forked from TAMU-CLASS/barnfire
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindicators_clustering.py
executable file
·991 lines (907 loc) · 45.9 KB
/
indicators_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
#! /usr/bin/env python
'''
Andrew Till
Fall 2014
PhD Research
This clustering module clusters indicators and uses labels to compute a generalized energy mesh:
Create observations from subset of indicators, viz. indicators[strt:end]
Cluster observations and extract labels
Combine labels from each subset
Merge labels into existing group structure
Create generalized energy mesh using the dual of the input grid
'''
#STDLIB
import os
import time
#TPL
import numpy as np
from scipy import sparse
from scipy.sparse.linalg import spsolve
from sklearn import cluster
from sklearn import neighbors
import matplotlib as mpl
#import matplotlib.ticker as mtick
import matplotlib.pyplot as plt
mpl.rcParams.update({'font.size': 18, 'lines.linewidth': 2})
#MINE
import plotutil as putil
from directories import get_common_directories
def define_defaults():
'''Specify default parameters'''
# Main parameters
verbosity = False
resolution = 9
#workOpt = 'amg'
#workOpt = 'tmg'
#workOpt = 'mg'
workOpt = 'har'
numElements = 64
# Misc parameters
showNumbers = False
condenseSubelements = True
plotOpt = 'half' # none, first, last, firstlast, all, half
energyPenalty = 3.6E-1
dpi = 100
# Specify range of interest (for output fluxes and plotting)
numCoarseGroups = 0
#coarseBdrs = [6E-1, 3E0, 54.7, 2E3, 2.5E4]
coarseBdrs = [3.0, 54.7, 1.06E3]
# How to assign the number of elements per coarse group
apportionOpt = 'equal'
# Specify how many elements to use in each coarse group
listNumElements = []
# Specify which set of materials to use
#materialOpt = '4'
#materialOpt = 'c5g7'
materialOpt = 'manual'
# If materialOpt is 'manual', list of materials to use
materialsList = ['deb']
importancesLst = []
return {'verbosity': verbosity, 'numelements': numElements, 'apportionopt': apportionOpt, 'workopt': workOpt, 'resolution':resolution, 'coarsebdrs': coarseBdrs, 'numcoarsegroups': numCoarseGroups, 'materialopt': materialOpt, 'shownumbers': showNumbers, 'condensesubelements': condenseSubelements, 'plotopt': plotOpt, 'energypenalty': energyPenalty, 'dpi': dpi, 'listnumelements': listNumElements, 'listmaterials': materialsList}
def do_all(inputDict):
'''Driver function to read indicators, compute observations, perform clustering, write energy mesh'''
''' >>>>> NB: See compute_map() for external calls! <<<<<< '''
# Create timeDict to house timing results
timeDict = {}
# Create dataDict to house problem parameters
# Future functions should be assumed to modify dataDict
dataDict = {}
# Initialize dataDict
copy_inputDict_to_dataDict(inputDict, dataDict)
populate_directories(dataDict)
# Determine work options
parse_work_opt(dataDict)
# Read in energy mesh and indicators
indicators = read_energy_and_indicators(dataDict)
# Define observations and rescale energy; determine va
observations = compute_observations(dataDict, indicators)
# Determine coarse group structure and the number of energy elements per coarse group
globalLabels, thermalOffset = apportion_elements(dataDict, observations)
# Determine number of neighbors for the clustering
find_num_neighbors(dataDict, timeDict, observations)
# Loop over each coarse group
offset = thermalOffset
print_timing_header()
for coarseGroup in range(len(dataDict['coarseBdrs'])-1):
# Cluster within each coarse group and plot
offset = cluster_one_coarse_group(
dataDict, timeDict, observations, globalLabels, offset, coarseGroup)
# Create one plot over all energy
plot_summary(dataDict, observations, globalLabels)
# Write out generalized energy mesh
write_mesh(dataDict, globalLabels)
###############################################################################
def copy_inputDict_to_dataDict(inputDict, dataDict):
'''Capitalize entries in dataDict using camelCase'''
# Inputs / outputs
dataDict['verbosity'] = inputDict['verbosity']
dataDict['workOpt'] = inputDict['workopt']
dataDict['useSigt'] = inputDict['sigt']
dataDict['resolution'] = inputDict['resolution']
dataDict['materialOpt'] = inputDict['materialopt']
dataDict['materialsList'] = inputDict['listmaterials']
dataDict['importancesList'] = inputDict['listimportances']
dataDict['numElements'] = inputDict['numelements']
dataDict['numElementsIsTotal'] = inputDict['numelementsistotal']
dataDict['numElementsList'] = inputDict['listnumelements']
dataDict['apportionOpt'] = inputDict['apportionopt']
dataDict['coarseBdrs'] = inputDict['coarsebdrs']
dataDict['numCoarseGroups'] = inputDict['numcoarsegroups']
dataDict['showNumbers'] = inputDict['shownumbers']
dataDict['condenseSubelements'] = inputDict['condensesubelements']
dataDict['plotOpt'] = inputDict['plotopt']
dataDict['energyPenalty'] = inputDict['energypenalty']
dataDict['dpi'] = inputDict['dpi']
def populate_directories(dataDict):
'''Add directory entries to dataDict'''
# Inputs
dirDict = get_common_directories()
# Outputs
dataDict['indicatorsDatDirr'] = dirDict['dat/indicators']
dataDict['energyDatDirr'] = dirDict['dat/energy_groups']
