From d1989a25200f8a2d899c3d514875ca7752eeb63d Mon Sep 17 00:00:00 2001 From: EC2 Default User Date: Fri, 29 Apr 2022 00:24:12 +0000 Subject: [PATCH 01/16] refactor sequential notebooks --- ...0_usecase_and_architecture_predmaint.ipynb | 167 -- .../1_dataprep_dw_job_predmaint.ipynb | 188 +- .../2_dataprep_predmaint.ipynb | 1539 +---------------- .../3_train_tune_predict_predmaint.ipynb | 654 ++----- 4 files changed, 327 insertions(+), 2221 deletions(-) delete mode 100644 use-cases/predictive_maintenance/0_usecase_and_architecture_predmaint.ipynb diff --git a/use-cases/predictive_maintenance/0_usecase_and_architecture_predmaint.ipynb b/use-cases/predictive_maintenance/0_usecase_and_architecture_predmaint.ipynb deleted file mode 100644 index 9853666c61..0000000000 --- a/use-cases/predictive_maintenance/0_usecase_and_architecture_predmaint.ipynb +++ /dev/null @@ -1,167 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fleet Predictive Maintenance: Part 1. Introduction\n", - "\n", - "*Using SageMaker Studio to Predict Fault Classification*\n", - "\n", - "---\n", - "\n", - "## Contents\n", - "\n", - "1. [Background](#0_Background)\n", - "1. [Setup](#0_Setup)\n", - "1. [Architecure](#0_Architecture)\n", - "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", - "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb.ipynb)\n", - "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb.ipynb)\n", - "\n", - "\n", - "\n", - "\n", - "---\n", - " \n", - "## Background\n", - "\n", - "The purpose of this notebook is to demonstrate a Predictive Maintenance (PrM) solution for automible fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we focus on preprocessing engine sensor data before feature engineering and buidling an inital model leveraging SageMaker's algorithms. This notebook will cover the following:\n", - "\n", - "* Setup for using SageMaker\n", - "* Basic data cleaning, analysis and preprocessing\n", - "* Converting datasets to format used by the Amazon SageMaker algorithms and uploading to S3 \n", - "* Training SageMaker's linear learner on the dataset\n", - "* Hyperparamter tuning using SageMaker Automatic Tuning\n", - "* Deploying and getting predictions using Batch Transform\n", - "\n", - "## Important Notes: \n", - "\n", - "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", - "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", - "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n", - "\n", - "Please see the README.md for more information about this use case. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "## Set up\n", - "\n", - "Let's start by:\n", - "\n", - "* Setting up or refreshing storemagic variables \n", - "* Install and Import any dependencies\n", - "* Instatiate SageMaker session\n", - "* Specifying the S3 bucket and prefix that you want to use for your training and model data. This should be within the same region as SageMaker training\n", - "* Define the IAM role used to give training access to your data\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View stored variables from previous session\n", - "\n", - "If you ran this notebook before, you may want to re-use the resources you aready created with AWS. Run the cell below to load any prevously created variables. You should see a print-out of the existing variables. If you don't see anything you may need to create them again or it may be your first time running this notebook." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After you run the notebooks each in succession you will accrue a set of stored variables, stored gradually as you run each notebook:\n", - "Stored variables and their in-db values:\n", - "\n", - "\n", - "- create_date -> '2021-03-16-06-42-12'\n", - "- dw_output_path_prm -> 's3://sagemaker-us-east-2-1234567890/export-flow\n", - "- exp_prefix -> 'sagemaker-experiments/linear-learner-2021-03-16-0\n", - "- experiment_name -> 'll-failure-classification-2021-03-16-06-42-12'\n", - "- features_created_prm -> True\n", - "- path_to_test_data_prm -> 's3://sagemaker-us-east-2-1234567890/test/test.c\n", - "- path_to_test_x_data_prm -> 's3://sagemaker-us-east-2-1234567890/test/test_x\n", - "- path_to_train_data_prm -> 's3://sagemaker-us-east-2-1234567890/train/train\n", - "- path_to_valid_data_prm -> 's3://sagemaker-us-east-2-1234567890/validation/\n", - "- trial_name_1 -> 'linear-learner-lr-training-job-2021-03-16-06-42-1\n", - "- trial_name_2 -> 'linear-learner-svm-2021-03-16-06-00-37'\n", - "- trial_name_3 -> 'linear-learner-svm-thresh-2021-03-16-06-00-37'\n", - "- trial_name_4 -> 'linear-learner-svm-balanced-2021-03-16-06-00-37'\n", - "- tune_trial_name -> 'll-svm-tuning-job-trial'\n", - "- tuning_job_name -> 'll-svm-tuning-job'\n", - " \n", - " \n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store -r\n", - "%store" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note : The above output will be null in the very beginning. On subsequent runs, you will see the stored variables. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "## Architecture\n", - "\n", - "![solution_arch_diagram](./images/solution_arch_diagram.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---\n", - " \n", - "## Next Notebook : Data Prep with DataWrangler" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "instance_type": "ml.t3.medium", - "kernelspec": { - "display_name": "conda_python3", - "language": "python", - "name": "conda_python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb index 20cf3b8dc0..d7c6da2f9b 100644 --- a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb +++ b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb @@ -4,18 +4,30 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Fleet Predictive Maintenance: Part 2. Data Preparation with Data Wrangler\n", + "# Fleet Predictive Maintenance: Part 1. Data Preparation with Data Wrangler\n", "\n", - "1. [Architecure](0_usecase_and_architecture_predmaint.ipynb#0_Architecture)\n", - "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", + "*Using SageMaker Studio to Predict Fault Classification*\n", + "\n", + " \n", + "## Background\n", + "\n", + "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on preprocessing engine sensor data. It is the first notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. \n", + "1. [**Data Prep: Processing Job from Data Wrangler Output**](./1_dataprep_dw_job_predmaint.ipynb) (current notebook)\n", "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)\n", - "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb.ipynb)" + "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)\n", + "\n", + "## Important Notes: \n", + "\n", + "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", + "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", + "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "----\n", "## SageMaker Data Wrangler Job Notebook\n", "\n", "This notebook uses the Data Wrangler .flow file to submit a SageMaker Data Wrangler Job\n", @@ -31,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -46,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -70,7 +82,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -183,7 +195,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -333,6 +345,140 @@ ")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Cleaning with Data Wrangler\n", + "\n", + "#### Load, preparation, EDA and Preprocessing \n", + "\n", + "[contents](#2_Contents)\n", + "\n", + "For the initial data preparation and exploration, we will utilize SageMaker's new feature, Data Wrangler, to load data and do some data transformations. In the Data Wrangler GUI, we will perform the following steps. Note that because this data is generated, the data is relatively clean and there are few data cleaning steps needed. \n", + "1. Load fleet sensor logs data from S3\n", + "1. Load fleet details data from S3\n", + "1. Change column data types \n", + "1. Change coulmn headers \n", + "1. Check for Null/NA values (impute or drop)\n", + "1. Join sensor and details data\n", + "1. One-Hot Encode categorical features\n", + "1. Do preliminar analysis using built-in feature\n", + "1. Export recipe as SageMaker Data Wrangler job\n", + "1. Upload final cleaned data set to S3\n", + "\n", + "\n", + "\n", + "For our purposes, we will download the final clened data set from S3 into our SageMaker Studio instance, but for more information on how to load and preprocess tabular data follow this link: [Tabular Preprocessing Blog]().\n", + "For additional information on preprocessing for PrM, please refer to this blog, [On the relevance of preprocessing in predictive\n", + "maintenance for dynamic systems](https://bird.bcamath.org/bitstream/handle/20.500.11824/892/CernudaPREDICT2018S16.pdf?sequence=1&isAllowed=y)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# fleet = wr.s3.read_csv(path=dw_output_path_prm, dataset=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# # add in additional features and change data types\n", + "# fleet[\"datetime\"] = pd.to_datetime(fleet[\"datetime\"], format=\"%Y-%m-%d %H:%M:%S\")\n", + "# fleet[\"cycle\"] = fleet.groupby(\"vehicle_id\")[\"datetime\"].rank(\"dense\")\n", + "# fleet[\"make\"] = fleet[\"make\"].astype(\"category\")\n", + "# fleet[\"model\"] = fleet[\"model\"].astype(\"category\")\n", + "# fleet[\"vehicle_class\"] = fleet[\"vehicle_class\"].astype(\"category\")\n", + "# fleet[\"engine_type\"] = fleet[\"engine_type\"].astype(\"category\")\n", + "# fleet[\"engine_age\"] = fleet[\"datetime\"].dt.year - fleet[\"year\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# fleet = fleet[\n", + "# [\n", + "# \"target\",\n", + "# \"vehicle_id\",\n", + "# \"datetime\",\n", + "# \"make\",\n", + "# \"model\",\n", + "# \"year\",\n", + "# \"vehicle_class\",\n", + "# \"engine_type\",\n", + "# \"make_code_Make A\",\n", + "# \"make_code_Make B\",\n", + "# \"make_code_Make E\",\n", + "# \"make_code_Make C\",\n", + "# \"make_code_Make D\",\n", + "# \"model_code_Model E1\",\n", + "# \"model_code_Model A4\",\n", + "# \"model_code_Model B1\",\n", + "# \"model_code_Model B2\",\n", + "# \"model_code_Model A2\",\n", + "# \"model_code_Model A3\",\n", + "# \"model_code_Model B3\",\n", + "# \"model_code_Model C2\",\n", + "# \"model_code_Model A1\",\n", + "# \"model_code_Model A5\",\n", + "# \"model_code_Model A6\",\n", + "# \"model_code_Model C1\",\n", + "# \"model_code_Model D1\",\n", + "# \"model_code_Model E2\",\n", + "# \"vehicle_class_code_Truck-Tractor\",\n", + "# \"vehicle_class_code_Truck\",\n", + "# \"vehicle_class_code_Bus\",\n", + "# \"vehicle_class_code_Transport\",\n", + "# \"engine_type_code_Engine E\",\n", + "# \"engine_type_code_Engine C\",\n", + "# \"engine_type_code_Engine B\",\n", + "# \"engine_type_code_Engine F\",\n", + "# \"engine_type_code_Engine H\",\n", + "# \"engine_type_code_Engine D\",\n", + "# \"engine_type_code_Engine A\",\n", + "# \"engine_type_code_Engine G\",\n", + "# \"voltage\",\n", + "# \"current\",\n", + "# \"resistance\",\n", + "# \"cycle\",\n", + "# \"engine_age\",\n", + "# ]\n", + "# ]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# fleet.sort_values(by=[\"vehicle_id\", \"datetime\"], inplace=True)\n", + "# fleet.to_csv(\"fleet_data.csv\", index=False)\n", + "# fleet.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you followed the above steps correctly, you data should match that of the existing [fleet_data.csv](fleet_data.csv). It would also fit the following key observations:\n", + "\n", + "- There are 90 vehicles in the fleet\n", + "- Data has 9000 observations and 44 columns.\n", + "- Vehicle can be identified useing the 'vehicle_id' column.\n", + "- The label column, called 'Target', is an indicator of failure ('0' = No Failure; '1' = Failure).\n", + "- There are 4 numeric features available for prediction and 4 categorical features. We will expand upon these later in the Feature Engineering section of this notebook. " + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -382,7 +528,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -425,30 +571,6 @@ ")\n", "estimator.fit({\"train\": train_input})" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Cleanup\n", - "\n", - "Uncomment the following code cell to revert the SageMaker Python SDK to the original version used\n", - "before running this notebook. This notebook upgrades the SageMaker Python SDK to 2.x, which may\n", - "cause other example notebooks to break. To learn more about the changes introduced in the\n", - "SageMaker Python SDK 2.x update, see\n", - "[Use Version 2.x of the SageMaker Python SDK.](https://sagemaker.readthedocs.io/en/stable/v2.html)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# _ = subprocess.check_call(\n", - "# [sys.executable, \"-m\", \"pip\", \"install\", f\"sagemaker=={original_version}\"]\n", - "# )" - ] } ], "metadata": { diff --git a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb index 983bc2456b..fac26a0e4e 100644 --- a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb +++ b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb @@ -4,16 +4,23 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Fleet Predictive Maintenance: Part 3. Feature Engineering\n", - "\n", - "## Data Preparation: Featurization and Exploratory Data Visualization\n", + "# Fleet Predictive Maintenance: Part 2. Feature Engineering and Exploratory Data Visualization\n", "\n", "*Using SageMaker Studio to Predict Fault Classification*\n", "\n", - "1. [Architecure](0_usecase_and_architecture_predmaint.ipynb#0_Architecture)\n", + " \n", + "## Background\n", + "\n", + "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on feature engineering. It is the second notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. \n", "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", - "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)\n", - "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)" + "1. [**Data Prep: Featurization**](./2_dataprep_predmaint.ipynb) (current notebook)\n", + "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)\n", + "\n", + "## Important Notes: \n", + "\n", + "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", + "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", + "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n" ] }, { @@ -25,33 +32,9 @@ "\n", "## Contents\n", "\n", - "1. [Background](#Background)\n", "1. [Setup](#2_Setup)\n", - "1. [Data](#2_Data)\n", "1. [Feature Engineering](#2_Features)\n", - "1. [Data Visualization](#2_Visualization)\n", - "\n", - "\n", - "---\n", - "\n", - "## Background\n", - "\n", - "The purpose of this notebook is to demonstrate a Predictive Maintenance (PrM) solution for automible fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we focus on preprocessing engine sensor data before feature engineering and buidling an inital model leveraging SageMaker's algorithms. This notebook will cover the following:\n", - "\n", - "* Setup for using SageMaker\n", - "* Basic data cleaning, analysis and preprocessing\n", - "* Converting datasets to format used by the Amazon SageMaker algorithms and uploading to S3 \n", - "* Training SageMaker's linear learner on the dataset\n", - "* Hyperparamter tuning using SageMaker Automatic Tuning\n", - "* Deploying and getting predictions using Batch Transform\n", - "\n", - "## Important Notes: \n", - "\n", - "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", - "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", - "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n", - "\n", - "Please see the README.md for more information about this use case. " + "1. [Data Visualization](#2_Visualization)\n" ] }, { @@ -66,7 +49,6 @@ "\n", "Let's start by:\n", "\n", - "* Setting up or refreshing storemagic variables \n", "* Install and Import any dependencies\n", "* Instatiate SageMaker session\n", "* Specifying the S3 bucket and prefix that you want to use for your training and model data. This should be within the same region as SageMaker training\n", @@ -74,36 +56,11 @@ " " ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View stored variables from previous session\n", - "If you ran this notebook before, you may want to re-use the resources you aready created with AWS. Run the cell below to load any prevously created variables. You should see a print-out of the existing variables. If you don't see anything you may need to create them again or it may be your first time running this notebook." - ] - }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "%store -r\n", - "%store" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note : dw_output_path_prm should appear above as a stored (restored) variable, whose value was set when you ran notebook 1_datapred_predmaint.ipynb" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], "source": [ "# Install any missing dependencies\n", "!pip install -qU 'sagemaker-experiments==0.1.24' 'sagemaker>=2.16.1' 'boto3' 'awswrangler'" @@ -111,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -151,184 +108,43 @@ "metadata": {}, "source": [ "---\n", - " \n", - "## Data\n", + " \n", + "## Feature Engineering \n", "\n", - "#### Load, preparation, EDA and Preprocessing \n", "\n", "[contents](#2_Contents)\n", "\n", - "For the initial data preparation and exploration, we will utilize SageMaker's new feature, Data Wrangler, to load data and do some data transformations. In the Data Wrangler GUI, we will perform the following steps. Note that because this data is generated, the data is relatively clean and there are few data cleaning steps needed. \n", - "1. Load fleet sensor logs data from S3\n", - "1. Load fleet details data from S3\n", - "1. Change column data types \n", - "1. Change coulmn headers \n", - "1. Check for Null/NA values (impute or drop)\n", - "1. Join sensor and details data\n", - "1. One-Hot Encode categorical features\n", - "1. Do preliminar analysis using built-in feature\n", - "1. Export recipe as SageMaker Data Wrangler job\n", - "1. Upload final cleaned data set to S3\n", - "\n", - "\n", + "For PrM, feature selection, generation and engineering is extremely important and very depended on domain expertise and understanding of the systems involved. For our solution, we will focus on the some simple features such as:\n", + "* lag features \n", + "* rolling average\n", + "* rolling standard deviation \n", + "* age of the engines \n", + "* categorical labels\n", "\n", - "For our purposes, we will download the final clened data set from S3 into our SageMaker Studio instance, but for more information on how to load and preprocess tabular data follow this link: [Tabular Preprocessing Blog]().