BA47!!lk$1Zb_vB#{)~c37&HBQIo1Eq_jZPp!`>_${HJ4 zA&tkmPp><4bK~htXSjs*ed(CEzIJ-_lv3f*$eH8wUqv0LKKaR6`eo0kurstwKVpAm3hp{@hk&?~~8?HGWb z`PWNb+8iDQeot>PQn$N?B8&IWg%uRk*N^c=JN-GAQOgZok5o(BE0MT4XQBiRW zf{Ko62-c+XK=P4oUPOh5xF%-Zb>M*07zGT4>_RE=ZF~0UKG`d}bt{eiw|8$c&%A_N z#4IW*YWX>zO;=Y}D+*-pJXY!beYRUR$+1=+~ z1(Bfm!W)ksZ3SHF{q^f6P~{`s z1&X*p)-$pw1byM@#qT?P`ZPF)6nxX|R+3_33eZbzae>s`VNp?#G!wFqrfT=0AvX^L z%9o+GEBUW_1K*A~urRO7x`EH~pgC;;FLjBzcaL_n+1t~Zy7GE%;W}3iv~;lz_l9u}?ScoFebC8iUzf*%)g`I*0^W5;S$(cw7lSYs4Ug;OV~saITGD&_`%fC5 z`PLA3>u*h5!h3}CoFi1W9XmM^zU^wrehQG`wFPxhq!hL5Xve^S#%5-!iRuugu>ukm z=>x#7N)VMl@BSOUOCRuLjd!WmW&anTYe*a3pK?5>U zuMd;s;|C!T^rhErKId60uJg`{XLvj4+i| z9g9Ku2hl#cL<|C8BJ{yOJ(YcNHM;3ZK5-Hx36B)KLt%#E4OgJ7(0LLj98G>ffeBP) z;BPugMO9T}>xnV#1-6t=W3` zrqKVs`n5@SyGOAnz2}Ax)A8SOI$N4u3uYFh9z4*sQ4dIYQTu1^ z_@@~Ly|pO#DYbn?vdY@rOKv;Y|9iX~l!F)tUJd8zi%W}hfa1F%rwdVV7~WoZu{Kur z7bJMBqzJW#j3;&K1$2&*-jSmJ1E3s6Ra$nY{rCES;9v-q157RM6JOQfkWc&lc&pAI zW`ar}4f*w<|Jc}=gv^Q)hS78y2q~3gpF-ysH2|16x-RGOrElN9iS6C%IaHmx6R!i} z7c_vP%1sJe677-@bGX#Bh45H#C&V+#ph8jibobVP$Z^B`w@e2Dt9Fr%(3b-Q>rF@C_fdWJJ znF(4pgdr$bdyG1-0q;QnI+$=AsSpn65&{yRh$sq{kBaM+p1w=>sln;KNr&-16+#LD zzDeV$y2%p^>SbPnn9BUjD5-Kp^#cop)_ho3HzH>l{f2~5;1J?p2rMzy4EwG*xk7Qe z)SR>uZG(6TNy*73z#51jq0#Jy=Ia<6aOWC>6HrRC_=Ly%IC)+LO=}aFc*JER8Z1=H zefHl%G|y7Rj7up{CWd}zE0qFJ!N3=XbIVj*-mwXHf|m@<(N53Ds_ zk6EhH;IliXsA*+iR#YfcDL??wbvRjTfE#ane*Oj)blTu!ZH6kNf_|ueYa>OCxZtBT z@5$8Nr6t*7IuRZnEAXpYo~vdksxktpon(szhy@f8`^5F7w7P(k^vKnto!J^94<_3PJ~ui^d@fhVaI+AlkL1RLHDCrTqb`7e?r ztPpcWr#B`iB?U-3{s=(CB?zb@2n(E4N3_YU;ZRH1uuINC74Jh{glLj*E)Tg)H62!D z;ER=W7sO9)Tm17!#lRpM+mQnfbn|{qRn^A8Oei3ID8_wQY>B`PeYvfM1QoD(F3mle z1>u8n9S9REyWZIV&w*7j0NIEkZjg8)qOzkn_QAo#ZviT=gaurQOjHFRY$Z^JA4rkv zks}Cn06Hll(BbbNl%K!vFOF(3S5*ywk?{9Za1ERg7+A5l`(VuB)6nr~DMU@Z`m7gh~A1udbq9FlqT#FmK$6G?M`N zSuDB=Xcy`&d!VunJ;;Zi%XD@}rNH2K<)=Ru7hWgbrxbhraHG6bUS){oU*}k}61s zMNdgvQ{QjJdjGqo*BZHyoQo?xiNhcX9GY7UvZeuRDmC0h0cJX))N~dpFMtq)Xb= z@T;@{Ge>D6tiynm=+F7KG%$7sThb#PJV^@UZ{BA85gIR;7)QFl%T)=^JlBQdM6yyY z(<6b)i{Is?M`b|Zp`vD;e2EZaj=nG!4r505r%zmjV+Ol*+TB`7!6Jo&R5aDm(!vRf zl@AT8c;CsBCvD;VhisD7e`F`ugG%484mBFCbI5h;P@JuECN5T;{##~_0Y39aaY zqz0#Njf~VEA^a@F71b;&E2|S(hO#jWqn1`yj`fERl8^|zjy{sfL~=0sCw3+f>0wwq z#4m@Vg^~{#6p%yv_R~|v^+}r`jB4mqQ3KV`1{ z+V~2_SdXl0viTX*kEBtfDd~i@!-yo5yp5C%$zrZ>!!QgYeKFLxd zb6X$Vjhb}ALfW`-qr-H~fZb4}VVBX1g5Y+GTz$&^8NX0C!dSXhkW<(;ZVW-qJYVWX zrK+a(2Frw%&z7>*SyPf4W45y zdPaQ6{J7+F1lKr!iv!k-!)$5#k^oAEopL zuSWog$`Up1E#}&AU_}+d9@cwu1up!mjh_0pR`9}2A zGYUWw2?oWUDTr@xJ#b(nHVqcVv%I|eYtaDWu^j0isceo&q{wEi+o^gT?ixxtX0LV~_wtS~~3emCj&;9aHB> zU_SiOF}XQf1d)hN1l~@E&>UH1VD2ZLmpeefC+Ra15kf8qXvw6f)SGz0UeT^4%)D|T zuzeo^Xs{}l!mr1&bnU(R@WBI;-$QV1s|~aXho2ps$Pc(D3{;1#qd~E8n;VEE`53sA zf2$gkuWBNR!zaRLSLQjxY9yypsIt|{fj*24K8>2Ke?t3Y2*PS*2^_Pgf} z(JSM$BncvZrav8lYgq+J81}TfnJW}u^1en(mN$W+s{o4hfD|L2a1Kt5wCP$=!w~2p z8QA|2$ns(36!(+xCUO-dRt}vifMm5HGG0PJDykx(>5>?7wV$EW0??8~H{=p#3c+fdUJPe+LF^_z|6^_W~z@{9UI< zydxtc4MjfI%)C^90(gbO-kS9uo|Zi0&FMtW8tqrF5py8 zYxeL~t#(@*o1IgIl2jk%;R1dJc7|NbiZTs7foS?;Q&U0?rjz^azx5#7ON?t0ZASug z6Y?87$9lg(eyD&Jnx1VZjXOQzs0**>_H9#o>P?_q1%1&vk-)@9=}4_&2`<|7^Prxdk0#Fk^}N>jA}YxDdMH zYOp8N5hn~L;3-`Pz6I+z`dwUx#M`1I&1_Ie*k5j!l;i*=Zyv_WMi1MV*7Bp-S7&IT z>g1O`K>v=SyBJD9FzMAhu~A8oadCb)%ddDZl;UHt2fWcM zhIgd;p>4j?8UOb<^3nxco^{ zt#-%3Ld%d6yXrWIQ)ou2yJ+t1=A%W<2X{ynrJ?)nx8Bu;suB=>_{hDe1tL?jB-oAk zY!Fu6z4Piu%~WNwo#96aLM3TV%H}Ows3oFS!3RN{mR(0WEO5fs*@UB^3wIb6#g z^9bTJ4MqRumDPxc;<-hp)MsP}AukmVg#cchjh)?H=@m%KP*KROYVd~{u1(Ij=UKNd z5Z_&n=^{ifQQed=)8Q3;#vhkSGDIXDG1RPL)@<_2tO)8lxhafVpnnTb%x@Mvc|G>b zxpRq>&4Az-%rX_(wM!i|N9peX)k#6x{;bdAAUnb6@xfD5Q=WS*auqK;zE=~;FRQlg zK;aIlA+^fLRtxo(X~1u7*mFU!3Ib7jf*Ko-V`d8az3)DU!P}J0a2N34w^TqV5CAL} zl)m;$sHg-+P~Vqp-JE()4cI`xIfw|b@7k|u5N3p<88D&r{6Y;o8KPiYw@v_0M;H@Y z$ulw-0|2B606h&R>cdJ7essL;=#N`HmgdaZczA?~Oim`Y?jU32%eqBMN}D9Ez>5RX zsR{U6dF|S@n5)PD1*5H~W$m@<*!JUN>Q;DRf`BL6$$tqW21_y;*)MI|=S$g){N2vJ zzP^gE9mkGneen7OJw`FyLn^!I7`^Mo zAl5f&6U((40=BQQY5qq_uJ-0XQu3pTB-jp6ou2&@GdOEktXT0^zo~dVTD=iF&ybmT}734g(y z^~n*&Dh2Hb#`GIR5^L&w?6Fi0+t$O*=crHp8NWyajnl5bYBfZ@1c)TkB&FN<%JK4$ zW7px6pHffKQ;0N-q#et@i1D5)p97FXJ%_m;^f9X2k{6tN%jn2_V)H_!{BV9{MMXS9 zigQ02iozcw_A-|zi%=wdT8dpnmpMqXcGZ6)$&3KMj(uuJk5+;ilKdo~gL-FncD9MR zIrL1O4rzDyzaui>MYIsU-oSwi1ecU=9jEjlCMh~)5Qkt1#3X?+caopi&-A}><3`SV z%qSs*2O1uv*^YIr)*U&89gG3Sz!Vp;J#=!fjQDlTbM?1v-=Sn`a$<3nYX99Vst0%P zQd8Rg9h-%yDEXxJfaDr`v(|6*wFrjF5s!&XJ;BTd2_czyLIJ_rjiD|utXlQ%+6YYB zKb>Exe~A9LpB%p7JJco&M9{~$`(?g3&gGZ~9FGua8^#SuL=`SaB1SqI+*!^7AQP9q zr$ARQyg}!CHXu&YXz**ffLeB<$8WkIQCg8PYqve2g}UlN^n9(&$`BypgCdbz@vfo4 z)V-A7OC_ZF|AeHbz7&;~UXR#mxC`gxi`-m4KmcrLKWx*8`BN~%De;q2kMDj;)k+n! zY!f4+29Sadft8J6nL~0|k9GDbHG3PQOe-cyl%1TMyjkc8yg`!&?}Vrgf6wYYioiK6 zX1`78`NKXbLc}EgUvkU4cm2vhBF>{oaUXCJgQ{~2Dgv?7xDk-1^nl4IL)&LV_*?vZ zRq4BTs|W!;(2n!o@Dq4*Z}b{ha|C}6q~z`qHjrm!LV zVDGD{s=~29ey2JOJ_bAu?5P_N^b{etH#fg%lU7nxJpM$JC+EtS_1M_6qn^u5(C*FY z7@+kb0##mKPJ=dqmg1MkCo9X7ZPrkAn@@@HKr0Dw1#=0DAu>ZyGoB~vJ1dD(6Ve9! z`*$MYV~RJHOfPn*g1-KG6q2)p;&|-{5CqNL3pkRHXswu0n>KkgDcqgCw62N}6O}KY z&vF@lTRo&Yct--RWV#^fkEW*PxthD%rLD>&!?s@ODiojuAOOR}XUFdi zjXwxFbr4`YLxF(^V7b83{IKYdY=b5>n_>X8_k(cdR&sD~U|v+1j8;5HI)y#v33O~m zAV(9t13Y2fMCsOy(_1m>NkniW)#8nUzFdE&weco5|4r~}9<`A&6Rm%GdtR4iA^vBO*2 zGkocUP59}5xL^9fqYD_*LjRyaI-7{CS}}AWf2)ibUW3O9S=cUjG#RUA9^GgULCmS0ey#JG9aS_9|&{3>t3t1;y0dks>)z<>a5u6LV6k+mm5E(|$|nIA96RwV6#6=%MTQ3gMR+un3^tcQS0 zrhTz^h|mNmyNN=9W)80lQEIME5L6Aw7l~*-0HlM>$xOs5_}TDN2a3hse~o|P!ibsD z>;XOicM9XA2Vq(wCQ6xLp{m0{0x$x}Xak|pa54L^Xds)ez|AuQ?K%AVybe9@Uf1LZ ztIaPManPt}DBx-+AtWfRl&YPGSuyx~QJQBr?6D*yOR#7!OzTp<9)u>!zkK0A-GU$V z2JQ^Oem_NPe(P}a(Gr~oB>}C4@IJt8C}1gJI03hA ziB3JY^vkV5rAM&2^o401D?9sj_@kN~ytqKT<@1O(<=ga9lgcaSKHr0fL-E3+;RDk@ zd~@TQ%HXx*80a8G1o~(jGT*@9((BbVH`AwBT; zSlmtgbU(TchLsP3*v9LolgdOQ1<_t1{a9l*j*gX(;>cXZ zy9c|OK%MZ&(5L*0F*GAv1Qk*Fy*ZpqE7x`>QJ6clq9 zJPwKSaM~kKzPX#W5cf#L5!8YN5AkOFh~oCweJDtLnw5xD2&a04&>QGB!La>ESmshw zqF+uol4ZVCr3OmtrbzWv=l;v+E)1mNvG6bpR3C;e)qc6bs{z# zg9gyINMXYag($@s83}R>0Wi%i$W7{|n0!dKC&NnQXaH>QYB+y@q?ktJkEu@FMECvs z_Z{1L(B}ByIrt*-dZb7j4j4ooqXesZS$|e))Ya=4ohtq_eTL$N#LmZsfAYvs=f@GW zI*&P4^obif|fXXH1Inc|{vaV6Vq0Z=Q*?F{zJ}zXeTFZ6-MiwG-H#;@~eF z-2D9fVPfn%V(r@enRkR02(g6?aZ_mLpY~V5yG)*kqcM(AV;HwIZ{EDY7E}zpdFD1K zuVSVyV3ShEMN7+7;Fef$Do-r&NlBx)a&H`e@pacpc4v7GcqWurYK57Z!jOZ4+#|*g z^Sb+DNB3i73L3+`JWrHIGB}L6A#x@LoXgF7_T*_>6{5)C-6T!!cXo2Z&@vsI31KlV zg_(K5T7a|Lv9UL?HcBDM;q^xP+hDSr9!V?AUjOv#_=NLFVrIfCbJbt9A>7k)y;(Id zh3$l?R-|saik+PVG6z91wDD3}Tm|x?_$hLB0{|ulLMSA&N2aa>(|WD~jSUw@)Lg(! z*LJzCY-Dd5vy9|Pba`&NCH3U@g5mdPN)i(IG~?vROlpjKfsz+7N?SDtQ6O3f?U-shHhgDX3wwF7 zh9{J*Pzvw-;;7@%g5z33P}m@_VKU$f90hH`CcGaq?1!^v zuEVksF)R!~WEx5@$u2ar+MLeG6nc8LxsuNq=!_jb3-$$J5O4`Ak)9jFc$)y5Kq#b8 zGAW5^D$;epgTx`cVFcW;?lOexSscMZ=H*Eekqk0Jki}S|ULWmFY;cfl1Ussr5c!gn zF5DN27cvj$A&!qtPgmiW5O9jDcxHo!d?xn)2m zx9{H7x^M;pVXSg|I?iFZg{Z|}e|iMrfDlNkIL2lrY>gD1^a!cpj`sF- z0s;a+b=BB&IK@LZ(f))!%ccYHaB2Py5kgQWe*`Hc_YSqZ2#b$#VP>=%FINmnB{#Jq zECdmQe6PX5OAw5?Epny1ZDHyMKmjy{-k$IBTM(08dgv5eckWElSc-@3A&VfOE4dU{ zuVp|!z<-2Ff^R`fB_o#v(~$>3n#h*A$-IAF3+AIzqM=4^+;2x~XlQupbG|q+0@0w= zIk=A?Ovj3ee{wxx z8t)qfxNz2qX<)sI`Pm{DPEaBOp>Vxh-E(nh5rses%sR3Ht)OW0jD4-)i0M+Gkca?Q zHHoBScoYp?qT80J&mbP;v>1|WBfAh1%n*z3T2mbTgBM8ZHfVhX7P0 zmCc=EI4+;{!-hF%e*cLWPtV9T^v!_*X(MN>l9CU+UR}Dx#Z{S#2RduB9G8P_z3xeTCI&?ddRcjTy_Ha(=uvsjG)03h*D3L*gR9*Av%@njjJIoNK-C{<+oi3r~~3uzU% z7zJ=m2~k|CuLpuIVnGsXmYnL-beJ~*9S-o&u6XD>;<$I$ z=z^g{^n%EAf4}|3;t4F*3K${10|RsvGD$;}EbOxLxL(Tbti!+qzey$(jZIiK;zod~ z5e`I3!0M$4HvBPi?o=MAE-Rx3@Col*A0PRo*)t9P6jJ3m^)8A~SO|={iF00hTrrY2 z`DH9sThJEch>Ewupj-5GAI4&UKd2X8Og{!Vh2j2Y#U}-b$B@BY>h69#M3|7ooQ4oZ zQs5|>x`X-$@d&^fpbOCBprG)7H;eP@k;g|1NAJtxI;Q_Nhyxt}BTl}oXx*Yy7edOu zGOzmvOGwP)&rRNxP2bTG6d9-x-5ITs3jb|(#yM?jWzQr@QsRLjQ^xpDHXI3j6Ff7z zh&U;8b_8v-FR<|4mbBeA>hsF}ACu2?lJhDw%kaiQaHj9@x zZ|i3gNex6WIdbnGiKSW|&qIe+pxM*d+fPQmV2)>1bm6iwIo6U=|8MzYWYVc{vJhBH zZmA>X_gP#RIj9713Obqkt)ESQ?K;t`;ZFYq%Trn`2p>VA3diwZVrcMi)OhfAQ!uOl z+zN+kAZ;<12OywML!)OUzxJi`$pBqfIl;M=h^_hVxXe~q)T&CSmr@%$PQ4*ZCd5jYF(9Wlpl z;=vLV4to`la!zM{lfr*8XP6Yo2TCCAnQ-C41!IiC;3!HI8s75`zn@MFE#>+Qr2c@Ce}X2 zY>+~Ik&EBzxkJjzgN474gFy1e;DY=7l21f{;M#vw7#%j^3X6-U4qiOYskhzV3pF$t zy@d`(<9LCXz`rNPJ08`y4b%ud%D^Tg&jgAT4R{E`W5t?hQ5sYtMb47yiQor0uLHOP zU3TZxEWWG=f=-gmfbk*gcQay;O~iHq@;;PD3hZezM+?^4GUp==CXV6(-bK^^QlDew zo0lOe5;O*773UKvfy5J?jAVEa6sAycG9h{JGVA+?hl7D9$&4q=b^J@xBY}NFBlaZV zMnZlpB-jC@jdfA1>2HSi#)mKtln-yjrx6}Q%is3XbACzyP>UWH3;n2YqL!S#7MbIT za!ZsR1kBJqo?~DzWvG8R9I0D}9vuWYASw_tObFz!fW#~^F$>+EI6?lfyZZq`G5p1gqmdl> z-*TFv`-@3PlwsiJnPs~KQae3xqQa)>X=!`V=E;dM1d{P7`N!i!@^Sc&SM)*_G$j%q zAT$nyaz9y-Naz5tQ!MX&`+l0elBrR+AGhNV**-!yIyOkRk_5Vx*MjZInh6G&$u%htArJNvol(z2;8r&A~lZ7~aOrXnal7huh&cJdMZ+lff2br{EV;Q*t1KG)@o~ z14axb9>*==%osXApe7vPKo}kv7N!zzM^wy19&dymqBwj8-$Aq}(10VIcn$Pm%?7Wp zuEs7F*|P$F5IX&W78~N|11Tah5eWkh7x8NVAwe3#V?W4%v;lOm;0venZTQZeKTmR2 z0>29D><8omQvpA=zoKu1ItgJE5ssGATp9WMPHJfdEpCKWfkla_$RkoTsP$X`K8o0M zsEkR{R6U3@L;t2FdEc1sLh&0|15nqiAwE%2aD7!E0OJ^h|1srNjFExa9v_yZRzjU{ zJY=%kegdM%OM@Fk&c_rrb>5a{NXW3ZCW+_cuXs=Z`gDLNF9BhyW2g{Rv0QU}{D16(MULhzF2% ze6idCogHryeww-jnb&Q8=n0%n1-uw6+vAD-5r=GTBc|HF(YpzELBhp4d8G16%v5zcPTy4p@~W?c9$4#Sy@>OZQ`7{$SOJQe8c~Q;|r#hPBc8#;SZ}Z9DHs7d_`sz6SGPRf2+JtP|lZzCt;kV65+`zr4vCCJ1pZ!HrPl%3L$ zu9iK)QTTZw-uyXJq7(PmjfS*!heU%Tj^a>E}M z?zA)Sl)f;|d^9n((Ek?PQ+q)IaJUqZ9)*-7X7jAO4S%>ikTSmxDz+Izw)*VDpx!FQ zPw>l$2#RuNa$(9%ekty#E@9mynt|*gQRzUHNFtA6AYmtHL1d_k09JC6%X>@V zk%FIeu%2r4inrNvP47qKhx3$~ErvF5DxN>!AmI^%AD*x*EiG7+(^ZK^;}B2;LXU{) z$968{HBgYht0%^Vjw5}B<19>4JJjw4E0w|<*oN_0sC;C~0jCKB!(Zw}W*$)y^VDIa zz19NL_w@Js;9H1%iAh*0FGb!jyO9|r(k;pFLXi)|G9>3SVq$!kZ5anX2Ur35mVTsF z%J3`2K_b9vvqCrSXYcCjA}9F}p50fmk{pKvoV0?X5hKkB!h0C!W{`B<*5+SDgDXs{G7lH^51XBHWL8%U-|@=}olFQLQ)9r#94 zxad%%;h`3n<4^>0N5X{$ zE1M7vj3#e=Pc33e?FE|{Gz}5VMjWk#!bwelb$GZ=psO@6)t%T_W{7$k52RK?6ulF% zoyv~u!_5Ckn5BeL|4W2fx#k^i#rV=Ck^lt(KJ>s#OFO#Kof+loAdDQ$8ZvL#@X$@x zq2UG2x5aFMH_9fFzySpIka$SU2XwJSe1W`ngsA+f--GFD`e+HG;X zx>CgZ1GMXnI93>MPznEQLLdUN*Rcm~O4=KvdV=0I2nz_TjEIO(#YsG%t%Kk03FPXB zVvCm6)v1fdMZNvM$48B7Ef4><^r+zPjUSQ5CShuvA%}CY>g-!j>hz25n%^XUT=u^w zNXhYg$~qt6Mgv0KgnZVE%>V_0)HK7Lb6dCkIllXY3ucd?NTLAJLNq1^-Qg~0QRw5+ zpF$fq-_Hi~k(k-ZT56qWE_M08lP{kdn(;s1SI@s6}re=EC+v#V=)XXk5; zA1`p$FjQ^I*Hz0%W|m^oWBpQkfNR}EUh1dnG5E;?#o)dTc#^@E!RU=7434ghT7-YeS;+t}h{Khmtu%p@!OSDDm57j#cUA-VqCY>v0@~*^ zhA3SF^IsDZ0X#B(PQrf(eM5`NR{k!CG(IL~aSGLHpb%p4Aj4+9jJHLUO~Md}KZ?j8 zN?y_*%${AxfIN<^YDCHm#}J%&;sGZaN>VR$hwE@ygrNuu3V zN`M#dOIw(MFTVccy>`8;x;3@o7u$&21jt|QI$CrC)(MFzLM|7|xw(479`d|SoH#*_ z2N}c66FF&ug5+0YiKi!yyx4-aarslm8^{-cCFB60j>}mI01RZHf+RnnFe>ue>z;au z(=z`S`ZIZ}NJaiTe+1r44wu_w-4%kyVvGzF>0eKcN|-74!SSJ2{I3zT-bj%X)-X9R zhqzaOpfJhbAd=A`j{~hSZnXRc47Cx}2azJw5+;;&a{2=~*tvSIW7Dsn(LqD_Pikh8Ttmj7Td)RidG1g8^Y3&SghN0o{ z{;%e~103tN|NBDOnq=0ULT1URtOzM1QARY(%u11DWZXt2N_a{Ep8Mmw2rscVw(;?c*HY zkbxjUQC?IGn68sAz1mZX&i9B|4{=It;mj?k1 zL@nc_ncPDKw20o75JgKpiCWAb=?0m3AsBM@eX2WCe>vYiNBQM6wSJ zd6A`zS|j|J&t%OeLKHbS)_vL6*H`r#sX8&_qN5P9I<_SbhR-VK90Z>*!{Cur1vrFg zs)vu(&p=p!@Onv;nBDDt)%yzopij)qyaa5YhJubidJD>go}{UiN|CgD!H9xhGp`5g zsYLh}Qv`_YjzdZ3PjYI#S+%m_7csdN-O5s+Zcw%?C4+7BYd7%oC;cj6+T4!$orQn|5Q{M{t&6N;W_IUTdnuzbb*8M`v z7#(#&vc|te>lg$Z!hb7J@^x2cKo~<`bl63>7W7r3z)aZsNF)f!v1lB{2(n4nq$aNa zn5*|fy>EBrc`Q_N8p{tUKe#9(A(8ub+l{|v>Ka1yT#s`ON4KT6J6ykgdkG5*2PHl56PBlS@lg~r49E7z?%npd$8loYQ4}!Y; zh7tGoO-Xmi+YUp7i2_X3j6c{Yfw@tm94m<-8)638SuyAyQxE9lm z<5c4B7oS zttSnVtze`*_QKmAETFX{HhKPJXVEUG$~T^t(%-d%)akke?13TiZOo9cNlCU%M7pr9 zq8{D-cSE)0hW~D;CLsEMaj15}6X`pEyMgEd_M!aQ{jDCU4S?#Dn6 zgDcW_RD^6na2*7z{H3#4JJ=PL2ncp+s6T+%zKrgp1>zeyUnu4X_=hkDBlr!VG&Vx% ziM%Sw=#>Vk3q4eV5+d#nXTT>t@xIjL(Y8yZ(*#&08dAWtfX2khv;9;EnIfRXBo+mk zBM=EEtPacr|3o;n!ZFYy-uo=*$CuGjTmTcOT1X7;penru9SAI8t?t(0|2+R<2Fh7% zbU7Ov(Jk2dy_ZlHmjJ6%1u7rGBv9naJTYieML&l?ECJu(!T}AXX{dkTnlV2RLaYAD z?OWF!QK~_RP8}#ob1SQZ{R>_=W-$TNK$$`Yu~4{5MkOi;MhpOpMDG;XL_q>3gea6H za`u)dIP=MX26H8Xvz$nv&hO!ohXSB7Q6(j9BEX8P2+{?SA30%JwUq}XsFBcktuzTV5FJO9>)->f58d*3T2+SChLo%Gg9a$sK z;)pVnh~pL@vJn9wjApAakA<5=$I#sy5Z&m&F$EA6DK$w$7R4VKdY~Q_ePpk0Py-dV z{~evQkH24B6E+iwV7(Y}n3;;%SaR3VzCu zZr8!rvC+{YWsMh%Qh@G8fqda~Pkp&K(CtMwtR0t1kVvH8lio{1^4cW&AMEFurF{lue!+x-9>29iJneCDcAN! z_e@qT)i2quxbya=C7JDWQG!`H%3ZYwG0gZw*&Bq$jS?I(D&39ti`X!)+bzCISOZyUqz zO$?Gi^G^~*5%F?!imtT(mVV_OszHaj8DWXB$kI`lB|XXcA*S$m#BKj#i14SOL&xV! zjNXebq&xhJUeQ&6mpJB*{flCe*+bn8S?5cXOXWh;)B|f4<|?f7%rQG$K>^#5bck@j zp8^VrS;}t65<`%b(l4&_8FEz!gf!JAC#eXEL?9B|UeagL3p{89&O0w$SLqKNx3gnJ zTgJXa=-|OtskLb>zjSg`Q4L3qE}UN(VpiVAko8Rtf~F9Y0=FdqJ(4F(>m%;`d-b-< z=nfkV(Kb|9S3nQ(G#Z%%v5HCnGgtEGmq!GWYb9pSh2AVUm%f4)YXP;b;kU(f&fkJQ z9=GX$%iZ8K(&8p{UExiv);~HGIZ-!M{tkBjveS0na1(C%!9i_#jNu4m0s+$@^&0i~ zZ$jZrlOM$St}FSp&&|4N8eS$z=QBj!sJRu_FiOGH8I$y^{w?L4FNurs z&I0et1CPaZB_ES;X)E3qnA-A?FF9%Q8PO}wSXCFd>*t9BH)FqW$og;F!pq|RUmdFX_>8_I|pCN`cw1<#T)QH0%iLO9WX*#1osa1PM%2vn1c|ACqJ@30_(;wgs3=S zu1E0&`V6&g0fxFnH4(5;Qi@@(onKA|fwAar?jko=o2Eri>bvLtEe(khcF9X^n-AFk zL%j4E+RKE}BMyu&qCfCj8UT<^MN-ji*orb9_BYEgg{VXZ-8(YEg4z^#1WE;JjjIGa zgV`LJCn8)e1@0SE3OLc^m#P8qFDfdc7AGwbJ1err-D4s?!kj+0ySg`_cw7e;G}xF} zToCp=OxiA!^`DM#Itqc1pdD3-J|BFs>b(Z8tyQ20QjhpCP(Tw8L5>fJJgxM4w0R&L za$Zez3d&O-P=5{(y&}V!(E4RO-7sAp)jE1LB7$- zyAkf3R+ZiE0P+JTTk(OK(DX+y4G%z{ZfL={=hMM?)7*-_HgWqy-`=;fV%NT$KJlQq_$7J^EM85(U{4Us9rR*V8Obyd1rXt=r$`Y^JrFOW^EqeBB1KsM65N${Fvg4z!Y#QS|Vq1WMBIsf0;vCydQ$b`= z^LW169(P>1N#c6A-%o0{&&{6~jvTPLY}4GC#eVvG`h&*CXG`{v_o(LSp47{WlKUdT z5jN7n+L?8hP4QayO2rFC|C$$Igkjw4iA%kLg<*js^jAY@Jp=-gpuR*q4x}Jopsxu? z<@`{bTZ)v=!VD)eC<8lM;hS}!^h^U~ zR8242Hoq{+yR*aDGN;aZXeJ5O?nV?=NK_&TvA&He*WS#O>`QAa&Z_cvM<* z>?8|f!zv}B(o0#v&b|ayFwum=ED)?*l=?V~E!bwXoYto@-DG5ic%Laor8cpVb-t((S1N=L2*6ja%?}ZJP!+ zhlc-D!h1&^gP7<=%+oOQCYFQeCwgg!cb-$vPJ7F}Cr;$(IvpFcY$QssNMKNCZ4~q> zAt+^3sFnZ%6TCO-zpaFc5W79EyKm!$tYBxGW*aS~^Cg#$y|?HLuTLzNl3jdIwYjN9 zc$tyb4%1lGRB;b_iIureH!7Tl6|>n3w1+}3}=YRXNa+32s>l-M8*0z|P$!Y*xtKvF7aC5KD5%|&U{{H!jl z5)n+;6}vt2Ua{oUI5FF;8RL$pGb|dpi`3g!kSUp#up9l!Q{(U6*?NqRDec>1>GAd2 zJt^s}5kbdUOd0Z`+!wivh^b$dhvGl+cl zdGoZ+h5F7vCE2EVP*N%^>1rgcYwp>b8fWs2lJ7=}d=cl6-1?E#G)pLeB4gq!&!(47 zXJSwF&eL5O>N&e!toYJN_nsS32lreoQ2Du)W9`vm;z2NdK+ERb6VI`+!Mhh{-FV_t zcxX0lxRRrG$~y6$qSkwy?q2i~hTCGktlDHv&#h^<%8iEp!zRkUpi`<*+jrf#zc6LW z?$hItDOh#$Lfi|yVAdb}OIEeE%QwYe__njOr7^Lg%k$=AYpq?S~R8aN?ZD+{=y9&HK<|9O-#ux^d~^BP!zz&!cC0rxtZ+ zZ$8K|q3P10QR|z$axtET@O95l;&UkI#LliOt#7GMlt`StoAGOr_;CA|c^U?49Ic){wgw!ffsCeILoK=i&&{8_<3dtXU1a&-mdB(lRyCeg;cIO+#5c zza@^19Fvr>kuqLOX8q3TukBXO%GlDMeBwG0pBCvrpZi=|`%eG9=^g&}S2a6mZBsNc zSN&GMa6B-w-R7qKjpLMhN@C*5gK9Sp2${VUu$C`#O7p!=E7|*Ey~iBZkA8HWo?|?B zO#8m+k2j?Bbi6k;Bu09Cnbf`C%i3AUza%W~y3_qMaV75J8=FbQ8OK9^cagcsAsrK?)+ zC1u$&(3O~MolWN0wz4<6BTge&O0yA%0QPH(G}0v&PxTJe5PNIt>CKlM*FS`H|-RZJ$B1apZ|IEOF^@xGq*Vk zWiCD~pVhVjy`j{0IR-lB73(CE9WFDi*O$HXidj*o@w|;a`@5yrw59xCcOOdh%N69y zZJ3;SFLy}9BI$hNi^R8rvRZ{+8Xu&0)LCk>(NSC}>k9-@kEb4blOr&jERvwv_ArHh zWu%gjZ)DgC+6_u;AI^&l zcbqw|{K)lOK!G0J=PH$RJYkW`x;5!erK-ioebt$ajA}icrn|I_+dceVh~njU$~7I@ zW(PLzZ@P1xPqJ3wL}tB-&GWbHl1B44>_n&%RyhHcdRLY2I3-0NR^Sp5U))z4!cG-9 zO)YJzW|tK8)(jm=TN;*0uQwm&8NKfQDl_W9uAV*y(Km8oB9TYJhXuo!^t)TdGbJH} zN5sS|eJF7QJNPni`jua$-C9oPw!gnyInp?k-q+=g&l7n%=4{SW{t%s6q+{sqc)UF%`}vB! zW8pjTOsjqD#}>g~ zosq~9zUqitW+iXemrL?jg#-RLFgkYXt=tfcwDYPk1$~uzi{953y^GxIhlNgm5ISw4 zMBz3cr*9jlm-)1;ZRFO}l_wFbZ4Qj9SCf0tB(9R1782DYZ0W2b64fSIp}bs``j~xd z|6EUmNXYeNt5ejj%JA>0lz8Q$+#zQOPC zN;#$veRjQz9k=tUQ{@~z+eapxR1a0ZrmVV+o773#l+w>`?I~5 zS)=)Cc&xfT!WgZ@6a=hed(WituS?-wzw>BN%8At}9}-e@tFP0`wOITa;`5}*mno-V zYRie+ZY2>z@i>3g4d`!Cj9j(EDrQ1&Z=vjcwEP8MjV8U*Zb}Wc^r{@~{P=2>Q%pPD zXmaAN=v0Rkwlr^&SgFBz&+NQrXv=kue3{BA<(A=&RN1y5X2rd)d&gQs=0|#8rf=N* zHJZC2n~2w_pLNJrwqQSWV<;(382Jxe@}Olq7MP>CXbrvj+d|R9N>D&-z052qIFHAuEQv)DG|S$MVqBV z`yKv8y)Y>xYNe!GE^hXO4~ckSlo?WSGDra)h9Hjd<4PpsfGnp-k)b#NNFg=efEFFl z1MvG5#yHG)9lxOhs?X>BI^CWz-*5rc3(H2!eB#w&lQu7|G?#7AIcrm|bwg~iBMk`@ zNY$JNpneAU=z3vcMq&Yn8jaW_5T6c!yU+`0G+sn$_5xgMXz|Mv_BI9){y=E}u>lSy zg#s%wf^vjfH0*wkfu=)<${2`j9-qhxIT32)F?K@tz|GBqo^nme5=c0uxb?bJ@7`!@ zzaaFAq<;{t&qiYrl>?x;7m3}3IT#THY=}|cMa&Qe#e84|4-}v|bO0$7(5Z-bG_VrC z{Z+tyhCOQJ{q{UFs^FdjCC6)urtu zIOMhOv^CuLL~_-Y`Y*GmnarU=2Hr;~s!h!^v7#cPVa?*<;bSYwMKwtu>>;PvrmB2E-2#^;o zQOXKMdz&Mgf{6eNW=g-b?fy0sh+L%AYN)TQAN8>`JE2HPJm}A3XVAsB%!v8z;Q{e$ zmQJa@Gs-ZiaFE4J39x4fWiVWW+Z3wr8Cmbd9|`{dCj~z^x`|jS^5d8Wiarng^I!^#~i*6`eMW2 zk3Ep8S8q4{x8*%rS+o>D`dmHc(K5m4B#0SS z_`Xr2rB5uLs`9usYvZ!HTovz3$=XZHNDN@$cm+)bh0lskQdlu;j%x5z0 zpLQwA`eZ}yuHf?}`8>@IOP?(ExQZ*CUrXs7J3`kJa)OTc%Di+GnIqtYK7+3Jl9O`R z{EeN*W~WBKgmgH`1fJ2~-$z>eWtB_vnIC_ZTxzvF{#ovxOv$ZM70+lSBp;r97kp|B zX>dB@1k70Q*;&D$oUjL<`HO_h*sP<;o2=wmVw++}SzRHjkwUf;WC_Aca2f;|PC=>B}F4Rvt5B&bID1Llt@^6T>Sbtq!|@L{;u znmV)an(s0Vx)N){$U7*^iw!Ag2Q9}vzBt+7cE^_#J0U< zkK>IvdDG24BPr-|{SvK>f{-f^%UR12_*c{*!=nEMZ0P@l7vkS1N(oEnX#-YJd;yyEvsYlnuU~(T(H!}+|LhO>_j|HhMJa83%4b>$Lpoo) z=Y_QKuOkXOnbe!UynDId=C?V7|{m(t*tM2{j5hqZP@WO0{{yKfKw{ZOv=? zI%T_lz>+otNVgq+Zao(`(eeU50>%)PKzB_5A^G{G&mzc4mO!>Z0+m7m84y}xmcVXs zbQezE8Gl0|PMLhlKJ+d3b}Y$Zz!b3nNfHT;1e^|h;w#X|ye6J900#4Ln$z6%KEz)L z%oWP-n+S$)VPG@>+ziJ_zXDnV9B&`p)b7cnA*Iz&%bV{m z%03qsx%UQIEjO2)#)yd$wwMLeBjQ~Q+Ea=Y(yL$TBZe=Qgt9k59ewAn$L{une!^BD z@reFMnyu@g97HP`EUa;f=Tcbyx*X1tV52s}wifHq!z(!&g7+*lPJOL@N28BB@2C-r z;)Y=6;O!geH|VSTGsN?WN>0r$_HNI$tA8rnIQ=s-xpp|(zGtXQNogFMbhY%>cJBh& z5CPz6zE<)&^@2fMTLdhn1#Wlq@Y(N>L1wEcnpDP=%h%(LA25HE{gc3<7!K^;yI1eY zYk|vf7T#?*2MsQCq-I4Qv_~m#+Qd+CW2UFG)6}&~vZ>6TC5yy3csihFIEO2HR6%n5lk{bfi1mu}Y zdh0L70TAst#X!di-Kk6=pnC#(f#d*)Y6MJ68F2E2BD7HXGDsURg85egHwYpo4+0aN zun$`XzcK|920RcLAp|PCy^6#fLDgJS*H7 zd~=n*$p;*N3p9G^q*mOV{Cg--5)@&RAK;N{nBp0Cb(6ocxH%8c0f+iavll7ZnzM#Jr8|fR8H?e}XDZ z322nwUte;bb#dtfq-t-tprD{YUDX|YNY-V`Y~V35*^L*C#}y!ry1mOGZ!_>Etc;Ak z2vQOD5TT!*nK=&jp=RO3hqs{h5OV2~WQl7p!U8KZvn2#Dr6jg)y$*ch&~oK@l|sdG zD6?t~`j}!a%*DyM2hRq&*#^;f%@)%hvhCH?P1CsZ0p5}k_9)vv;!i3(XUDD!TnP@= zah@CLp^MslR12a{h$qG+TSP^Jao>Svx3;$z!BcO-HO2H}EuAT3Xs#Z<_7z8tKP1T@ z6GN5)jB5yEvZ#n1y1sjG6lw;v%3csP5HNG2k9d~> zcS6XJWJr!TBT*BAw=}|Li(q!)gGy)43y?j5%Qq(i-v9>@{b8U1i3B~D{8?d$0}znR zeBU2b$&!IQpXC6=RT17QSWLp6{>o6rA~ScycCVuy4?e+~8MHGX=vp@}I zuOW?%jnFn0(iHWiHO@8NjaLMavPqx@*ziJ-zfQnG?{JabE=)FsHf`b+QsGdFquLYv zX<2D0!1Ai$cv_jxJ*YlG>ot~_lPiFrF36&SH^RdmatA*Hxu;QRsZr>40x16BFJJ2M zw2U7*0bDCoyi8GS)255qOF71Q>v}v!B)}Gr!p#5Rwaso9# z13!BFxV5Jz0nAk)dyhJ^^0A@8!2@?*kzYX_HUKhY3GB$ejrSw~341W!O0-KQPIph7 zZu$v2ys`$K)Uk5!IDt86s)So(mFMQcw1pRB1& z!Y05g^}#bTP4OG5eMmD4!!^nx(IGp*DBCdRDe#{zK=V#dO!R_au-E8B7&8kCO6!_{ zfF=HIrU$XOL}iv>j}Z^)NsS4agGU+m;ty^d0Sf~HUA4){8^|@G!O;)+Uqn@mrFS^+ z6YCci7Bs^FEgJx|U?0%l=SE(K?%ut-wogZv3YKUCmcHRFFr_pgnF;e9(N>+UR8aQb zLgE9%!fq0>D{bRRl(6dQH zYooQLWpC7WKZNS(si{7|2qWz)2j5KYkCTt=pDKa!NC)^ZS9!Nz6>x_s7Eo=AAFV=n z9j`>W@FzGGwWIhv1Gn~CO?ggITi%$JdQ2nHT$FfVBzNBsl|o1)Yb+A znb;2mNe4!=18QNJcc~stcNym9=FYmg4PkKYSlSqqOr;+(!MQe+Z}EI@RQVHRGuoRr zZ328b!g`LuEKauyGhV~DYZ!NF(S1LFr|}0Aw>0q^kkh?|;d|}fAAkNyi#t*X)LHGZ zyNLbwK+Q%lJ1_|I^phx!WAIno_XcHsFPqCd`Z!H-4|UM!zyZ)AI9nPTLIF)k(YT`@ zV{UaIdh7Z+Z{JqnAJi$lGYJgnO6sV=D(l0@6aBM;9G3qI)f8vc~_A= zF*}^ZiW5jU(T7DuPzbH{^&yag6R5!sl9rK)KoiajQ|X$?%I3PdE5I+v=rDe538$YB zbj2ql2MMvH%rh%*#A5vM^XEOhb!{FGggE1W4j4hBdvtVkcwpcq!XY@T@sKCdx?v|S z8cVfD2x_yFIeYHhATHW5d)nb(5EYsZbtSqa!@s4{Jaj@`7SzmHy&DaVhkRx!? z>?(Gw!pYJ6?%mNjS>?GDrczLcT&lhU9PieMs@hO1-PfR>Fx`gh>Dl;_G`A+Zf+GaY$(Tp z!R)y!MBlK|9QYHWnBk7-*(vde$50SpX!&w*hTfOBq@TNTSHrNzDWqynDO+?7tGodr ziRax9>a=rRQ}+bRbN|^8C3j)D$jLTLWiQ+W6#_C;EX7#|T7&e&gG` zb_W^?==I1MX<&Y!Z)(b%IA1@CG!dQv6xiZ1CC>BdA$dauAPIK^6N~r27Z=}3adr^( z0TKfui-+p$MbqW0h#l`QySn-~g*U>DCynCf;4Vs&IKRrwXRgi+NL^cBbswF5rS#K7 zLDKZH1@j7!1;wr4e)l7TJiD^0RiPH9KM8bfmJ;9a8H~3A( znvc7YScg4(rb;RulGQ=y^fF}gY0f*(NrA^n_>0J;j5mK_qafl25R2fR@@wE}Qz)Pu z5RM)Cid+KP$1{|a^`xx`%q(%fvwX|rnCc#!ZvNJpti|Q@)^k+nMccfpI;wKPPi5-d zew^IIK}C4;X8MT~llzdpf*1p+1_!S&1-z1;-n_S19*`y^5;YLgn}E(%AAsfOA*v9* zf3w*+cv+ztDJ3ue=$SD$_Vy5nEsfy%^Q3(HocL`%CB(1)=6pEy=9KbJ*}TQm@g#a; z!=n>XUtMhujTIJVW{0wK7Chv`qht~-|J;(0zg6aI;D6Mb06gn8ia+usvS2w?|^bAp*eV<@l~$etaXFM0fL4 z++kyQYiH?A*! zy`*?(({WaTa(w+{ae9?oI>_w842Roj=WZPN1DwZ9bH8mbuOxP^$hPb(ES};NYgc{Qu01-Z$xT6-mGjc z@XU4k{8c~{K1c564B0zH1Z|huk+bq?>FKSFjaSiD6_}fMb+@vz0$rs6ukl8!p^%hwh2tQoaIIUX3y35XMG}x#)mlwIo`XLsIkrJ1XSU6M(~}Sp@dCij zcsZA}b7}_vd@Ith%z832GA`js5T%Vdz$ryqNk9cKKfEd7;S>%NqzAU@>Ps{yL15O= z(()KPQ>pUL7jSkPpLI)hNXi0Ji_&L zxHN-_URtUM!C_*?{Ea0~$f0R@HP>EmJf`+ovs+whU(U%0qI4i8Lwk)BKahxw6SWqt z1sDJg1c~NVW-2L*SgprX?KgJvwkX9y{S!>j&aSR0U`lI?aLx?$pwA+sZc?oAPanBY zsET4lOQpUI#l=7dnjV{tLaJFJuSbMvFn~zcrOz%9!dt8-Z=t+?u06)=7QGx6!F1Jm z$PrmWvW2i*K_m44_|cN6B%^;Lc{)%Q%Z=vOa-*rqdp-Y5o$K`Y9eqzA+>RbOlJUy! z5U43oGwo>>Y#05Hw9VhbM&p&&p zNq1-|sIxdjf;K-lZ;SsUjO<&p$?WarlBZfI%rLZ2%?O!iKEz1AI-Wwqj&@Xl9=AOu za0R|H(BM%aKVXc!POtZ0{K}Rx>^}?*nwpQ}r!`@YG%WnAT0TeHIinFaAk4t3mQW~z z(GMA1`YcZU;r|*h*S?Fq>aKx-0TC)7fYQXp2MF8aF`#Ed7?o8&W`*i4@i|JUWbFZMleN3#^*O#Jmd&f%j0fJDrqUlj!`I4EPgTn%a#-db!4MgMxL6FHuXM^-kFb~Sob41r3cMilaUr6o{uQ}3&K`Vrax`@N(4zpJ< zVGjikHGq;0HXCvIfcN%QC^PjUvoDr>q{?^$E-B|Vf$@$(A>?!F2RbX?)0G!AOGd}X zn^0f~Kd7s%wL_AR=ONZQIXTJbi+o3*1{NX#5JTe_jD_e91$`-0bDNla;gqoWvNJyS z!|t66(+52~J;fftIg`}WJI_z3M6Y3IN3hug|Hk8{nAYw9adBW9WpUKWCtGqHNN#7e z8p=)lSE$afk;4+UhyW%f(gzeRqVI=QpqJLs)kQ~v!ZQ4OhltT&K7`z7!w1G(DmbfcIEr94l5&?bO0>Yc>bbxuxHeA&b^wWsj zAK^8DvQgY%#+Y=Br==qO4JV9h_<*=yt8lJba3WxZtm?PF2UZzh5>8i$ZXCj1zjQN< uFK%N%hGrqde-%srC&KOjZ@)4~rA%4-#kdAIVs=8IXztckzpHBg=l=jAIf1bN literal 42238 zcmd?Rc{tZ=|1bJ6R|rvtG8RfQHW)HSN}@~^GA2XDP(qQR43$bslUYbYWhi7GqB5m~ zj46spDl(nd-Fo)kzkT-eJJ)aT>-=-Bv##e^YqipMxIg#(e!r&o9kEYehjkg>GK!*D zckj|Nq$t`TilXUT!ifK}rKS5L{-NltebC#;{iydzo8$J>UK?)@7k6(LCtINt_Q$=P z+}-4*{PG!IWU0rlLtYfcW<&l@lcARGL{X{7 zc57)E``#J-aLU5iWRYp2Nv8Z|E=!`&5)q+qpB@%n&P+?bX5cL4^y2E()yY?GeF{Fh z`*y}5sYA(XuO5is(A%pm(4ytlt6Rfb$@T8?Y2Kr+$JuUeT$>f?^5ayQWyz6mDqi27 zT1mZp=QXaVBNoaoB!a(EYz*JCl7CB%tf9Xg9v)s_FGI5qzm}8JqayI@3oM-K3#l+0#gc}E?#KaioZnDVA%C2maNk0DR+qX+WK|u{}jQjH|=`Rm+ zG+y5nq9?W^UH@+Uvxj$;PuhO#ernLWUS#db;b!5Nca^!>1h!|4-eYfHf~6Gr{^4YA z#fK04I?)0(u^SJ>-~anZdP+_Wy^#|c^dW!b_O_gQdKoFHjP7%eQZvzkikSD1PeJzV%!(^70!$ zzh!TCA%AxITk*KHgTwh7R%duanAoJ`Xe7VgRGgPTdF<^28j7BtzAr21IW1LxL~dk{ z^xCy_bbKB?p4@<8Ke*}@;@!MbRj7_q&H zhMD_{Pq?!1%F!=fx|DI~?Sn&fH}%fV&;GWXoBp0*l)n5+dlnNl+>*i+@BdBlj#{9A zivO?BurLM-3yX=7^n~jhmS4GY#rJy+_x^N!{`FkTHoNz%X}lpV{b)3&Y$5X7hvKTv zPCn;+K7QpB)#q4OFS}cqlOsJkI%@6Y6k(ceX7l2zXzPN2ieDn0L)e$)OO^x`7Z*=G z>ywX*;+8&_o-WR{jNx^HT6A}}#mk%WOk-Vz=PzDlmE5$cCEI-4Xjfs*zEY*T%lBND z)WG9UGM4D?>kE2*dUjy?`ydsBw@>l;`c^yM9pANYaL~wXNuJAlxhIY-w9CS1U%!4G zCu0+=VPNjzA@ktDgUdH>9vUvKI?r}KCWiBgS@x5$cUFPgg>E14S(hF=cC2J>vT^!H zlNxhPV?)ET138vq_$m*wv%lA_cISHk{HfPx+b?f2Q9;<)Mo#VyysPquC2_$|*>^%n zQ&Y3Aua7b}H^0Cu&-nD|Q{Ra`nz^|-Yy~D|Wo5nFTeF+T@9L*l4b()nBx^ITkJVLB zQnGy+C%a2uUusLdR{L2e`)xrP5;NF8GLFqcakp>VO;7Y6d>){9iC_5~{;zuCuwCti zidVO{ajaY!hA+)K%Bk6>wm8G~Ypm=1{*;|bdv9;;DD~fVPycS@>TPb;cpuTXr$4{u zpBianTE2XFoa$*M7gyISmoM+LHB4`J{{Gh7z5l%6neywK%qJ!rrMb<21uo7C{`vX! zJYI3Fq$G=&n3!Sm&o1|}ipEA}%44)cc8!wv53HdH0kZ;^h%@tlVtJy58gHa% zN3EJ}3S6KwGBU#IOY^9m+3u~xFQykK6l?zYC~J@3*G=SU${&3hl%2gv|E^Nl;o=iE z)!`geP)5f3lF5dR8RmsjVta4Vi;Ig}6nW5e6}s1@?vBxQ(eV^nyY|Z6yB7<4&#cC7 z$aiknbas|_KJ#fci=gTn4GoQ5d-hb}H<<+m1@SewTsxm!=}~ijv;M)M$BgrTepcaB zT)A=MeD9fA*0RL~WhL+7Ae=an_3M`e&VB!TUPeyWUE;4w+jBz(=X*uhwv*p1P*m7T z{eD&!c@DC3bBiDTotKw~5>b_FQ#H|kz{&=HfJg2~_*Bo!mwMzIFTshhkYb`9m=`Wz zSXh|&{=GsxAs`sPOIEi@ZE-ukwEg9EpNEDj>gt%te^6bV`=R+RswYt+#ABpYG+=T5 z_rWKQ9Hi^vvSch%SioHpm-p{Y^>Vg@VbG<(62mE^P z;QQ_A=f2OM#Y<0OFCN5#)6&s#tXL5|J?$GXGjv12=gT!N?quh^>{r+|!%WKi;|aj^Gn7rd)4 z&bP&RT|htp-Y=%X{^-$VID0L{C*4C_qm=@tb19*P@x=v$&Q-j;8>sNl34xX$hlY5s zjrWxLCrv6UDptODvAg6~=P}XRq@u0U)6?OMtbDt21h@MN;aF>%B2+ld@ni?yKb6c$?qP2#@QX3nxScFX}b&zq^B%P zl}~9+2)nCwYAp8Wo2cQ&^?0$OPASYe?}iS(Ni3Pf>w?Rw{PE``2G8a<=31- zot%ED!_Ssrxoa=+Z**;JY$Oj%e){GDS_o|rX;dti9v^%6P^6I4M5ly7Zz>1PX!)f} zmxkXz77v>1DyTZgT2*^-HLII@?0IxsO{p7e*R89zo-H1K&MZuSX8z~96}|4qjxkdm z&rd6F=Gz-#kFO9a{9W&L zHJ>kB1A~LIc)<881MUgWc%c>MKECTA!+&lcxvPxeaPNFg8YT_&@XfAG+u zm8S%>+F5}cKL%Rk6*$nswE_aRUx$oS)Yvbzb znp=A4@zK^Z6gFmEws~P{PVvcc+WNq6U-REtR+XIkVeRf7eZcDUN&tZR7cVw=KbV;C zaQX0TrP}yWJ$N9AR<7fBsimh!00jxn z@T~DYAvU&Xk?2D?mZh4zuiw3U_-1@zkhK21AIZ7P zZ55E$od4LNNuc|wS6!dNy?ggsA15|xq93qYc6D@66yO@OtF&+SVQlIR8#Vw#=_mal zXWJVOfg^!to#ukP`|jPlJBmElZguNE=(u>Y_q6!WJ1gIrdvEQF1{y=ZA2YJTyFvC8y>Gm$`1TwiGXuRT9G{LKC~>2ykY6L z6evMkON$=g!p6<*5<$@b3fcwzPA`r;66rGOZYs<0vMf8JLQ6|4V_i<^-BnuY^X1K1 zY*Am|qHE!*%h4?fcEN)9_J?ujo|*SkP*hC96N^54z*FhuHeDmf{uWskrH?DecFppLucG-y&C#Zdns*i$8Mg3|-qukuw zI&ctMTU%NDXrwJm){ikw`k$C8d>2&tLhJMEyDd+>90I0VbnrRodVB|2U2sTJbfUMe zmp?IjkbnrZeruAexBIiJgTsN3*(1qk7HVej0?mmUbS^z5@B8>p zO_}BZ@SYg&xfr-GlU{A9{?y_U$J(9NuWoIb{upDB3sh(8UdWwV_IhAofc!Zpe>XQN zlrH8Po8ji9gO83ZH8e8%Ud5(X4q}66x7AUadXs6CZV_Y9H{w>MCWX&F`k|P+r>Cc8 zAw4YP+2AH?Iln`P4t12AlD9lHw30<&dr|WNz+o&^s<{=`?Q-Lgf=6GFh6>>IM&rVT znJgVn5i2Vz$9yw_02sTtH<{6+i(CwFZBC@|`}sxm^eKOTx_ZGavyRf&o)x6|;obr(K=b2VXTUrc%HpxAM?`2Wq+ak2w;q{#j zo3&pL7R=UPS*rjDpz-vbr9Z1?xQIAs;O1{@buMWgKQ32$fj4Ao$~(kCBC0LxfHctb zV3hQ8nT&B12W?