dataDict['plotDirr'] = dirDict['figures/clustering']
def parse_work_opt(dataDict):
'''Populate work option parameters'''
# Inputs
workOpt = dataDict['workOpt']
forceContiguity = False
useEqualMGSpacing = False
useEqualIndexSpacing = False
if workOpt == 'amg':
forceContiguity = True
elif workOpt == 'tmg':
forceContiguity = True
useEqualIndexSpacing = True
elif workOpt == 'mg':
forceContiguity = True
useEqualMGSpacing = True
if not forceContiguity:
clusterName = 'har'
elif useEqualMGSpacing:
clusterName = 'mg'
elif useEqualIndexSpacing:
clusterName = 'tmg'
else:
clusterName = 'amg'
# Outputs
dataDict['forceContiguity'] = forceContiguity
dataDict['useEqualMGSpacing'] = useEqualMGSpacing
dataDict['useEqualIndexSpacing'] = useEqualIndexSpacing
dataDict['clusterName'] = clusterName
def read_energy_and_indicators(dataDict):
'''Read input fine energy mesh and indicators that live on that mesh'''
# Inputs
resolution = dataDict['resolution']
materialOpt = dataDict['materialOpt']
materialsList = dataDict['materialsList']
importancesList = dataDict['importancesList']
useSigt = dataDict['useSigt']
energyDatDirr = dataDict['energyDatDirr']
indicatorsDatDirr = dataDict['indicatorsDatDirr']
# Read in hyperfine MG energy mesh
energyName = 'res-{0}.txt'.format(resolution)
energyPath = os.path.join(energyDatDirr, energyName)
groupBdrs = load_txt(energyPath, skiprows=2, usecols=[1])
numGroups = len(groupBdrs) - 1
dE = - np.diff(groupBdrs)
groupBdrs[groupBdrs == 0] = 1E-5
# Read indicator relative importances
if materialOpt == 'c5g7':
#importanceDict = {'cUO2': 4, 'clowMOX': 2, 'cmedMOX': 2, 'chighMOX': 2, 'cCR': 1}
importanceDict = {'cUO2': 1, 'chighMOX': 1}
elif materialOpt == 'graphite':
importanceDict = {'graphite': 1}
elif materialOpt == 'iron':
importanceDict = {'iron': 1}
elif materialOpt == 'kpin':
importanceDict = {'kFUEL': 1}
elif materialOpt == 'kenrichedpin':
importanceDict = {'kEFUEL': 4, 'kFUEL': 1}
elif materialOpt == 'kcladpin':
importanceDict = {'kEFUEL': 10, 'kFUEL': 2.5, 'kZR': 1}
elif materialOpt == 'kpin2d':
importanceDict = {'kRFUEL': 1}
elif materialOpt == 'kenrichedpin2d':
importanceDict = {'kREFUEL': 4, 'kRFUEL': 1}
elif materialOpt == 'kmoxpin2d':
importanceDict = {'kRMFUEL': 4, 'kRFUEL': 1}
elif materialOpt == 'kmoxenrichedpin2d':
importanceDict = {'kRMFUEL': 4, 'kREFUEL': 4, 'kRFUEL': 1}
elif materialOpt == 'trigafuel':
importanceDict = {'tFUEL': 1}
elif materialOpt == 'trigamore':
importanceDict = {'tFUEL': 10, 'tCLAD': 2, 'tZIRC': 2, 'tIRRADIATIONTUBE': 1}
elif materialOpt == 'manual':
if not importancesList:
importancesList = [1]*len(materialsList)
importanceDict = {material:importance for material,importance in zip(
materialsList, importancesList)}
# Appending to materialNames does not alias onto importanceDict
materialNames = importanceDict.keys()
numMaterials = len(materialNames)
# Use infinite medium flux, infinite medium flux with escape xs, and energy itself
numIndicators = 2 * numMaterials + 1
# Read indicators
indicators = np.zeros((numIndicators, numGroups))
i = 0
for materialName in materialNames:
weight = np.power(10, importanceDict[materialName])
fluxName = 'inf_flux_{0}_{1}.txt'.format(materialName, resolution)
fluxPath = os.path.join(indicatorsDatDirr, fluxName)
indicators[i, :] = weight * load_txt(fluxPath) / dE
if useSigt:
fluxName = 'tot_xs_{0}_{1}.txt'.format(materialName, resolution)
fluxPath = os.path.join(indicatorsDatDirr, fluxName)
indicators[i+1, :] = weight * load_txt(fluxPath)
else:
fluxName = 'inf_flux_{0}_e_{1}.txt'.format(materialName, resolution)
fluxPath = os.path.join(indicatorsDatDirr, fluxName)
indicators[i+1, :] = weight * load_txt(fluxPath) / dE
i += 2
energyGrid = np.sqrt(groupBdrs[1:] * groupBdrs[:-1])
indicators[-1, :] = energyGrid
materialNames += 'E'
# Outputs
dataDict['dE'] = dE
dataDict['groupBdrs'] = groupBdrs
dataDict['energyGrid'] = energyGrid
dataDict['materialNames'] = materialNames
dataDict['numGroups'] = numGroups
dataDict['numIndicators'] = numIndicators
return indicators
def compute_observations(dataDict, indicators):
'''Compute observations from indicators.
Only uses first and last values of coarseBdrs, which are not changed in apportion_elements()'''
# Inputs
energyPenalty = dataDict['energyPenalty']
groupBdrs = dataDict['groupBdrs']
coarseBdrs = dataDict['coarseBdrs']
numIndicators, numGroups = indicators.shape
observations = np.log10(indicators)
medians = np.median(observations, axis=1)
observations -= medians[:, np.newaxis]
#
obsRange = np.max(observations[:-1,:]) - np.min(observations[:-1,:])
strt = np.argmin(np.abs(groupBdrs - coarseBdrs[-1]))
end = np.argmin(np.abs(groupBdrs - coarseBdrs[0]))
energyRange = np.max(observations[-1,strt:end]) - np.min(observations[-1,strt:end])
observations[-1,:] *= np.sqrt(numIndicators) * energyPenalty * (obsRange / energyRange)
# Transpose to be [numGroups, numPoints]. Copy for later speed
observations = observations.transpose().copy()
# Outputs
return observations
def apportion_elements(dataDict, observations):
'''Determine the coarse group boundaries and the number of elements in each coarse group.
