diff --git a/docs/articles/qntmap.html b/docs/articles/qntmap.html index b4e4754..cdc25ce 100644 --- a/docs/articles/qntmap.html +++ b/docs/articles/qntmap.html @@ -99,7 +99,7 @@
vignettes/qntmap.Rmd
qntmap.Rmd
Further, by using PNG format mask image width and height are same as mapping data, mean()
values of each element are calculated for each area with same colors in the mask image.
Let’s use an image from cluster analysis above.
Input path to the image to segment
function.
Then, input the result of segment()
to index
parameter of mean()
.
mean(qmap, index = i)
#> Element #000000 #FFFFFF
diff --git a/docs/articles/read-incomplete-data.html b/docs/articles/read-incomplete-data.html
index 7396aba..599ee3f 100644
--- a/docs/articles/read-incomplete-data.html
+++ b/docs/articles/read-incomplete-data.html
@@ -99,7 +99,7 @@
Read incomplete data
YASUMOTO Atsushi
- 2019-01-17
+ 2019-01-18
Source: vignettes/read-incomplete-data.Rmd
read-incomplete-data.Rmd
@@ -203,7 +203,7 @@
Mapping data
-Mapping data are expected to be saved as ASCII converted files (*.txt
or *.csv
) and as condition files (*.cnd
) (Tab. 3). Asterisks are expected to be filled by the format of #_map
or by data#
where sharps are integers. File names of ASCII converted files and condition files must be paired (e.g, 1_map.txt
and 1_map.cnd
). In case of irregular file names or missing condition files, prepare a csv file describing element name, file path, instrument, dwell time, probe current, X-Y coordinates of a starting pixel, step size, map size, and dead time (Tab. 4).
+Mapping data are expected to be saved as ASCII converted files (*.txt
or *.csv
) and as condition files (*.cnd
) (Tab. 3). Asterisks are expected to be filled by the format of #_map
or by data#
where sharps are integers. File names of ASCII converted files and condition files must be paired (e.g, 1_map.txt
and 1_map.cnd
). In case of irregular file names or missing condition files, prepare a csv file describing element name, file path, instrument, dwell time, probe current, X-Y coordinates of a starting pixel, step size, map size, and dead time (Tab. 4). Then, following code will read spot analysis data.
xmap <- read_qnt(conditions = "conditions_xmap.csv")
# "conditions" argument is a path to a user-prepared csv file.
@@ -214,12 +214,12 @@
-*_map.txt
-ASCII converted mapping data
+*_map.txt or data*.csv
+ASCII converted mapping data (e.g., 1_map.txt, 2_map.txt,… or data001.csv, data002.csv, …)
*.cnd
-Analytical conditions: element name, dwell time, probe current, step size, pixel size, and coordinates
+Analytical conditions: element name, dwell time, probe current, step size, pixel size, and coordinates. File names must corresponds to mapping data (e.g, 1_map.cnd, data001.cnd)
diff --git a/docs/index.html b/docs/index.html
index 14e0f9e..075d96b 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -310,7 +310,7 @@
Run QntMap on R
-For data processing
+For data processing.
Interactive mode
@@ -323,60 +323,7 @@
Manual mode
-A work-flow is available with an example dataset at https://atusy.github.io/qntmap/articles/basic.html .
-library(qntmap)
-
-# Required parameters
-wd <- '.' # path to the working directory
-dir_map <- '.map/1' # relative/absolute path to the directory containing ascii converted X-ray map files (1_map.txt, 2_map.txt, and so on)"
-dir_qnt <- '.qnt' # relative/absolute path to the directory containing .qnt files (pkint.qnt, net.qnt, and so on)"
-
-
-# Optional parameters
-
-## A character vector to specify phases tend to be smaller than mapping probe diameter
-fine_phase <- NULL
-
-## A csv file indicating name of the phase of n-th quantitative point analysis.
-## The file path is absolute or relative to `dir_qnt`.
-## If NULL, names are assumed to be specified in comments during EPMA analysis.
-phase_list <- NULL
-
-# Run analysis
-
-# Set working directory
-setwd(wd)
-
-# Load mapping data
-# Change value of DT (dead time in nanoseconds) depending on EPMA.
-# 1100 ns is a value applied by JEOL JXA-8105.
-xmap <- read_xmap(wd = dir_map, DT = 1100)
-
-# Compile quantitative data
-qnt <- read_qnt(wd = dir_qnt, phase_list = phase_list, renew = TRUE)
-## Check 'phase_list0.csv' under 'dir_qnt' to see if name of phases are provided properly.
-## If not, modify the csv file and specify the path of modified one to `phase_list` in "Optional parameters" section and rerun the above code.
-
-# Determine initial cluster centers
-centers <- find_centers(xmap = xmap, qnt = qnt, fine_phase = fine_phase)
-## Check 'centers0.csv' under the `wd` and modify on demand.
-## If modified, assign content of the modified csv file by running
-## centers <- data.table::fread('path to the modified csv file')
-
-# Phase identification
-# Assign group_cluster = TRUE if you want to integrate same phases subgrouped by suffix after '_'
-# (e.g., garnet_a and garnet_b are integrated to garnet if TRUE)
-cls <- cluster_xmap(xmap = xmap, centers = centers, group_cluster = FALSE)
-
-# Quantify X-ray maps
-qmap <- quantify(
- xmap = xmap, qnt = qnt, cluster = cls, fine_phase = fine_phase
-)
-## Resulting files are saved in `qntmap` directory` under `dir_map`.
-
-# Summarize result
-summary(qmap)
-## This shows minimum, lower quantile, median, mean, upper quantile, and maximum values of variables.
+A work-flow is available with an example dataset at https://atusy.github.io/qntmap/articles/qntmap.html .
@@ -420,7 +367,7 @@ Dev status
-
+
quantify()
loads parameters from a csv file by giving its path to fix
parameter.
read_qnt()
and read_xmap()
supports to retrieve analytical conditions from manually prepared csv files. This feature is implemented to avoid failures in reading data caused by difference in formats output by different EPMA instruments.plot()
of mapping data shows coordinates and a chemical composition of a selected element.mean
to calculate mean value of quantitative maps.
index
enables index or mask based calculation of mean. See https://atusy.github.io/qntmap/articles/basic.html#summary-based-on-mask-images for more detail.index
enables index or mask based calculation of mean. See https://atusy.github.io/qntmap/articles/qntmap.html#summary-based-on-mask-images for more detail.