$l-J~l6=x#go^_RbWcsPn6N-Qtq?CF4jMANK1>xy8JguR=19@m+4 zkGDRS@gClX)p(hpR@VHyq-6WUotj%{{izqjuBabQPEG{B8hu;AkX5vpb2&NgSH^i|tSO+a{?DJ8^35)S z=B_&Qy1JUaH{b^=0rIOhnF-0ruuDlv0gf`_p^%>?u zCv3>Z$;Ttin;%LuNKlp8woPYoVLq+eq5ZxIVTxC;UQIm?rWdtpQzf8rOP-z11s+*i z97P4MPb_ls@_8r5%;MtWtY;>NhI`A@I-fX&l$Wc&$u{TambR?MUWfoirK1R5($dl@ zM`cUdd9f1PIM=pj8A17(nVI&^zc=QT1cT<-^_8FX#SR3riC($UG!bByara5Aj_mP| zy8=K+ivnik{`?waM%^F~oisfUk6hydJQf0LCwdnbxN)*}pnU4Oo(~D3JNh#2EM6rE zq=Y=PkfI_5N%I00v=Yf{S_Q}6EoWW5_3x92iLvvTJs|iQ1jX)S{T0V|5BbT%LW2^L zmE}-AF&b1@crs~m>RRl=NvBUQZ~6iY*&IE3Zef1*hC=<&ZlCcUevmZ{Utb0N1l5bG zr~j0{e93Y{+NzdxZ^=WC=!rJ)dvJwGhAz)3J>xWN11oSs9ESZaH-myGyqFlefp{qU z0RAz6e$2UQ)vC(Zul2z%cg}sU6AZg|_5~mvsy`Pxtfp8Duiny_>(|A4PJQO@A03r^ z`SPU}R=3(A;q*}%S8Y%I`0X1A;P~<`N1AI{7@p@P-=Ww8)!zr}(&QM@&u(yh|Hz&; zC{E5kl0A9a$rYqS6kvIs^Sg(e@beyCUYx)mD_dGx3~vJWa`5o12j2*bjg19k;lT5i zJYjYz`Cj%&Pie6uI!e-5w0@T19Xt!70xV54+|d2uLk*aX2$1gKkJp5|3S2pH@K#F1 z>SnY%1Jj8(6^q_W4Wb8 z1p(M2$){(3X{H$xt)b#oSkETY{8KiD@uO6R^GL1 z*ZR%0*TXY}#DcW6wgj=$0;KIkWmGia=ZKALqE>f&P-SPo8X6P*$$0u2z_>jH6V;phH!*x92~) ztwDaE56>tANWgwuilGcmz%o2TYEoJ#-|X;1pJSW(M&CcyF$-zsk!8F&!X?w->IdU`CK`Nx>TG|%E` z+oEiQH3a-@Kj3llqw$GY*XUn%>u@oi17~sCvP&)Q{KY z2R_Wl7cn#x&Xt1a06mJN@Ypt4Sq%Vl4@gk9Uthg=p#i=-rL<+sO7(?DoB1x@>+Z~X z(IRrZL6~|QenH9D?Wd{11sXd_hLIwF^Q&EXzPzcpQcoC6RLwo%lULz(wZ~amd^f3{ zXFklJn2cR(`1!Bgx)li&4w-02R{N?$pP-G^yj?9Ia0xYfW#@B1@Ph{rUNab^8J?ud zeYrF6xLdm*aOp+XnMTH9 z;ouVC%Rgh#8Wi?PH?^z4tvPhGLUbLUQE_JO2*>Ph>!I^B*QHT_l=4$v)j zFDNXw)$z;=!L*k8zwhzSYFwz=VesSqvC%xb`!Ck_)wQSX;nvd8S?v-P8L4?g>M%tS zVgiJq!HZ5dJnWdsLN?i66KpbIm^-Sc`O*y%7%!{6Y8+`xzY-U>L}>BtgM@?x<1?cj zd4%=e+k5*Q#8g{U@M*M$@2{1|ciCghXS5PI1)xr)m&OjP}*hR=c@#U6AAYET~g`}=8Pbr}E|fi?v-!yQgbkY$LyZ?-PzKdmE?l4{4^ zNBii?9R-|XjRV@cm6MZm>PtKG zc|eg#74Rsc(RAT#Ef?6nzVusX{>JAEe~wu^^Im#!^|soZ@(vyoeWbN;bzQ%6XU)ft zA9v+IDW>_@d;G2AW&`gtH7)NB^!zjx|Buz@!j75h^0>itaZZ!Dq(ai6YHAqHFXtzR zEp@Ez-rg$UG*93<&2e6ERP5vsG}cPc6`&hm6n!Gg(d(zT^@D`hfp{;2Pz2p4TJ=x8 zP)ooY2m`Y2Jtdl5+gv&*X6C5l3g$Rdes6(*Wo@gMq^72-XPX{4;U%FRJ5Cd@f>;;( z_OSz9{EH3HGcxjZ%Po+T3X2N7krjZ6fdIu9G2&J4-}B-yYQI&st7Qp2cTSgl-~KOO zBFVDOGNiURvP1rdzFGD1E*@fltvRRW$6H7}~P_Q6_ zxaQ6S9(Wu-E-|SB2-NY+XCt_*CzLj{ayxJ@qKX(Fg|$H}0s?d?b&$dDP>qGRZ!hVf z-}gUC-LIEtI1=nXv@_WKtASG&&I$}pc+1NC>Y!=2W)FY*R1q{M8fDDswto5!Z|^4+ zoBET1ZHtPEgrud}Zf|w1gasxs)(E5(5z#-=ICOm2``M%l4c0JO;$FjVidNmxasAx< zd`r>}Cf`%1Y`zcF)YsRmTU!fJ=>@)cg1EI>%6F{ufMT+vvQRFJPjAX<}+B6j1By+id6v4>gA%WS-sD z8^8%ldQLY@6FbrqmZiffzP}am;s1F>1mLLZ>RNsD=+Wt)@2or*=1xgk6tRQGuJkec z``XEPZ9Iv8ke1M`ZSI%AKZ(Pdbs$IT(cCkiuM-Qi<5ln8akKJmCY`nK>(?lv5!tKG zeB=a@g_*y?($aEbVnQ7nc;Cp#q5bI)-L#B1=xr>fNqh0?RZRq^xC~CX)9r|er4UuZ z;7W4O#G}UHsD!ve;Q|l3X6X)vK~+_is0qKud)c_Txi1K+37}5b6o`t8GogOAeg$}j zgnefV-z(0$R-RKoV^5a0Fa4j6=RQ?gnNQOrFGAUqAFbYh_5ZjcCJ3E7ch0u{varI5 zQ65-sp=4Qld&}wz$l*iV*!bi$s#$Js?)vC9Q5bwXKvco1^_lA0Zt9YrE6bbQM(&cbi|yyBwV*^>wddV~L-H#n1j>B-FoXNxT$e zt$=bO9}BH4gp=7{V;uban_SyQyu&YD+B(c38EKdq3jH7Pfn29Hv64SuvRYN$-QBBe zYIv`ed5^5+UPcR1misHVBlfS~ZwQc%-vY$tQ&<&~9JKR)`Z5+~8x-kt&C zATcXp(HP!@&tZ#`87FJUs5;$8M~Dl`weR4?Z4!T`$d{2Y&fi7R2*DtzsHo8X78Ma8 z>-z!J9Z7@dZh#Xu=G3m!mz`o3nr`2;FGhSY+SM45Q@!^-y+#Uj?@N?t8!Y)TdB( z^v6n=qrx#SB#ISdgJtXM6t1Z-;!EN; z=Tbq`_vf3$xX-R=Y3uJje^vHBWQa1fU`C(K&UTHk|MdE9)K=F{<6ZvoJHc>|$h|j; z7Jxoq2d>qawznozN;d6F1X=3#UBt)-5o9g!8S7jL{{lkCsr%2Okv@P&KAZVv{VuT> z8&qe;u6uengNKKQk1I3o*H}Yv{7w={(bv~EI2;`kvP1F7y(6Zkrn!$E`F*O(lmy^K zsg3=>l2Su7iDjv6BkTeK%i*?W7)uZe4LgZ5=zO6#bQjX{fjbkiO5ssaF+G8wUh+0KPkvs+DH>&i4D#dvNGmGWM@Up@kz%Bn#2_uV^$OAln+5#>q}?_YM}g9J)E^ z{jFQEWO^V9k0s-9@z#H7%1(jm>J%djPY_rtwloa{QFz$eZf*~sKvS3}dwpYdzt9H36Nc2cJ4djT;X&JoOyEKQkxkJpkX@+2VNab$ z%IETnBSh}^`!%{0Z%I~|plzdm$ugxLd@rx@@}u+GD8 zvsc3_lE@zmVN+FyvY)tbeWYs_7M7%Kc4Qh4!2hM2@P4;cg+aqWQdCr%VuuYjWO))x z0Bo66|LWDI-_Np`!Liwshk0QCL;&`AA||$T4sv)h5Lz;}g@~f!A&BuLMDrbna3nLgR5)l) zgka#@eo$qzCBoHE!HL}t(d0^z_sG@oix*cyhFnQQL(}^GLwC0p+`{U}l^d%O+o(qI z3^mJMg|}O&wlJN7O~(mqmmT^~%jd;jWMJwDyk2 z4$+8p0ITP@eNgi3uVf%#NEQhg5^I3d6vnQJLZ(BpLzouXuwgfTkzOCSQ%h?}zS$-c zr1|^vP%(*K4fm0}iK?n4#SW8kCHX3zo}RW7eHE3jUhQ?WX|RYQ5G0Z3-;{DlRHLK9rowH4)S<*ALn6l zvux8pr`PY^A1FQ*KlJ&ePX+zN1_+M@AVuookHmv`75Vyq_5514*igS=KEy;?Ss9}2 zLGmbZb)uq6QK*p)iJJFVgP-u79V=ulm`7%!vbtI; zG8PF7Ul`qK^Qe%J%T@dfo{UZOSGCH9)f-%;!to^zOL$==Y1F|_w3h5wIP`sLifi>& z7a7OKxtSl@;Gnt}+d!>0AtOhU0Z+!DJ#!#xH2{ZGGklId7kW7?ogEU717?mB4_K5` z0B(}B$tcdCXAdemJ``yTnNAi71(FZh-34v18Z9{W9Rp{1FkF8TvW_76ZMIDYi(Yfs z3#qPDHF91o4Jv#_4h|0A5&Ys?rv?d;3%i)xXs`~5yVaWd-Y>>Q{JV-9;Qj}#?drY2*5 z3QOlC`Cd;76`**jqgB~BIc;$L@$1(){dD;verS)!LSB>?dyfQ9O-&iP?^SC6rjL(@ z0;Z#*Q&e2MdVAn!90vC2WN`St*aMaojnZWoKpu6wU>RLZOcdJe{ALNSMi$y1W`5qEI8$G`YElU*VNh)+@N>qhv2kvgJ+}eB1;!eLf^oEZLUGmzFmTT z3~EPy#=Ku9Onp@2-U_V&0w5jIo*VJ{xt@bNiRd#jGQuN&lm&^zW&FiZm0N#nw_Cm0 zdRPCzC$EiPwjang3j@619nFf|b6n-tn|iqZg|S?0&^Mq&Xk?oXe$6S{+CiWv>WUrG zo3K?vG?Ubcc=CB=V^_?ABm_QIJSOty{=Y^E5M3o@5e`P9yC+K}J9zhLpJIJyKG0a> zwFtT%j5{!<<^)6UJYL1tR^-{qaZAU*L;fm!+uSa|H6FZsvZn$^2)086`dc#OM1{bG z?R;BZ4)*NTv9uIG%U_PVOQ~B}tN~slqWDUQufxMju#qi_Pq4a|e6O_=%tDrhNSJbR za;c%hTeq&lk#cNJjWGTOXj|XVaP?{o4ktf~t%r{f!)3LB!oKp04kP5v5diU+oAxBk z>on4O=>EJAxM-+%IaYNjvMdeg0=A&tl?!1`4PUOA@3XH6M0~b+P0oZ+! z`@MoB6Mht481iPZ(+lXABt6En-B$*3>;z(bgJ43wWBKnWio__9w7AgMXMI6Hh41?H z>tw~CiBI6DtC|p!BI7xrMNCqeEnBpqz2c`WMw#Xi>S158f_C-l)l*|#+@OyNXXX?T zc;n#XGaJYw$p}P$D|&kcfkJ9fb!44d*RibLs`pHVmG}dQB5`5$!OH0IbHV`iVq!A} z+nyE|4}yrmuL=UnLhbo!EW2JGp%he{bDPWy)Wu@@0lFvw{lQiMFG3!`@YF%kkX1Fy z(0PS01EjYJ98}GuAVh?`OEB7O1*r z%^JYbOE|t2Z{MzhyHllz;oT8T)0inY5 z&~lMm%uRPIL~gpre_Vyw;zXJP{+}2t>|JGk2Idh+Lpj{obEqdUHdkO>Bsa@?dDeBp z(ja6SCmqL_76eoi#-YYj64trMx22L++Bj zK1;K6K5?||a#ax9CC?6!J&NRBNsb~bYvU@(gFzdN?(tkZT;w7AFK2)Va>Bw%&7LR~ z=+Sg9<5gB8R7Qv|Vr^Sd>M|@|gGAX@hAy4Pnk1QKwIFORY4&6ZMKa}c) zpHOvoh{b$QG6K`tmu0#MVaDA09G%ZPsgr{P1BNc$Hz~dZ=PT60L=_wCD(!;@d0@>) z;CNKk)ungbeC2@i1q5q5(wasNHK{D9iUU~aum%C;6D$byZH`mCi?5m?mbGfBHL_g6 z!NKf2JmJ6(b~TYJ$vy*aijph?s4H1qn4S3flNjeRZrut*!i2HNI0W8GQthN*X}^9- z7`HK}$qYSl$;I{WsKfh9bwvRkZqMR|Q)uzg|M>Ca%UEYjGmRB|ClV_PmU4>qq1J58 zxJ^FDy{yR)b+7}bY|~>hv&xstLSF*4MFqevX9KUFz#cCDM_vapd0Zi<46ULXl*SV+ zM6U3ERgjD7OK2|cG;(ycv0J!(|G*Guxp*E-bb1DcB(OQ~A!v(QFipK1rvcaFHao3A ztrR%6;ynV5PPOyFzeeBF5h4FrpvM0F`0O3cH5|yS-l7tOW>bU{Dt~C{ zIthto=uBI`tP}#&P0Zkd-Z6-;*7}m#a+jSJp`_e`0+`!b6N5PjvnM4bP2=SwH_5yA zY@eI^(S&U6M|r0m_H~K(t=BXNgp7{5tXsFP98P|HtUA%n{6sH9gmOee5Fc%=l9HJ& z1+@bSQjRriEC&2zbw!bMNNjN=T9#8!CaG08?(*wbV;_P64V3=w*(f(dM}=w9glX<~ zEWUa3z5J}lnd?3WxQSK6Q=8Zq*m1!|QF7i@YF_cc=6TsYN(D&dZ122r`7#->xTEAl zNG%PtOTuR#*+*$OX!;nvf2V1(?=25fMrbN4XMVSJEXLEe3(?RAH8<~@o}DEj*@?-? zO6VKlEN2lvqJoeM#fK%D1Ep~M;}W7PLlfx(^oUbFDTQeRd|*Zj3s&pZq~hSgvS-hp zH{jCECy0W%cL`0lDYH?V^Y=WxE$aEx<9~zvAf$HijgUiOCB6+H%Wk?Ikjt)IyS6U2 z>GkVcVA|;7`S?_*ecjW`p^dI+EF$hd!)@{(=FYKIo#55sn-=vTOFk zhYtkXSE6eXq~qmP1r3Dgdqi-ADxwJ(&hq6=7d#*&>*$i;D8QXCe70x-l?G!61QKE7?k{vZj2|S?cz(KX-@Z}*U7FZqX!gL) z&JO6F4cou`_3PyjurcMrczLmY->zLtU^CIB8Af0`_EyjY z5RAAmLhovz=Ks|Pz{%I+32#CWt08tH2_&Ka?SenKySlbE5^GCBKqJ%0Q6_`7*`oXo zw5IK`?Jn}v1fs^dGVL_#=&K!La-2j-}3ak>XEd%}e(Mq+5)Wr5)AsR=&VPu19+M0BY}ynj!L zDux!a+I8Or=Sdu6iJVjZp5rhxbNDcc1L;u-n}{kjAiJXcj<;~-o0W^PF_xdaUc7#d zbla+d=A<2rT{;)}L`hIhl!0jdzs5T9c2Mm2yhJZKcI>Nd42a&&2w!6gjQv_Dm?+JSu*h@!!rPsAB`$1zn8(a$w^mf&zcv z?srt+XWgjiXdQ_2%i41Suig90l|Mjxh8RmtruU3= zw@F~gAPk(=$sZgGu&iNCj?UK$cr}>S&^nEd+=XH`{GoUow98=ZB6qYTi}hPc&?2#CxuL%K9s|jJV^v_XGVGEzWLj+ zUfpuK1_n$NVUH+{jI)^kgWh<{%Kj`zRGccHAIlMa$n8v{Pa|$L7)5iA{tA;ml5`O>+Zh7~kspGL3fc&UU zyY%$5$VAZCJMo}2r|u$I!d_4IoMM7;rvs|PxO`1G-lZQJk0ZpqQ``7YojL_}RrIC{ zuHAW5>s_Uh42nuh*dM&_9v-e*4cgjKC%0`I6BW{a8>TZUsgONL;I!uXfoxMdybRA) z7ao$SAj=P#Rs+(dHN^CN4u`n7zoOs>D=9szuOVR)66ObeL_wyhPiUG1RgBwy>UdtA z#MmDp2?LUmlL&|FOr(4Aso_76NitMf_SLJIq2`G)*Su(GsPrE%J&!3Z(wzbq=eL2A zoFnmSY67$-3B+Q_^5wNCJrGuisJj+01Pb1eQT_+yTaodo#`pvcWE%M1DfsCyx5Y1D zDr~~S!X#&m2<4TSm=GvVYZVoFvA;zHvY-MseT5(n z6j{h$bzq^^$Bspj$Bcp^{quU3g;X7i9@5w6p>|eb+66fKs$UY}|764#$pRv$hqB}3 zR>NqEfA#@&&KLAu2I38x1Ra!PGJz3&^NoJqeSa z?h9d)ad^GP`|DfQ#o69PjP0Gr8&Zvi1|Xp1;0%SqBUVz>Cd z$)6g=@%QHpJxmV$L*(LL7|Oxjfnyb#latf(`rvB>4%J&^>tDa#iSZ-+b-{Ln0zz%D zsG)15Sk6~;ARo9~{k`43*4~J}eSzn5`wp;=Bh@5&xH zbt1JVTLMAZz~uL}4Myzz{PV^>TwK7-+j@MftZ##@L+YRC_G*gl^33=&xEZQxiqhCaWGn~Imb#3 zQ)U${EgYDys0Q(9=w84e1Wq~er*Nd8gKrIGZ(V>+p?6b`0d<`?Ovsm z#E5S9uWA2Wn;ikL7NXk=AmWj{Fjf({V48`EPK2KwaXv9VF7UNebO&m8#!hxkA)}Z> z{ZDV3 z77wovkD?ZW=$`EhkWnTEqNEAN*J+hiY3iGUFEiHsX;*^BpQda@3#B%E5C3T z!XRFnjJ3UvSBVndaV`<6I2ppAtRWF$^sfR!g$GPi5;-IeEVeR;7Pw7R)DGBA8k0tM za9(TxWQhSvWDjJmD=`LwdFE)1r@&rBoFL&6h;n4Z09Fth1mEYJSvH)j6*w6(_6^r; zqqo8OoSvEKhbZXS`DDY+3p{6K?P^KHkbIX=cJwK!U-N(LuvYy*TWHC`mcIQAR1h+0 z@HGFn5#;sj?kIYZEYBc7FQAq3DWI&sW2p#~;g2Rk6%4!NiC>WHBWzwW=yF}!>JotG zD&k&hD9-=%`B=|E03WH(sb90!k%U{ac2w^1Azh2-0le@nwZWy*=3z?{;|-PEst?Y^ z!KcU5-Z1}BaFs_~#KlF@^ua+Jk1;ah2S2>c&Z_uGcwrEpe0@WsW;*L#iMb-3oomj9 z-PFF>ASNm*j3^!HHP?kVPFKui5GVlU4_zJM>Vu_zTfo%Gn6#F*c0cwy$mJEc#nTvo z1D-pX_wzKyYDhzcEGXn^jvvRS^u#3jX7q(OUeL#D@C9(D$ek2-lus^)RjdhA2!cyQ zdiY?-yV2Dfn2|kGU%yN8U@i&F5p6p4hZ_kK7M?j(L}vMB^m1w1qcBn2Qv;EI5_ zIIa)pALEV)#Iy!r?}UQbVnbpKV=s~0k>I;Dr8@tUfg;i?nF={`RdbW&-m7D z`oq>gfW69yTv1H?p2r~a_|P=veFgTr$;c(<^Gd(9rZG!dJ!b*$1oYC#YEQ<-WvuHc z3oJ7Z1o2j#o7e%6PA+yp>U&e0XVmfk47s?GLh9F+MyT z4y`El-o5Jwo1h6tlVt{#M?mjtK_IeyB%*=Ci`Rl$x}l2(D}WX>t{%L}=qiW`ya~vCF`*L_Soioc^;JEe>YUg0br{q~j}Qmsu7g zqJT*94oK8A*XB_hM`_k2^J&=Mue`#cBQaEDFM6Yq1MygZ78{IW5K90PJP~VkBHaqX z(JGE1ZgyAyceU$YxOb4vzrPSq;Oaa88AbeIq4oUnr)wa7;x>kD9qDBZ3Vu_L2#638 z0;8O*vZ{(ip7ri1e9w%w;#jtzH?>=Df0ynb#cZoG0dhhRuz}8$I!44zboN~QwD(9W z12PrU7}1X`RgHfeV`&8u5B0DLCOG+|p#FoHB7-YTad!ZEAk603%PjO%WsRnHc3+qkQ5)b3hn*Eg&^E3Ib0pL<7=psi3D%Pu+~3 zc|t}^&_wKp8c552T=5+Igp_mO{~HA=oy8{C3$`A6%Yu3t%&w`s3!)K*(l6pD#WtQo zG>Al10HW(cmvT14@FjH!o(V33Ad8h|UOv=P5d7{T;*&UE@Ft>4S@qNGJ|b}jD@rHV zx`K9%+L<-jfFuipA*_v}BGD;OPf5(QtW1rxFnpeux3(}-EN(d~H``RwLl{*Saz5Y` z)jdD)f*rg%d0Db)mM1QKAPp7uiNvd69LG;JO@4dl7EgW#x*r$;UeqR6!jfW7CTXjHYd1=Gwch$RSh zE7$+G8vyJ|iEViFPuzP2$nqk>D)N&+rD3hP4px2(KT> z!tYZ-1fl?{5mt}x7z%rF^%NuROkwkCoJUyPWWaRm)`DhF)De=+BDc~Ig&1s}q;f{o zmKZd`q$Fexw3o0U3rRlOHsn;#Y3_it5rv(Ema#_mAz zf8sd~peOe;ag57x!4m1PSXddXC#u=IqL0zx4OaOx<5jqGf&ri$`m*ehPM05hI1xwyWL?HB@BtU9v@<#Ga85>%%l|c`P z4>#PF&W4+=tQ@BmIrf`;#K^XqTG{c;Mobx4Z^%pjb>K;`tDpCm=tl*a_|DP!X3R8; zGfjbb@0OVRtG}kK-?ATB+O;Ag?1+QCdiWeOI;75^Qq=+mGsluS9kjcp$mdcdm7a^B zg(Q;gIHpWNnkvCyr5gC;9s|`&oel|zh}hXUJ4XV6o1Tzo;c~&GY?cCg6?~9~qeq+N zO@{)baIuLeemZ0(6w*sG2I)biit2x342R3F&nV51%qG?dh+~Yuyef^jui?)3VH^44 zju&L~oRW=H5UjC4N~r!fYJd<%jHF8@XrWe-!UbW7Tlv6c)N`ax`{6l#j`x4qflGBh z3W1%qdnY-LofaRLoeZR!DGgpC1dB>Pl>E7)DEX9b5TTCF{lWtQd&|si zA#%-K;-~SS&ERMxJwlFwT&4r*e&3fBin#O&qc9nN2QL8|uz#B5Z!*dJ%lqp*?}i~m zYP}L8Hc-)-c_rv37i%Urj~%ljV{ zeBJcu+n3;f3{yOIC>{VUJT*boUvF>q+P^FGiwFPlKYDi7>`N$=BU?DogbgBc7KDBv zjNlvJ%28Bx#A$X7MXyl|#y%ND8Jz}%CYRkI9ER)E_Daa3l0N|QLbNU@KR^G8m>mqS zumnMl{p#vLQwiOZS79XH)H5BJl8VMGt^kokpT5!7ip?S;M&f8%hoozVv!c> zC5xdt(&g~7aL{WI^Gvj;)>wT7)bWGcSj1argcLW_q=2i#_AtE+iR085lfMX)_xyKw$` z`2AI@SKn@Mqc!2I-8>Nyf7jWQIS%GJxrL+|~XWaPHO%M5K468(A zQSiJq#A2ZSCh2`X)ZJu*@dWa$VSzhjzSdFZ6+oOa3LTSN5uuy50xlY4)*HVN@1}5l z!db-suIY-BdkHbmf4H*@UNd=D+~r0@xFU}vjd}b_96~(MN}$Yc{BZ8yCBsvy3s#IE zAP=Ungy!(kqhWz6uRnyQrmiE`z`2+H1pX)r!j5I(+nmv%gbP8K@%4yk1e#F=JwI*4 z1JDDJZ(_@msWXgFY(b$tH1Hiai3LIO=0L%(0hG_f}5g;1u{ za@b(Vm+y{nJ%p4w$wk4wflML1VZ&1VSX#WpZng7>`B)>;GK`xOjU8Y#>~X2XCp?Q! z_?N6&Sgd(I`%M{XM_l2OOO!nrndCAbc&Xb}7pCo;ET55KO}qrT)xr~U4pFkmtQ!)| zESJ8ck&-JH$*4FH(b0X9QP>FgCke+n#9D}rn;Eh;V(R{@P1YjGSHmAjA{lMfU*~#! zlKzPO9j49ryl_Xz#egWL6h)#?1pz=c?5kFRpE03nJg_X~1L!686QUX(AgYkLb{X0J zzo=n2-R&W3g(ZR`T8&`PWuSbR9eb6=gWJ4D4%ps@m2@+n=1E@OS=361i7fXRHjZs? zYirvxr-;Ky+MsfKM+#&SGEcA_Di&l@!@Cq|yyUsVaJ)QVK5+*vd!luZv<(z@Du^T= zv8f0pWbsqC3iz&FGW)H#^{Owq3X~-9GPmWzioo1~bTfo^Nvr4G>+k6#r&s+Qo@j+A zTQb$U2e);Io@3z+2KW$GRD9Yo3AQfhJBFEcoJp#FT-3|QXUi_bl9CeL?F$&A&4v8| z33s;@lGzLtT=9Ip&&{|LDdg!pvX8L+kn|crz8gt0h>v*{vN*!h?Sjx^$w);{PtOu& z<|_EAjo#gL`#VpmerrnF41Z7oG@bZ^$RA)g>vW!kgZu`2qT}NqXk1A2ZSD9pHnyq8 zI0v|h(VnobEyv#S+(|()2+0dvZIm!=QSY0}1cQ+NCX`okgTKjF+%<C026!irE#60O81<&N>R&x|? zDu~!B;6k{wr5vwBl74VRY{6;`PR|98tsmLG=a1qwd;Ja_2vEzx)QI1hhvx^2fs0&g zM8X;Eb{2x7dARz*_b&QBK)lepb*cN_BX4t~Q8x3a9d!RK!Ki&dvO5~q#k}Yn8)F65 zCKFZUUMgJPWB0BNN*du+-~`w2RRa_rj2L&qwK7B>1=NkZrTRW$Q75LIL{x!`gW=)e zf)orQlj%}8KG_{g(CElu_XU3CRR9L%5R6F16IUD2spowy;I8TJF4;Hp=#GP@+WF?@ zW|6Ow7jX|A+MEooR3vjJpgc8di*q3mnEHtT^J|qqd}G*u$8t9zE{lRBbxn)=O@XU9 zxdj$i;RHN5v0{W+C;J%`k((hILSo(F1{{#xS_p|P(DdpaX8n6o9eG&b7)cI79g+!{ z_JCl(LSouTiQ(>;gP%gh@j9TDL<@ln6%AHu+nTzYnoO|r$MhKCb!hx+VcMd1Ya?QO zVzh&XLKBxG*Jt5+$~)UntsrXH>)uzdSaJITwCg&2rYrIBmd^g*qZsh!K&GjWFxwGt z)J7*YCam-w75`O;)gVVDK&~uw1!gTL?+=ZcBsZoJYGj5?2&X0)%$nSAHqm)3M;Mo0 ze%a6smy+rOQP4(Ahsf&?wQRt=rZLrkH1D+)(TZ?ZNI)1kj+_k0aTj3Q-V9OCcuD*% z6Lws`1c+FU(NU~7NeK~^2yxc&ysuXqhhVvE1g-yjvyy;{86SfMsv|PTDACYql5r^$ zIrq5gjm6x&OHO*@r~fWedRrqXVyL&xwUgvo$(##$5g-&X(QZPdfwsd*>wEe+ zzKUq?Aa&Q281zy5a|0L8khy=H;~m)gvT!<`CRq179SN2fQOkpah)WNJz%-ompILmx z@PEfsFL9)_FP?a%`A5%h4He-YY2NP4vIGZMa6yq{tm~8ED0C9j9n4MaDBAvF z%s=^lkP3OPYY3&`5jCVq;qhW_=~?ys%53Y~D2aIfWa#6=udIx%7x|S7I@%2zj@{x; zj;w_p9d7OHY&LX{YeUDqhJat$ILfUOqFP%R+-W#raPsp08$**^^F#LDfBS6{^?&Bq z_C53wTel7fEmonlaS-k%6ZVybl#hwYKMtp-{kD+dn}eHWU_X{$72RV!y3q@uH4)k| z#J+Rz=5O}2A>>6Y(C(`R;Mnl?9$9=5x!>@2tJ5Ha9s41aZ_mF1bggQW*h>$jfjv|FL}MAi)tS9LWS+Y!Qxz z_;&^ofEMtZ>>7OPcZsic{@RrR2%I7HDMai_;0WAGnXQ+n3qchT5gH~YCO{1`cLG%l zpKftsHA$S1APA5-a`a>bxOD+Hm67}Q$W1b>sY@Z|I_xXM-A1^e^LxVL91|u4riW9a zDGCihp4@W;rx$T{Yutv8fwGN8w_o_;7W%&cdGDoy$})k^1+K8$5D2(LG(9p-19cmJ z!q|nMcw%X3q6EYu8e_9CHxnKiNlStGvGB-H$TyIXCAq}|E&FlxAOZ8z&!gA)4R2KDX}L}hVqab z*r2$s6*oDG+~=4)?lbMzy0A>`Ti2dvReHkGM(^>}aCNN>bVbBH=_ryK`3nazMZkl4 zf@D#i-%n?JMWTM=QB}78U(J09IF@VM?n|K}nkbqmbCjV>Arxf_88Ri}MT&|Bl+39p zGS4(1^Gr$^Ge;<;6v~_ul~RU%-dbz@-~X-u`~JQ6vG+c9M~7pr@ILSRJoj+j=XDP0 z2SI;afL)GKzIUUW4|d4aCfz_0ub>}5n4jC_(e11e8==jsY@T5FZy|=xauA zCxV$A+ty9sS94(($G`+TDzsxb4oAj+(-JHx1n3z$%&vfL9m*E4U6igWD#8rMQ&E;M zHZW?{v+=0|aUL+oO`PxHN@1!IOr8RxHab!i!-q=;;+5j+Ni4Obd5x3G0*~pp$`4Vp z^q{;TSnuh#bP?}~5!^)?d*wj#`zpubJLuk8wdfBvkmsO7xzU5Y8 zMo}jo8}OnTh%z0}Gof-5sx&6*h6nLz84yu8aZDywFnwAU2ZAxG32gyxaNF81zq}mupn2gM-3 zw;b%A1)(_1xfJh?YwOnLp0i>)I?e<#@**e&6for&`Y;T;OdvGOjHHWqS10|~)jE?y zE8D+ofvpJpzt{qMHVHW54+U8{IvQ%DQO9s=B~H8z01fax1}D6Pt98HK4F~EXO`v?z zcOa^8fTa&kXJJDmi4H`RkCq<6><9;=x5|%(f+PH6l)Ge^CS(j$L8Kk{*6sV71A$ZS zbKl(wQ-(CbOff0YxDCx(x=D^yQLK9)g~Zb#;u$P~1PmltI)IY%qxbR9i(u^lcQ)uz zmjhi4SD{&bF1-cRPCQo}p$XJaat?^06B;(WywqP(Xh{)*B97!DfG)`jkHx;IU>Ce% zKn)>^sa6~k$sUT1^KM*-rtkYF%}5a%^1!iKwB9>qN$g4~s93zn&WmQ)$|wx7pjABuvz@e2(YAnx>7l6RU#cWn0xTKZ=V`2j5Ch>BypVNX z6~k?hkdC3nB1a4Y1Pymgp`Vfi3J{4UAr@5zS*BM&_kfn|cD3bCw8nA%BCT=KV0||KQBgQkG|<&4H+LuO-MA#7K02Ar~rTW7l4xyrl=ocL^!tF5`4P?CqI-^7k}d)m+$?6scw!+y*&jzEzd%1xc96@lx_N z)qb;}X4po$*uOihsk<6Z>Hx;|jrY`<7j5;de36VNHV2euHElP`jYW6HLjmd9p_P?60-$1!8vZxQ=q0`SgUs(Zq42L zl9y{C_&q2^1(rId21u}O2MZ6VK3fSW1G_?sSkDQs3CXL$3-)I(yVJTVI=n7&E_nn> zv(MyQZdcg0oxv59C12j^XE359C@C40Xen-zk>LQ$5Ux@pry55AZewOEyq`iw8_MJj z-=8(?DH{zDwS*~Xxd?r7ax!>#O0KT1sZRHvbAv?DQZP&SM-Q^|c$a5gwQtiE4C86e zOc~>LW{dw;sJ%Xv%^UhGD=M`YbKJK>DQomtis0Re#XTX!zyn1ip&X!-LEedo$mi4( zW6hDGRXy(K(J}=;N*O$OI7KHEb<%I=Sc*O9DLU&)Awe9(^#XD=au&@xTt)~Sw7Ty^rhvvum4j*36gjl?tg7qq(W>8E@c1BvPkO?-*SEVnT;pj)^Oc=H#8?N(z(SL zE_eS%el@i+vfmqAG6rIwV|dc{F?jrWCs-JOhSEz!~u` zBez}p!0A5 z^D_g)2@;=LQk(6ruk5(s0!wYPfG;$(5KL~`Jb&2#|0EkMIqVGu?@7!-CayfLU|pAU z(3P@~{FCn$4Q9*gjn=%XVBJ=nX40vdacUlCXcbRt9XYv$$3*Ru1Gf!3_jy&8yc_Ay zS*PBzHQVuev`~mZcay7NCx@_uyvS%t98xTXw9K(Q#bQE0&mbZOPWNg3t1w z%)NMQ;4AUXeoNoF01|JpX_KIi>;8C)>_d)hv$Mr~V`F_nUFt0Yh0IPRi(~D>=6Idi z4tNb7Nl}v9$r}4iEwVv+`^{VP`D$WElos8wI{Nv0S-ojR{DZY~lOu9<&q9p@eM?N$ zhD?v^-?jNJQtwo#Tk%$nX5~sFy4dAmbmWq^I5ZY{J{Xp!FSh=2{*zeJn7CtMQpatB zXb$c(-)29SI87Bxwlr5ViLtLN9q}SoN;*5jQ=a#pHEyoDlcmrS_h|1n$?PE-Ho8ue zsH(@!l|54rT+gzU6&pnBmv?F_&s#6+`S$l6z44WEt>gx)-t6PEp-vF+HM zeuXuC=XlGnaeK=&_2o@3FQB8>A1XUnnC}sCZH4tZb45D6n1!EV#8^or=_p%oVy_~6 zIg}??h0C1BkD&2D*i$*h#e`F`9O_AkGbmWH$&r=t9`H*QD0px_BP5;#3(ifq97BSW z1im)C>85jNpAETTVz+*Y?#gHRx)q%&i|t1aoj&?}&9{%4cet~!7p`z*&PlA*hQ}>< zv@`&M4Reps5mF3TM+C43MmwLZF@gSWIo3OJh9%@NawNrG2@VxT1BF7|ObH>E&_|&a zAmm?oq@kJV4KU`ayfUQVm*Di3aKnT%weiB8)!P`4O1mU=SZ0a{KXW?R(ya9JQBjgK zUJc7Q;dys|T54`xV>2;Sum6vps0%41cY-t#aEKFy(T-9-%X*oGI6e@mKcxrGQz$n{ z2}@5UVKF30>_8Myc7k4KdWd5fjVPqAycZH~AM{Ml^vR~Oz1vK5e^UI7!v|Or%C;Oy zTeX%oL^{n-U!De3{(s>P2b41#UQq5-KWer4`ZiqJt2LmTMtI(<10;V62(G z%5EQ?r(y$7_BGw=2SPr;39BGmc{{X?Q8=32{78EJzP^ujV|kV@mt!n3=9FIjgKzJp zzSwE^xq6o$GCZr7@lSP1uUzy}(8G91`F<{Kb(&`f7QGbkFdmqii*~%ATo??c52R&( zAjx?#x&mnzSb9RhkOscMm;*i-K>{Hcr~vns7;F(+1j=XNHpKS|?uKih0ulsb%K5q20Og%g!z;dE}LA7wjAWZk{gXV#CsYZyA6 zw5v%S*6~^?TXOaoEpH5Y;~eCx;my;~SAO`4??`T;NTb&11|xTaGQFs4SJgw8%cV8& zVK?UBSc2f8(?d^bz{Q3jN0j)!=v4fJHzKikM|Vd7pawe~&-U_(uh|K}bhK9gp zw5die_h#$F&(WQq2o_gQ*rG}0-Ih0)^|s7=>$;4zZVKZjOQP<)OTR*?$ISIp)tyf_ z`s*>Gm0a1w`E|Ew_D+lqb-F4G>08@W(6AvO347`-yM0&-;nTe#@6i z^^oDiuTv8ZCR}#jioQ(jSy)43Qm`gn6#M>S=5)2Gq+-*+uAtE1gs(hubt+~83xpui zY&AZ5@>qwtysQbU-oV5Xna!Kh)aKg{UKysscpDe2m`nY-yZ1L<>Q##4E$^0GIwG>; z#?4Pg2a*-qCRRF3AnO9Pjz;_>-zT`*-EsDi?m0C!~`sf_WLY zq*+4ER(I@{dV0;>!>`rUCPoama1G+~yV8>1+7PmgcFwAgZKUMagYpZ`N2!Lln$#?Q z)+Ju`Yrk{vWt#a3DilPMCz(q>EtO)}usn>B?Aw7)hZlaj)4#9Smho-$^SPL$)^Ov% zIA5dO4=o+}g&xM#hUEo%PK#)4ooF<9gJKrj=1r7EJj$DWlhqwDK2~O=;83%=iD`=JK;2OPxMhJF1t13wdiPUURHUt<)1d<279V+*OfmHT~N=XhP3iv$fFuZX3o z6-3isG4$+H53z_m85Vty%62%Af9Cr@Zql2rb27vg^11AMk;dQUl#;Nu-@r~nja`AU zc=j@tT!q?xS;;dVQH5+-ZN2ciC4=Q zWdqM`d-#>7p{bvjB}K)>ij{Ho@3Ic>o|Y2FT-WHzohrEd#LM?z(~hc_S<@&m_efLj z8L3qS*J-HjzxTB}W><89oXR`i!TdD+^%!|+2Yi+}2c_Pi*XMq#wfA`G;-V8$*J9@0 z7HQTCKIE&aG<6UuSL$|3DbqaG!qZ?!&*f1Xdt^oKE!V1s=zFX$<0JHQ2lbRHlf?CV zYd*U7jJ{pwnDnixudyj_^h!*Ztb6c2F*~ByQW`!@`(4bD$smLOUhv~ z3-6t&HTS>Pka78&jqsg2E#c~+`b%9(w1O_PZr#@Mq@3})L&evhds)uE|N1R4^w(5> zy`Ire;YPj@#b3pxsd?3X8tJV)ea&$vC%*Z{Zmt}L*B$pQ$FM)DO;1+32>xH^f|MPi z!ucCFn)hZHaPmnne)DR_-kDbhQwz3^>gBwn_@|^iIX}HTDzM!V5AT+PtlkX*GUy@jYjnW>nh~$it`Qe~01Hv8QYoWKjvZ z(bxLBjn_2HG%EFtS&U~t$gZTjo-nm?{r%J4sSU|Pu0Oiib)tx!>4K;d7vJFf(- z?RUCV8(plf+>3ftZ z_kLvT-#59YSjc}waf|$^kjeTd@gpVTH(PtodP)2IV)PK5+3PXHjso1u>OkIh-}sU( z&gUl+#4zKxiwmGU%q~}BWA3=xU~+5JNK@t4(BzT}pEM%Vg0}RD6c_kvsI_g#X2`6r zexg^QNHZT*ptE$7Px(wh7p>}{fz1z{jrKJP%tQ$tOFHU#r}^EDqz1ja)T6U~3xqZ} zi5Z8CZr@%u&Zlwqao_i=VXwTy7hi5WILt5Us63?+qhtEcI!!6w!2i(BbCoY%ytwD! zy|PujYGKZj6-o*bQHzZnww{iPdKwi)Vl)iLwCCEL zPJZdO`ecooPQI=Z+t|Hv&XuYHMs*#bvgJxNi70zVUZwRMzwP61KbyviMM26W=5|(? z$F-wop7D7M3T6i`9yzm<@yAX^rI5usBE4-|VO%^8a}F=~j+e|iG@hSUq!FXUQ%
?s#^74Bh9OGr@$#7#4~@%h@dG#CL0E)AwJg+ z3E?w8V!`#WdE=VN({k@xM!r0dNv+YcAieL_kRIV4!F|aGZdTmr&OP6<;m6nEFQ46| zq=(DH9x8P0?`fEuIFT}JBt_A@;E}v-!M6t;mxq^u0@AxiHnp^iR$Y4dgo*X)`241x zaH^+C%+HCEsHsyCZ)0Y1n(_@7K9ownI&Bif^CoY5zO!MC>74OYow)5!d$z#Rl)ie~ zEeA@>7@n_!h1C$dz&_6l9u3eD?#y6#VJOA>xsz1ntmW1?cqG|QJXjTB+WuSv37SkL6m`pD9Vw94g0 zD@48M66&tE_18CdcxlSDmu=P5;mUPJ+M5^$+P-tFq|;~;wn!`RQKHf%`LYUSKF=x2 zyM*}4j7)pZkO6t|TFu{UZ`K?zJ|T{Kp27c?KQn-eRh<@i>wMZb2Eew9Jsxpgy}hP1ZZtLWU`;eR(J zvffsc<}|&>F|D;3v|s%bS94^hdWqyKT-WeC9VgvZVC@`abIIMY|6auA+PLG=4%CLA zV4F)#?jaA3TWobpNazv>TIytIA{*Ouujgm})*?Y!n-s5WX`||)i?7iiO*8SxTstVg z83#;E0bY?E3>=dUbFS3oLC$OLeO8}6II^^-<;m3HWVP}yJmt-qqhI1!BLgNok%<+< zrJ?T}6vepq*L{&zt%&jJFL9|sdW9d_GF`KOuF!lM3#4v^Gz zRPOj~^|0rKI%+6u;YM~)gK|u4<;p~}U(?xUUp!vB(?(o;GB$I*3oA_6;ln%)b@f|v z9F>y`^o%ZQnX!FJ?hiHgE9qL;T-4xx{u9%SgiPGD5aY$|Bc*%L>Cj;pq1nzR#@_SQ zboL-Cx6hArSMvO}7+~Y8t(RJPVdjNJ*M*>KeHxmn-wY!glYFx7CN-?fSS6C0K|c27 zv_-rgdR#a=N5ud79QA-!?%dC@c7M}bO$!yGzp7I z!bEQ)( z(i^(&U6OA(=MnRe74S`tfg`sNmVtKUF8qo1lQTO650xN{^uB*j;@;5WNYS1`qu3nH z6GI4J@1Om66)Y|;P&v@s##5kpAl(cQKS{|_(=utA%%LoK>zlWKCz<~ zs7_S8IFrE|6tTTr$@XTeZDUu54XgKW$F=`RF`0)F_8gs&3HtzT79@_9xw)kn_-jK{Y*TwSwkJR6>Mj2CLpmP<%ztPadBaoa4C?JtBo1MTxyqXe0&Q zgarV-=F=NMOd-_1{);q6w{t+TeG^!A|HSm`gQ72TgvXaqdVEz1Tc1`4y5p1+_RK%U zKtFSEv|%Ux^W}f0Jj|!4Etpv^YiZEGQUNr6wDsnB=)XXeKoGcI-+6M-1n2(pht5}3f+XY`jf(h4& z`Cu5*@x;%A?T~qz(HUF?gi)4-E_wv7)gc575gseX(mQl9e*hC1$0R@a$|al+SL`}P z)4d^pf#UP+#C3%e@7MQ}j4Bo&f&X1pjNC=sHc)`8!004lH0Z(-_<`UIcf>HqiF$^_ zeaz>aeEwXH6^RH(^?po+NyhCr|Fq5h-5m2A9VK#Ck95GOsgtV&M%>UaLTZ*#AkLVF zPac6<=KTWm4NUCauvWWr<`I$;NQh%Y`W1bz{d^+e9sZcL-DD-!^IlO{G{bVH!GVoz zEL_idY3{TgJwrQYFXNxEe|qUk_RpO?9nP6<5C8ZHQEWYzWiy#|XV24{Xm$H^?YVUM zX6Crv+K4}XKoLJc!Kt!-S8UDod{vPhH+ubh?R#J6IZ!1@hEy6qug7y!hj`|dWxKAt zaesR$%JfpUO2O^~HszK;lIXAy#YKnXM8TS}S?*ig-g=g#E;e}7xj`0LS7BQ}dYWi;DRDEPn#Z$a-G-h)b8-i}3=WiPFC z=czKbxVqzn%gu)|hyM5w;7{rYEu%GZF{)!Nf$@SDJ;xpEL9U^>>+id|1#%4P$FI5X z-0oyRyf`|axLFg=$0Ozee0;C zw7=f~gH-3t8LR5$hLJ}5vUmIjput9i+pwHY+XvwLt*ae$UeCIwr-0YJh(njI9 z5$mq2IL>K ziIY~zYRZ9LMijzAeCuXT&NBGk06Bk*K7nxZ^6)=i8KoNB(-RXDDZaiWd$x*nsfg#_ z%Ov)IChrwutC_UqX(fW7F(alxM7u;}0Wgvvgg3$v5+0y4Gc^r>sD>GQW+`w1pt)xT zRd1SD`hX`M_VDI_hS>Zapb)j6+t1S^h6qFtL+EHHzI-84ap3%~UiP#5%wICV=T;NE z_55J*(F0CVXzuj%g^OS>Uw~dA66R9XBMtE?x4BfYMCTnyQVY0pMdy>crY04h7A6I@ z78w&vO1Rzzn|gNJ!3v1Yjj~LoYiet^eCOfje%jI!2u@y&U`wKq%Z4Da)d8B5lyK2t z;@bxruqPPAf|d|Vt3U~XRuv>`izwh~)ClR1;my-1bXJj9!?r_`P>hlRMw49vQhFpn zFDx&0B>GT~z3dfl`zAGzK({XcUQaO2nHom`WC^YlJq1! zf+a7gH}s%=N!UwZfTAyWJHX@sJwD$h1hEss7>IhCpsb^4r|e&k8nPEECbiuZ3dRf( zeL`dtpr7{^OjBZ_hHe@~t!SwS^~r)ntF6Q*jF3oS38JZKQ6=?nX-?7cU5(z%7C42a=W$7kEMaG-4>EV(J|c0U{8@VDFjX5H8#BZyYS-;))g(?6r3I8C4sS~rC-yyg`}+0k4DoyJbMgpp zxQ3Mw7CXy8AR^Wsj_!DD!bdiccH>y-7iOG6h(HI#wP;Vh6v~(MMGdR#m1_4q5 z%s1kU0vC<0`)Aan7;!w?@w()*n%F14rvumvu3_(s1#54xDXI#iTSP`Cnj4gneZfNf z{N~`v4UdhrU@Z3MmQ7DE+S}W^fWv+JS(X-<8($|U2i%dsO%;-m2*=6r9dy~M!H^;z zhmr4YC8fyN*bJf7>(^@{pc(wpwWSVjYWwyj!rZPoR|w3$3$WaBhEGy34?8RfUL6;A zHU$N)1ax*+XJ;f;Ry5o@y8)`wE+KK~nr^El5lK;4E{?Wgc$DwZ2;3J8i%@Gh7R+H7 zojyjKrhp}O!%^@B<6>j?1>=T;T`b6_5m^rQlVGE;S!pE5*fwX+7FB%cNWr~mZEp{O z+sr#84-S9&)C~JY-@e=SyDwgRWK_nN_S`PZr1(07!5H)mVdL=s!m<~SImta`yOp>I zT1&4sQ*NV-)I$JdXlmL74kJASLq1+uNKkOo)R6BZ46n(dR&PkxWY2wChcbbkjg2H3 ze?gC`M(FT1ID5eK%Mse6EezkSsnph2ucC1mbi@6xUr&Y?h_{zlWO#TD2vHMg<@SR^ z7#R^^lQHq_*1da?=(ZiWILIxHS~zL^#iOVbFLOL0UA2z#G(asdGd=AL0uTD!;fMvd zSx^i;EyzQWhv;9Gbf;)-Jo};J8iZQbVCN5yj5L5W-imb-f>};geC+0oK~Gqk>;iW& zE*C<&IIL{%(fL#jCef*&gf^fjhA^fW5P~4m;>QC}E;P0e$oqzn^F!SAXc4y6*7^~X zHh+JARryyEkzdYlQq3~V^#ZHUTv5?;Vkablf`9{B&{P#559ejZU}d@rM|lLiu;Zl! z=4Qs+^Fil}#p)_5sQ;}%A?-|5Tp(fh>@rS+VunwsiodKUf4BzoOd*ai zA1W7jP=C-$Q<3WU=PdDl=SUXdjl$_l5`gIJpfdTY)pJ0CF zkyUy_B8s1wGw=zOHOFm(~Z$MJTz2?F+F0n z1JbViXvS=@qm%?)9i1CuQ3)X1Zh6uJ$15qg5XZ2$)$j0)@;eo5gELDMG2)UZhjS5Bo4xD3#$#!H>@A{uQdb)#Zp5HzYm z?mM6W{qP+xnCgNho#C|-+y|~@Jv56?q^5cQM*bVdWdNL8^o9clVb)+8*gfG8d4IF1HaSKl3o>EN;;%5%g z+Z7r|@xebH59A1TgU~?fjolKFBeI+c+x%*am*TgqupNg{HN4SJz7^;sG)j~FLs z;0oCcb4+R^bH zM6!F@3I;3M#Rxg5e(#6mnK4vIFM)>u=S(yj%=UB37-Nk(}sn1tkCpX96Oe78Yr-9*G3F};x|YPhx%Prrn~iD%gM^Z1&NfN zgn2{U?$GC>A_C8Q%ggU(m#24E*L42ZQ?C&uLT6$QA;`k5DMAguf)>xGalM9qoZ;ha^uxP zh6<9Bk{zgPp6yjkey2P?s#R3zzmInAhEMU&pFait=pv(6*Avf*riO+C4lw&tQC1dU zsELV=h-1K1q+%tNvVF?gZ>X(%3c~!NV=t~_8R`f7a$hhqTac~vtR9{Zo|r$aE~BVS zjF5wYw-TnCtYHDs)k~-bk;T-Q_~CP&8LxLOaU;}A)hht>S#Mv}H~<}f9iE31Y7QWf z!mzD5n)jMsmv?E8u9dZQ9$rZn3@FtJcvB6+6Q~^OGB1?vT5ho_x3MO$NW&@#oUnK- zXX1MG)OX5Goa*u;IM!rn-&9Hse5_ILZ+#N!$7H7j-yM(*FP~<#)!pE4pQr<#CC*VU z@P1JSw+kfhIIw&q^y*y;;fr*AopdnC#}bnOW$En5vn$xF-Oq{1P^8fz@>$jLJSE&$HxJaIAc)Y$>o6q5imdI z8q>Jd$z$ulGhCS1_rP7#_mTJzEYd{}4*J%8P#mE7+{c7%m+&D44qMdB#f^4AkO`K! zK(~Fm92Y$WnvTT~k%Q>p#s6VkjN5y~&*lmQgiy3|k0@7V2k<|sTY9$@)=ur+-3hSK z(5r#`vkp~eKD6)L>RT;{n7p;B${PeT9a1n2z>hU+n#Zbvo1xw#lxbhR$Az=>;1_Zk z{mkP9pg9ejh|@J1QMe_JBJOMt7;sk0IS7aWlXsI02Us zwiA}~Pu=qljYRm@uz{k>E4`22!-}$xzC2%?#07aHw?Yvf!T0X1K@~Q5)Gd>lqjQb&sZhF%@(l%6c<&qBGAIV?$gm zld3Gn&m|ox*)FX%M;9bixE4Nw=zkWez#|xPvuoJsk6=1secb~+4e>&PpyAftyNggw z8Ekj~ZB2jLw`7$+ArX&=mP94rC6o)rX@r7dTH%P|3*!u^cMlxa9_G3|< zf=9y01v*_6<;0vfwWk}h~x3F%#wKlRQ>v_VYjZ=X9qvPsk<@crC%O{oh%L=YVTaCQj=IB_|Q3Sp(c zm;$v~T&vyoh4@vkv#FXnn-O! zN3X0ypdxAG62lk#6MBQY_Ps+XS&RQ^g~cIi3Sg-7nMM>76BA-94YPo9Bqz?>5XJ30 zn9_k3a5Y@lad0y%yC{cq_$6F&Gwg^^7*#{lcnzz@W-czp!BZ%C6|n;mAQK2U9L5&G zpKZIseWgYDd%1j^l|fPP0!*=GhdexTNQbh)9%oYs*#wJ$K}?}qIEB)t!4MT9jflKF zU>sywx7OC~9dyY)T(+O0v48&n3c5uesLswGv3JkxJxXlG?%%&JSd0)4#6mp5enf40 z@gf31yI%V9219IK1b*q4pj^cHO{V1y>?p9U&)P3V;PAP=H5k*Xc1R$a$PYu9V@Jkf zIFwK`z-gvtr+;A_lk6t=T3MjhCJ9=AJRZ%>o+m;~ z6kKk0OX27Q8-Ys@RYToz1$7D0-J+*3ch}%!WRU@v5C1VTxP+7-7&{3-1YQoe(fyX0 zBkr#h9?eKUKL#{yh=l}fKuJCu#RLDLlxgrm)&^c`FjDpbcvAtG8)s2O6+Sn40?CK) znFpx7UC&?S^63vIvv@hucy+sAv;bj74d4}IAbP=SvWHAXSlh!y4-NTK7_G!$1{Dnf zP1{a(zJ5*A&+uCz)!fyqSBY~UM5D+Qq`_^4^WCF1kr5IaMl>+6=3R>A1YQi)n5*9= zr1CU(hh}y+hTo~7r(7gF4H2ruVF_G;r7)rR z?GAw>Xcayk(Cr%V2gunQr(#Rc2+&^_Mn*II_*XrAz77~O3YSEvh=|1mHa*Y|?i3HM zRx;emdbF?c10!y=a?$}3AV0zCtaMq7>pTVV(u=r+0{&V~v&f>E%_%LjcacuG70bU} zQ?bmFMivsPmMIyoIr_KP`k!2y|KGgKz#NU~_Om@77PZz<@JCg7|DG%*bFcpaZ!ZXy diff --git a/development/_images/sphx_glr_example_pandas_train_test_thumb.png b/development/_images/sphx_glr_example_pandas_train_test_thumb.png index 7ba72bf6643cc129c2bac9441e6bd5b56add3e01..2e827e5eb87bd2769af340f9af33c289a238c4c4 100644 GIT binary patch literal 35307 zcmd3Ohd`?-{bgv-s^J&YH1wXv6W%#nl)>7s2*23wPwxQ`}l{R zViUgNV3=@i&6>b0RVDe;ZZRXVu5L8V3sth&BGH|S>$YrRe^4(kr}f}@O2X|MzKLhw zJ1D>8Zn;50aj-=p^!fK)`8R?}4$#TTx!M#wQ*xd$F9|Ru(SHfDUv_Ed<`NwYZ=I&RW;$Y4fXgV&h`KCUkX0HNKGy4bBJwt z6O62Tx|DKfebZfag!k)X- zr|l6k|2$V?v!8OaPO^sdp@$!To+>LV!>{-?H_@A8+rbd4 zam?Lag6@w0jT`Iq($C7@q2oWUq4E4!2-A0K(KptuH%iYZTxogvNbR}Ky>2`4?{B>% zb#--xuY9}v`%CntBT<43!E(8`pCu=UKYkokaZx_G@x{BgEVFG{e2&!|kyP~bw-dP; zC7f=jr}LG4_%PUBAQZ-~t)=DLY*o?cpslB;qM)!2OY!N`3H%xOk;}WXvXVP8=_bV} z<#xZgSSm3wap3#wqy-~={k@W|f0U9N8}PyLQra~BHf?XnD>yi0xp(ZQrrxrB`_rdS z{qR8ya;+*Fl8zl_2sX8_px(Pz)zFa9WA@Lp#KarlGR`$VRi&Oed+Z(~tF(0N$B)NP z>F6A_`?