The first and last coarse group boundaries determine the extent of the RRR.
coarseBdrs are replaced with an equal lethargy grid if numCoarseGroups is nonzero.
numElementsList has precedence over numElements/apportionOpt if both are given.
numElements refers to the elements in the RRR unless numElementsIsTotal is True.
'''
# Inputs
verbosity = dataDict['verbosity']
coarseBdrs = dataDict['coarseBdrs']
numCoarseGroups = dataDict['numCoarseGroups']
numElementsList = dataDict['numElementsList']
groupBdrs = dataDict['groupBdrs']
apportionOpt = dataDict['apportionOpt']
numElements = dataDict['numElements']
numElementsIsTotal = dataDict['numElementsIsTotal']
numGroups = dataDict['numGroups']
indicatorsDatDirr = dataDict['indicatorsDatDirr']
# Determine the coarse group boundaries
if numCoarseGroups != 0:
# Use an equal lethargy grid with numCoarseGroups groups
coarseBdrs = np.logspace(np.log10(coarseBdrs[0]), np.log10(coarseBdrs[-1]), numCoarseGroups+1)
else:
numCoarseGroups = len(coarseBdrs) - 1
# Determine the total number of elements
if numElementsList:
numElementsIsTotal = False
numElements = np.sum(numElementsList)
numElementsIsRRR = not(numElementsIsTotal)
# Determine the RRR bounding indices on the fine group structure
strt = np.argmin(np.abs(groupBdrs - coarseBdrs[-1]))
end = np.argmin(np.abs(groupBdrs - coarseBdrs[0]))
# Initialize the global labels, which map from subelement index to element index
globalLabels = np.zeros(numGroups, dtype=np.int)
numThermal = numGroups - end
numFast = strt
numFastAndThermal = numThermal + numFast
# On the old group structure,
# [:strt) are fast, [end:) are thermal, and [strt:end) are resonance
# On the new element structure,
# [:newStrt) are fast, [:newEnd) are thermal, and [newStrt:newEnd) are resonance
newStrt = strt
if numElementsIsRRR:
# numElements is just the number of resonance elements
newEnd = newStrt + numElements
else:
# numElements is the total number of elements:
newEnd = end + (numElements - numGroups)
thermalOffset = newEnd
globalLabels[:strt] = np.arange(numFast)
globalLabels[end:] = np.arange(numThermal) + thermalOffset
# Determine the total number of elements
numElementsTot = numElements
if numElementsIsRRR:
numElementsTot += numFastAndThermal
numElementsRRR = numElementsTot - numFastAndThermal
# Determine the number of elements per coarse group and store in numClustersList
if numElementsList:
numClustersList = numElementsList
apportionOpt = 'manual'
elif apportionOpt in ['var', 'max', 'L1', 'birch']:
numClustersList = auto_apportion(observations, numElementsRRR, groupBdrs, coarseBdrs, apportionOpt, verbosity)
else: # apportionOpt == 'equal'
# Apportion as equally as possible. Give high-energy coarse groups the remainder
numElementsPerCoarseGroup = numElementsRRR // numCoarseGroups
remainder = numElementsRRR % numCoarseGroups
numClustersList = numElementsPerCoarseGroup * np.ones(numCoarseGroups, dtype=np.int)
if remainder:
numClustersList[-remainder:] += 1
# Check for validity of the number of clusters list
if np.any(numClustersList <= 0):
minNumElements = numFastAndThermal + len(coarseBdrs) - 1
raise ValueError('{0} clusters specified, but at least {1} should have been used'.format(numElementsTot, minNumElements))
# Output 0
# Print the number of elements per coarse group
print 'final elements per coarse group ({0}):\n'.format(apportionOpt), numClustersList
# Output 1
# Save the number of elements per coarse group
baseName = 'aptn_{0}'.format(apportionOpt)
#filename = '{0}_{1}_{2}.txt'.format(baseName, numElements, resolution)
filename = '{0}_e{1}_g{2}.txt'.format(baseName, numElements, numCoarseGroups)
filePath = os.path.join(indicatorsDatDirr, filename)
# Output
with open(filePath, 'w') as fid:
fid.write('# Energy mesh with {0} coarse groups and {1} resonance elements\n'.format(numCoarseGroups, numElementsRRR))
fid.write('# coarse_group upper_bound(eV) num_elements\n')
for coarseGroup in range(numCoarseGroups):
energy = coarseBdrs[coarseGroup]
numElem = numClustersList[coarseGroup]