\n", - "For additional information on preprocessing for PrM, please refer to this blog, [On the relevance of preprocessing in predictive\n", - "maintenance for dynamic systems](https://bird.bcamath.org/bitstream/handle/20.500.11824/892/CernudaPREDICT2018S16.pdf?sequence=1&isAllowed=y)." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "fleet = wr.s3.read_csv(path=dw_output_path_prm, dataset=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:numexpr.utils:NumExpr defaulting to 2 threads.\n" - ] - } - ], - "source": [ - "# add in additional features and change data types\n", - "fleet[\"datetime\"] = pd.to_datetime(fleet[\"datetime\"], format=\"%Y-%m-%d %H:%M:%S\")\n", - "fleet[\"cycle\"] = fleet.groupby(\"vehicle_id\")[\"datetime\"].rank(\"dense\")\n", - "fleet[\"make\"] = fleet[\"make\"].astype(\"category\")\n", - "fleet[\"model\"] = fleet[\"model\"].astype(\"category\")\n", - "fleet[\"vehicle_class\"] = fleet[\"vehicle_class\"].astype(\"category\")\n", - "fleet[\"engine_type\"] = fleet[\"engine_type\"].astype(\"category\")\n", - "fleet[\"engine_age\"] = fleet[\"datetime\"].dt.year - fleet[\"year\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "fleet = fleet[\n", - " [\n", - " \"target\",\n", - " \"vehicle_id\",\n", - " \"datetime\",\n", - " \"make\",\n", - " \"model\",\n", - " \"year\",\n", - " \"vehicle_class\",\n", - " \"engine_type\",\n", - " \"make_code_Make A\",\n", - " \"make_code_Make B\",\n", - " \"make_code_Make E\",\n", - " \"make_code_Make C\",\n", - " \"make_code_Make D\",\n", - " \"model_code_Model E1\",\n", - " \"model_code_Model A4\",\n", - " \"model_code_Model B1\",\n", - " \"model_code_Model B2\",\n", - " \"model_code_Model A2\",\n", - " \"model_code_Model A3\",\n", - " \"model_code_Model B3\",\n", - " \"model_code_Model C2\",\n", - " \"model_code_Model A1\",\n", - " \"model_code_Model A5\",\n", - " \"model_code_Model A6\",\n", - " \"model_code_Model C1\",\n", - " \"model_code_Model D1\",\n", - " \"model_code_Model E2\",\n", - " \"vehicle_class_code_Truck-Tractor\",\n", - " \"vehicle_class_code_Truck\",\n", - " \"vehicle_class_code_Bus\",\n", - " \"vehicle_class_code_Transport\",\n", - " \"engine_type_code_Engine E\",\n", - " \"engine_type_code_Engine C\",\n", - " \"engine_type_code_Engine B\",\n", - " \"engine_type_code_Engine F\",\n", - " \"engine_type_code_Engine H\",\n", - " \"engine_type_code_Engine D\",\n", - " \"engine_type_code_Engine A\",\n", - " \"engine_type_code_Engine G\",\n", - " \"voltage\",\n", - " \"current\",\n", - " \"resistance\",\n", - " \"cycle\",\n", - " \"engine_age\",\n", - " ]\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(9000, 44)" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fleet.sort_values(by=[\"vehicle_id\", \"datetime\"], inplace=True)\n", - "fleet.to_csv(\"fleet_data.csv\", index=False)\n", - "fleet.shape" + "These features serve as a small example of the potential features that could be created. Other features to consider are changes in the sensor values within a window, change from the initial value or number over a defined threshold. For additional guidance on Feature Engineering, visit the [SageMaker Tabular Feature Engineering guide](). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### Key observations:\n", - "\n", - "- There are 90 vehicles in the fleet\n", - "- Data has 9000 observations and 44 columns.\n", - "- Vehicle can be identified useing the 'vehicle_id' column.\n", - "- The label column, called 'Target', is an indicator of failure ('0' = No Failure; '1' = Failure).\n", - "- There are 4 numeric features available for prediction and 4 categorical features. We will expand upon these later in the Feature Engineering section of this notebook. " + "First, we load up our cleaned dataset, which can be produced by following the steps in the notebook [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "# # run this cell to pick-up the new cleaned dataset\n", - "# fleet = pd.read_csv('fleet_data.csv')" + "fleet = pd.read_csv('fleet_data.csv')" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAANOCAYAAABUfxZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3zV9fU/8Nf73pubm7032YOQEEIGiIoigshQ1Lqrtq5a2/p1/GrtsN8Ota21Wqu2tWpV2q8DhDoAFRAUEFdISMiCDLLnzd7r3vv+/ZGEBkgg4977uTd5PR8PHsC9n3GAAPeee4aQUoKIiIiIiIiIiMhcVEoHQEREREREREREswsTTkREREREREREZFZMOBERERERERERkVkx4URERERERERERGbFhBMREREREREREZmVRukArMHX11dGREQoHQYRERERERER0ayRlZXVLKX0G++5OZFwioiIQGZmptJhEBERERERERHNGkKIyomeY0sdERERERERERGZFRNORERERERERERkVkw4ERERERERERGRWTHhREREREREREREZsWEExERERERERERmRUTTkREREREREREZFZMOBERERERERERkVkx4URERERERERERGbFhBMRWYzJJPHp8UYUNXQpHQoRERERERFZkUbpAIhodqpr78NPth3FF6UtAIANi4Lw4KpYxAa4KRwZERERERERWRoTTkRkVlJKvJddi19vL4DJJPH4VYlo7BzA61+U46O8emxMDsb9q2IR7eeqdKhERERERERkIUw4EZHZtHQP4NH38rGroAFLIrzwzPWLEebjDAC4c3kkXj5Yhn99WYEdR+twdUoIHlgVi3AfF4WjJiIiIiIiInMTUkqlY7C49PR0mZmZqXQYRLPa3sJG/OzdPHT2DeHHa+Jw90VRUKvEGcc1dw/gpQMn8O+vKmEwSVyXOg/3XRqDUG9nBaImIiIiIiKi6RJCZEkp08d9jgknIpqJrv4hPLHzGLZkVmNBkDuevTEZ8YHu5zxP39mPv+8/gbcyqmAySVyfHooHV8ciwF1nhaiJiIiIiIhops6WcGJLHRFN2zdlLfjx1qOoa+/DDy+JxgOrY+GoUU/qXH93HX6zMRHfXxGFv392ApsPV6G8uRub7znfwlETERERERGRpTHhRERTZjCa8NTuIrzyeRnCvJ2x9d7zkRbuPa1rBXk44fGrF8JZq8brX1RgwGCcdNKKiIiIiIiIbJNK6QCIyP68uP8EXj5Yhm8vDcNH91807WTTWClhXhg0mlBQ12mGCImIiIiIiEhJTDgR0ZQcb+jE85+W4IpFQfjdNUlwcTRPoWRqmCcA4Ehlm1muR0RERERERMphwomIJm3IaMLDW4/CXeeAx65aaNZr+7vrEOLphOzqdrNel4iIiIiIiKyPM5yIaNJeOnAC+bWdePGWVHi7aM1+/ZQwT1Y4ERERERERzQIWq3ASQrwmhNALIfLHPPa4ECJXCJEjhNgjhAie4FzjyDE5QojtYx7fJIQoH/PcYkvFT0SnKmrownP7SrBhURDWJQVZ5B6pYV6o6+hHQ0e/Ra5PRERERERE1mHJlrpNANae9tifpJSLpJSLAewE8KsJzu2TUi4e+bbxtOd+Mua5HDPHTETjOKWVbmOixe6TMjLHKbuKVU5ERERERET2zGIJJynlQQCtpz02dv2UCwBpqfsTkfm8fLAMebUdePzqhfBxdbTYfRKDPaDVqDjHiYiIiIiIyM5ZfWi4EOJ3QohqALdg4gonnRAiUwjxtRDi6tOe+91IW96zQogJ3/kKIe4ZuUZmU1OTucInmnOKGrrwl73F2LAoCOst1Eo3SqtRYWGwO+c4ERERERER2TmrJ5yklI9KKUMBvAngvgkOC5NSpgP4NoC/CCGiRx7/OYB4AEsAeAP46Vnu87KUMl1Kme7n52e+XwDRHGKwUivdWKlhXsir7cCgwWSV+xEREREREZH5WT3hNMZbAK4d7wkpZd3I92UA9gNIGfl5vRw2AOB1AEutEyrR3PSSlVrpxkoJ88KAwYRj9Z3nPpiIiIiIiIhsklUTTkKI2DE/3Qjg+DjHeI22ygkhfAFcCKBw5OdBI98LAFcDyD/9fCIyj6KGLjy3twQbkizfSjdWajgHhxMREREREdk7iyWchBBvA/gKwHwhRI0Q4i4ATwoh8oUQuQDWAHhg5Nh0IcQ/R05dACBTCHEUwGcAnpRSFo4896YQIg9AHgBfAE9YKn6iucxgNOEn247CVafBY1dZp5VuVJCHEwLddThSxcHhRERERERE9kpjqQtLKW8e5+FXJzg2E8DdIz/+EkDSBMddarYAiWhCLx0sQ25NB/727VSrtdKNlRruiexqVjgRERERERHZKyVnOBGRDSpu/G8r3YZF1mulGysl1AvVrX1o6hpQ5P5EREREREQ0M0w4EdFJo1vpXHUa/NbKrXRjcY4TERERERGRfWPCiYhO2vRlBXJrOvDYVYnwVaCVblRisAcc1IJznIiIiIiIiOwUE05EBADo6B3CC5+WYkWcH65YFKxoLDoHNRKCPVjhREREREREZKeYcCIiAMCLB06gs38IP10br3QoAICUUE/k1nTAYDQpHYpFDBlNaO4eQH1Hn9KhEBERERERmZ3FttQRkf2oa+/D61+U45rFIUgIdlc6HABAargXNn1ZgeMNXVgY4qF0OFPS3D2AD3Lq0NYziPa+QbT3Dg1/G/Pj7gHDyeNfuz0dl8YHKBgxERERERGReTHhRET4y95iSAk8dFmc0qGclBL638Hh9pZwenH/Cbx6qBwqAXg6a+Hp5AAPZwf4u+kQ5+8GD2cHeDlr4ensgFcPleOpXUW4JM4fKpVQOnQiIiIiIiKzYMKJaI4rbuzCtqwa3HlhJEK9nZUO56R5Xk7wc3NEdlU7bjtf6Wim5pvyFpwX6Y23v7fsnEkkDycHPLA5Bzty63DV4hArRUhERERERGRZnOFENMc9tes4XBw1+NHKGKVDOYUQAimhnjhiZ4PDO/uHUFjXiWVRPpOqWLpyUTDiA93w7CfFGJql86qIiIiIiGjuYcKJaA7LKG/F3mN6/OCSaHi5aJUO5wyp4V6oaOlFa8+g0qFMWlZlG0wSOC/Se1LHq1QCD6+Zj4qWXmzLqrFwdGSrTCaJgroOvLj/BO7cdBiflzQpHRIRERER0YywpY5ojpJS4g8fH0OAuyPuuCBS6XDGNTrHKae6zW6GameUt0KjEkgJ85r0OasW+CM1zBPP7S3BNSkh0DmoLRgh2Qp9Zz8+L2nG5yVNOFTajObu4cSqs1aN3Jp27HloBbxtMBGspOyqNvz5k2L8dmMiovxclQ6HiIiIiM6CCSeiOWp3QSOyq9rx5LeS4KS1zQTHonmeUKsEjlS221XCadE8jyn9ngoh8JPL43HzK1/jja8rcfdFURaMkJTSP2TE4YpWfF7SjIPFTTje0AUA8HXVYnmMLy6O88PyGF+09Axi418P4dfbC/DCzSkKR207Klt6cNe/MtHaM4gfvnkE7//oQiZniYiIiGwYE05Ec5DBaMJTu48jxt8V16XNUzqcCTlp1VgQ5IbsavuY49Q3aERuTTvuWj71hNH50T64KNYXf99/AjctDYOrI/95nk1KGrtw9d++QM+gEVq1CukRXvjZunhcFOuLBYHup8z78nfX4YFVsXh6TzHWLQzE+qQgBSO3DW09g7jj9cOQUuI3VybgNzsK8dsdBfjDtxYpHRoRERERTYDvaIjmoHcya1DW1IOXb0uDRm3bo9xSw7zwn6waGE0S6kkM4VZSdnUbhoxy0vObTvfwmvm46m9f4NXPy/HA6lgzR0dKOlzRhp5BI164OQWrFvjDWXv2/37vXRGN3QWN+OX7+Vga6Q1fV0crRWp7+oeMuOf/MlHT3oe37j4P6RHeaOgcwD8OnMB5kT64OoXbHYmIiIhskW2/0yQis+sdNOAve4uRHu6FyxJsv00tJcwTPYNGlOi7lA7lnDLKWyEEkBYx+flNYyWHeuLyxAC88nkZ2uxoULrSBg0m/CerBh29Q0qHMqFSfTecHNTYkBR0zmQTAGjUKjxzQzK6+w343/fzIaW0QpS2x2SS+Mm2XByuaMMz1ycjPWI4mfvwmjikh3vhF+/loVTfrXCURERERDQeJpyI5pjXDpVD3zWAn6+PhxC2XTEEDFc4AcCRynaFIzm3jPJWJAS5w13nMO1r/HjNfPQMGvCPAyfMGNnstuVwFX689ShW/Xk/PsiptcnkTIm+C9H+Lqe0zp1LXIAb/t+aOHyc34DtR+ssGJ3teuaTIuw4Woefro3HlcnBJx/XqFV44dsp0Dmo8aM3j6Bv0KhglEREREQ0HiaciOaQ1p5B/ONAGdYkBCAtfHptX9YW5u0Mbxctsqtse47ToMGEI1VtWDrNdrpRcQFuuGZxCDZ9WYHGzn4zRTd7SSnxxtdViPF3RYinEx7YnIPbXs1ARXOP0qGd4oS+G7H+blM+73sXRSElzBO/+qAA+jn29bA5owp/++wEbl4ahntXnDkXLcjDCX++IRlFjV34zfYCBSIkIiIiorNhwoloDnnh0xL0DhrwyNr5SocyaUIIpIZ54oiNJ5zyajvQP2Sa9vymsR66LA4mKfHCpyVmiGx2y6xsQ1FjF+5eHol3f3ghHrsqETnV7Vjzl4N4fl8JBgzKV770DBhQ19GPGH/XKZ+rVgk8fX0y+oeM+MV7eTZZvWUJB4ub8Oj7+VgR54fHr0qcsBrzkvn++NHKaGzJrMa7R2qsHCURERERnQ0TTkRzRHVrL974uhI3pIciZhqVFkpKCfPCiaYem57Rk1HeCgBYEjHzhFOotzNuWhKGzRnVqGrpnfH1ZrM3v66Em06DjYuDoVYJfOf8COz78QpctiAAf/6kGOuf+xxfl7UoGuOJpuEZQ9F+U084jZ73k8vnY+8xPd7LrjVnaDapsK4TP3zzCOIC3PC3W1LPudjgodVxWBrpjUffy0epHcx6IyIiIpormHAimiOe3lMEtUrgwdVxSocyZSlhngCGt8DZqozyFsT4u8LHTNvE/ufSGGjUAn/ZW2yW681GLd0D+CivAdemzjtlEHeAuw5/uyUVr9+xBAMGE256+Ws8vPUoWhUaxF7SOJxwmk6F06g7LozEkggv/Hp7ARo6Zm9rXUNHP+7cdBiujhq8dns6XB0nN2D9hZtT4KxV44ec50RERERkM5hwIpoD8ms78EFOHe68MBKBHjqlw5my5HmeUAkgu8o2B4cbTRKZFTOf3zSWv7sO370gAu/l1KK4kVUb49maVYNBownfPi9s3OdXzvfHJw+twA8uicb72bVY9cx+vJNZbfW2tNKmbjioBcJ9nKd9DbVK4E/XJWPIaMLP3s2dla113QMG3LHpMLr6h/Da7UsQ5OE06XMD3HV49sbFKNF341cf5FswSiIiIiKaLCaciOaA5/eVwNPZAfdeEq10KNPi4qjB/EB3m53jdKy+E10DBrPMbxrr3ouj4arV4Jk9RWa97mxgMkm89U0VlkZ6Iy5g4hZRJ60aP10bjw/vvwjRfq54ZFsu3vimyoqRAqX6bkT4uMDhHK1h5xLh64KfrY3H/qImbM2cXfOKDEYTfvTmERQ3duFvt6QiIdh9yte4OM4P962MwdasGmzLml2/P0RERET2iAknolmus38InxXpcX3aPLjrHJQOZ9pSwjyRU90Ok8n2KjvMOb9pLC8XLb53cRR2FzQip9o2q7uU8nlpM6pae3HrsvBJHT8/0A3vfP98RPm64ECR3sLRnapU3z2jdrqxvnN+BJZFeeOxnYWobe8zyzWVNmgw4aF3juJAcROeuHohLpnvP+1rPbg6DsuivPG/7+ejhJWBRERERIpiwololtt3rBFDRol1SUFKhzIjqWFe6Oo3nBzAbEsyylsR6u2EYM/JtwBN1p3LI+HjosXTu1nlNNYbX1fCx0WLyxMDJn2OSiWQHuGFrMo2q7WkDRiMqGzpQayZEk6qkdY6k5T46Tb7b63rHjDgzk2HseNoHX62Lh43Lx2/PXKy1CqB529KgYvj8Dyn3kGDmSIlIiIioqk69zROIrJrH+Y2INhDh5RQT6VDmZGTg8Or2hF7lhYqa5NS4nBF64yqMs7G1VGDH66MweM7C/FlaTMuiPG1yH3sSV17H/Yda8T3V0TDUaOe0rlp4V54J7MGZc09094aNxUVzb0wSSDaTAknYHiL4S/WL8Av38/H/Ztz4OuqhZTDX4smCZhGvpdSQo78PDbAFfdcbFsttU1dA7hjUwaO1Xfh6euTcV3aPLNc199dh7/cmIJbX/0Gb2dU467lkWa5LhERERFNDRNORLNYV/8QDpY04dbzwiGEUDqcGYnydYGHkwOOVLXhhiWhSodz0ommHrT0DJp9ftNYt5wXhtcOleOJD49hx/8sh1pl33+WM7X5cDUkgG9PoxomLXz4zymros0qCadS/cw31I3nlvPCkFnRik8KG6ESAkIMVz8JYOTnAioBCAH0DRqxNcuAG5eEwcPJNtpqK5p78J3XMtDUNYB/fjcdK82csF0e6wtvF+3J338iIiIisj4mnIhmsU+P6zFoMGF9UqDSocyYEAIpYZ42t6ludH6TOTfUnU7noMbP18fjvreyseVw9YRb2eaCIaMJmzOqsCLOD6HeU9/6FuXrAk9nB2RVWidxWaLvghAwe3JLCIG/3JQyqWMPFDfhu69loKC2wyYq5PJqOnDHpgwYTRJvfe88pIR5WeQ+Yd7OqGrtsci1iYiIiOjcOMOJaBb7KK8eAe6OSLXQGzprSw3zQrG+C539Q0qHclJGeQv83RxntPJ+MjYkBWFppDee3lOEjj7b+fVb297CRui7BnDreZMbFn46lUogLcwLmZWtZo5sfKX6boR6OUPnMLXWP3NKCvEAAOTXdSgWw6jPS5pw08tfwVGjxrYfXGCxZBMAhPs4o7Kl12LXJyIiIqKzs1jCSQjxmhBCL4TIH/PY40KIXCFEjhBijxAieIJzjSPH5Aghto95PFII8Y0QokQIsUUIobVU/ET2rmfAgP1FTVi3MAiqWdKClRLmCSmB3Grl3zgDwzNyvilvxdJIb4u3LAoh8OsrE9DWO4jn9pZY9F627I1vKhHsocPK+Om3YKVFeOFEUw/aegbNGNn4zLmhbrq8XbQI8XRCXm2nonF8kFOLOzcdRqi3M9794QUWb2kM93ZGXXsfBg0mi96HiIiIiMZnyQqnTQDWnvbYn6SUi6SUiwHsBPCrCc7tk1IuHvm2cczjfwTwrJQyFkAbgLvMHTTRbPFZkR4DBhPWLbT/drpRyaGeEAI4UtWmdCgAgJq2PtR39Ft0ftNYicEeuGlJGP79VQVK9XNv5XtZUze+KG3BzUvDZjTHKm2kqsbSX0dGk0RZc4/iCScASAx2R36tconaf35ehgc25wwPbb/3fAS46yx+zzAfF5gkUNveZ/F7EREREdGZLJZwklIeBNB62mNjP151ATDpfc5iuHzgUgDbRh76F4CrZxgm0az1UV49/NwckR5hnWSINbjrHBDr74psG0k4/Xd+k4/V7vnwmjg4adV4bOcxSDnpf0Jnhbe+qYJGJXDj0pnNXkoO9YRGJZBZadmvo+rWXgwaTDaRcEoK8UB5c4/V21FNJonff3QMT3x4DOuTArHpjqVw11lncPlom2tlC+c4ERERESnB6jOchBC/E0JUA7gFE1c46YQQmUKIr4UQo0klHwDtUkrDyM9rAISc5T73jFwjs6mpyWzxE9mD3kEDPjvehLWJgbNuo1lqmBe+LmvFw1uP4u/7S7ErvwGl+i5F2mYyylvh6TycBLMWH1dHPLg6DgeLm/Dpcb3V7qu0/iEjtmbV4PLEQPi7zaw6RuegRmKIB7IsnHCy1Ia66Vg4b3iOU2GdddvqHv+wEC8fLMN3zg/HCzenWnWWVfjIUPmqVs5xIiIiIlKC1bfUSSkfBfCoEOLnAO4D8OtxDguTUtYJIaIAfCqEyAMw3qvkCT/el1K+DOBlAEhPT59bZQA05x0oakLfkBHrZsF2utPdtDQMFS09OFDchG1ZNScfV6sEQr2cEOXniihfF0T5uWJBkBsWh3pabL5SRkUrlkR4W31G1nfOD8db31Ti8Z2FuCjWD1rN7N//8GFuPTr6hnCLmTb0pYd74Y2vKzFoMFns96+0yYYSTsEjg8NrO7AsyjoVea09g3jj60rckD4Pv92YaPE5Z6fzc3OEk4Oag8OJiIiIFGL1hNMYbwH4EOMknKSUdSPflwkh9gNIAfAfAJ5CCM1IldM8AHXWC5fIfnyYVw8fFy3Os2Krl7UsDvXE5nvOBwB09g+hvKkHZc3dKGvqQVlTD040deOL0mYMjFQ8Pbp+Ab53cZTZ49B39qO8ucdsCZCpcFCr8KsrE/Hd1zLw+hfl+P6KaKvHYG1vfFOJKD8XnB9tnq/ptHAvvHqoHAV1HRbblFbS2A1/N0ertZCdjZ+bIwLddciz4hyn97JrMWSUuGt5lNWTTcDwoP0wb26qIyIiIlKKVRNOQohYKeXoeqWNAI6Pc4wXgF4p5YAQwhfAhQCeklJKIcRnAK4DsBnAdwF8YKXQiexG/5ARnx7X4+qUkFnXTnc6d50DkkM9kRzqecrjJpNEXUcfnth5DH/4+BgSg91xQYyvWe+dUTE8v2mJQjOyVsT5YVW8P174tBTXpIbMuM3MlhXUdSC7qh3/e0WC2RIX6eHDSaasyjaLJZxKm7oRG6B8ddOohSEeVhscLqXEO4erkTzPA/MD3axyz/GE+ThzhhMRERGRQizWhyGEeBvAVwDmCyFqhBB3AXhSCJEvhMgFsAbAAyPHpgsh/jly6gIAmUKIowA+A/CklLJw5LmfAvh/QohSDM90etVS8RPZqwPFTegdNGL9wiClQ1GMSiUwz8sZT9+QjGg/V9z3drbZN1VllLfCWatGYrC7Wa87Fb+8IgEDBiP+tKtIsRis4Y2vq+CoUeG61Hlmu6a/uw6h3k4Wm+MkpcQJfTdi/Gwn4ZQU4oGy5h50DxjOffAM5dZ0oKixCzcsmdmA95kK93ZGVWvvnBuwT0RERGQLLLml7mYpZZCU0kFKOU9K+aqU8lop5UIp5SIp5ZVSytqRYzOllHeP/PhLKWWSlDJ55PtXx1yzTEq5VEoZI6W8Xko5YKn4iezVR3n18HJ2wLKo2bOdbrpcHTX4x21pGDKY8IM3stA/ZDTbtTPKW5EW7gWNWrn5SZG+LrjzwkhszarB0ep2xeKwpK7+IXyQU4srk4Ph4Wze1rS0MC9kVrZZJBnR2DmA7gGDTcxvGpU0zx1SWmdw+JbMaugcVLgyOdji9zqbcB9n9A+ZoO/iywUiIiIia5v9k2aJ5pD+ISP2HdPj8sRARRMhtiTazxV/vnExcms68KsP8s2SXGjvHcTxhi6cF6l8Uu++S2Pg6+qI3+4omJVVHO9n16J30Ihbl4Wb/dppEd5o6hpATZt5q98AoETfBQCI8Veunex0o4PDLT3HqW/QiB05dVi/MEjx+VVhPi4AwDlOREREZDNm42v2ifAdKdEscqikGd0DBqxLmrvtdOO5LCEA918ag3cya/BWRtWMr3e4YrgNa6kNDGV30zngkbXzcaSqHR/kzK49ClJKvPF1FRaGuCN5nofZr582Mrsps7LV7Ncu1dvOhrpR/u46+Ls5osDCCaeP8+vRNWBQvJ0OGG6pA8A5TkRERGQzntpdhIe25CgdhlUw4UQ0i3yUVw8PJwdcYKZNXrPJA6vjcMl8P/xmewGOVM1sbk9GeQu0GhUWWSAJMh3Xpc7Donke+MPHx9Bjhfk81pJZ2Yaixi7ccl64RbaczQ90g6ujxiJznEr13fBwcoCvq9bs156JpBAPi1c4bTlcjXAfZ5uoAAzxcoJaJVDVygonIiIiUl5X/xA2fVEBR83cSMXMjV8l0RwwYDDik2ONWJMQAAe2051BrRJ47sYUBHk44QdvZEHf1T/ta2WUt2JxqCd0DmozRjh9KpXAr69MRGPnAF7cf0LpcMzm3SM1cNGqsdFCc4DUKoGUME9kVpg/4VSi70aMv6tFEmUzkRjigRNN3egdtExisqK5B9+Ut+KG9FCb+LU7qFUI9tSxpY6IiIhsws7cevQNGW2iEtwa+K6UaJb4srQFXf0GrGc73YQ8nB3w0m1p6Ogbwn1vZmPIaJryNboHDMiv67SJ6o2x0sK9cPXiYLz8eRmqZ0E1h9EksaegESvj/eHiqLHYfdLCvVDU2IWu/iGzXveEvhuxNtRONyopxAMmCRyrt8zg8K1Z1VAJ4FozbhScqXBvF1TOgr8TREREZP+2HK5GrL8rUkI9lQ7FKphwIpolPsyrh5tOgwtjfJUOxaYtCHLHH69dhIyKVvzuw2NTPv9IZRuMJomlNpZwAoCfrVsAtRD4zXb7HyCeVdmGlp5BXJ4YaNH7pId7Q0ogu8p8W/7aegbR0jNoU/ObRiWFjAwOrzF/W53BaMK2rBqsiPNDoIfO7NefrjAfZ1RxhhMREREprLixCznV7bhxiW1UglsDE05Es8CgwYQ9BQ24LCEA2jnSDzwTVy0OwV3LI7Hpywq8l10zpXMzyluhVgmkjgyctiWBHjr8eE0c9h3Xm2U4upJ25TdAq1bhkvl+Fr3P4jBPqMTwvChzKW0aHhgebYMJpwB3R/i6OiKv1vwVTp+XNKOxcwA32liJeLi3M9p6h9Bp5io2IiIioqnYcrgaDmqBa1JClA7FavjOlGaFxs5+vJ9dq3QYivmqrAWd/QasX8h2usn62bp4nBfpjZ+/m4eCuslXe2SUt2JhiIdF27xm4s4LI3FRrC8e31mIUn2X0uFMi5QSuwsasDzWF246B4vey9VRg/hAdxwxY8KppHFkQ52f7SWchBBYGOKOfAsMDt9yuBo+LlpcGh9g9mvPRLjP8Ka6Ks5xIiIiIoUMGkx4L7sWqxcEwMfVUelwrIYJJ5oVXj1Ujge35KC40T7fYM/UR7n1cHXU4KI4ttNNloNahb/dkgpPJy2+/39ZKGvqPmcbWv+QETnV7TY3v2kslUrg6euT4eSgxv1v52DAYFQ6pCkrqOtEbXsfLk+0TuIiLdwL2VVtMExjptd4SvXdcHJQI5JXjcQAACAASURBVMTTySzXM7ekEA+U6LvQN2i+r42W7gHsPdaIa1JCbK7KMszbBQA4OJyIiIgUs/dYI1p7BufMsPBRtvWqkGiaRtea7zxap3Ak1jdkNGF3YQNWL/CHo8Y2tqbZC19XR/zjtjToOwdw6TMHkP7EXty56TCe31eCA8VN6Og9tQXnaHU7Bo0mLI2w3YQTAAS46/DUdckorO/E07uLlA5nynYXNEAlgNULrJNwSo/wQs+gEUVmSliXNnUj2t8FKpVt9uYvHB0c3mC+trr3smthMEmbfBEVNlLhVNnKOU5ERESkjC2HqxHkocPFsZYdF2FrbLMnhGgKBgzGkwNwd+bW46HL4ubMEDYA+KasFe29Q1jH7XTTsjjUE3seuhiHSpuRU92Oo9Xt+KxIj9Fip0hfFywO9UTyPA8UNXZBCGCJjSecAOCyhADccl4YXvm8HCvi/LE81n6q33YXNGBJhLfVyo1H53FlVbYhMdhjxtcrbeyyyaHyo0YHh+fXdphlFpmUElsOV2NxqCfiAtxmfD1zc3XUwNdVi8pmVjgRERGR9dW19+FgSRPuWxkDtY1+IGkpTDiR3cuv7cSg0YSL4/xwsLgJx+q7kBDsrnRYVvNhXj1ctGqsiJtb2XJzivB1QYSvC25dFg4A6OwfQl5NB3Kq25FT3Y5Dpc14b2RG2IIgd3g4W3aukLn8ckMCvilvxf97Jwe7HrwY3i5apUM6p7KmbhQ3duNXVyRY7Z7zvJwQ4O6IrMo2fOf8iBldq2fAgLqOfsTaYOJlVJCHDt4uWrPNccqpbkeJvht/+FaSWa5nCWHezqxwIiIiIkVsy6qBlMD1abZXCW5pTDiR3Rsd9vvo+gX4orQZO3Pr5kzCyWAc3k536YIA6BzYTmcu7joHXBjjiwtjhquCpJSo7+jH0ep2RNngIOiJOGnVeO6mxbjmb1/ip//Jxcu3pdl89d/ugkYAwOULA612TyEE0sO9kVkx88HhJ0Y31Nnw18nw4HAPs22qeyezGk4OalyxyHarLMN9XPBNWYvSYRAREdEcYzJJvJNZjQuifU62+c8lnOFEdi+rsg1h3s6YH+iGC6J9sDO3/pzDn2eLjIpWtPQMYkOS9d6cz0VCCAR7OmFdUhDmB9pu5cp4EoM98Mja+fiksBFvZVQpHc457S5oQFKIh9UHbqeGe6G2vQ8NHf0zuk6pfmRDnb/tJpwAICnEHSWNXegfmtng8N5BA3Ycrcf6pCCLbxSciTBvZ9R39tvlEH0iIiKyX1+VtaCmrQ832uCcS2tgwonsmpQSWVVtSAsfnkOyISkIVa29yDfTJ/e27qO8ejg5qLEizl/pUMiG3XlhJC6K9cXjOwtRqrfdTY4NHf3IqW7HWitWN41KD//vHKeZKNF3Q6MSCLfxT7CSQjxgMEkcb5jZ18NHeQ3oHjDY/IuocB9nSAlUt/YpHQoRERHNIVsOV8Ndp8HliXOzQIAJJ7JrNW19aOoaQOrIm8W1CwOhUQnszJ392+qMJold+Y24NN4fTlq209HEVCqBZ65PhrNWg/vfzrHZKo89hQ0AgMsTrbOdbqyEYHfoHFTIrGyd0XVK9d2I9HWBg9q2/3sdHY4+0zlO7xyuRqSvC5ZEzHz4uCWNJgCrOMeJiIiIrKSjdwi7ChpwdUrInB1/YtuviInOYbQaIW1k05KnsxbLY33nRFvd12UtaO4ewAYbnptCtsPfXYc/XrsIhfWdeHp3kdLhjGt3QQOi/FwQ42/9tkUHtQrJ8zxPzoSbrhP6bptvpwOGB6V7OjvMKOFU1tSNjIpWXJ8+z+Zng4V5uwAAKlu4qY6IiIis4/2cWgwaTLgh3bYrwS2JCSeya1mVbXDRqk+Zq7MhKQi17X3IqW5XMDLL255TB1dHDS6NZzsdTc5lCQG4dVkYXvm8HJ+XNCkdzinaegbxdVkr1ipYbpwW7oWCuk70DU6vAmzAYERFS49dJJyEEEgK8UDeDBJOW7NqoFYJXJc6z4yRWYavqxbOWjUTTkRERGQ1Ww5XIzHYHQtDPJQORTFMOJFdy6psQ0qYF9Sq/366viYxEFq1Cjtz6xWMzLIGDEZ8nF+PNQncTkdT8+j6BMT4u+LH7xxFa8+g0uGctO+4HkaTVLS/PT3CCwaTnHayuqK5FyZp+wPDRyUGe6C4sWtaLZYGown/yarBJXF+8HfXWSA68xJCIMzbGVWtTDgRERGR5eXXdqCwvtPm51xaGhNOZLe6Bww43tB5cn7TKA8nB1wc54uP8uphMs3OtrqDxc3o7DfgysXBSodCdsZJq8bzN6WgvXcIj2w7CqON/B3ZXdCAIA8dFs1T7hOg1JHW3CNV02urs5cNdaOSQjwwZJQobuie8rkHipug7xrADXb0IircxxmVLZzhRERERJa35XA1tBoVrkoOUToURTHhRHbraHU7TBInN9SNtWFREOo7+qf9xtHWbT9aBy9nByyP8VU6FLJDCcHu+MX6eOw9psfP381VPDHbO2jAweImXJ4YqOgsIE9nLWL8XZFZMb3B4aX6bggBRPvZT8IJwLTa6rYcroavq9auWnrDfVxQ3dan+Nc7ERERzW79Q0a8n1OLdQsD4eHsoHQ4imLCiexWVmUbhAAWh3qe8dzqBQHQamZnW13voAF7CxuxPinI5jdhke26/cJI3L8qFu9k1uCXH+QrOmT/QFETBgwmrFFgO93p0sO9cKSqfVpJiRJ9F+Z5OdlNm2uotxPcdZopJ5wqmnvw6XE9vpU6z67+DQrzdsagwYSGzn6lQyEiIqJZbFd+A7r6DbhxDg8LH2U/rxSJTpNV2YY4fzd4OJ2ZNXbTOeCSOD98lFdvMy1D5vJJYSP6hozYmMx2OpqZh1bH4geXROOtb6rw2x2FiiWddhU0wMvZAUsjvBW5/1ip4V7o6BvCiaapt5mV6rsRq8CGvekSQmBhiAcK6qaWcHry4+PQalS4+6JIC0VmGeE+zgC4qY6IiIgsa8vhaoR6O2FZlI/SoSiOCSeySyaTxJGqtjPmN411RXIw9F0DODzN9hhbteNoHYI8dFhiA2/Oyb4JIfDI5fNx9/JIbPqyAr/78JjVk06DBhM+Pa7H6gUB0NhAtUz6yL8pmZVTa8c1miTKmu1jQ91YSSEeOF7fhUGDaVLHZ5S3YldBA+5dEQ1/N9sfFj5WuLcLAKCqlXOciIiIyDIqW3rwVVkLbkgLhUql3KgIW