-eSAV+JoBimx<#KeSOK)|=G)sLYE7$sfqK7Go5>eMN2Ufu(|ymwqif2=*9 z-74-haNpe+Z|G@4g6|ufw%vR7+^Xs8d4GMq(y?QX<3Hu`gpQe-J}n%3$a`it-oY)( z{R3a0ZEG>{k;W(d)z^0+uMJxxF(>CioV3R&ZSB&(qivVJrSHXqN)48D8A(V^fF(8t**t3nqts~V=p4GdW)Gi#zb3b*ad_smuI|Lg10hCNqo;`g^ubB<5d$xb!tXf~vsIfQj3JMUzqz%!F~-i+dQzF548 zo;!z9dp6t;4J{pM&7PQ@wOCzQzRP$t?DeIpFnlrJzL#SAc6JsPUwqcbPZV!W#;-2j zT3(!O%(<*{@#00dg~8+~aeKBp=~+gjLZ@yls99^4S-N3CSfq(}RK~fyuW!9P0(R`H zTv=Y6pKjDVOuwB`+Wo=&RDUBjj$VdAMSFqc<<=|?m84L-VL^|-*0%ZGn*u2JpSW;= zb*J<+)zy+2J^r=xzoW0Z{VC|jY50wepcW?;g|~m$d&#ZSXVr^A#H#$U$Q8H#Sl79^ z-jFCE3(9v(liRelwTq{}o-CgH#9LljdBow@@gHw&PGZGx2M6nJWar|#g+=?8X%f;n z_*6BV^X`7hh|ISOL5JQgg%vpVe|_iUL&+#Eck0ycCr_UI`u#gBDylk+W_lQdomBMZO!oU_|4|Q=yO8Zu`$iVh?Lsma3JRaJcn|IRL=AFY+4&==& zKIOT(JezwDM~hRSXynN23m*au;$!56>9$96Wfiyo%X}Pr~&N zA5Oden z74LaU?UA5-M{V!K?Rf76)#;H|owFHwGeRL%2VTBgaewW#=z@=B;x+S-Uc~AFKDWnM z$(eTN7Ncaww5+UCQsjetdcad=o*igh;vOh+%BDO@uTW_yZDE?CW0RoW^d0Y-b|X!l#En* zX}Z`e`ciX0Z=!Z7zg%>-m8>l z&e-e_nq}J|aYRT+KgV)cK|z7__gB}$!gf!)ONX(us_yn(Naxau4wF zspTFO5uv?V>RWNKw5y9bxlw<3DLXs+8jkXdloTx^6PKdcoE+glC9}rPk|oAbH=LMS_0==*?`3!O>e0+SqHZ~UEr19|cqmMLXThtl6dxukZ zZR(5IQST*j*`@LIV(oT{{6!ghyjWsG@A_lgMzkNi|)I*X-7}n)pus^eb`d(P)D$9gcO<+xLmy z&Arlc#OxDIv#yByv?bo5{_Bey52)PLnoVjPq}a0M$+JSSD%Xa9WJcBoj+)>Z&LjDnS$kB?nO z#<=6ElF|k|>E7HHYD4=9+T44?{r$HZEZGko3i0#XpgTR|E?we2)02_cc@ghT z*tY#qe!e&!qU!PEKby~(aImn**|5;i(mrV!UX9;f7Vm8`_2Zio#q~sPEMEAdM<07C z?i`L%^SQ?82l*U)dIvm_dz!q{U}q&cs%_?ly<$C&iXqCXO*`sUx#^@XjPZa1f$ zX)N(@RpX?-aN$DnMCCq1ubJlUdyn{q9yo@*l8HY4@ynNISG(S#X*c4LClsEFmG%$? z0HE2khZ@)g8`eBKG$!VAQi#l_{jTlT(d+{D*}fli>TxK@$1CdRTG3_}Pi{rOB^wE) za@U?cRYT2b^M8uQ<_44FQ4N*D*rk{>GnfL}M)efK{i(zm@97*Y`u_dw+vUIK{{6Es z#JhFtRzRtC_u&kwmAT#lCyAxy<;!26Zb6B#Xh>9+nrYI(ab26-SUsB8rBQWnKWRB+ z8-Ee&Viy;uPq}x|p{QdGeXt6u&fH9k2@fBiX>+Qs)1UUJ`g*N}*|EBtJ7qqilf7;m zMJ0>JQ?Y$JZ~n4y=-{7stKL9VS6cVe(3I<*F{;S9+?YT5rtNHj0|)9ud0pL3Sy@>i ztSI5jyRW{T=Uih{+$8KKfVZu3cV{ z`>qy;RtE1&YpL&@SQ^ZAE-(bFB-p68GMKy?svd`sP&g12Ua0GxuC0jYPX4>IY)^}e zV^H;rzP-1ui<2Jwma#94ed6oML)vH0-fkTHHQyhfted7cFyoFxq=LRZ{4L`E4^N=- z9lFr)a7AV1jpS`&Kj+?~rlOKFHD%u?X3Gxvrk`!TYxnLlvq&SAXi*!>A2~czzrXa3 zcYi?dv+oTS+f7GD5NYPS6^Uoho~575yZ8RRoPwg_UI`~|)NOOT?d|k}zCNpqU1#~| z400?>eb=sU>UA0Z7K~=H_Pl5`zB9$3z+1ua^03*}h-mL6`Sp z@IKr8>#IxsvO})GB0c!6PkmNb^3s|%0RIDh0_)g0?ASqq?MijFZfGtij4GgiX6%u@J> z&x$8DO7kUmkJk))=)%N}sFf5IljQ9R3_*JWHg2O!3AJNjcpLO>eM9{?D-P-hAjUe7 z5s``d@oPCuw*vxpcDoeqQiyRm^*kUT^T`%`B_N>ksJ*uGg}&dv9R}*3G^)fkZT6vC z`F`K+gLd7S#PTVBjpQlSXpKF)+wWV>j*VDa7O|@)f*uT|ulh*rdFbmo-EeHAy&xP2 zu6x35Xy&^_?7g0zi|CJd5Hb_}VeDIy8&&P?4+rlP`@1E&7})D;iguF0lqAD$FeG{T zwO~jI2`usXdiY5+@`Jp*mzz>THNS6Y-tiPbD*lrXhw5$+8L$sP_I8%wHAxL0vGeyz zxe4ZVx?d?_ekYKhvH|?%uvJsaraQ+DadW>vFBr4Ct?T~BEH!Yj>gwtpHYfNgnWT=V z>18ndxNG1RE*>W^o%;k32*rHP@KO4qPFY`U3>1Vrn$gE?~ z#D&%pn=!(RV`v~$=e6NIuf_E?&T>upUp%pi44VLod@f*f=v8Kpq5uD_g zZx@Di=yrbn$HQ0WVtj%2T>i9IFOI#_L}Lt*Sx8xkP2?^fFWdHg)TP~4tjKlj_v_n1V8;&ErN#?_L-q5I)YnMd^eg>& zZog@Xyu#J#!_l7OD}yu5q9VV1MxEvq^k;LgOu9}ST?@9??$TyM!TPbTE_22R&kU5W zuVl9KL${rv`Dc2d&9g-={Eq##90CIO&;md=2pQ4|tVM@AYv|;Ss%v!&x*WcZ}+cqRRHT9r_=*TQ~%7X~K`+4@VVYOl_ zc46!nat#hgrO(axEtcm_23(M2q&%YF*}t-dm76z>Wi`)hhfPqBlJk&PTJwp{%4Ld` z&fMKw=Qi&f5Pr2KjI!3$)xCrX??Fe~(`QdSHPxZyJMUklr<3|yVjO~AbY4&k^-m*N zCp%-)=FOLK4Vt?EeLKBojR32^gLPy3{>E9dpxMDXn2^5RZ;kT2$HrR8){|dVxwDqU z?u^YVYSZ{7CVc$VwW1TN=|}Z3=x*(?fI)WE)HtO9#g-Ear&^3Ao*m(!dGf<=XKuck zvR+MdmokN&gwa!G$xRk+L7d@%)La^Kh98%@N-Z{)V+Z#HOioSd@OtO91@qP5fj;5h zN_p!h%BHpGxs1d2$H(pBycaI7A&t7Hw-?N-FKXY{-(&H2B1hWQrrp=SK5XBAHQ9%{ zC@E-q+UeA}#c%G-MYAJMjf&nJpR2v7bgXeFH65LXo28OsbmA#<{%5aV`9An>wy*;pkZh&F=RN9pUgB=ZSxJ=z+6|y-?gC&kwTWoBxh=X`Vex z52OW@vM;+;?f7vD(9Ps{ZwCE{!_i-)=6{8w#dE4XBCW~H%uFp>bVqh;dwp^O>XChE zui|J?*WM$h6p8`cU(D!RSsm0WF`veRz2dcpp8n(VY?sN^zn960owMAD`l_h-VYXqz zzrXax)clMtgIt|H3Ipx??{#Lq>VqPb%LTa`s&+i zAb?#8f)~m*6gmyA^R4N-2tW#fV2yr60mOwtC|)Ms^BgFHXenPo{F$!(+QmnAa(#Rt z=>`75bu)5+!t;OIu0}!1xKw%f!bDHSM~4}O%BZL)LVmz=gMn^exlLR|)d5fBac#HX zyp4|UJZLl2jX0Ms38N43FArtx+VR#xQ{A&c)FivQW#oF7&7?@1XDO4(t8UL8N9p@9 zF^u?B6x+5X0dD{#fXhN>ft-{&2MAqQ18&M!h1A6e_ z!7Gnh+juIkl(#-WBKY_F;o-g1Ehoa*87Vir6zz|!@lWL5VY6FnRGFKH=R(U%BT`)0 zRZ)RIefq?Zo*u2ndF05E(?RYZO?1_f+i2jO!FmL%;HabfvLIqSHS8u3JMBtXrH0%L_7!vYKIs$v|Pujx?5jg ze_&?8U|mZ+7A7<*O7&mgdSC!y=T-#&xzyRWPw-O*j@_eTU^tgc;mxP5@?|#LJB@IgNEs$};IMAr0M-xyjn7maQho*_$Edj7qo@Iq7W5r$yk%eyL< zP<9fzgWOj=x3DVRjC3}+Oci^`^N%&esC*zTx8G3~5GOPDbG@j| z4<#ojVNIENb{u~D-pUC`O6%$~O=O{rX%<~Ix%}jE%-$c%3l=>kR~0DYhpt=3_;_l_ zt=Y7Lp*%tUX45Pw=R;|kn|?xQxHR(pb*^Wx*TVD@&3GAu>&@u7DaSl7`Azc8XJ6M< zmm+6uD8%RKe_FY))c^GK|CPVU6eKi3Yt=7w;sN=RnyyzIVrWvJz?Z5}22a@83C?!7 zGQWQPI^R%$FgKtE)&AO8z~&rHe*aWb23g7ZgJ5m!IiXCb3L6{SBWaH}3r66d1hoUk zvWtj31f)mHx%zHd^xCy+QseK}PY<_@Y3_-@^YbaB*Y!$h9AucDOIA#7od2a@7{)$t zctDN-BIC?sVeIj_X{-~ulT)q}1x&|PR5oFg5c(>7wKJxQ$zyv_$33*&Zo35Ttr-Tn z3KXSx4!ynIVcQRFG7%kw@9ZmI2n2qTW5qfhCT3 z`m~>MX4R<6;%E0RjpT5geW*2Fm7Km1BtV0`RFr^N^YiI%eUQhd)imT)4TDPmG%>L( z`A>Wz_vzE8A(=M(q;*k8JpK zvh#uoEyG~wL#t1pXwxW{_`GFfF_tWDNoD;L-(XpOe!Sq|?A2~Z3uKs z1Y;+ZG3ZY1`Suj7-;1vaK`fb@pKmC1zH;%>r7b&ma-q=P`tamW9i*5mFAFxMxLo(Y zb&Goc{tlM@-xF^2!!yuXML$kx-uhzx!8UL4f%+PMe}Bje-;)cMz-avN%}h+4_0Lm4 z*VaI_ZF(QEbdTx=z(0ZM_0O9iI|4}U%Sk_`q%^10+w0lwxQ?`(A32vlpyTo!I@Aw3 z)dS7)7i4ZokJq7r-2&GQgvx{HGJZj;qqtwpYfunSSy zbWkfn^w$owWHLk7=7iK@(@ogtuV1D>tg7nj6+pUc>xebh+k=O{A=S$tH0)H@Er0(P znbf;?A3uIvyiW}EJabPQDG$P_1$GOk{@G_UL7XfM3>Mc9%}D zR9cO(Z4|7x@7~4sZK;`%V%iBzga>Q4F8Rzh9>3I9-=S2KHvZ&5?6S=MYhoMWtj{ci;eK_2@Att)I&$fo<9qV?IxMEZ!%jTyQGKlvUo0a*vrK;#EN*rI!(Cd;+k(|R+ zJA#EO6Cwo%>RxV)e)zEB#>QA)0)U=m95WzU16G5kYSv+|HVDNk1RpxL`bv7uTiHU5_)uPJa z(~$x-*qY5{p1n7zfgtwGlD`ZBk#}H!Ro>g5#>qdEb)`k%_vfga*m;@5KjsYA`2|VW6WL;K%JW;GD-7-b_%=_7!uMC-g^l$DW6dxO?Y)V zJQP)U2T?L!L}>zEnS@z21ztSSeT(^PzWpWQVZk*y3bp7z@ZoZJBz9~so5f(|_Rdy2 zM%i8y*UFND&sK%0ZeA|E9o{M>Hq=Y@W#dHzB+jG2h zv!T!OjH#K~1hxv*{{8CS-ZDfhgIFhqzJzAlka127z;SN&-Rh3_Bx0eeYWMZcOh2(v&7kg~U+=_%pq9>I-+)G-&p0?bUV|6eiY0dZ{ka?R>qWSH zp7;_efUt?+Swj}B;51xFh` z=tVR{SO~X6WLF-+JB-El3y+VlgAO(i(NzDf=RD6khq>_!P~nIfPqA}na(en*K+VIK zDz}3wLPy~&LVuiYuT^d1jwucQlKm(Qy7RDT_T z(*0UJ0(?j*mIpQTV3dX8{-g|2+#3kwe~SemRM?SFB048I-@W>6w`c~wJaGbzlc9T zUDTlgubL1Z_=VUfyFfTOA`KPJpJ#dT;syNl1FB&RDWOiCiEqzQH^&+HTQS|ZwCoBF+rmbL;X61InSr01HCwY9&oVE_?)alq|h zi^9Pkfa3zK?(=6gw8&N<3OE(ez~>Lu)KvJQI`0uNqW&=W*ezhN)ojnej+nvvCmP8~ zSaT>B_JE{1hK8SEMK?_lx%S@4>Cv{x&JqtHLRDSIG~moakWa=bArAiQvvv}(R^MN? zjc!WypzIVef;(3RLHbpzHJAfFMDvU@p#J5KLJ_e}w*&CylKlkF@zDXuo-J_~AtE}Q z_XiJXQd3jO7x2WuCH)C+g^7tL-!$?KeR%)scwD5bRN0kys&)DiI3GRLT=AwLpLo_u z+*^ru3ssj*MkWpbgtg`fss(}*Xrftsy-pIkXU+iELImc=hg3$lshTvdlRc%cuZp8r z&=bTHlFFoPOj z8cE(&IY4L?_&g~h98mr@Gr1*1#A4q;o;u?C$IyFWkPFS@q?+3H($Z4E=W!G*9QK_O zE+faW=MTM|V?(F!o2)sMY*rHiQM38^{rgnlq8m?V>af)u!M=g?9tZx9_A9$GcYs)m z#QuZ@&^U#A)dR0YG+({qWZ zEtpw0j#V+BK3Ow9`^USs(aQ6J!pFZ`>*>*nMypHbJ$ghBo8aG@_e8q%uMmg9htrRT*tg39;Zb7kfKp7>;9wcD9BHp7>s zlz=O?L-9nn$A@Y6SzS&(JqNFg?eO7=^uMFd79ve|mtoO72HD2?gJW%Hl6nOH83?6Cc z{ohwC=cLf@j^dwr6I)l*+LoIl{gL>&%qQykmg5D_-N8PYJ;&D`Dw*C5Dc)>lY2K=i zzzQ(Xh%?65{Lv_0oiAPIEH}~N+QlIuv9PLsuz$y8Yi>__&h*Syo$$h}FOhZny=6(} z*NW;t#r;Ri3JeNj6BVUX4MX7IDEx3=-!*vaS$yFTsew+>=g<{pmZu3XQ8YAc=V{o* z6mkpaJmJUe{(s7K%53XXiCB%9CvDcE@gJ$#Rd?gTsO$XMCVFi`g)4T9?>RJVCy8c8 zWedmJPLT$$%bb(UEzFsh&wZh4TPV&m_VDE2{GjFKLZMF>I~X-IrkkY+-`1{Oo4j*z zg$oSDL8AB)1A$whYsJXNVC#h6zb^-&ALacwe9`kb8x*Yc;&v>-3?l1N9f!z*K|wxOXK zAS!7j$ei?o@slVP_BUzvsMG}ZtwD7dT7hRuG7Q&;7-e7?=b(1W*Yfl7ZiC=t*gj~% zFSY^TczSxeF+f(79oQogCC-_RrSs#XZ1v&MJKATp_}N-pTLB0k$lu)bB3_b_l4$vb zE~6*h=1l6Gqk!Z(3Z0YSV^}z~^PhV&KAib(5;kG{MNO|{by;de6uRx2QkjPs!mE`| zoeE=^XaRGLAC6ky4;`ter-xqDnjYJ~9LC(WNmJ3QooYbWsHB1?Bls==eaN-4EU8Yh#X@nwkpQwu?gqfLxAP12J!k-41WuxRKyLu#u+8 zsx#PFXdTeTBscA3`fTLdQGu}3_Yw~==&$5g{e;_1!fKF2$q7evs0`;?6~_tB_mrY8 zhiaK^9{&5-E2xl=q^nRAPGW(^-YyCN3&WJUMaOUO%C1|1l37L#1frlX;@lkQ9)YFU z!NhJNJ{f9-KML^?AY5nTO4-22eP8yhUh&xs3&(fY0Tn^F@$({g#dvsBgE#F(3=cR* zlANmT$2;7IGxoHzJXG25IOicgy?;R6r{IPB--K`{EuALQJvsZfZjshlj7FQ-0m4E) zAmUjHC_wQ(D@Tc#jom?x*z}){=pFk+$49d3)@cF2#2j^`KYVcmlqie1YXQI>H<3b| zL@Y1#{{8nz*pa1#I8wa2vPcpKz%nFM3Ey^p%xAUcS;%=mFhb_Y-`QT~?MEy$hZO z9uDAf7WUTmO&@rA>B87|A&YSOGz}E@B>-16pD8#PX*{*ajeVT#tEsN5>&F+k#Kj+B zC4nC`kIsU*>}F;r{G?!EC=E2S3MUO^z_`O4*x)Xc^kb5pK-$t}jFuKj1_?xN z!;(=_>gCx0{=xd@C6YA+m7Lx+ohec&8uDL3%9z{-SZ9P_t%DR?8!MT8Bu_BN^# zAKf;BA+bJWBZIBs3qap!bJ-{wGAnbJ&?5E%UmrevICrFk%8UZsP1t@t$XK@>Pk!%%wodl7A5if~GUj{UeG<4Vkos(o4$$M`x za;;6Ge-t6j1nCIv;_km>)Qj%? zPD{42RDVEh&`E%JaDFU<9~InwtOay$B!(g02@2kS|NgzsCMW2E92^|b`flIGZvol5 z+iJ}zEKGy+1@;rnB8lLSI{|E=t#V|m|ZSo!;E{0#5Y%o)wg+Je|s|K z*i}!N>2&hUegT*-EUQrUPpA`mFDJ~ znRqAvOubuOK73a)WtxtKqOmtcL3eP1O&s#C`2${#+0cFgw(I z=TApbTKLSg`*K&%dC$4-TcKw9v0kG)cD5w49kM243;7iDtBHH-{AK^DjkqjcYs(85 zOROld0;f7tEWI;h*1kIl0T>l&L}HFQ{Q9WxpA-=haq9GGCzUn{MoM^~UKiguV&xD) z^eKq_V%`hb((iN^!V~O;y1_h#{>{)|g@?AVZa}tBI&CKB3=+^t#JZ}qF(EmQ1XrAM zjfpl*1fTw7UcWx^PT@MSsqRL9usB`NHu_g+H^U*qe^3uMq@L0JTwQ(ijH5{H`XBVS z11k4k{1zQLZE@!49vYf)2q?WSMT2d5M8L-J@Ln7h19`f&lbOsD1wqJI2rnU; z(2c0(=V-B=NOz&TkXR{J`tzg1H^I?K8${=URV{@?D5I=5BU&1|3;B^a>1de1q+B7A zsd+TcIMV`e4>HYeI^ zXD`fI(Ty43jqlEMywJVhAVqs;tF#NJb9DI^d9nDvTzF*yuz-bfE_!Hk@^}i@18AI~(BoCHqx>%2LDHmi0Upd?Y<(fUC}$VP_cLv$>Jc~2s|7_SSkg$5@vDG8>;7qG>y|C0mckA{->)UPU>qr;r30Lv^4JAt(uW6a4iya% zAn%oV3wVP{$i0!ECpPS***_f{Hf;)vkJmId?o_6In@)VFFGeMYOQ`hYC3 zxS42 zsec{FHKMp4A0ICvTOM6mamC|H?qN(MR73i5!>GYpx4~zTC_vPRiJu2ZL`gB#fBBH& zYunAqxV$gsI{i6rMtT@W`)g29Svd)lX#$(_h<%R|lgG$ms18Io*avI5*)gwe^wAe{ zCy7{zY{LjM;RkLyjWOb}Xnv1Vyk^;x5+xXThdLaIK1eL?!<4pIOB!90K* z#S^^%-@?y>0MsAg#$b-?08VhFr7+|*Fk?`oarg^Uppyu}!p_Xdb)z|b=2KM&b3aZg z(MF-^G(0=GhpY^|sM~>otP&EB$rKT~0sKt`H#c!sR@U;03X%rG%h-KfAt76Oq?8KLp{5M z5fL($1kBY4bdA&Z2{Jl%@#)NSCr)hT)k|lQkYGUOt;04M&20$}>=FnKV49jbb&qsJ zB6qUU^=S}LPfYw_$5Y|m;%JazK59-i7UULS5!p4WiygN4A&frW3S+EJc2#PhsI}I5 z)|VxJ4Mt>I0ZCSbh{x}Ks`B@Z*p|lB;BX=K=$;b->B!dDp&$vW6ckya z7~uh6T`)`X2r+YrrTEww$jF8)MJ9(JMXKOQFwvou>_*xN=NttRBYPVVhlEax`a@Ft_^>ZZ9)U+v z?b}xaR)R4QXrK3ySI5>Qe$RP9q*8_OhAJmv#BT#q-1?B96uE@{vi41Ph=O(;}@T)mjr($~@_Pqv)+L>lmS2z|rrtf_xG7B&0L(c$b?zj(7LfTvr$O)SYnV* zt7G3$6X{$`Ie^oxIuyzNe!IYR|G@(#H27u~-+-SAyp4#z!R4}Yw-}2rlcXmq8Ip%( z5NI=8UYD#7?HmaHH*FCA0t2Mz??{BSzP_}Xgyk{PnY{mW+DTLvNIqze7|Hcy>+oY& zg#$`rwub1fX03Ab7+&UxmeM#A-7rIHk*qxSJ* z%kjKSAyr(|2i?amc>P@VF|)A1Isz6$_KG<|H>FwGzk&V8kuZ#KCAiz2012wO_E?RR z%-{e|lSx(_Q}`lyD{xIW5kaZMWAARRpPu+?<+j+?L2Cu+lE2HX ze>=A}NOt}->ilax&MC8$-8A0096RU(aTesnt2TI~WM!t=14(+I2~STcP(myg(7EB5 zv!)T$K=Y|r}v@_9D4uktdkU_C=wV=s<~V@N|Nb* zelZhe8W4?14iaZHJ1gnsgkJm1;HSSqADR1?47umpTVWfK3Z1RMgB?fl^>q?>U zkRk-i2j~Xoa;9oOrUEGBP`8mU0+dC(mh$wm&jgHuFN-W!GKc7%K3xt>hN);&P8QYO zC@dI1!Q>utAke?zr<3#pS{AkqNz*dHk!UOS2O-|Se*H37hjp(7 zSi;ybCyZ^M6-Y<%E1X$XbmZcPIP)lm!0{|+I&`WNpsh_mHHxD(S5HQ<5```Z#P;C zGzH!y%mOEuWK>dIlG>db)rlH~+8B)jGYK{~`B|ur^e=S%CxwRS$Yksp$JYGgeO7`D zoCZ(5EcpFc$Ke8K^aQ^7er)U)XvbuOC-Tr2(W_; zlQu4U?52kJYF)diZeC|aEN3TQUDhK-^nEgkf$^>C|6fz-)RttNT|*s#=UI>=+l$@vbY9^~d`;p7a! zZ3hTk19z;}cqD6!S*`<1y=2`)(YsfJyRq8AndaNxKW)7eudYp*!!RH*4Zz=uZo8BQ zxlX%N7>Grh1LLvX*s9MUc0lM{58bY+7iziv7m=26%qs$3!4p24@l9v6agf|7LHtx; z?j&OW|7q7(=U`@L4*6n!01N=pF`~7QnWJ-CZ<|ad6P9_^P!Cs z1%oqOb$=w}*v%NkCwvk3m=pwpuix10!y(ELIUtQ!g{zOvK@3FVyQ0$`btK90&G4HB zajqfoD^ZkU^F>KrJA&+&p5hpq?iWDW)1_1Qc3p0g-65N;0iExLUC}O!!<)`=r^dm)Xpq5wf~cEmzA z3LNr)z6>x-qWok{$P^-O?;sfOgAtIf@q?z~OD!wMgGy_9BC~;|!zOwbFbH=qQrCO2XhhTk1b_m#f$DWljW!rXDJ1qs#x z-~kUffOp#u)U)CT0@zj6V#GsHKEZ=3kyg6~z79$EK}5t?5FngAw-cGakUu1sP<*)f zns_bb?c>&+lZdgS(p^AHCr)a*aR~#0C4fSM5IR7vxX_{zVI|@PBB6e5qtDM|8gFNo zY3HH~DWd-;qL|kmY8_cQyzk~jCNHBh1^bq#41s&3ZT)RqxI!JOUrZhHqw+*1oXF8> zFAKLK^MFxCX|;-(T()DeFxhlEoLGC)KYqz5tcm@@bt3HOggQNm3TbC8)I zA*6)yq;EX54p@#5>A&>QPYJpJx9)Tw=4bL8mnTO1tMhBo8h7G9N@4042n|?!5d9mO zsh-OgPhfZVJ$?TCi1l|ts7`?$wid{w5Q$^ozLVhRXE72FmfR0bp8y-kK>+rEwcQct zY`e+K2E2X%wXV$M#BtnJB8WR?2(N{#NpxS-V(62Uw?4=Nc;Pp3;C_^Y9)CwJAQwo+ zEua7r8iY1WY8&R`SP>=0EIcgGOoJ_~B14oUZ*IlLu=#72N0QKxzFWUglXb_zEEeH~ zY3fG6Qxe1N`}8o~%uX?e#6x!m@{4vw4FPtIymDF|Nrh6 z^GhhX0K=%7ntO*Khr*;IQwskKGe^iUa9Y2=^N~e#0CPe2$hAIa&wd2<3k(kK!{IoV z+_?PiN@kPc=~UEYI3O5i|A?D>)G#CjQw-Mv7^EH81Y_j&rDH&&#CFcf$%*guSQr9tO0iR zV>0Ffev7yjd_n9(L_*6Dhb1usu!qsuCYoJW1=8^y;ouGER#0}(+X9f(Alu^dWgb)_ zeAXB!dc=yfhX??cg6TPo!N(n0?6MRNi;PUx;G4dujLjVy9bE%$o!n-GwzNsBN&vcC zVMa}#gz`8-FQ!MxZA9Y`a3=vXh>;|-y5tB&3Wf!Eh!!Gp7_|GIdu0#aJqZ#y6yROo zsZb!e9axiSRa{)j#ukrFM&_RS!ae|LdMd!J8xCIvP~%@Bwa8^-s?o;(C})ib4#uA| z((EmJ-+PM6eM{2B=M4aUM4}@I1UzS_%v{1_PC}}OPDJ4mu;Bs(5(M94;u)HBEF?9} zqOzjmzggO{9b)b8f$^Ir9-z}2JoLhPktiTw2RQg`VmiQKfkN~i8x)yd5<&%^oIuCK zP+JAsF^O1^Y!4X8B~0KaKV2vwAw*mW0Yl|wE}bUMVg5)~%_F4CaSMXe=nqqSXL&tpKAd>Wr%7BBRoWE zk^&wrqEd-1q)lAH&>IPYr5of1VFgp})Lm|pmWkX})8}v)V|g^nPhP#cPtF4F#aP?i za~MbmQ*+!H6a|OVZ6ok%AZ)3KlkCVk#$W+;yoH4`v862UYw$a~2?q+BIr5V!aBtaM|1QIJVA4nj` zO4K+SZ#^5vjzBtCK-A-^gJ>(rF$|>tc8d8UaV;`q8O_&sXmKC-A>_ct)!$1J@ot$X zy_RQ7W?^-~x5QI-lZxABW#kku84j8Oy?AYtvU71@D;~!z}5aw8HAxJL;P_?huN z6K32$fI^nybK`M%c!GfzHtiQ^OE7Fl+6$;Lk4K}dy^#dwtQv?}OTtpG06f5UEKv}= z;=)dtn?E0F`AbWrWlha@1BPeKv**)0q&1SW-Q{1nTgpFHdoILKGqv?G=HrA~eiYp0 z`2l~t@a@b|V;;Zv-F8bhVqLB9GH?T1!H|Hunp(Q+*s*`w*MkRsxE_vN+Xju5hmR$c5#{QxtM7C#}SZ$=i{7;X+O;2B1XP@OG zQ4K-*+SFUU&Wdwk+sb%Z-a0W~`D@_G6C0TKMBhZTpu={=#UtbAT9ZP}{`Fn+Trs#L z<`FLQ2U1B0Me>&mXKF0O+J2{#GzK>U`uK)n=qu4Y*8FG+VJK|EwIJtL25oWbFB zNSKVZqGw;jg=$T+cxhcl7gVE9fN@uBnDKTX#~5ddS}kS6*E>4=OpEv6L84(CJeYbf zUBUyP1W9`UH_;rPga0N6HmzN9kGq_OuHF#O7f_gi^B<< zUk@d@a|?Jf9N2irCtp$KTybzY+AP3M(jWEt+=7G7^iItMuNax46w<<}X*ITHP;NaK z^D9#FBX3^#nLjLDLkX|G25KiCXzDutDn3-p=fH)voIgY;pV+7P`%(DpJ}`XsnxTmj zl1@8g&o19=L}2H<9#`u#(X5lBrV-yi z@;jb)&bQAuwHDYL-FB0TirV_Q_Wh`jYYr@j?W5jj#me^nI9~Gh8lmpBoYNBOjJ0&} zv{aZgYp|3W9lDBKv1*tVztONm0g~Huize+xCw2t;NCZ)Rk7@4Rc@2w}K{;8YQTXs+ z42`Zkv%q$Vz!W*5Pk>b`Z_xzhyk#y&V*!2QBO`}81N@@Ex|sGIGl_O+V1oJcjKpOIKn-?XIe z&Zi=c=knN3f1r~uhV#No`7Qn1+mG~G)c0C6bz3y8t_EzmPuq1icS4~Q+P;`rBmjdi zEJ)(5{jU2rfCP?9?rcPB6TI3fg(5@*Ow!l&q5gpEJ%wIym;Ue#h_Sc~u~Fx*jUYXP zll)#2!~4gPkd9H;^2(?+FPU6;zh^8yv-Q^`_v!Dkzs}?z?mNem?i6Ztkt;1{A@rPi za@nA~9*wE;&(Jj9=@b^Bi3@Z;DsI^uEmoHMFJN=9m0!gFSjxx7&gh2id@vIrvocQ% z3BUpPHnpo(9mD1+xp@%L}C4<1SJxE5O-d%X*eh&nb1V167DKR{Uf7r*Q44 z|28sb2d{x-P7z51DjS+9{vTfjhurhxvXyEWKpfH(i1-a763&C90wiFW18kj(dKic` zHjeu@91VZvKR3z*P0seSA9t%br@(bxBkcaup@^bIQ@6BpdUkFb%rv-N6av?uV7zg$ zNFnNrdO?SBXmh~mA{*5WssnzHH?W$^KiFlkarm~xphM8sBfDrVD=#*kVP+KDt;gOP z#J%VHr-V}!S<1OrhQ|zf!IBY6xcSf-vuY4r5FL5>--{KJKb#B1lS4jh7yL?G^Yt6? zhQ2p#wwK_(lRL*S_VgOUDDFuiwjv8EF=!mMFSO7*SW%Mf;H#POri1~CXc2-4zl3OU z)g}pKz)SedWj)ygL-NE4h0N7$c}mjV{5N6lqJ`m-nK1T11XmDk0Agx2*?OD(x>By- z@vx^sH>p^tSmf3o9I@ScknxwUI8Tb*sq@bFuVzp>evzFo%>NWz@svyIz1msdsQNWR zq1VkHD{tPt&$QCW>+DGvNX6g(h_4b zz^czvQjXJ7Aqx(xVGWQfz(pbBK3zzWN6_5_I4MfOHUQKH4x7*TAcin z$Ty=B)P`AFAI@dCh$%nR$T~5?bs);x^x^l{5>f-s??TMzog~=Ssg>W_-1u65`Bo`@Q)FeMEo5+3Q<{L(TDwzg{ zj6jTiP@80b!MRjDbm7~Xmi8<*)Kx~NjnR#YZ=0V4De46Vw>xZpNV!uqZ}Vcc;2G5$ zDy80dxAp8z3bRk`E-LaVZFo$vQ!sYBqe$#SI1{u|CuVXdIdJhzyX1fFDp|KKWqo(2 zU?&7zT+3v|u6hxYAabdxdh}zkq4I}P)9wR@8r))F=-;PIagdQoopAbl0+(R3L(Qwh6Y52 zqRd1|DD%)HNvKT8JZCCOB_UJFP=tge$y~@7sbngljERirdfMlFIBT7AzMQ@GUaP$~ z@B1H~;ePJ>x_&piph3G6citiUfmn};IpT=&f7E%>rms4qAau7=n*W7O@ zF%`1s?qOOgvt#e3bZmd5?ND4Q7k)k?;isg$@Zpt2z8jk@bO){la&lGvR$8RwR;YHO^N^A>2>|5j5 zb9Z?xvEy^2eO7l)&%gr?#wgpD9~PH5XzP_JH=v3Fj^}y}SKsiR+yrNdGq=0y#4>mS zYQ-<>4lV3|**39w=n3*HB#)Dd#RB&ddZL}`0{et;6VP&UFokL-e2jJ&e8;| z(q`K=7tqYBb)kCT7By+Z-2mz?dhMkXN^64v#%U_b(Y5{ot9e zJ6lu7_9C@<{@&M)&PIF1q3XRuZ*L?NeD#RulWzv>)Y*`_C}PC)T1#Fc{;_lWnitg` zW9LgbwEZX)y~W~YeNnpZurD@$7k5X0YqNj(iKCuxD1B6!MzhF5?D`|_6t9x!E*?k3 z_%WWxwIbvg1Cm{5U2nIhT3-~+cGNTOJr=`>q<+*<+tfF`%W%Nk2F4M^+je3nz&hPF*dxF+KN)h)lCb<8{ zx}@Dp-F-510fIlR!WRcB297T#l=D`d5E9st`2EQzfmqttKa3VVw3y|-)SX=%`r7fW zQuWfL`}ufTa!ZWyJVDzB$EewHj$0P28~AcQo0RJ67O#vuq@hR0qsRR{GsanJjYKqs zM``B!4JpPcVX;aT8{g0qhp>E&7rWgJbZpt*x8h^!D;dM@$*m@SJzvXaipr-}cSM+m z8nrLg8yL(xeKaU#rs{gEkv^Up|9$rg%_Ld>W`AYLljRHt2gYs}3%=C&#&fad+QxAY z^_-a(CnMTfOO}|K6EdpLpLY4?Efd3>esMIQ+P<;3uS3wZsQj2IQCo& zMLYGx#%4c_6xzd;bg>LGviG$!ALv??y9?O7&HA$IjI?QYw&JC_qVt}kmljVdJ+IF1 zdl>qJWxu3mio02r!LQ2)G9AuvE!Y<6zsxybWU;fkti)pNlC))_=jMi_nXFuKr(a|1 zy!m32t6xs6xf)I|>4H)j`5tc1HGQq3JRMw1tYkXQnUrk?Xd&;-w_uQdE`Q*2 zo<8??Q_KC#{AHhY&fPwmAm01um?D>R)Ar8D>SWxnX$X@fpV2^T?Us<@mH>&GP(4?^ zIvuMR?y57Ymp*N~^l`%|r+?2SL+0!?7v5Q9Ozio~lP1TyGv&|a5L@=JX89kc6*&%h zd>pFjj;l{TqdUEpVQ>3jcI!&H@gGWeUT0*9?YQYY`S(co%AOT^D~ykHttzM%v;Cv+ z@+(!x`sj0I13|%N2?pLv??uA=6%-RwI*a6{H50g@n&7fHNv+DgwD6@nM0e9~gjwsj z41WceXp)C=@u$4z-{6%$ZrSU)Z?RKv_wh{Np-rLgV_ZUC>tL z;)zIa)*)u`w4-IwOGUqUcg!k!_)Hc=Wqpy5R^?-rebfJD!1Y8s5s@Uzm*AYB=`O$^aIknqm93H$ zm#(u$=1;NDY)m{_mnZd?CKeWyCpBI##CB?BT7Q^3xXfN~Z)awSw($G%5oyQHUq7aG zBC2n8Wec)S2v4^p8W{RKU*vFfyvEc!p*uQg)c-UH$y@u&v6IX;3<8uB<<8M|>FM>B`P$PsDFMnL_aheI z8t#BHVXO270tFIzJ-XjR)4n4+`EW+ip*wpoj`L;Md)nK5Csn+&VG;~|Vj14fTP*fd z?&YtOlvV!2);V>;W!0B-?#jzq-od5{f0|M}w|-bj|>#!^FcR}LsR1dEoFQO-gm;7qocb^g4e?=yAVS8oXBPg{XLp8(-~n%3Pw?A?;oO^?*>M{`7XLWR##vLfG_7#H zM>py1wsc4L^ryvjJMyDVPG#llMsZ&?Q;4l9aF^hX*5Q|_RPihdveYUkOTSEKWD|`* zIh#PaH@*KtM6HfIlmr54F6P`8TS!WTHE~lElDbbl|2jf}v>9Ly_(z5>qg>Jtw;o+4 z`+Zv+MZ!|XQLoB#88HMOfKZZ;n5aImY#yQ(O>E;GxhAw!v@?KGcJ`8Jp$ArR%Xw-^ zn~qLw0#Y`TSK}Px;w0n3*IZrg6YW=|yIX?Fb}C@;N9Wd%yC)DgHmI$h+py72=;zv_ zcAZ}&bw0|{AD4zj$pq<2oO9te@~5eN**oSGFw9mkZA-aJN)Tt58k)s1#D> zM+pzr4Zo32Vd9PpZrxL_61|J*+7X>wyN3nW4wjcbZXNP`d*qk;%?H8ubn*1ZpVi@z z(m@zW$@WE2QEt=S1b4aay-#s<*R_&W`NOw~L#tM8^}P`0nMY0! zf@TMF`&1Sg{_O7akqkJW^wIZYl4{8Cz9V55lRAIh`ji=&M&EM(^lFuxTk)(QxkB~s zZ<~7q)Sg5vFmod`1~m?deXUHYhn(mBotRPNL9QM=Dv_|U`jr#iWx?4`OEqsILu=cV z=Ky@Yn3#~9+>7o=3nRQEyp4=QA2@Y1dfaw+;CzQ-55yqqcg`SpPEjH9>wg?=@Qn!1 z6Ec5twAHn^`|jPl{|fj>hdLCN=+IT#HRTRnr0#z8{`CN_cFioMOJ=>bQrzYg+H0Nf z!Wbr6Z%{T~FS9(+)P7g4ye?yv@G4~nzt*8Qz5B+jKfLLmfJWA#@RRU%b@8wihy%SI z>f<;LDE(wVQ^!HMz07KN&X|kE5G3(TqsKA;Z8RvFxj*3ydtqB7vk3}VoW-GxqR}-p z4Ayy6VJ9OH$cLN`R5246`+XB`#2kn`KdM@-Fjm2|q=I{e24#2&HAD`mT4>-XhWnCJ zR>8%y&vSgbd*i;v)6|$khqup^Gt}rl@La8Zzaqi%h;wQ_ms-vtXjP#zN3AzlCXEdl zVWdI+ny-SkP{XZg%&H$&c{HwhJvf>OhoFQ+ZgN9<5OhKgg(SO0pI`pzN2x9ufZE!G zK!v(wJYp7dAcqo$_}GE{Bz6G6`|)JJPQe!u;61Ww#Ds#f#!(Mmp9k5d&%`3%>^Q%E z;?LY#o*!T0eWtalFWzJQZl34gUGx3P_OQO_Ri+GnJKx!gx3P~uf9%D0{H4!i-Cn*| zGR&3djZ{-a-ma2f-zUG^82x{gduHzW=j4RyO7o@~56;l#v+vbnPIpmgt_ zrz52jb$7`5BV=;5^*qhI{UmGsYhv`V$OeVE@hQm?REqA}d$LiGcA@GwW% zq8kI1$IPl)AMZZ>Vg5sy>npcqptXe(>K^eweJz{QuE_m$?&=)he3)zg=&U8%@=ZS- zVTsAGO@9mq^7DWGe6ts}Q0U?` zF5f(|BpcPNfyCMx{gc$9t)0Tzx3{9zje-8jCww}*gB#DR$y9xsAC|wzd4TdN?WI~}&s0^zpONv+R zjgGqL@mW)I^L4IFqw%Q~f&55RZw_yKb-*A7BHoB9jl{oB2Q{&#A$cjs%Q>aLX%)D> z3A_Gk$Ex_g`}O9SU1mVgsYY%p9n>{P>%NW!)rM*JCsqHxHWqFrF3R%H!ppsOZtav@k(e2RAeXih1y!;`ydkS|H*9evgPkZu_nuCYea;d&Cz2> zn8N+~03Hp(-`n|)xVfMNnblrNg9ZgR@7&SACdbuvi;4d0-^+6%u%CMeXEaMUilc{6 z(;ivRUrT@Q?PsTb)ym${G`muv|7PEytWTGI}*bdVS=T zb&R;>j^oekV#xc>ZV$TkmRl@OWG7Ol5UQcbUz=y1Q*&o)D0n3p7| z1sH~izSKcwAjH5oZh~6;Se3A1quj*VwS^Vt5XcAU1ImSkWK~=?Ux1nfMnwfdekck+ z`@?3)H84vb;D>rI9B`Zivo3xY7UV}lQIH-7YykfICHLigjV37h6f$SFs~GC z7Ieve@Yo+>|a0cP&3eO6^V7ZT$Q9 zTcE~<)oxD^e7Huaa|X+#vY`b~o^hdrg=(B$IJ6TX07XbW<0yzaV}d3@&&dzN3_#kg zWFdaST8=2!NR^EgD$HEK#X~2OSSR~UUGEnC%*gTvc$1oKeixtrR&c0) zfy&q`aJ@C0W^A*jv$HdZwx|B}z7X8Iw-^tfkh7uCn#g!7@t;x zhF{o3u(|k1=vAouCvV3{F*q!G$O;p0XK3P(MPK+w#SHZ|n8a0Pgdlk~Y+ z4=)lq-!x!&Uc}pC3${ybW;BL0;;!x z3sIo$KqgC?Yq^0(h#(2IjC>#&Xdv1nUj`s}rfeLjiC6kUh5!ACTmlUdf5R}sVRDBU zqpkB}!7S^DJFNR_)Q$WUcoA;Ef)H&9is__{4GpQ4_18omH8wWBAY))?C<&(4eXlxC*jDNhj%68tKV^n=YoYFs$_e(-p20|i(Fm+W=u zoM1onPfX;+XkGxgk%kD$iOe9b!SI3%Bh?MoC{pYu6vYMtPE3ojd<%sk`7(4Nf-4X9 zG0O`w7IxT#WQqSBO7PRYZ-ShEcHV#{R|4WXT$={^LI_1Os_P9)vnc>AiE0tHoJ6lb z95gu7JSZxE!yw#hd`-mhy)O^Dt$n*vVP!yIyVzY0da?rMP7vl2CgUoey8sr{Du}J z#G(C8tR#X!6d}rY1m-apJ?Ny>nRRobSBHm(|HVy#^ddw$wGkI~d3ibFC-Nm*)*mR1 z$p~L(Pg%SGH!Nv!0AV*cHjx0dp#7>R>f8 zSB5u>j4kn(xmn9ukxgEbSmLgI=aEEmxO^ zO#lP_Da4^4OLla_dx3a7v<{0w~$bPE@&SdH2+z$_SJ?%bKgK$n0*jz}bl9^1r( z14HXTPRA4$j1o(GcStOY`mf7F_Ahm=B@p6QNf@QkDy#v5XYd1vwI6=s4{_jadL!us zaXWO|*vHd4>b@iHR0ty@};`O%OXi6O!Ls8jj-CXsT>>Rg$z7L4T8bBMQCFM@c2Yw z22wXMiG?kbUskrT(QdLU7sdyi4$%7yM5J)U*XB6&Fj50ys5}LEE5D-RaR_49nA`!( zgOnv*Y>l9m0SPM-8x-1<;Wu`Y)?|Sc7#37v-Db>c-%i#hP+J78OxPf<8vf&=eC0}U zC-@BM>FE>|h8uV82tm)d17{Y(IjO`TtAbNlfarX&eWG<74sZ-v?WSjmnkCn1PzSAj zQoClM8D&7PH$*xQx^m%Yoq&*M4K>qAyWORDJ9^JS(CxJhSzst$P&h_yIHsR@!D(1U zQqcZQBupPwDu(1~r6pRB5Ab$Ci2zeX5*;)FyZdNR`>0L*@ZJW@`4L{8w()|7nj*ttO$g; zgb*PWBq1!V#Q959cYsP>NB1-c<5A640Q7>CN82)v61xx}8ZOoyM8Av01T}X|equI* zvJna`fOtqp#CRQHvKo-n&(*8&5Q55kF5%-Xtgv|50TjY7eyEdh5U4*uLLWgu06RA# zCZZ@H*#@LaeuEgIbJWjc9}hqbq-!Q1Y-Htxd^Hajh#llG{LU&2fSHpV1)8d@q(L^# z#X1^@BiL%lj$5A~kE-Vj8X(G*!8am)L_GYnuoj}83+9wBzy&uS$cc_{3ZFZ%V(JQR zQj{24@6%>kSkOXqIDD>R$&0bZ70Yc+YljF;*P2yGpfRK3YYMj3aR#ay;1~&AkR4XR`>_q8iyeXKOZmWs{vu9od^YK=Fo8wR4AVS} zbw?!xiE0>`32W}9h@8SEPjvA|6+Q6nRnV;Adx!;|U>?YVMLwf1_U!!)NX)nlJ8V)3 z`T5h1WE(QGUxI^SS}KE!AOKjlaAU%tiU!yTtHAc*eA`-j{G7S^%G1dr^qKnC# zL9N&&iLM2V7y@8I)Ch$nh@olgIfDZO+cGTvaUlT~z3_5^9x8BHZou-(Y+PN0C=lp? zN@U82sSUPsSe_Fa8^1!KOwxPUh`~Kvc@d)Mr`SWW#=~0Aj|~>?C&)n_1WR{(>nUxw zJ%bmGtGSAvl{D=g2=u~9Lda#+eZR-p;J@q7@#5EFt#3bi_p zA+$~5O)x-J>KZ}*X1R4Xa_F1g4)LbcPa_d2+t1^Zg}?l6_@`qLllU03ui3M$0vol z-$5FLbDS)Ec>NG&;1RqBd8QN2c@Q`S2@#jX1vtG;pNg*N1s^N`UP(4_%X*^5kBAsR z3yM>~Kzzm%C&xGf@|%8P`UST{I?@9DK%k>UjfrTMKrs+1h9F4=O*i1Y2nsN1h8M2G zdyCjR=MHztmqzTxkfiotXj@l?Y?!u=sZMN4TIA(LdjY1nhKH|wV9crnwWdw%H^f5( zP_i9r`{WnYVNP{DHP~k3eK=7I_8)ti+^erWRd$M0n&%^&3 zj_0I~Rp5n=z$;s%{%mjeqFI+F34MmwL_s3`@3Vm+$Y>48QPj`Z=EmwvW_7`6JNS`& zNOdM%SGJYf$9{$x!fbD7L(xq*MU=;6&RbO45G)6J1cRI)ft1k5mT2h7YD0kC6aFQUd~Pw1U!1VE+u$a2^^O z;RHq;MgXxAw+vRRtUmZv(Dm#r06Qe0udS_>D_}eUt`bSbqq`ioc@X)8ARPbXP_iz% zj*jTyk^ctRDIQ%lf_;5`uk}Nu=|!emM`LBz@gbV09JJCf0O~8m32M!0Qj!z*x88*HJJ_U9Y!qXj#YA_A63wt?F;D|ZNA9PlPflUUAsd5HAy{iLRU;lb7J{fO6h4jTc=repVZ&w* zO9{c$h5<)}IHxBNfFE$F!VZVMS`Cp%dS)gIw$Wq}aq*m^CFonwCi0AglhE2pAg(71 zYe$y@h6TU4_z{G=p;#)7*Qq{XLhDxGMD9ZFmh$+qHqZfK|Mq>XFPS6i3{*UuDvV_8 zlEl{KqM$5+Y!LMFOzL`-IAN+eIAj;Wfmek;x7hQY#ru2q)SP$FpPh2Gg32alE>a!AA%L$ILU@ttT?pFCCB&;4r+Km5oO1ao8~%kmy$1ii0F@1h>qNZ!5{=2ZzUq8>%;FDtU|ZCiJkyvB3jS-;{&$Q zDI{WC9AF#2L0TZAsd)tHR@ts=ObsON2$C!?;EKda1S~J}!8c=$#g&j+3XuCDc&P~( zEi%5M-$E#WyX1jU)e87vmN|^0d%ljn{w8(U!Yn^y#FBw`3c>WSF;Jc?h-gbV9e+)@ zk?^N&KBITue4Lhq$AsR4JZ2?+AZsbNlmww9$Ro$d;l!+L#L|6;Vc3zEWkKQV6xN>t zp{HaeCsYf{`+ZXp2+$6cc5YRh-sg*sL)r*o!?EW|c+QTS`mG`^^vb6vE6CyKyun?U z2G|aFz<$T>BIYaW5>rIi+|4>Hd6y6t0e%|k^tppTE6g; z=;*6?2XcxfP9m&rN5y5xqae{X1~zHLcnO<)J8+OSkrdpFz50Xu~~^I;&&{t4FVk!X}^^;?lHsG z@_V`F(n4{7lTO0BitT61CXG9TRCL#^W`Te`cu^3E@#dDU{xv>q_V&+9kR#scV zgF}R|>{bM@xkKTy)PapV4YS&h4+CSqC{@$)eN=a2>&iG6E z&?mLqqJK3I;rB8!wn10D_-NbqFqO-fWwEs&9i@JJfRC*^k2#9hDB5#j_69;{KpkT5 z-c{1uL`>Cq0nN4n9jx1Lzx7f5IXq1G;czp4aUk4z?6SH>M(k~GpV4q$tM+knIDh^$ zTrTPDw)FJ$q@x6K>`0dGRF-_qxf~tC{r_^b1JsPwr+qZh2sBdg+X>L}A zlowprCx-8S|CSnjpLiB=Kl$HDD?I0Zha%62v{6Mx1rpE%2BoeZw0u%^l^mLrevu4%NS0oklXM_wL!kc6B|s<)!`TZi9TftE+2z99_MEnA_C% zbr8p&LOp?n=iTe$Q}ihdkJh^Esu}eOs_2F2Su8ZJHxe~%>-;Nqbe#3v9Zcb73JaH! z3yIemOu1vitmfmRh@JKj|Lh>@b@0ry7dV$OWS0pkk&MvJjOrao$MCW6;Sfj5zk+{h zO>1lG(v)%_h3WKAebkyAaU-d zw?m34w@u48%MXCqhIi+=v=EE44QfHKM5h%N5)|h%Q_;hR4yz7 zyuyMAK|5vU9;NI^w^C)Ew7mR?qPSU_{stbN>nS2QbrP0mo2~TwM8!dzli|yBoEf#i zDF+#Na+H&ism7v%&pvBy9h`H#49`Ug)nS~gut}Vj;v5427Mg!*M{4 zu_`39L1n)KB8tF))1O+2$$2RJH)R5aZ`BEyZ{5-u?RX zr;v`3Ro`7BcQ_s3fS|#zczZ2g2w_0{Xclnjeu;%+?SH*ocoe<0G4Vmrz`965*bfpV zp|N53@AI0wg)h)JaA2`q(&ra%&ftWbZpJZf9UXl$vv;uJ>){GR4Hs@$3BNFY?(Xi6 zqbHX7>gsBMN|6I@>h30Yixczoh!JA+_p`HmR<2x00Q7tJq7qXvGJP{PHWa0_4!w7c zjR>Mwz?|;nv>RtYEbe$+aGoRK9D%qMYXNBpkFDofK>+|r5eL&!va-VASx0iTk5}Up z_R5>v-}6`I+@#sSPls}sGHf2;(=fUm4P>}W7eb+uFSX2x@!HxKDYSy*Q~4%m1^%~r e{Qvhalj5-kud_dw()iKfFD-Q)wQQ9W{{I8pe$VLu literal 35508 zcmc$GcRZKv-?x?)rBYT#2xUb^ww6*dvV|rh*<>apSqa&pNH!ta6+%TMB-uNpjAZk? zkAC<4{Po=bJ+IgO$JOh)T>5^`^E{5@^Lek&>8q-Iih2v<777XqYQ@th&QnmVd5C}L zH&NmzHu_JTC@B0~6i*!0aD4nT_Ld`U%R-G@9)C<1Zz?AzjWgZ)9jfvhj&9h!{#};# zA3ydzG#cx7?^czUSEK!N@Sx$05A_SrFX?}F9^3h)ovZD&)bt|9&(rI(X%urS=A|2C zV>+YiTup|4IyE>oxO8zG@JnE$*|dIbxkQ4g*_yQ;@@#V^>{R#V@xxK?Lu}*+DRdQg z@Eaaa3^%P~$M1SN@B3f*1^t1@PsV$<)##4%)=oJ|3@69m{&=g~O?y}>x#>e+mH&s@ zS}DO{nk5-!x36JgVWo3@{>{zJB2U>p#M!CdpHwn6Jy7N{YrODh#Jwo{lkwH>FHMJ& zcFxZa$G5$@c_H?9hlO~&`-((WRh9eVoaY;#%HB&uby4=5$|3{B#^cg^GQQP<8z*g zN?Lk)+iN$ePch=$`}d!0DZE;E;>F@H|~>d5Zp_f281>r4X0jWf7X` zS~=GJ3R%UY2e+}x);&6)u2W>QUm-Erdn;W?bo7}sXSRrniY{R}@jRMvCBI6il^-i} zD<_9WM$#L)jEe>+Bs#kmw0|1-5c;9Mo(tFf`Ln8V{o~Dd$}c^6_Ux|9uOc6hbsN)m z$7`imnTt*1qppg@SeJD285BR-uyxNR;iyQdTLRb|xL2!BqOFH6SFFFiGL6AXd3lPJl@%)bLw9;BeWrgT2IX3I%Z7x6+<)+3C^b3mO5Z!*x=10f`dF#y zTERCHT`s?Ku2gL?yghI9%A)g3iNiR((3SPrr2Tmfvd5E~tpEH_8~PM;Dn{%kc|^9u z_4_$E)|DAH+}*q@QpQEB)zF2%(r0@zZh0e%4YqlB(fnwpyK#V$FZ z{+z5Pi|fQu*}0x|SFT){`&IH=r`Ya5{OyGUwnKHjIMwXJ!XXic&c50g-NL?o(@}V^ zR}tTN-`97an3$F*8@KY~x7UPoZZA9kbdZ{yob0e~HE^9DjL6W-_baj;wyD~!{Q?i^ z{Q2{nHgDc1Cl~+t@!l@CS%Z+!P$&GF?wi{(!NI|MI`D$kyrBdcAr#x#2xQ?Uiano;467; zkIo8~X?$pC(55}97A|-(i;7uN!&)-dugzQwbtW;xu&lUV0_Q4>{NDUb>%}qG)w%v4 z-d)_v8VW%ynb-mvYP2VF+RQ)VE|PzCzqzQJbH&?c`ja>>&hVL&C%uI)y`>oJ50cZu zSLh2w;2OfPw|U(b{-|NAhpEUdYm79fhMqSx%)+H&L60*?JHF_%lMJhRtH-F*=|@Z&BO>8DDOhmLkO4B8x!Tbl6tf)kXKmUd>j z9zQsKk4o*8WjFa;@_;}7XiOycU-J9)g`)9S?aETx=gtLAk^50kR@UU(>biu#s-j%-0KH zyLq+nO+2$5wn0J%&F>bY)?z!={!$fJuBC#Ywg1>Alj954|>SpUQS$ zJ}Z+QAJ2O78A7>ft44q6Z^sAfgul9?GXtX>=!%$AHY;C2Jlau@D;1WC5 zP+QxNGoFBFVDF}zsf8Ej5 zD)^)9*9(5=t*QnF=Tuc`_U+r3aiQP=irLk?w&vw6Tem8nIkVP`*Qw!>+4bu@KHHen z@-7Ck$XH3n>hSH!-&u^OPwJc8>e6Addkr*Euy~!EoLuL6eL7sHKaE<8FjAM7m)nhf z4Mdej6K=dNf@L*shzqP8yfQyENJ~d&+jLGmweeVTak6q|9nQwZb|(N z#%1=GQN`WOr$bISIv&y0)wTZ{=;wE3{CmFr>*>dp>K~i~qD*3jWwAPju9GL@9Q!s4 zyjij#|2{Q6jWsx~MvL}?