# Write the same number of digits as NJOY. This prints from coarseGroup, not groupBdrs.
fid.write('{0:g} {1:.6e} {2}\n'.format(coarseGroup, energy, numElem))
fid.write('{0:g} {1:.6e} {2}\n'.format(-1, coarseBdrs[-1], 0))
# Output 2
dataDict['apportionOpt'] = apportionOpt
dataDict['numCoarseGroups'] = numCoarseGroups
dataDict['coarseBdrs'] = coarseBdrs
dataDict['numElementsIsTotal'] = numElementsIsTotal
dataDict['numElementsList'] = numElementsList
dataDict['numElements'] = numElements
dataDict['numElementsTot'] = numElementsTot
dataDict['numClustersList'] = numClustersList
return globalLabels, thermalOffset
def auto_apportion(observations, numElementsRRR, groupBdrs, coarseBdrs, apportionOpt, verbosity):
'''Assign the number of clusters / elements proportional to the relative variance within a coarse group'''
numCoarseGroups = len(coarseBdrs) - 1
metric = np.zeros(numCoarseGroups)
numFineGroupsPerCoarseGroup = np.zeros(numCoarseGroups, dtype=np.int)
timeBirch = 0.0
for coarseGroup in range(len(coarseBdrs)-1):
# Only look at the fine groups within the current coarse group
strt = np.argmin(np.abs(groupBdrs - coarseBdrs[coarseGroup+1]))
end = np.argmin(np.abs(groupBdrs - coarseBdrs[coarseGroup]))
obs = observations[strt:end, :]
# Points are groups and dim are materials
numPoints, numDim = obs.shape
numFineGroupsPerCoarseGroup[coarseGroup] = numPoints
if apportionOpt == 'var':
# For each dimension, compute the average over the points
means = np.mean(obs, axis=0)
# The variance metric is the sum of the square errors from the means
# var is actually a standard deviation
var = np.sqrt(np.sum(np.square(obs - means[np.newaxis,:])) / (numPoints * numDim))
metric[coarseGroup] = var
elif apportionOpt == 'max':
# The max error metric is the maximum obs range in over all dimensions,
# where each obs range is the difference between the largest and smallest
# point values for that dim
maxErr = np.max(np.max(obs, axis=0) - np.min(obs, axis=0))
metric[coarseGroup] = maxErr
elif apportionOpt == 'L1':
# The L1 error metric is the unnormalized sum of the absolute pointwise differences,
# where each pointwise difference is a maximum over all dimensions
L1Err = np.sum(np.max(np.abs(obs[:-1,:] - obs[1:,:]), axis=1))
metric[coarseGroup] = L1Err
elif apportionOpt == 'birch':
# The BIRCH error metric uses the number of clusters required to reduce the variance of an
# energy element to threshold. A value of 1.0 for threshold would produce clusters
# that span a factor of 10 in flux / xs space (based on how obs are defined).
# Do not include energy penalty when looking at clusters.
threshold = 0.05
clusterer = cluster.Birch(n_clusters=None, threshold=threshold)
t0 = time.time()
numClusters = len(np.unique(clusterer.fit_predict(obs[:,:-1])))
timeBirch += time.time() - t0
# Converted to float implicitly
metric[coarseGroup] = numClusters
# Normalize the metric
metric /= np.sum(metric)
# Each coarse group needs at least one energy element and the number of energy elements
# per coarse group should be proportional to the normalized metric (relative variance)
desiredElementsPerCoarseGroup = np.minimum(numFineGroupsPerCoarseGroup,
np.maximum(1, metric * numElementsRRR))
sumDesiredElements = np.sum(desiredElementsPerCoarseGroup)
# Compute a new metric that takes into account the maximum(1,:)
newMetric = (desiredElementsPerCoarseGroup - 1) / (sumDesiredElements - numCoarseGroups)
fractions, floored = np.modf(newMetric * (numElementsRRR - numCoarseGroups))
elementsPerCoarseGroup = np.array(floored, dtype=np.int) + 1
# Add elements to the largest coarse groups with the largest fractional number of elements
remainder = numElementsRRR - np.sum(elementsPerCoarseGroup)
if remainder:
locLargestFrac = np.argsort(fractions)[-remainder:]
elementsPerCoarseGroup[locLargestFrac] += 1
if verbosity and apportionOpt == 'birch':
print 'Birch clustering took {0} s'.format(timeBirch)
if verbosity:
print 'desired elements per coarse group:\n', desiredElementsPerCoarseGroup
if remainder:
print 'remainder: {0}; smallest large fractional: {1:.3f}'.format(
remainder, fractions[locLargestFrac[0]])
# Outputs
return elementsPerCoarseGroup
def find_num_neighbors(dataDict, timeDict, observations):
'''Use connected components to determine the number of neighbors'''
# (no inputs from dataDict)
t0 = time.time()
numMinNeighbors = find_minimum_num_neighbors(observations[:,:-1])
numNeighbors = max(15+numMinNeighbors, 200) # Changed from 100
timeInitialNeighbors = time.time() - t0
# Outputs
dataDict['numNeighbors'] = numNeighbors
timeDict['timeInitialNeighbors'] = timeInitialNeighbors
def cluster_one_coarse_group(dataDict, timeDict, observations, globalLabels, offset, coarseGroup):
'''Apply clustering to one coarse group and return the labels of the clustering'''
# Inputs
groupBdrs = dataDict['groupBdrs']
coarseBdrs = dataDict['coarseBdrs']
energyGrid = dataDict['energyGrid']
numClustersList = dataDict['numClustersList']
numNeighbors = dataDict['numNeighbors']
forceContiguity = dataDict['forceContiguity']
useEqualMGSpacing = dataDict['useEqualMGSpacing']
useEqualIndexSpacing = dataDict['useEqualIndexSpacing']
plotOpt = dataDict['plotOpt']
# Slice arrays for current coarse group
strt = np.argmin(np.abs(groupBdrs - coarseBdrs[coarseGroup+1]))