6H8q3uiaSht6kZXv2Hc+U2jVsX7Q+egwoezqK2uvXcQB4qbcMWiIP4DRmYhhMCjGxbgu+eH45+HyvHU7iKrJp2+KmtBV79B0e10Y0X6usDbRYusKSacatp6MWgwIcZO5jeNWhjigUGjCcWNXec81mSS+N2HhQh01+F7F0VZITrzCvbUQaMSrHAiIiIii9maWQOVAK5Ln6d0KDaBCSeyS6NvBs+WcHJx1ODSeH98nF8Pg3Fyn97bul35DRgySmyc49sOyLyEEPjNxkR8+7wwvLj/BP6yt8Rq996V3wBnrRrLY21jAL4QAqlhXlNOOJU0jmyoC7CvhNPo4PDJtNVtP1qHozUd+Mnl8+GktY85VWNp1CqEeDmhspUJJyIiIjI/o0liW1YNLo7zQ5CHk9Lh2AQmnMguZVW2wdtFi4iRmRwTuWJRMJq7B5FRPjva6rYfrUOkrwsWhrgrHQrNMkIIPHHVQlyfNg/P7SvBXz+1fNLJaJL4pLARK+f729Sg7fQIL5Q396Cle2DS55SOzHyyt5a6MG9nuDmee3B4/5ART+06joUh7rgmxX4T3mHezqhihRMRERFZwMHiJjR09nNY+BhMOJFdOlLZhtQwr3OuUF853x/OWjV2zIK2On1nP74qa8GVycGKro6n2UulEnjy2kX4VkoInt5TjJcOnLDo/bKr2tDcPYDLF9pGO92o0crJqVQ5leq74e/mCHedfa2+VakEEkPckVfbedbjXj1UjrqOfjy6PsGu23nDfZxR2cIZTkRERGR+mw9XwcdFi1ULlN+8bCsslnASQrwmhNALIfLHPPa4ECJXCJEjhNgjhJhwzZYQwl0IUSuE+OuYx/YLIYpGzs8RQvhbKn6yXa09gyhr7jlrO90oJ60aqxYEYFd+PYbsvK1uZ249pAS305FFqVUCf7o+GVcmB+MPHx/Ha4fKLXavXfkN0KpVWDnfz2L3mI6kEA84qMWUEk4l+m67q24alRTigWP1nRP+G9nUNYC/f1aKyxICcH60fW9bCfd2QWe/Ae29g0qHQkRERLPI/iI9dhc04sYlodBqWNczypK/E5sArD3tsT9JKRdJKRcD2AngV2c5/3EAB8Z5/BYp5eKRb3rzhEr25Mgk5jeNdcWiILT1DuGrEy2WDMvith+tQ0KQu92+qSX7oVYJ/PmGZKxbGIjHdhbi/76qMPs9pJTYXdiAC2J84GZjVUE6BzVSw7yw+XA1cmvaz3m8lBIn9N2ItdO/mwtDPDBoMKFU3z3u88/uLcaAwYSfr4u3cmTmFzbShj2dweFbDlfh1n9+Y+6QiIiIyM41dQ3g4a1HMT/ADfevilU6HJtisYSTlPIggNbTHhtbs+8CYNxVSEKINAABAPZYKj6yX1lVbdCoBBbN85jU8Svi/ODqqMHO3DoLR2Y5VS29yKlux8bFrG4i63BQq/DcTSlYvSAA//tBAXKqz514mYrC+k5Ut/ZhrY1spzvd09cnw02nwS2vfHPOSqfGzgF0DxjsNhm8cGRw+HhznIoaurA5owq3LgtHlJ1t4BtP+GjCaRqDw//9VSUOlTajrYfVUURERDTMZJJ4eOtRdPUb8PzNKTY1l9QWWL3WSwjxOyFENYBbME6FkxBCBeAZAD+Z4BKvj7TT/a84yyAbIcQ9QohMIURmU1OTWWIn25BV2YbEEI9J/2XWOahxWUIAduU3YNBgn211O0aSZVeynY6sSKtR4dkbk6HVqPBBTq1Zr727oBEqAaxOsM0e91BvZ7zz/fPh6+aI2179Bl+XTVwhOVoZFG2nCadIHxe4OmqQP07C6fcfHYOrowYPzJJP68K8hxNOVVOc41TT1ouCuuHPzMqax68EIyIiornntS/KcaC4Cb/csADzA92UDsfmWD3hJKV8VEoZCuBNAPeNc8gPAXwkpawe57lbpJRJAC4a+XbbWe7zspQyXUqZ7udnW/NBaPqGjCYcrW5HWtjk2ulGXbEoCJ39BnxR2myhyCxre04d0sO9EOLJ9ZpkXW46B1wc64eP8xpgMo1blDotewoakB7hDV9XR7Nd09yCPZ2w5Z5lCPZ0wu2vZ+Bg8fgfXpTouwDY34a6USqVQEKw+xkJpwPFTThQ3IT/uTQWXi5ahaIzL2etBn5ujlNuqfuksPHkj080ceg4ERERAfm1HfjjruO4LCEAty4LVzocm6TkNKu3AFw7zuPnA7hPCFEB4GkA3xFCPAkAUsrake+7Rs5fap1QyVYU1nViwGCa9PymUctjfeGm05ysFLInRQ1dKGrsYjsdKWbDokA0dPYju3ryQ7TPpqK5B8cbunC5jbbTjeXvrsPme5YhwscFd/8rE/uONZ5xTKm+Gx5ODvCz4eTZuSwM9kBhfScMI4PDjSaJ3394DGHezvjOBbPrBVS4t/OUW+p2FzQg2s8FWrUKJ5pY4URERDTX9QwYcP/b2fB20eKP1y7iFvEJWDXhJIQYW5O/EcDx04+RUt4ipQyTUkYAeBjAv6WUPxNCaIQQviPXcQBwBYD808+n2W10lkpquOeUznPUqHF5YiA+KWjEgMFoidAsZvvRWqhVAuuTgpQOheaoVQsCoFWr8GFug1mut7tg+DprbLSd7nS+ro7YfM8yxAe54d43srArv/6U50tHNtTZ8wuNpHnu6B8ynazeeSezGkWNXfjZung4ambXLIIwH2dUTaHCqa1nEBnlrVi3MAgRvs4oY4UTERHRnPfbHQUob+nBszcuhvcsqQS3BIslnIQQbwP4CsB8IUSNEOIuAE8KIfKFELkA1gB4YOTYdCHEP89xSUcAu0fOzQFQC+AVS8VPtimrqg0hnk4I8ph6a9kVi4LQNWDAwWL7aauTUmLH0XpcEO1j061HNLu56xxwcZwvPs6vN0tb3Yd59UgMdkfoyDwde+DprMUbd5+HpBAP/Oit7FNmWpXquxFj5wO1k8YMDu8eMOCZPcVID/fCuoW2X4U2VeHeLmjo7Ef/0OQ+fNh3XA+TBNYkBiDK15UVTkRERHPcztw6vJNZgx+siMYF0b5Kh2PTLLml7mYpZZCU0kFKOU9K+aqU8lop5UIp5SIp5ZVjWuQypZR3j3ONTVLK+0Z+3COlTBs5N1FK+YCU0r5KVWjGjlS2IXWK7XSjLozxhaezg11tq8upbkdVay82clg4KWx9UhDqO/qRPcNtdYV1ncit6cC1qfPMFJn1uOsc8O+7zkN6uBce3JKDdzKr0dYziJaeQcQG2HfCKdLXFc5aNfJrO/CP/SfQ3D2ARzcssOuqrYmMbqqrnmRb3Z6CBgR56JAU4oFofxdUtfRiyGifCyiIiACgrKkbRjPOZSQ63eGKVlz5wiF8VqRXOhSzq27txc/fzcPiUE88dFmc0uHYvHMmnIQQziMb4V4Z+XmsEOIKy4dGdKq69j7Ud/QjLWxq7XSjHNQqrE0MxN7CRvQN2keucvvROmjVKlw+C6sMyL6sThhuq/sor/7cB5/F5sNV0GpU+FZqiJkisy5XRw023bEUy2N88ci2XPz+o2MA7HdD3Si1SiAhyB0Hi5vwyudl2JgcjJQpLmewF2EjCafJDA7vGzTiYEkT1iQEQAiBaD9XGEwSVVOcAUVEZCsyK1qx6s8H8NLBE0qHQrPYSwfKkFfbgTteP4xH38tD76BB6ZDMwmA04cEtOZASeP6mFDiolRyJbR8m8zv0OoABDA/zBoAaAE9YLCKiCYzOb0oL9572Na5aHIKeQSNW/Okz/HHXcZQ32+4sDqNJYmduPS6Z7wd3nYPS4dAc565zwEWxvvg4rx5STu9T0b5BI97LrsW6hYHwdLbfXncnrRqvfCcdq+L9sTWrBgDsvqUOABaGeKCsuQcSwCNr5ysdjsWEj7RyTmZw+MGSJvQPmbBmZMB91Mif8wk92+qIyP6YTBKP7SyElMArB8tmTRKAbEtT1wA+K9Lj9gsicM/FUXgrowobnj+E7CrzLJ9R0vOfliKrsg1PXL3w5AdYdHaTSThFSymfAjAEAFLKPgCzr8aebF5WZRucHNSID3Kb9jXOj/bB67cvwaJ5HnjpwAmsfHo/bnjpK/wnq8bmqp6+KWtBU9cAt9ORzViXFIS6jn7kTLOt7qO8enT1G3DTkjAzR2Z9Ogc1Xrw1DRuSghDg7ogQz6nPlbM1o3Oc7loeiXles/dFlLeLFq6OGlS1nPsDhz0FjfBwcsDSyOEPOqL8XADg5HB1IiJ78l52LXJrOvDd88PR1juEt76pUjokmoU+yKmF0SRxy3lh+MX6BXj7e8swaDDhun98hT/vKbLbtvSM8lb89dMSfCslBFen2GelvhI0kzhmUAjhBEACgBAiGsMVT0RWdaSqDcmhHjMuXVwZ74+V8f5o7OzHtqwabM2sxo+3HsVvthfgysXBuDE9FIvmeSg+u2T70Tq4aNVYFW8fm7xo9rssIQAOaoGP8uqn1W61+XAVIn1dsCxq+lWKtkSrUeGv307BoNEElcr+P4dZkxiAB1pj8b2Lo5QOxaKEEAjzdj5nhZPBaMK+441YFe9/8v8dd50D/NwcUcbB4URkZ3oGDPjjruNIDvXEr69MRGlTN146WIZbl4VD5zC7tpGScqSU2JpZg+RQT8QGDBcJLIvywccPXoTfbi/E85+W4rOiJjx742LE2NE4go7eITy4ORuh3s547OqFSodjVybzzv3XAHYBCBVCvAlgH4BHLBoV0Wl6Bw0oqOtE2jQHho8nwF2HH62MwWcPX4LN9yzDZQkBePdIDa762xdY99zneO1Q+aS3GJnboMGEj/MbcFlCAJy0fBFAtsHDyQHLY3zxUV7DlNvqSvXdOFzRhhuXhCqezDUnIQQcNbPj76ibzgEPXRYHV8fJfBZl38J9nFF1jhlOGRWtaO8dwprEU5P+0X4u3FRHRHbnHwdOQN81gF9dkQCVSuC+lbFo6hrAO5nVSodGs0h+bSeKGrtwXdqpy2HcdQ545oZk/OPWVNS09WLD859j0xflZtl+bGlSSvzs3Vzouwbw/E0pc+J1kjmdM+EkpfwEwLcA3A7gbQDpUsr9lg2L6FS5NR0wmqRZE06jhBBYFuWDP9+4GBmPrsYTVy+EVqPCYzsL8dSuIrPfbzIOFjeho2+I7XRkc9YnBaG2vQ9HazqmdN6Ww1XQqIRdbqej2SfMxxnVbb1n3dK0p6ARjhoVLo7zO+XxaD9XnGjqmfYsMyIia6tp68XLB8tw1eLgk6+ll0V5Y0mEF/6x/wQGDbbV4tQ9YMANL32FrMpWpUOhKdqWVQ2tRoWNi8Z/D7N2YRB2P3QxLoj2wW92FOI7r2WgvqPPylFOzZcnWvBxfgMeuiwOyaHTW141l01mS10qgHAA9QDqAIQJIaKFEEztkdWMDgxPCbXs1iR3nQNuXRaO7fctx9rEQOzIrVNkbez2o3XwdHbA8hi/cx9MZEVrEgJPttVN1oDBiP8cqcXqBQHwc3O0YHREkxPu7YIho5zwRa6UEp8UNuKiWF84a099uRPl54qOviG09gxaI1Qiohl78uPjEAL46dr4k48JIXDfpbGo6+jHu0dqFIzuTJ8d1yOjvBXPflKidCg0BQMGIz44Woc1CQHwcJ544ZG/mw6v3b4Ev78mCVmVbbj82YMn3+vZolcPlcPHRYu7lkcqHYpdmkzS6O8AUgHkYnhY+MKRH/sIIe6VUu6xYHxEAIAjlW2I9nOBl4v1NlttWBSEXQUNyKxoxXlRPjO+XkljF149VA4hAI1KBbVKQKMSUKtHvlepRr4X2HusEVctDoFWw1WbZFs8nB1wYYwvPsytx8/XxU+qPe6Twka09gzipqWhVoiQ6NzCRzbLVLX0jjsgvaCuE7XtfXhgdewZz0WPGRzu48oEKhHZtsyKVuzMrcf9q2IRfNqCi4tjfbFongf+vv8ErkubB42NrHjfe6wRAHCotBnHGzoRH+iucEQ0GfuO6dHeO4Tr08/9ek8IgW+fF4YLon3w3dcz8MM3s7Djf5bD301nhUgnr6ypG58e1+P+VbGcdTZNk/lXpQJAipQyXUqZBiAFQD6A1QCesmBsRACGP2nOqmqzSDvd2Vwa7w9HjWpKlRxn89y+EvznSA32HdPjw7x6vHukBm9nVGHTFxV46UAZnt9Xgj9/Uow/7S7CgMGEG9LZekS2abStLq92cm11mzOqEeLphItiWbFHtiHMezjJNNHg8D0FDVAJYFW8/xnPRfsNDznl4HAi86ho7sHDW4/a3Lbg2cBkkvjtjkIEuutw74ozF0IIIXDfyhhUtfZiR26dAhGeachowmfH9cNzTB3UeO1QudIh0SRtzaxGoLsOy2N8J31OhK8LXrotDR19Q7jvrWyb22D3+hcV0KpVuG1ZuNKh2K3JVDjFSykLRn8ipSwUQqRIKctm0+BXsl1lzT1o7x2yesLJxVGDlfP98XF+A359ZeKMtlB19g/hk8JG3Lw0DI9dNf5mAyklTBIwmIb/oZ0tg4hp9lmTEIBfqAQ+zKvHonln72WvaunFodJmPLQ6DupZsMmNZodgTyc4qAUqJxgcvqewEekR3uNWMIV4OsFRo+LgcCIz+eOu4/g4vwEbFgVh5fwzk7w0fe9m1yKvtgPP3ph8RnvwqNULAhAf6Ia/flqKq5JDFN+6eriiFZ39BlyXNg8B7o54J7MGj6yNhy8rSm2avrMfB4qbcO+K6Cm/3osPdMeT31qEB7fk4I8fH8cvr0iwUJRT0947iG1ZNdi4OJgjIWZgMhVORUKIF4UQK0a+/R1AsRDCEcCQheMjOtnTa+2EEwCsXxQEfdcAMmfYV7wrrwEDBhOuSQmZ8BghhtvpHDVqJpvIpnk6a3FBjC8+yqs/5+DkLZlVUAnghiWs2CPboVYJzPNyRlVrzxnPVbb04HhDFy5PDBz3XJVKINLXBWVNZ55LRFNzrL4TH+c3AACyq9oVjmZ26Rkw4Kldx5Ec6omrkid+/alSCdx3aQxONPWc/LNQ0t5CPbQaFS6K9cUdF0Zi0GDCG19XKh0WncO72bUwSZyxnW6yrk4Jwe0XROCfh8qx00aq7TYfrkbfkBF3XsjZTTMxmYTT7QBKATwI4CEAZSOPDQFYaanAiEZlV7XBw8kBUb6uVr/3KjO11b2bXYNIXxcs5mYDmiU2JAWiurUP+bWdEx5jMJqwNbMGl8z3R5CH04THESkhzNt53AqnPQXDs0PWJARMeO7wpjpWOBHN1PP7SuDmqEGEjzOyq2x3aLA9enH/Cei7BvDrKxPOWbW0bmEQovxc8MKnJYpu4JRS4pNjDVgeM7ywIdrPFZfG++ONryvRP8SWS1slpcS2rBqkhXshym/679d+sX4B0sK98Mi2XJQ0dpkxwqkbMprwry8rcH6UDxKCOUNsJs6ZcJJS9kkpn5FSXiOlvFpK+bSUsldKaZJS8tUWWVxWZRtSwzwVKfF1cdTgkvl++Di/HqZpbqurbe/D12WtuCYlZFIDlonswZqEQKhH2uom8ulxPfRdA7hpCYeFk+0J93FGVUvvGW+u9hQ2YEGQO0K9zxwmPirazwVVrb0YMPANENF0jVY33bE8EhfE+CKnun3ar7XoVDVtvXj58zJctTgYqWHn7hBQqwR+dEkMjjd0Yd8xvRUiHF+JvhvVrX1YveC/Cf+7lkeiuXsQ24/aRtULnSmnuh2l+u5pVzeN0mpU+PstqXDWavD9N7LQ1a9cM9Wu/AbUd/RzM50ZnDPhJISIFUJsE0IUCiHKRr9ZIziijr4hFDd2K9JON2p9UhAaOweQNc1PxCsTwQAAIABJREFU3t7PrgUAXL144nJmInvj5aLFBdE+Z22r23y4Gv5ujrh0nMHLREoL83ZG14ABbb3/fUHb3D3cQn226iYAiPZ3hUkOzygjoul5bu9wddNdF0YiJdQTXf0GlDXzs+zTvZ9diztez8DuggYYJ5mQe/Lj41AJ4Kdr4yd9n42LgxHq7aRoldMnhcMVpqsW/Pd1wwXRPogPdMNrh8oVrb6iiW3LqoHOQYUNi4JmfK0Adx3++u0UVLb04idbcxX7M3/1UDkifJz5GtYMJtNS9zqAFwEYMNxC928A/2fJoIhGjZZXpyqYcFq1IABajQof5k69rU5Kifeya5Ee7oUwn4k/LSeyRxuSglDV2ouCujPb6uo7+rC/SI/r021nzTLRWOE+LgCGZzaN2nesEVJiwvlNo0ZbvNlWRzQ9hXWd2FUwXN3k4eyAlJEqnCOc43SG174ox2dFTfj+/2Vh5dP78dqhcnQPGCY8/nBFK3bm1uP7F0cj2HPy7ewOahV+sCIGR2s68HlJszlCn7K9xxqRPM8DAe66k48JIXDn8kgcb+jClydaFImLJtY/ZMT2o3VYmxgId52DWa65LMoHP18Xj10FDXj5oPXrXLIq25BT3Y47LoxUfIj+bDCZdwFOUsp9AISUslJK+RsAl1o2LKJhRyrboFYJJJ9jE5YluTpqcEnc9Nrq8ms7UarvxjWprG6i2WdN4sRtdVsza2CSwI3pYQpERnRu4SMfAlS1/rdKaXdBI+Z5OWFBkNtZz43yG05WneDgcKJpeX5fCdx0mpPtKlG+LnDXaTg4/DRtPYPIq+3A/ZfG4O+3pMLPzRGP7SzE+b/fh8d3FqK69dQqS5NJ4rEdhQh01+H7K6KmfL9r00IQ5KHDXz8tNdcvYdL0Xf3IqW7HqgVnVphuTA6Gr6sWrx4qt3pcdHZ7ChvR1W/A9enmHZ9w1/JIbFgUhD/uOo4vS62bAH3ti3K46zQzbhGkYZNJOPULIVQASoQQ9wkhrgHA2jL6/+zdd1xb97n48c9XEmKD2HsabLwYHuAZx45jO0kz2rRp08xmdqRNezvS/jrubdPe2962aZvupBlN0oy2SZrcDNtx7DTGC2ODbbDBYANmg9gbhM7vD8AhDsYMCUnwvF8vXq2FdM5jxxY6z3nGjMitaCEl3Bdv97FXuc6Ua1KH2uqOTrKt7pW8Kox6HR9bGmmnyIRwnMDhtrq3L2irs1o1XjpcydqkIKnsE04rdnhG08jg8M4+C9mlZrYsCr/kvD1vdwPhfh5S4STEFIxUN921NgF/z6GKCJ1OkR4bIIPDL7D/TBOaBhsWhHD10ghe/sIa/vWltWxMCeWv+8vZ8PM9fOG5Ixwub0bTNF7Jq+ZEdRsPXbUAL+PkPzu7G/Tcf1kiOeXNHDo7s9VEe4oa0DQ+NL9phIebnltXxbG7qEHed53MP3IriTJ5sjoxyKbHVUrxvzemkhjiw5dfyKOmtcemx7+Y6tYethfUcXNmrMOvP2eLiSScvgp4AV8BlgO3ArfbMyghYGg7QN65VlbGBzo6lA/a6iaxrc4yaOX/jtWwKSUUfy/blJgK4WyuWhJBeVM3J2s/aKvbW2qmurWHz6yU6ibhvDzc9IT5uZ9POL1/upF+i5Wti8ef3zRiXqi3VDgJMQUj1U13XTCMNyPGxOn6jnHbxeaa7NJGfN0NH6r0T48x8ejNGex9aCP3b5jH/jNNfOpPB7j+9/v46dtFpMeYuD5t6pX1n8mMJdjHyG9nuMrpnZMNRJkuXmF666o4jAYdT+2TKidnUdvWQ3apmRuXRdml9czb3cCfbl1On8XKF/92dEYWdTyzvxyA29fE2/1cc8VEEk7xmqZ1appWpWna5zRNuxGQqwhhd6dq2+kZGGRFvOPmN43wcTewYX4Ib5+om3Bb3d4SM+bOfmmnE7Pa1sVh6HWKt0YlY1/MOUeAlxtbJnjhLoSjxAV6c655KGm0s7COQG/jhJdUzAvx4WxjpwyxFWISCmvaPlLdNCIj1oRVg+NV0lYHQ3NA95aYWTUvaMxZiBH+njy0LYUD39nEj29YQmefhZbufn5w7aJpXfx7uOm5d30i2aXmSVf2T1VP/yDZpY1sXhh60QrTYB93bkiP5OUj1bR2989IXGJ8rxytRtPgRju2niWF+vCLT6WSX9nKw2+ctNt5ALr6LDyfc45tS8KJmsT8MzG+iSScvjPBx4SwqcPlQz/kVsQ5vsIJhgYk17X3klc5sR++r+RVY/JyY+MC6UAVs1eQjzurEgN560QdmqbR2NHHOyfruXFZNO4GvaPDE2JcsUFeVDR102+x8m5RA1ekhE54yH1isDcdvRYaO/vsHKUQs8fFqptgqHIHkDlOwyqauqlq6WF9cvC4z/MyGrh1VRy7vraBQ//vCpbFTv9G7S2r4jB5ufH7Gapy2ldqpnfAyuZLbAi9a10CPQODPJ9zbkbiEhenaRr/PFJFZkLg+SUc9rJtSQT3b0jkuYPneC2/2m7n+eeRKjp6LednywnbuGhjolLqKuBqIEop9eiob/kxtLFOCLvKLW8mJtCTcH+PSz95BlyxMHR4W10dyy+RBOvoHWBnYR2fWhGN0SAbusTsdvXSCL77agGnajt4v6QRi1XjM5m2HR4phD3EBXrR0NHHe8UNdPRa2HKJ7XSjzQsd2lR3trGLUF/n+Dllb5qm0do9QHlTF+eauyk3d1PR1EVFczcVTd18LDWC/7pusaPDFE6qsKaNHYX1PHhF8keqmwBMXkYSQ7wl4TRs7/Cg5HVJ4yecRuh0imAfd5uc28fdwN1rE/jlO6cpqG5jSZS/TY57MbtO1ePjbiArYfw5QCnhfqxLCuaZ/RXcuz4RN9mC6zBHKlooM3fxxcvnzcj5vrllAftKzfx2dynXpUVectbiZFmtGk/tKyM9xmSTpK34wHj/SmuAI0Dv8P+OfL0ObLV/aGIu0zSNw+UtTlPdBODr4cZlyRPbVvd2QR19Fisfz5DtBmL227o4HJ2CN0/U8NLhSlbGB5AUOv6WLyGcwchQ+79kl+Hppr9kJcFoiSFDCafZPMBW0zSeyC7jgeePcu1vs0n74U4yHn6Hj/9hPw++mM+vdp3mwNkmDDpFdIAnzxwo5+ws/vMQ0zNeddOIjJgA8itbpFUVyC5pJMrkSUKwfatHLub2NfH4uht4enimjb1YrRq7TjWwYUHIhG7S3r0ugbr23g+18ouZ988jVXgZ9Vy9NGJGzmfQ67h9VTylDZ3kVti+1XN3UQPlTd1S3WQHF61w0jTtGHBMKfWcpmlS0SRmVEVTN+bOPqeY3zTaNanh7DpVT15l67hzPl49Wk18kBfLYk0XfY4Qs0WwjzurEoN4al853f2DPLAxydEhCTEhI20AOWXNbFscjofbxNtAI/w88HTTc6Zh9g4Or2rp4eE3hlasJ4f5kB4TRVyQF3FB3sQHeRET6HX+z8zc2ce6n+3md7tLeeTT6Q6OXDibkeqmr24eu7ppREasiZePVlHV0kNM4NzdcmoZtLL/TBNXL4mweSXHRPl7urF+fjD7S81omma3OI5VtWLu7OPKMbbTjWXD/BASQ7x5IrvMLpUu4tK6+y28cbyWq5dGzOgmt4+lRfCjN07yQs45my+VenJfGZH+Hly1ZOKVzmJiLppGVkqdUEodB44qpY5f+DWDMYo5aCRz7Qwb6ka7YmEYRr1u3LsqNa09HCxr4oaMKPkhKOaMq5dG0N0/iK+HYcbudgkxXXGjLmgnO+Rep1Mkhnhz1jx7K3qOV7UB8Njty3n27iwevmEJ96xP5MpFYSSH+X4oQRfs487tq+P5V361VDmJjxipbvrc2vGrBzKGb9TN1LBqZ3W8uo2OXgvrJlF1aQ+Z8YHUtPVS1WK/lfS7TtWj1ykuXxAyoefrdIq71iZwvKrNLpUu4tJ2FNbR2Wfhk3YcFj4WL6OB69MjefN4LW3dAzY77smadvafaeL2NfETnuMoJm68P9GPAdeO8yWE3eSWN+Pv6UbScMuCs/DzcOOy+cG8feLibXX/yh/a2PDxDNlOJ+aObUvCMegUn8iIwtMow8KFazB5ueHrYUCvU2xKmfyCh8QQn1ndUneiug03vWJB+MRaZO+7LBGjQcfvZnidunBuI9VNd6/76Ga6Cy0I88XLqJ/zc5yyS8woBWsnOL/JXrISh2YqHSprtts5dp1sYGV8ACYv44Rf84llUfh7uvHE3jK7xSUu7h+5VcQGepHpgMKAmzNj6bNYeTWvymbHfHLfUFv9zStjbXZM8YGLJpw0TasY+WJojtPS4a+e4ceEsJvD5c2siAuY1lpXe7l6aQQ1bb3kj7G2V9M0Xj1azfK4ALtvbBDCmQT7uPP6A+t46KoUR4cixIQppVgY4cf65OBJXeyMmBfiTVVLD70Dg3aIzvEKa9qYH+Y74Y2TUuUkxvKbXROrboKhOS2p0f7kzfEKp+wSM4sj/Qj0nvz7ki0tCPPF39ONnLImuxz/XFM3xfUdbJ5gO90IL6OBz2bFsvNkHZXN3XaJTYytqqWb/WeauHFZtEOu05ZE+bM0yp8XD1faZNZbY0cfr+fX8KkV0fh7jZ8QF1NzyZoxpdRNQA7wKeAm4JBS6pP2DkzMXU2dfZxp7GK5k81vGrF50XBb3fGPttUV1rRT0tAp1U1iTloU6YeXceZ6+YWwhcduW86jN2dM6bWJIT5oGpQ3zb45TpqmcaK6jaWT3E4lVU5itILqNnaenFh104iM2AAKa9pnbSL3Ujr7LBw918K6pIm1mNmTTqdYGR9otwqnXafqAbhy0eQSTgB3rI5HpxRP7Su3cVRiPK8crQbgxuWOu9a5OTOWoroO8iqnXwn53MEK+get3LkmfvqBiTFNpEnxu8BKTdPu0DTtdiAT+L59wxJz2REnnd80ws/DjfXJwbxdUPeRzPorR6sx6nV8LFVm2AghhCsweRnx85jaXc15IUOVrLNxcHhVSw+t3QOTXocuVU5itEffLcFvgtVNIzJiTFisGoU1bXaMzHkdOtuExapNamumPa1KDKSiqZu6tl6bH3vXqXqSQ32m1BUQ7u/BNakR/D23ko5e283zEeN743gNmQmBRAc4bqj/demReBn1vJhzblrH6R0Y5G+HKrgiJfT85llhexNJOOk0TWsY9eumCb4OpdSTSqkGpVTBqMceHh48nq+U2qmUihzn9X5KqWql1O9GPbZ8eKB5qVLqUSVTmWedIxUtGPW6Sd9VnUlXL42gurWH/FGZdcugldeP1bAxJWRKrRlCCCFcS2Lw0AfU2ZhYKageutifys9iqXISMLq6KXHC1U0A6cODw+fqHKe9JWbcDbpxtyHPpKyEkTlOtm2ra+se4FBZM5unUN004u51CXT2WXjpcKUNIxMXc6axk9P1nQ7f5ObjbuC6tEj+71jttJKN/zhShbmzn7vXTTwhLiZvIomjt5VSO5RSdyql7gTeBN6a4PGfBrZd8NjPNU1L1TQtHXgD+ME4r38Y+PcFj/0RuA9IHv668PjCxR0ubyY12n9S66ln2uZFYbjp1Ye21WWXmjF39vHxjJnd2CCEEMIxPI16okyes3Jw+InqNgy6iQ8MH02qnATAU/vK8XU3cOfa+Em9LtTXg+gAzzmbcMouNZOZEOg0n4MXRvji426weVvde6cbGLRqk57fNFpqtIm1SUH8fk+pTbeWibHtKKwDYOtixyacYKitrmdgkNfya6b0+paufn65s5ishEBWzwuycXRitIkknOqA5xgaGJ4KPKZp2kMTObimae8DzRc81j7ql97AmNO+lFLLgTBg56jHIgA/TdMOaEO9TM8AN0wkFuEaegcGOVHdxgonbacb4e/pxvrkEN468UFb3at51fh7urExxfE990IIIWZGYog3ZxpnX0vdieo2ksN8p3zRO1Ll9FupcpqTBgatvHOyji2LwydV3TQiIzZgTg4Or23robSh02na6WBokPuK+ABybJxw2nWqgWAfI+kxpmkd57tXL6KtZ4Bfv3vaRpGJi9lRUEdatD+RJk9Hh0JqtD8LI/x4YYptdT/fWUxHr4UfXb8EaZiyr4kknHyBbzM0u+kMsH+6J1VK/UQpVQncwhgVTkopHfBL4JsXfCsKGL0DsWr4MTFLHKtsZWBQY4WTlBGPZ6St7lhVG519FnYU1nFNasSEt/kIIYRwffNCfDjb2GmTbTnOQtM0CqrbWBrlN+VjjFQ5vZZfPSsrwMT4Dp5tor3XwrYptt5kxJioaeu1y9wgZ5ZdYgZgfbJz3bzMTAiktKETc2efTY7Xb7HyXnEDm1JC0U9z09miSD9uzozlmQMVlNR32CQ+8VEj1zxbHdxON0IpxWczYyisaedE1eTmvZ2oauOFnHPcsTp+SlW8YnIumXDSNO2HmqYtBr4ERAL/Vkrtms5JNU37rqZpMcDfgAfGeMoXgbc0TbuwIXesd6SLVUjdp5TKVUrlNjY2TidcMYNyhweGO0vf+niuHNVWt72gjt4BK5+Q7XRCCDGnzAvxpqt/kPp221yIOYPq1h5augemPUtRZjnNXdsL6vAy6qdcqZMxPMcpv3JuVTlll5oJ9nEnxckugkfmONmqyulweTMdvZZptdON9vUtC/A26vnRGydnVfLfmewcbqfb5gTtdCOuz4jCw03H85OocrJaNb7/WgFB3u589cpkO0YnRkxo+PewBoba65qAUBud/3ngxjEeXw08oJQqB34B3K6U+ilDFU2jB+REA2M2bmqa9pimaSs0TVsREuJcdwnExeWWN5Mc6kOAt/MP3fb3dGNdUjBvHq/llaNVxAZ6uUSiTAghhO3MC5l9g8MLqoemH0x2Q92FpMppbrJaNXaerOfyBSFTbslcFOmHUa+bU3OcrFaN7BIz65KCnK7FZ2mUP55uepslnN45WY+7Qcc6G7UOBnob+dqV89lbYmbXqYZLv0BM2vaCOuaH+TjVNjc/Dzc+lhrJ6/nVdPVZJvSafx6pIr+yle9clTLlDbVici6ZcFJKfUEp9R7wLhAM3KtpWupUT6iUGp1KvA4ouvA5mqbdomlarKZp8cA3gGc0Tfu2pmm1QIdSatXwdrrbgdemGotwLlarRm5Fi9PPbxptpK1u/5kmbsiIcroPCEIIIexr5MP3bEqoFFS3odcpFkZMvaVuxH2XJeJu0EuV0xySV9lCY0fftAYLuxv0LI7ym1MJp1N17TR19bPOydrpAIwGHcviTBw8O/1NdZqmsetUPeuSgvEyGmwQ3ZBbV8WRHOrDj988SZ9l0GbHFWDu7ONwebNTVTeNuDkzhq7+Qf7v2KWHh7d1D/Cz7UWsiAvgE8ukK2WmTKTCKQ74qqZpizVN+09N005O9OBKqReAA8ACpVSVUupu4KdKqQKl1HFgC/Dg8HNXKKX+MoHDfgH4C1DK0Eyptycaj3Bupxs66Oi1uMT8phFbFoXjph9KMn1c2umEEGLOCfNzx9uon1WDw09Ut5Ec6mOTLVlDVU5xUuU0h2wvqMOo17EpZXoNERkxARyvbmVg0GqjyJzbyPymdUnOMzB8tKyEIIrrO2jt7p/WcYrrO6hq6WHzItu0041w0+v4wbWLqGjq5snscpsee67bdbIeq4bTzG8abVlsAPPDfCY0PPyRd4pp6e7nh9cvliKBGTSRGU7f1jQtfyoH1zTtZk3TIjRNc9M0LVrTtCc0TbtR07Qlmqalapp2raZp1cPPzdU07Z4xjvG0pmkPjPp17vDr52ma9oAmjbqzxuHyoT79lS5U4eTv5caWReGsTQoiIdjb0eEIIYSYYUopEkN8Zk0y5YOB4dNrpxvtXqlymjM0TWNHYT1rkoLwnWa7Skasid4BK8V1c2MQdHapmeRQH8L9PRwdypiyEgLRtA8+r0/VrpP1AFwxzYTkWNYnh7B5YRi/211CQ/vcGjhvT9sL64gJ9GSRDapebU0pxc2ZsRyraqOw5uLDw0/WtPPswQpuXRXH4kjb/XwTlzaZGU5C2FVueTOhvu7EBDp+1eZkPHpzBn/9XKajwxBCCOEg80K8OTtLKpxq23pp6upnabTtPpBLldPccaq2g3PN3TZpvRkZHJ53bvYPDu8dGCSnrNlmM43sIS3GhNGg49A02+reOdVAWoyJUD/7JNa+d81CBgY1/ndHsV2OP9e09w6wr9TMtsXhTlsV9PGMKIwGHS/mXLhvbIimafzn6wWYvIx8/coFMxydkISTcBq55S2sjA902jezi9HrFAa9/FMSQoi5al6ID9WtPfT0u/7ckBPVQ3eIbX0HWKqc5obthXXoFDZpl4oyeRLi6z4n5jjllrfQZ7FOeavfTPBw05MeYyKnfOqDwxvaezlW2cqVC21f3TQiPtibu9YlnB8OLaZnT1EDA4Ma25ywnW6EycvINUsj+Fde9Zg/h/+VX83h8hYe2rYAfy8ZFD7T5CpZOIWa1h6qW3tYEe8685uEEEII+GBw+Fmz61fvFFS3oVPYvHVCqpzmhh0FdayIDyTYx33ax1JKkRFjIm8OJA32ljbipldkJQQ5OpRxrUoIpKC6jY7egSm9/s0TtYBtEpLjeWBTEiG+7vzX64VYrTJ9ZTq2F9QR6utORoxzX6N9ZmUMHX0W3jj+4eHhHb0D/PdbRaTFmPjU8hgHRTe3ScJJOIXciqFy6RVxrjO/SQghhACYFzo0w282DA4fGhjui6dx+gPDLzRS5fRfrxey62Q9JfUd9A64dlVYU2efo0NwGmXmLorrO2y6ySojNoAycxfNXdMbVO3sskvMZMQG4O1uu61t9pCZEIRV++Bz+2RYrRrPHqggLcZESrh9ZwH5uBt4aFsK+ZWt/Cu/2q7nms16+gd5r7iRrYvD0emcuwMlMyGQxBBvXjz84ba63+wqwdzZx4+uW+z0v4fZyrnf1cSckVvejJdRz8IIX0eHIoQQQkxKfJA3SsFZF6/cGRkYvmG+fdpdgn3ceWBTEj/fUcze4Y1cABH+HsQGehEX5EVckDexgV7EB3kTH+w17cHT9rTrZD33PZvLy19YQ0asc9/9nwk7CusA226yGpnjlF/ZwqYU+1bFOEpTZx+FNe18/cr5jg7lkpbFmTDoFDllzWxcMLn3ifdLGjlr7uLXn063U3Qf9omMKJ49WMFP3y5i6+Jwp0/mOaP3SxrpGRh06na6EUopbl4Zy0/eOsXp+g7mh/lyur6Dp/aX85mVMaTFmBwd4pwlFU7CKRwub2FZbIDMQhJCCOFyPNz0RAd4unyFU317H+bOfpZG2a/64Esbkzj6/St59Ytr+M1n0vmPK+ezel4Qg1aNPcWN/HxHMV9+IY9rf5fN8od38ZoTVye8daIWqwZ/+vcZR4fiFLYX1JEa7U+UyXbLX1Kj/dHr1Kye47TvzNAQbmceGD7Cy2hgabT/lAaH/3V/OcE+7ly9NMIOkX2UTqf4z2sX0dDRx+/3yOy4qdhRUIfJy43MBNfoQLlxeTRGvY4Xcs4NDQp/rRAfdwPf3Jri6NDmNEn1Codr7x2guK6dr1yR7OhQhBBCiCmZF+Lj8hVOIwPDbbmhbiyB3kYCvY1jVgV19Vk419xNRVM3T+0r46sv5dPea+G2VXF2jWmyhhJkDbgbdOw8Wc+Zxk7mDc/ymovq2nrJr2zlm1ttuwHKy2ggJdx3Viecsksa8fMwkBrtGhUYWQlB/GXvWXr6Byfceltm7mJPcSMPXpGM0TBzN5eXxQbwiYwo/rK3jM+sjCU2yGvGzu3q+i1Wdp2qZ8vicNxcpCAg0NvI1iXhvHK0msWR/hw428TDNywh0Nvo6NDmNNf42yNmtbxzrVg1md8khBDCdSUG+3C2sculB9SeOD8w3L4Jp/F4uxtYGOHHtiXh/PWuTK5ICeX7/ypwugqF/MoWWroH+H9XL8RNr+Px9886OiSH2nlyuJ3OhvObRmTEmsivbGXQhf9tXYymaWSXmFkzLxi9i8yXyUoMxGLVOHpu4nOcnjlQjkGnuCUr1n6BXcRDV6Vg0Ct+8tbJGT+3Kztwton2XotNZ7LNhJtXxtDWM8C3Xz7O4kg/Pps583/nxIdJwkk4XG55M3qdIj3WNe7sCCGEEBeaF+pNz8Agte29jg5lygqq20gK9bHLwPCp8HDT88dbl3N9eiQ/31HMT98uQtOcI+mw61QDBp3i48ui+NTyaF45Wk2DC/+3n67tBXUkhfqQFGr7Kq+MmAA6+yyzcrvhWXMXNW29LtFON2JFXAA6xYTb6rr6LPwzt4qrl0YQ6udh5+g+KszPgy9tTGJHYT37Ss2XfoEAhv5Nexn1LvV3E2BVYhDxQV5YrBo/un6JyyRyZzNJOAmHO1zezKIIP3xkmJ8QQggXNdJO5cptdSeq21gS6bjqprG46XX86qZ0bl0Vy5/+fYbv/qvAKSpddp9qIDMhED8PN+5dn4jFauWp/eWODsshWrr6OVTWzNbF9hnqPTI4PG8SFTWuInt4eP56F7qo9/VwY3GkP4fKmif0/FeOVtHRZ+HOtfH2DWwcd69LIDbQi+++emJOJ4YnatCq8c7JOjamhOLh5hw3ICZKp1P88PolPHz9YpbHyTIHZyAJJ+FQ/RYr+ZWtrIiXNwQhhBCuKzHEG4AzDa6ZcKpv76Wxo48lUc6VcIKhC4iHr1/CFy+fx/OHzvHVl/IZGLQ6LJ7K5m6K6zvYlDK0pSs+2JurlkTw3MEKOnoHHBaXo+w6Vc+gVWPbYvsMg04I9sbf021WznHaW2ImJtCTuCBvR4cyKVkJgeRVttI7MDju8zRN4+n95aRG+5PhwC1hHm56HrkpjYaOPj792EFq23ocFst4csubz297tIXegUG+9c9j5JZPLDk44khFC+bOfpdrpxuxYX4It62Od3QYYpgknIRDFda00TtgZWW8zG8SQgjhukJ83PH1MLjsproTVTMzMHyqlFJ8a1sK374qhf87VsP9zx655MWuvewuagDgioUfVPTcd1kiHb0WXswwETqXAAAgAElEQVSpdEhMjrSjsI4okydL7LTdUClFRqxp1iWcBgatHDzbxLqkEEeHMmmZCYH0W6wcH37fuJjsUjNnGru4c008Sjm2tWlFfCDP3p2JuaOPm/58gMrmbofGc6E9RQ189vFDPPhiHn0W27y3ZZeY+XtuFZ976jAF1eP/txpte0EdRr2OjcNJdSGmQxJOwqGOVAyVR6+QkkchhBAuTClFYogPZ82uWeFUUNOGUrAowj5JA1v5/IZ5/PfHl7KnuIHbn8xxSEXRu0UNJIZ4kxD8QVVKWoyJ1YlBPJFdRr/FcdVXM62zz8L7JWa2Lg63a0IhIyaA0w0ds6qC7FhlK519FpdqpxuRmTB0o/hSc5ye3ldOsI+Ra1LtU/02WcvjAnnunizaugf4zGMHqWhyjhsE7xU3cP9zR/DxMNA7YD1/fTRd2aVmPNx0+HoYuOPJnAm1fGuaxo7COtYnB8u4E2ETknASDnW4vJnYQC+HDBEUQgghbGleiDdnGpzjAmayCqrbmBfig7cLXGB8NiuWRz+TwdGKFj77+CGau/pn7NxdfRYOnmniijHu/N+/IZG69l5ey6+esXgc7b3iBvotVrvNbxqREWtC07hkRY0r2VtiRilYMy/I0aFMmsnLSEq477hznM41dbO7uIGbM2NxNzjPHKC0GBMv3LeK7n4LN/35gMOH0b9/upH7nj1CUogPrz+wFoNOnZ/tNV3ZpWYyE4J49p4sAG57Ioea1vHbCQuq26lu7WHrEtdspxPORxJOwmE0TSO3vEXmNwkhhJgV5oX4UNfeS2efxdGhTNqJ6jaWOuH8pou5Ni2Sx29fwen6Dm7684EZGwS8t8RM/6CVTSkfTbBsmB9CSrgvj71/FqsTDDafCTsK6wnyNrLCzqMR0mJm1+BwTdN4r7iB1Ch/TF5GR4czJVkJgRypaLnoPLVnDpSjV4pbsuJmNrAJWBzpz4v3rWbQqvHpPx/kdH2HQ+LILjFz7zO5zAvx4W/3ZBEd4EVGrIlsG2zTq23robShk/VJwcwL8eGvd2XS3jPAbU+Mn6TfXliLXqfYvNC+SWQxd0jCSThMmbmLpq5+md8khBBiVpg3PDi8zMXmODV09FLf7pwDw8ezMSWUZ+7KpKqlm5++XTQj59xdVI+fh2HMm2VKKe7fkEhJQyd7ihtmJB5H6h0YZPeperYsDrP76nF/TzeSQn1mzRynvSVmjlW1cUNGlKNDmbKsxCB6BgY5McZsoK4+Cy/lVrJtSTjh/s7ZxbAg3JcX71uNTsFnHjvIyZr2GT3//lIzd//1MAnB3vztniwCvIcSj+uSQjhR3UbLNCs395UOtTuuTRpq2VwS5c9f7lhBVUsPdz518Xbk7QV1ZCUEEujtmolQ4Xwk4SQcJrd86C7VSqlwEkIIMQvMC/EBcHiLxmSNDJN1pQqnEVmJQdyxOp5/5VdTaucNgVarxu6iRjYsCMVNP/ZH6I+lRhJl8uTP/z5r11icwf4zZrr6B9kyQ5usMmJM5FW2ommuXT1mtWr89O0iYgI9+WxWrKPDmbKRG8Y5Y7TVvZpXTUevhc+tjZ/hqCYnKdSHl+5fjbtBx82PH+R41cwkNA+caeKuvx4mPmgo2TQ6ubMuOQhNg/1nxp+PdSnZJY0E+wy1Po7ISgzij7cu42RNO/c+k/uRxQulDR2caexim7TTCRuShJNwmNyKZkxebiQG+zg6FCGEEGLaYoO80CkmNJjVmZyoah8aGB7p3APDL+b+DfPwdNPz612n7Xqe49VtmDv7xpzfNMJNr+PudQnklDfbbPCvs9pRUI+vu2HGZhBlxAbQ3NXPOSfbLjZZrx2r5mRtO9/YssCpZhtNVoivO/NCvD8yOFzTNP66v5wlUX4si3X+m8oJwd78/f7V+HoYuOXxQxy1c9vmwbNN3PX0YWICvPjbvVkE+bh/6Ptp0SZ83Q1klzZO+RyappFd2sSaecHoLqg+3JQSxi8+lcbBs8088HwellEtkdsL6gDYskgSTsJ2JOEkHCa3vIUVcQEfeSMUQgghXJG7QU9soBdnXKyl7kR1GwnB3i67kSjQ28jn1ibwxvFaiurs1xaz+1Q9OgWXLxh/jf2nV8bg7+nGY++fsVssjmYZtPLOqXo2LQydsaRJRuzQHCd7JwTsqc8yyC92nGZJlB/XpkY6Opxpy0oMIre8hcFRM8v2n2mipKGTO1bH23VzoS3FBHrx0v2rCfIxcttfDo1ZtWULOWXN3PX0YaICPHn+3lUEX5BsAjDodayaF8TeEvOUq/mK6zswd/ax7iIbEG/IiOKH1y1m16l6vvXy8fMz57YX1pERa3LaNkjhmiThJBzC3NnHWXOX3YdMCiGEEDNpXoiPS7bUuWI73Wj3rE/A193Ar96xX5XTu0UNrIgLvOSQZ293A7evjmPnyXqH/12oa+vl2y8fv+T6+sk6XN5Cc1c/22aonQ5gfpgvvh4GcspcN+H07IEKqlt7+Pa2hbPihmtWQiAdfRZO1X6Q6H16fzmB3kauTXOthFqUyZOX7l9NuL8Hdz6VY/Ptl7nlzdz5VA7h/h48f28WIb4fTTaNWJ8cTFVLDxVNU6vmG9lyty5p7IQTwB1r4vmPK+fzytFqfvTGSSqbuymobp/Rf9NibpCEk3AImd8khBBiNkoM8abM3PWhO/7OrLGjj7r2XpdPOJm8jNy9PoEdhfXnZ1LZUm1bD4U17WxaePF2utHuWBOPm17H4+87dpbTcwcrePFwJZ9+7CC3/sV27UI7CutwN+jYcIlqL1vS6xQr4wPJKbNt8mymtPcO8Ls9paxPDr5o5YmryUoYaqc8OJzQrGzuZtepem7OjMHDzfXaBcP8PPjpjal09w/atCX2SEULdzyZQ7ifBy/eu4pQ3/EriEYSRXunuK0uu9RMYog3kSbPcZ/35U1J3LU2gaf3l3P/s0cA2CoJJ2FjknASDpFb3ozRoHO5jThCCCHEeOaF+NBnsfLWiVqXGG5cUDOUnJkNP4/vWpeAv6ebXaqcdhcNbZ3bPMGEU7CPO59aHs0rR6tpaO+1eTwTtfNkHSviAvjeNQs5VdvOJ/6wn889lcOJqqkn5TRNY0dhHZfND8HLOLNtmJkJgZxp7MLc2Tej57WFP713htbuAR7aluLoUGwm3N+DuCCv8y1ozx6sQKcUt66Kc3BkU7ck0h+9TnGs0nYDxB98MY9gX3eev3cVoX6XbldLCPYmyuRJdsnk5zj1WQY5dLaZ9eNUN41QSvG9axZy47JoTta2kxLuS3yw96TPKcR4JOEkHCK3ooW0aH+XHpYohBBCXGhjSiixgV58+YU8rnk0m7dP1J6fj+GMCoYTD4tddGD4aH4ebtx3WSLvFjWQZ+M5P7tPNRAb6HV+E+FE3Ls+EYvVylP7y20ay0SVmbs4Xd/JNakR3LM+kfe/tZFvbVtAXmUr1/4um/ueyf1QK9REHa9qo7at1yGtN5kJF9+M5szq2np5cl8Z16dHzork7miZ8YHklDfT1WfhxZxzbFscToT/+JU1zszTqGd+mC/HbLSxrrath6qWHu5cEz/h2UhKKdYlBbP/TNOkq2XzzrXSMzDI2gkknAB0OsXPblzK/RsS+caWBZM6lxATIQknMePaewcoqG47v05VCCGEmC3C/Dx49+sb+MWn0ugZGOQLfzvKtt+8z2v51U7ZZneiuo3EYG98PdwcHYpN3LkmnkBvI4/YsMqpp3+Q7FIzm1JCJzUEOT7Ym6uWRPDcwQo6egdsFs9E7Sgc2jh15aIwYGi21BcvT2Lvtzbytc3zOXCmiat+s5cvPX+U0oaOSx7PatVo6x7gX/nV6HWKKyZY7WVLS6P88XTTu1zC6de7TjNo1WblBX1WYhCt3QP8fEcx7b0W7lwb7+iQpi09xp9jla02qVLNPzeUuMqY5Ma+dcnBdPRaOD7JxFd2iRm9TrFqEtsjDXod37lqIZuH3yuEsCXXXEciXFp2iRmLVePyBTP/QUUIIYSwNze9jk8uj+bjGVG8cbyG3+8p5cEX8/n1rhK+ePk8bsiIwk3vHPf8CqrbZtUCD293A5/fkMh/v1XE4fJmm9zc2n/GTJ/FyuaFk78Yu++yRN48UcuLOZXce1nitGOZjB2FdSyJ8iM6wOtDj/t6uPHg5mTuXBPP43vP8tS+Mt4+Ucu1aZFEB3jS1jNAa/cAbT0ffLV2D9DeO8DI9ff65OBLDk+3Bze9juVxARxyoYRTaUMHf8+t5I418cQEel36BS4ma7jq7On95SyK8GNFnOvPZ02LNvFCTiXlTd0kTLPFLK+yFaNex8II30m9bm1SMEoNXTdNJlmVXWomLdofv1lyE0G4Puf4tCPmlD1FDfh5GFg2vN5WCCGEmI30OsX16VFsf/Ay/nTrMryMer75z+Ns/MV7/O1QBX2WQYfG19TZR02b6w8Mv9Btq+IJ8XXnkZ22qXJ6t6gBb6P+fDvXZKTFmFidGMQT2WX0W6w2iWci6tt7yTvXytZFF2978/dy4xtbF7D3oU3cuz6RnYX1/PG9M7x1oo7CmnY6ei0EeBlJjzFxfXokX96YxPeuWcjPP5nK/34ydcZ+LxfKTAikqK6dtu6Zrxqbip9tL8bLaODLm5IdHYpdRAd4EjncKnbnmvhJVQE6q9TooWuUyVYXjSXvXAuLo/wmPUYk0NvI4ki/SQ0Ob+se4HhVK+uSZ26YvxCXIhVOYkZZrRrvnW7ksvkhGJzk7q4QQghhTzqdYtuSCLYuDmdPcQOPvlvKd18t4LfvlvLHW5dNutXCVk4Mb3NbHOX685tG8zTq+eLl8/jh/51k/xkza+ZNfSOYpmnsPtXAZfNDMBqm9rnl/g2J3PnUYV7Nq+LTK2OnHMtkvHOyHoCtSy49ZynQ28h3rl7IN7cuQKcUOp1zJwwyEwLRNDhc3uz0LUC55c28c7Keb2yZT6D3zFeEzQSlFOuTQ3i3qJ7r0iMdHY5NzA/zwcNNR35lK9enR035OAODVk5Ut/HZzKkNUV+bFMyT2WV09Vnwdr/0ZfuBs2as2gdb7oRwBnLFL2ZUYU07jR19bJR2OiGEEHOMUopNKWG8+sU1PHt3JgA/eK3QYdvsCqpnz4a6C92cGUu4nweP7Dw9rT/fwpp26tp7uWIK7XQjNswPIS3an9/sKqF3YGaq2nYU1pEQ7E1y6MSHnBv0OqdPNgGkx5gw6nXklDt3W52mafzP20WE+rpz17oER4djV9+/dhFvfmU9Hm6zYxmQQa9jaZQ/x6exzRGguK6D3gEr6VPs6lifFMLAoMahsqYJPT+71Iy3UU+GdJEIJyIJJzGj9hQ3oBRsWCClnkIIIeamkYqAb2xdwInqNrYX1DkkjoLqduKDvGblrA8PNz1f2pREbkUL75dMvCXlQruLhj63XD6Nzy1KKR7alkJNWy/PHayY8nEmqq1ngANnmtiyKGxWtDddyMNNT3qMyennOO08Wc+Riha+unk+XsbZ3VTi424gzG9iG9hcRWq0iYLqNgYGp94KO7ItMyNmagmgFfEBuBt07J3ge1h2iZlViUFOMyNQCLBjwkkp9aRSqkEpVTDqsYeVUseVUvlKqZ1KqY/UXSql4pRSR4afU6iU+vyo772nlCoe/l6+UkrKZFzMnuIGUqNNBPu4OzoUIYQQwqE+nhFFUqgPv9hZ7JANdieq22ZlddOIT6+IIcrkySM7i6dc5fTuqXrSY6b/uWVNUjDrk4P53Z5S2u28sW5PUQMWq8aWxZdup3NVmQmBFFS30dVncXQoY7IMWvnf7UUkhnhz04poR4cjpiAtxkSfxUpx3aU3OF5M3rlWgn3ciQ7wnNLrPdyGZsdlTyDhVNncTXlTN2ulnU44GXumP58Gtl3w2M81TUvVNC0deAP4wRivqwXWDD8nC/j2BYmpWzRNSx/+arBH4MI+mjr7yK9sZaNUNwkhhBDodYpvbJnPmcYuXjlaNaPnbunqp7q1Z9YNDB/NaNDxlSuSOFbVxrunJv+RsaGjl2NVbVPaTjeWh7al0No9wGP/PmuT413MjsI6Qn3dp1xV4QoyEwIZtGocqWhxdChj+seRKs40dvGtrSkys9RFpZ8fHD71trr8ylbSY0zTqjRclxRMSUMndW294z5v3/Bw8fXJknASzsVu74Capr0PNF/wWPuoX3oDH7ndpGlav6ZpfcO/dLdnjGJmvV/SiKbBphQpTBNCCCEAti4OJzXan1/vKpnRrXUjA8Nnc8IJ4BPLookL8uKRdyY/y+m9okbAdp9blkT5c21aJE9kl9HQPv7F41T1DgzyXnEjVy4Kc4l5TFO1LC4AvU6R44RtdT39g/zqndMsizWxdbFzDzUXFxcT6EmAlxvHKqe2qa6lq5+z5q5pz1NaN5xAyr7EtrrsUjNhfu4kTWJumxAzYcaTOUqpnyilKoFbGLvCCaVUjFLqOFAJ/EzTtJpR335quJ3u+2qcdLFS6j6lVK5SKrexsdGmvwcxNXuKGgn2MbIkcnZ/uBVCCCEmSinFN7cuoLq1hxcOnZux836woW52/0x20+v4yqZkTta2s6NwcrOydp2qJ9Lfg5RwX5vF8/Ur5zMwaOXR3SU2O+Zo2SVmegYG2TqL2+lgaGbQkih/p0w4PbmvjIaOPr5z9cJZOUNrrlBKkRpt4ljV1BJO+cOvm27CaWG4H0HeRrJLLn49a7Vq7D/TxNqkYPk7J5zOjCecNE37rqZpMcDfgAcu8pxKTdNSgSTgDqXUyO2BWzRNWwqsH/66bZzzPKZp2gpN01aEhEgLl6NZBq38+3QjG+aHzuo7bkIIIcRkrUsKZlViIL/bU0p3/8zMpCmobiMuyAt/z9k3MPxCN2REkRjiza/eKcE6wVlZvQODZJeauWKhbQdvxwd785nMGF7MqaTc3GWz447YUViHr4eBVYlBNj+2s8lKCCS/snXGNv+Npd9i5VRtO6/mVfE/b5/ijidzePTdEjYvDGNlfKDD4hK2kRZj4nR9x5Tel/PPtaJTQ8PHp0OnU6xNCia7tOmiVZona9tp7upnncxvEk7Ike1qzwM3jveE4cqmQoaSS2iaVj38vx3Dr8+0c4zCRvIrW2nrGZB2OiGEEOICQ1VOKZg7+3lqX/mMnPNEdducqTjW6xRf3Tyf4voOnjtUMaGk06GyZrr7B9m00PafW75yRTJueh2/fOe0TY9rGbSy61Q9m1JCMRpm/0SKzPhA+get5E+x5Wmy6tp62V1Uzx/eK+UrL+Sx9Vfvs+gH27nqN3v52kvHeCq7nIaOPj6WGsnDNyyekZiEfaVF+2PVhjZ6TlZeZSvzw3zxcZ/+hsJ1ycGYO/sorh97gPlIu50knIQzmtEdnUqpZE3TRmqIrwOKxnhONNCkaVqPUioAWAs8opQyACZN08xKKTfgY8CumYpdTM/uogb0OnW+D1kIIYQQH1geF8DmhaH86d9nuDUrDn8v+1UetXT1U9XSwy1ZcXY7h7P52NII/rL3LD94rZA/7DnDtWkRXJ8exeJIvzErmN49VY+nm57VdqgUCvX14O51CfxuTyn3X5Zos02Bh8tbaOkemPXtdCNWxgeiFOSUNdu9ouvvhyt56JXjjBSYRJk8SQn35YqFoaRE+JES7ktCsLeso59lRqqTjlW2kpkw8Yo1q1Uj/1wL16RG2CSOkURSdomZlHC/j3w/u8TM/DAfQv08bHI+IWzJbgknpdQLwOVAsFKqCvhP4Gql1ALAClQAnx9+7grg85qm3QMsBH6plNIABfxC07QTSilvYMdwsknPULLpcXvFL2xrT3EjK+IC5kTpvhBCCDEVX9+ygKsf3cuf3j/DQ9tS7HIOq1XjqX1lwOwfGD6aTqd46b7V7DpVz2v5NTy9v5zH95aRGOzNdemRXJ8eRUKwNwCapvHuqQbWJQfj4aa3Szz3bUjkuUMV/Gx7Ec/enWWTY+4orMNo0LFh/twYJeHv5UZKuJ/d5zidbezkP18vJCshkK9vWcD8MF/5PDtHhPi6E2XynPQcp7KmLtp7LWTEBNgkjkiTJ4kh3uwtMXPP+sQPfa93YJCc8mZunUM3EIRrsVvCSdO0m8d4+ImLPDcXuGf4/78DpI7xnC5guS1jFDOjrq2XU7XtfPsq+3x4FkIIIWaDhRF+XJcWyVP7yvjc2nhCfW17t9rc2cd//P0Y759u5Oql4axKnFszZjyNeq5Ni+TatEhau/t5u6CO1/Kr+c27Jfx6Vwmp0f5clxbJ/DBfqlt7+PKmJLvF4ufhxpcuT+Inb51if6mZNdNshdE0jXdO1nNZcjDeNmjhcRVZCYG8dLiSgUGrXaqLBgatfO2lfIwGHb/+dAbh/lJBMtekxfhPOuGUd27o+enTHBg+2vqkYF7KraTPMoi74YNEeG55C/0WK+uli0Q4Kan7FHa3p7gBgI0LZH6TEEIIMZ6vbZ6PZVDj97tLbXrcfaVmrvrNXg6ebeLHNyzh959dhmEOt/+YvIzcnBnLi/et5sC3r+B71yxE0+DHb57i9idzAOw+d/K21XFE+nvwsx3FFx0GPFGFNe1Ut/awZY60043ITAikZ2Dw/NZFW/vtuyUcq2rjfz6xVJJNc1RatInK5h6aOvsm/Jq8cy34uhtICvGxWRzrkkPoHbBypKLlQ49nl5px06tJtfwJMZPm7icNMWP2FDUQZfJkfpjt3nSFEEKI2Sg+2JubVsbwfM45Kpu7p308y6CVn+8o4tYnDuHv6cbrD6zl1lVxsjp7lHB/D+5Zn8j/fXkd7359Aw9ekcw3ty6w+zwUDzc9X71yPscqW9leUDetY+0orEOn4Io5tpxlZBOcPdrqjlQ087s9pdy4LJqrl9pmFo9wPWkxQ1VKxyeR1MyvbCUtxmTTzdyrEgPR6xTZJeYPPZ5d2khGbMCcqmwUrkUSTi5i0KrxWn417b0Djg5lUvosg+wrNXP5ghD5cCuEEEJMwFc2JaNTil/vKrn0k8dR3drDpx87yO/3nOGm5TG8/sDaMQfOig/MC/Hha1fO50sb7ddON9qNy6JJDvXh5zuLsQxap3ycHYV1rIwPJMjH3YbROb8QX3fmhXjbPOHU2Wfhqy/lE2ny5L+uW2TTYwvXsiTKH6WGBodPRHe/haK6DtJjbNdOB+Dr4UZGjOn8RjqA5q5+CmvaZTudcGqScHIRnb0WvvGPY9z711z6LIOODmfCDpe10NU/KO10QgghxASF+3twx5p4Xs2rouQia7AvZXtBHVf9+n2K6zp49OYMfvbJVLyMcgfc2eh1im9sXcDZxi7+eaRqSscoM3dxur5zzmynu1BmQhCHy5sZtE6vLXG0H75eSHVLD7/6dDq+HjIgfC7zcTeQHOoz4YTTiao2Bq0aGTac3zRiXXIwJ6rbaOnqB2D/GTOahmwBF05NEk4uwt/LjV98Ko1DZc18/e/HsNrwh6o97SluwGjQsSbJvutqhRBCiNnkCxvm4WU08Mudpyf1ut6BQX7wWgGff+4I8cHevPmVdVyXFmmnKIUtbFkUxrJYE7/eVULvwORvKu4oHGrH27I4zNahuYSshEA6ei2cqm23yfHePlHLP45U8cXLk8637Im5LS3axPGqtgnNWssfTkzZusIJYH1yMJoG+880AZBdYsbXw0DqHNo4KlyPJJxcyPXpUXznqhTeOF7Lf791ytHhTMie4gZWJQbJXVUhhBBiEgK8jdy7PpHthXUTurPe0NHLjsI6bvj9Pp45UMG96xP45+fXEBfkPQPRiulQSvHQthTq2nt5en/5pF+/s7COJVF+RAd42T44FzAyLNkWbXX17b1859UTpEb78+Dm5GkfT8wOqTEmmrr6qWrpueRz8861EhfkZZf21rRoE77uBrJLzWiaxt4SM6sTg+b0Agjh/CQL4GLuuyyR2rZe/pJddn7IpbOqaOribGMXt6+Kc3QoQgghhMu5e30Cfz1Qzi92FvPs3VnnH+8dGKSwpp28cy3kV7aSd66V6tahC6EgbyNP3bmSjXNseLSry0oMYuOCEP6wp5SbV8bi7zWxNq6G9l6Onmvl61fOt3OEzivS5ElMoCc5Zc3ctS5hysexWjW+8Y9j9A4M8qtPp+MmF/FiWHr0ULXSsapWYgLHT+zmVbawKtE+nR0GvY5V84LILm2koqmb6tYe7t/gvNeCQoAknFyOUorvf2wRDR29/PjNU4T6eThtqfyeogYALpf5TUIIIcSk+bgb+OLl8/jxm6f47bslmDv7yK9s5WRtOwODQ60dUSZP0mNNfG5tPBmxJhZH+uPhpndw5GIqvrUthasf3cv3Xivgfz6xFJ8JbJ3aebIegC1zdH7TiMz4IPYUN6Bp2pSX1Pz1QDl7S8z8+IYlzLPhOnvh+haE+2I06Dhe1cbHUi9+3VXb1kN9ex8ZdminG7E+OZh3TtbzfM45ABkYLpyeJJxckF6neOSmdMwdOXzj78cI8XFn9Tznm5G0u7iRxGBv4oOlnF8IIYSYiltXxfFkdhm/fOc0XkY9qdH+3LM+kfQYExkxJkL9PBwdorCRhRF+fGVTMo/uLuFoRQs/vmHJJSvVdhTWER/kxfywuZ0gyUoI5OWjVZQ2dJIc5jvp15+u7+B/3i5iU0oot2TF2iFC4cqMBh2LIvzOz2e6mLxzQ9/PiA2wWyxrhxNMT+8vJ8rkSYJcZwknJwknF+Xhpufx21fwyT/t575nc/nH51c71arj7n4LB882cZu00wkhhBBT5uGm5+UvrqG1e4D5Yb7odVOr3hCu4WtXzuey+SF8++XjfO7pw1yXFskPrl1E8BjzYNp6Bjhwpom71yVMuapnthiZ43SorHnSCac+yyAPvpiPr7uBn92YOuf/LMXY0mNM/D23kkGrdtH34bxzLRgNOhZG2O+aLDHYm0h/D2raelmbFCR/X4XTk+ZkF+bv5cZf78rE22jgzicPU9N66UF2M+XAmSb6LVY2SjudEEIIMS0R/p4sjPCTZNMcsTwugDe/sp6vbZ7P9r5XHEEAACAASURBVII6Nj/yb14+UvWRDVnvFTdgsWpzvp0OIC7IizA/9ykNDn9k52lO1bbzsxtTCfG1/aBnMTukxfjT3T9IaUPnRZ+TX9nKkkg/jAb7XWIrpViXPFTltC45xG7nEcJWJOHk4iJNnjx910q6+izc+VQObd0Djg4JgN1FDXgb9axMsF9JqRBCCCHEbGQ06HhwczJvPbiOpBAfvv6PY9z+ZA7nmrrPP2dHYR2hvu52nRfjKpRSZCYEkVPWPKHV9SP2l5p5bO9ZPpsVy+ZFYXaMULi61JHB4RdpqxsYtHK8qs2u7XQjrk+PIibQk/Uyv0m4AEk4zQIp4X78+fbllJu7uffZXHoHBh0aj6ZpvFfcyNqkYNwNMrhUCCGEEGIqkkJ9+fv9q3n4hiXknWtly6//zePvn6Wrz8J7xY1cuSgMnVS+AUNtdXXtvZxr7r70k4GC6jbuf/YIicHefO+ahXaOTri6hCBvfD0MHKsaO+FUVNtBn8VK+gwkgNcmBbP3W5sI8Dba/VxCTJcknGaJNfOC+cVNaeSUNfP1vx/Dap343R1bK2nopLq1R1YyCyGEEEJMk06nuG1VHO/8x2WsSwrhJ2+dYvMj/6a7f1Da6UbJGjXH6VKK6zq47YlD+Hm68czdWXgZZaytGJ9Op0iLNl004ZRX2QJARqxUHAoxmiScZpHr0iL53jULefNELY/tPeuwOHYXNQDI/CYhhBBCCBuJ8Pfk8duX84dbljEwqBHobWR1ovNtKXaU5FAfAr2Nl5zjVGbu4tYnDuGm1/H8vVlEmTxnKELh6lKj/Smq7RizmyT/XCshvu7y90mIC0g6f5a5Z30iu4saeO5gBfetT3RImfWeogYWRvgR7i+rmoUQQgghbEUpxdVLI7hsfgidvRa7Did2NUopVsYHjJtwqmrp5pbHDzJo1XjpvlXEBclKeTFxaTEmLFaNk7XtLLtgVlNeZSsZMSbZGifEBeSn1Cx004oYqlp6yCmf/KaO6WrvHSC3ooVNKbI1QQghhBDCHnzcDXJjbwyZCUGca+6mtu2jm5vr23u55S+H6Oyz8OzdmSSH+TogQuHKRuYzXTg4vKWrnzJzF+nSTifER0jCaRbaujgcH3cD/zxSNePn3nvazKBVk3Y6IYQQQggxo0bmOF1Y5dTU2cctfzmEuaOPp+/KZHGkvyPCEy4uzM+DMD/3jySc8ofnOmXEyHZuIS4kCadZyNOo55qlEbx1opauPsuMnntPcQP+nm4zsqFBCCGEEEKIEQsj/PB1N3xocHhb9wC3PZFDZXM3T9y58iOtUEJMRlq0ieNVbR96LO9cKzo1NONJCPFhknCapW5cHk13/yDbC+pm7JxWq8Z7xY1smB+CQS9/tYQQQgghxMzR6xQrRs1x6uyzcMdTOZQ0dPDn25azSoasi2lKizFx1txFW/fA+cfyzrUwP8wXb3cZjyzEhSQrMEutjA8gNtCLl4/OXFvdsapWzJ19bJT5TUIIIYQQwgEyE4IobeikqqWbu58+zInqNn732WVcLuMehA2kRQ91cRyvHmqjs1o1jlW2kiGVc0KMSRJOs5RSihuXRbP/TBNVLd0zcs7X8mswGnRcsTBsRs4nhBBCCCHEaJnDc5xu+tMBcsqbeeSmNLYuDndwVGK2WDrcNjfSVnfW3EV7r4UMGRguxJgk4TSLfWJZFACvHq22+7ksg1beOF7D5oWh+Hm42f18QgghhBBCXGhplD+ebnpq2nr56SeWcn16lKNDErOIv6cbiSHe5A8PDs871wJAhsyvFWJM0mg6i8UEerE6MYiXj1bxwKYklFJ2O1d2qRlzZ7/8UBdCCCGEEA5jNOj47jUL8fUwyOdSYRdp0Sb2lZoByK9sxdfdwLwQHwdHJYRzkgqnWe7G5dGUN3VzpKLFruf5V141/p5uXL5A5jcJIYQQQgjHuXVVnCSbhN2kRfvT0NFHXVsveedaSY81odPZ78a+EK5MEk6z3FVLwvEy6vnnEfsND+/ut7DzZD1XL43A3aC323mEEEIIIYQQwpHShtvnDpw1U1TXLu10QoxDEk6znLe7gauWRPDm8Vp6+gftco53TtbT3T/IDemRdjm+EEIIIYQQQjiDhRF+GHSK5w6ew6pBugwMF+KiJOE0B3xyeTQdfRZ2nqyzy/FfzasmyuTJyvhAuxxfCCGEEEIIIZyBh5uehRF+50eWpMcEODgiIZyXXRNOSqknlVINSqmCUY89rJQ6rpTKV0rtVEp9pCxGKRWnlDoy/JxCpdTnR31vuVLqhFKqVCn1qLLnJOxZIishkCiTp13a6sydfewtMXNdeqT0LgshhBBCCCFmvbQYfwDig7wI9DY6OBohnJe9K5yeBrZd8NjPNU1L1TQtHXgD+MEYr6sF1gw/Jwv49qjE1B+B+4Dk4a8Ljy8uoNMpblweTXapmdq2Hpse+41jNQxaNT6eIYMZhRBCCCGEELNfavRQG126zG8SYlx2TThpmvY+0HzBY+2jfukNaGO8rl/TtL7hX7ozHKdSKgLw0zTtgKZpGvAMcIM9Yp9tblwWhaYNtb/Z0r/ya1gY4cf8MF+bHlcIIYQQQgghnNGy2KE2uuVx0k4nxHgcMsNJKfUTpVQlcAtjVzihlIpRSh0HKoGfaZpWA0QBo/vCqoYfG+v19ymlcpVSuY2Njbb9DbiguCBvMuMD+eeRKoZyddNXZu4iv7JVhoULIYQQQggh5oykUB+evzeLm1bGODoUIZyaQxJOmqb9f/buO77q6v7j+Otkh5FAIIskkDAEwiZhL1FUQEUpzrpBcY+2tqVarb/WWqvdrXUPXFUUBVRAEVmyw94jQCCDJIQZspPz+yMXDRAg497c5Ob9fDzuIzff7/me7yffQwL58DnnPGmtjQE+AB46R5sD1tqeQEfgDmNMOFDZIkGVZk+sta9ZaxOttYmhoaHOCr1Bm5AQxZ7s8iSRM8xcn4YxME4JJxERERERaUQGd2iNv4+3u8MQqdfcvUvdh8CE8zVwVDZtAYZRXtEUXeF0NJDusug8zNgekQT4ejll8XBrLTPXpzMwrhWRwYFOiE5EREREREREPEWdJ5yMMZ0qfDoO2F5Jm2hjTKDjfUtgCLDDWpsBnDDGDHTsTnc7MLMOwvYIzQN8Gd0tgi82pFNQXFqrvjakHmPvoZNaLFxEREREREREzuLShJMx5n/AcqCzMSbVGDMJeN4Ys9mxPtPlwKOOtonGmDccl3YFVhpjNgCLgL9Yazc5zt0PvAHsBpKBOa78GjzNdQkxHC8o4dttmbXqZ8a6NPx8vBjdI8JJkYmIiIiIiIiIp/BxZefW2psrOfzmOdomAXc73s8Dep6nXXdnxdjYDOrQisjgAD5dk8pVPWu29lJJaRlfbkzn0i5hBAX4OjlCEREREREREWno3L2Gk9Qxby/DT/pGsXhnNlnHC2rUx/e7D3Eot4hrNZ1ORERERERERCqhhFMj9JO+0ZRZ+HxdWo2un7EujaAAHy7urN3/RERERERERORsSjg1Qh1Cm9G3bQumr03FWluta/OKSvhmayZX9ozUNqAiIiIiIiIiUiklnBqpCQnR7MzMZVPasWpdN29rJnlFpVzbW9PpRERERERERKRySjg1Ulf1bIOfjxcfrNhfrSqnz9el0SY4gH6xIS6MTkREREREREQaMiWcGqngQF+uS4jm46QD3Pf+GnJyCy94zaHcQpbsOsQ1faLw8jJ1EKWIiIiIiIiINERKODVif7imO0+M7cKC7dlc8Y8lzN+Wed72X25Ip7TMajqdiIiIiIiIiJyXEk6NmLeXYfLwDsx6eAihzf2ZNDWJKdM3kltYUmn7GevT6RLRnM4Rzes4UhERERERERFpSJRwErpEBDHjwcHcN6IDHycdYOw/l5C07/BpbfYeOsn6A0cZ30fVTSIiIiIiIiJyfko4CQD+Pt5MGdOFafcOwmK54dXl/HnudopKygCYuT4NY2Bc7zZujlRERERERERE6jslnOQ0/WJDmPPocK5PiOHlhclc89JSth88zsz16QyMa0VkcKC7QxQRERERERGRek4JJzlLM38f/nxdT16/PZHsEwVc9a/v2XvoJNf2UXWTiIiIiIiIiFyYEk5yTpfFh/P1Y8O5tGsYoc39Gd090t0hiYiIiIiIiEgD4OPuAKR+a9XMn1dvS6SszOLlZdwdjoiIiIiIiIg0AKpwkipRsklEREREREREqkoJJxERERERERERcSolnERERERERERExKmUcBIREREREREREadSwklERERERERERJxKCScREREREREREXEqJZxERERERERERMSplHASERERERERERGnUsJJREREREREREScylhr3R2DyxljsoEUd8fhJK2BQ+4OQuqExrrx0Fg3DhrnxkNj3XhorBsPjXXjobFuPDTWztHOWhta2YlGkXDyJMaYJGttorvjENfTWDceGuvGQePceGisGw+NdeOhsW48NNaNh8ba9TSlTkREREREREREnEoJJxERERERERERcSolnBqe19wdgNQZjXXjobFuHDTOjYfGuvHQWDceGuvGQ2PdeGisXUxrOImIiIiIiIiIiFOpwklERERERERERJxKCScREREREREREXEqJZxqwRgTY4xZYIzZZozZYox51HE8xBgzzxizy/GxpeP4LcaYjY7XMmNMrwp9jTbG7DDG7DbGTDnPPe9w9LvLGHNHheN/NMYcMMbkXiDmBGPMJsd9/mWMMY7j1zu+hjJjjLaGPIOHjfWLxpjtjtg+N8a0qO3z8SQeNtZ/cMS13hjzjTGmTW2fjyfxpLGucP5xY4w1xrSu6XPxRJ401saYZ4wxaY7v6/XGmLG1fT6exJPG2nHuYUcMW4wxL9Tm2XgaTxprY8zHFb6n9xlj1tf2+XgSDxvr3saYFY6xTjLG9K/t8/EkHjbWvYwxyx3nvjDGBNX2+TRI1lq9avgCIoG+jvfNgZ1APPACMMVxfArwZ8f7wUBLx/sxwErHe28gGWgP+AEbgPhK7hcC7HF8bOl4f6q/gY54ci8Q8ypgEGCAOcAYx/GuQGdgIZDo7mdb314eNtaXAz6O938+FbNeHjnWQRXaPAK84u7nW59enjTWjnMxwNdACtDa3c+3Pr08aayBZ4DH3f1M6+vLw8Z6JPAt4O/4PMzdz7c+vTxprM9o81fgaXc/3/r08qSxBr6p8H4ssNDdz7c+vTxsrFcDIxzvJwJ/cPfzdcdLFU61YK3NsNaudbw/AWwDooBrgKmOZlOBax1tlllrjziOrwCiHe/7A7uttXustUXAR44+znQFMM9ae9jRzzxgtKPvFdbajPPFa4yJpPwX0OW2/E/+uxVi22at3VHth9BIeNhYf2OtLakkNsHjxvp4haZNAe0SUYEnjbXD34FfoXE+iweOtZyDh431/cDz1tpCR39Z1XgUHs/DxvpUGwPcAPyvio+hUfCwsbbAqUqXYCC9io+hUfCwse4MLHa8nwdMqOJj8ChKODmJMSYW6AOsBMJP/eF0fAyr5JJJlGdAofyb6ECFc6mOY2eqartziXJcU9PrBY8b64kVYpMzeMJYnyoHBm4Bnq5Gv41KQx9rY8w4IM1au6Ea/TVKDX2sHR5yTB9469S0AjmbB4z1RcAwY8xKY8wiY0y/avTbqHjAWJ8yDMi01u6qRr+NigeM9WPAi45/m/0F+E01+m1UPGCsNwPjHO+vp7wSvdFRwskJjDHNgOnAY2dUFJyr/UjKvyF+fepQJc0q+x/qqrY7561reX2j50ljbYx5EigBPqhGv42Gp4y1tfZJa20M5eP8UDX6bTQa+lgbY5oAT6KE4gU19LF2fHwZ6AD0BjIon34jZ/CQsfahfIrHQOCXwLRTa4PIjzxkrE+5GVU3nZOHjPX9wM8c/zb7GfBmNfptNDxkrCcCDxpj1lA+PbCoGv16DCWcaskY40v5N8MH1trPHIczHeV1p8rssiq07wm8AVxjrc1xHE7l9IxnNJBujBlgflxAcNy52p0nNu8K1//ecX3F6VPnvV5O50lj7VgQ7yrgFkf5p1TgSWNdwYc00lLe8/GQse4AxAEbjDH7HMfXGmMiqvMsPJ2HjDXW2kxrbam1tgx4nfJpA1KBp4y149xnttwqoAzQhgAVeNBYY4zxAX4CfFz1J9B4eNBY3wGciv8T9DP8LJ4y1tba7dbay621CZQnkpOr9yQ8hK0HC0k11BflGc13gX+ccfxFTl/U7AXH+7bAbmDwGe19KF+gLI4fFzXrVsn9QoC9lP9vV0vH+5Az2lxoUbPVlP9P2alFzcaecX4hWjTco8ea8nnJW4FQdz/X+vjysLHuVKHNw8Cn7n6+9enlSWN9Rpt9aNFwjx1rILJCm58BH7n7+danl4eN9X3A7x3vL6J82odx9zOuLy9PGmvHudHAInc/1/r48qSxpnxNoosd7y8F1rj7+danl4eNdZjjo5fja5ro7ufrljF1dwAN+QUMpbxkbiOw3vEaC7QC5gO7HB9DHO3fAI5UaJtUoa+xlK/Cnww8eZ57TnR8U+0G7qpw/AXKM6xljo/PnOP6RMrnkyYD/8HxDxdgvOO6QiAT+Nrdz7c+vTxsrHdT/o/WU7Fp5zLPHevpjuMbgS+AKHc/3/r08qSxPqPNPpRw8tixBt4DNjm+lllUSEDp5XFj7Qe87zi3FrjE3c+3Pr08aawd594B7nP3c62PL08aa8fXsobyBMhKIMHdz7c+vTxsrB913H8n8DyN9D8MTj0MERERERERERERp9AaTiIiIiIiIiIi4lRKOImIiIiIiIiIiFMp4SQiIiIiIiIiIk6lhJOIiIiIiIiIiDiVEk4iIiIiIiIiIuJUSjiJiIiIiIiIiIhTKeEkIiIiIiIiIiJOpYSTiIiIiIiIiIg4lRJOIiIiIiIiIiLiVEo4iYiIiIiIiIiIUynhJCIiIiIiIiIiTqWEk4iIiIiIiIiIOJUSTiIiIiIiIiIi4lRKOImIiIiIiIiIiFMp4SQiIiIiIiIiIk6lhJOIiIiIiIiIiDiVEk4iIiIiIiIiIuJUSjiJiIiIiIiIiIhTKeEkIiIiIiIiIiJOpYSTiIiIiIiIiIg4lRJOIiIiIiIiIiLiVEo4iYiIiIiIiIiIUynhJCIiIiIiIiIiTqWEk4iIiIiIiIiIOJUSTiIiIiIiIiIi4lRKOImIiIiIiIiIiFMp4SQiIiIiIiIiIk6lhJOIiIiIiIiIiDiVEk4iIiIiIiIiIuJUSjiJiIiIiIiIiIhTKeEkIiIiIiIiIiJO5ePuAOpC69atbWxsrLvDEBERERERERHxGGvWrDlkrQ2t7FyjSDjFxsaSlJTk7jBERERERERERDyGMSblXOc0pU5ERERERERERJxKCScREREREREREXEqJZxERERERERERMSplHASERERERERERGnUsJJREREREREREScSgknERERERERERFxKrcknIwxo40xO4wxu40xUyo5/3NjzFZjzEZjzHxjTLsK514wxmwxxmwzxvzLGGPqNnoRERERERERETmfOk84GWO8gZeAMUA8cLMxJv6MZuuARGttT+BT4AXHtYOBIUBPoDvQDxhRR6GLiIiIiIiIiEgVuKPCqT+w21q7x1pbBHwEXFOxgbV2gbU2z/HpCiD61CkgAPAD/AFfILNOohYRERFxg2lJB/hqY4a7wxARERGpFh833DMKOFDh81RgwHnaTwLmAFhrlxtjFgAZgAH+Y63dVtlFxpjJwGSAtm3bOiFsERERkbqVW1jC72ZuocxaukY2p31oM3eHJCIiIlIl7qhwqmzNJVtpQ2NuBRKBFx2fdwS6Ul7xFAVcYowZXtm11trXrLWJ1trE0NBQpwQuIiIiUpdmb8ogv7gUC0yZvomyskr/ySQiIiJS77gj4ZQKxFT4PBpIP7ORMWYU8CQwzlpb6Dg8Hlhhrc211uZSXvk00MXxioiIiLjF9DWpxLVuyrPXdGfVvsN8sDLF3SGJiABQXFrG11sOcvfU1Tz4wVqsVUJcRE7njoTTaqCTMSbOGOMH3ATMqtjAGNMHeJXyZFNWhVP7gRHGGB9jjC/lC4ZXOqVOREREpCE7cDiPlXsPM6FvFNcnRjOsU2uen7OdtKP57g5NRBqxvYdO8vyc7Qz603fc+94aVuw5zFebMli865C7QxOReqbOE07W2hLgIeBrypNF06y1W4wxvzfGjHM0exFoBnxijFlvjDmVkPoUSAY2ARuADdbaL+r2KxARERFxvelrUzEGxveNxhjDc+N7YIEnPtukSgIRqVP5RaV8tjaVG15dzsi/LOT1JXvo07YFb96RyOonRxEZHMBL3+12d5giUs+4Y9FwrLWzgdlnHHu6wvtR57iuFLjXtdGJiIiIuJe1ls/WpjG4QyuiWgQCEBPShF9d0ZlnvtjKZ2vTmJAQfYFeRERqZ3PaMT5efYAZ69M4UVBCbKsm/Gp0Z67rG01YUMAP7SYPb8//fbGVVXsP0z8uxI0Ri0h94paEk4iIiIic2+p9R9h/OI/HRnU67fjtg2L5YmMGv/9yK8MvCiW0ub+bIhQRT1ZQXMo97yaxZNch/H28GNsjkhv7xTAgLgRjzt4D6qZ+bfnPd7t5acFu+sf1d0PEIlIfuWMNJxERERE5j0/XHKCpnzeju0ecdtzLy/DnCT3JLy7ld7M2uyk6EffILSxxdwiNQmmZ5ZH/reP73YeYMqYLq54Yxd9v7M3A9q0qTTYBBPp5M3FoHIt2ZrMp9VgdRywi9ZUSTiIiIiL1SH5RKbM3HWRMj0ia+J1djN4xrBmPXtqJ2ZsOMndzhhsiFE90NK+I0rL6uzZYSs5J+j37LVOmb6SsHsfZ0FlreWbWFr7ZmsnTV8Vz34gOBDfxrdK1tw1qR/MAH/67UGs5iUg5JZxERERE6pGvtxwkt7CE686zRtPk4e2JjwziqZlbOJZXXIfRiSdKyTnJgOfmk/DsPB79aB0z1qVx5GSRu8M6zetL9pBfXMpHqw/w+y+3auF8F3l5UTLvrUjh3uHtuWtIXLWuDQrw5Y5BsczdcpDdWSdcFKGINCRKOImIiIjUI9PXphLdMpD+sedeeNfX24sXruvJ4ZNF/OGrrXUYnXiilxcmY4FLOofx/a5DPPbxehKenceEl5fx0oLdbE0/7tYEz6HcQj5JSuWmfjHcPTSOd5bt489zdyjp5GTT16TywtwdXNO7Db8e3aVGfUwcGkeAjzf/XZDs5OhEpCHSouEiIiIi9UT60Xy+332Ihy/phJdX5WulnNI9Kpj7RrTnpQXJjOvVhuEXhdZRlOJJ0o7mM31tKjf3b8vvr+lOWZllY9oxvtuexYLtWbz49Q5e/HoHkcEBXNw5jJGdQxnRORR/H+86i/HdZfsoKi3jnuHtad+6KfnFpbyyKJkmft48cmmnC3cgF7R4Zza/nr6RwR1a8eJ1vS748+dcQpr68dMBbXln2T5+dtlFxIQ0cXKkItKQqMJJREREpJ74fF0a1sKEvlFVav/wJZ3oENqU33y2iZNaUFlq4NVF5ZUo947oAJQvTN87pgU/v+wivnh4KKueuJQXJvSkd0wLvtiQzuT31vCbzzbVWXwnC0uYujyFy+PD6RDaDGMMf7imOxP6RvO3eTt5ffGeOovFU21OO8b976+hY1gzXrktAT+f2v2KeM+w9ngbwyuLVOUk0tgp4SQiIiJSD1hrmb42lf6xIbRr1bRK1wT4evPCdT1JP5bPC3O3uzhC8TRZxwv4aPUBJvSNJqpFYKVtwoICuKFfDC/fmsDapy7juoRovtqYUWcJzmlJBziWX/xDQgxO7dbYgyt7RvLH2dt4b/m+OonFEx04nMdd76ymRRM/pk7sT1BA1RYIP5+I4AAmJETzSVIqmccLnBCliDRUSjiJiIiI1APrDxxlT/ZJJiRUrbrplIR2IdwxKJZ3V6Swet9hF0Unnui1xXsoKS3j/os7XLgx4OfjxfUJ0RSWlDF/e5aLo4Pi0jLeWLKX/rEh9G3b8rRzPt5e/OPG3ozqGsZTM7fwSdIBl8fjaY6cLOKOt1dRWFzKO3f1IzwowGl93z+iAyVlZbyxRBVoIo2ZEk4iIiIi9cD0takE+Hoxtkdkta/95RWdiWoRyG8+26Qt46VKcnIL+WDlfq7pHVXlijqAxNgQwpr789XGdBdGV272pgzSjuZz74j2lZ739fbiPz/ty7BOrfn19I18scH1MXmKguJSJk1dTeqRfN64ox+dwps7tf+2rZowrlcbPli5v97teCgidUcJJxERERE3KyguZdb6dK7oFkHzGkxpaervw88vu4jdWbmqcpIqefP7vRSUlPLgyKpVN53i7WUY2yOShTuyyXXhtDprLa8s2kOnsGaM7Bx2znYBvt68dlsiibEh/Ozj9Xyz5aDLYvIUpWWWR/63jnUHjvLPG3vTP+7cO2LWxgMjO5JXVMrbS/e6pH8Rqf+UcBIRERFxs/nbsjheUMKEvtE17mN09wia+fvw6ZpUJ0YmnuhYXjHvLk9hbPdIOoZVv7JlbI/I8ml12zJdEF25JbsOsS3jOJOHt7/gjmmBft68dWc/ukUF89CH61i0M9tlcXmCZ2Zt4ZutmfzuqnjG1KCisqouCm/OFd3CeWfZPk4UFLvsPiJSfynhJCIiIuJm09emEhEUwJCOrWvcRxM/H8b2iGD2pgzyirRjnZzb28v2kltYwkOXdKzR9YntWjqm1WU4ObIfvbo4mfAgf67pXbU1zZr5+/DuXf3pGNaMe99LYtVeVfpVZkv6Md5bkcKkoXHcOSTO5fd7cGRHjheU8P6K/S6/l4jUP0o4iYiIiLhR1okCFu3MZnzfKLwvUMlxIRP6RnOyqJSvNa1IzuFEQTFvL93HqK7hdI0MqlEfXqem1e3MdknlyqbUYyzdncOkoXH4+VT915XgJr68N6k/EUEBTJm+kZLSMqfH1tDN2XQQLwMPVHGh+NrqGd2CFX3jtwAAIABJREFUYZ1a8+b3eygoLq2Te4pI/aGEk4iIiIgbzVyXTmmZrdV0ulP6xYYQExLI9DVpTohMPNF7K1I4ll/MwzWsbjrlqp6RFJWU8Z0Ldqt7dXEyzf19uLl/22pf26qZP1PGdGXPoZN8UQcLmzck1lpmb85gYPtWtGrmX2f3fWhkRw7lFvHxau0kKNLYKOEkIiIi4ibWWqavTaVXTAs6hjWrdX9eXoaf9IlmafIh0o/mOyFC8SR5RSW8sWQvwy8KpVdMi1r11bdtSyKCAvjSydPq9ufkMXtTBrcMbFejBfQBLo8vr9769/zdqnKqYFdWLnuyTzKme0Sd3ndA+1b0i23Jq4uSKSrReIg0Jko4iYiIiLjJlvTjbD94gusSal/ddMqEvtFYC5+vU5WTnO5/qw5w+GRRrauboDy5OaZHBIucPK3u9SV78PHy4q4hsbWK7dFLO6nK6QyzN2VgDFzRrW4TTlC+Y136sQJm6OeSSKOihJOIiIiIm0xfm4qftxdX93TeTlFtWzWhf1wI09ekYq11Wr/SsBUUl/LqomQGtg+hX2yIU/o8Na1u/jbnTKvLyS1kWtIBxveJIjwooFZ9qcrpbHM3H6RfuxDCavlsa+Lii0LpHhXEfxfudlr15faDx3lqxmbmbtaadSL1lRJOIiIiIm5QVFLGzPXpjIoPo0UTP6f2fV3faPYcOsm6A0ed2q80XJ+sSSXrRCEPX9LJaX32iWlJZLDzptVNXZ5CYUkZ9wxvX+u+VOV0uj3ZuWw/eILRdTyd7hRjDL+4vDP7D+cx7IUF3PfeGpYn51Q7KV5WZlmwI4tb31jJ6H8s4b0VKfx2xibyi7QguUh9pISTiIiIiBss3JHF4ZNFTlks/ExjekQQ4OvF9DWpTu9bGp6ikjJeWZhM37YtGNyhldP69fIyjOkeyeKd2Ryv5bS6vKIS3l2+j8viw52ynhn8WOX0r3pY5VRQXEpeUUmd3W+OowrIXQkngJGdw1j0y5HcM6w9K/bmcPPrK7jiH4t5f0UKJwvP/ywKikv5cOV+Lvv7Iu56ezW7sk7wq9Gdee22BA7lFvG/Vfvr6KsQkerwcXcAIiIiIo3R9LWptG7mz/CLQp3ed/MAX0Z3i+CLDek8dVU8Ab7eTr+HNBwz1qWRdjSfZ6/tjjHGqX1f2TOSt5buZf62TMb3qXnydNrqAxzNK+a+EbWvbjrlVJXTfe+vYdaGdH7iguRuTZwsLOHKfy1hX04erZr6Ed0ykOiWTYgOcXxsGUhMy0CiWjQh0M8537tzNmfQO6YFbVoEOqW/mooJacKUMV14bFQnZm1IZ+qyffx2xmb+PHc71yfEcNugdsS1bvpD+6wTBby3PIX3V6RwJK+Y7lFB/OPG3oztEYmfT3ntRP+4EF5dnMxPB7TVzzqRekYJJxEREZE6tivzBN9tz+KOQbH4erum4HxCQjQz1qfz7bZMrurZxiX3kPqvpLSM/y7cTfeoIC7u7PzkZp+YFrQJDuCrjRk1TjiVlJbx+pK9JLZrSUI756wvdcoPazl9t5txvdrg46Lvt+p4bvY2Ug7ncd+IDhzLLyb1SB7bMo4zb2smRWdUYrVu5s8V3cJrlSzcn5PH5rTjPDG2izPCd4oAX29uSIzh+oRo1u4/ytRl+3h3+T7eWrqXEReF8pO+USzeeYgvNqRTXFbGqK7h3D00jv5xIWc9h0cu6cStb67k0zWp3DqwnXu+IBGplBJOIiIiInWooLiUh/+3juYBvkx2YjXHmQZ3aE1kcADT16Qq4dSIfbkxg305ebxya4LTq5vg1G51kby3PIVj+cUEB/pWu4+vNmWQdjSfZ8Z1c0l8j43qxL3v1Y8qpyW7svlg5X7uHhrHlDGnJ4DKyizZuYWkHskj9Ug+qUfyWZtyhA9W7mdcrzYMaF+z6ZBzt5SvsTWmu/M2J3AWYwwJ7VqS0K4lv72yK/9bdYAPVqbw6EfZBPp6c3P/GO4aEkdshaqnMw3p2Io+bVvw8sJkbuwX47IkvohUn74bRUREROrQC3N3sP3gCV68ridhzV23W5S3l2F8nygW7zpE1okCl91H6q+yMst/Fuymc3hzLo8Pd9l9ruwZSVFpGd9uzaz2tdZaXl20hw6hTbm0S5gLoiuvcop3VDnVdC0nZ+z4eLygmF99upEOoU15/IrOZ5338jKEBwWQ0C6Ea3pH8eDIjrx0S19aNfXj5UXJNb7v7E0H6R4VRExIk9qE73JhQQE8OqoTS6dcwkeTB7LiN5fyf9d0P2+yCcqTVo9c0om0o/l8vjatjqIVkapQwklERESkjizckcVbS/dyx6B2XNrVdQmAUyYkRFNaZpm5rma7dO3JzuXwySInRyV15ZutB9mdlcuDl3TEy8v51U2n9IlpQVSLQGZvqv5udbM3HWRrxnHuHd7BZTEaY3h0VCf2HjrJrA3V+16w1vKv+bvo+4d5LEs+VKs4/vDFVjKPF/CX63tVea2hAF9vJg6NY+GObLamH6/2PdOP5rP+wNF6Wd10Lr7eXgxs34rgJlWvlru4cyg9ooJ5aWH9WyBepDFTwklERESkDhzKLeTxTzbSObw5vxnbtU7u2SG0Gb1jWvDpmtRqV2h8s+Ugl/5tEX3/MI/L/76IJz/fxMz1aRw8pmqphuKNJXuJbhnIWBfvTGaMYWyPCBbvyuZYftV3q9uWcZxffrqBXjEtuLZPlAsjrFmVU3FpGVOmb+Jv83ZSXGqZ/O4aNqUeq9H952/L5JM1qdw3ogN92ras1rW3DmxHM38fXqlBldNcx+50Y9y4O11dMMbw0CUdScnJ44uNNUuwi4jzKeEkIiIi4mLWWn75yQaOFxTzz5t71+lOShMSotmReYIt1aiO2Jh6lEc/Wk/PqGB+eUVnIoMDmbk+nUc/Ws/AP81n+AsLePyTDUxLOkBKzkmnTDeC8l/w52/L5KEP13Lxiwt4Y8keilWtUCPr9h8hKeUIE4fE1clC2WN7RFJcaplXxWl1h3ILuXtqEkEBvrx+W8IPO465SsUqp5nrL5yQOFlYwt1Tk/g46QAPX9KRb38+ghZNfLnj7VXszsqt1r2P5hUx5bNNdIlozqOjOlU79uBAX24Z0JYvN6aTknOyWtfO3XyQLhHNaR/arNr3bWgu6xpOl4jm/Oe73ZSWOednkojUjhJOIiIiIi42ddk+FuzI5okxXegSEVSn9x7Xsw1+3l58uia1Su1Tj+QxaWoSIU39eOOOfjw4siNTJ/Zn/dOX8cVDQ3nqqni6RjZn/rZMfvXpRka8uJABz83noQ/X8t6KFHZmnqhWAspay9r9R3h65mYGPDefSVOTWLr7EC2b+vHsV9sY/Y/FLNqZXdMvv9F68/u9NPf34YZ+MXVyv97VmFZXVFLG/e+vIedkIa/fnkhYkOvWMqvoxyqnXeetcso6UcCNry3n+92HeG58D35xeWciggN4f9IAvAzc/uZK0o/mV/m+v5u1hSMni/jL9b3w96lZsnni0Dh8vLx4bfGeKl+TdbyA1SmHGe3h1U2neHkZHhzZkeTsk8zZXP3pne5UVmZZve8w6/YfcXcoIk6lXepEREREXGj7weM8N2c7IzuHcsfg2Dq/f3ATXy6LD2fWhnSeGNv1vJUkxwuKmfjOagqKS/nw7gGENvf/4ZyPtxc9ooPpER3MpKFxlJVZkrNzWbn3MKscry83lv+SF9LUj/6xIfSPC2FA+xC6RAThfcb6PHsPnWTGujRmrE8jJScPfx8vLosPZ3yfKIZ1CsXX2/Dd9ix+/+VW7nhrFaO6hvHbK+MvuICwlCcN52w+yKShcTTzr5t/7htjuLJnJG8v3cuxvOJzrr9jreW3Mzaxet8R/n1zH3pEB9dJfKdifNSxY93M9elMSDh7x7rdWbnc+fYqcnKLeOP2REZWWMg8tnVTpk7sz02vruC2N1fyyX2DCWnqd957zt2cwcz16Tw2qhPdo2r+tYYHBTAhIZpP1qTy6KhOVdpw4OstB7G2vPqssRjbI5K/f7uT/3y3m7HdI126dpkz7Mw8wYx1acxcn07a0Xya+HmzbMoltGhy/j9XIg2FEk4iIiIiLlJQXMoj/1tHUIAvL17fyyXb0lfFhIQovtqUwYIdWVzRrfJqh+LSMh78YC17sk8ydWJ/OoU3P2+fXl6GTuHN6RTenFsHtsNay/7Deazce5iVew6zcm8Oc7eUrx8TFOBDv9jy5JOvtxcz16ez/sBRjIHBHVrx0MiOjO4eQfOA05MUl3YNZ2in1rz1/T7+890uLv/7YiYNi+OhkR1pWkeJlIZo6rJ9AHWe4LyyRySvLd7DN1sPcn1i5ZVVby3dx7SkVB65pCNX92pTp/HB6VVO1/Ruc9p0w1V7D3PPu0n4ehs+vncgPaNbnHV9tzbBvHlnP257cyV3vr2KD+8ZeM6kXk5uIU9+vpnuUUE8OLJjrWO/d3h7Pl69n7eX7uPXo7tcsP2czQdpH9qUTmGeP53uFG8vw0MjO/LzaRv4dlsml5/j5507HTxWwKwNacxYl87WjON4exmGdmzN7YPa8ac52/lg5X6n/HkRqQ/0N7WIiIiIi/xp9jZ2ZuYydWJ/Wjfzv/AFLjK8Uyitm/kzfU1qpQknay1PzdjMkl2HePG6ngzp2Lra9zDG0K5VU9q1asoNjmRD2tF8Vu3NYeWe8gqo+duzAOgaGcQTY7swrlcUEcHnr9Tw9/Hm/os7MKFvFM/P3c7LC5OZviaVKWO6cG3vqHpfwVDXThQU89GqA4ztEUlUi8A6vXfP6GCiW5ZPq6ss4bRwRxZ//Goro7tF8Nioi+o0tlPOVeX01cYMfjZtPdEtAnnnrv60bdXknH30jwvhv7f0ZfJ7a5j8bhJv3dnvrHXZyiu5NnOioIQPr++NrxPW0Ypt3ZQxPSJ5f3kK91/cgaCAc+/ilpNbyIo9OTxwcUe3JbrdZVyvNvxz/i7+/d1uLosPrxdf//GCYuZuPsjM9WksS87BWugV04LfXR3PVT3b/FBNujQ5h7eX7mPS0Lg6XetPxFXcsoaTMWa0MWaHMWa3MWZKJed/bozZaozZaIyZb4xpV+FcW2PMN8aYbY42sXUZu4iIiEhVfLc9k6nLU5g0NI4RF4W6NRYfby+u7d2GBTuyOHyy6KzzLy9K5qPV5Ysjn6sypSaiWgQyvk80z0/oyXePX8yqJy5lweMXM+fRYUwe3uGCyaaKwoIC+NsNvfnsgcFEBgfw82kbmPDKMjYcOOq0eD3BtKRUThSWMGloXJ3f2xjDlT0iWbLrEMfyTt+tbndWLg9/uI7OEUH87cZebk0UnrmW0xtL9vDQ/9bSMyqY6fcPPm+y6ZRLu4bzl+t7siw5h0c/WnfWmlCzNqQzZ/NBHrusE50jzl8tWB33j+jAicISPlix/7zt5m3NpMzCmB71r8LH1Xy8vXjg4g5sSjvGwnqw/tuf526n37Pf8qtPN5J6JJ9HLunEd78YwcwHh3DXkLjTpi7fN7w9h3IL+XxdmhsjFnGeOk84GWO8gZeAMUA8cLMxJv6MZuuARGttT+BT4IUK594FXrTWdgX6A1muj1pERESk6rJOFPD4JxvpGhnEr0Z3dnc4QPludcWlllnrT/9F5suN6bwwdwfjerXh55e5tuokLCiAuFquwdS3bUs+f2AIL1zXkwOH87n2v0t5euZmThaWOCnKhquktIy3l+6lX2xLesecPR2sLlzZM5KSMsvXWw/+cOxoXhF3T12Nv68Xb9yRSBM/906yMMbw2KhO7MvJ46bXVpQvTt8tgvfvHkDLC6zJVNH4PtH87up4vt6SyROfb/phsfys4wU8PXMLvWNaMHlYe6fG3j0qmGGdWvPm93spKC49Z7vZmw/SNqQJ8ZF1u0lBfTG+TzRRLQL59/xdTttFsyaSs3N5eWEywy8K5bMHBrPw8Yv52WUXnXPXwEEdWtE9KojXl+yhTDvtiQdwR4VTf2C3tXaPtbYI+Ai4pmIDa+0Ca22e49MVQDSAIzHlY62d52iXW6GdiIiIiNuVlVl+MW0DeUUl/Oum3jXelcrZukYG0a1NENPX/phwWpNymJ9P20C/2Ja8eH3PejH1pCq8vAw3JMaw4PER3Dk4lvdWpDD6n4tZnpzj7tDc6putmaQeyWfSUOcmOaqjR1T5tLqvHAvIF5eW8eCHa0k/WsCrtyXU+TS/c7nMUeWUlHKEiUPi+M9P+9ZoCtNdQ+J45NJOTEtK5fk527HW8pvPNlFQXMpfb+h12hpRznL/xR04lFvI9LWV7zx5LK+YZbsPMaZHRIP5nnY2Px8v7ru4A2v3H2WZG38ufLBiP77ehufG96Bv25YXHA9jDJOHd2BP9km+3ZZZR1GKuI47Ek5RwIEKn6c6jp3LJGCO4/1FwFFjzGfGmHXGmBcdFVNnMcZMNsYkGWOSsrPdX0opIiIijcNbS/eyZNchfntl/AUX3q5rE/pGsyntGDsOniAl5yT3vLuGqBaBvHZbYr1JjFVH8wBffnd1Nz6ePAhvY7j59RUNutqpsKT0rKlZ1fHGkj20DWnCZfHhToyqek7tVrd09yGO5hXxhy+3snR3Dn8c352EdiFui+tMxhheuqUvr96WwNNXx5+1i2J1/GxUJ24f1I5XF+/hrndWM397Fr+8ojMdzlHFUluD2reiV0wLXl20p9I/L/O2ZVJSZhnTvfHsTleZ6xOiCWvuz7/m73LL/fOKSvhkzQHGdI88bdrchYztHkF0y0BeW7zHhdGJ1A13JJwq+2leab2gMeZWIBF40XHIBxgGPA70A9oDd1Z2rbX2NWttorU2MTTUvesmiIiISOOQnJ3LC3N3cFl8OLcMaOvucM5yTe82+HgZ3vp+L3e9vRprLW/f2a9a04jqo/5xIcx5dDgTh8T9UO20LPmQu8Oqli3pxxjxwkJuem3FeadKncualCOs3X+UiUNia5U8cYarerShpMzy0IfreHd5CpOHt3fq2mDOEte66Tl3bawOYwzPXN2Ncb3asHBHNv1jQ5g4xHVraBljuH9EB/YfzmP25oNnnZ+zKYM2wQH0ig52WQwNQYCvN/eO6MDKveWbFtS1WevTOVFQwm2D2l24cQU+3l5MGhpHUsoR1qTUfdwizuSOhFMqUPFvnGgg/cxGxphRwJPAOGttYYVr1zmm45UAM4C+Lo5XREREpEqmr0ml1FqeG9+jXk5ladXMn4s7h/Fx0gFSj+Tz+u2JxNZyTaX6ItDPm6evjmfaveXVTj99fSVPzWgY1U4LtmdxwyvLKSkrIynlCL/6dGO115156/u9NA/wqReJne5RQbQNacL3uw8xsnMovx7dxd0huZyXl+GvN/Tid1fH8++f9nH5ouiXx4fTPrQpLy9MPu3PyomCYpbsOsTo7pH18mdQXftp/7a0bubHv7+r2yonay3vLk+hS0RzEtu1rPb1N/aLoUUTX15dpConadjckXBaDXQyxsQZY/yAm4BZFRsYY/oAr1KebMo649qWxphTJUuXAFvrIGYRERGR87LWMmfzQQa1b1Wt6RN17bZB7fDz9uIvN/QiMbb+THFyln6xP1Y7vb+y/lc7vbcihUlTVxPbuilfPTKMX43uzKwN6fzj26r/gnzgcB5zNmfw0wFtaerv3gW5obwC594R7RncoRX/urmP2yuu6oqvtxd3DYkjPKjquy/WlJeX4b4RHdiWcZxFFXZi+257FkWlZYxthLvTVSbQz5u7h7Vnya5DrK/DHS3X7j/K1ozj3DaoXY0Sf038fLhtYDvmbctkT3auCyIUqRt1nnByVCY9BHwNbAOmWWu3GGN+b4wZ52j2ItAM+MQYs94YM8txbSnl0+nmG2M2UT497/W6/hpEREREzrQj8wR7D52s99uQj7golI3PXM64Xm3cHYrLVKx28vHyqpfVTmVlludmb+OpGZu5uHMY0+4dRHhQAPeP6MD1CdH8c/4uZq6v2tbo7yzbh5cx3Dk41rVBV8MtA9rx4T0DaR7g6+5QPNa1vaOIDA7g5YXJPxybs+kgYc396du2+lU1nurWge1o0cSXf367s87u+f6KFJr5+3Bt7/MtVXx+tw+Kxdfbi9eX7HViZCJ1yx0VTlhrZ1trL7LWdrDW/tFx7Glr7anE0ihrbbi1trfjNa7CtfOstT2ttT2stXc6droTERERcavZmw5iDFweX78TTkCNduNqiPrFhjD7kWFMGlpe7XTlv5awoQ6rHM6loLiUBz9cy2uL93DbwHa8dlvCD5VJxhj+OL4HA+JC+OUnG0nad/41XI4XFPPx6gNc2TOSyOD6sQOc1A0/Hy/uHtaelXsPsyblCCcLS1iwI4vR3SNcPqWvIWnm78Pk4e1ZsCOb73e5vtoxJ7eQrzZmMKFvVK0qDkOb+zOhbzTT16aSfaLwwheI1ENuSTiJiIiIeJq5mzPoHxtSr6fTNUaBft48dVU8H08eRHGpZcLLy3hlUTJlZdVbI8lZcnILufn1FczdcpDfXtmV31/TDR/v0/9J7ufjxSu3JhDVMpDJ761hf07eOfubtvoAuYUlTBrqukWqpf66ybHWzyuLklm4I5vCkrJGvztdZSYOiaNtSBP+74stFNdiJ8iq+DjpAEWlZdVeLLwy9wyLo7i0jHeX76t1XyLuoISTiIiISC3tzsplZ2YuY7rX/+qmxqp/XHm10+Xdwnl+znZue2slmccL6jSG5Oxcxv93GVvTj/PyLX25e1j7c67v0rKpH2/ekUhpmWXi1NUcyy8+q01JaRlvL91H/7gQeka3cHX4Ug819ffhjkGxzNuayauLk2nV1I/+cZ63NlttBfh689sru7IrK5f3V6S47D6lZZYPVuxnUPtWdAxrXuv+2oc24/L4cN5dnlKvpgSLVJUSTiIiIiK1NHdzBgCjVVlQrwU38eWln/bl+Z/0YG3KUcb8cwnzt2XWyb1X7snhJ/9dxsnCEj6aPLBKf1bahzbjlVsT2HfoJA99uPasyoyvt2SSdjSfu1Xd1KjdMTiWQF9vNqYe4/JuEY1mkfbquiw+nGGdWvO3eTvJyXXNFLWFO7JIO5rvlOqmUyYP78Cx/GKmJR1wWp8idUUJJxEREZFamr3pIH3btiAi2PW7U0ntGGO4qX9bvnh4KBFBAUyamsQzs7ZQUFzqsnvOWJfGbW+uolUzPz5/YAh9qrGg86AOrXjuJz1YsusQz8zagrU/TgV84/s9xLZqwqVdw10RtjQQIU39uKl/DICqLM/DGMPvro4nv6iUv3zjmgXE312eQniQP5fFO+97MqFdSxLbteTN7/dS4uLpgCLOpoSTiIiISC2k5Jxka8ZxxvZQdVND0jGsGZ8/OJiJQ+J4Z9k+rn1pKbsyTzj1Hsfyivn5tPU89vF6+rRtwWf3D6ZtqybV7ueGxBjuG9GBD1bu562l+wBYk3KEdfuPMmlonCpahMcuvYhnr+3O0I6t3R1KvdYxrDm3D4rlo9X72Zx2zKl9p+ScZNHObG7u3xZfb+f+mj15eHtSj+Qze/NBp/Yr4mpKOImIiIjUwhzHLwCjVVnQ4Pj7ePP01fG8fWc/sk8UcvV/vueDlSmnVRHV1HfbM7n8H4uYuT6dhy/pyHuTBtCiiV+N+/vVFZ0Z3S2CZ7/ayvxtmbz5/R6CA32ZkBBd61il4Qtu4sutA9tpd7oqeHRUJ0Ka+J1VMVhbH6zcj4+X4eb+bZ3W5ymjuobTPrQpry1OdmrMIq6mhJOIiIhILczZlEHP6GCiW1a/ckXqh5Fdwpjz2DD6xYbw5OebmfjOalbuyanRL3bH8or5xbQNTHwniRaBfsx4YAi/uLwzfj61+2e3l5fh7zf2pkdUMA//bx1zNx/klgFtaeJX823XRRqj4EBffnlFZ5JSjjBrQ7pT+iwoLmVa0gGu6BZBeJDzp1Z7eRnuGdaezWnHWZ6c4/T+RVxFCScRERGRGko9kseG1GPahtwDhDUPYOpd/fntlV1Zu/8oN762gjH/XMKHK/eTV1S13aFOVTXNWJ/GQyM7MuvhIfSIDnZajIF+3rxxeyLBgb54exnuGBzrtL5FGpPrE2PoHhXEn2Zvr/L39/l8sSGdo3nF3DrQeYuFn2l8nyhaN/PnlcV7XHYPEWdTwklERESkhuY6ptNpoV7P4OVluHtYe1b85lL+PKEHXsbwxOebGPDcfH7/xVb2HjpZ6XXH8ot5/JMfq5o+f2Awj1/RGX8fb6fHGBYUwCf3DeL9SQNcUkkh0hh4exmeubobB48X8N8FybXu7/0VKXQKa8bA9iFOiK5yAb7e3DUklsU7s9mWcdxl9xFxJiWcRERERGpo7uaDdI0MIrZ1U3eHIk4U6OfNjf3a8tUjQ/n0vkGM7BzGu8v3MfIvC7njrVXM35ZJaVn5dLsF27O4/O+L+Hzdj1VNPaNbuDS+6JZNGNC+lUvvIeLpEmNDuLZ3G15bsof9OXk17mfDgaNsSD3GbYPaYYxr19C6dUA7mvh587qqnKSBUMJJREREpAYyjxeQlHJE1U0ezBhDYmwI/7q5D8umXMLPRl3EtozjTJqaxMV/WcA97yZx1zurCQ70dWlVk4i4xpQxXfHxMjz71dYa9/HeihSa+Hkzvk+UEyOrXHATX27sF8OsDem1SpKJ1BUlnERERKTRmr4mla82ZtTo2q+3lE+nG9tDCafGICwogEdHdWLplEv4z0/7EBkcyMIdWTw4sgNfPDzU5VVNIuJ8EcEBPDiyI99szWTJruxqX3/kZBFfbEhnfJ8omgf4uiDCs903ogO+3l78ac62OrmfSG1oWwsRERFplPKLSnl65maKyywXhTejU3jzal0/e1MGHcOa0TGsetdJw+br7cVVPdtwVc82WGtdPoVGRFxr0tA4Pl59gP/7YitzHh2Gr3fVazI+XZNKYUkZtw1y3WLhZwoPCuD+izvwt3k7WbknR9NrpV5ThZOIiIg0St9sPcjJolIAHv9kAyWlZVW+9lBuIav2HmasptM1akqw2OQNAAAgAElEQVQ2iTR8Ab7ePHVVPLuzcnlveUqVrysrs7y/MoX+sSF0iQhyYYRnu2dYeyKDA3j2q22UOdaTE6mPlHASERGRRunzdWlEtQjkr9f3YkPqMV6txiKs32zJpMzCmB6RLoxQRETqwqiuYQzr1Jq/f7uTnNzCKl2zeFc2KTl53FqH1U2nBPp58+vRXdiUdozP1qXV+f1FqkoJJxEREWl0sk8UsmTXIa7p3Yare7Xhyp6R/OPbnWw/WLWtpudsziC2VRO6RGg6nYhIQ2eM4XdXx5NfVMpzs7eTknOS/Tl5HDicR9rRfDKO5ZN5vICsEwVknygkJ7eQqcv20bqZP6O7uafSdVyvNvSKacGLX28nr6jELTGIXIjWcBIREZFGZ9aGdErLLD/pW76r0B+u6c7KPTn8YtoGZjw45LxreBw5WcSy5BwmD2+vKVUiIh6iY1hz7hgcy5vf72X62tQqXfPQyI74+binhsPLy/D0VV2Z8PJyXlm0h59fdpFb4hA5HyWcREREpNGZsS6NHlHBPyz4HdLUj2ev7cF976/hvwuSeXRUp3NeO29bJqVlljFav0lExKNMGdOFfrEh5BWVYC2UWfvjR8o/llmw1uLtZbimd5Rb401oF8JVPSN5bXEyN/WLoU2LQLfGI3ImJZxERESkUdmddYJNacd46qr4046P7h7Btb3b8O/vdjEqPoxubYIrvX7u5oNEtQikR1Tl50VEpGHy9fZidAP7z4QpY7rwzdZMXpi7nX/c1Mfd4YicRms4iYiISKPy2do0vL0M43q1OevcM+O60bKpH7+YtoGikrN3rTteUMySXdmM6R6h6XQiIuJ20S2bcPfQOGasT2f9gaPuDkfkNEo4iYiISKNRVmaZuT6dYZ1aE9rc/6zzLZr48afxPdh+8AT//m7XWee/25ZFcanV7nQiIlJvPDCyI62b+fOHL7dirXV3OCI/UMJJREREGo1V+w6TdjSf8X3Ove7GqPhwJvSN5r8Lk9mYevr/Fs/elEF4kD99Ylq4OlQREZEqaebvwy+vuIg1KUf4cmOGu8MR+YESTiIiItJofL42jaZ+3lwef/41Op6+Op7QZv78YtoGCktKAThZWMKindmM6R6Jl5em04mISP1xXUIM8ZFBPD9nOwXFpe4ORwRQwklEREQaiYLiUmZvymB090gC/bzP2zY40JfnJ/RgV1Yuf59XPrVuwY4sCkvKtDudiIjUO95eht9e1ZW0o/m8+f1ed4cjAijhJCIiIo3Et9syOVFYwk/6Vm0b64s7h3FTvxheW5zM2v1HmLPpIK2b+ZEYG+LiSEVERKpvcIfWXBYfzn8X7CbrRIG7wxFRwklEREQahxnr0ggP8mdg+1ZVvubJK7sSERTA49M2sGBHFld0i8Bb0+lERKSeemJsV4pKy/jr1zvdHYqIEk4iIiLi+XJyC1m4I5tre0dVK2HUPMCXF67rxZ5DJ8krKmVMd+1OJyIi9Vdc66bcPiiWaWsOsCX92HnbWms5crKILenHyCsqqaMIpTHxcXcAIiIiIq725cYMSsos46s4na6ioZ1ac+fgWOZtzWRAe02nExGR+u2RSzrx2dpUnv1yG6/cmsCBI3mkHskn9ayP+eQWliea4lo35Z27+tGuVVM3Ry+exFhr3R2DyyUmJtqkpCR3hyEiIiJucu1LSykoLmXuY8NrdL21lpIyi6+3isNFRKT+e3f5Pp6eueWs4838fYhuGUhMSBOiWwYS3bIJzf19+NOcbXgZw5t39qN3TIu6D1gaLGPMGmttYmXnVOEkIiIiHm1Pdi7rDxzlibFdatyHMQZfb63dJCIiDcNP+7clt7AEP2+vHxJLMS2bEBTogzFn/32WGNuSO99ezU2vLeffN/flsvhwN0QtnkYJJxEREfFoM9al4WXgmt7Vn04nIiLSEPl4e/HAxR2r3L59aDM+e2Awk95Zzb3vJfF/47px26BY1wUojYJb6sKNMaONMTuMMbuNMVMqOf9zY8xWY8xGY8x8Y0y7M84HGWPSjDH/qbuoRUREpKGx1vL5+jSGdGxNeFCAu8MRERGpt1o38+d/kwcysnMYT83cwvNztlNW5vlL8Ijr1HnCyRjjDbwEjAHigZuNMfFnNFsHJFprewKfAi+ccf4PwCJXxyoiIiIN25qUIxw4nM+1qm4SERG5oCZ+Prx6WwK3DGjLK4uSeezj9RSWlLo7LGmg3FHh1B/Yba3dY60tAj4CrqnYwFq7wFqb5/h0BRB96pwxJgEIB76po3hFRESkgfpsXRqBvt6M7h7h7lBEREQaBB9vL569tju/Gt2ZWRvSueOtVRzLL3Z3WNIAuSPhFAUcqPB5quPYuUwC5gAYY7yAvwK/vNBNjDGTjTFJxpik7OzsWoQrIiIiDVFhSSlfbczgim7hNPXXspUiIiJVZYzhgYs78o8be7Mm5QjXvbyMtKP57g5LGhh3JJwq2+Kl0omhxphbgUTgRcehB4DZ1toDlbU/rUNrX7PWJlprE0NDQ2scrIiIiDRMC7ZncSy/mGv7aDqdiIhITVzbJ4qpd/Xn4LECxr+0lFV7D1NSWubusKSBcMd/96UCMRU+jwbSz2xkjBkFPAmMsNYWOg4PAoYZYx4AmgF+xphca+1ZC4+LiIhI4/b5ujRaN/NnaMfW7g5FRESkwRrcsTWf3D+Iu95ezQ2vLsfP24uOYc3oEtmcrhFBdIlsTpeIIEKb+7s7VKln3JFwWg10MsbEAWnATcBPKzYwxvT5f/buO7zq8vzj+PvJXiQEMsggQBJWGGGDiCBDwQG4tWrVule1au0e1tafVlutts66tdWqdSDgAgRFQIaQMBIgYSVkB7LJODnP748ARQ2QcZKT8XldVy7IOd9xHzUx55PnuW/gWWCOtbbgyOPW2iuOOeYaGhqLK2wSERGRbympqmVZegFXndIfL0+3DOUVERHpMob0CWbRHaexYkcB6bnlpOWVs3JnEe9+s//oMb0DfY6GTxMG9OLMpEiMaWyDk3QX7R44WWsdxpjbgU8AT+BFa+1WY8z9wHpr7QIattAFAW8f/g90n7V2XnvXKiIiIp3TwtRc6uot52s7nYiIiEv0CvTh/NGxMPp/jxVX1LA9r5z0vHLS88pIzyvn9TV7eWHlbp794VhmD+seQzsOVtZyybOr8fQwXDGpH+ePjiFI/SMx1jbaPqlLGTdunF2/fr27yxAREZF2cuHTqyg7VMend03Vb1dFRETaUa3Dydy/r6SixsHSe6bh5+3p7pLalKPeydUvrWXd7oMkRASRlltGoI8n542O4YqJ/UiKDnZ3iW3KGLPBWjuusee0xlxERES6lJSsEjbsPciFY2MVNomIiLQzHy8P7ps3jP0lh3h6eaa7y2lzD36UzlcZxfzp/OEsvmMK7906mbNGRPHOhmzOfuJLLnjqK/67IZvqunp3l9ruFDiJiIhIl2Gt5cGP0ggL8uHKSf3cXY6IiEi3dEpCb+YmR/P0ikz2FVe5u5xGuSIAemdDNi+s3M01k/tzybi+GGMYHRfKXy5O5utfzeQ35wylpKqOe95OYdKDS3lg0TZ2F1W6oPrOQYGTiIiIdBnLtxeyZtcB7pg5UL0TRERE3OhXZw/By8Pwx0Xb3F3Kt9Q46rnnrRRG3vcpb6/PavF1NmWV8Kv3NjM5oTe/Pmfo957vGeDD9afFs/Seafz7+olMTujNS1/tYfpflvN/i9Na8xI6Df0kJiIiIl1CvdPy0Efp9OsdwGXj49xdjoiISLcWFeLPj2cM5M8fp/P59gKmD45wd0kcqKzlptfWs27PQRIjgrj3nVT2FFdyzxmD8fBo+jb8grJqbnptPZHBvjx5+Ri8TzAR1xjD5MQwJieGUVBWzdsbsonu6