-
Notifications
You must be signed in to change notification settings - Fork 35
/
data_loader.py
228 lines (161 loc) · 8.1 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import pickle
import torch
import numpy as np
from numpy.random import uniform
from torch.utils import data
from torch.utils.data.sampler import Sampler
from multiprocessing import Process, Manager
class Utterances(data.Dataset):
"""Dataset class for the Utterances dataset."""
def __init__(self, hparams):
"""Initialize and preprocess the Utterances dataset."""
self.meta_file = hparams.meta_file
self.feat_dir_1 = hparams.feat_dir_1
self.feat_dir_2 = hparams.feat_dir_2
self.feat_dir_3 = hparams.feat_dir_3
self.step = 4
self.split = 0
self.max_len_pad = hparams.max_len_pad
meta = pickle.load(open(self.meta_file, "rb"))
manager = Manager()
meta = manager.list(meta)
dataset = manager.list(len(meta)*[None]) # <-- can be shared between processes.
processes = []
for i in range(0, len(meta), self.step):
p = Process(target=self.load_data,
args=(meta[i:i+self.step],dataset,i))
p.start()
processes.append(p)
for p in processes:
p.join()
# very importtant to do dataset = list(dataset)
self.train_dataset = list(dataset)
self.num_tokens = len(self.train_dataset)
print('Finished loading the {} Utterances training dataset...'.format(self.num_tokens))
def load_data(self, submeta, dataset, idx_offset):
for k, sbmt in enumerate(submeta):
uttrs = len(sbmt)*[None]
for j, tmp in enumerate(sbmt):
if j < 2:
# fill in speaker name and embedding
uttrs[j] = tmp
else:
# fill in data
sp_tmp = np.load(os.path.join(self.feat_dir_1, tmp))
cep_tmp = np.load(os.path.join(self.feat_dir_2, tmp))[:, 0:14]
cd_tmp = np.load(os.path.join(self.feat_dir_3, tmp))
assert len(sp_tmp) == len(cep_tmp) == len(cd_tmp)
uttrs[j] = ( np.clip(sp_tmp, 0, 1), cep_tmp, cd_tmp )
dataset[idx_offset+k] = uttrs
def segment_np(self, cd_long, tau=2):
cd_norm = np.sqrt((cd_long ** 2).sum(axis=-1, keepdims=True))
G = (cd_long @ cd_long.T) / (cd_norm @ cd_norm.T)
L = G.shape[0]
num_rep = []
num_rep_sync = []
prev_boundary = 0
rate = np.random.uniform(0.8, 1.3)
for t in range(1, L+1):
if t==L:
num_rep.append(t - prev_boundary)
num_rep_sync.append(t - prev_boundary)
prev_boundary = t
if t < L:
q = np.random.uniform(rate-0.1, rate)
tmp = G[prev_boundary, max(prev_boundary-20, 0):min(prev_boundary+20, L)]
if q <= 1:
epsilon = np.quantile(tmp, q)
if np.all(G[prev_boundary, t:min(t+tau, L)] < epsilon):
num_rep.append(t - prev_boundary)
num_rep_sync.append(t - prev_boundary)
prev_boundary = t
else:
epsilon = np.quantile(tmp, 2-q)
if np.all(G[prev_boundary, t:min(t+tau, L)] < epsilon):
num_rep.append(t - prev_boundary)
else:
num_rep.extend([t-prev_boundary-0.5, 0.5])
num_rep_sync.append(t - prev_boundary)
prev_boundary = t
num_rep = np.array(num_rep)
num_rep_sync = np.array(num_rep_sync)
return num_rep, num_rep_sync
def __getitem__(self, index):
"""Return M uttrs for one spkr."""