end = np.argmin(np.abs(groupBdrs - coarseBdrs[coarseGroup]))
obs = observations[strt:end,:]
eGrid = energyGrid[strt:end]
gBdr = groupBdrs[strt:end+1]
numGroups, numPoints = obs.shape
numClusters = numClustersList[coarseGroup]
# Create connectivity graph based on number of neighbors
t0 = time.time()
useNeighbors = min(numGroups, numNeighbors)
knnGraph = neighbors.kneighbors_graph(obs[:,:-1], useNeighbors, include_self=True)
timeNeighbors = time.time() - t0
connectivityGraph = knnGraph
# Perform appropriate clustering for the current coarse group
t0 = time.time()
if not forceContiguity:
labels = cluster_using_hierarchical_agglomeration(obs, numClusters, connectivityGraph)
elif useEqualMGSpacing:
labels = cluster_using_equal_energy_spacing(gBdr, numClusters)
elif useEqualIndexSpacing:
labels = cluster_using_equal_topological_spacing(obs, numClusters)
else:
labels = cluster_using_mg_squared_error(obs, numClusters)
timeCluster = time.time() - t0
# Reorder labels for maximal downscattering (make labels descendingly sorted)
temp = np.zeros((numClusters, 1))
labels, temp = reorder_codebook(labels, temp, eGrid)
# Output 0: Set global labels based on local labels and global offset (aliased)
offset -= numClusters
globalLabels[strt:end] = labels + offset
uniqueLabels = np.unique(labels)
# Output 1: Print number of neighbors and required times
timeDict['timeNeighbors'] = timeNeighbors
timeDict['timeCluster'] = timeCluster
print_timing(dataDict, timeDict, numGroups, coarseGroup)
# Output 2: Plot observations colored by label / cluster
if plotOpt not in ['none', 'sum']:
plot_clustering(dataDict, coarseGroup, uniqueLabels, labels, eGrid, obs, numClusters, numPoints, offset)
# Output3:
return offset
###############################################################################
def print_timing_header():
'''Print the header for print_timing()'''
# Output
print 'coarseGroup, numNeighbors, fracNeighbors, numGroups, timeInitialNeighbors, timeNeighbors, timeCluster'
def print_timing(dataDict, timeDict, numGroups, coarseGroup):
'''Print interesting size and time information'''
# Inputs
numNeighbors = dataDict['numNeighbors']
timeInitialNeighbors = timeDict['timeInitialNeighbors']
timeNeighbors = timeDict['timeNeighbors']
timeCluster = timeDict['timeCluster']
# Output
print coarseGroup, numNeighbors, float(numNeighbors) / numGroups, numGroups, timeInitialNeighbors, timeNeighbors, timeCluster
def plot_summary(dataDict, observations, globalLabels):
'''Plot the entire energy range range'''
# Inputs
groupBdrs = dataDict['groupBdrs']
coarseBdrs = dataDict['coarseBdrs']
energyGrid = dataDict['energyGrid']
numElements = dataDict['numElements']
# Slice arrays for the RRR
strt = np.argmin(np.abs(groupBdrs - coarseBdrs[-1]))
end = np.argmin(np.abs(groupBdrs - coarseBdrs[0]))
obs = observations[strt:end,:]
eGrid = energyGrid[strt:end]
gBdr = groupBdrs[strt:end+1]
numGroups, numPoints = obs.shape
labels = globalLabels[strt:end].copy()
offset = np.min(labels)
labels -= offset
uniqueLabels = np.unique(labels)
numClusters = numElements
coarseGroup = 'sum'
# Output
plot_clustering(dataDict, coarseGroup, uniqueLabels, labels, eGrid, obs, numClusters, numPoints, offset)
def plot_clustering(dataDict, coarseGroup, uniqueLabels, labels, eGrid, obs, numClusters, numPoints, offset):
'''Plot observations in coarse group'''
# Inputs
forceContiguity = dataDict['forceContiguity']
clusterName = dataDict['clusterName']
materialNames = dataDict['materialNames']
numElements = dataDict['numElements']
numCoarseGroups = dataDict['numCoarseGroups']
plotOpt = dataDict['plotOpt']
plotDirr = dataDict['plotDirr']
showNumbers = dataDict['showNumbers']
dpi = dataDict['dpi']
if plotOpt != 'none':
colors = putil.get_colors(max(uniqueLabels)-min(uniqueLabels)+1)
#if forceContiguity and not showNumbers:
if True or numClusters < 1000:
colors = colors[np.argsort(np.random.random(colors.shape[0]))]
if plotOpt == 'first':
pointsToPlot = [0]
elif plotOpt == 'last':
pointsToPlot = [numPoints-1]
elif plotOpt == 'firstlast':
pointsToPlot = [0, numPoints-1]
elif plotOpt == 'half':
pointsToPlot = range(0, numPoints-1, 2)
else:
pointsToPlot = range(numPoints)
avgLabels, avgEGrid, avgObs = average_observations(labels, eGrid, obs)
for ip in pointsToPlot:
material = materialNames[ip/2]
if ip % 2 == 1:
material += '_e'
print 'Saving plot for {0}, {1}, {2}'.format(material, numElements, coarseGroup)
plt.figure(3)
plt.clf()
labelColors = [colors[label] for label in labels]
#plt.semilogx(eGrid, obs[:,ip], '-', color=[0.2, 0.2, 0.2], rasterized=True)
plt.scatter(eGrid, obs[:,ip], c=labelColors, edgecolor='none', rasterized=True)
plt.xscale('log')
if showNumbers:
for label in uniqueLabels:
mask = (avgLabels == label)
color = colors[label]
marker = r'${0}$'.format(label + offset)
sz = 10
if len(marker) == 5:
sz = 12
white = [1, 1, 1, 1.0]
plt.semilogx(avgEGrid[mask], avgObs[mask,ip], linestyle='', markersize=sz, color=white, markeredgecolor=white, rasterized=False, marker='o')
plt.semilogx(avgEGrid[mask], avgObs[mask,ip], linestyle='', markersize=sz, color=color, markeredgecolor=color, rasterized=False, marker=marker)
if (eGrid[0] / eGrid[-1]) < 5:
plt.xscale('linear')
plt.xlabel('Energy (eV)')
plt.ylabel('Observation (arb.)')