eeKl9PhaYWTiIiIdAnvfpPN9vxy7p09GB8v/YgjIiLibtdO6U98WCD3f7iNGod7exjtzC9n/pMrScku5YkfjOajO0/jBxP68uTnmdz+xjdN3mJX46jnptc3UHbIwXM/HEdooE+Ta4gI9uO26YkN0/66Af00JiIiIp1edV09j362g+TYEM4ZEeXuckRERATw9fLk9/OGsbuokhdW7nZbHV/sKOSCp1ZxqNbJmzdOYl5yNN6eHvzf+SP49dlD+WhLHpc+t4bC8poTXsday+/e38rGfSU8ekkyQ6O69gS61lLgJCIiIp3eK6v2kFtazS/OGqrJdCIiIh3ItEHhnJkUyd+XZpBbeqjd7//a6j386OV1xIT688HtpzImLvToc8YYbpgazzNXjmVHXjnnPfkV2/PKj3utV1fv5T/rs7hjRiJn6RdcJ9WqwMkYc2pTHhMRERFpKyVVtTz5eQbTB4dzSkJvd5cjIiIi3/Hbc5NwWssDi9qvWbaj3sl9C7by2w+2cvqgcN65ZTIxPf0bPXb2sD68ffMpOJxOLnx6Fcu3F3zvmFWZRdy/cBuzhkbyk1mD2rr8LqG1K5z+3sTHRERERNrEU8szKa9x8POzhri7FBEREWlE314B3DwtgYWpuazOLG7z+5VV13HdK+t5edUebjhtAM9dNe6k02uHx4Tw/m2nEtcrgGtfXsdrq/ccfS7rQBW3/esbBoQF8tilyc1qMN6dtWhKnTHmFGAyEG6MufuYp4IBT1cUJiIiInIy+0sO8fKqPVwwOpYhfdRHQUREpKO65fQE/vtNNvct2MrCO6accLJba2QdqOK6V9axq7CSBy8YwQ8mNH1ybVSIP2/ffAp3vrmR336wlV1Fldx9xiBueHU99U7LP68aRw8/7zapuytq6b9hHyCIhsCqxzEfZcBFrilNRERE5MT++ul2AO4+U0vbRUREOjI/b09+e24S2/PLeW313ja5x9e7ipn/5FfklVbz6rUTmhU2HRHo68WzPxzHdVMG8NJXe5j2yHJ25Jfz98vHMCAssA2q7rpatMLJWrsCWGGMedla2zb/pYiIiIicQFpuGe9t3M+Np8UftyeDiIiIdBxnJkUydVA4j322g7nJ0YT38HXJdevqnTy+ZCdPLc+gX+9AXrh6HPHhQS2+nqeH4bfnJjEgLJA/fLiVX509lGmDwl1Sa3fSosDpGL7GmOeA/sdey1o7o5XXFRERETmhP3+cTrCfN7eenujuUkRERKQJjDH8fm4Sc/72BX/+OJ2/XJzc6mvuKqzgJ//ZRGp2KRePjeX384adtF9TU105qR8XjY3Fz1udg1qitf8W3gaeAZ4H6ltfjoiIiMjJrcosYvn2Qn519hBCAtRLQUREpLNICA/iuinxPLMikx9MiGNsv9AWXcdayxtrs/jjwm34envw9BVjOGtElIurRWFTK7Q2cHJYa592SSUiIiIiTeB0Wh76KJ3oED+uOqW/u8sRERGRZvrxjETe25jN7xds4YPbpuDZzKlvxRU1/Py/m1mSls+UxDD+cnEyfUL82qhaaanWBk4fGmNuBd4Dao48aK090MrrioiIiDRq0eZcUrNL+cvFyfqto4iISCcU6OvFr89J4o43NjL5oaVMHRjO1EHhnDYwjJ4BPic89/PtBdz7dipl1XX89twkfjS5Px7NDKykfbQ2cLr68J/3HvOYBeJbeV0RERGR76l1OHnkk+0M6dOD80fHuLscERERaaG5Ixu2v32yNY9Pt+Xz9oZsPAwk9+3J1IHhTBscTnJsz6Orn6rr6nlwcRqvrN7LkD49eP36CQzpE+zOlyAn0arAyVo7wFWFiIiIiJzMG2v3se9AFS/9aHyzl9+LiIhIx2GMYV5yNPOSo6l3WlKyS1ixvZAVOwp5YtlOHl+6kxB/b6YMDGPigF68unovGQUVXDdlAPfOHqxVzp1AqwInY0wAcDcQZ6290RgzEBhsrV3okupEREREDquocfDE0p2cEt+b0zWaWEREpMvw9DCMiQtlTFwod50xiIOVtazMKOKLHQ0B1KLUXCKDfXn9uolMGRjm7nKliVq7pe4lYAMw+fDn2TRMrlPgJCIiIi61KDWH4spafjp7MMZodZOIiEhXFRrow9zkaOYmR2OtZVdRJZHBfgT5tjbCkPbk0crzE6y1DwN1ANbaQ4B+AhQRERGXW5JWQExPf8bE9XR3KSIiItJOjDEkhAcpbOqEWhs41Rpj/GloFI4xJoFjptWJiIiIuEJ1XT0rdxYxc2iEVjeJiIiIdAKtjQh/D3wM9DXG/As4FbimtUWJiIiIHGt1ZjGH6uqZMSTC3aWIiIiISBO0OHAyDb9eTAcuACbRsJXuTmttkYtqExEREQFgSVo+AT6eTIrv7e5SRERERKQJWhw4WWutMeZ9a+1YYJELaxIRERE5ylrLsvQCThsYphHIIiIiIp1Ea3s4rTHGjHdJJSIiIiKN2JpTRm5pNTOHRrq7FBERERFpotb2cJoO3GSM2QtU0rCtzlprR7a6MhERERFgaVoBxqD+TSIiIiKdSGsDp7NcUoWIiIjIcSxNz2dU356EBfm6uxQRERERaaLWNA33ABZZa4e7sB4RERGRo/LLqknNLuXe2YPdXYqIiIiINEOLezhZa51AijEmzoX1iIiIiBz1eXoBADOHajudiIiISGfS2i11UcBWY8xaGno4AWCtndfK64qIiIiwJK2AmJ7+DI7s4e5SRERERKQZWhs4/aElJxlj5gCPA57A89bah77z/N3A9YADKASutdbuNcaMAp4GgoF64AFr7X9aUb+IiIh0UNV19azMKOTScX0xxri7HBERERFphlYFTtbaFc09xxjjCTwJnAFkA+uMMQustduOOWwjMM5aW2WMuQV4GLgUqAKustbuNMZEAxuMMZ9Ya0ta8zpERESk41mVWUR1nZMZQyPdXYqIiIiINFOLezgBGGPKjTFlhz+qjTH1xpiyk5w2Aciw1u6y1tYCbwLzjz3AWvu5tbbq8KdrgNjDj++w1u48/PccoAAIb81rEBERkY5pSVoBgT6eTIrv5e5SRERERKSZWrvC6VsNFYwx59EQKJ1IDJB1zOfZwMQTHH8d8NF3HzTGTAB8gMzGTjLG3AjcCBAXp77mIiIinYm1lmVpBZw2MBxfL093lyMiIiIizdSqFU7fZa19H5hxksMaa8JgGz3QmCuBccAj33k8CngN+NHhaXmN1fKctXactXZceLgWQYmIiHQmW3PKyCur1nQ6ERERkU6qVSucjDEXHPOpBw3hUKPh0TGygb7HfB4L5DRy7VnAr4Fp1tqaYx4PBhYBv7HWrmlh6SIiItKBLUnLxxiYPkSBk4iIiEhn1NopdXOP+bsD2APMO8k564CBxpgBwH7gMuDyYw8wxowGngXmWGsLjnncB3gPeNVa+3YraxcREZEOamlaAaP79iQsyNfdpYiIiIhIC7Q2cPIA7jwyJc4YEwr8Fbj2eCdYax3GmNuBTwBP4EVr7VZjzP3AemvtAhq20AUBbx8eg7zPWjsPuASYCvQ2xlxz+JLXWGs3tfJ1iIiISAeRX1bN5v2l3Dt7sLtLEREREZEWam3gNPJI2ARgrT14eHXSCVlrFwOLv/PY7475+6zjnPc68HrLyxUREZGObmlaw+LmWUMj3VyJiIiIiLRUa5uGexxe1QSAMaYXrQ+xRJrtm30H+fk7qTidJ2shJiLScVlreWPtPjILK9xdilstS88nNtSfQZFB7i5FRERERFqotYHTX4FVxpg/Ht4Stwp4uPVliTTPS1/t4T/rs9hfcsjdpYiItNin2/L55bubufTZ1WQUdM/QqbqunpUZRcwaGsnhbfUiIiIi0gm1KnCy1r4KXAjkA4XABdba11xRmEhTOeqdrNjesP0io5uvChCRzqvW4eTBxWn07x0AGK54fg17iyvdXVa7+yqjiOo6JzM0nU5ERESkU2vtCiestdustf+w1v7dWrvNFUWJNMeGvQcpq3YAkNlNVwSISOf3+pq97Cmu4vdzh/Gv6ydS63By+T+/7nYrN5ekFRDo48nE+F7uLkVEREREWqHVgZOIuy3bXoCXh6GHr1e373siIp1TSVUtjy/dyWkDwzh9cDiD+/TgtesmUlZdx+X/XEN+WbW7S2wX1lqWpeczdVA4vl6e7i5HRERERFpBgZN0ep+nFzBhQC+GRPUgs6D7bT8Rkc7viaUZlFfX8etzhh7tWzQ8JoRXrp1AUXkNl/9zDUUVNW6usu1t2V9GflkNMzWdTkRERKTTU+AknVr2wSp25FcwY0gECeFBWuEkIp3OrsIKXl29h0vH92VIn+BvPTcmLpQXrxnP/pJDXPn815RU1bqnyHayJC0fY2D64HB3lyIiIiIiraTASTq1z9MbmoVPHxJBYkQQxZW1HKzs2m/IRKRreeijdHy9PLjrjEGNPj8xvjf/vGocu4oquerFtZRV17Vzhe1naXo+Y+JC6R3k6+5SRERERKSVFDhJp7Y0vYB+vQOIDwskITwIQKucRKTTWLOrmE+35XPL6QlE9PA77nGnDQzn6SvGsC2njB+9tI7KGkc7Vtk+8kqr2bK/jJlDNZ1OREREpCtQ4CSd1qHaelZnFjN9cATGGAVOItKpOJ2WPy3aRnSIH9efFn/S42cOjeSJH4xm476DXP/Keqrr6tuhyvazND0fgFnq3yQiIiLSJShwkk5rVWYRNQ4nM4Y0/DY8JtQfXy8PMgoUOIlIx/fexv1s2V/Gz+YMwc+7aRPZzh4RxaOXjGLN7mJuem0DNY6uEzotTSugby9/BkYEubsUEREREXEBBU7SaS1LLyDAx5OJ8b0A8PQwDAgLJLNQk+pEpH1kFFTw4srdzQ5+qmodPPLJdpJjQ5iXHN2sc88bHcNDF4xgxY5C/rQwrVnndlSHauv5KqOImUMij07pExEREZHOTYGTdErWWj5PL2BKYhi+Xv9bGZAYEaQVTiJuUlfvxFrr7jLaTb3TcscbG7l/4TbOe3IVO/LLm3zuP7/YTV5ZNb85NwkPj+YHLJeOj2P2sEhW7Chs9rkdjdNp+TA1hxqHU/2bRERERLoQBU7SKaXnlZNTWn10O90RCeFBZB2s6nK9TUQ6uqpaB6c8uJTHPtvh7lLazTsbstiWW8Y1k/tTUFbN3L+v5OWvdp80dMsvq+aZFZmcPaIP4/v3avH9R8b2ZN+Bqk45tS6n5BBvrcvix29sZPwDS/jZO6n0CfZj4oDe7i5NRERERFzEy90FiPs4nRZLw1a0zmZZegEA078bOEUEYS3sKa5kSJ9gd5Qm0i0tTSugqKKWf3yewcyhkST37enuktpUeXUdj3yyg7H9Qvn93CRum57Iz95J4b4Pt7F8RyEPXzTyuFPn/vrpduqdlp/PGdKqGpKiGr7HpeWUMTG+Ywc15dV1rNl1gJU7C/kyo4hdh7c+h/fwZeqgcKYkhnH64HB8vPR7MBEREZGuQoFTN1VZ4+BHL60jLbeMaYPDmTU0ktMHh9MzwMfdpTXJ5+kFDIsOJjL422/oEg9PqssoqFDgJNKOPkzJIaKHLx7G8LN3Ulnw41O/td21q3lqeSZFFTW8cPU4jDGE9/DlxWvG89qavTywKI05f/uShy8cyaykb09c25pTytsbsrl+ygD69Q5sVQ3Dohu+x23L7biB06LUXF5etZuN+0pwOC1+3h5MHNCbyyfEMWVgGIMje6hnk4iIiEgXpcCpGzpUW8+1L69jw76DzBnehzW7ilmYmounh2Fcv1BmDY1kVlIkA8Ja92aorRysrOWbfQe5fXri954bEBaIMZBZoMbhIu2l9FAdy7cX8sNT+nFqYm+ufXk9Ty7L4O4zB7u7tDaRdaCKF77czQVjYr61kssYw1Wn9OeU+N7c+eYmrn91PZdPjOM35wwlwMcLay0PLEqjp783t88Y2Oo6wnv4Ehbkw7acslZfq6383+I0rLXcODWeKQPDGNsvtEsHkSIiIiLyPwqcupnqunpueHU96/Yc4LFLRzF/VAxOpyUlu4QlafksTSvggcVpPLA4jfjwwIbwaWgkY+J64uXZMbY6fLGzEKf9/nY6AH8fT2J6+pNZqMbhIu3l06151NY7mZsczai+PblgdAxPLc9k9vA+DIsOcXd5LvfgR2l4ehh+NrvxLXEDI3vw3m2TefTTHTz35S7WZBbz+GWjyS+rZlVmMX+YN4wQf+9W12GMYWhUMFs7aOBUWF7D/pJD/PrsodwwNd7d5YiIiIhIO1Pg1I3UOOq5+fUNfJVZxCMXJTN/VAwAHh6G0XGhjI4L5d7ZQ8g6UMXStHyWpBXw0le7ee6LXQT4eBLXK4DYUH9iQ4/86U9Mz4a/9wzwbrdtEcvSC+gd6ENybOM9YjSpTqR9fZiaS1yvAJJjG8Kl381N4suMIu59O5UPbj8V7w4SVrvC17uKWbw5j7vPGESfkMZ7NAH4ennyy7OHMm1wOPe8lcL5T31FzwBv4sMDuXxinMvqSYoO5sWVu6l1ODtc/6PU7BKALt/PS0REREQap8Cpm6ird3L7vzeyfHshD14wgovGxh732L69Arjm1AFcc+oAyqvr+GJHEev2HCD7YBXZBw+xZtcBKmoc3zon0MeT2NAA+ocF8Mf5w4kIPv4bsdZw1DtZvr2QmUMjjjtKPCE8iDW7inE6bYvGjYtI0xVX1PBVRhE3T4s/Gjr3DPDhT+cN56bXNvD08kzumNn67WMdQb3Tcv/CbUSH+HHDaU1bsTM5IYyP75zKr97fzKLUXB6+aKRLA7hh0SHU1VsyCipIiu5YfetSskrwMDA8pmPVJSIiIiLtQ4FTN+Cod3Lnmxv5bFs+988fxg8mNP236z38vDlnZBTnjIw6+pi1lrJDDrIOB1D7Sw6RfbCKrAOH+HRbPkOjgvnJrEFt8VLYmFVC6aE6ZjSyne6IhPAgquuc5JQeIjY0oE3qEJEGi7fkUe+0zE2O/tbjs4f1YW5yNH9ftpMzh0V2iSb+/92QzdacMh6/bBT+Pk3vQxQS4M0/fjCa++cNo3eQr0trOjKpbltuWYcLnDZllzIosgcBPvpRQ0RERKQ76ljr78Xl6p2We9rtuFQAACAASURBVN5OYfHmPH5zzlCuOqV/q69pjCEkwJvhMSHMGd6H66YM4Pdzh/H81eOYOKAXH2zKwVrb+uIbsSy9AC8Pw2kDw497TGLE/ybViUjb+jAlh4ERQQyO7PG95+6bm0Swnzf3vp2Ko97phupcp6LGwcOfbGdMXE/mfSdcawpjjMvDJmgYlODv7cnWnFKXX7s1rLWkZJUwStvpRERERLotBU5dmNNp+fl/U/lgUw4/mzOY65u4BaQ1zhsVw+6iSlKz2+bNz+fpBYzrH3rChrsJ4Q3T9TILNalOpC3llh5i3Z4DzEuObrSHW+8gX/4wfxib95fy3Je73FCh6zz1eQZFFTX8bu6wdutX1xSeHoYhUT063KS6vcVVlB6qU/8mERERkW5MgVMXZa3l1+9v4Z0N2fxk1kBuPT2xXe571ogofDw9eH/Tfpdfe3/JIdLzyk+4nQ6gV6APPQO8NalOpI0tSs3FWjj3BCt+zhkRxZxhffjbZzvJKChvx+pcJ+tAFc+v3M0Fo2M65IqdpKhgtuWWtdnK0pZIOdIw/DjDHURERESk61Pg1AVZa7lvwVbeWLuPW09P4M52bNgb4u/NjCERfJiS6/ItNJ+nFwCcNHAyxpAYrkl1Im3tw5QcRsSEMCAs8LjHGGP443nDCfD15N53Uql3dpxQpKke+igdT2O4d85gd5fSqKToYMqrHWQfPOTuUo7alFWCn7cHgyKD3F2KiIiIiLiJOnl2IpuySsgrraau3nn0o7be4jj6uaXW4SSjsIJFqbnccNoA7p09uN23f5w3OpqPt+axKrOYqYOO32upuZalF9C3lz8J4Sd/A5MQHsTS9HyX3VtEvm1vcSUp2aX8+uyhJz02vIcv980dxk/+s4mXvtrdLtt7XWXt7gMs2pzLXbMGERXi7+5yGjUsOgSArTll9O3VMQYlpGSVMCImBC8XTuQTERERkc5FgVMnUVxRw/lPfUVTdkz4eHpw49R4fnnWELf0Gjl9cAQ9/Lx4f9N+lwVO1XX1rMos4rLxcU16TQkRgfxnfS0lVbX0DPBxSQ0i8j8fpuQAfGuC5YnMHxXNwtQcHvlkOzOHRp5wVVRH4XRa7l+4lagQP26c2nFDssGRPfAwDZPq5gzv4+5yqKt3siWnjKsm9XN3KSIiIiLiRgqcOoneQb58ce90yqsd+HgZvD098PL0wNvT4OPpgffRD+P2hrZ+3p6cPTyKhak5HDqvvlnjw49ndWYx1XVOpp9kO90RRybVZRZWMLZfr1bfX0S+7cOUXMb3DyW6Z9NW/RhjeOD8EZzx6Ap+/k4qb944CQ+PjtN8uzH//SabLfvLePyyUS75PtZW/H08iQ8PYlsHmVS3Pa+cWodTDcNFREREujmtde9E+vYKICk6mMSIHvTrHUhMT38ievjRM8CHQF8vfLw83B42HTF/dDSVtfUsSXPNtrZl6QX4e3sycUDTwqMj2+4yCzSpTsTVtueVsz2/nLknaBbemMhgP357bhJr9xzgtTV726g616iscfDwJ9sZHdeTec18ne4wLDq4w0yq25TV0DC8IzZYFxEREZH2o8BJ2sSkAb3pE+zHBy6YVmetZVl6AacmhuHn3bRVBrGhAfh4eZChSXUiLvdhSg4eBs4e0bTtdMe6aGwsk+J78eyKTJwdtIF4ZY2DPy7cRmF5Db87N6nDBPknkhQVTE5pNQcra91dCilZJfQK9CE2tGP2vBIRERGR9qEtddImPDwM80ZF8+LK3RysrCU0sOV9lHbkV7C/5BC3TU9s8jmeHob4sEAyNalOOiin0/Lvtft4enkm9U6Lt9f/tsf6ejX86XPMnz5eHiTHhjBnWBRxvd3XGNpay4epOZyaGEZYkG+zzzfG8IMJcdz55ibW7z3IhCauWmwPFTUOXlm1h+e/3MXBqjqumdyf0XGh7i6rSZKigwFIyy1jcmKYW2tJyS4hOTakUwR1IiIiItJ23BI4GWPmAI8DnsDz1tqHvvP83cD1gAMoBK611u49/NzVwG8OH/ona+0r7Va4NMv8UdE898UuFm3O5cpWNI9dll4AwIwm9m86IiE8iK0dpKeJyLGyDlTxs3dSWb2rmPH9Q4kPC6Ku3klNvZNax+EJlIf/rKxxUFtvqaxxsCg1l/9bnE5SVDBzhvdhzvA+DIwIatc39pv3l7K3uIrbTm96APxds4ZG4u/tyQeb9neIwKm8uq4haFq5m5KqOk4fHM4dMwcyppOETdCwwgkaJtW5M3CqqHGws6CiRavfRERERKRraffAyRjjCTwJnAFkA+uMMQustduOOWwjMM5aW2WMuQV4GLjUGNML+D0wDrDAhsPnHmzfVyFNkRQVzMCIID7YtL9VgdPn6QUkRQXTJ8SvWeclRATx0ZZcquvqm7wVT6QtOZ2W19bs5c8fp+NhDA9eMILLxvdtcmCUdaCKT7bm8fGWPB5bsoNHP9tBfFggs4f3Yc6wPoxsh1UlCzbl4O1pmN2KaWiBvl7MSopk0eZcfj93GD5e7tndXXqojpe/2sMLK3dRVu1g5pAI7pg5sFM2u+4d5EufYD+25bq3j9Pm7FKspVP+MxQRERER13LHCqcJQIa1dheAMeZNYD5wNHCy1n5+zPFrgCsP/3028Jm19sDhcz8D5gBvtEPd0kzGGM4bHcMjn2wn60AVfXs1fxtQaVUdG/Yd5JZpCc0+NyE8EKeFvcVVDO7To9nni7jS3uJK7n0nlbW7DzB1UDgPXjCCmCZOeDuib68Arj8tnutPi6egrJpPt+Xz8ZY8nvtiF08vzyQ6xI/Zw/twxcQ4EiNc/9+802lZmJrLtEERhPh7t+pa85Oj+TAlh5UZhcwYEumiCpumtKqOF7/azYtf7aa82sGsoZHcOXMgI2JD2rUOV0vqAI3DU7IbGoYnxypwEhEREenu3BE4xQBZx3yeDUw8wfHXAR+d4NwYl1YnLjUvOZpHPtnOgpScZvVgOmLFzkLqnZbpzdxOB8dMqius6LKBk7VWfVI6OKfT8vKqPTz8STrenh48fOFILh4X2+p/bxHBflw5qR9XTupHSVUtS9IK+HhLHv/6eh/vfrOfd2+dfPRrwFXW7z1IXlk1vzx7SKuvNXVQOCH+3izYlNNugZO1lqeWZ/LM8kzKaxzMHhbJj2cMZHhM5w6ajkiKCmbFjkK3rupMySohrlcAvVrRt09EREREugZ37GNo7F1Wo6OKjDFX0rB97pEWnHujMWa9MWZ9YWFhiwqV1uvbK4Bx/UJ5f+N+rG3eRCprLQs27adXoE+LxmsfebOd0UUbh+eXVTPr0RX8+eN0d5cix7GrsIJLnl3N/Qu3MTkhjM/umsYlzdhC11Q9A3y4aGwsz189jqV3T8Pb0/Cjl9ZRXFHj0vssSNmPv7cnZyS1PiDy8fLg7BFRfLotn6pahwuqO7l/fb2PRz7ZzsT43iy+4zSe/eG4LhM2AQyLDqbeadmRX+62GlKySrSdTkREREQA9wRO2UDfYz6PBXK+e5AxZhbwa2CetbamOecCWGufs9aOs9aOCw8Pd0nh0jLnjY5hZ0FFs3uLvL5mL0vSCvjR5P54ejT/Dbq/jycxPf3JLOx6gVN1XT03vbaBzMJKnl6eyfNf7nJ3SXKMeqfln1/s4qzHv2RHfjl/vTiZF64e1+w+ZC3Rt1cAz101jvyyam58bQPVdfUuua6j3snizXnMHBpBgI9rFsfOHxVNVW09S9IKXHK9E0nPK+P+hduYNiic53449uhUt67kyGty17a6grJqckqrSe7kWxNFRERExDXcETitAwYaYwYYY3yAy4AFxx5gjBkNPEtD2HTsO5FPgDONMaHGmFDgzMOPSQd2zogovDwMH2xqNBts1Ia9B/jDh9uYMSSiRVvxjkiICOpyK5ystfzm/S1syirhycvHcNbwPjywOI1FqbnuLk0O+9uSHTywOI3TBobz2d3TuHBs67fQNceYuFAeu3QUG/Ye5N53UnE6m7e6sDGrMos5UFnL3ORoF1TYYEL/XvQJ9mPBpv0uu2Zjqmod3P7vjYT4e/PXS5LxaEGA3Rn0DQ0gyNfLbY3DU7IbpoK2ZEWqiIiIiHQ97R44WWsdwO00BEVpwFvW2q3GmPuNMfMOH/YIEAS8bYzZZIxZcPjcA8AfaQit1gH3H2kgLh1XaKAPpw8OZ8GmHOqb8Ma3oKyaW17/hphQfx67ZFSr3hwmhgexq7DSJW+4O4qXV+3hnQ3Z3DFzIOeMjOKxS0cxNi6Uu97axNrd+nJwt+KKGl5YuZtzRkbxz6vGEhnc9quaGnP2iCh+PmcIH6bk8NiSHa2+3oKUHHr4ejFtkOtWjHp4GOYmR7F8eyEHK2tddt3vuv/DbWQWVvDYJaMIC/Jts/u4m4eHISkqmK1uWuGUklWCp4dhWLRWOImIiIiIe1Y4Ya1dbK0dZK1NsNY+cPix31lrjwRLs6y1kdbaUYc/5h1z7ovW2sTDHy+5o35pvvmjYsgrq+br3cUnPK7W4eTWf31DebWDZ64cS0hA6yZhJUQEcqiuntyy6lZdp6NYlVHEnxalcUZSJD+ZORAAP29P/nnVOGJD/bnh1fVkFLivf4vAc1/u4lBdPXfNGuj2hu43T4vnsvF9+fuyDN5en3XyE46jxlHPJ1vymD28j8ubUc8fFYPDafloS55Lr3vEhyk5vLkui1umJTBlYFib3KMjSYoOJi23zC0he0p2CYMje+Dv456G5SIiIiLSsbglcJLuZ9bQSAJ9PPlg44m31f3f4jTW7z3IQxeOYGhU63usdKXG4VkHqrj1398QHxbIo9/ZFhQa6MMrP5qAt6cHV7+4joLyrhGwdTbFFTW8umov85KjSYxw/2REYwx/PG84UxLD+OW7m1mVWdSi66zYXkh5jcOl2+mOGBYdTHx4IAtSXL+tbl9xFb96dzNj4npy1xmDXH79jigpKpiq2nr2Hqhq1/s6nVYNw0VERETkWxQ4Sbvw9/Fk9vA+LN6Se9wmxu9tzOblVXu4bsoA5o+Kccl9EyMaAqfMTh44VdY4uOHV9Tidln9eNY4eft9f+dW3VwAvXTOeg1W1XPvyOipq2mfyl/zPc1/sosZRz49nDHR3KUd5e3rw5BVjGBAWyM2vbWhR+LogJYdegT5MTujt8vqMMcxPjuHr3QfILT3ksuvW1Tv58ZsbMQYev2w03p7d4393RxqHb80pbdf77imupKzawai+2k4nIiIiIg26x0/g0iGcNyqG8moHy7d/fyLV1pxSfvnuZiYO6MUvzhrisnv2DvQhxN+7U0+qs9by07dT2JFfzj8uH0P/sMDjHjsiNoQnLx9DWm45t/3rG+rqne1YafdWVFHDq6uPrG4Kcnc53xLi782L14zHx8uDH728luKKmpOfdNje4kqWphVw9og+bRbazBsVjbWwMMV1je//8ul2UrJK+POFI+nbK8Bl1+3oBkYG4eVh2n1SXUp2CYBWOImIiIjIUQqcpN1MTuhNWJAv739nW11JVS03v76Bnv4+/OPyMS59U2uMISE8sFNvqfvHsgw+2pLHL88aytQmNGyePiSCB84bzoodhfz6vc1Y23UapndkR1c3zew4q5uO1bdXAP+8ahwFZTXc8Or64640rHU4WZVRxAOLtjHr0RVMe2Q5tfVOLhrbt81qGxAWSHJsCB+4aFvdih2FPLtiF1dMjOOsEVEuuWZn4evlSWJEULtPqkvJKiXAx5OBHWArqYiIiIh0DF7uLkC6Dy9PD+YmR/GvNfsoPVRHiL839U7LnW9uIq+0mv/cdArhPVw/QSoxIohl6YUuv257+HRrHn/9bAfnj47h+tMGNPm8yybEkVNazRNLdxLd05+fzOoe/WvcpbC8hldX72H+qJijfcM6otFxofzt0lHc8q9v+OnbKTxx2Wg8PAx5pdUs317A59sLWLmziMraenw8PZgY34sfTIhj5pCIE66sc4W5ydH8aVEaGQUVrVohVlBezT1vbWJwZA9+e26SCyvsPIZFh/DFzvb9nrcpq4ThMSF4tmKqqIiIiIh0LQqcpF2dNyqGl77aw8dbcrl0fByPL9nBih2FPHD+cMbEhbbJPRPCg3hrfTalVXWtnnrXnnbml3PXfzYxMjaEBy8Y0eyJZ3fNGkhOySH+tmQn0SH+XDK+7VaodHfPrsik1uHkxzMS3V3KSZ01IopfnDWEhz5Kp6q2npySQ6TnNUw2jA7xY/7oGKYPjmByQm8CfdvvfxFzk6N5YHEaC1JyuLuFDb6dTsvd/0mhosbBv2+Y5PKJep1FUnQw//0mm4LyaiJ6+LX5/WodTrbllHHNqf3b/F4iIiIi0nkocJJ2NTI2hAFhgby/MYdegb48sSyDS8bFcvmEuDa755HVEhmFFYzt1zahlquVVtVxw6vr8ffx4tkfjm3RG2djDA9eMIL8smp++d5mIkP8mNaELXnSPAXl1bz+9V7OGx1DfAde3XSsm6bGk3Wgiv+sy2Jc/1B+edYQpg+JYGBEULODTVeJDPbjlPjefJiSw12zBraojme+yGRlRhEPXjCCQZHdd2tX0uEJn2m55e0SOKXnlVFb7yQ5Vv2bREREROR/FDhJuzLGMH9UNI8v3cnm/aWMjA3h/vnD2/RN7pEtTpluDpyWbMvnzx+n4+XpQaCPJ4G+XgT6ehLg40WQrxcBRx7z8eSTrfnsLznEmzdOIirEv8X39Pb04KkrxnDh06v43QdbWP7T090WKHRVz67YRV297VCT6U7GGMOfzhvO7+Ym4evVcVYBzR8Vzc//u/nw94bmhRcb9h7kr5/u4JyRUVzWzVfzHQmctuWUtUvInJJ1pGG4JtSJiIiIyP8ocJJ2d96oGP62ZCfenoanrhjT5tteYkP98fH0INONjcNLqmr52X9T6eHnRb/egVTVOig5VMf+kkNU1TiorK2nssaBw9nQ4NvDwIMXjGBsv16tvncPP2+uPXUAv3h3M1v2lzEiVm8KXaWgvJrX1+zlvFExDGjjHkeuZozpUGETwJxhUfz2/a18sCmnWYFTcUUNd7yxkagQvxZtP+1qQgK8iQ31Z2tOabvcb1NWKWFBPsT0bHk4LiIiIiJdjwInaXf9wwL5v/NHMCImhNjQth9X7uXpwYCwQDIL3Rc4/fnj7ZQequP16yaSFB3c6DHWWmrrnVTVNEwPCw30cdn9Zw/rw2/e38LCzTkKnFzomeW7cDhtp+jd1BmEBHhz+uBwPkzJ4VdnD21SA+qsA1Vc/eJaiipqePPGSQT7dZ4+bW0pKSq43SbVpWSXkBzbs9sHfSIiIiLyba6bPy/SDJdPjGvX4CMhIpDMwsp2u9+xvtl3kDfW7uOayf2PGzbB/1achAb6uDRsgobw6tTEMBal5mKtdem1u6uCsmr+9fVezh8d0+YT3LqTeaOiKSiv4etdxSc9dmtOKRc8vYqiihpev34io9to8EBnlBQdzO6iSqpqHW16n7LqOjILK0juq/5NIiIiIvJtCpykW0gID2JvcSU1jvp2va+j3smv39tCn2A/7mrh5C1XOXdkFNkHD5GS3T7bbLq6p1dkanVTG5g5JJJAH08WpOSc8LhVGUVc+uwavDwM79wymfH9W7/9tCsZFh2CtQ2Nw9vSluxSrEWBk4iIiIh8jwIn6RYSI4JwWthbXNWu931l9V7Scsv43dwkgtpxxHxjzkzqg7enYeFJ3sjLyeWXVfOvr/dxwegY+vXW6iZX8vfxZPawPizenHvcgPjDlByufmkt0T39ePfWyd16It3xHFlN2dbb6jZlH24Yrq26IiIiIvIdCpykWzg6qa4dG4fnlVbz6KfbmTYonLOG92m3+x5PSIA3UweGs3hzLk6nttW1xtPLM3E6O9dkus5k3qhoyqodrNhe+L3nXvpqN3e8uZHRfUN5+6bJrZri2JVFh/gR4u/Ntpy2DZxSskoYEBZIzwDXbgMWERERkc5PgZN0C/HhDatQMtoxcPrjom04nJb75w/rMM10zxkZRU5pNRuzDrq7lE4rr7Saf6/dx4VjYonr3fZN77ujUxPD6B3owwfHrMaz1vLQR+n84cNtnJkUyavXTSAkQA3Cj8cYw7DoYLa18aS6lKxSrW4SERERkUYpcJJuIcDHi5ie/u02qe6LHYUsSs3ltumJHWrL1RlJkfh4ebAwNdfdpXRaTy/PwOm03K7eTW3G29ODc0ZGsWRbPhU1DurqndzzdgrPrMjkyklxPHXFWPy8Pd1dZoeXFBVMel45jnpnm1w/r7SavLJq9W8SERERkUYpcJJuIz68fSbVVdfV87sPthAfFshN0+Lb/H7N0cPPm2mDtK2upXJLD/HG2iwuGhtL315a3dSW5iVHU+Nw8t7G/Vz3ynre/WY/Pz1zEH+cPxxPj46xYrCjS4oOpsbhZHdR23zfSznSv0mBk4iIiIg0QoGTdBsJ4UFkFla0edDy9PJM9hRX8cfzhuPr1fFWYZw7Mor8shrW79W2uuZ68vMMnNZy23StbmprY+JCienpz2/f38JXGUX8+cIR3D5jYIfZntoZDItu2OrWVo3DU7JK8PIwJEUFt8n1RURERKRzU+Ak3UZiRBBVtfXklVW32T12F1Xy9PJM5iVHc2piWJvdpzVmDo3E18uDhamaVtcc2/PKeWNtFpdN6KvVTe3Aw8Nw2fi++Hl78NwPx3Lp+Dh3l9TpxIcH4uPlwdY2ahyekl3C0KhgbW8UERERkUYpcJJu48ikuqY0Dt9VWMHP3knhsc92UFRR06TrW2v53Qdb8PXy4DfnDm1VrW0pyNeLGUMiWLw5j3ptq2sSay33L9xKkK8Xd58x2N3ldBu3TU9kw2/OYObQSHeX0il5e3owOLJHm0yqczotqVmlJPdVw3ARERERaZwCJ+k2EiIamnefqHF4eXUdDy5OY/bfvmBBSg6PL93J5IeW8Yv/ppJRUH7C6y9MzeXLnUX8dPZgInr4ubR2Vzt3ZDRFFTWs3X3A3aV0Cp9szeOrjGLuPmMQvQI1/r29eHgYAn293F1Gp5YUFcy23DKsdW24vKuokvIaB8mx6t8kIiIiIo3TT/LSbYQH+RLs59Vo4OR0Wt7duJ8/f5xOYXkNF4+N5d45gymvdvDCyt38d0M2b67L4vTB4dxwWjyTE3p/q5dMeXUdf1y4jeExwVw5qV97vqwWmT4kHH9vTxam5nBKQm93l9OhVdfV86dFaQyO7MEVE7WtSzqXYTHB/Gd9Fnll1USF+LvsuilZDQ3DR6lhuIiIiIgch1Y4SbdhjCEhIuh7W+o2ZZVw/tOr+OnbKcT09Of9207lkYuTiejhR0J4EP93/ghW/WIGd58xiC37S7ni+a8554mVvPtNNrWOhnHjf/10B4UVNTxw3ohOMUErwMeLmUMj+HhLXpuNTO8qnvtiF9kHD/H7eUl4eepbpnQuRxp6u3pbXUp2CUG+XsQf3qosIiIiIvJdevck3UpieBCZhQ0jwgvKq/np2ymc9+RX5JQc4q8XJ/PuLZMb/Y197yBf7pg5kJU/n8GfLxxBXb2Tu99K4bSHl/Hg4jReXb2HKybGdarx4OeOjKK4spY1u7St7nj2lxziqeUZnD2iD5MTOmYTeJETGRIVjDFtEDhllTAiJqRTBOwiIiIi4h7aUifdSkJEEG9vyOaJpTt57otd1DjquWlaPD+eMZCgJvSK8fP25NLxcVwyri/LdxTywpe7efaLXYQF+XDv7CHt8Apc5/TBEQT6eLJocw5TBipMacyDi9OwFn51dsdtAi9yIkG+XvTvHci2XNcFTqWH6tiWW8a1Uwa47JoiIiIi0vUocJJu5cikukc/28HMIRH85twkBoQFNvs6xhimD45g+uAIduSX4+PpQYi/t6vLbVN+3p7MSorkoy153D9/ON7aLvYta3YVszA1lztnDiQ2NMDd5Yi0WFJUMKn7S1x2vddW76Gu3jIvOdpl1xQRERGRrkfvMKVbOSWhNxePjeWla8bzwjXjWxQ2fdegyB70d8F13OHckdGUVNWxKrPY3aV0KI56J/ct2EpMT39unpbg7nJEWmVSQm+yDhxitQu+zqtqGwYpzBgSwbDoEBdUJyIiIiJdlQIn6VaCfL145OJkpg+JcHcpHcLUQWH08PViYUqOu0vpUN5Yl0V6Xjm/Pmco/j6e7i5HpFUuHhtLZLAvj362HWttq671xtosDlbVcdv0RBdVJyIiIiJdlQInkW7M18uTM4ZF8snWvKMT97qK8uo6/vLJdnbmlzfrvIOVtfz10+1Miu/FWcP7tFF1Iu3Hz9uT26cnsm7PQb7cWdTi69Q46nnui0wmxfdibL9QF1YoIiIiIl2RAieRbu7ckVGUVTtYmVHo7lJc6oWVu/nH5xmc/cSX/PXT7VTX1TfpvEc/20HZoTrumzcMYzSBS7qGS8b3JaanP49+tqPFq5ze/WY/+WU1Wt0kIiIiIk2iwEmkm5uSGE6wnxcLU3PdXYrLVNU6eHnVHqYkhnHuyGj+viyDsx7/kq8yTry6Iy23jH99vZcfTurHkD7B7VStSNvz9fLkxzMS2ZRVwufbC5p9vqPeyTMrMkmODWFKoqZaioiIiMjJuSVwMsbMMcZsN8ZkGGN+0cjzU40x3xhjHMaYi77z3MPGmK3GmDRjzBNGSxBEWsXHy4PZw/rw2dZ8ahxNWwXU0b25NouSqjruOmMQj106itevm4jTWq54/mvufmsTxRU13zvHWst9C7YS4u/NXWcMckPVIm3rwrGxxPUKaNEqp0Wbc9lbXMWt0xO18k9EREREmqTdAydjjCfwJHAWkAT8wBiT9J3D9gHXAP/+zrmTgVOBkcBwYDwwrY1LFunyzk2OprzGwRc7Wt7fpaOodTj555e7mDDgf31mpgwM45OfTOX26Yl8mJLDzEdX8Nb6rG+96V68OY+vdx/gnjMH0zPAx13li7QZb08P7pg5kC37y/hka36Tz3M6LU99nsmgyCDOGBrZhhWKiIiISFfi+BXAyQAAIABJREFUjhVOE4AMa+0ua20t8CYw/9gDrLV7rLWpwHe7GFvAD/ABfAFvoOk/NYtIoyYn9CY0wJtFqZ1/Wt0Hm/aTW1rNracnfOtxP29Pfjp7MIvuOI3E8CB+9k4qlz23hoyCCg7V1vPAom0MjQrmBxPi3FS5SNs7b1Q08WGBPPbZDpzOpq1yWppewPb8cm49PREPD61uEhEREZGmcUfgFANkHfN59uHHTspauxr4HMg9/PGJtTbN5RWKdDPenh7MGd6Hz7blN7m5dkfkdFqeWZFJUlQw0waFN3rMoMgevHXTKTx0wQjScss4+/EvufrFteSUVnPf3CQ89YZaujAvTw/unDWQ7fnlLNp88r5t1lr+8XkGfXv5c+7IqHaoUERERES6CncETo29m2vSr1mNMYnAUCCWhpBqhjFm6nGOvdEYs94Ys76wsGtN3