_Nf}g#KNN7{^};G&JOGZeTOz9`}!LqjE!S6Xnzl}sTtie zwa%hhIE`f%=)887_!KS5At3O8fQiV+_Z8k-Cue81nKmUQC0)<|zN&U?u4z2Et6g1< zc7tyC<}F*;B_yJ%{OPV9qFRukp6c$sdsA3&Qme8`eo3Nae@M@M?N@b$)L)#x9lLj*OjeG) z^Zktd-=A%qoSdp!S_knju()Vj19`BxKkh^U3q)uh+W##4}J-k^4gTse_pwImF&Se z^3PPQ-~j;vh3wYDX3ab-Ef+Jyu)f89@YNYE*HVemoMAfZKR~M84S~&`qQLhTgzYY0_`@dXoxXDfdhbJ zVBlJu>y#qCaIJi6mVs|zpb@IvpRv{;tb*|2!y})cuG31NdAYc@XKd{3>C>Bjmrif1 zyhoh~Tr(C< z)h;`(2uBqz|7{6DOT67izN(z?!*|~rJ{%_+BKrf2GeT`=M(#wCE9zA;W0u>Mq zl~h0p>%R3ZEiHVyxpx79C5N%GxY^k~shPwc#>CX}W|tnbvO0wJeIWBf0oQ>8zJLXR zfCYd&Xrc5^pFZW};+m>vvQ$-5D=)Sm+q7vD8z<*oAe6&)KUBrczrB6yv2K3$&1xVJ z@W{vr)!rkjGL{7voj*ED#3^KDWvN(Y^)owUI-JKc$+HP$61M?nn!r}*w<&5itSI-| zC}Gt@fknA{_wEb3k@F~+OyU+A9M4#sf9(6x)Fk0J!M0s?jtv*J@d+Nv%NwoRQtVAW zJ(k#2(pf**U*pv0%S|tGorVH+!RYD^D}Jw+Z*~$uzi?qRy?(`~lk9+7xOn9aI4{>){$!_h-+a-@^*Ky16lkn$ZH6 zB{N@4ZW6+_GZ$kT`(pkc zTfd&6Cl%^vz3I3Z!U+_Qg7dDb%IQ;(VhAUyIokNU>S|~FXJR98uho&gI8M%CS-H8w zFZKAbW`;@WDJh%W-Q7i7BgCIHUO$4}hND9tsG#<1)iaNO7CZ!7?GW~gLLg(y`-4pP z{6F3SlL4A?tDpRVI?pa6Q|6)3vc05J8D~6pz`jdfQ*$>!JT62u|B)ohc4E_ra*TFk z^T5CW&5j+`dbu^vhtU0>J$vTZ$@$jZxoDQF@|JAjkAxR1kze|Ss_OJg(k$aZd{+k-N272)LRlIgv{Dy8zI-}F{ko~Ln zaR(GlFRk<>_th0Z0`%~1w^?SK*){7Z9b@Hm!Mg=cl-A!V)E990)$w5?tE)VYZ;iE@XD}i%UF*e1B4LX?{n1^qPh2zauBfPx zYzKiw$KQ?;P-&cJJsf)r=(4^+ZndtX$krG2ci?^SH4~H2=;$rYjL$qh*Uqf=_w~JK zGdIy6>j}D^zjLD)t@WimUr*{q)rk-*1+z;3Ofg=G^2O4FbzjW#(a4X`Iu0pipYz~U zjJ#2II^=G=dy@7@T3T8~jjC5r&f9c5O|9tnf8_!UlV{^>1Qn0`>{9!+n_k)U1;FU3%Q!Ui88%^QS1EAOlMo3HwC!QZnp3)?3VHQ!8I(=N0zj<0vuu zJ@26|6?`Umx4jIF<=eyMXTO|&Z&47@!T(UcOuOsvUYQ#%_ifybX*c|I*jSUB`}z8Q zGqbuQvC175v+;~HUgh#?YCFJw0yAFqPUx*mz|ONh&Jd`O-#06r0it+Kx7s*w2Mx`g zsw=67DR=JKQ?0Hdv*B&RNq;ncHV%&d4Et|Q=6hvr?u$j;Y^cO?FHOm@iK-^P7--04bRik{LtABIsdu-_jh+tW$)Zs{t(VyJ4vA^ zCE(BY8y#0eI4>8p=jiZ36UzQ#l%oRxk1xBXYhk7+f3vdun())c>pcAYGtrAl_!mLJ zbI15Kt@x-5mtn#K_` zqw4Bv!eplj?_a-u{pV6ATc|u}%vaIU(Y%Fk{n7^qJbmum2DT$dB2Te6tyc`u0Uo!u zwtjiNu`h#HJiX9S-d`rKjr-&&|&Z8GWR^y*Mro{Y(j0!s_;C2LKl*gfQ+n z$F&fMKp1s%uWhCPk>@^qcsiiwZ}^@Za)LKG#;#dIFYR~;Tvtm@{KnS+v_T512ANr_ zR)bqD3^c!ieB2iQLUh<_@$d|Gc*^xGj$Uzc79rX*W`{kfq31-aUB z(DOX1rV-d6p+IlfZKq*j+18xJQwYE;yZH04r>AG(aGcBiz`&|rs~6^N!szOXU_ylu zJOHoHx$Xx1vbx-FFZ0mPZwr>Xidwuw9()mpL#tqLczF8zjcg%{jw2udPM{7CjiR96 z#GvOwHvF!{iUfv$uHqrC1bah8MIfd(j~VCeFG($CSQOy0nIch9#z4wgWglE~+Tx&TzVpXt1wW>wPn8)8eq7eIdNpX6 z-J00sWDvGkFj1WD`{2QINJ0he=d7)BoSQ(yD7`#DB@%hI#E4rGRV1 z;9GOC7-wmyHI&qh>zj+;0(RZ^^OL+G<4_ViI%)>;+OU|v!VE}cRnlpgjAN;$u6|re zNlE=|s#opcvGf+_&gHbMEG|&5&!0a(4?piSHDv=mbz*w@hS>r8x#Wn&i3zK0A=lw` zczBA6iqKS|0ViofKfJqH&{+);t^ula#?uCDivFAYq7gF_h;C4{U4Iz*L44$=`Kp(F>F$o+HKh~_-Sy=-0nlJ>(M|joN1sg z>B)Dyi0Je7tvu*GnBtS;KHDguJH~5e>JeKY&-fDs5r|N@B9*wXz02w?d2x>E*bPnO zpM2GZ0Cj3+I<<50-MbSzckNPHjE9?}(8xs`C_RD4uOAVQig7mxj3-w$Q;qRkDSM|x zt_ec}>Ok${7wbLmRS(*vPWwe~!8+FtR$R$(H29X+KK}gq^XhcU%>9ZL=3*d>8aKP{ zC?u8xl-fy-{rGZSWNu->@UyPa-8DP(?a*?dBSGFc$FgG=zzKfwN{&eC1G&D<;`w@+ z=lGMhp*{n|WtUux8=*`dwJFlq(9+t;#N<-WxC2*4N6jLB9H#>De zp3r*@FJD@{-#%VFV&`n|ED0+bZe+jnr4Kk5Xc8*)xn~)dC$qlnqY+t~%a=$>GNr0i zcf|$$6Upp$u}tpIYeV__kDa8a@#tAgyd6-`%=%l#c~OwSLGJ6vihwxaictJ)F9-s3 zUlLs9h86?j+mpfD1l6v^?UntQmR7c5rbUU)#*8v@y`Gc`;YRrtGm!k6OOCrT@-i){7qWkjh6N{axaxxyrWos8gj!K zPE{x77;H#!8JEA%lQyE=L4hDb9k5$nozgFW)25{vsKQt3A4`DN2^01s!hqt8uH`Kx-`*Ko^kO_98?HMc*l<&TZ;-k z40U~QFyf*yWG3LX!w|dyFX2gW%E-jx@K3(y2>OhDB-yG7k;Y%}^=TM(2M!z{un`t% z)L?A{ltOxOi@gjC4AP4~^8iC0K7L#W=28Xa;sfLkB|KRoucG=5LC`^U#XSph335=~ z?_oEYzh@r4;=DKU_3c>e7PY55r!%bcqdUz!>!h8aKMacIgQU)bV~; zAjS{`2Zn~GDz*yJKv2AVc^{FZ|F&D!SQJcu5F``Fg=J>BWnOpa>Jh!CP7U z9d9g8Y)ovyDA5~xgoK1pkEV#e>9$~po$;W3+<3CD3LAAAM1zQ)M2=`NI~i^i=k{0k zYnDMREWV<#tP-6vXHh(ZtG_ymW)2>v+ldT-fSF!3rL|j)@sF1?)9EE0TMqQDm~?Q} z3PaoG+`oTvEc?wDtUyI&ZhAPjn$5Qgh zVAdFrcfF0R?dDCJo?zi{NKro&4Gj%rtDZ}{*XAnW*tpMb%*SLWEluhl2)Det&_lQJ9h1=d~(!l)3$9|5v~;PYiqBftl+>k zy>@dUp#gw#8RtK5TU#SwQDUp(uv9lR1i{#ENiWsE4zgO9G7`O4p>^N|rNk?R#HaRS zUjZ|1AbqPtKiARAr8U&_J#=QiPcnBRlNf()uDvBpdHS| z`5IY(ujsTD2wqS&)tD;*JkGba5{DdSI2Dsvz|zuE)3Hc5H#abfc?_CBj@7V#}(9QQBMH$2nYzE7xKiaT+>k+aG|(i zd-i&4Wa)tf56p-CdKR?-aO0&}i(gB+HkPLvqB1E>_?Xd2tPTkSB%TV=I_|rHpYBmI`QIB3qGUz;|P)COA0$q3+e!5VU2T;N3R(hucg_w z%L~8(8^vM#yERxi07JL?s?3enETfJ>>i|}{I6@KN+gQQ01>m5E?w(ybwZ(rA|9Jyz zlx!*n;kzbrPWRAwSlnPEr=^h+NCAD!-g!3*J`TT$ws;u!NAa!S%D6m#I>8}`FaJKD z;qX0(gVXRZn(}XGJI{=Ix0!RXu~FOsB3IMbuR~7+pD@D7#uAFk`_7x}JJ3b1(J5aS zF9!^#fv81V-U=&h5^&!ZR-XbWJBmk-md9tgebGQ=K&>%g?%?vN5z zho$3Cx?xW{-vn`mD8TicCVD^uslw2uAxE819gQ>^e*YwE0C2q&aev-~uRGclj;y;+T_e7))mDk8Cq zW!1{nRT{9#1o|4b5Dd}N*jQvsqedG+BZ1&1+NuwBMWq_k*9*<;Dc}^S@MoB4sM9NQ zO)QQNIX468ez?ZY%bWgzmuWj>sk}B^v|)0sxmfzsn6C3{Ohp)#xI&{TD+g^Zi!kQ2 zkDt5!TY7dxsW;gKNdYwCT!gGZ*@F^zAbG=SL@eOX&$e9`FLu8v)ymXzQKlSMQW$gX zV^}Y@J4jZgnAWm9bZW5qnI9xEJV1W_q{2e_e~NOjr1tQ!w_{YNac8Krw0rjCBIk7M z*fCtuqp+|YtgI^Vx_@-Pk%OGIdJ54u?0ls-X-GkJz%7(_;^X6;OJBS=M6w7^#C%lH zfl(MtGJ&LQe|+92s`2?kN?IB_7(+P!1+o9QCb00pBTd0Bkw80{+_ZyR8*`uXVsQEP5=0s$%Ot?W1P2a^zjcK z@;~JA`S|u_{_$bY8l!RQhF=;hd|PTS9eNlNlAy2zNAmy5UvRYHksY$`I{}ue{#@xY z5DJM(_^>$N2L_M8#}O#?OfhuRmMsaeSmbXer8Qn(5s_{>+&iK_K`CAnHKAp&de^Q! zFty=I&IHWikg%{SqX+{9Sd7FthY^dA1v$*b#YZrSWaog12?+ezSrP##xBa9VkxcQt zN)g|{4h7;UnyhAOE4Jr_9C8V{DyZ2|%p(t*Y(t2JRAl6spveJ4AVrqvIC%vHjRE8r zk(G@8plo1uSapL4%o+Xo{4{`3)K9$2(F?*?W0rwb^#kVGV2)EHB!x-?^fTSPxpkOmIJWtK^4%yJwMpt*dK^! zQgrw2MQX?aK%T^?nj1-uKMh4027X%8k)>oSGpFh5?&|LHF{({(KZ$qOp)<7{>Vgw5 z$~Ztu2O1W@OuQJIs9AFg(dRzD-D^ng^Lj&OZ}zOrE{lyXnYa1M)E7Ddvf^x$=!>D- zj3&Yj^L_q;k#g>`W3Ac4xN%~JEun=v=9-t&B@k z10SGA3Ey6F+#_gM_dWjxNhENbdhiVNSM26@!a%kPmcB)~d-lMq6eca08?oDkZ+zuL zPI2r{+PbxC3kO2ZBFD55HJGHTxFCGsvBx6qx09Ck9XOb2Tkd{sed`VI4oLt8>opBJ z^!U}KFW_V(t>)P4P1pSLAmHCWX*elq2P5OhFG*(sgL*EmF3>@}+zXAl2l&br$e}Jq zJcvYjaG%x?H76%)Sf@!;0=CA24EIs5o-oSwDNQG3L=~VYt(sC5My~EVVq)g^bVB@d ztF5%3WanrfB z!^%s`%fN+bc9(E!RaBDE4}n&-GIWkc2pGW7be*iCgVRrt2{!SXIcVPp`1sJf`mB!V z6j(452;N?>Jy!YF_d;(@MJ)6#P%hXih~g#SfdgV(IA?vESnr@6>N+~_BZaQw)UosM z+=trJlvQ@pe-D-`_fq*eaG*mEdKnS?|;FvEDUS*8G$i}pWi&t=TM9H zLy&BcT?`3CNGEtnrfTI^u+O>4pazF(`(B%X7)eu|mo~ zg12(1;|M5?2$0!O=LjO?OgKc!Y(89ibL9e|8L1z@}l=!KMQ+Blspc zQ@d{;%m9L=fZ$o&m#kTC&s~P?4Ji|i4@Dc;`U=vrcB9RT=hno>#%7AqR904!)CewC z+xE7>>Hdv$YySb$yPS&B6K~g%nnGM4EFIyqEuD!iW}CNd8^Y=1(|JLG@(=m=M^~8? z(z3YI4bT$LtE(45WJZ)i)!=-bsw!m5|EQhtL5AvM&%%`e0_KvI-isfga+34|DF;Aw zBuEUMau+kR!6{472S?9RfRE`oc-5JWQ zl69EU=I1vdkY2B#pzXlHi6CDfSrgb)(9Pc zYOqxz$N&K8-|DpgGj?mJEAELYP0@>$wZU7*I`A*b=of0bx+E1%v^3ga2zhB~TX64C zxvY!y;SZ*i`9nd+vj>btPr8z$(`=;=D1c5E{k`(ip-Tnr0P(0pEuB~YDc+hcbciE> zBf@U6ik3Q^*r;k~_#lC2JtZZ3tuPYg#FE^()3ei}=9=*3L-a7&H>fsc`}p{@`f{q% zdc(s**Tc=2ondbf_4f9Lae{m$v6x$L7PJR*DvGk_@~NLc@2QopIjy@Kn(*R;0H25a zL;>9C(Na$NOr?B1ew3N(BGFA>($|^oA208B2;o#*zL4CMS~EQ}lc}B)SIm0n&6_vh zZRc^yNT|F;Ux$b;Q|~#<3bO&eYHE@nSR^(&>Rrzsjub4NSo@FnSd`6tJ^cL4e81?j z+B7Tgr9cJsHz0k+^w7|)UI#EKQ!>6c&yN+`*Y7^u+C zKzDAMFhd{?2dx@8*SSNeu~Nh4RJnZ9CVwwq8!2 zY)!Q24M@ftRhfJp(SR3xWg33WEcn}WoC-kbh5EF$wa`VkncX0EB#uT;e;-&M9}nV; zja`!zVR!~-8+jCn-aB!|zghlCLdvAYo{($INi|J2kJDYYYCGcUyUf6T3;yXblp z5|$SwHA&w=|G>5+E_|${J;_IwPS;D}3>~r=I87u&aB_G*`8Qf2R6~lp42_611h6O= zMo$zHB=&A2qyhV1FEbo1kSHOq=lZsSZfG0W??#3Oi7i-`g$Tuse9K9c{7Zljs`yzz zNCbUhq~<^m2F=FG5ut5#VJJD*w2AALc^h!$TJkF+c2m&Ei1Yy63r%GhV&CPO2h1cQ zi3k}9h!a@@DprKP&1PH&iD&}v-`mFQtY-AC&@oGc?Z~>e=jONTmV@n`#ztorgl11o zrB63Fnx9mQly#FtO6SC>Q|cNT@8DkF!;A!EKoZErnVjmdZBRpU11eKJb_kYA`p@U% zNN$iIE&??vDfdB3chS++U_o_D9VbnPo6PdDH@qNr!(48F(g#8zy}C4wgRP2Bf@D^Q zPa-BRG$tNDPs40(M9`UT^B9{UcyD3Eg$K7~ZqQRI$;<3lSN0GdKNf`*Rn zl!5{!QD`xx@gML02sB|lm#aWX5HX3WhNvJ`jr8bK=`A4;kuX<)cnycRcmyU$)~;Iz z8Iiyr94X*V)2|r}xFqxTSAhscljH-k&l8iAy|{Vfwp=43>fxwf7LNLckrsyEt;ESe z1Rq+r{LT9lsOz5~T@X_W`XY%-AvT7nMHGI8NQn4i>6N*D6n5lG2}s4}z6u?s6d=|; zU3#U7Muw*R!qUhTRsx|ouFMZ3F4PZzrP<^F4fyuTyvg5RooA5{M2z+E5$j_Hvy~7t zxS%^jne~FVO{8%!lxoPP_YJe5@`WPKps8(uL|QKpmA-w8CS(Qpf;Etp$Lg9UGG@pq z0MYHx21&G;q*x%S304Ipb!Aou?&-%l(4SNxP8Hm1-wU3+I2gu|+WPcz*Qs1DlA*4)ZXb>wvUo!71 zje=Wc@n+e999cuB!QIY(ejEj2B7A{Z0KFC7$ucpJ8_d3Ez+F6+&1oDA70398Qx-s@Hs89a!mhR zSEt>O*qD-4Kdji_7bR$8W|2;IE)FsVRVW-sk|KV5%i%yQZY0&&bw-YBT!l%h=3lz6+POnFyo3aS>WS#5Z#I zfnPnnyaXBh*AR8u#*VQwp7G8b|JuPmfbFU)Ic&AUXwQ(8p7Qt=n{hO2eZ(SBF^b$D zX+q55_(mw@2prXnJ6z4tA$3s~nl~XE&?W2Y>LmS79le?4x-@4U=kiMezQPC+s7Ug0 zad3FS69;5Er=dYhi~~3%BohKUjmse$9_^$LyXF~qBSo4u69$z?wib{Y{tx8IYN$PP z(9Zz4ui-2bU5xAiAm#kzL54>K?c<{hqAZm|4kbV=X*)iA{CEWsdNSRE&`uK|GlqD+ zVO|QM$}-Y+_=2AW*cJB_VOYG%UAz8T%3gEvcr*q=!R{<^y;ivS0uQu01VK z6Rwk-2r>_ctPxbjFGaQ{S#MUHNkAWs>RZVzK~mz77t&m}j|@kB&A!+G-6)kSrgSL! z2ICVECvJASuNT>DF2^#l(`gx?AXE@#e(TmmtPV*BqR8P`U;%)}Y|t8Z?%at|N+LmM zS}^8FH9}wr6^{&&d0Ym(CSyJU0U5Re$QJ;WA_Rp0Yk#K|2BcRPU=Lv43+NmG{s=Vh zgBpN>fwQOpy|TVAdH^Mdh$JWg@chZZ)0b3rZe*0us<<&4ryGva=^xFAj9V~f_)s(7 zzkiPa!o$$eU(ayirD5L@3)s{v{9we+1c<(nOe2~i7r2Z z?hjuQT3>2P$|aQ06DLnLLLi2Q3JQQDqzcpR=+QOcgDJM>;PoLC4O*jUY|I7C63qgF zGVT%)iG=PhN!FPEoGG}*S70k?(VLlJ6^E>Mdw zX_TYKM_cghtFLT|M5KgB|v7^fqR95lS$OZ%i1Wae`L%#jt zLz>6R!>e^+Gb*)iNT#82p5yQLT>Ru5y9O@3*;qwW#UxcVPIMzqBIzLZ59<%pjQDo_ zi|M}%AZ!Z<29JA+Y6v`M9S*;vwx;YGAc7+P7q7~S(f#O9>CBNhq{MJb_R2gk*AApwWx9e^2<{rjuZ zsV-Pp2mn$7PPPc%6k%l2Oyu4&(oCa|T#<6}qI$$wYFJ|%TkVv@>`R$4T{1+~MxuY~ zkcO7&YFja`w_mjdZpXGNt=AmbEcmxsQ`P0-jI#_5B2-~`P1nC>M74@!)Ne!p1t%K8 z)S;XjmPBaQ5FIBV7THYn93}XKq_P2WOK$x(2Es#^`t^FzLUgUs;Kwksam;2fK-dmV zls4t8uevp+tNwl0;xB#@FltF^8mYgLHZkonT;%e{>ENeo^UD|b_Go44r#`1&qj7c0 zM3N{p7~s7Hz40Q;DzuGKjA@YLG5qYT8Z8;j#OQ0w$L>TV=&hjCqLQmzSUcOm!^@ip z2#mgE`^8$!v0AW{-{5`f;7GH{h!A^Rx2bvnlPD*mdssruQW0Q}ze#im05LNS6;u{H z2f`}SwiEu8CdJLkIiTVm(Dj9VkG?ddBa+Xo9b^Y=0?4}}!g%1|!HN+(l8iw0Z9Y1U z4n_ecO|ol1@mT&RVn=&XV?moWn=F?m^|2R-qNE!R=Uw!lqD{IC{2inuI2DQ143{P$ zApz`I8k0TJf4^OQY1tizqug^#djyo`1mFpVHV`4i2=-1Cdjae7|R_YIody&+2a0Pw`X-aS&n<{w0qZiVdo!EP}TG63!L{L{EdMy_HVj zT1%Q{244Y41HIh>K+EPCk=&2!RF@B9t>rh2wd=Fl#v&=QP9s zr49;!&nT}rJ=GFA2pM2Ql7WB(n0xhb;+1Q?cSEc_+#r1%Jsw$EPGFTmI8|4hQ`GRB zWLM^{0;T}lKgZSD{qABeGgLt=+UaLbP4oPgJJHV1z|3J6heHFKf=H*Xr*{Tjw+ zygLAe64)N#{V1}2sH>=ClRaMB;~dCT`T=B<0ZriegknpO0aG%SjDRS3y-B=V_>HWh zdoYBB5$+KUzKT;GCG8{(DkKJ3|DQSvu1I=y#T}6y1n-)8S{ANZJuB$Fu+VJ8u>4`q zB5N?GFP)*I2cg}=@$LYzO5hoO378j4FU|yQXigCg+A7A$c|w#egi}pVFU`1ahEqadl9S0h#~=h#V?uKZ=!I54V8-ciAippa>=tMH4229!I;UfxW;H zK)EbJogzRBfka^Ff2mRU=~$B$yC;PNuw#;pm<}WhgArjSpiuks$^RmCDZO>jCxD~y zwJi)&C=?I@aK?{eh7MI}ctOEO4B@^GFiGt!OpSRiQzN!XT(J^%}%gn}2`li&8`; zA7z&&jw5R>DS%bnCVKoAlp~_kk{mpUJk;)H-^h>k^+WG`cacqiS4oiSf+vf)_opDH z#I8V>%)?Y5GH_TxV~jk5Q|eONzlJ@608oM1g!I)Dp4Bxa#~9XoZr!BvvUR)Mk~|Dq zvX{j>?RG(9$JPWt@Pq}6W5NxP3?vmy3B63kX;vgm){5J9*s(o}JbNYVrqapk4vHssQfj_JqjKY1wu z`DD|k=c!H@CVjnNMra9YOf{VCKe2`s-Qt4O!4@%NvhI6P51K? zN1MygVngHNl;O1@9yA|6at!18dQr~dxyyM%0k-A+defZzb|sxNhHM`Wk6_?Fby|D{ z@xZmek0HhR_AKg~B!6f{JY-}{N`7-{h5vc%%$bi)Q5hK89_fCw>U5rKLg5`f-p+C) zP+gmjcGC*gf6wm`sg}_fQWAL!LDv3l?y;PcK|SoOhKD@*3}av^$=c=z(Zc*fVP<4 z{>gYce%lFcEv>Y(tt&z@r7dQfL1PjQfG*p7*1=^a-2t3gWl>Hy{NHOA@X82$m8ddu z+~BFTg9#Yhx4(r+D9Y_D8OD;bG0kI;7YxK#n#ZIy{fAwXxi~O_Fq(sir!JF3`TTLJ zgstnT-{a*A6&O>;O$!D5(zm6sEkU#{DFjF`WfE8v{ z%QzC`4H{5)AhtD_wppN~63-UiA||O1!COS4q6+1>8hSDXy{zjI$iM?oJ>dZ~A|{GF zOg;9S<4}}I;mGqCG79SP-Padx0n}IzNNt4hoj<>`HbM|{F5&2ZaWIW?VEl6`lD&;W zI#GAHVdBeKK_UB54al_s9fV{0?&6O7+P{F<>m0ln1ZW0dwOe3#BMQdO14O$?IRnjq zk0bXMmj)-f1CBTOn*gT|alAn(!H`|2K5&CGL)!mzPP}u#zRg)sgJhYTm;S1=l)Py; zo}7KryWi%c9aG3Le}UwNHyHU_U73AD@{O3?-3h-Kz9RA@z+&WHA-NSnh$gzUW$7d( zNl{`%^b!WcNWo>EgMCBXLin7lAn$!dF2k{x9DfXmp%g9R3k4(xb~hjanM^NSU0FmM zG(qTu_~~S@KkBf_PG;sn2)M{E)kTY@*GuojNIIs9Nbb5de*Ftdo6hfq2R-4x-F0>%Ezha$FPcI@=gO1vYf zCxNR}mx7`5>gVfY5rNtcymwE;O6*94^oIL}`1Jy^B+4M(0)tmGp|hH{zv4$7yzAow zxAgueW1>akKUzO89k1Do)~uysEpj?mH>hPnjVN|Pfr zEX><5+XSITxMFesiNMmb*Fk%;hL*N0Tp)p6iB>>~_G%0s3>kOed053vhy z@gTZ?MqB)$;7()q#%esj6#yR%7v|~XS3iOcvy-1Zk&n&5=dU6A0UQH8CYrq3Cn93w zlLrPwUg|!~U&dD}3}S>JR^I)yBxj) zOn6vdm19~XyYwF;O$9~i8)nIo@*_$JI_!3gu!3PI!r4Z%!^@T+;S=2>645}wQ%&uL z0DpfDHnux>YUI|1p{>|USB1uYJ&v|bTpy$+p1gedh?wEv%_Ob~M1;c)3#<`0h@No2 z&78o5WQ_2UpeCjW0%I(Sebcjw)9Qswfc&o_wa#Z)T3D|qjm^C9`A=rHxbQ<;T``DKs`tKbL1o)8KMz#=_5B5iZ0dV%3X2u|Ngb+9q zAS>{-ILKQ(2xw*!GiSr2!EnZNr6`-~qc0JXCPRI}ThrId#) z9C?@1X(gor&^|71?o$RsU&b9Uqm0xAUb2;51c_<4mP#;3IbL}^3T*5P#(Sz=M?=}Lt#yZWe*3HkHk`{QIx4aC6Ih?y; zd6wP*9UR&k1b?Rn0ou}EXYlZ${H{}_YeDP{NDm$s@|uXh(;;639E_Kfoe1GXthL44 z5yw_z9Y$1$Vf9~f7FG#bysOskY)(a7KgcXnSJ$ULR(qLbn)z4t*%!kHkc=q5aC-nl zDR>vd>yl0jq8jH*MDHwUH{hNghje)-FXrESAX-zu83?p?$8Bvaw!cAU*${d*&`GXm zotGj)E6{pc{O*(GNa^LZ)i2P;741K_+_7^1R1+)p{icy;$k_cG4eJ3;2NX^4ZHbe^ zL_TV8y4+fo8&fJi7DF_bMy${3#6Gm+jH^8a|A} zCWfs0u(jv~ZfwJb4au3?yPKEP^>rXL8un677W%EwuQ57AU+=`HlHD3FZh$y+ta7rJ zD|J;7OZ(yb?gC}u)o=S-=K5#wXyI~c-ZHhZ$^CDs3K1TZK{6E#E=(#k#1JA+L6G4T z6byo$NoXwr{E#@{5Rw;(K~&*XJnw?nQpj$vZ`YG#DJ@@~QX#e(QVsc@=4bY9I~Du& zbwQ8f^B*^hr4RI#Q3tJ&$bSGoLMQX9WcfO}@0MQ?KZLG~{KpW{BTym%IOCD+OD_w7 zOp}MVs*yeoZnh@!h&4Mo(I|dO2)Fadk5Qo-MpLHFTIYBAE+~9Gy51h+GWnPihTXM6zeuBM5^52a8icsOTLsHj1 ze%e;&KiJjL#0HpJyZA zcua(ntBrn>tK`{)HzwePX8`*q`ggj_^4S&7#~Sg=@RrQa8*~_)@#u+vkinzTuAj!6 z`u1AV+iQ3V3b(zzJ*Uk0Y<46WOUdf-?^r|0zSiwN)xIo`xfS8x$}IMa;sq-HRlUzU%#%BQKEt2SzSsMnVVV!yGj%ZIamvffxsnr&rjw%A zC!1Pd`z$Wfux2FNJ06M^4!Q2|rRrMqjmbt+q0y77rdRth;th;~(S-YC>>n}${Gl4p z4O{VUNlZUZK&2paB}m9Sjix3OdxQuwBmxNulDxDE@1J`F$k+5B6GF2SO0YtI*w$~3 z=>m!&ce8AJjx`zGDi)IJh#VI%`zhd;_H#f}?>&D(u=eGB-PbCATJ<~B78-3R$aoTL zW}r0r^tGMhw&CJKa(%~K$EXZ9E;MI-`t_pu;jO;)pDvt;|9y7l!sGGfscMtuTX=;C z5Y_)986J=MPeh&@(6|vtg!r-vE&)_+G7nDB3DAIjco-iz0g@hQcX=2q!HZq05DBwB zve!NJWC$lhRs{97<<+Erz4WTh9FZLmYwZ!?m`~^xV5_-5nT4kQ^@Y2bktr?hxbZ9E zlnO@H!1oQGo()kRJ;-~~L1IFbam|K^3*}D2r7a`jImNUGf2taL*+@NVr~SxhaZqKO zeoTgPnz?`o&s}=9cTZ@{Rqr2`cYG0^BG1ac&h5VR$nB{{C+F?kI3J%@-er???A!*8 z16%yoZb=#Jx^m08YS}YSa26mE20FCmum3f*Y;r6ym0urZh!AHmH8?WltyG10*~+*4 z8+7X^sW4;Yje$CFg42+@$Pfm33mkcUqCdg~P;!7W-JJ}Pkk`w^wu3@dmi9JUi3?4; zR9PFH9dg&RXPnu>YSCGhTa9?ivQ zZ~DzMO^HpX^LMC(cxtWn{XYHvIj8|m0y2J`V znn2tiFTTJ#P{2|EM9Y5No}Zh8)Y*Q$I73-HOe=!1Pfx>$qoCr9MUi*umaW_eGr#Q> z7Km7v_>{6t+24?R$L{N#`-JbZFx=*hvlH5|I65KzV`8?k*W`0t=!1m^T9}$&E^3xp zU61aMG$)CiLJ~tN#pFM_TolQv{&ruD!Dc;-szE`FO<;8LZbSlZU~K>!q)JG#VmZ((Ucc&~fjbM!ebFhc(iS_g-olo6dHwl$1T=8=Ar54-CWX{>qy)pLhACFG2 z=<^}$%ZHqUCutm64Nc|mNE#e%pno6r$_Zg5Q>%0MqUtAM$_(=N&{S;lyoB?-@Mpqk zXi?IMYqfRneBO=PsiL$_w=38 zPZ2CvU~bbr<@>;oja|AlRd77sL&2Xt_QJbXiKm6-rW+%u_2XvcR&K6Krlw_xzDRj{ z2X%5y?GDNlR%%az=W3PGG`YFoL}hF{$gjLbNleu1hK0BHu~6#dj3-T}e~9d4RIJd> z-Y@p;LKOyyLN6|M+i337HW&G9oECWhD_xMs}%;$S8-5 z%tQ#Kl!g(N71`MlvMU)GWky0slo=uG_qsag`+NNU{+-A9J}TYc``q{E^SQ3;JzlTp zTQ)Og`O3_2&hqL z@X`3yGNZ58vXY*y+2`xe<|tRzqFUo?3o_k4nl8Qgq44v3B%6td*!iI1LS>IA9mB7_ zsh`#sCJN&unI?<`6N)xC$w|mvn93;s_0pg)&6nE7HU8(ifIZ(&4f1AInOT zVw$N>-;r_A!g=fKF(Zv7IGE^_yilYT1wPO2-_F_68FRgLi>O^f9d z_Itx&6P$MA4b}%v7kizl@V!%8r)>6(j+=b;9^W;-7lWG|c$fIf^ViB74W8IB7I5S@ zjm&#wZu+KU_}a+QetYIV|G$~31Z)}oKF<%mWSK4R+DacGCH-i7O1n?Wgr)pH+q5UL z_eGaxi=>nbmUuE=mDuL*OB0;XcFwUtc1K38!I{DMDXSZH_LnjusKPi-Kann-v!d;! z;N#8ZFMl2~v;FUV{)M8s2*0N1)7*A%nKN?L`lb@f&M9kKxijY3je`-nBfWY{F(dgs z7xVI7EU!-FEIX{_efUh#Dt&&MVpVf^riTO3bqKa|nM$@3uOrkbG;%IR0&Nc#XQSCjxlz#BBp=; z?lVjA_W03%meoLi!+LuA{=Yu#|B@$Iye7wz9)FRUc4*H%SGlQb_2AI=-(pI?A zFVv+Nsf*O44ce$-yLGIj6(hWpCfOq`w>q zZ+kCH%cbeVzS-78<%A6Cfa!SMg1Q9XP)eCuDh<>IDTPPW#Agz9!7`roEsz%EV#5 zuC0Hs_={sv*>|L?u&ylwLJlu!($q4!S~JZixz7gk#`N6zk|%KBSuN8>!yt}Zujn0m z)B~J8$lP_#+wME2sidrAXjMPd`l7w?2W3ceozls^K00$ZACVB{mPrNoX7gubzKWxc zCnfva{4`zmIv=IBvF$q;r{k$^w0rp4iLMpiu9Xbk@cKS4UZ<}W?dN-)1Sdm0^__6EC`$zpR zb})L)2CBw>60VDFjvW_otDhT^N>emCqBJlhz_>$1Mhvh*Z_2P9ly@Xs$JAQ5TfWVz zb@!RsxE4$r9SqjG`=jMa_}IPeym_j3H9z!IT~HIr$Tpx;ncFscwcj9X&i9i{NMP?d zYW3>3QztV|CKWae=~g<=1 zS7<|>?HdaT^G@3`jmVyHs+5gk@4KFsu)pBBl7B9cfzL;8Q}agZ8BUtpJV%u#KR>;+ zcliO|)n$99e$Cn*Dg}odzk)hmZA%m3`hI}_7^U`xfa59xI*Uz%jvlA~j^s2r6Q!wa z!ro;!c3m-+d++E?H;?_ccdvQpX}5NizZ7!PD2ncP@^9TB9vRpwI^g<`Qysm7dXRVC z_N;H-_ub0XE-SjK`rh`TT%e<2W#-bYR_!Tb z-mW>s^9NgN`zSyVbngA8#BgYo*(^EAvclcU zoITtb&CN7=^Y!$?P`iY>apq=qYB@e{DOw95-UZs_37O8gnGf8D_WJR!eCI3cA) zK+pXCj^~H2o=&Jvdy~v1A$B?4L~iF+BNJ{xrK?wIg4VIHvLANR-8P`KdU)L;D~FZP z-WIjv_gE0!y04cv$e?(a#1YlFxjO8T)N1~3vm%qvt)U7Wkr@t)Gn+p-WVa<<`o2=4 z#zH$Z$;?d6>yUP(o&D9c+1b94oU@ei(X7I02ew=3%`f$*e&+M`-&Q#}dxN{o%zpOv zz>o(J&#Eo97mv5=9yd|e&o~zC{%~)`W9M79oHHKl=il<*NhflQN&9$Pd1O?KjTEcT z<=y49jO9w){vmQ-{I94prkUQA<8O!_}J z@H5md3T#X72x-5}6{TtC#pufr);6}kbAy(6_)xx1&o3*Z{$Wpc+a@zNkOO7G76N{Nnqo_@ar( zz9OR-2l@HkPuKnzX0J4v0IX66^i793Ra4a7fJo_8NQ5+ z%%==oxm>my&3Fq5joe$O4n+%>649(e1O36+pDXHnw?W*>|o!zcHsNLKP`z}wj zG`3-`vz4DeUOK=ol@9^rO{UqZqbYAp>=T}*-kZHWTah&G?V>PoQU#RDM}>ORB5I*R zt})dAGFtzoer>sjJbM5{#e&W=no#k0E>FJ&g9vp_S2^PJ15^d=3>!EfLxraC$qBdu z3Q{c?!qjxu%Jd6P?IM;mq}%_AN#Q*!YO>g-9V!HgDzaPjPM57e6|07}*hpP?m!H4; zMKD{0;mpp=sCNKiat8lUc7LgBC8I>kxZ#P9(6ueak{xjiE$ge7=N5Qe3r?F{dA_j4 zRZV}qEBl%3{a)=|9Q5ZZO)P7UpEz<>i83#efk`tI!h&_^5W$@LFZ*x&ZeeMu$;$NQ zhLW~_lmA@}=t=(J{*h0#dGnX=-@m(+pj6*HHs5tB+MY1Qh&h^rqy4|^{9OKN(>%kJ zjEIr6A8vBIXuY7!KnIG~Y+c=9v{;6(^Ekxo#3_&t7P`J4@MuvW?SvidkM|oQ6o@)c zZ(*iDJ$zRK>J>2xN`h6(QXiM+&7~rfkKD%t-T72EA%KBqi_r2Mb7~O9K`!loZd^)c z+aWSyP)lFyz}fylvGbb~fq2M9YiIxFFYcW%GGz)nISQB*()s8!?iE(24I7@yj5^~b zG1||&X-&Km|H6O!#N!ve+4-XL=Zz`ge8*)HU$B8y!4@h7pmEP)I)xf#>m&)PW^t19&4F&k2f(j_#R{$^W(9 zjMqiN!-_M@fz9R4NgpC0Kt2z}2;=2gmn48K^FRJ@D?#T6dvaG-7l>pqA8SM10%;Mc zt%7g?@(1kMoqy1Vd*g2SBdwr3Jy*&##MtXJ4DS+K^X$t8eR2nbzBfS1i3~3mr}k>Un8@ z6x*1vtKrOGi5$o22W1~TFwX#FL&x?xojvn;yUcV4w;^{%1B&3DA#Q?pycN3f;Naln zgHu2a<@{;hC!oZPt4iqRD7X`~C4K-~lJui9FP=&K%vkX*-5uHKFmY(j@Uv7a;rMdX z1H487f8XqXfEj!Ku%UIo~2 zXXyvOWj3c0>)2I`JsIvJ`R2#ZUoI%R)OlnxAZa4ier?o2nqSkJf90I>Wx1v5@#LuO z6}BDpq@v4t_D~ZG{&HH!cW^{yd+GkdjWJ=RVwY9Pr$U&$N)@9TbT`?ZaYF{L@S2C> z?)RYWOI_X`T#@rup39z|C^c>f|hOLpFo_=b6-qGA`L>1^`v_N2x z{0|(67D#ZyrFNR<_&(6a7-kft4X46zfSxVZEmnj~L9`tFT2xp-4oYc+&p7IeKl>LI z6{#9_I++}&eG1rz_pguVAy1fmwo|5=`yHWyLoabgDxesBPnTue+z zomB#)F=rCNHq7;yJOia7aPMc5>>w?GngIa&{CtNtNl9!cWQ+)c-NGg;QQ0$|PxR(D(Gc*wP7i`xd&vGdBXx74TRt$p&bHR2?O0L(u!!XFg zw&eGh=WMMZL4g2Yl1MOzA@Z`v&!@52cc5=J_k+|ig)SHIbr#2_jr_R6+^m5;9vk5m5^YH+1&5zP{9 zE>5O1GPKS^wJcx0d?|Hic#5t*{vn&Jr=OL)k=(ADF99S|d^hqZrYp%6Uw@%Q^e1R6yM9fi;2L z5UC}GOB9c#XOvpx!ZcqM%poQV%0BAXQ;#H?K&<@iyLJVgJi_>g(&2)wIt6HGGjN}w ze^U(gZs|_9CFr)u^c}P*tpKw-qgVcj^*uGE!r~Ac9?fr^*?b74h9S_f1=@GqDho0V z=a1Hrxu6-u`mQb}KcJ~3mkcR0 zRUlhGxqRq`zew9IwVyMSa=)9ZGhFp>>R8~L5Wx=~3P`_Ng$T$LeFs3zAUMQ3Dh1HO z{lGw)?XWa<36SHKTm2bAa$Fn`h?t!iN4hQoxC7*}zm{|^vFg!J$YN#7KA97x!= z4M<~%?FbJZ?s^Icu&Iez50+}EFA2FE3x(UX2Y30Q?8OA5I!U_@1`LCN8UrSLJ`!H^ zdH>W(wAE+7hCAd3IIusyTfWnPGQsLW00#}IAdY)nvS~;oWYWbq5o{HNdYd4u#s)yP z30z*7sR-RIzfDUlyNu`TpJ{-PkJ;4(a zDj$jWZcngD*V;0(TyI<%rj~B+Mz`4@k+&!zK`?+G)M_Awf>U$wU&Jt#Yn6a3hIv zkziEN_@WJXqW(bx_6N8oK-RN_y^UD0@nmn_b;=I{jqFaDk}R|biKdD`gn?$N#ro2~ zS_U+Me4w${Z8aScm?DM;D+-KmFvh``+Co&)xOUSJvGh+)qB$RuWd|_}x*$+Vzk#2Y zlK3STahDchg#t5IYsO0+`vJ7XUml*19k_E~qQ7EoWe;IN;6wxiWfMYVJO$E^Gxgj& zc{qFJnUCn9MS;CQ04jsH25!Z@4mf1jRwjKH zah?!$EPRDz6B~eb5vrONkX=9^`mEYmZTH8_1vwjxbd&`4g7HIIxEj#XNg~UEu#N0j z(3$XPMRvXy+HjovCgkj5XszmQWeO5#$eV#(Z3jdrW52Nfi4rY0+!s&a_Y)J3)Py9- z(a99=Qx9TjINDicRu@L~>A}-R=eC6HHJvcN@k5Q%rypW0T4-EccGR(C+V&G@)REz3 z7`kY{o+RDZ0i_$64F=QVFmT^wz80=r1b7AHEuo>uNHhmsQ~ZXYa@xJf%sp$|Jq_@Z z3DJklh|&PEDjYF_7-p5>Uw}$aLWUABCg;@emj_qj+;3leES$=k5IyR_m4k_B;gB{H zW|9T~=a?%I4ou;Z2g9`O1?VFW<4M#*7|(wC!JiL;ZJEIT!U?)YFTA_22DV8U_7jlF zh{C?_psR(C3dK_lv0z{uHG-C@9=lltWYtIX*x%R|>;yHrA`klfB*+TUpCFGD60ITg5Go=!T)q4}?+TG4^sGU|>nI*EL12m%wK58uS^j8Yxa;=WV-!>IVu6 zXW^K}En!Fc3d|+?$c)Ju2?<0=&)<;Oy;lKi3po`H0dqqB1BJPtb_#^<)PAr8&@%3B zYHTD$3uu5&YNh!uOr6Cc2pKZSpxEN-;6~8KVTF~1s1PmYfa{wlL3hS8g{aK`y$y|R zoG~;0ED z?>$vTN6tba5fN&lmozdm3b66-9+|_j{}aI+eo+Lx0eo^|M6k^X27M7(Iypj#D*+Q- zuwnJZrzt@;fJkx>k_j>zWvr+T=a8X@z&Nl07^8{J$+3L(H;jvn04nMQ;a*adARgM`#e;lRLyauLsmRMEgxj_1#FBr<{>>J>;-N2xdF#2VIv`k+H2FYt-wSn^ZpWqkKmJj#fEJYzSV>v zQs7c1RwObUll+g+NZ*6XN8Ct|NfGWpq*IbbSx{jTVHv>{z_|7X3x(`t80NRz4Er}c zFqm~h$Vu?PEFF0$Io({eO_+6Oa5XkX0#pI!!~zQ!_X3D$0_=q4x)k{~#HLZO3+2M0 zNQ9w;pG><(iJC?(==mt@B|mmh&hE?ys|2zf9N*-T2S@$-CcY*}O5Z~D{*+r1$0u#8 z8&sRHLlDI??&NE8i5&NFqkr*>)_~w5Cu;>@38AGY!c+ykfi?`=0jqu>xV}bwO9qX> z(1Mc#63VK3{3=BVe~Czx&^Z7|AhvzD4ATzgU*DSF4K$LO_w+j4V4@Skp+qtZA_x#K zo7E=}CYS<{rVxETc}|y?`qqSng_El!V~i%?PpZWMpW^V7;h4(!We&TJXJl9^861k$ zj@KxS7uArF9ytEVq&?t63rcq503taRN)>qK2;w+6K>`v5Li8&*`B^vGXaYg4>grs! zFC~znDtMk@kp|fUJK`zeZ6Uhg1Z-;;qN%C+212fW%w64;m{AhniVo};n}@90Eeg~@$nv>Gy|g6(62gDTk8$;b~viwYI` z8^$Q$R6tyG&>e(t#uMBzqV7lT3^rvrbkO>GdP+bq!bP48Ck~7ompg=MU>7_p!T#q)yICGBpnd1$Z34 z)Qe?XVM;17m4Ytw0Gl9L=h!P@XnAWRDV;j)*S$U&*EtNX@SkuSvtI(j zNf^R&mF6ztnWHAtO0ibSEERG`$E0;CgM$!|6P30kw^jhpCY|C>z3=<`N1XjH2c!U6G+|Qg$6J*ut=}fx2W9p7rw8Ks-!(IGh!i+#D0qaY9KZ}Yk&)y$SvPD3mkjbs66A+GnO6=ueBxD3e zeLp5f3*pw(+#I2pjxDIb@S^WeLVV1-0|iN-=Y=C2wm(6rnFi>O9Nq8E<(K%I;lbcZ zswUqRBVcyVBc>`CdwDlFSU^VRq}xv^$Iqqj>#rd3!NGCds~x+yAP8-#_M={xRdwwS zVVmvTQS!t6rO`ynv4_eyjbO5&vt_&vAP8oLQ9wzKeNLoi|Ej-lDKXXK@FDORgk2cB zFpRrDgrk^XF-)$^wSyf(0zx=f6G!uU#u1o9PrQgci-NFP$Rm$CPFQTPKGQO7J(Y5+ zuLUo{Wkn!Lis2N*!9w(aB zs)Yq2Z?osc#p{GMEC`DR%E^p!8U}XHyBL({P~ki1w=kU zSkn|ZBKO&}#H%*83pMNo`5#JO0@uO30pz8mwnENP3V3Lw)wA}4gl3pQhK25)NBnbu z4CpzRzXdA|4xWx3mM1t_*SM$?cF$6K1x&5(w=U}X++lNOOyorMzj_r#eMCapY zC>+2yr%d3lh|3iSuZ~fU?i`kd?Jag&v43=|j4FIq2=5su2sT@g1lNI=5MBg_l6|$Ca`hn zodM~jMvdFtJU(3v1S3RtGEw5PF2!-M7=h(|4quDFt89zsX;4giovN3}UBKd`)FM>% zYR()6-+FRb5p!uh+C%I|(n5Iqid|9=W?M)!9QG&WGBg|0#-;jg*Qa> zkB3oX3jk*`acj#dRZ^lFm$j_QYvC)3G_hK(TIp5j~v-vPW zQwMfa;y*#ipMrc-3lk85rwk?|hk?gQ|9OMx->vZp>)|Bou=yS}*_AsOUB3dC4$qNJ zR6$b7nB*-I=6*)8FyXc>vH^Qh4-I)Xl#kkr7~Yc9#BXau{>pjs;m?E}T4ob_j+b`( z!J)nVzyV`K(HcNMgQTBIw77q!G$RRitAL?Olw>cEhdLvGO?v+Pc~yb+`SW79_aq~M zPA>up3dtATd@9lWLA+wd9@&tDQkvv~)o$boaI+@Cm z8|mr8pFMj<+dk|hi{I=bIRV}WHOQ#ED@*Rfu+p3ixt`Fb{oqrf{bM8oY*X@K)7-B+d@7O$ zw~89^dDINXUYEm|hv~y6B-V;R`K0rsBOdm8Y;uIe1ng^0l}Kf5+9y8j{?DE9&K;@4 zs}_}FuP#M|O{9~A1iKhvT4Km0@^5^}eB5pvT?8JFGCBOr8xT&xWx(UA%-&X#ftUjm zMDL7!nJU_YA&ZTqk^(Z?)$XcJ;xmWw2gf_Ns~?8h#1Z=t+~e?ak>_;s4eWq*VEzK> zA{?A>@87v(grUhTum26tE{UL!TcPrC2~h!f8^Y)W;SDhYwVG^!i1zTR{~XrRsSPZ) zubd-yo%RQK3P}vUJWexZ6O*mvG$!_YLDk!pz=^rbXz7+fNck}iWpFd6RXP&HB zjq6`?Y;JW==^U9==(;=JUH;P1r*m#;a8pp*%9DX1iY0zHYw$I@T3VQmO--#4cwVrz z4X*gy)6;j%kGEH?BzIgEwR<2V>*D|uR&u_l< zhW~B`m*o%0Z=a>5-MqNk(-BS@gm@Dw11APXT5phC)?lX6Eg`zvj60R`|xv&CW{P8SKJ%R!nrI@U^$H3N$UfbU)(3 zgS@6D?V!x>N8Kvs-`~w2^ZDnWn;e@r?}Z5wvw2RzJ?%T+$Yp77Z~p@pPcR(3P!@G$ zGUl{g`d$tbYBJru41(yi8Xg|VWYq1@5pL-`|P=Mw3o~N zLhBJ*`o(YEkWu%4{Yon%Bcmo1dZkAV;7vnALm--+CO+*Ca=kaHp`#NN8Odp4VzMnl zV}3lX(?;@?u`woNyn!E-w`89PhPLUau?yT^zxUyVKG_GOqyIe1%&dC#iu!z0G$ln) zW@damnNDkdy9!`_zA&mE$Fh2PFBHF=YiIfXTd#MrgVU0swYBxsnKSN}dci5cmUC!l zgoT3xlSWeLWW|6iMhVesYHH&1E+%={DCWJGxZ>@-YB-;fk%2k(7ccelZT4qizOVM& z@vpGsJFmfurg**<=yhClCLYDS&WUoT8ZLOdaM;3*%yHw51-46+z3Fg7Gnqvm-?=WQ zbr(kDk-vZQ=Ex;a&#Qy7@|UJ62MoL^r{V^`eig0`gwJ-iaQ4 zFp-584Mrph;K<9~bMvr&a6##$o z2MR5UAjv>peqG^5{LVg6qa!C`LHdZxPBlzS{J$e+K zb!fP6Ax2P&t|%)ix&hxM0=dK&FF3)8@|QKZY+*r#o)oe(6<=S)`ucjBTq(Uw!^GTN z79?d+QBj9HJ&O%|oK}sG9;GWODT&wJf$0e#3GKS^H5Z@!c1XxsFE1YF;;pC$`KK<4 z=)_iDkXA`)Pszo;ktgB>o5IZz`$Nr z6LS6*?!OkK`~6HtyYdrVSu5I)&CIsFe6IeRn3dP_R}0-<(!sA4y!7Oc?oTNAgQ`0^ zHp7J&Q^ugo#IE$~D)Wra^MZl_(26A*QsHhtNnYFdI!+XGv%8L2zv!0$?;Q2pz@F37m7__FQu71@hv!=eDUfisl zVb7jD?;0Bikb&K+vnp~OWtEqgZ)tD8HZX7&O~C5bRyGs`{h^itY|_Nk^nGtHqoboE zB3~8ZuqSvXjE#-CczB589{odFIy#Vi2o>1X!vn1})TyXOn&Uh!wF>aB(f(dK%oGhU z2;epXva(z#FCK+D0sl8&T1=8)Dfd|kzIJUL8Mbld3NMDA*f=;`hj$x9gCXbr=gyzk zJ9#qbE}!Cz*1fH7t9p8PG?E~=V3CD68t(zS<&)OYsfB4vi5gfg{5rGEUiJ3!!tS7( z(GKk0rG+Veig>6bVq#*PE?y*#%#MzZ=;bVynV;X70=J%$e$0q}E1RO2H*MM^QA5DP zNN}-=ap?3T^|^85#vvD%eaCll{9an(zps{)n|rmr{e;i&@u49h;8zB)Xkh3zDRQFR z`;Z|&KVLWPIIcDqFYh`_2G*N2cpi}J95OcM!RgRHJWP}!P%NR{E+8U8hajJ8>($RkaW9`#a}CnDIB%sxG=Pv{bw~v%1jfNZ>O(>C>C-2ytEt&h1Mh_?N>l|g zEP%?A!6KInga5D?(8&qN$PmNo%qc5l^ziT~Dk-V9EtqksK&Sb&#ot_(U7tT+M|#uA zAFl19>_fY5{r()}OupgijpqX1SWxD;oH^LD{}>~3l**=uoU{RyXiHt1pWx-@<|g|C zFgswxB$k!