plt.title('{0} elements'.format(len(uniqueLabels)))
plt.xlim(np.min(eGrid), np.max(eGrid))
# Hack the zoom
#plt.xlim([1E3,1E7])
#plt.xlim([7.E6, 1.E7])
baseName = 'p_obs'
if forceContiguity:
baseName += '_{0}'.format(clusterName)
effCoarseGroups = 'of_{0}'.format(numCoarseGroups - 1)
if coarseGroup == 'sum':
effCoarseGroups = '{0}'.format(numCoarseGroups)
plotName = '{0}_{1}_{2}_{3}_{4}.pdf'.format(
baseName, numElements, coarseGroup, effCoarseGroups, material)
plotPath = os.path.join(plotDirr, plotName)
# Output
plt.tight_layout()
plt.savefig(plotPath, dpi=dpi)
def write_mesh(dataDict, globalLabels):
'''Write the energy mesh by writing subelements'''
# Inputs
forceContiguity = dataDict['forceContiguity']
condenseSubelements = dataDict['condenseSubelements']
resolution = dataDict['resolution']
groupBdrs = dataDict['groupBdrs']
clusterName = dataDict['clusterName']
numElements = dataDict['numElements']
numElementsTot = dataDict['numElementsTot']
energyDatDirr = dataDict['energyDatDirr']
if condenseSubelements:
globalLabels, groupBdrs = condense_subelements(globalLabels, groupBdrs)
numSubelements = len(globalLabels)
baseName = 'clust'
if forceContiguity:
baseName += '-{0}'.format(clusterName)
filename = '{0}-{1}-{2}.txt'.format(baseName, numElements, resolution)
filePath = os.path.join(energyDatDirr, filename)
# Output
with open(filePath, 'w') as fid:
fid.write('# Energy mesh with {0} elements and {1} subelements\n'.format(numElementsTot, numSubelements))
fid.write('# element upper bound region\n')
for label, energy in zip(globalLabels, groupBdrs[:-1]):
if energy > 2.5E4:
energyType = 'fast'
elif energy <= 3.0:
energyType = 'thermal'
else:
energyType = 'resonance'
fid.write('{0:g} {1:.8e} {2}\n'.format(label, energy, energyType))
fid.write('-1 {0:.8e} thermal\n'.format(groupBdrs[-1]))
###############################################################################
def compute_map(inputDict):
'''Callable interface to use these clustering methods from another script.
Returns the uncondensed labels'''
# Create timeDict to house timing results
timeDict = {}
# Create dataDict to house problem parameters. Future functions should be assumed to modify dataDict
dataDict = {}
# Initialize dataDict, assuming inputDict has the observations
# indicators sets: dE, groupBdrs, energyGrid (just energyAvg), materialNames, numGroups, numIndicators
observations = extract_external_inputDict(inputDict, dataDict) #(not complete)
# Determine work options
parse_work_opt(dataDict)
# Determine coarse group structure and the number of energy elements per coarse group
globalLabels, thermalOffset = apportion_elements(dataDict, observations)
# Determine number of neighbors for the clustering
find_num_neighbors(dataDict, timeDict, observations)
# Loop over each coarse group
offset = thermalOffset
print_timing_header()
for coarseGroup in range(len(dataDict['coarseBdrs'])-1):
# Cluster within each coarse group and plot
offset = cluster_one_coarse_group(
dataDict, timeDict, observations, globalLabels, offset, coarseGroup)
return globalLabels
###############################################################################
def reorder_codebook(codebook, centroids, energyAvg, positionFunc=np.mean):
'''Sort so group with highest value of positionFunc is cluster 0'''
masks = get_masks(codebook)
numGroups, numClusters = masks.shape
energyCentroids = np.zeros(numClusters)
newCodebook = np.zeros(codebook.size, dtype=np.int64)
newCentroids = np.zeros(centroids.shape)
for i in range(numClusters):
energyCentroids[i] = positionFunc(energyAvg[masks[:,i]])
clusterOrder = np.argsort(-energyCentroids)
for ic, cluster in enumerate(clusterOrder):
newCodebook[codebook==cluster] = ic
newCentroids[ic,:] = centroids[cluster,:]
return newCodebook, newCentroids
def get_masks(codebook):
minCode = min(codebook)
maxCode = max(codebook)
numCodes = maxCode - minCode + 1
numGroups = len(codebook)
masks = np.zeros([numGroups, numCodes], dtype=bool)
for i in range(minCode, maxCode+1):
masks[:,i] = codebook==i
return masks
###############################################################################
def cluster_using_mg_squared_error(observations, numGroups):
'''This may return fewer groups than numGroups when numGroups is large'''
'''If this fails to produce the desired number of groups, split up existing groups starting with LOW energies and going to HIGH'''
# Calculate the max difference in obs over all space/angle points between neighboring energy points
numPoints, numDim = observations.shape
obsErr = np.zeros(numPoints)
obsErr[1:] = np.max(np.abs(observations[:-1,:] - observations[1:,:]) , axis=1)
# Sum this error
cumErr = np.cumsum(np.square(obsErr))
totErr = cumErr[-1]
# Evenly divide the total error into numGroups groups
errPerGroup = totErr / numGroups
labels = np.zeros(numPoints, dtype=np.int)
groupBdrLower = 0
for g in range(numGroups):
desiredErr = (g + 1) * errPerGroup
groupBdrUpper = np.argmin(np.abs(cumErr - desiredErr)) + 1
if groupBdrLower >= groupBdrUpper:
groupBdrUpper = groupBdrLower + 1
labels[groupBdrLower:groupBdrUpper] = g
groupBdrLower = groupBdrUpper
return labels
def cluster_using_equal_topological_spacing(observations, numGroups):
'''Split observations into numGroups pieces so that an even number of points go into each piece'''