dataset = self.train_dataset
list_uttrs = dataset[index]
emb_org = list_uttrs[1]
uttr = np.random.randint(2, len(list_uttrs))
melsp, melcep, cd_real = list_uttrs[uttr]
num_rep, num_rep_sync = self.segment_np(cd_real)
return melsp, melcep, cd_real, num_rep, num_rep_sync, len(melsp), len(num_rep), len(num_rep_sync), emb_org
def __len__(self):
"""Return the number of spkrs."""
return self.num_tokens
class MyCollator(object):
def __init__(self, hparams):
self.max_len_pad = hparams.max_len_pad
def __call__(self, batch):
new_batch = []
l_short_max = 0
l_short_sync_max = 0
l_real_max = 0
for token in batch:
sp_real, cep_real, cd_real, rep, rep_sync, l_real, l_short, l_short_sync, emb = token
if l_short > l_short_max:
l_short_max = l_short
if l_short_sync > l_short_sync_max:
l_short_sync_max = l_short_sync
if l_real > l_real_max:
l_real_max = l_real
sp_real_pad = np.pad(sp_real, ((0,self.max_len_pad-l_real),(0,0)), 'constant')
cep_real_pad = np.pad(cep_real, ((0,self.max_len_pad-l_real),(0,0)), 'constant')
cd_real_pad = np.pad(cd_real, ((0,self.max_len_pad-l_real),(0,0)), 'constant')
rep_pad = np.pad(rep, (0,self.max_len_pad-l_short), 'constant')
rep_sync_pad = np.pad(rep_sync, (0,self.max_len_pad-l_short_sync), 'constant')
new_batch.append( (sp_real_pad, cep_real_pad, cd_real_pad, rep_pad, rep_sync_pad, l_real, l_short, l_short_sync, emb) )
batch = new_batch
a, b, c, d, e, f, g, h, i = zip(*batch)
sp_real = torch.from_numpy(np.stack(a, axis=0))[:,:l_real_max+1,:]
cep_real = torch.from_numpy(np.stack(b, axis=0))[:,:l_real_max+1,:]
cd_real = torch.from_numpy(np.stack(c, axis=0))[:,:l_real_max+1,:]
num_rep = torch.from_numpy(np.stack(d, axis=0))[:,:l_short_max+1]
num_rep_sync = torch.from_numpy(np.stack(e, axis=0))[:,:l_short_sync_max+1]
len_real = torch.from_numpy(np.stack(f, axis=0))
len_short = torch.from_numpy(np.stack(g, axis=0))
len_short_sync = torch.from_numpy(np.stack(h, axis=0))
spk_emb = torch.from_numpy(np.stack(i, axis=0))
return sp_real, cep_real, cd_real, num_rep, num_rep_sync, len_real, len_short, len_short_sync, spk_emb
class MultiSampler(Sampler):
"""Samples elements more than once in a single pass through the data.
"""
def __init__(self, num_samples, n_repeats, shuffle=False):
self.num_samples = num_samples
self.n_repeats = n_repeats
self.shuffle = shuffle
def gen_sample_array(self):
self.sample_idx_array = torch.arange(self.num_samples, dtype=torch.int64).repeat(self.n_repeats)
if self.shuffle:
self.sample_idx_array = self.sample_idx_array[torch.randperm(len(self.sample_idx_array))]
return self.sample_idx_array
def __iter__(self):
return iter(self.gen_sample_array())
def __len__(self):
return len(self.sample_idx_array)
def worker_init_fn(x):
return np.random.seed((torch.initial_seed()) % (2**32))
def get_loader(hparams):
"""Build and return a data loader."""
dataset = Utterances(hparams)
my_collator = MyCollator(hparams)
sampler = MultiSampler(len(dataset), hparams.samplier, shuffle=hparams.shuffle)
data_loader = data.DataLoader(dataset=dataset,
batch_size=hparams.batch_size,
sampler=sampler,
num_workers=hparams.num_workers,
drop_last=True,
pin_memory=False,
worker_init_fn=worker_init_fn,
collate_fn=my_collator)
return data_loader