&Vpm2mdJSagr~0C{c6Jx%#!kR>Jb*qzV4YQUcQ-fRu9w+m^K-Iy0@Q?1 zs(g(W%k;Lg)JW{# zj~GjvoH4M{!kPk}1THa%GGM}8KPLPNryRJ17(d9Eq32rZL-pb0 z;-UgjOU+xHon3#cCFz3=w+*uZaip-Zu^}r|M&`T5wOd?VTOz+|{o)q(ZGo~%fS%zZ z`YhJn3S8D8Kf$z_z?2k`x%>C}xYw=c4`hDX(#QAT;tgcB;QYTU`Tz3|krfnPQ_a~t Ty|ncd_(%PS_TemLbN~MX`_. .. code-block:: none - + @@ -341,31 +341,31 @@ Let's iterative over all entries ######### RunKey(config_id=1, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.08510638297872342, time=1.5742390155792236, status=, starttime=1614200097.6430755, endtime=1614200099.234657, additional_info={'duration': 1.5250165462493896, 'num_run': 2, 'train_loss': 0.0, 'configuration_origin': 'Initial design'}) + RunValue(cost=0.08510638297872342, time=1.8435535430908203, status=, starttime=1614200311.5242083, endtime=1614200313.3903134, additional_info={'duration': 1.7870872020721436, 'num_run': 2, 'train_loss': 0.0, 'configuration_origin': 'Initial design'}) ######### RunKey(config_id=2, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.07092198581560283, time=1.3192954063415527, status=, starttime=1614200099.281374, endtime=1614200100.6187062, additional_info={'duration': 1.2723724842071533, 'num_run': 3, 'train_loss': 0.06315789473684208, 'configuration_origin': 'Initial design'}) + RunValue(cost=0.07092198581560283, time=1.6207637786865234, status=, starttime=1614200313.4478457, endtime=1614200315.0885968, additional_info={'duration': 1.561046838760376, 'num_run': 3, 'train_loss': 0.06315789473684208, 'configuration_origin': 'Initial design'}) ######### RunKey(config_id=3, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.028368794326241176, time=1.2986373901367188, status=, starttime=1614200100.7023578, endtime=1614200102.020158, additional_info={'duration': 1.2698698043823242, 'num_run': 4, 'train_loss': 0.04210526315789476, 'configuration_origin': 'Initial design'}) + RunValue(cost=0.028368794326241176, time=1.6182870864868164, status=, starttime=1614200315.195403, endtime=1614200316.8338623, additional_info={'duration': 1.5786924362182617, 'num_run': 4, 'train_loss': 0.04210526315789476, 'configuration_origin': 'Initial design'}) ######### RunKey(config_id=4, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.1063829787234043, time=0.5181043148040771, status=, starttime=1614200102.1226707, endtime=1614200102.6591551, additional_info={'duration': 0.49018025398254395, 'num_run': 5, 'train_loss': 0.0, 'configuration_origin': 'Initial design'}) + RunValue(cost=0.1063829787234043, time=0.6055936813354492, status=, starttime=1614200316.959474, endtime=1614200317.584063, additional_info={'duration': 0.5693292617797852, 'num_run': 5, 'train_loss': 0.0, 'configuration_origin': 'Initial design'}) ######### RunKey(config_id=5, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.11347517730496459, time=0.4283101558685303, status=, starttime=1614200102.7768111, endtime=1614200103.2225783, additional_info={'duration': 0.40147924423217773, 'num_run': 6, 'train_loss': 0.09122807017543855, 'configuration_origin': 'Initial design'}) + RunValue(cost=0.11347517730496459, time=0.4995291233062744, status=, starttime=1614200317.729382, endtime=1614200318.247824, additional_info={'duration': 0.4695608615875244, 'num_run': 6, 'train_loss': 0.09122807017543855, 'configuration_origin': 'Initial design'}) ######### RunKey(config_id=6, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.06382978723404253, time=1.1663026809692383, status=, starttime=1614200105.6043441, endtime=1614200106.788883, additional_info={'duration': 1.118058204650879, 'num_run': 7, 'train_loss': 0.06666666666666665, 'configuration_origin': 'Random Search (sorted)'}) + RunValue(cost=0.06382978723404253, time=1.4327051639556885, status=, starttime=1614200321.4201791, endtime=1614200322.8727252, additional_info={'duration': 1.3762950897216797, 'num_run': 7, 'train_loss': 0.06666666666666665, 'configuration_origin': 'Random Search (sorted)'}) ######### RunKey(config_id=7, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.12056737588652477, time=0.6219511032104492, status=, starttime=1614200109.2634275, endtime=1614200109.9036276, additional_info={'duration': 0.597567081451416, 'num_run': 8, 'train_loss': 0.11929824561403513, 'configuration_origin': 'Random Search (sorted)'}) + RunValue(cost=0.12056737588652477, time=0.7547802925109863, status=, starttime=1614200325.8678422, endtime=1614200326.6437945, additional_info={'duration': 0.7238304615020752, 'num_run': 8, 'train_loss': 0.11929824561403513, 'configuration_origin': 'Random Search (sorted)'}) ######### RunKey(config_id=8, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=0.07092198581560283, time=0.622368574142456, status=, starttime=1614200110.080902, endtime=1614200110.7216692, additional_info={'duration': 0.5989117622375488, 'num_run': 9, 'train_loss': 0.07719298245614037, 'configuration_origin': 'Random Search'}) + RunValue(cost=0.07092198581560283, time=0.6920580863952637, status=, starttime=1614200326.8764231, endtime=1614200327.5869641, additional_info={'duration': 0.6660346984863281, 'num_run': 9, 'train_loss': 0.07719298245614037, 'configuration_origin': 'Random Search'}) ######### RunKey(config_id=9, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) - RunValue(cost=1.0, time=5.010637044906616, status=, starttime=1614200110.9202907, endtime=1614200116.9502156, additional_info={'error': 'Timeout', 'configuration_origin': 'Random Search'}) + RunValue(cost=1.0, time=1.0065360069274902, status=, starttime=1614200327.8263855, endtime=1614200329.8494387, additional_info={'error': 'Timeout', 'configuration_origin': 'Random Search'}) ######### RunKey(config_id=10, instance_id='{"task_id": "breast_cancer"}', seed=0, budget=0.0) RunValue(cost=2147483647.0, time=0.0, status=, starttime=0.0, endtime=0.0, additional_info=None) @@ -506,11 +506,11 @@ The ``run_value`` contains all output from running the configuration: .. code-block:: none Cost: 0.08510638297872342 - Time: 1.5742390155792236 + Time: 1.8435535430908203 Status: StatusType.SUCCESS - Additional information: {'duration': 1.5250165462493896, 'num_run': 2, 'train_loss': 0.0, 'configuration_origin': 'Initial design'} - Start time: 1614200097.6430755 - End time 1614200099.234657 + Additional information: {'duration': 1.7870872020721436, 'num_run': 2, 'train_loss': 0.0, 'configuration_origin': 'Initial design'} + Start time: 1614200311.5242083 + End time 1614200313.3903134 @@ -618,8 +618,8 @@ model_selection.GridSearchCV.html>`_. .. code-block:: none {'mean_test_score': array([0.91489362, 0.92907801, 0.97163121, 0.89361702, 0.88652482, - 0.93617021, 0.87943262, 0.92907801, 0. ]), 'mean_fit_time': array([1.57423902, 1.31929541, 1.29863739, 0.51810431, 0.42831016, - 1.16630268, 0.6219511 , 0.62236857, 5.01063704]), 'params': [{'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'pca', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01, 'feature_preprocessor:pca:keep_variance': 0.9999, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'pca', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.9331254454871041, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 20, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.005069923784737444, 'feature_preprocessor:pca:keep_variance': 0.9967857433838874, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'pca', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 1.103855734598575e-05, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00014375616988222174, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 229, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.002766772136115771, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 180, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:pca:keep_variance': 0.7895711479212801, 'feature_preprocessor:pca:whiten': 'True', 'classifier:mlp:validation_fraction': 0.1}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'k_nearest_neighbors', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'pca', 'classifier:k_nearest_neighbors:n_neighbors': 4, 'classifier:k_nearest_neighbors:p': 2, 'classifier:k_nearest_neighbors:weights': 'distance', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.008015420020402715, 'feature_preprocessor:pca:keep_variance': 0.8047274080856589, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'none', 'classifier:__choice__': 'libsvm_svc', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'pca', 'classifier:libsvm_svc:C': 100.5905006626969, 'classifier:libsvm_svc:gamma': 0.011333066835975528, 'classifier:libsvm_svc:kernel': 'poly', 'classifier:libsvm_svc:max_iter': -1, 'classifier:libsvm_svc:shrinking': 'True', 'classifier:libsvm_svc:tol': 0.012391313886912093, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010000000000000004, 'feature_preprocessor:pca:keep_variance': 0.9290439925152777, 'feature_preprocessor:pca:whiten': 'False', 'classifier:libsvm_svc:coef0': 0.08087614244138486, 'classifier:libsvm_svc:degree': 3}, {'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'pca', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5422582251087723, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 17, 'classifier:random_forest:min_samples_split': 15, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0038512976944604285, 'feature_preprocessor:pca:keep_variance': 0.5735718374870298, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'pca', 'classifier:bernoulli_nb:alpha': 1.649866096986667, 'classifier:bernoulli_nb:fit_prior': 'True', 'feature_preprocessor:pca:keep_variance': 0.6690671698975657, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'pca', 'classifier:qda:reg_param': 0.025787528374861868, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.9927073373709583, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.02540312690097038, 'feature_preprocessor:pca:keep_variance': 0.8695982277529214, 'feature_preprocessor:pca:whiten': 'True'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'pca', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1.0396875363480713e-08, 'classifier:gradient_boosting:learning_rate': 0.10772429102634291, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 240, 'classifier:gradient_boosting:min_samples_leaf': 1, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010777635603437951, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 123, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:pca:keep_variance': 0.546349479974553, 'feature_preprocessor:pca:whiten': 'True'}], 'rank_test_scores': array([5, 3, 1, 6, 7, 2, 8, 3, 9]), 'status': ['Success', 'Success', 'Success', 'Success', 'Success', 'Success', 'Success', 'Success', 'Timeout'], 'budgets': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'param_balancing:strategy': masked_array(data=['none', 'none', 'weighting', 'weighting', 'none', + 0.93617021, 0.87943262, 0.92907801, 0. ]), 'mean_fit_time': array([1.84355354, 1.62076378, 1.61828709, 0.60559368, 0.49952912, + 1.43270516, 0.75478029, 0.69205809, 1.00653601]), 'params': [{'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'pca', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01, 'feature_preprocessor:pca:keep_variance': 0.9999, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'pca', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.9331254454871041, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 20, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.005069923784737444, 'feature_preprocessor:pca:keep_variance': 0.9967857433838874, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'pca', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 1.103855734598575e-05, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00014375616988222174, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 229, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.002766772136115771, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 180, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:pca:keep_variance': 0.7895711479212801, 'feature_preprocessor:pca:whiten': 'True', 'classifier:mlp:validation_fraction': 0.1}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'k_nearest_neighbors', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'pca', 'classifier:k_nearest_neighbors:n_neighbors': 4, 'classifier:k_nearest_neighbors:p': 2, 'classifier:k_nearest_neighbors:weights': 'distance', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.008015420020402715, 'feature_preprocessor:pca:keep_variance': 0.8047274080856589, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'none', 'classifier:__choice__': 'libsvm_svc', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'pca', 'classifier:libsvm_svc:C': 100.5905006626969, 'classifier:libsvm_svc:gamma': 0.011333066835975528, 'classifier:libsvm_svc:kernel': 'poly', 'classifier:libsvm_svc:max_iter': -1, 'classifier:libsvm_svc:shrinking': 'True', 'classifier:libsvm_svc:tol': 0.012391313886912093, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010000000000000004, 'feature_preprocessor:pca:keep_variance': 0.9290439925152777, 'feature_preprocessor:pca:whiten': 'False', 'classifier:libsvm_svc:coef0': 0.08087614244138486, 'classifier:libsvm_svc:degree': 3}, {'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'pca', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5422582251087723, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 17, 'classifier:random_forest:min_samples_split': 15, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0038512976944604285, 'feature_preprocessor:pca:keep_variance': 0.5735718374870298, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'pca', 'classifier:bernoulli_nb:alpha': 1.649866096986667, 'classifier:bernoulli_nb:fit_prior': 'True', 'feature_preprocessor:pca:keep_variance': 0.6690671698975657, 'feature_preprocessor:pca:whiten': 'False'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'pca', 'classifier:qda:reg_param': 0.025787528374861868, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.9927073373709583, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.02540312690097038, 'feature_preprocessor:pca:keep_variance': 0.8695982277529214, 'feature_preprocessor:pca:whiten': 'True'}, {'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'pca', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1.0396875363480713e-08, 'classifier:gradient_boosting:learning_rate': 0.10772429102634291, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 240, 'classifier:gradient_boosting:min_samples_leaf': 1, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010777635603437951, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 123, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:pca:keep_variance': 0.546349479974553, 'feature_preprocessor:pca:whiten': 'True'}], 'rank_test_scores': array([5, 3, 1, 6, 7, 2, 8, 3, 9]), 'status': ['Success', 'Success', 'Success', 'Success', 'Success', 'Success', 'Success', 'Success', 'Timeout'], 'budgets': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'param_balancing:strategy': masked_array(data=['none', 'none', 'weighting', 'weighting', 'none', 'none', 'weighting', 'weighting', 'weighting'], mask=[False, False, False, False, False, False, False, False, False], @@ -1111,7 +1111,7 @@ The explained variance ratio per stage .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 29.480 seconds) + **Total running time of the script:** ( 0 minutes 25.007 seconds) .. _sphx_glr_download_examples_40_advanced_example_get_pipeline_components.py: diff --git a/development/_sources/examples/40_advanced/example_metrics.rst.txt b/development/_sources/examples/40_advanced/example_metrics.rst.txt index 6575a528d5..685f614c21 100644 --- a/development/_sources/examples/40_advanced/example_metrics.rst.txt +++ b/development/_sources/examples/40_advanced/example_metrics.rst.txt @@ -277,13 +277,13 @@ Second example: Use own accuracy metric ################################################################################ Use self defined accuracy metric - Accuracy score 0.937063 using accu + Accuracy score 0.944056 using accu ################################################################################ Use self defined error metric - [WARNING] [2021-02-24 21:03:57,227:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:03:58,262:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:03:59,100:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - Error rate -0.0629371 using error + [WARNING] [2021-02-24 21:07:44,021:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:07:45,244:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:07:46,226:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + Error rate -0.0559441 using error @@ -363,19 +363,19 @@ Third example: Use own accuracy metric with additional argument ################################################################################ Use self defined accuracy with additional argument - Accuracy score 0.937063 using accu_add + Accuracy score 0.944056 using accu_add ################################################################################ Use self defined error with additional argument - [WARNING] [2021-02-24 21:05:09,745:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:05:12,757:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:05:17,308:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:05:18,907:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:05:51,552:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:05:51,553:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:05:52,524:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:05:52,525:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:05:53,294:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. - [WARNING] [2021-02-24 21:05:53,295:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:08:57,220:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:09:00,867:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:09:05,895:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:09:07,866:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:09:41,064:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:09:41,065:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:09:42,279:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:09:42,279:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:09:43,167:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. + [WARNING] [2021-02-24 21:09:43,167:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost. Error rate 0.615385 using error_add @@ -384,7 +384,7 @@ Third example: Use own accuracy metric with additional argument .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 4 minutes 39.262 seconds) + **Total running time of the script:** ( 4 minutes 49.418 seconds) .. _sphx_glr_download_examples_40_advanced_example_metrics.py: diff --git a/development/_sources/examples/40_advanced/example_pandas_train_test.rst.txt b/development/_sources/examples/40_advanced/example_pandas_train_test.rst.txt index b4451efa0a..bf836cd4e0 100644 --- a/development/_sources/examples/40_advanced/example_pandas_train_test.rst.txt +++ b/development/_sources/examples/40_advanced/example_pandas_train_test.rst.txt @@ -278,7 +278,7 @@ Plot the ensemble performance .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 2 minutes 1.664 seconds) + **Total running time of the script:** ( 1 minutes 55.878 seconds) .. _sphx_glr_download_examples_40_advanced_example_pandas_train_test.py: diff --git a/development/_sources/examples/40_advanced/example_resampling.rst.txt b/development/_sources/examples/40_advanced/example_resampling.rst.txt index 5fe48967db..c44372f6ed 100644 --- a/development/_sources/examples/40_advanced/example_resampling.rst.txt +++ b/development/_sources/examples/40_advanced/example_resampling.rst.txt @@ -357,7 +357,7 @@ splitting it on the first feature. .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 5 minutes 59.337 seconds) + **Total running time of the script:** ( 6 minutes 6.687 seconds) .. _sphx_glr_download_examples_40_advanced_example_resampling.py: diff --git a/development/_sources/examples/40_advanced/sg_execution_times.rst.txt b/development/_sources/examples/40_advanced/sg_execution_times.rst.txt index 173e8d8e55..99ccf262c2 100644 --- a/development/_sources/examples/40_advanced/sg_execution_times.rst.txt +++ b/development/_sources/examples/40_advanced/sg_execution_times.rst.txt @@ -5,18 +5,18 @@ Computation times ================= -**15:20.036** total execution time for **examples_40_advanced** files: +**15:28.268** total execution time for **examples_40_advanced** files: +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_resampling.py` (``example_resampling.py``) | 05:59.337 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_resampling.py` (``example_resampling.py``) | 06:06.687 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_metrics.py` (``example_metrics.py``) | 04:39.262 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_metrics.py` (``example_metrics.py``) | 04:49.418 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_pandas_train_test.py` (``example_pandas_train_test.py``) | 02:01.664 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_calc_multiple_metrics.py` (``example_calc_multiple_metrics.py``) | 01:57.729 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_calc_multiple_metrics.py` (``example_calc_multiple_metrics.py``) | 01:56.139 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_pandas_train_test.py` (``example_pandas_train_test.py``) | 01:55.878 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_get_pipeline_components.py` (``example_get_pipeline_components.py``) | 00:29.480 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_get_pipeline_components.py` (``example_get_pipeline_components.py``) | 00:25.007 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_40_advanced_example_feature_types.py` (``example_feature_types.py``) | 00:14.154 | 0.0 MB | +| :ref:`sphx_glr_examples_40_advanced_example_feature_types.py` (``example_feature_types.py``) | 00:13.549 | 0.0 MB | +------------------------------------------------------------------------------------------------------------------+-----------+--------+ diff --git a/development/_sources/examples/60_search/example_parallel_manual_spawning_cli.rst.txt b/development/_sources/examples/60_search/example_parallel_manual_spawning_cli.rst.txt index bd99add028..2c894b68e0 100644 --- a/development/_sources/examples/60_search/example_parallel_manual_spawning_cli.rst.txt +++ b/development/_sources/examples/60_search/example_parallel_manual_spawning_cli.rst.txt @@ -301,16 +301,16 @@ Start Auto-sklearn .. code-block:: none auto-sklearn results: - Dataset name: f2fc4407-76e4-11eb-8a42-000d3a9fdd57 + Dataset name: 7abf7056-76e5-11eb-8a4c-000d3a18df1e Metric: accuracy Best validation score: 0.978723 - Number of target algorithm runs: 13 - Number of successful target algorithm runs: 13 + Number of target algorithm runs: 11 + Number of successful target algorithm runs: 9 Number of crashed target algorithm runs: 0 - Number of target algorithms that exceeded the time limit: 0 + Number of target algorithms that exceeded the time limit: 2 Number of target algorithms that exceeded the memory limit: 0 - Accuracy score 0.9440559440559441 + Accuracy score 0.951048951048951 @@ -342,7 +342,7 @@ line. .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 38.542 seconds) + **Total running time of the script:** ( 0 minutes 40.713 seconds) .. _sphx_glr_download_examples_60_search_example_parallel_manual_spawning_cli.py: diff --git a/development/_sources/examples/60_search/example_parallel_manual_spawning_python.rst.txt b/development/_sources/examples/60_search/example_parallel_manual_spawning_python.rst.txt index efb978a97e..f9b3cc4326 100644 --- a/development/_sources/examples/60_search/example_parallel_manual_spawning_python.rst.txt +++ b/development/_sources/examples/60_search/example_parallel_manual_spawning_python.rst.txt @@ -210,11 +210,11 @@ which means that it is automatically stopped once all computation is done. .. code-block:: none - [ERROR] [2021-02-24 21:12:52,219:asyncio] _GatheringFuture exception was never retrieved + [ERROR] [2021-02-24 21:16:42,113:asyncio] _GatheringFuture exception was never retrieved future: <_GatheringFuture finished exception=CancelledError()> asyncio.exceptions.CancelledError auto-sklearn results: - Dataset name: 09778260-76e5-11eb-8a42-000d3a9fdd57 + Dataset name: 9281355a-76e5-11eb-8a4c-000d3a18df1e Metric: accuracy Best validation score: 0.978723 Number of target algorithm runs: 14 @@ -231,7 +231,7 @@ which means that it is automatically stopped once all computation is done. .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 46.828 seconds) + **Total running time of the script:** ( 0 minutes 46.835 seconds) .. _sphx_glr_download_examples_60_search_example_parallel_manual_spawning_python.py: diff --git a/development/_sources/examples/60_search/example_parallel_n_jobs.rst.txt b/development/_sources/examples/60_search/example_parallel_n_jobs.rst.txt index 62a5d1f5ba..1f90ff71cb 100644 --- a/development/_sources/examples/60_search/example_parallel_n_jobs.rst.txt +++ b/development/_sources/examples/60_search/example_parallel_n_jobs.rst.txt @@ -114,10 +114,10 @@ To use ``n_jobs_`` we must guard the code Dataset name: breast_cancer Metric: accuracy Best validation score: 0.992908 - Number of target algorithm runs: 49 - Number of successful target algorithm runs: 46 + Number of target algorithm runs: 43 + Number of successful target algorithm runs: 39 Number of crashed target algorithm runs: 1 - Number of target algorithms that exceeded the time limit: 2 + Number of target algorithms that exceeded the time limit: 3 Number of target algorithms that exceeded the memory limit: 0 @@ -127,7 +127,7 @@ To use ``n_jobs_`` we must guard the code .