numPoints, numDim = observations.shape
pointsPerGroup = numPoints // numGroups
remainder = numPoints % numGroups
labels = np.zeros(numPoints, dtype=np.int)
groupBdrLower = 0
for g in range(numGroups):
groupBdrUpper = groupBdrLower + pointsPerGroup
if g < remainder:
groupBdrUpper += 1
labels[groupBdrLower:groupBdrUpper] = g
groupBdrLower = groupBdrUpper
return labels
def cluster_using_equal_energy_spacing(fineGroupBdrs, numGroups):
'''This may return fewer groups than numGroups when fineGroupBdrs has unequal spacing and numGroups is large'''
'''If this fails to produce the desired number of groups, split up existing groups starting with HIGH energies and going to LOW'''
# Calculate an energy mesh using equal log spacing with numGroups groups
numFineGroups = len(fineGroupBdrs) - 1
desiredGroupBdrs = np.logspace(np.log10(fineGroupBdrs[0]), np.log10(fineGroupBdrs[-1]), numGroups+1)
# Get as close as possible to this mesh using the fineGroupBdrs
labels = np.zeros(numFineGroups, dtype=np.int)
groupBdrLower = 0
for g in range(numGroups):
groupBdrUpper = np.argmin(np.abs(fineGroupBdrs - desiredGroupBdrs[g+1]))
if groupBdrLower >= groupBdrUpper:
groupBdrUpper = groupBdrLower + 1
labels[groupBdrLower:groupBdrUpper] = g
groupBdrLower = groupBdrUpper
return labels
def cluster_using_hierarchical_agglomeration(obs, numClusters, connectivityGraph):
'''Use hierarhical agglomerative clustering with a connectivity graph'''
har = cluster.AgglomerativeClustering(n_clusters=numClusters, connectivity=connectivityGraph)
har.fit(obs)
return har.labels_
# Hack to use Birch:
#birch = cluster.Birch(n_clusters=numClusters, threshold=0.05)
#return birch.fit_predict(obs)
###############################################################################
def condense_subelements(labels, energies):
'''Combine all energy points that have the same labels. If dual, combine all energy groups that have the same labels, and interpret energies as group boundaries. Output a dual mesh'''
isDual = True
if len(energies) == len(labels):
isDual = False
energies = energies.copy()
small = 1E-5
energies[energies == 0] = small
if isDual:
numBdrs = len(energies)
toKeep = np.ones(numBdrs, dtype=bool)
toKeep[1:-1] = (labels[1:] != labels[:-1])
labelsOut = labels[toKeep[:-1]]
energiesOut = energies[toKeep]
else:
numEnergies = len(energies)
toKeep = np.ones(numEnergies, dtype=bool)
toKeep = (labels[1:] != labels[:-1])
groupsToKeep = np.sum(toKeep) + 1
labelsOut = np.zeros(groupsToKeep, dtype=np.int)
labelsOut[:-1] = labels[toKeep]
labelsOut[-1] = labels[-1]
energiesOut = np.zeros(groupsToKeep+1)
energiesOut[0] = energies[0]
toKeepIndices = np.where(toKeep)[0]
energiesOut[1:-1] = np.sqrt(energies[toKeepIndices] * energies[toKeepIndices+1])
energiesOut[-1] = energies[-1]
return labelsOut, energiesOut
def average_observations(labels, energies, observations):
'''Currently only works for primal meshes'''
energies = energies.copy()
small = 1E-5
energies[energies == 0] = small
#
numGroups, numPoints = observations.shape
#
toKeep = np.ones(numGroups+1, dtype=bool)
toKeep[1:-1] = (labels[1:] != labels[:-1])
subelementBdrs = np.where(toKeep)[0]
numSubelements = len(subelementBdrs) - 1
observationsOut = np.zeros((numSubelements, numPoints))
energiesOut = np.zeros(numSubelements)
labelsOut = np.zeros(numSubelements, dtype=int)
for i in range(numSubelements):
strt, end = subelementBdrs[i], subelementBdrs[i+1]
observationsOut[i, :] = np.mean(observations[strt:end, :], axis=0)
energiesOut[i] = np.exp(np.mean(np.log(energies[strt:end])))
labelsOut[i] = labels[strt]
return labelsOut, energiesOut, observationsOut
###############################################################################
def find_minimum_neighbors_radius(observations):
'''Find the minimum radius such that the number of connected components is 1.
First, find a bounding interval. Then use bisection within the interval.'''
#
radiusNeighbors = 0.10
bounds = [0, np.inf]
foundBounds = [False, False]
while not np.all(foundBounds):
numRadComponents, radLabels = sparse.csgraph.connected_components(
neighbors.radius_neighbors_graph(observations, radiusNeighbors))
if numRadComponents > 1:
bounds[0] = radiusNeighbors
foundBounds[0] = True
radiusNeighbors *= 2
else:
bounds[1] = radiusNeighbors
foundBounds[1] = True
radiusNeighbors /= 2
#
converged = False
tol = 1E-2
its = 0
maxIts = 10
while (its < maxIts and not converged):
its += 1
radiusNeighbors = 0.5 * (bounds[0] + bounds[1])
numRadComponents, radLabels = sparse.csgraph.connected_components(
neighbors.radius_neighbors_graph(observations, radiusNeighbors))
if numRadComponents > 1:
bounds[0] = radiusNeighbors
else:
bounds[1] = radiusNeighbors
sz = (bounds[1] - bounds[0]) / radiusNeighbors
if sz <= tol:
converged = True
radiusNeighbors = bounds[1]
return radiusNeighbors
def get_index_neighbors(length):
'''Return a neighbors graph that is tridiagonal, viz., the neighbors are determined by index'''
arr = np.ones(length)
return sparse.spdiags([arr, arr, arr], [-1, 0, 1], length, length)
def find_minimum_num_neighbors(observations):
'''Find the minimum number of neighbors such that the number of connected components is 1.
First, find a bounding interval. Then use bisection within the interval.'''
#
numNeighbors = 10
numPoints = observations.shape[0]
bounds = [0, numPoints]
foundBounds = [False, False]
while not np.all(foundBounds):
numKnnComponents, knnLabels = sparse.csgraph.connected_components(
neighbors.kneighbors_graph(observations, numNeighbors, include_self=True))
if numKnnComponents > 1:
bounds[0] = numNeighbors
foundBounds[0] = True
numNeighbors *= 2
else:
bounds[1] = numNeighbors
foundBounds[1] = True
numNeighbors /= 2
if numNeighbors == 0:
bounds[0] = 0
foundBounds[0] = True
#
converged = False
minSz = 1
its = 0
maxIts = 10
while (its < maxIts and not converged):
its += 1
numNeighbors = int(np.round(0.5 * (bounds[0] + bounds[1])))
numKnnComponents, knnLabels = sparse.csgraph.connected_components(
neighbors.kneighbors_graph(observations, numNeighbors, include_self=True))
if numKnnComponents > 1:
bounds[0] = numNeighbors
else:
bounds[1] = numNeighbors
sz = bounds[1] - bounds[0]
if sz <= minSz:
converged = True
numNeighbors = bounds[1]
if not converged:
print "Not converged!"
return numNeighbors
###############################################################################
def load_txt(filePath, skiprows=1, usecols=[1]):
return np.loadtxt(filePath, skiprows=skiprows, usecols=usecols)
###############################################################################
def define_input_parser():
import argparse
#
parser = argparse.ArgumentParser(description='Minimizer of observation errors and creator of generalized energy meshes.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
defaults = define_defaults()
# If nothing is specified, verbosity is False. If -v or --verbose is specified, verbosity is 1. If -v N is specified, verbosity is N.
parser.add_argument('-v', '--verbose', dest='verbosity', nargs='?', const=1, default=defaults['verbosity'], choices=[0,1,2,3,4], type=int)
parser.add_argument('-e', '--elements', dest='numelements', help="Number of total energy elements to use for the energy mesh. Ignored if the 'numcoarsegroups' option is used.", type=int, default=defaults['numelements'])
parser.add_argument('-T', '--totalnumelements', dest='numelementsistotal', help="If specified, the number of energy elements is taken to be the total number of elements. If not specified, the number of energy elements is taken to be the number of elements in the resolved resonance region. Ignored if the 'numcoarsegroups' option is used.", action='store_true', default=False)
parser.add_argument('-a', '--apportionopt', help="Specify how to assign the number of energy elements per coarse group, if not explicitly specified using 'listnumelements'. 'equal' means use an equal number of elements per coarse group. 'var', 'max', 'birch', and 'L1' are four ways that assign elements in proportion to the relative variance within a coarse group. 'L1' is not normalized to the number of fine points per coarse group and is more useful for 'amg' and 'tmg' work options. 'birch' uses the number of Birch clusters, and is approximate.", choices=['equal', 'var', 'max', 'birch', 'L1'], default=defaults['apportionopt'])
parser.add_argument('-S', '--sigt', help='If specified, use Sigma_t as the other indicator. If not specified, use phi calculated with an escape cross sections as the other indicator. Always use the infinite-medium flux as the first indicator. Fluxes are normalized in shape to be more constant: the Maxwellian-1/E-fission source shape is divided out.', action='store_true', default=False)
parser.add_argument('-w', '--workopt', help='What to do. har means do hierarchical agglomerative clustering (with restricted connectivity based on a set number of nearest neighbors). mg means do even spacing in lethargy (or as close as possible given the input energy mesh). amg means minimize squared error within each group. tmg means evenly divide in index (topology) space from input grid', choices=['amg','tmg','mg','har'], default=defaults['workopt'])
parser.add_argument('-c', '--coarsebdrs', help='The resolved resonance range and how it is to be split into coarse groups (one clustering calculation per coarse group).', type=float, nargs='+', default=defaults['coarsebdrs'])
parser.add_argument('-n', '--numcoarsegroups', help="The number of coarse groups to be used. If nonzero, overwrites the internal members of 'coarsebdrs'", type=int, default=defaults['numcoarsegroups'])
parser.add_argument('-l', '--listnumelements', help='Number of elements to be put in each coarse boundary. Number of arguments should be one less than the number of coarse boundaries. Takes priority over "elements" if set', type=int, nargs='+', default=defaults['listnumelements'])
parser.add_argument('-r', '--resolution', help='Resolution to use for the pointwise flux calculations', type=int, choices=range(11), default=defaults['resolution'])
parser.add_argument('-m', '--materialopt', help="Unless 'manual' is used, specifies a set of materials to use. If 'manual' is used, give a space-separated list of material names in 'listmaterials'.", choices=['4','5','c5g7', 'graphite', 'iron', 'kpin', 'kenrichedpin', 'kcladpin', 'kpin2d', 'kenrichedpin2d', 'kmoxpin2d', 'kmoxenrichedpin2d', 'trigafuel', 'trigamore', 'manual'], default=defaults['materialopt'])
parser.add_argument('-i', '--indicatormaterials', dest='listmaterials', help="When manual 'materialopt' is used, specify the materials to use.", nargs='+', default=defaults['listmaterials'])
parser.add_argument('-I', '--importances', dest='listimportances', help="When manual 'materialopt' is used, specify the weightings (importances) to use when clustering.", nargs='+', type=int, default=[])
parser.add_argument('-p', '--plotopt', help='Which observations to plot', choices=['none', 'first', 'last', 'firstlast', 'half', 'all', 'sum'], default=defaults['plotopt'])
parser.add_argument('-s', '--shownumbers', help='If true, show element numbers on the plots', type=int, default=defaults['shownumbers'])
parser.add_argument('-E', '--energypenalty', help='The energy variable is added to the observations to encourage contiguity for high numbers of elements. A value of 0 will not penalize in energy at all. A very large value will yield equal-lethargy-spaced MG', type=float, default=defaults['energypenalty'])
parser.add_argument('-C', '--condensesubelements', help='If true, condense contiguous energy ranges before outputting', type=int, default=defaults['condensesubelements'])
parser.add_argument('-d', '--dpi', help='Resolution to use for output plots', type=int, default=defaults['dpi'])
return parser
###############################################################################
if __name__ == '__main__':
parser = define_input_parser()
inputDict = vars(parser.parse_args())
if inputDict['verbosity'] > 1:
print 'Summary of inputs:'
print inputDict
do_all(inputDict)