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 2 minutes 4.370 seconds) + **Total running time of the script:** ( 2 minutes 7.258 seconds) .. _sphx_glr_download_examples_60_search_example_parallel_n_jobs.py: diff --git a/development/_sources/examples/60_search/example_random_search.rst.txt b/development/_sources/examples/60_search/example_random_search.rst.txt index e7211b07c3..d9d367895e 100644 --- a/development/_sources/examples/60_search/example_random_search.rst.txt +++ b/development/_sources/examples/60_search/example_random_search.rst.txt @@ -142,7 +142,7 @@ Fit a classifier using ROAR ################################################################################ Results for ROAR. - [(0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, + [(0.100000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'k_nearest_neighbors', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:k_nearest_neighbors:n_neighbors': 17, 'classifier:k_nearest_neighbors:p': 1, 'classifier:k_nearest_neighbors:weights': 'distance', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0064240359731805256, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 366, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -150,7 +150,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 0.4049938193379549, 'classifier:adaboost:max_depth': 1, 'classifier:adaboost:n_estimators': 388, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1287, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:select_percentile_classification:percentile': 61.930882023664026, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info'}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'kitchen_sinks', 'classifier:sgd:alpha': 0.023230573548442986, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.00914452052320379, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.004761916582570089, 'feature_preprocessor:kitchen_sinks:gamma': 0.5053844026292638, 'feature_preprocessor:kitchen_sinks:n_components': 1473, 'classifier:sgd:l1_ratio': 0.0004329999519235331}, dataset_properties={ 'task': 1, 'sparse': False, @@ -158,7 +158,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'k_nearest_neighbors', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:k_nearest_neighbors:n_neighbors': 17, 'classifier:k_nearest_neighbors:p': 1, 'classifier:k_nearest_neighbors:weights': 'distance', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0064240359731805256, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 366, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False'}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:sgd:alpha': 0.007717703000374906, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'invscaling', 'classifier:sgd:loss': 'squared_hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.026297613044572284, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.29821963832916193, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.9405196255765775, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.0994844714209496, 'feature_preprocessor:select_rates_classification:alpha': 0.05423283428970822, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif', 'classifier:sgd:eta0': 4.043442186754495e-05, 'classifier:sgd:l1_ratio': 2.6110464864353516e-06, 'classifier:sgd:power_t': 0.2409161101117413}, dataset_properties={ 'task': 1, 'sparse': False, @@ -166,7 +166,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'classifier:adaboost:algorithm': 'SAMME.R', 'classifier:adaboost:learning_rate': 0.04959158806147936, 'classifier:adaboost:max_depth': 1, 'classifier:adaboost:n_estimators': 144, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0015684507609100432, 'feature_preprocessor:random_trees_embedding:bootstrap': 'False', 'feature_preprocessor:random_trees_embedding:max_depth': 10, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 11, 'feature_preprocessor:random_trees_embedding:min_samples_split': 2, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 61}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'pca', 'classifier:passive_aggressive:C': 1.4828149555877955e-05, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'squared_hinge', 'classifier:passive_aggressive:tol': 7.428420524090334e-05, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.8555517414153896, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.21340925663218369, 'feature_preprocessor:pca:keep_variance': 0.7577566410659637, 'feature_preprocessor:pca:whiten': 'True'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -174,7 +174,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:sgd:alpha': 0.007717703000374906, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'invscaling', 'classifier:sgd:loss': 'squared_hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.026297613044572284, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.29821963832916193, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.9405196255765775, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.0994844714209496, 'feature_preprocessor:select_rates_classification:alpha': 0.05423283428970822, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif', 'classifier:sgd:eta0': 4.043442186754495e-05, 'classifier:sgd:l1_ratio': 2.6110464864353516e-06, 'classifier:sgd:power_t': 0.2409161101117413}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'classifier:adaboost:algorithm': 'SAMME.R', 'classifier:adaboost:learning_rate': 0.04959158806147936, 'classifier:adaboost:max_depth': 1, 'classifier:adaboost:n_estimators': 144, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0015684507609100432, 'feature_preprocessor:random_trees_embedding:bootstrap': 'False', 'feature_preprocessor:random_trees_embedding:max_depth': 10, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 11, 'feature_preprocessor:random_trees_embedding:min_samples_split': 2, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 61}, dataset_properties={ 'task': 1, 'sparse': False, @@ -182,7 +182,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:passive_aggressive:C': 0.008807665845919431, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.001174447028725537, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.42677247105834165, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7278293151795671, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.16271852122755062, 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'True', 'feature_preprocessor:fast_ica:n_components': 1631}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gaussian_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'fast_ica', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -190,7 +190,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:passive_aggressive:C': 0.0004359908703182886, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.046378023822235014, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010336740037458521, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1491, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:kernel_pca:kernel': 'cosine', 'feature_preprocessor:kernel_pca:n_components': 324}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5109910142446875, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 15, 'classifier:extra_trees:min_samples_split': 13, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.02248165436933192, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9021208914219154, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 13, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 4, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -198,7 +198,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'kitchen_sinks', 'classifier:sgd:alpha': 0.023230573548442986, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.00914452052320379, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.004761916582570089, 'feature_preprocessor:kitchen_sinks:gamma': 0.5053844026292638, 'feature_preprocessor:kitchen_sinks:n_components': 1473, 'classifier:sgd:l1_ratio': 0.0004329999519235331}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 0.00030813800501854375, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0005608805549103165, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7936147135745113, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.030676849677106797, 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'complete', 'feature_preprocessor:feature_agglomeration:n_clusters': 165, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -206,7 +206,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 0.004988766464197923, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'classifier:lda:shrinkage_factor': 0.5035873895477795}, dataset_properties={ 'task': 1, 'sparse': False, @@ -214,7 +214,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5109910142446875, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 15, 'classifier:extra_trees:min_samples_split': 13, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.02248165436933192, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9021208914219154, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 13, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 4, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 0.24523905870324333, 'classifier:adaboost:max_depth': 6, 'classifier:adaboost:n_estimators': 431, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7134419180834684, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.08870795505650579, 'feature_preprocessor:select_rates_classification:alpha': 0.2932412686806637, 'feature_preprocessor:select_rates_classification:score_func': 'f_classif', 'feature_preprocessor:select_rates_classification:mode': 'fpr'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -222,7 +222,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'libsvm_svc', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:libsvm_svc:C': 1504.304341015277, 'classifier:libsvm_svc:gamma': 0.0007555524453942974, 'classifier:libsvm_svc:kernel': 'rbf', 'classifier:libsvm_svc:max_iter': -1, 'classifier:libsvm_svc:shrinking': 'True', 'classifier:libsvm_svc:tol': 0.024840701714247355, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0028437629981268096, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.6689921995428821, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 5, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 14, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gaussian_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'pca', 'feature_preprocessor:pca:keep_variance': 0.8872516294118539, 'feature_preprocessor:pca:whiten': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -230,7 +230,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 0.011436798452283344, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00013396299682257875, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 80, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.24669234139232454, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 11, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 19, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:mlp:validation_fraction': 0.1}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.30120094099413763, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 9, 'classifier:extra_trees:min_samples_split': 9, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0005412957104256315, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 433, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:select_rates_classification:alpha': 0.2648367650322158, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -238,7 +238,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:passive_aggressive:C': 0.22265490765045048, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'squared_hinge', 'classifier:passive_aggressive:tol': 0.0008475203927213822, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.1397059579803307, 'feature_preprocessor:kernel_pca:kernel': 'cosine', 'feature_preprocessor:kernel_pca:n_components': 797}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:passive_aggressive:C': 9.980960021582169, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'squared_hinge', 'classifier:passive_aggressive:tol': 1.4253174621059973e-05, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 996, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:select_percentile_classification:percentile': 17.78704008693171, 'feature_preprocessor:select_percentile_classification:score_func': 'f_classif'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -246,7 +246,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 0.00030813800501854375, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0005608805549103165, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7936147135745113, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.030676849677106797, 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'complete', 'feature_preprocessor:feature_agglomeration:n_clusters': 165, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean'}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, dataset_properties={ 'task': 1, 'sparse': False, @@ -254,7 +254,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 0.004988766464197923, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'classifier:lda:shrinkage_factor': 0.5035873895477795}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:qda:reg_param': 0.9285219569143033, 'feature_preprocessor:select_rates_classification:alpha': 0.12236261735421484, 'feature_preprocessor:select_rates_classification:score_func': 'chi2', 'feature_preprocessor:select_rates_classification:mode': 'fpr'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -262,7 +262,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 0.24523905870324333, 'classifier:adaboost:max_depth': 6, 'classifier:adaboost:n_estimators': 431, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7134419180834684, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.08870795505650579, 'feature_preprocessor:select_rates_classification:alpha': 0.2932412686806637, 'feature_preprocessor:select_rates_classification:score_func': 'f_classif', 'feature_preprocessor:select_rates_classification:mode': 'fpr'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, 'sparse': False, @@ -270,7 +270,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 1.1601959941064232e-07, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.001709623517340088, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 139, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.00012545462208270552, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.9170350818083943, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.07170482940067649, 'feature_preprocessor:random_trees_embedding:bootstrap': 'False', 'feature_preprocessor:random_trees_embedding:max_depth': 3, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 15, 'feature_preprocessor:random_trees_embedding:min_samples_split': 16, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 65, 'classifier:mlp:validation_fraction': 0.1}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 0.4049938193379549, 'classifier:adaboost:max_depth': 1, 'classifier:adaboost:n_estimators': 388, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1287, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:select_percentile_classification:percentile': 61.930882023664026, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -278,7 +278,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gaussian_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'pca', 'feature_preprocessor:pca:keep_variance': 0.8872516294118539, 'feature_preprocessor:pca:whiten': 'False'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:passive_aggressive:C': 0.008807665845919431, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.001174447028725537, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.42677247105834165, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7278293151795671, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.16271852122755062, 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'True', 'feature_preprocessor:fast_ica:n_components': 1631}, dataset_properties={ 'task': 1, 'sparse': False, @@ -286,7 +286,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'pca', 'classifier:passive_aggressive:C': 1.4828149555877955e-05, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'squared_hinge', 'classifier:passive_aggressive:tol': 7.428420524090334e-05, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.8555517414153896, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.21340925663218369, 'feature_preprocessor:pca:keep_variance': 0.7577566410659637, 'feature_preprocessor:pca:whiten': 'True'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'libsvm_svc', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:libsvm_svc:C': 1504.304341015277, 'classifier:libsvm_svc:gamma': 0.0007555524453942974, 'classifier:libsvm_svc:kernel': 'rbf', 'classifier:libsvm_svc:max_iter': -1, 'classifier:libsvm_svc:shrinking': 'True', 'classifier:libsvm_svc:tol': 0.024840701714247355, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0028437629981268096, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.6689921995428821, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 5, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 14, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -302,7 +302,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gaussian_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'fast_ica', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'decision_tree', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:decision_tree:criterion': 'entropy', 'classifier:decision_tree:max_depth_factor': 1.2793553059570615, 'classifier:decision_tree:max_features': 1.0, 'classifier:decision_tree:max_leaf_nodes': 'None', 'classifier:decision_tree:min_impurity_decrease': 0.0, 'classifier:decision_tree:min_samples_leaf': 17, 'classifier:decision_tree:min_samples_split': 8, 'classifier:decision_tree:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.2774840922979938, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 180, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:select_rates_classification:alpha': 0.17685368288603556, 'feature_preprocessor:select_rates_classification:score_func': 'chi2', 'feature_preprocessor:select_rates_classification:mode': 'fpr'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -310,7 +310,7 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 3.5186018743026294e-05, 'feature_preprocessor:kernel_pca:kernel': 'cosine', 'feature_preprocessor:kernel_pca:n_components': 1990}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'pca', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 1.6856483809869706e-05, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.003907811280099656, 'feature_preprocessor:pca:keep_variance': 0.8757795128884107, 'feature_preprocessor:pca:whiten': 'False', 'classifier:lda:shrinkage_factor': 0.15194201470839375}, dataset_properties={ 'task': 1, 'sparse': False, @@ -318,7 +318,15 @@ Fit a classifier using ROAR 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 0.002346736380281816, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False', 'classifier:lda:shrinkage_factor': 0.41404068289546914}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'libsvm_svc', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'pca', 'classifier:libsvm_svc:C': 0.5276958876086341, 'classifier:libsvm_svc:gamma': 0.08466074886596898, 'classifier:libsvm_svc:kernel': 'rbf', 'classifier:libsvm_svc:max_iter': -1, 'classifier:libsvm_svc:shrinking': 'True', 'classifier:libsvm_svc:tol': 1.5292886713480956e-05, 'feature_preprocessor:pca:keep_variance': 0.6423652347910127, 'feature_preprocessor:pca:whiten': 'False'}, + dataset_properties={ + 'task': 1, + 'sparse': False, + 'multilabel': False, + 'multiclass': False, + 'target_type': 'classification', + 'signed': False})), + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:bernoulli_nb:alpha': 0.6364128567278085, 'classifier:bernoulli_nb:fit_prior': 'True', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -331,13 +339,13 @@ Fit a classifier using ROAR Dataset name: breast_cancer Metric: accuracy Best validation score: 0.978723 - Number of target algorithm runs: 34 - Number of successful target algorithm runs: 33 + Number of target algorithm runs: 32 + Number of successful target algorithm runs: 32 Number of crashed target algorithm runs: 0 - Number of target algorithms that exceeded the time limit: 1 + Number of target algorithms that exceeded the time limit: 0 Number of target algorithms that exceeded the memory limit: 0 - Accuracy score 0.951048951048951 + Accuracy score 0.958041958041958 @@ -414,15 +422,7 @@ Fit a classifier using Random Search ################################################################################ Results for random search. - [(0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 0.4049938193379549, 'classifier:adaboost:max_depth': 1, 'classifier:adaboost:n_estimators': 388, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1287, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:select_percentile_classification:percentile': 61.930882023664026, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info'}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, + [(0.120000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'k_nearest_neighbors', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:k_nearest_neighbors:n_neighbors': 17, 'classifier:k_nearest_neighbors:p': 1, 'classifier:k_nearest_neighbors:weights': 'distance', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0064240359731805256, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 366, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -430,7 +430,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'k_nearest_neighbors', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:k_nearest_neighbors:n_neighbors': 17, 'classifier:k_nearest_neighbors:p': 1, 'classifier:k_nearest_neighbors:weights': 'distance', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0064240359731805256, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 366, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False'}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 0.011436798452283344, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00013396299682257875, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 80, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.24669234139232454, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 11, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 19, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:mlp:validation_fraction': 0.1}, dataset_properties={ 'task': 1, 'sparse': False, @@ -438,7 +438,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 0.011436798452283344, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00013396299682257875, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 80, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.24669234139232454, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 11, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 19, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:mlp:validation_fraction': 0.1}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'classifier:adaboost:algorithm': 'SAMME.R', 'classifier:adaboost:learning_rate': 0.04959158806147936, 'classifier:adaboost:max_depth': 1, 'classifier:adaboost:n_estimators': 144, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0015684507609100432, 'feature_preprocessor:random_trees_embedding:bootstrap': 'False', 'feature_preprocessor:random_trees_embedding:max_depth': 10, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 11, 'feature_preprocessor:random_trees_embedding:min_samples_split': 2, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 61}, dataset_properties={ 'task': 1, 'sparse': False, @@ -446,7 +446,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:sgd:alpha': 0.007717703000374906, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'invscaling', 'classifier:sgd:loss': 'squared_hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.026297613044572284, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.29821963832916193, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.9405196255765775, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.0994844714209496, 'feature_preprocessor:select_rates_classification:alpha': 0.05423283428970822, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif', 'classifier:sgd:eta0': 4.043442186754495e-05, 'classifier:sgd:l1_ratio': 2.6110464864353516e-06, 'classifier:sgd:power_t': 0.2409161101117413}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, dataset_properties={ 'task': 1, 'sparse': False, @@ -454,7 +454,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:qda:reg_param': 0.9285219569143033, 'feature_preprocessor:select_rates_classification:alpha': 0.12236261735421484, 'feature_preprocessor:select_rates_classification:score_func': 'chi2', 'feature_preprocessor:select_rates_classification:mode': 'fpr'}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:sgd:alpha': 0.007717703000374906, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'invscaling', 'classifier:sgd:loss': 'squared_hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.026297613044572284, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.29821963832916193, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.9405196255765775, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.0994844714209496, 'feature_preprocessor:select_rates_classification:alpha': 0.05423283428970822, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif', 'classifier:sgd:eta0': 4.043442186754495e-05, 'classifier:sgd:l1_ratio': 2.6110464864353516e-06, 'classifier:sgd:power_t': 0.2409161101117413}, dataset_properties={ 'task': 1, 'sparse': False, @@ -462,7 +462,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5109910142446875, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 15, 'classifier:extra_trees:min_samples_split': 13, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.02248165436933192, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9021208914219154, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 13, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 4, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:passive_aggressive:C': 0.0004359908703182886, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.046378023822235014, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010336740037458521, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1491, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:kernel_pca:kernel': 'cosine', 'feature_preprocessor:kernel_pca:n_components': 324}, dataset_properties={ 'task': 1, 'sparse': False, @@ -470,7 +470,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 0.00030813800501854375, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0005608805549103165, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7936147135745113, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.030676849677106797, 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'complete', 'feature_preprocessor:feature_agglomeration:n_clusters': 165, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean'}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 0.004988766464197923, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'classifier:lda:shrinkage_factor': 0.5035873895477795}, dataset_properties={ 'task': 1, 'sparse': False, @@ -478,7 +478,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:passive_aggressive:C': 0.0004359908703182886, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.046378023822235014, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010336740037458521, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1491, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:kernel_pca:kernel': 'cosine', 'feature_preprocessor:kernel_pca:n_components': 324}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gaussian_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'pca', 'feature_preprocessor:pca:keep_variance': 0.8872516294118539, 'feature_preprocessor:pca:whiten': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -486,7 +486,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:passive_aggressive:C': 0.22265490765045048, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'squared_hinge', 'classifier:passive_aggressive:tol': 0.0008475203927213822, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.1397059579803307, 'feature_preprocessor:kernel_pca:kernel': 'cosine', 'feature_preprocessor:kernel_pca:n_components': 797}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'pca', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 1.6856483809869706e-05, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.003907811280099656, 'feature_preprocessor:pca:keep_variance': 0.8757795128884107, 'feature_preprocessor:pca:whiten': 'False', 'classifier:lda:shrinkage_factor': 0.15194201470839375}, dataset_properties={ 'task': 1, 'sparse': False, @@ -494,7 +494,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'pca', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 1.6856483809869706e-05, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.003907811280099656, 'feature_preprocessor:pca:keep_variance': 0.8757795128884107, 'feature_preprocessor:pca:whiten': 'False', 'classifier:lda:shrinkage_factor': 0.15194201470839375}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'qda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:qda:reg_param': 0.9285219569143033, 'feature_preprocessor:select_rates_classification:alpha': 0.12236261735421484, 'feature_preprocessor:select_rates_classification:score_func': 'chi2', 'feature_preprocessor:select_rates_classification:mode': 'fpr'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -502,7 +502,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'kitchen_sinks', 'classifier:sgd:alpha': 0.023230573548442986, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.00914452052320379, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.004761916582570089, 'feature_preprocessor:kitchen_sinks:gamma': 0.5053844026292638, 'feature_preprocessor:kitchen_sinks:n_components': 1473, 'classifier:sgd:l1_ratio': 0.0004329999519235331}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 0.4049938193379549, 'classifier:adaboost:max_depth': 1, 'classifier:adaboost:n_estimators': 388, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1287, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:select_percentile_classification:percentile': 61.930882023664026, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -510,7 +510,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'libsvm_svc', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'pca', 'classifier:libsvm_svc:C': 0.5276958876086341, 'classifier:libsvm_svc:gamma': 0.08466074886596898, 'classifier:libsvm_svc:kernel': 'rbf', 'classifier:libsvm_svc:max_iter': -1, 'classifier:libsvm_svc:shrinking': 'True', 'classifier:libsvm_svc:tol': 1.5292886713480956e-05, 'feature_preprocessor:pca:keep_variance': 0.6423652347910127, 'feature_preprocessor:pca:whiten': 'False'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:passive_aggressive:C': 0.008807665845919431, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.001174447028725537, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.42677247105834165, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7278293151795671, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.16271852122755062, 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'True', 'feature_preprocessor:fast_ica:n_components': 1631}, dataset_properties={ 'task': 1, 'sparse': False, @@ -518,7 +518,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'qda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:qda:reg_param': 0.016623371973457868, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.006829049115480403, 'feature_preprocessor:select_percentile_classification:percentile': 30.763209202836737, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5109910142446875, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 15, 'classifier:extra_trees:min_samples_split': 13, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.02248165436933192, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9021208914219154, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 13, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 4, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -526,7 +526,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:bernoulli_nb:alpha': 0.6364128567278085, 'classifier:bernoulli_nb:fit_prior': 'True', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 0.00030813800501854375, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0005608805549103165, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7936147135745113, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.030676849677106797, 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'complete', 'feature_preprocessor:feature_agglomeration:n_clusters': 165, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -534,7 +534,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:lda:shrinkage': 'manual', 'classifier:lda:tol': 0.004988766464197923, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'classifier:lda:shrinkage_factor': 0.5035873895477795}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 0.044764818371201276, 'classifier:adaboost:max_depth': 6, 'classifier:adaboost:n_estimators': 146, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.022986655942059068, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.5806727063444871, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 18, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -542,7 +542,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 0.24523905870324333, 'classifier:adaboost:max_depth': 6, 'classifier:adaboost:n_estimators': 431, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7134419180834684, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.08870795505650579, 'feature_preprocessor:select_rates_classification:alpha': 0.2932412686806637, 'feature_preprocessor:select_rates_classification:score_func': 'f_classif', 'feature_preprocessor:select_rates_classification:mode': 'fpr'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'decision_tree', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:decision_tree:criterion': 'entropy', 'classifier:decision_tree:max_depth_factor': 1.2793553059570615, 'classifier:decision_tree:max_features': 1.0, 'classifier:decision_tree:max_leaf_nodes': 'None', 'classifier:decision_tree:min_impurity_decrease': 0.0, 'classifier:decision_tree:min_samples_leaf': 17, 'classifier:decision_tree:min_samples_split': 8, 'classifier:decision_tree:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.2774840922979938, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 180, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:select_rates_classification:alpha': 0.17685368288603556, 'feature_preprocessor:select_rates_classification:score_func': 'chi2', 'feature_preprocessor:select_rates_classification:mode': 'fpr'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -550,7 +550,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.30120094099413763, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 9, 'classifier:extra_trees:min_samples_split': 9, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0005412957104256315, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 433, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform', 'feature_preprocessor:select_rates_classification:alpha': 0.2648367650322158, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:passive_aggressive:C': 9.980960021582169, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'squared_hinge', 'classifier:passive_aggressive:tol': 1.4253174621059973e-05, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 996, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:select_percentile_classification:percentile': 17.78704008693171, 'feature_preprocessor:select_percentile_classification:score_func': 'f_classif'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -558,7 +558,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'pca', 'classifier:passive_aggressive:C': 1.4828149555877955e-05, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'squared_hinge', 'classifier:passive_aggressive:tol': 7.428420524090334e-05, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.8555517414153896, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.21340925663218369, 'feature_preprocessor:pca:keep_variance': 0.7577566410659637, 'feature_preprocessor:pca:whiten': 'True'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 5.015117577391619e-07, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'squared_hinge', 'classifier:sgd:penalty': 'l2', 'classifier:sgd:tol': 0.0017220448811125148, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.031351819286707806, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7178808644097026, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.242532034208847}, dataset_properties={ 'task': 1, 'sparse': False, @@ -566,7 +566,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:adaboost:algorithm': 'SAMME', 'classifier:adaboost:learning_rate': 0.044764818371201276, 'classifier:adaboost:max_depth': 6, 'classifier:adaboost:n_estimators': 146, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.022986655942059068, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.5806727063444871, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 18, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gaussian_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.012626439911944943, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7719846024700006, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.2516209446833604, 'feature_preprocessor:liblinear_svc_preprocessor:C': 4.242522324951457, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 0.013094957184057622}, dataset_properties={ 'task': 1, 'sparse': False, @@ -574,7 +574,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gaussian_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'fast_ica', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'kitchen_sinks', 'classifier:sgd:alpha': 0.023230573548442986, 'classifier:sgd:average': 'False', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'hinge', 'classifier:sgd:penalty': 'elasticnet', 'classifier:sgd:tol': 0.00914452052320379, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.004761916582570089, 'feature_preprocessor:kitchen_sinks:gamma': 0.5053844026292638, 'feature_preprocessor:kitchen_sinks:n_components': 1473, 'classifier:sgd:l1_ratio': 0.0004329999519235331}, dataset_properties={ 'task': 1, 'sparse': False, @@ -582,7 +582,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'lda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'kernel_pca', 'classifier:lda:shrinkage': 'None', 'classifier:lda:tol': 3.5186018743026294e-05, 'feature_preprocessor:kernel_pca:kernel': 'cosine', 'feature_preprocessor:kernel_pca:n_components': 1990}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'qda', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:qda:reg_param': 0.016623371973457868, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.006829049115480403, 'feature_preprocessor:select_percentile_classification:percentile': 30.763209202836737, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -590,7 +590,7 @@ Fit a classifier using Random Search 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:passive_aggressive:C': 9.980960021582169, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'squared_hinge', 'classifier:passive_aggressive:tol': 1.4253174621059973e-05, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 996, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:select_percentile_classification:percentile': 17.78704008693171, 'feature_preprocessor:select_percentile_classification:score_func': 'f_classif'}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'bernoulli_nb', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:bernoulli_nb:alpha': 0.6364128567278085, 'classifier:bernoulli_nb:fit_prior': 'True', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -603,13 +603,13 @@ Fit a classifier using Random Search Dataset name: breast_cancer Metric: accuracy Best validation score: 0.978723 - Number of target algorithm runs: 33 - Number of successful target algorithm runs: 32 + Number of target algorithm runs: 32 + Number of successful target algorithm runs: 31 Number of crashed target algorithm runs: 0 Number of target algorithms that exceeded the time limit: 1 Number of target algorithms that exceeded the memory limit: 0 - Accuracy score 0.951048951048951 + Accuracy score 0.9370629370629371 @@ -617,7 +617,7 @@ Fit a classifier using Random Search .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 1 minutes 51.580 seconds) + **Total running time of the script:** ( 1 minutes 56.661 seconds) .. _sphx_glr_download_examples_60_search_example_random_search.py: diff --git a/development/_sources/examples/60_search/example_sequential.rst.txt b/development/_sources/examples/60_search/example_sequential.rst.txt index 341278b894..0aa167254e 100644 --- a/development/_sources/examples/60_search/example_sequential.rst.txt +++ b/development/_sources/examples/60_search/example_sequential.rst.txt @@ -276,7 +276,7 @@ Get the Score of the final ensemble .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 1 minutes 56.654 seconds) + **Total running time of the script:** ( 1 minutes 56.808 seconds) .. _sphx_glr_download_examples_60_search_example_sequential.py: diff --git a/development/_sources/examples/60_search/example_successive_halving.rst.txt b/development/_sources/examples/60_search/example_successive_halving.rst.txt index e51057929d..2966e5420c 100644 --- a/development/_sources/examples/60_search/example_successive_halving.rst.txt +++ b/development/_sources/examples/60_search/example_successive_halving.rst.txt @@ -188,7 +188,7 @@ Build and fit a classifier default_config = scenario.cs.get_default_configuration() /opt/hostedtoolcache/Python/3.8.7/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:149: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1 warnings.warn("{} is intended to be used " - [(0.220000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, + [(0.280000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, dataset_properties={ 'task': 1, 'sparse': False, @@ -204,7 +204,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.160000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, + (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.926283631486858, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 7, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.16265262021972576}, dataset_properties={ 'task': 1, 'sparse': False, @@ -212,15 +212,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.926283631486858, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 7, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.16265262021972576}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 0.0002346515712987664, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 1.3716748930467322e-05}, + (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, dataset_properties={ 'task': 1, 'sparse': False, @@ -228,7 +220,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, 'sparse': False, @@ -236,7 +228,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525}, dataset_properties={ 'task': 1, 'sparse': False, @@ -244,7 +236,7 @@ Build and fit a classifier 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 0.0002346515712987664, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 1.3716748930467322e-05}, dataset_properties={ 'task': 1, 'sparse': False, @@ -257,8 +249,8 @@ Build and fit a classifier Dataset name: breast_cancer Metric: accuracy Best validation score: 0.985816 - Number of target algorithm runs: 10 - Number of successful target algorithm runs: 8 + Number of target algorithm runs: 9 + Number of successful target algorithm runs: 7 Number of crashed target algorithm runs: 0 Number of target algorithms that exceeded the time limit: 2 Number of target algorithms that exceeded the memory limit: 0 @@ -513,39 +505,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn default_config = scenario.cs.get_default_configuration() /opt/hostedtoolcache/Python/3.8.7/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:149: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1 warnings.warn("{} is intended to be used " - [(0.160000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 0.0017940473175767063, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 2, 'classifier:mlp:learning_rate_init': 0.0004684917334431039, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 101, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'False', 'classifier:mlp:validation_fraction': 0.1}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 0.0001363185819149026, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00018009776276177523, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 115, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'ward', 'feature_preprocessor:feature_agglomeration:n_clusters': 182, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'classifier:mlp:validation_fraction': 0.1}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.4775492074518431, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.015996368052062886, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7845396961078424, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.25545052141264185, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.5662900693317384, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 7, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + [(0.520000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -553,7 +513,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 0.00021148999718383549, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'train', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.0007452270241186694, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 113, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'complete', 'feature_preprocessor:feature_agglomeration:n_clusters': 247, 'feature_preprocessor:feature_agglomeration:pooling_func': 'max'}, + (0.240000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 0.0001363185819149026, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00018009776276177523, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 115, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'ward', 'feature_preprocessor:feature_agglomeration:n_clusters': 182, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'classifier:mlp:validation_fraction': 0.1}, dataset_properties={ 'task': 1, 'sparse': False, @@ -561,7 +521,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -569,7 +529,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 0.0017940473175767063, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 2, 'classifier:mlp:learning_rate_init': 0.0004684917334431039, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 101, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'False', 'classifier:mlp:validation_fraction': 0.1}, dataset_properties={ 'task': 1, 'sparse': False, @@ -577,7 +537,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.9292309396985746, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 10, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.032719158639429445, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9929881254946676, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -585,31 +545,7 @@ Next, we see the use of subsampling as a budget in Auto-sklearn 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.43999367631975456, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.8134515743047006, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 20, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.49138075723513286, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 6, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.42693600390988135, 'feature_preprocessor:select_percentile_classification:percentile': 56.97947373958566, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info'}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.926283631486858, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 7, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.16265262021972576}, + (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -621,14 +557,14 @@ Next, we see the use of subsampling as a budget in Auto-sklearn auto-sklearn results: Dataset name: breast_cancer Metric: accuracy - Best validation score: 0.978723 + Best validation score: 0.985816 Number of target algorithm runs: 14 Number of successful target algorithm runs: 13 Number of crashed target algorithm runs: 0 Number of target algorithms that exceeded the time limit: 1 Number of target algorithms that exceeded the memory limit: 0 - Accuracy score 0.951048951048951 + Accuracy score 0.958041958041958 @@ -690,15 +626,7 @@ subsamples otherwise default_config = scenario.cs.get_default_configuration() /opt/hostedtoolcache/Python/3.8.7/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:149: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1 warnings.warn("{} is intended to be used " - [(0.240000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.220000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.9292309396985746, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 10, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.032719158639429445, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9929881254946676, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + [(0.280000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -706,7 +634,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, + (0.180000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -714,7 +642,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, + (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, dataset_properties={ 'task': 1, 'sparse': False, @@ -722,7 +650,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'}, + (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.9292309396985746, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 10, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.032719158639429445, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9929881254946676, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -730,7 +658,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, 'sparse': False, @@ -738,7 +666,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.4775492074518431, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.015996368052062886, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7845396961078424, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.25545052141264185, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.5662900693317384, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 7, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -746,7 +674,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, 'sparse': False, @@ -754,15 +682,7 @@ subsamples otherwise 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.926283631486858, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 7, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.16265262021972576}, - dataset_properties={ - 'task': 1, - 'sparse': False, - 'multilabel': False, - 'multiclass': False, - 'target_type': 'classification', - 'signed': False})), - (0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.926283631486858, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 7, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.16265262021972576}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.43999367631975456, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.8134515743047006, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 20, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -783,8 +703,8 @@ subsamples otherwise Dataset name: breast_cancer Metric: accuracy Best validation score: 0.985816 - Number of target algorithm runs: 16 - Number of successful target algorithm runs: 14 + Number of target algorithm runs: 14 + Number of successful target algorithm runs: 12 Number of crashed target algorithm runs: 0 Number of target algorithms that exceeded the time limit: 2 Number of target algorithms that exceeded the memory limit: 0 @@ -797,7 +717,7 @@ subsamples otherwise .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 3 minutes 2.950 seconds) + **Total running time of the script:** ( 3 minutes 1.959 seconds) .. _sphx_glr_download_examples_60_search_example_successive_halving.py: diff --git a/development/_sources/examples/60_search/sg_execution_times.rst.txt b/development/_sources/examples/60_search/sg_execution_times.rst.txt index 5cc88c03cd..aae7978da3 100644 --- a/development/_sources/examples/60_search/sg_execution_times.rst.txt +++ b/development/_sources/examples/60_search/sg_execution_times.rst.txt @@ -5,18 +5,18 @@ Computation times ================= -**10:20.925** total execution time for **examples_60_search** files: +**10:30.234** total execution time for **examples_60_search** files: +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_successive_halving.py` (``example_successive_halving.py``) | 03:02.950 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_successive_halving.py` (``example_successive_halving.py``) | 03:01.959 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py` (``example_parallel_n_jobs.py``) | 02:04.370 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py` (``example_parallel_n_jobs.py``) | 02:07.258 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_sequential.py` (``example_sequential.py``) | 01:56.654 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_sequential.py` (``example_sequential.py``) | 01:56.808 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_random_search.py` (``example_random_search.py``) | 01:51.580 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_random_search.py` (``example_random_search.py``) | 01:56.661 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py` (``example_parallel_manual_spawning_python.py``) | 00:46.828 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py` (``example_parallel_manual_spawning_python.py``) | 00:46.835 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py` (``example_parallel_manual_spawning_cli.py``) | 00:38.542 | 0.0 MB | +| :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py` (``example_parallel_manual_spawning_cli.py``) | 00:40.713 | 0.0 MB | +--------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ diff --git a/development/_sources/examples/80_extending/example_extending_classification.rst.txt b/development/_sources/examples/80_extending/example_extending_classification.rst.txt index 0a3bc37ca6..c1dde1a4ad 100644 --- a/development/_sources/examples/80_extending/example_extending_classification.rst.txt +++ b/development/_sources/examples/80_extending/example_extending_classification.rst.txt @@ -295,8 +295,8 @@ Print test accuracy and statistics .. code-block:: none - accuracy: 0.972027972027972 - [(0.500000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:MLPClassifier:activation': 'relu', 'classifier:MLPClassifier:alpha': 0.0001, 'classifier:MLPClassifier:hidden_layer_depth': 1, 'classifier:MLPClassifier:num_nodes_per_layer': 32, 'classifier:MLPClassifier:solver': 'adam', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, + accuracy: 0.951048951048951 + [(0.460000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:MLPClassifier:activation': 'tanh', 'classifier:MLPClassifier:alpha': 0.9264398101836582, 'classifier:MLPClassifier:hidden_layer_depth': 1, 'classifier:MLPClassifier:num_nodes_per_layer': 144, 'classifier:MLPClassifier:solver': 'adam', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9063863139348133, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 17, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 14, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, dataset_properties={ 'task': 1, 'sparse': False, @@ -304,7 +304,7 @@ Print test accuracy and statistics 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.220000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:MLPClassifier:activation': 'tanh', 'classifier:MLPClassifier:alpha': 0.9264398101836582, 'classifier:MLPClassifier:hidden_layer_depth': 1, 'classifier:MLPClassifier:num_nodes_per_layer': 144, 'classifier:MLPClassifier:solver': 'adam', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9063863139348133, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 17, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 14, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + (0.300000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:MLPClassifier:activation': 'relu', 'classifier:MLPClassifier:alpha': 0.0001, 'classifier:MLPClassifier:hidden_layer_depth': 1, 'classifier:MLPClassifier:num_nodes_per_layer': 32, 'classifier:MLPClassifier:solver': 'adam', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01}, dataset_properties={ 'task': 1, 'sparse': False, @@ -312,7 +312,7 @@ Print test accuracy and statistics 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.220000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:MLPClassifier:activation': 'relu', 'classifier:MLPClassifier:alpha': 0.12457759510694098, 'classifier:MLPClassifier:hidden_layer_depth': 3, 'classifier:MLPClassifier:num_nodes_per_layer': 99, 'classifier:MLPClassifier:solver': 'lbfgs', 'feature_preprocessor:liblinear_svc_preprocessor:C': 134.08608166517868, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 0.005053273024538863}, + (0.160000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:MLPClassifier:activation': 'relu', 'classifier:MLPClassifier:alpha': 0.12457759510694098, 'classifier:MLPClassifier:hidden_layer_depth': 3, 'classifier:MLPClassifier:num_nodes_per_layer': 99, 'classifier:MLPClassifier:solver': 'lbfgs', 'feature_preprocessor:liblinear_svc_preprocessor:C': 134.08608166517868, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 0.005053273024538863}, dataset_properties={ 'task': 1, 'sparse': False, @@ -320,7 +320,15 @@ Print test accuracy and statistics 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:MLPClassifier:activation': 'logistic', 'classifier:MLPClassifier:alpha': 0.9521869738098419, 'classifier:MLPClassifier:hidden_layer_depth': 1, 'classifier:MLPClassifier:num_nodes_per_layer': 172, 'classifier:MLPClassifier:solver': 'lbfgs', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.007836973936351303}, + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:MLPClassifier:activation': 'logistic', 'classifier:MLPClassifier:alpha': 0.8085399362082959, 'classifier:MLPClassifier:hidden_layer_depth': 2, 'classifier:MLPClassifier:num_nodes_per_layer': 87, 'classifier:MLPClassifier:solver': 'lbfgs', 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.8956544191280793, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.03433346125068971, 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.8562110947570252, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 19, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 4, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100}, + dataset_properties={ + 'task': 1, + 'sparse': False, + 'multilabel': False, + 'multiclass': False, + 'target_type': 'classification', + 'signed': False})), + (0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'MLPClassifier', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:MLPClassifier:activation': 'logistic', 'classifier:MLPClassifier:alpha': 0.9521869738098419, 'classifier:MLPClassifier:hidden_layer_depth': 1, 'classifier:MLPClassifier:num_nodes_per_layer': 172, 'classifier:MLPClassifier:solver': 'lbfgs', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.007836973936351303}, dataset_properties={ 'task': 1, 'sparse': False, @@ -336,7 +344,7 @@ Print test accuracy and statistics .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 18.686 seconds) + **Total running time of the script:** ( 0 minutes 16.745 seconds) .. _sphx_glr_download_examples_80_extending_example_extending_classification.py: diff --git a/development/_sources/examples/80_extending/example_extending_preprocessor.rst.txt b/development/_sources/examples/80_extending/example_extending_preprocessor.rst.txt index 64015b0330..2a9920aabf 100644 --- a/development/_sources/examples/80_extending/example_extending_preprocessor.rst.txt +++ b/development/_sources/examples/80_extending/example_extending_preprocessor.rst.txt @@ -258,8 +258,8 @@ Print prediction score and statistics .. code-block:: none - accuracy: 0.958041958041958 - [(0.400000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'LDA', 'classifier:adaboost:algorithm': 'SAMME.R', 'classifier:adaboost:learning_rate': 1.3647174429059878, 'classifier:adaboost:max_depth': 6, 'classifier:adaboost:n_estimators': 324, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1761, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:LDA:solver': 'svd', 'feature_preprocessor:LDA:tol': 0.1377409740593341}, + accuracy: 0.965034965034965 + [(0.400000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'LDA', 'classifier:adaboost:algorithm': 'SAMME.R', 'classifier:adaboost:learning_rate': 1.4861471145659388, 'classifier:adaboost:max_depth': 10, 'classifier:adaboost:n_estimators': 84, 'feature_preprocessor:LDA:solver': 'eigen', 'feature_preprocessor:LDA:tol': 0.8734817422890115, 'feature_preprocessor:LDA:shrinkage': 0.7525111817759726}, dataset_properties={ 'task': 1, 'sparse': False, @@ -275,7 +275,7 @@ Print prediction score and statistics 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.200000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'decision_tree', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'LDA', 'classifier:decision_tree:criterion': 'entropy', 'classifier:decision_tree:max_depth_factor': 0.24444152309162437, 'classifier:decision_tree:max_features': 1.0, 'classifier:decision_tree:max_leaf_nodes': 'None', 'classifier:decision_tree:min_impurity_decrease': 0.0, 'classifier:decision_tree:min_samples_leaf': 8, 'classifier:decision_tree:min_samples_split': 18, 'classifier:decision_tree:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:LDA:solver': 'svd', 'feature_preprocessor:LDA:tol': 0.8460086013393683}, + (0.180000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'decision_tree', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'LDA', 'classifier:decision_tree:criterion': 'entropy', 'classifier:decision_tree:max_depth_factor': 0.24444152309162437, 'classifier:decision_tree:max_features': 1.0, 'classifier:decision_tree:max_leaf_nodes': 'None', 'classifier:decision_tree:min_impurity_decrease': 0.0, 'classifier:decision_tree:min_samples_leaf': 8, 'classifier:decision_tree:min_samples_split': 18, 'classifier:decision_tree:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:LDA:solver': 'svd', 'feature_preprocessor:LDA:tol': 0.8460086013393683}, dataset_properties={ 'task': 1, 'sparse': False, @@ -283,7 +283,7 @@ Print prediction score and statistics 'multiclass': False, 'target_type': 'classification', 'signed': False})), - (0.140000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'LDA', 'classifier:adaboost:algorithm': 'SAMME.R', 'classifier:adaboost:learning_rate': 1.4861471145659388, 'classifier:adaboost:max_depth': 10, 'classifier:adaboost:n_estimators': 84, 'feature_preprocessor:LDA:solver': 'eigen', 'feature_preprocessor:LDA:tol': 0.8734817422890115, 'feature_preprocessor:LDA:shrinkage': 0.7525111817759726}, + (0.160000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'adaboost', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'LDA', 'classifier:adaboost:algorithm': 'SAMME.R', 'classifier:adaboost:learning_rate': 1.3647174429059878, 'classifier:adaboost:max_depth': 6, 'classifier:adaboost:n_estimators': 324, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1761, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:LDA:solver': 'svd', 'feature_preprocessor:LDA:tol': 0.1377409740593341}, dataset_properties={ 'task': 1, 'sparse': False, @@ -299,7 +299,7 @@ Print prediction score and statistics .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 11.507 seconds) + **Total running time of the script:** ( 0 minutes 15.712 seconds) .. _sphx_glr_download_examples_80_extending_example_extending_preprocessor.py: diff --git a/development/_sources/examples/80_extending/example_extending_regression.rst.txt b/development/_sources/examples/80_extending/example_extending_regression.rst.txt index 9835e9df60..68f0b3c404 100644 --- a/development/_sources/examples/80_extending/example_extending_regression.rst.txt +++ b/development/_sources/examples/80_extending/example_extending_regression.rst.txt @@ -264,22 +264,22 @@ Print prediction score and statistics .. code-block:: none - r2 score: -0.8480555450533547 - [(0.500000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'KernelRidgeRegression', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01, 'regressor:KernelRidgeRegression:alpha': 1.0, 'regressor:KernelRidgeRegression:gamma': 0.1, 'regressor:KernelRidgeRegression:kernel': 'polynomial', 'regressor:KernelRidgeRegression:coef0': 1.0, 'regressor:KernelRidgeRegression:degree': 3}, + r2 score: -0.7012809946394014 + [(0.820000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'KernelRidgeRegression', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01, 'regressor:KernelRidgeRegression:alpha': 1.0, 'regressor:KernelRidgeRegression:gamma': 0.1, 'regressor:KernelRidgeRegression:kernel': 'polynomial', 'regressor:KernelRidgeRegression:coef0': 1.0, 'regressor:KernelRidgeRegression:degree': 3}, dataset_properties={ 'task': 4, 'sparse': False, 'multioutput': False, 'target_type': 'regression', 'signed': False})), - (0.260000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'kitchen_sinks', 'regressor:__choice__': 'KernelRidgeRegression', 'feature_preprocessor:kitchen_sinks:gamma': 0.00473238660746417, 'feature_preprocessor:kitchen_sinks:n_components': 212, 'regressor:KernelRidgeRegression:alpha': 0.00504200052385338, 'regressor:KernelRidgeRegression:gamma': 0.00031588355920827163, 'regressor:KernelRidgeRegression:kernel': 'polynomial', 'regressor:KernelRidgeRegression:coef0': 0.0809011782758673, 'regressor:KernelRidgeRegression:degree': 2}, + (0.160000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'kitchen_sinks', 'regressor:__choice__': 'KernelRidgeRegression', 'feature_preprocessor:kitchen_sinks:gamma': 0.00473238660746417, 'feature_preprocessor:kitchen_sinks:n_components': 212, 'regressor:KernelRidgeRegression:alpha': 0.00504200052385338, 'regressor:KernelRidgeRegression:gamma': 0.00031588355920827163, 'regressor:KernelRidgeRegression:kernel': 'polynomial', 'regressor:KernelRidgeRegression:coef0': 0.0809011782758673, 'regressor:KernelRidgeRegression:degree': 2}, dataset_properties={ 'task': 4, 'sparse': False, 'multioutput': False, 'target_type': 'regression', 'signed': False})), - (0.240000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'regressor:__choice__': 'KernelRidgeRegression', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.001818729822644953, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1701, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:random_trees_embedding:bootstrap': 'True', 'feature_preprocessor:random_trees_embedding:max_depth': 6, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 12, 'feature_preprocessor:random_trees_embedding:min_samples_split': 16, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 100, 'regressor:KernelRidgeRegression:alpha': 0.02351257718197114, 'regressor:KernelRidgeRegression:gamma': 0.011972301608556113, 'regressor:KernelRidgeRegression:kernel': 'polynomial', 'regressor:KernelRidgeRegression:coef0': 0.010474650948262332, 'regressor:KernelRidgeRegression:degree': 3}, + (0.020000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'regressor:__choice__': 'KernelRidgeRegression', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.001818729822644953, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1701, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:random_trees_embedding:bootstrap': 'True', 'feature_preprocessor:random_trees_embedding:max_depth': 6, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 12, 'feature_preprocessor:random_trees_embedding:min_samples_split': 16, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 100, 'regressor:KernelRidgeRegression:alpha': 0.02351257718197114, 'regressor:KernelRidgeRegression:gamma': 0.011972301608556113, 'regressor:KernelRidgeRegression:kernel': 'polynomial', 'regressor:KernelRidgeRegression:coef0': 0.010474650948262332, 'regressor:KernelRidgeRegression:degree': 3}, dataset_properties={ 'task': 4, 'sparse': False, @@ -294,7 +294,7 @@ Print prediction score and statistics .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 12.703 seconds) + **Total running time of the script:** ( 0 minutes 16.283 seconds) .. _sphx_glr_download_examples_80_extending_example_extending_regression.py: diff --git a/development/_sources/examples/80_extending/example_restrict_number_of_hyperparameters.rst.txt b/development/_sources/examples/80_extending/example_restrict_number_of_hyperparameters.rst.txt index bee2bb61c2..f59f5c7917 100644 --- a/development/_sources/examples/80_extending/example_restrict_number_of_hyperparameters.rst.txt +++ b/development/_sources/examples/80_extending/example_restrict_number_of_hyperparameters.rst.txt @@ -643,7 +643,7 @@ Print the configuration space .. rst-class:: sphx-glr-timing - **Total running time of the script:** ( 0 minutes 6.262 seconds) + **Total running time of the script:** ( 0 minutes 7.248 seconds) .. _sphx_glr_download_examples_80_extending_example_restrict_number_of_hyperparameters.py: diff --git a/development/_sources/examples/80_extending/sg_execution_times.rst.txt b/development/_sources/examples/80_extending/sg_execution_times.rst.txt index abe78c9f08..12241242f9 100644 --- a/development/_sources/examples/80_extending/sg_execution_times.rst.txt +++ b/development/_sources/examples/80_extending/sg_execution_times.rst.txt @@ -5,14 +5,14 @@ Computation times ================= -**00:49.157** total execution time for **examples_80_extending** files: +**00:55.988** total execution time for **examples_80_extending** files: +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_80_extending_example_extending_classification.py` (``example_extending_classification.py``) | 00:18.686 | 0.0 MB | +| :ref:`sphx_glr_examples_80_extending_example_extending_classification.py` (``example_extending_classification.py``) | 00:16.745 | 0.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_80_extending_example_extending_regression.py` (``example_extending_regression.py``) | 00:12.703 | 0.0 MB | +| :ref:`sphx_glr_examples_80_extending_example_extending_regression.py` (``example_extending_regression.py``) | 00:16.283 | 0.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_80_extending_example_extending_preprocessor.py` (``example_extending_preprocessor.py``) | 00:11.507 | 0.0 MB | +| :ref:`sphx_glr_examples_80_extending_example_extending_preprocessor.py` (``example_extending_preprocessor.py``) | 00:15.712 | 0.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ -| :ref:`sphx_glr_examples_80_extending_example_restrict_number_of_hyperparameters.py` (``example_restrict_number_of_hyperparameters.py``) | 00:06.262 | 0.0 MB | +| :ref:`sphx_glr_examples_80_extending_example_restrict_number_of_hyperparameters.py` (``example_restrict_number_of_hyperparameters.py``) | 00:07.248 | 0.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+--------+ diff --git a/development/examples/20_basic/example_classification.html b/development/examples/20_basic/example_classification.html index db69206de8..f2a57c239f 100644 --- a/development/examples/20_basic/example_classification.html +++ b/development/examples/20_basic/example_classification.html @@ -165,7 +165,7 @@

Print the final ensemble constructed by auto-sklearn

Out:

-
[(0.120000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.07893369909771941, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 14, 'classifier:extra_trees:min_samples_split': 20, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False'},
+
[(0.200000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:__choice__': 'nystroem_sampler', 'classifier:passive_aggressive:C': 0.7397480291494921, 'classifier:passive_aggressive:average': 'True', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'squared_hinge', 'classifier:passive_aggressive:tol': 0.01303593402273202, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 554, 'data_preprocessing:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal', 'feature_preprocessor:nystroem_sampler:kernel': 'sigmoid', 'feature_preprocessor:nystroem_sampler:n_components': 7450, 'feature_preprocessor:nystroem_sampler:coef0': -0.7620489267210873, 'feature_preprocessor:nystroem_sampler:gamma': 3.161875832155603},
 dataset_properties={
   'task': 1,
   'sparse': False,
@@ -173,7 +173,7 @@ 

Print the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnPrint the final ensemble constructed by auto-sklearnGet the Score of the final ensembleOut:

-
Accuracy score: 0.9440559440559441
+
Accuracy score: 0.951048951048951
 
-

Total running time of the script: ( 2 minutes 4.826 seconds)

+

Total running time of the script: ( 2 minutes 6.174 seconds)