xJpC+eMiKaytp7l2zvv18un2/LJLKzkltMTTthnxsPDcNmEOJbeczpnjejD2j0HmJsczcT43u1YrYh7zB0ZzaDIIP62ZAf1J1nltCqzmJSsEm6eloCXp+aMiIiIiEjTueOnx2yg7zGfxwJN3cdzPrDGWlthra0APgImNXagtfY5a+04a+248PDGVzqIyP9Miu9F70AfFnbSbXXWWp5ekUm/3gGcNbxPk84J7+HL45eN5qM7T+ORi0a2cYUiHYOHh+GuWYPILKzkg037T3jsP5ZlENHDl4vGxrZTdSIiIiLSVbgjcFoHDDTGDDDG+ACXAQuaeO4+YJoxxssY401Dw3BtqRNxAa/D2+qWpOWzu6jS3eU02+rDKzFunBrf7JUYQ6OC8fP2bKPKRDqe2cP6kBQVzONLd1JX/912iQ027D3I6l3F3Dg1Hl8vfX2IiIiISPO0e+BkrXUAtwOf0BAWvWWt3WqMud8YMw/AGDPeGJMNXAw8a4zZevj0d4BMYDOQAqRYaz9s79cg0lXdcnoC/t6e3PDqesqq69xdTrM8vSKT8B6+XDhGKzFETsbDw3D3GYPYW1zFu99kN3rM08sz6BngrUb6IiIiItIibmnIYK1dbK0dZK1NsNY+cPix31lrFxz++zprbay1NtBa29taO+zw4/XW2pustUOttUnW2rvdUb9IVxUbGsBTV4xlT1ElP3lz00n7u3QUm7NL+XJnEddNGaCVSiJNNHNoBMmxITyxNINax7dXOaXllrEkrYBrTx1AoK+XmyoUERERkc5MHUBF5FtOSejN7+cmsSy9gL98ut3d5TTJ0ysy6OHnxRUTtRJDpKmMMdx1xiD2lxzirfVZ33ruqeWZBPl6cfUp/d1TnIiIiIh0egqcROR7rpzUjx9MiOPp5ZknbSrsKtZarG3+iqrMwgo+2pLHVaf0o4efdxtUJtJ1TRsUzth+ofxjWQbVdfUA7C6qZFFqDldO6kdIgL6mRERERKRlFDiJyPcYY/jDvGFM6N+Ln72Tyubs0ja934HKWi56ZjXn/n0l+4qrmnXucyt24ePpwY9OHdBG1Yl0XcYY7jljEHll1byxdh8AzyzPxNvTg+um6GtKRERERFpOgZOINMrHy4OnrhxDWJAvN7y6noLy6ja5z/6SQ1z8zCq27C8l60AVc/+xki93Fjbp3LzSat7dmM2l4/sSFuTbJvWJdHWTE8OYFN+LJz/PZFdhxdGvqfAe+poSERERkZZT4CQixxUW5MtzV42l9FAdN7+2gRpHvUuvn1FQzkVPr6KgvIZXr53Agtun0CfYj6tfXMuzKzJPusXu+S934bRww2nxLq1LpLu558zBFFXUcMXzX2Mt3DhVX1MiIiIi0joKnETkhIZFh/CXi5P5Zl8Jv31/S4v6LDVm476DXPTMahxOy39uPIWJ8b3pHxbIu7dOZs7wPjz4UTp3vLmJqlpHo+eXVNXy77X7mDsyir69AlxSk0h3Nb5/L04bGEZuaTXnjY4hNlRfUyIiIiLSOgqcROSkzhkZxY9nJPLW+mxeXrWn1df7YkchVzz/NcF+3vz35skkRQcffS7Q14snLx/Dz+YMZmFqDhc8tYqsA9/v6/TKqr1U1dZz8+kJra5HRODnc4YwKDKI26YnursUEREREekCFDiJSJPcNWsQZyRF8qdFaazcWdTi63yYksN1r6yjX+9A3rnlFOJ6f38lhTGGW09P5KVrxpNTcuh7fZ2qah28vGo3M4dEMKRP8PfOF5HmGx4Twqd3TWNAWKC7SxERERGRLkCBk4g0iYeH4bFLR5EQHsht//6GPUWVzb7Gq6v3cMebGxndN5Q3b5xERA+/Ex5/+uAIFtw+hcgeDX2dnvuioa/Tm2uzOFhVx63TtbpJRERERESkIzKu6sfSkY0bN86uX7/e3WWIdAn7iquY9+RKwoJ8+fGMRJKighkQFoiX5/Hza2stf1uyk8eX7mTW0Ej+cflo/Lw9m3zPyhoH976TwuLNecxNjmbDngPEhgbw1s2nuOIliYiIiIiISAsYYzZYa8c1+pwCJxFprlUZRdzw6noqaxum1vl4eTAoMoihfYIZGhXMkKgeJEUF0zPAh3qn5b4FW3ltzV4uHhvLgxeMOGE4dTzWWp5anslfPt2OtfDSNeOZPiTC1S9NREREREREmkiBkwInEZerdTjJLKwgLbeMtNwy0vPKScsto6ii9ugxUSF+9AzwIS23jJumxvOLs4ZgjGnVfb/cWciGvQe58//Zu/P4xq7ybuC/I1m2vMnybsn2jGcms9mTGU8yWclKEpgESAIhSQMv0IYQ9hbeFkiB0r7skJbQlJY2QAmBAGlIIPs6ZUjIPpPM4tk377sky7IWy7LO+4fu9Wg8XrRc6UrXv+/no49l6erqWMeWr577PM+5YnXa+yIiIiIiIqLUMeDEgBNR1gz7Qjg44JsJRB0f9eP69kbcetEKvYdGREREREREGloo4FSQ7cEQkbHVlVtRV27FJWtq9R4KERERERER6YSr1BERERERERERkaYYcCIiIiIiIiIiIk0x4ERERERERERERJpiwImIiIiIiIiIiDTFgBMREREREREREWmKASciIiIiIiIiItIUA05ERERERERERKQpBpyIiIiIiIiIiEhTDDgREREREREREZGmhJRS7zFknBBiBECX3uPQSA2AUb0HQVnBuV46ONdLA+d56eBcLx2c66WDc710cK6XDs61NpZLKWvnumNJBJyMRAixQ0q5Re9xUOZxrpcOzvXSwHleOjjXSwfneungXC8dnOulg3OdeSypIyIiIiIiIiIiTTHgREREREREREREmmLAKf/co/cAKGs410sH53pp4DwvHZzrpYNzvXRwrpcOzvXSwbnOMPZwIiIiIiIiIiIiTTHDiYiIiIiIiIiINMWAExERERERERERaYoBpzQIIZqFEH8UQhwQQuwTQvyNcnuVEOI5IcQR5WulcvsHhRB7lMvLQohNcfvaKoQ4JIQ4KoS4Y4Hn/Iiy3yNCiI/E3f4tIUSPEGJikTGfLYTYqzzP3UIIodx+o/IzRIUQXBpyFoPN9Z1CiIPK2H4vhLCn+/oYicHm+hvKuHYJIZ4VQjjTfX2MxEhzHXf/3wkhpBCiJtXXxYiMNNdCiH8SQvQpf9e7hBDXpPv6GImR5lq577PKGPYJIb6fzmtjNEaaayHEA3F/051CiF3pvj5GYrC5bhdCvKrM9Q4hxLnpvj5GYrC53iSEeEW57zEhhC3d1ycvSSl5SfECwAHgLOV6OYDDAFoBfB/AHcrtdwD4nnL9QgCVyvWrAbymXDcDOAZgJYBCALsBtM7xfFUAjitfK5Xr6v7OV8YzsciYXwdwAQAB4CkAVyu3rwewFsB2AFv0fm1z7WKwuX4HgALl+vfUMfNiyLm2xW3z1wD+U+/XN5cuRppr5b5mAM8A6AJQo/frm0sXI801gH8C8Hd6v6a5ejHYXF8O4HkARcr3dXq/vrl0MdJcz9rmXwB8Te/XN5cuRpprAM/GXb8GwHa9X99cuhhsrt8AcKly/VYA39D79dXjwgynNEgpB6SUbyrXfQAOAGgEcB2AXyib/QLA9co2L0spPcrtrwJoUq6fC+ColPK4lDIM4LfKPmZ7J4DnpJRuZT/PAdiq7PtVKeXAQuMVQjgQ+wD6ioz95t8XN7YDUspDSb8IS4TB5vpZKWVkjrERDDfX43GblgLgKhFxjDTXirsAfBGc59MYcK5pHgab608C+K6UclLZ33ASL4XhGWyu1W0EgJsA/CbBl2FJMNhcSwBqpksFgP4EX4YlwWBzvRbAC8r15wDckODLYCgMOGlECNECYDOA1wDUq7+cyte6OR7yUcQioEDsj6gn7r5e5bbZEt1uPo3KY1J9PMFwc31r3NhoFiPMtZoODOCDAL6WxH6XlHyfayHEtQD6pJS7k9jfkpTvc634jFI+8N9qWQGdzgBzvQbAxUKI14QQfxJCnJPEfpcUA8y16mIAQ1LKI0nsd0kxwFx/DsCdyrHZPwP4+yT2u6QYYK47AFyrXL8RsUz0JYcBJw0IIcoAPATgc7MyCubb/nLE/iC+pN40x2ZznaFOdLt5nzrNxy95RpprIcRXAEQA3J/EfpcMo8y1lPIrUspmxOb5M0nsd8nI97kWQpQA+AoYUFxUvs+18vXHAFYBaAcwgFj5Dc1ikLkuQKzE43wAXwDwP2pvEDrJIHOtugXMbpqXQeb6kwA+rxybfR7Az5LY75JhkLm+FcCnhRA7ESsPDCexX8NgwClNQggLYn8M90spH1ZuHlLS69Q0u+G47TcC+CmA66SULuXmXpwa8WwC0C+EOE+cbCB47XzbLTA2c9zjv648Pr58asHH06mMNNdKQ7x3A/igkv5JcYw013F+jSWayrsQg8z1KgArAOwWQnQqt78phGhI5rUwOoPMNaSUQ1LKaSllFMBPECsboDhGmWvlvodlzOsAogC4IEAcA801hBAFAN4H4IHEX4Glw0Bz/REA6vgfBN/DT2OUuZZSHpRSvkNKeTZigeRjyb0SBiFzoJFUvl4Qi2jeB+CHs26/E6c2Nfu+cn0ZgKMALpy1fQFiDcpW4GRTs7Y5nq8KwAnEznZVKterZm2zWFOzNxA7U6Y2Nbtm1v3bwabhhp5rxOqS9wOo1ft1zcWLweZ6ddw2nwXwO71f31y6GGmuZ23TCTYNN+xcA3DEbfN5AL/V+/XNpYvB5voTAL6uXF+DWNmH0Ps1zpWLkeZauW8rgD/p/brm4sVIc41YT6LLlOtXANip9+ubSxeDzXWd8tWk/Ey36v366jKneg8gny8ALkIsZW4PgF3K5RoA1QC2ATiifK1Stv8pAE/ctjvi9nUNYl34jwH4ygLPeavyR3UUwF/F3f59xCKsUeXrP83z+C2I1ZMeA/AjKAcuAN6rPG4SwBCAZ/R+fXPpYrC5PorYQas6Nq5cZty5fki5fQ+AxwA06v365tLFSHM9a5tOMOBk2LkG8EsAe5Wf5VHEBaB4MdxcFwL4lXLfmwDervfrm0sXI821ct+9AD6h9+uaixcjzbXys+xELADyGoCz9X59c+lisLn+G+X5DwP4LpboCQP1xSAiIiIiIiIiItIEezgREREREREREZGmGHAiIiIiIiIiIiJNMeBERERERERERESaYsCJiIiIiIiIiIg0xYATERERERERERFpigEnIiIiIiIiIiLSFANORERERERERESkKQaciIiIiIiIiIhIUww4ERERERERERGRphhwIiIiIiIiIiIiTTHgREREREREREREmmLAiYiIiIiIiIiINMWAExERERERERERaYoBJyIiIiIiIiIi0hQDTkREREREREREpCkGnIiIiIiIiIiISFMMOBERERERERERkaYYcCIiIiIiIiIiIk0x4ERERERERERERJpiwImIiIiIiIiIiDTFgBMREREREREREWmKASciIiIiIiIiItIUA05ERERERERERKQpBpyIiIiIiIiIiEhTDDgREREREREREZGmGHAiIiIiIiIiIiJNMeBERERERERERESaYsCJiIiIiIiIiIg0xYATERERERERERFpigEnIiIiIiIiIiLSFANORERERERERESkqQK9B5ANNTU1sqWlRe9hEBEREREREREZxs6dO0ellLVz3ZexgJMQ4r8BvBvAsJRyg3JbFYAHALQA6ARwk5TSI4S4DMAjAE4oD39YSvn1Ofa5AsBvAVQBeBPAh6SU4cXG0tLSgh07dqT7IxERERERERERkUII0TXffZksqbsXwNZZt90BYJuUcjWAbcr3qhellO3K5bRgk+J7AO5SHu8B8FGNx0xERERERERERGnKWMBJSvkCAPesm68D8Avl+i8AXJ/o/oQQAsDbAfwulccTEREREREREVF2ZLtpeL2UcgAAlK91cfddIITYLYR4SgjRNsdjqwGMSSkjyve9ABrneyIhxO1CiB1CiB0jIyNajZ+IiIiIiIiIiBaRK6vUvQlguZRyE4B/A/CHObYRc9wm59uhlPIeKeUWKeWW2to5+1cREREREREREVEGZDvgNCSEcACA8nUYAKSU41LKCeX6kwAsQoiaWY8dBWAXQqiNzpsA9Gdn2ERERERERERElKhsB5weBfAR5fpHEFuZDkKIBqVHE4QQ5yrjcsU/UEopAfwRwPtnP56IiIiIiIiIiHJHxgJOQojfAHgFwFohRK8Q4qMAvgvgKiHEEQBXKd8DsSBShxBiN4C7AfyFEmCCEOJJIYRT2e5LAP6vEOIoYj2dfpap8RMRERERERERUWqEEtcxtC1btsgdO3boPQwiIiIiIiIiIsMQQuyUUm6Z675caRpOREREREREtCQ9uKMHf/nz17Gzy633UIg0U7D4JkRERERERESUKc/tH8L2QyPYfmgEW9sa8MWta7GytkzvYRGlhRlORERERERERDpy+8M4a5kd//eqNXjxyAiuuusF/MMfOjDim9R7aEQpY8CJiIiIiIiISEdufxhOezH++orV2P6Fy/GBc5fh169347I7/4i7tx1BIBzRe4hESWPAiYiIiIiIiEhHoxOTqC4tBADUlhfhG9dvwLOfvwQXra7BD547jMvu3I7fvt6NyHRU55ESJY4BJyIiIiIiIiKdTE1HMR6KoKq06JTbV9WW4b8+tAW/+8QFaKosxh0P78U1d7+Ip/YOYNAbwlJYcZ7yG5uGExEREREREenE4w8DAKrKCue8f0tLFR765IV4umMQ33v6ID55/5sAAKvFhJbq0tilphQrakqwvLoUK2pKUVdeBCFE1n4Gorkw4ERERERERESkE5cScFJL6uYihMDVZzpwZWs9XjvuxonRCZwYDaDT5cfhYR+2HRzC1PTJjKeSQjNW1pbiBze1Y019ecZ/BqK5MOBEREREREREpBO3muG0QMBJZTGbcNHqGly0uuaU2yPTUfSPhdDp8qPT5cfR4Qnc90oX/nxklAEn0g0DTkREREREREQ6SSTDaTEFZhOWVZdgWXUJLkEtpJT4nx096B8LajVMoqSxaTgRERERERGRTtwTkwASy3BKlBACTnsxBrwhzfZJlCwGnIiIiIiIiIh04vaHIQRgL9Eu4AQAjfZi9DHDiXTEgBMRERERERGRTlz+MCpLCmE2abuqnKPCypI60hUDTkREREREREQ6cfvDmpbTqZz2YoxMTCIciWq+b6JEMOBEREREREREpBNXBgNOUgJD4+zjRPpgwImIiIiIiIhIJ25/OK0V6ubjrCgGAPZxIt0w4ERERERERESkE7c/jOqyTGQ4WQEAA14GnEgfDDgRERERERER6WA6KuEJhFFVWqT5vp32WIZT/xhL6kgfDDjlkTe7PZBS6j0MIiIiIiIi0sBYIAwpkZGSOqvFjKrSQpbUkW4yFnASQvy3EGJYCNERd1uVEOI5IcQR5WulcvsHhRB7lMvLQohN8+zzXiHECSHELuXSnqnx55q+sSDe9x8v49n9Q3oPhYiIiIiIiDTg8ocBICNNw4FYWd0AA06kk0xmON0LYOus2+4AsE1KuRrANuV7ADgB4FIp5UYA3wBwzwL7/YKUsl257NJ4zDmrpqwQBSaB3T1jeg+FiIiIiIiINOCaiAWcMpHhBMQah7OkjvSSsYCTlPIFAO5ZN18H4BfK9V8AuF7Z9mUppUe5/VUATZkaV74qKjDjjLoy7Osf13soREREREREpAG3muGUgabhQKyPUz8znEgn2e7hVC+lHAAA5WvdHNt8FMBTC+zjW0rp3V1CiHk7qwkhbhdC7BBC7BgZGUlv1DmizVmB/QMMOBERERERERmB2z8JILMldb7JCMZDUxnZP9FCcqppuBDicsQCTl+aZ5O/B7AOwDkAqhbYDlLKe6SUW6SUW2prazUfqx7anDaM+CYx7GNKJBERERERUb5TezhVlmQuwwkABlhWRzrIdsBpSAjhAADl67B6hxBiI4CfArhOSuma68FSygEZMwng5wDOzcKYc0ar0wYALKsjIiIiIqIZUkp4A8xgyUdufxgVxRZYzJn5aO6oiAWcWFZHesh2wOlRAB9Rrn8EwCMAIIRYBuBhAB+SUh6e78FxwSqBWP+njvm2NSI14LSfASciIiIiymED3iB2ds1u50qZsu3AMNq/8Sx+/Vq33kOhJLn84Yw1DAeARiXDqd/LgBNlX8YCTkKI3wB4BcBaIUSvEOKjAL4L4CohxBEAVynfA8DXAFQD+A8hxC4hxI64/TwphHAq394vhNgLYC+AGgDfzNT4c5HNasGyqhIGnIiIiIgop/3r80fwgZ+8Bh/7xmTF4WEfpAS+/Pu9+OmLx/UeDiXBPRHOWP8mAKgtL0KBSTDDiXRRkKkdSylvmeeuK+bY9jYAt82zn2virr9dm9Hlr1aHDfv6vXoPg4iIiIhoXl2uACYjUTy7bwg3nM0FqDNtYCyE8qICXLKmFt984gD8k9P46yvOQKwwhHKZ2x/G8uqSjO3fbBKot1nRzx5OpIOcahpOi2tz2tDpCvBsERERERHlrB5PAADwyO5+nUeyNAx4g3Dai/Gvf9GOG85qwl3PH8Z3njoIKaXeQ6NFuPxhVJdlLsMJiJXVMcOJ9MCAU55pa4z1cTo46NN5JEREREREp4tMRzHgDcFqMeGlo6MYnZjUe0iG1z8WgsNuRYHZhDvfvxEfvmA57nnhOL76hw5Eoww65apoVMITyGxJHQA47Vb2cCJdMOCUZ1odFQCAfX0sqyMiIiKi3DM4HsJ0VOIvzlmG6ajEk3sH9B6S4Q14gzOrkZlMAv/v2jZ88rJVuP+1bvzdg7sRmY7qPEKay3hoCtNRiarSoow+j8NejEFviMFHyjoGnPJMva0I1aWF2MfG4URERESUg3o9sUyKK9bXYV1DOR7ZxbK6TApNTcMTmIKzwjpzmxACX9q6Dl9451o8/FYfPvubtxCOMOiUa1z+MABkdJU6AHDaizE1LZltSFnHgFOeEUKg1WnD/gEGnIiIiIgo96gBp6bKErxnkxM7uzzocQd0HpVxDXhjzaAd9uLT7vv05Wfga+9uxVMdg/jYfTsQDE9ne3i0ALcScMp0SV2jPRaM7GMfJ8oyBpzyUKvThsNDPp6lICIiIqKc0+sJQIhY35hrNzkBAI/tYZZTpgwoQYT4DKd4t160At+74Uy8cGQEf/nz1zExGcnm8GgBrgklwynDTcPVckuuVEfZxoBTHmpzVmBqWuLIMBuH55PQ1DSOcs6IiIjI4Ho9QdSXW1FUYEZzVQnOWmbHoyyry5j+BTKcVDefsww/vLkdO7o8+OBPX4M3wBWvc4F7pqQusz2cnHY14MQMJ8ouBpzyUJsztlLdfvZxyiu/fKUL19z9Z/hC/AdPRERExtXjDqCp8mTw47r2Rhwc9OEQV1nOCDXDyTFPhpPquvZG/Of/ORsH+sfxYWY65QSX0lOpstSS0eexWQtQVlTAleoo6xhwykMt1aUotpjZODzPHB+dQDgSxUEebBEREZGB9XqCpwScrjnTAbNJ4NHdfTqOyrj6vSFUlRbCajEvuu1VrfX40Qc2o6PPi9t+8QZCU+zppCeXP4zyogIUFSw+d+kQQsBRYWWGE2UdA055yGwSWO8oZ4ZTnulTaqY5b0RERGRUkekoBsdDaKosmbmttrwIF66qxqO7+yEll2XX2oA3uGh2U7x3tDXgBzdtwmsn3Pjkr3ayL6yO3P4wqjLcv0nltBezhxNlHQNOearNWYH9A+OIRvlPO1+o6c4HuMIgERERGdSAN4TpqDwlwwmIlXP1uIN4q2dMp5EZ18BYaKYpdKKua2/Et64/E388NILPP7AL0/xMoQu3P5zxFepUTnsxBlhSR1nGgFOeanXaMDEZQY+HS8zmAynlTAorA05ERERkVL2e2PFOfIYTALyzrR6FBSY2D8+Afm8QTnviGU6qD5y3DF9913o8sXcAdzy0hyeydeDyh1GdrYBThRWjE2GWUVJWMeCUp9TG4ezjlB/GgxH4w9OwWkw4OOhDZJqpy0RERGQ8vcrJ0NkZTuVWC65YV4fH9wzwOEhDE5MR+EKRpDOcVLddvBJ/c8VqPLizF19/fD9LHrPM7Z/MaoYTEMtCJMoWBpzy1Jr6cphNgv2A8kSfkt100Rm1mIxE0eny6zwiIiIiIu31eoIQ4uSH23jXbnJidGISrx536zAyY1JbNqSS4aT63JWrcdtFK3Dvy534l2cPazU0WoSUUimpK8rK880EnNg4nLKIAac8ZbWYcUZtGfb1e/UeCiVALae7cn0dAGamERERkTH1eAJosFlRWHD6x4zL19WhvKgAj+zianVa6VeyVVLNcAJiK5h95V3rccu5zfjRH4/ix9uPaTU8WoBvMoKpaZm9kjolKNnHgBNlEQNOeazNaWPgIk/0Kw36Ll5TC4tZ4MCAT+cREREREWmv1xM8rZxOZbWY8Y62Bjy9b5B9ZDSiZqsks0rdXIQQ+Ob1Z+K6die+9/RB/PKVzvQHRwtyT4QBIGsldQ3K7whXqqNsYsApj7XRyd3eAAAgAElEQVQ6bRj2TWLEN6n3UGgR/WMhFJpNcNisWF1XzsbhREREZEh9nuBpDcPjXdfuhC8UwfZDI1kclXH1e0MQ4mQwIR1mk8A/37gJV66vxz88sg8P7ezVYIQ0H5dfCTiVZSfgVFRgRm15EVeqo6xiwCmPtSqNw/czeJHz+seCaKiwwmQSWO+wcc6IKG3+yQgC4YjewyAimjE1HcWAd/4MJwC4cFU1asoK8ehultVpYWAsiNqyIljM2nyss5hN+NEHNuNtZ1TjC7/bjef3D2myXzqdWwk4ZaukDoitVMeSOsomBpzyWJujAgDYxykP9I+dXK621WnDiG8SoxPMTCOi1H3iVzvxhQf36D0MIqIZg94QovL0FeriFZhNeNeZDmw7MAxfaCqLozOmAW8IjjkatKfDajHjJx/egtV15fj+Mwe5cl2GuP2xzwLZKqkDYo3D+xlwSspkZBp3PLQHv3q1iyf6UpDRgJMQ4r+FEMNCiI6426qEEM8JIY4oXyuV24UQ4m4hxFEhxB4hxFnz7PNsIcReZbu7hRAikz9DLqsosaCpsph9nPJALOAUOxhY7ygHAJbVEVHKpJR4s8uDA4N8HyGi3NHjCQDAgiV1AHBtuxOTkSie3cfsmXT1e4NwalBON1tJYQE+fOFyHB6awJ5entzOBNdMhlN2VqkDYgGnAW+IQcQkdPR58ds3evDVP3Tg/G9vw7efPIAed0DvYeWNTGc43Qtg66zb7gCwTUq5GsA25XsAuBrAauVyO4Afz7PPHyv3q9vO3v+S0uqw4QADTjktMh3F4HgIjUrAqdWhlEJy3ogoRX1jQfjD0+gfC/KgkYhyRq8nljnRvEjA6axllWiqLMaju/uzMSzDklJiYCyU1gp1C3nPJieKCkx4cGdPRva/1Lknwii2mFFcaM7aczoqrAiEp+ENZja7cDw0hV+/1o3n9w/h6LAPk5H8XSSgczQWXPqXGzfh4jW1+NmfT+DSO/+Ij/9yB1497uJx2CIKMrlzKeULQoiWWTdfB+Ay5fovAGwH8CXl9vtkbMZeFULYhRAOKeWA+kAhhAOATUr5ivL9fQCuB/BUBn+MnNbmrMBzB4bgn4ygtCij00kpGvJNIioxk+FkLymEs8LKDCciA/BPRtDjCWBdgy2rz3t4KLbSZWgqCpc/jJqy7J0dJSKaT68nCFMCDayFEHjPJifueeE4XBOTqOZ7WEq8wSkEp6Zn2jZozWa1YOuGBjy6qx9ffVcrrJbsBUaWArc/jOosNQxXqSfA+8aCsJdk7rn/8FYfvvbIvpnvhQCcFcVYUVOK5dUlWFFTipbqUrTUlKC5qgRFBbn7u9Xp8sMkYgHYG85uQv9YEL96tQu/eb0bz+wbwnqHDX91YQuubXfyb2QOevRwqleDSMrXOuX2RgDx4fNe5bZ4jcrtC20DABBC3C6E2CGE2DEyYtxVMNqcNkjJ8qxcpi5X64yrr1/vsOHAgE+vIRGRRv7rT8ew9Ycv4u8f3pvVuv7DQxMz1/s87MVARLmh1x1Ag82KwoLFP2Jc1+7EdFTiyb0Di25Lc1OXt89UhhMA3Hh2M8ZDETzL5uGaG/WHs9owHDj5eWRA+d3JlM7RAEoKzfj9py7ED29ux1+/fTXOaamEbzKCJ/YO4JtPHMBt9+3AlT94AW1fewYvHR3N6HjS0ekKoKmyZOZ9zWkvxhe3rsMrf38FvnfDmZBS4osP7cEF39mGO585yD69s+RSSsxcvZhm56clsk3sRinvAXAPAGzZssWweW7xK9VtaanSeTQ0F3UliPj6+vUOG7YfHkFoapqRcKI8dmjIB6vFhN++0Y1Xj7tw183taG+2Z/x5Dw/6IAQgZew9ZlMWnpOIaDG9nuCi/ZtU6xpsWFNfhkd29eNDF7RkdmAGNTgeO8Z0ZCjDCYitKthoL8aDO3pw7SZnxp5nKXL7J1Gb5ew+9Xel35vZk1Xd7gCWVZVg87JKbF5Wedr9Y4EwOl0BdI768Q9/6MDjewbwtjNqMjqmVHWO+rG8+vT3NavFjJvPWYabtjTjleMu3PtSJ/5j+zE88EYP7rq5HRevrtVhtLlHjwynIaU0Ti2RG1Zu7wXQHLddE4DZhd29yu0LbbOkOCqsqCyxYF8fM5xy1czZp7gMp1anDdNRiaPDE/M9jIjyQJcrgLetqsFvPnY+wpEobvjxy/jX548gMh3N6PMeGvJhY1MsyMQMJyLKFb2ewIIr1M12XXsjdnR50OthA95UqMeYzgxmOJlMAjec1Yg/Hx3l6mYac0+EUZXFhuEAUFNahEKzaeaEeKb0uANorpo/+GwvKUR7sx3Xb27E286owZ8ODedkLyQpJTpdfqyoKZ13GyEELlxVg3s+vAVP/80lqCwpxIf/+3X88zOHMn48mA/0CDg9CuAjyvWPAHgk7vYPK6vVnQ/AG9+/CZgpwfMJIc5XVqf7cNzjlyQhBNqcFdg3wNUjclX/WBAVxRaUxfXYWu84mZlGRPlJShk7g1ddgvNXVuOpz12Mazc5cdfzh3Hjf72CLpc/I8+rBqvPWV6JsqKCjB80EhElIhyJLZKSTMDpPRtjGTOP7WZZXSoGvEGYTQK15ZkNWrz/7GZICTz8Zu/iG1NCpJRw6dDDyWQScNitGS2pmzk+WiDgFO/StbXo94Zy8kS8JzAFXyiC5dXzB5zirW0ox6OfuQg3nd2MH/3xKG75yasYyHA2Wa7LaMBJCPEbAK8AWCuE6BVCfBTAdwFcJYQ4AuAq5XsAeBLAcQBHAfwEwKfi9rMrbrefBPBTZbtjWMINw1WtThsOD05gihHUnNQ/FjylfxMALK8qQUmhmSvVEeWxkYlJBMLTaFEOQmxWC+66uR1337IZx4YncPW/voj/eaNH8zN23e4AJiNRrGkoR6O9eGZVKCIiPQ16Q4hKJFxSBwDLqkuweZkdj+zqy+DIjGtgLIT68iKYTXN1HdHOsuoSnLeiCr/b2ZuTWSj5KBCexmQkiqos93ACYhUymcxWG5mYRHBqOuGA02VrY6Vn2w/lXt/lE6Oxk4ctc5TUzae40IzvvX8jfnhzO/b3j+Oaf30R/3tw6fZAy2jASUp5i5TSIaW0SCmbpJQ/k1K6pJRXSClXK1/dyrZSSvlpKeUqKeWZUsodcftpj7u+Q0q5QdnuM5Lvemhz2hCejuZkVDif3fvSCU0CQn1jQTTOqq03mQTWNZQviWbvz+wbZAo2GVK3K1YCsmzWQci1m5x4+nOXYFOTHV98aA8+/sudcPvDmj3vocHYggNr68vRWFnMDCciyglqWVxTVXLlXdducuLgoA+do5nJCjWyfm/wlJYNmXTjlmZ0ugJ4o9OTleczOvW4QI+Ak9NenNFj8x63cnyUYMDJUVGMtfXl2H54ePGNs0zNVm9ZoKRuPtdvbsRjn70Ijopi3HrvDnzrif0IR5ZegogeJXWksTalcfg+ZstoJjQ1jX96bD9++Wpn2vuaK8MJiJXV7R8YN/SZIm9wCp/41U7c+cwhvYdCpLlOJeC0fI4DKqe9GPffdh6+cs16bD80gnf+8AVsP6TNgdSRoVjA6Yy6MjTai9HH3idElAPUbMvmJDKcAOAcZdGbjn62h0jWgDcER0XmGobHu+bMBpQWmvHgjp7FN6ZFuZSAU7ZXqQOARnsxhnyTGesv1K0EnBbq4TTbpWtr8cYJD/yT2VvxNxGdo36YRPLva6qVtWV4+FMX4sMXLMdPXjyBG//rlZmA3FLBgJMBrKgpg9ViYnmWhtSMgWMj6Z1tm5iMYDwUmTfg5AtFDJ2dsLtnDFICzx8YWpIRfTK2blfsIGS+8hGTSeBjl6zEI595G6pKCvGXP38DBwfTf58+NORDc1UxSosK0FhZjPFQBL7QVNr7JSJKR48nAJMAGpIMgKyuL0OBSfA4NklSSgx4Q3MeY2ZCSWEB3rXRgSf2DuRcUCAfuf2TAPTJcHJUFGM6KjHsm8zI/rtdQQiBpPq5XbamFuHpKF455srImFLV6QqgsbIYhQWph02sFjO+ft0G/PiDZ+H4yASuuftFPN2xdPrWMeBkAGaTwLoGG/bxzJBm1LN0x9MMOA0owaS5zj61KplpBwZ8aT1HLnurewwA4AtF8NKxUZ1HQ6StLncATvviByHrHTbce+s5AIBXNTiQOjI0gbX15QBiZykBGDpwTUT5odcThKOiGBZzch8vigrMOKOujAupJMnlDyMciWYtwwmIldUFwtN4cu/S+bCcKa4JNcMpu6vUAYBTafWRqbK6bncADTYrrBZzwo85u6USJYVm/OlwbvVx6nT5Z3p1puvqMx148q8vxsraMnziV2/iP7Yf1WS/uY4BJ4Nocxq/PCub1FTH0YlJjKeROaB+CGyc4+zTuoZyCAFDn9Hb1ePByppSlBcV4CkenJDBdLoCCR+ENNisqCsvwp7e9E4MhCNRHBuZwGo14KScPexbQo3D+X+OKDf1egIz70nJanXaDH08lAnqKmOOiuxkOAHAluWVWFFTigd3crW6dM30cMryKnXAyc8l/d7MrFTX4w4kVU4HxALPF66qwfbDwznzf15KiROj2gWcgFiZ4YMfvwCfffsZiEZz4+fMNAacDKLVGSvP4mpF2oh/HdPJcupXDgbmSncuKSxAS3WpYRuHSynxVs8YzmmpwhXr6/Ds/iGupEiG0u3yn9YwfD5CCGxssmNX71haz9np8iMSlTMZTk1LLMNpf/84tnzzebzVzaa1RLmm1xNMqoQmXqvDhmHfJEYnMlPiY0T9ylLrTnv2MpyEEHj/2U14/YR7ppkypcbtD6OwwITSwsSzgLSiNprPZIZTog3D4126thY97uDMynB6GwtMwReKYHkSK9QlorDAhL99x1p85u2rNd1vrmLAySDanBUAwLI6jfR6AihUUsKPj6S++l//WBBmk0Bd+dzpsq0OGw5o0NMlF3W6AhgLTGHzMju2bnBgLDCF14679R4WkSa8wSl4AlNzNgyfT3tzBY6P+NPKmjysNAxfowScasqKUGg2LZkMp1ePu+Dyh/F3D+5GaGpa7+FQnvny7/fi7m1H9B6GIYUjUQyOh+btabeYVofaZsCYx0SZcLJtQ/YynADgfWc1wiSA3+VZltNPXzyOD/3stYw1yk6Wyx9GdWkhhBBZf+6yogLYrAUZCTiFpqYxOB5KKeB02ZpaAMD2Q7lRVndCXaFOwwynpYgBJ4NY11AOk+BKdVrp8QTRvswOs0mkmeEURIPNioJ5+hmsd5SjyxUwZMNfNQNh87JKXLqmFsUWM55aQg3yKPdEoxK337cDLx5J/0CmW12hLomDkI1NdgDA3jTK6g4P+mASwMra2POaTAJOuxW9SyTD6ciwD4VmE46N+HHXc4f1Hg7lmaf2DuDBnVxhKxMGvEFICTSnmOG0Xgk4sawucQPeEArNpqyvcuaoKMZFq2vx0M5eTOdRSdAz+wbx4pFR/PylTr2HAiCW4aRHw3CV0148U4mhpV5l5dxUAk7NVSVYWVuK7TnSx0nN4mupYcApHQw4GYTVYsaq2jL+o9ZInyeAVbWlWFZVguOjaWQ4eYMLpjqrB1iHBo3XOHxXzxhKC2ONQIsLzXj7ujo8s28wrw5OyFhOuPx4dv8QnuoYTHtfXe7YQUgyadYbm2KZqLvTKKs7NORDS03pKY04GyuLl0yG06FBHzYvs+OWc5vxkxeP402W1lGC1KzEHncQgxnqW7KUqa0IUs1wqiwthLPCysbhSej3htBQYYXJlP0MmRvPbkK/N4SX82RBGCklDg76IATwg+cO50QZuisnAk7avw7dSh/cZHs4qS5bU4fXjrtyIov5xGhs5c3mquxmERoNA04G0ua0McNJA4FwBKMTYTRVlmBlTWnaPZwWSnU+uVKd8ebtre4xbGqOZYkBwNYNDRidCGNHJ8vqSB8dfbHMoiND6Qd4u2YynBI/oLKXFKKlugS7e1IPOMWvUKdqtBfnxMFzpkkpYz9/Qzm+fM16OCqK8QWW1lGC1KxEAHiD/4c0p2Y1pNrDCWDj8GQNjAWzukJdvKta62GzFuRNWV2/NwRfKILbL1kJAPjHR/bpPCLA7Z/MenZaPKfdOtMHTEvqe20qGU5ArI/TZCSKV46nv6pvurpcfjjtxSgqyH6fLSNhwMlA2pwVGBwPwcWGi2npmzlLV4yVtaU4MepPaRWBaFRiwBucs2G4qsFmhb3EYrgzesHwNA4MjGPzMvvMbZevq0NRgUmT7BKiVKgBp8NDE2mvgNLl8qO2vAglhQVJPW5Tsx27e1IrqQtNTaPT5Z9ZoU7VaC/BiG/S8IGXAW8IvskI1tSXo9xqwXdvODNWWvc8S+tocWpWIsCAUyb0uGM9K9MJgLQ6bDg2MmH49zKtDHhDCx5jZpLVYsZ17Y14umMQ3mDut4U4pPRLvXJ9PT535Wo8f2AIz+zT93jUPRFGVencPV6zwWkvxlhgCoFwRNP9druDKCk0oybF1ffOW1EFq8WEP+VAH6dOjVeoW6oYcDIQNVvGaMGLbOuZOUtXgpW1ZZiMRFPKHhidmMTUtETjAiV1Qgisb7Bh/4CxSuo6+r2IRCU2N1fO3FZWVIBL1tTi6Y7BJbMMKOWWjr7Ye6M3OIWRNAPzna5AUg3DVRub7BgcD2FoPPmSnqPDE4hKnJ7hpGQUDBi8TOjQrIbpF6+ujZXWvWD80rpn9w3ipy8ex7DP2HOcSWpW4tnLK/H6CQactNbrCSzYszIR6x02RKUx2wxobToqMTge0i3DCQBu3NKEyUgUj+/p120MiTqgHGevbSjHrRetwLqGcvzTo/swMaltsCVRoalp+MPTqE4xKKMFZ4W6Up22/1fUFepSbYZutZhxwcpq/CkH+jh1ugJoqdF2hbqliAEnA2lTAk4sq0uP2oegubIYK5UmccdTWJ5TDVItdvap1WnDocFxQ/U22tUdKxlqj8twAoBrzmzA4Hgo7aXhiZIlpURHvxcrlL/po0Op92YDYinjyTQMV7U3K32cUiirOzKsHjCXnXJ7o/IeY/Q+TocH1YDTyZ9/qZTWffvJA/jmEwdwwXf+F7fe+wae3DuAyYhxf95MULMSL11Ti0NDvrzIysgnvZ5gWuV0gLHbDGhtxDeJ6aicWd5eD2c2VmBtfTke3JH7ZXWHBn1otBfDZrXAYjbhW+/dgAFvCD/UafEJlz8MADqX1KkBJ22PHXrcgZT7N6kuXVOLE6P+mabdevD4w/AGp5jhpAEGnAzEXlKIRnsxA05p6vUEUVRgQm15EVbWxj7YHB9J/sOpesZgsYDTeocNoakoTqQQ1MpVb/V40FxVjJqyU1OF376uHhazwFN7uVodZVePOwhfKIL3bm4EABxOo4+TuuRvMv2bVK2OCphNAntSWKnu0OAELGZxWqBL/ZDXNxaY62GGcXhoAvW2IthLTh6gL4XSumhUom8siOvanfj4JSuxv38cn7r/TZz7rW342iMd2NM7lnaJ6FKgZiWe01IFKYGdXcxy0lKvJ5j2h8zmyhKUFRUwUz8Bau8dp44ZTkII3LilCbt6xnB0OLez0g4OjmNdw8ns4LOXV+GWc5fh5y93Yl9/6ivHpso9EQs46ds0PPa7M6BhHycp5UyGUzouW1sHALpmOXW61MVhGHBKFwNOBrPeYdPljTNT3uz24IUsv9n0uANorCyGEAI1ZYUotxak1DhcfQNfPOAU+wdopDN6b3WPnVJOp6ootuCiM2rwVMcgPyBRVu1V+jddvrYOFcUWHB5OPcNJXYEllYBTcaEZa+vLU1qp7vCQD6tqy2CZVbLSUGGFSSyBDKch30w5XTyjl9YN+2Ll2VtaqvDFrevw0h1vx323notL19TigTd6cO2PXsI7f/gC7nnhGIZTKNVcKtSsxM3L7LCYBV4/YbzfFb1MRqYx5AulneFkMgmsd5SzcXgCBpSTmgstTJMN129uRIFJZCTLadgX0uRYcTIyjeMjfqxtOPX/xx1b16GyxIIv/74j61UGLn+srF/Pkrp6mxVCAH0altSNTEwiODWddsCppaYUy6tLdO3jpJZhr2BJXdoYcDKYNqcNJ0b9mjeA08t3njyA236xAwcHs3fw0esJollZ1lcIgZW1ZTg+mvyH076xIEoLzbBZF24qvLquHBazMEzAadAbwoA3hPZm+5z3X73BgV5PcKafDlE2dPR7YTELrGkow+q6srRK6k6uUJfaWa9NzRXY3ZN8VsrhId9pDcMBwGI2od5mRa+BV6qLRiWODM8dcAJipXUNNqshS+vUzDX1w7zZJHDJmlrcfctmvP6VK/Ht956JsqICfPvJgzj/O9vwqft3wqOUa1BMfFai1WLGmY0VbByuoYGxEKSM9b5MV6vDhgMD4+z1uIiTJzX1y3ACgJqyIly+rg4Pv9WHyHRUs/12jvrxtu/+Lx7dnX5/qGPDfkSiEusctlNuryix4KvvasXunjH8+rWutJ8nGW6/muGkX9Nwi9mE+nKrpiV1Pe70VqiLd9maWrx8zKXb//QTo34Ioc372lLHgJPBtDltkPJkc7x8d2zEj/B0FJ/77a6sveH0eAKnnKVbVVOaUoZT/1hshbrFmuYVFpiwqrbMMCnku3piZ403L5s74HRVaz3MJoGnOlhWR9nT0efFmvpyFBWYsbq+HIeHfSmfOVV7CqTSNBwANjXZMR6KoNOVeAmcfzKCXk8Qa+vL5ry/0V5s6AynHk8AoanoaQ3TVbHSuo2GLK2L7ys4W0WxBR84bxke/tTbsO1vL8Xtl6zC8/uH8Z4f/dlQ2c7pmp2VeM6KKuzpHTNccFIvvXGr+6ar1WmDPzw9M2c0twFvCMUWMyqKLXoPBTee3YQR36Sm5U+P7e7H1LTEq8fTDwwfGoodX69rOP3/x3XtTlx0Rg2+//ShrGaIngw46ZfhBMQCllqW1Kl/t+mW1wLApWtrEZya1u3kQJfLD2dFMawWsy7PbyQMOBnMzEp1BjjQHAuE4faHcfHqGhwc9OHOZw5l/Dl9oSmMBaZOiWavrC3FgDeUdNZY/1jiy9WqZ/SM4K3uMRSaTTO/i7NVlhbigpXVLKujrJFSoqPPizMbYw2719SXYSwwhdGJ1LJAulwB2KwFsJekdqC/sSkWjN2TRFndEaUEcL4Mn8bK4pRW08wX6qpVq+cJuAHAJWuMWVqnfphvtC98AL+qtgx3XL0OD3z8fESmJW748cv4w1t92RhizpudlXhuSxWmpiV2pdC8n053cnXf9ANO6x1ccTkRA94gHHZryiuBaenydXWoKSvUtKzuMWXlu1QW2Jjt4IAPhWbTzKIh8YQQ+Mb1GzA5HcXXH9+f9nMlyuUPw2IWi1ZBZJrDXqzpKnXdLu2Cz+evrEZhgUm3sroTXKFOMww4GUyjvRjl1gIcTnMFplxwTMkq+ssLW/DhC5bjZ38+gT8fGc3oc6of2JqrTr5RnmwcnlyWk5rhlIhWpw1D45NwpblUey54q3sMrU4bigrmPyOwdUMDToz6Z5Y5J8qkfm8InsAU2pSA0+q6WNDmSIq/f13uWC+YVA/019SXwWoxJfVh9+QKbfMEnOzFGPSGDLXaZTy1yftcJYXxjFha1+sJoKasEMWFiZ1l3bysEo999iJsbLLjcw/swv97bB+mNCx1yZZ9/V5c8v0/apJ1oGYltigZTmcvj/UY3MGyOk30egIwmwQabOmXd62pL4fZZJw2A5nSPxaaWdZebxazCde3N2LbwaGZzJ10HBr0zSwScWjIl/Z7+cFBH1bVnd7/ULWiphSfvuwMPL5nIGtNqt0TYVSWFOoeMGy0F6N/LKjZCeBudwANNqsmWUElhQU4b0UVtuvUOLzL5ecKdRphwMlghBBYVlUyc7Ypn6krw62sLcPfX70eZ9SV4W8f3IWxQOZ6U/S41cj8qRlOAHA8iVXkQlPTcPnDaEywtl49o5fvpZCR6Sj29I3NW06nemdbA4QAnto7mKWR0VLWoTQM36Bk3a1RsmSOpNg4vMvlx7IUGoarCswmbHBWJLVS3aEhH6wW07xp6o2VxYhEJYYM2jT68NAEmiqLUVa08NlgI5bW9XqCaEyyh0RteRHuv+08/NXbWvDzlzrxf376GkZ8+XVCY/uhEXS7A3izO/0Mh5NZibHyFXtJIdbWl+P1TuNkwump1xOEo8KKgnk+0CfDajFjVW0pG4cvYsAbe81zxfu3NGFqWuLRXelnVT6+px8mAXzuyjWYjsq0y4MPDo5j/RzldPE+cdlKrKwtxT/8oSMrJytc/rDu5XRAbJXDyUhUk0AhEOvhlM7x0WyXrqnF0eEJ9Gb5c+1YIIyxwBQDThrRJeAkhPgbIUSHEGKfEOJzym0PCCF2KZdOIcSueR7bKYTYq2y3I7sjzw9NlcUzTdvy2bERPyxmgebKYhQXmvHDm9vh9ofx5d/vzVgplvqGFt8ro6W6FEKcDIAlYsAb+9CXaIbTyYBTfh9gHRz0ITQVxeZlp69QF6+2vAjntFSxjxNlRUefF2aTmPk7qy0vgs1aMJM1k4zIdBR9nuBMpkSqNjXb0dHnTTjz5PCQD6vrYmf+59KovNcYtaxuvhXq5hJfWqdFOYbeej3BlMoTLGYT/vE9bbjr5k3Y3TuG9/zbn/OqhEz9kKnFcuudLj9aZpXTnLOiEm92eQybFZhN8YutaKHVYWNJ3QKmpqMY9k3CkeAxZjasa7DhzMYK/O7N9MrqpJR4fM8ALlhVjSvW1QEAdvWkHnDy+MMYGp88bYW62YoKzPjm9RvQ7Q7gR/97NOXnS5TbP6nrCnUq9XdIq7K6Lrdfk4bhqsvWxn4HspV5pup0pb4aMZ0u6wEnIcQGAB8DcC6ATQDeLYRYLaW8WUrZLqVsB/AQgIcX2M3lyrZbsjDkvNNcWYJej3bpkXo5PjKBZVUlM2fMNjRW4P9etRZP7h3Ew29mpi9FjzuIYov5lLMOVosZjfbipErq1BUfEg04VZUWosFmzfsDrFcYSqEAACAASURBVLeUDzOb51mhLt41GxpweGgCR9NYnp4oER19XqyuK5tJ8RZCYE19eUoZTv1jIUSiEsur0jvrtbGpApORaMJBr9gKdfP3L1IDEkZsHD41HcWxkYmEA05ArLSuwGzC43vSX+FIT9GoRJ8niKY0Pli+d3MTHvrkhSgwC9z0n6/ggTe6NRxh5qgrmaaaiRiv2x047UPQOS1VmJiM5P2JnlzQO2uxlXS1Om0Y8IY0y7owmqHx2KqAzhzKcAKA95/dhI6+8bT+pvb1j+PEqB/v3uhEnc0KR4U1qX6Hsx1UytFnr1A3lwtX1eB9mxvxXy8c0yTQvRC3P6zrCnUqLU9WhaamMTQ+qWnAaVVtKRrtxVnv46SWYc/V94uSp0eG03oAr0opA1LKCIA/AXiveqeIFbPeBOA3OozNEJqrSjAZieZd+vxsx0f9M/2TVLdfshLnrqjCPz66LyNZXOpB0+ya6pW1ZTg+mvhBr/rGnUx9/XpHed4f+O7qHkNNWWFCB55bNzgAAE8zy4kyrKN/HG3OilNuW11fhiNDya9U16muUJfmWa92JSi7O4Ezt97AVOwM7QIBF6eBM5y6XH5MTUusbZg/4DZbudWCdQ3leR/EH52YRHg6mvaH+TZnBR77zEU4b2UVvvTQXnz593sxGcndHlfewNTMakfp9qScmo6i1xM8rTTi3BVVAIDXT7CPUzomI7EPmVouHd7qiL1f5/sxUaaoWfS5lOEEANducsJiFnhoZ+pZTo/t6UeBSWBrWwOA2Kqu6WSqHhqcf4W6uXz5XetRUliALz/cgUgGe9+5/GFU50JJnfI7pMVKdWqViJYBJyEELltbi5eOjiIcyV4vwhOjfgihzWp7pE/AqQPAJUKIaiFECYBrADTH3X8xgCEp5ZF5Hi8BPCuE2CmEuD3DY81LasPrfO7jFJmOosvln+mfpDKbBH5w0yYIAJ9/YJfmqfC9nuCcby4ra0pxYsSf8IfT/rEghADqKxI/e7HeYcPR4Ymc/hCwmLd6PGhvrkyoCWJDhRVnLbPjqQ72caLMGR4PYcQ3iQ2Np57dXF1XDk9gCq4kz6B3uU9d7SpVy6pKYC+xJHTm9rBypnXNAgfMJYUFqCotnFnRzEgODcYCDmqz90S1OW3Y1z+e19m+PZ7T+wqmqrK0EPf+1bn45GWr8OvXuvGBn7yWs/9v1HK6dQ3lODYykdb/+v6xIKaj8rS+Io6KYjRVFuu25LZRqKU4WmY4rXfE/tbZx2luM1n0OZbhVFlaiCvX1+MPu/pSWqhASonHdw/g4tU1qFSCMRubK9DpCqTcv/XgoA+VJRbUlSd2PF5TVoSvvms9Xu904yM/fx2eDGTZhSNR+EKRnOjhVFliQVGBaeZ3Kh3qSQKtgzSXrqmFPzyNHV3Ze6/ucgXgrCjWpPk56RBwklIeAPA9AM8BeBrAbgDx683fgoWzm94mpTwLwNUAPi2EuGSujYQQtwshdgghdoyM6NPdXi9qHb3aADsf9XqCmJqWWFVz+hntpsoSfOP6DdjR5cF//umYps/bM09a+KraUvjDsbN4iegfC6K2rGjBldpma3XaEIlKHMnTFQbHAmEcH/Ev2jA83tUbHNjXP45uV/4GRym37VUahp/ZeHqGE4Ck+zh1jfpRVGBK+OB1PkIIbGyyJ9RT59AiK9SpGu3FhsxwOjTkg0kAZ9QlnuEExPrAjAWm0O/N30bqvRouNw/ETtp8aes6fP26Nuzs8mCXBg25M6FDCThdv7kR4Ug0rYzmmV4cc3wIOrelCm90uvM6KKk3dW60DDhVlxWh3lbEDKd5qBlODTkWcAJiZXWjE+GUSqDe6hlD31gQ797onLmtvSl2TJnMIhvxDg76sLahPKnV4G7c0ozvv38j3jjhwbX//mfNfw89SvAsFwJOQghlpbr0/0+qx/JaZjgBwIVn1MBiFlnt43Ri1M/+TRrSpWm4lPJnUsqzpJSXAHADOAIAQogCAO8D8MACj+1Xvg4D+D1ivaDm2u4eKeUWKeWW2tparX+EnNY0E3DK3w/xavna7Awn1XXtTrxnkxN3PXc4rdrueN7gFHyhyJyNL9XSvkQbh/ePhRLu36TK98bhu5Lo36TauiGWMs3m4ZQpHX3jEOLk35dKDd4kG+DtcgewvLoEpnmadydjU1MFjgxPIBCOLLjd4SEfyooKFj2b3WgvRl8eZ7bO58iQDy3VpUmfaWxVyij39aW3wpGe1Iy1Rg0/zAPAhauqAQCDObqqYUffOJwVVpynlL2l0uBf1a2Uwc5uGg4AW1qqMDoRxokkVqGlU6m/o00af8hk4/D5DYwFUV5UgHKrRe+hnOaSNbWoKSvE71Ioq3tsdz8KC0y4qq1+5rYNTRUQAimV1UWjEoeHfFjXsHj/ptlu2tKMBz5+PsKRKN73Hy/jiT3aHae6JmIBp1woqQNiZXX9GpTUdbuDKCk0o0bjZuhlRQXYsrwqq32cuuZYaIJSp9cqdXXK12WIBZjUjKYrARyUUs75LiWEKBVClKvXAbwDsRI9ilNcaEZNWVFel9SpDbpn93BSCSHwzes2oLa8CJ/77a5FP7AlYqGzdGrg61iCB6X93uBMI75EtVSXothixoGBzDYqzJRdPWMQAtiYRMCpuaoEZzZWsKyOMqaj34uVNaUoLSo45fY6ZaW6I0k2Bu12BbAszYbhqk1NdmXJ54U/VMVWaCtb9AxtY2Usw8lo2RqHFmmYPp/1jnIIgbz+0NrrCaK6tBAlhQWLb5yEBqW/4GCOZn919HvR1lgxk9WWTuPwLlcAVsvcWYnnroitqLqj05Py/pe6Xk8ABSaBBpu22TatzlibgWwsUZ9v+r0hOOy5l90ExFbHvL69EdsODiXV9H06KvHEngFctqYWtrhAms1qwcqaUuxO4eRyjyeAQHh6pkQzWZuXVeKxz1yE9Y5yfPrXb+LOZw5q0srD5Y9VS+RChhMAOCqsmpXULasqSSqbLFGXra3FwUFfVv5neQNT8ASm0l6NmE7SJeAE4CEhxH4AjwH4tJRS/U//F5hVTieEcAohnlS+rQfwZyHEbgCvA3hCSvl0tgadT5qrivO6pO7YiB/2EsuCb8YVJRb8y02bcMLlx7eeOJD2c/Yu0CujwWZFSaE5oQwnKSX6x4JwJnkwYDYJrG0ox/6B/Dwb/1b3GNbWl6OsKLkPRls3NGBXz5gm/+yIZuvo82LDrHI6IBa0Xl1fnlRDYiklutx+zQ5CNjbHxrXQmVspJQ4N+hJaoa3RXozQVNRQKzuFpqbROepfsGH6fEoKC7CipnTRgF4u6/UENM9uAmJnjMuKCmZKc3LJxGQEJ0b92OCsQLnVAmeFNa3VTDtdASyvKp3zQ9Cq2jJUlRbidfZxSlmvJwinvRhmDbI+47U6KhCJSq5kO4cBbxCOJBalybYbzm7C1LTEI7sSX1H6jU43hn2TeM8m52n3bWq2Y1ePN+mTKeoJ3LUpZDip6mxW/Ob283HLuc349z8ew8fu24Hx0FTK+wMw8z+6ukz/VeqAWIbTsG8y7abcPe5AxppsX7o2Vq30p8PDGdl/PHVxmNkLTVDq9Cqpu1hK2Sql3CSl3BZ3+19KKf9z1rb9UsprlOvHlcdsklK2SSm/le2x54vmyhL0juVzhtMEVs2T3RTvwlU1+NjFK3H/a93YdmAoredUe2WoTdfjCSGwoqZ0JvNqIZ7AFEJT0ZQOBtY7bDgwkPzKWXqLRiV29YzNrLyVjKuVsrqnmeVEGhudmMSAN3Ra/ybVmvqypD7MDPsmEZqKalbXX1duhbPCit0L9KYYnQjDE5hKLOBUabyV6o6P+BGVCzdMX0ibsyKvGw/3eYKa9saJ11BhzckMpwMD45ASM43+z6gvTzoTMV63239aw3CVEAJblleycXgaeufpfZkuNg6f38BYKOmTmtm03mHDhkZbUmV1j+/pR7HFjCvW1512X3uzfeb/eTIODfogROx/fTqKCsz49nvPxDeu34AXDo/g+h+9lFYgNPdK6qyQEhhKo8RaSjmT4ZQJa+vL0WCzZqWPU+cCZdiUGr0ynCjDmqtiDeAyuaRnJh0f9WNlgn/of/uONVjXUI4vPbQnreh8ryeIsqICVBTPXRO/srZsprfUQmZWD0lhudpWpw3e4FROnnVeyAmXH97gVFINw1Ura8uwrqGcfZxIc2pmS5tz7oDTGXXlcPvDGJ1IbDGATqWkdpmGZ702NtkX7EN3ZEg9Q5tYhhMQC1IYhdq7J5GA21zanDb0jQVTXuFIT1JK9I0FNV1uPp6jwpqTPZw6lJ5bambi6rpYYDiaQilLNCrR5QosmJV47ooqdLkCGM7B1yIf9GYoKLq8uhQlhea8LonNhNDUNFz+cE5nOAHA+89qwr7+8YQChpHpKJ7cO4gr1tfNWT68UWkcnmwfp4OD41heVaJJSbIQAh86fznuv+08eINTeO+/v5TyiW63PwyzScz7eSPb1M8r6VQajExMIjg1nbGAkxACl66pxYtHRjP+2bZzNDPNz5cyBpwMqrmyBNNRmXeBCwAYD01hxDc5b/+m2YoKzPjU5WdgdCKc1llQ9SzdfLXHK2tK0esJLtpPQM0uSLaHEwC05ukZPXWlo83LKlN6/NUbHNjR5eEBP2lK/eDa1jh3Or161jPRxuFdSp83Lev6NzXb0eUKzLv08iEl4JJID6MmA2Y4HRrywWIWKae2tzljc59v76lA7AB+MhLNXIaTLTcznDr6xlFTVjTTc2lNfRlCU9GZsvdkDPtir+FCQeJzWmKNyVlWl7zQ1DSGfZMZCYqaTQLrGsoNHXD6yQvH8dz+5IIW6t+sIwdXqIt3bXsjLGaBh95cPMvp5WMuuP3hU1ani7feUQ6LWWBXkn2cDg2m1jB8IeetrMZjn70ILTWluO2+Hfi3bUeSDoa7/GFUllg0WXxECzMBpzQah6t9cDMZpLlsbS18oQjeSqGBfDK6XH44K6xJL1RC82PAyaDUGtp8bBx+smF44h8w1JKZfX2pH5j0uBc+k7yythRSxhqQLuRkhlPyBwNqnbleK9V5g1N46eho0o97q8eDsqKChMog53L1mQ2QEnhmH8vq0vX4nv6k+iYYWUefFy3VJac0II23uk5ZqS7BQHW3KwCzSaSUvTifTU2x964986ykdnhoApUlFtQm0OuhotiC0kJzSh/Mc9WRIR9W1pShsCC1w5VWZXXCfOzjdLKvYGYCTo4KK4Z9uZcJva/fiw2NtpmTP2ck+Xca72Qvjvn/t7c5bSgpNOONEww4JUs93snU72ir04YD/eN512YgEXt7vfjWkwfwnacOJPXzqUEBLf8PZUJVaSGuWFePP7zVh6lF3mMe39OPsqICXLZ27lXFiwrMaHXYsKcn8R6nwfA0Trj8CWUHJ8tpL8aDn7gA17c34l+eO4zH9vQn9Xi3fzJnGoYDgLNCzXBK/QREt1ttS5K5gNPbVtfAbBL448HM9nE68f/ZO+/wtq777n8PNogNDhAE95LEqS1b8k4sOx7xiJM6tuPGTeJmtU2zmrR526RtmjqrTdomadrGaRzHruM4iVe8JMtDsq1hDVISJYoUFzgBEHsD5/0DuBBFAcTFxb0gIOHzPHxscV6JwMU5v/Mddh+ayvlNvJLTCi7ZDFemBGhIDk6mSjA4nAnmbsth4NRkrIBaLsEAx/prSmnWHAJmmJItOHzaGYBcIuL0YqKWS9BcWYGTs6uzOfra7wZx73+/k7NH+vCEE/0NOs6hoR01arRWq/DKSeHDAC92frhrGF/77SAvzY2lDtN0lQmTVg6NQsJa4TRm96HeoIRUzN9ZTbbK59NzHnSYNKxaXwghqaa6iwWuDXUMlWo5arUKHJ8uvTKGlYos+MCkUyBOE0qqYiEYiWF43oueJTbYfJrqJpIHRE0rNEtKxCJsaNRjf7mpLmcmBX6Mdpl18ISiF9UQneHbLw4BSByy5tJOPOMsDYUTANy1qR52Xxh7VqizD0fjeGFwFju7TCsqSvrq9Riwuli3xA3Pe0ApODfUZUMhFeP7H+pHlVqO3TkOQBy+cFENnJQyMQwV0rwsdRN2YYfPQKKxcEuzAa/kmdmbjXG7v5zfxDOsVs2EkO3JVrmTyT/3E0J+JOiVlckLs14BESldhZNYRHKqHheJCLrqtBjkuKlY9EfgC8dWnMy3JG8+o7aVg8OnXUFY9JmtedlYZ9auiv3jrM2H545NgxDgr58agC/EbmARCMcwNOvBhgZudjogsVHurNFgJg85b5lErfCY3Q9PKIpnjuZ24nax4fJHMOkInLdxXQ4hBB016lROUDaECMRkKp/T5ThRSnF61pNTQ5tFr7xoNme+UBSTjgCnhrqldNdpS9KWwxRZcLFns4HZsBaT9X5o1oNYnKYCw4GEcs+klbN+ni5l3OGDRESyKo63NBsxNOuGK5Bf+9SlBvMYFVLhBJSmQnEl9p6x4Y1hGz59TRvEIoJnc1DIMOukYs9wAhLNYlVqGZ48NJnxc94YXoA7GE3bTreU/gY9vKEoq7ZoABjioaEuG4QQ7GivxN4z9pxUanZfGJWq4mioY6jTK/MbODn8qNUKb0Pb2VWL03NenM2yF+OKKxCBwxfmNTqhDHuF078AuAGAHQAopUcBXCXURZXJH6lYBLNOmfLUlhKjNi8aDMqcLRQ9dTqcnHFzsgewWTSp5BLUahUYYaFwMufRHrLOrMW4ww8vy4EPX/xkzwgkYhF+dM9GWJ0BfP/l06y+jjlx4hIYvhSDSgaHr7zYzwfrYiAVnP+rdyZW+WpWF2b43JMhv4mh06RhrZwYs/l4a6hbSqbK51l3EJ5QNKeGNotBCWsJHjSkg2kB4tpQx9BVp8XIgi9r/l6xMbUYgKFCCpU8/8DbdNRqE693c0U0cErlri0bFHeaNJxaocbsCeWyJIsqcWuzEZQC746XVU65MLUYgFRMYNIKo7ZZY9JARFCSA+NMUErx0AtDqNMp8Ofv6cD2tko8e2yG9cBi2hWEoUIKpaz482WkYhFuX2/BrpPzsGdQUj5zdBo6pRQ72qtW/F7rGxL3hJVaXZcyNOuBUioWPPh5R1sVbN4QTrNUSgPFp3ACEgPMfA4fJh3+jG2gfLKz2wQAePmEMBEc4+WGOkFgvaOnlC4fT5fWyu0SpN6gTMmdS4nRBR/rwPCl9NZrEYzEsyqQ0sEoAhqyyMJbq1WpjKlMTDsDKT80F7rMWlAKHOdoD+TCtDOApw5P4e4tDXhfrxn3XdaIh/eexREWwXyHJxIL9PUN+Q2cjCopFv3hizKroVCMJFsUb+kz4+iUCwMsF2YXI6mmqxUUTkDCruPwhTMuhhmc/jDcwSjn8OqV6K9PX/l8ajbZ0FbD/n5o0VfAHYzCExR2eBuMxAR/rp7Ks6GOobtOi1icYmiWe6nEamBdFK6hDihOhdPxaRd0SukFhz/tHJvqJux+Vq2SGxoNkIgIDpSDw3NiajGAOr2Ss50+G0qZGC1VqlXLtRSCPwzO4tiUC395fScUUjFu6TNjwuFnHQkx4wyUhLqJ4QOb6hGNUzydRnUdjMTw8ok5vK+nNushc2uVGmq5hHVT3dCsG50mtWCPTYYdHYlBGdv802gsDqc/UnQDJ4tekZcdf9zhK0irW72hAt11Wrx0XBhb3ZidKYcpD5z4hO3AaZIQsh0AJYTICCFfRNJeV6Z4aTBWFFThRCnFHwZm8gogjccpztp8aOUwWWY2loMcBjXMv5Mliyw8MXDyZtxohaNxzHtCeYU5bm01QiEV4fcFtET99PVRUAo8eFUrAODLN65FjUaBr/zmWNawx8MTTjQaK1DJItR4JQwVMsTiFO5gOXuIKyNJBcAXd66BUirGr/aPr/IVrR6D025Y9EoYsizqmGFGttNJpixAiAVVf0P6yufTHAYulgI01XmCEVz2rV144mBmmwQfnJ71QC4R5f1vzqhlSi3HKVuuYL7oK6SQSUSYLaJ20EGr+7zAcIaOGg384VhOj2tKKcbsPlbWCKVMjB6LrjxwyhGhH6MA0FWnK8mWyXREY3F898VT6DSpcefGegDADd21kIgInj02w+p7zLiCnEppVot1Zi16LFo8eejCtrpXh+bhC8ey2umARHRGr0WHoyya6ihNHDDw3VCXDoteiebKCtYDp0V/4jCoUl1cA6c6vRIejodVwUgMc+5QQQZOQMJWd2hiEQse/vMHx5KihUL9XS4V2A6cPgngMwAsAKYArE/+uUwR02CowLwnVDAbwVujdnzq0Xfx3AC7F810WJ0BhKJxTgqn1mo1FFIRBjk01U0tBqBVSKBTpm+zSv2MKjXcwSjsGSrM59xBUJpf5oZWIcXNvXV4+sg06xylfLB5Q3j8wARu32BJnaZrFVL8w+09GJr14Kevj6749UcmnXnb6QCkTnsy1cOXyc6ozQd9hRRNlRW4td+M3x+ZhltgpUuxMmh1ZbXTAeeGOWeyNGAxbVdCNJcwlc/LrQKn57yo0cizDs2Wwtx7rAKqW98YtsHpj+QUdMuF0/NedPBwQl1vUEKjkJTUpjVRZBEQdDNPCIFZpygahVM4GsepWU9aVSITHJ+Lrc7pj8ATjLLeOGxtMeLopKvkrJerydRiAPV6YTdmXWYtrM4AXP7Sfy174uAURm0+fOmGtan7mr5Chis7qvAcS1vdjCtYUgonALhrYz2OT7svuAc/e2wGVWoZtrUYWX2f/gY9Ts64EYqu/Bxd8Ibg8IUFaahLx472Krxz1pH1gBZI2OkAFJ3CyZxcO3B5PWBiSQo2cOo2gVIIEh4+ZvfBrFOUhGW1lGA1cKKU2iil91JKTZTSGkrpfZRSu9AXVyY/GozCn3Qv5Vhys3Qwj6YXxg6XS0Mdg1hE0GXWclM4LfpZVXm2Jq8rk62O+bfOt672nm0N8IaiOQVJcuVnb55FKBrHp65pO+/913eZcFNvLX6wazhjSOOMK4BZdzBvOx2A1Kba4S8PnLgyuuBFa5UKhBDcu60J/nAMvz9sXe3LKjieYARnbb6sdjog2VQnl2RVOE0IqHCSS8RYZ9amVTjlaierL4DCiWnkmRV4UHF61oPOmvw3DIQkXhtKKXjY5g0jFI0LaqkDgFqtomgynIbnPQjH4mmbJTtSTXXsh5zMkJitNWJLsxHhWDy1limzMsFIDAueUAEUTomDg1LPcQqEY/jBrtPY1GTAe9fVnPexW/rqYHUG8O7EyuodfzgKVyCSV07oavD+9RZIxQS/efecyskXimLX0Bxu6jVnzVhj6K/XIRKjWQ87GDv6WoEa6pazo70K3lA0bfnHcuy+hCqn2AZOluRjisvaYSLpEmGzj+KDtbUaNBiVeOk4/zlOQmV1Xuqwban7X0KIfsmfDYSQnwl3WWX4gHniF8pWx/jPD+URuskMNrgonACgx6LD8WlXzjkPbE+S25LXtdIABkDecueNjQZ01Kjx2H5hLSuuQASPvDWOm3rMqb/bUr7+/m4oJCJ89amBtP+mh5OLow2N3BvqGIwVZYVTvizNP+ur16HHosWj70xccrlYzClqT332gRMhBB0mddaN7JjdD5NWLtipV1+9DgPWc/eueJxieM6b88CpWi2HTCwSTOEUj1PsOZUYOM0IaMVyBSKYdQfzDgxn6K7TYWjWzbpSe7URuv2LwaxTYMZdHFmPx5Pq5J66C5WJ+goZqjVyDOcQzMtsgthuHjY3JV7HyrY6djDZl/VGYR+jTK19qQ+cfr5vDHPuEP7qxrUXWEav7zZBJhZlPWScdibuufnkhK4GRpUM71lrwu8OW1MqoFdOziEYieOWvux2OoZM9vPlMA11hbDUAcDlrZUgBNh7JrsWg1E4FWNLHQBOTXVCHsilgxCCG7pqsfeMnfeCpXG7P9VKXoY/2Frq+iilqWc3pXQRwAZhLqkMXzAB2IUKDmcCiodm3ZxvAKMLPmgUElRx9Db3WHTwhWOpk002JKwL/qyB4UDihiyTiDI21aUWA3kqnAghuHtrI45MOgUNy3zkrTF4QtEL1E0MNRoF/ubmdXjnrAP/lyav5fDEImQSEbrM+b+oM6c9jvLAiROeYATznlBKhceonIZmPXh34tJqXhpkBk4sFE5AIh8m20Z2wuETxE7H0F+frHxOBr9PLQYQiMSwpja34btIRGDWKzAlkMLpmNUFmzcMjUIiqDJmOJlftSbPwHCG7rpEqcRZW+5NZ6tBajMvsMLJpFNgzhXK+ZBGCAanXVDJxBkVSR01apzOwVI3ZvODEPan7gaVDB01auw/u7oDp3cnFrNafIuBc0NRYR+jNRoFqtTykrLELsflj+DHe87gurU12JrGPqZVSHH1mmo8PzCz4nOROdRkAv9Libs21cPuC2PPqQUAwDNHZ1CrVaQGvWww6xSo1sizD5xmPajRyAumIjKoZOiu0+JNFjlOxWqpq9EoIBYRzDhzf12fcASglIo57924sLO7FuFYHK8lH0984A5GYPeFBV3rXaqwHTiJCCGpOwIhxAhAmJ7eMrxRo5FDJhFhqgAKJ5c/ggmHH5e3ViJOgSNZZMGZGLV50VqtvuD0hy2p4PAcFiY2bxjBSJzVSbJYRNBSmbmpzuoMwKiSQSHNXwVx5wYLZBIRHt8vTL29PxzFz/aO4do11ehJY2Fg+NDmBlzWasQ/PX8S88sUDUcmneiu02ZtF2EDY6lbLFvqOHE2aUdtrTo3oHh/fx3UcgkefZv7YygcjePZY9MlowwBEvlNJq0c1Rp2J4gdJjXsWZrqxu1+NAl4enfu5DYxuGca2jo4DFwseqVgCqfdQ/MQEeC29XWY9wTzKolYiXN/f25q1+UwtpxSsdUxA6dsRRb5YtYqEI7Fi8LKPGh1obtOB1GGzK5OkwZn5jysFZvjDh9qtYqcXo+3tBjx7vjiqt3vKKV48BeH8PWnT6zKz88Ftu2+fNBVp8358C0aixfN69aPXxuBJxTFl25Yk/Fzbukz+sFJ3wAAIABJREFUY84dWlFhN8PToeZqcPWaalSpZXjy0CRcgQheP72Am/vMGZ/v6SCEoL8+e3D40Kwba3k4CM2FHe1VODyxCH945QN3uzdxrzVUrJwZW2jEIoIGg5KTknDC4UejsYLz3o0Lm5oMMKpkeJFHW924rdxQJxRsd4nfA7CPEPIPhJB/ALAPwLeFu6wyfCASEdTrlZhcFH7gNJhs/7n/8iYQwt1WNzLvQ1seUsYOkxoysQjHc8hxyvWUrrValcqaWs60M8Bbe4hBJcP7emrx28NWBML8h5g+tn8SDl8Yn7m2fcXPI4TgW3f2IRSN4++ePp56fySZdbGhIX87HQCoZGLIxCI4fKUfDLoaMKq7pflnKrkEd2yw4NmBGc5Wxe++dAqf/dVhvHZ6npfrLASDVhd6VxiiLocZ6gxnUE/4w1HMe0KC+vrbqtVQycSphTTTUMdk1+SCRa8ULMPp1aF5bGg0YG2tFnGaCGcVgtOzHqhk4rwKGJbSXqOGTCIqmYGT1emHvkIKtVzYs73apDVH6DyubMTiFCdm3OheIei/vUYNXzjGOtR2wu7P+Tm7tdkITygqqLJ4JU7NeWDzhnB0ylkUqrOVmFoMQComqGE52M+HLrM2kfEVZTfgdvjC2Pkvr+Mrvzkm8JVlZ9YVxMN7z+L29RasW2EI8t51JiikohXb6qZdARACmLSlp3CSikW4fb0Fu07O4/H9EwjH4qza6ZbTX6/HyIIvYyFKNBbH8LwXawsUGM6wo60KkRjNqpC0+0LQV0hZ51YVkuu7THhjeAHOHA8gJhw+NBY490gsInjvuhq8OjTP+r6QjVTuX1U5w4lv2IaG/wLAXQDmAMwDuJNS+oiQF1aGH+qNFZh0CG+pY/KbLmutxBqTBoc4WHh8oShm3cGUJYgLUrEIa82a1PWwgbEcspXdt1arMOHwp73BTTsDvHrrP7y1Ee5gFM/n0fyXjlA0hv96fRTbWozY3Jy9HaSlSoXPvbcDfxicTZ0mDM14EIrGeWmoAxKDLYNKWs5w4sjogg9iEbngRf+ebY0IR+PnhXWyZf9ZB/7rjURLYakE6frDUYwseNHN0k4HAJ1JFQ1j41rOuSwY4U69xCKCHosu1VR3es4Di14JjSL3U1CLQYkFARpK591BDFhduG5tTcrSIdSg4vScF521Gt5OTKViEdaYNDg+XRqPY6Eb6hiE/j2yZXTBi2AkvqINlhm+ns7wPF3OmN2PJmNuz9ktSbvTwVXKcWIyYDzBaE7RAKvB1KIfFr0yJ4UKV7rqtIjEKKuWwmgsjj977F2M2nx46rCVUyYNn/xg12nEKcXnr+9c8fNUcgmuW1uDPwzOZFSOzjiDqFLLeVGVrwYf2FSPaJziey+fRoNRiX4WOYvLYdTAAxnWJGN2H8LReMEHTluajZCJRdg3snKOk8MXLjo7HcOt/XWIxGhOqiFKaUrhVGh2dtXCE4ri7VF+eszGkmKCXF83ymQnlzvWEICnAPwegJcQ0ijMJZXhkwZDYRROA1YX6g1KGFQybGwy4DAHSXrKEsQxMJyhu06HQauLtew+13DW1io1YnGa2oQuZdoZ5FXqvK3FiNYqFR4/wK+t7ql3rZh1B7Oqm5byiStbsc6sxd/+fhDuYARHJhNDRb4GTgBgqJAVhbWjFBld8KHBoIRccr59ZJ1Zi01NBvwqx/BwXyiKL/76KBoMFWg0VmRc3BUbJ2fciFOsaBNdTq1WAY1cklHhNGbLLXyYK+sb9Dg57U7Vw3dytJNZ8qg3XolXk2Hh162tQa3gAyd+GuqW0mXW4sS0uyRC9AtRNw+cGzgJGQDPBkYlvdLzllEishk6+EJR2LwhNOV4Um3RK2HRK3Egj7bdfNh7xgZl0gJY7EP+xFC0MJtMJieSjd3n2y+ewt4zdnzuvR2glOKRt8eFvryMjCx48cTBKdy7rYnVoeYtfXWwecN4J4NKZtoVQF0J5jcxrDNr0WPRIhxNhIVzOVDoSw6pMtnqhpINdWsKPHBSysTY2KTHm8Mr5zjZvWFUFVlgOEOvRYfmygo8c5T9IfeCN4RgJL4qA6crOqpQIRPjpRP82OrG7H7UahWClcNcyrBtqfszJNRNLwN4FsBzyf+WKXLqDRVw+iPwZJCe8sWg1ZV6EdjcZIAnFM2pvhg4ZwnKR+EEJG6Y7mA0lS+QjanFRO6SiqV1gbm+5U117mAE3lCUNwsIkFD9/NGWBhwYW8yovsiVaCyOn7w2gr56Ha7sqGL9dVKxCP98Zy8WPCE89IchHJ5wokot5/Xva1TJygonjowseDMOa+/d1ohRmw9v5XAK9M3nT2Jy0Y/vfrAfm5sMOJaDajAbX3/6OK777h586ddH8cTBSYzZfLwNAQaZpqsVrDnLIYSg3aTOqJyYcBTm1KuvXo9wLI7BaRdGF3ycG9qY3B++c5x2D83DrFNgba0GtUlLB99DLQCweUOw+8K8NdQxdFu0WPRHBLlmPmGKLAqhcKpUyyEWEcy6VlcFMmh1Qy4RnWcJXo5RJUOVWsaqqW482ZrE5Tm7pdmA/WOOgg8mI7E43hm147b1dVBIRSUycCpMllBLlQoKqShrcPjTR6fx09dH8ZHLmvC593ZiZ1ctHts/wbvaky3fe+kUFBIRPnsdu8O9a9fUoEImzthWN+MKwlxiDXXL+aPNDSAkkTHJBX2FDM2VFRmDw4dmPBCLCNo52NHz5Yr2KpyYca9YflPMCidCCG7tr8O+ERsWPOzs8kwT+moMnBRSMa7urMbLJ+Z4sSCP2X2CHyxeqrBVOP0FgDWU0m5KaR+ltJdS2ifkhZXhh4ZkXa2QtjqXP4Jxuz91Mrkp2TiRa47T6IIPhOQf1sZsNAdZbpAnHbkt7JlN/fIcJ0a2zXeY4wc21UMqJnj8wIUtcVx4bmAG43Y/Pn1Ne86nS/0NevzJjhY8+s4EXj45hw2Nel5DAg2qssKJC/E4xVmbD60Z8s9u6jVDXyHFo++wU8rtOTWPX70zgU9c2YqtLUb01uuw4AlhjgcVBKU0kUsWieHlk3P48pPHcM1392DrP+3Cpx89hIf3nsWg1cU57HXQ6kKVWpYaiLClo0adUTkxbk/k6egEDvnsb0jcQ58+Mo1wLM5Z4cMoY6xO/tStoWgMbw7bcO3aGhBCYFTJIBOLeHlMLOf0LL8NdQzdJRIcbvexL7LIF7GIwKSRr/oQbtDqwjqzNmuuSXuNmtVhVmpIzGHzsKXFiAVPKDW0KhRHJ53whWO4urMa3XU6HMsSjLyaBCMx2Lyhgg2cxCKCNbVanJjJvK47Me3Gl588is1NBvy/W7oAAB/d0QynP4LfH7EW5DqXcnTSiecHZvHxK1tRpWanaFHKxHjvOhP+MDiLyDJbHaUUM84AzDzlhK4W925rwst/edWKeVbZ6G/Qpwo2ljM060FrleoCtXch2N6eOMTdN5JZ5eTwhWEsYJtbrtzaX4c4Bf4wyE7lxLg92MaS8M3ObhPm3KGsQfJsGLf70JJHjnCZzLAdOE0CKO6jljJpYdpDhLTVMVJ4JqS30ViBKrUMh3KUpI/afLDolXk3vHWaNJCISOq6smFdDOTUsqJTSlGlll2gcGIGTnwvBqrUcuzsqsVT707lfUoXj1P86NURdNSosbPLxOl7fH5nJ+oNSniCUV7tdABgrCgrnLhgdQYQisYzKpwUUjHu2liPFwdns55aufwR/NVvjqHTpE5lTjDPbT5O3M/afHAFIviL93Tg3a9dj5f/8ip8844e7GirxNFJF77xzAnc8m9vov8bL+H+n+3HL98ez0lpMJBsusp1ENpp0sDmDac9mRS6oY7BoleiUiXD75KbI66WgFqdAoTwq3Daf9YBXziG96ytAZA4Ca3VKQQZVDBKM66WwkysrdWCEBR9vfq5hrrCLOBrdQpBBodsiccpTky7WakSO2o0GJ7zZr0njCWHRVyCbLckcw33FzjHae8ZOwgBLm+rRF+9DoPTLsFaIDMxtehntc7ItWyFD7rMWpycSd9S6PSH8ae/PAidUoof3bcxlXG0rcWItbUaPLx3rKCKNUopHnphCJUqGT5xVWtOX3tLnxlOfwR7z5w/tHAHo/CFY7zmhK4GIhFBe5526f56PWbdwbT3rdVoqGPos+igkUtSWWzLiccpFv1hVBapwglIrIXWmDR45mh6ld1yJuyJ16tCDZ+Xc90aE8QigpdOzOX1fTzBCGzesKBZnZcybAdOowD2EEK+Sgj5PPMm5IWV4Qdm4jyZJm+IL5iAbibskxCCTU2GnIPDRxe8aMszvwlIbK47TBoMWLNvKuJxykkW3lqlxujC+Qona7Kulk+LGcPdWxuw6I/kXf/5ysk5nJrz4NPXtnEO+qyQSfCtO3shE4twRTt7Sx4bDCoZnIFI0VQZlwqM2m4lO8qHtzUiGqd44uDKSrm/fXoQdm8Y3/vg+tTwt6tOCxFBTmH8mTiSlMGvb9RDJCLoMGlw77Ym/OvdG7D3K9dh31euww/uXo/bN9Rh2hnA1343iJ+8NsrqewcjMQzPe3Oy0zGkmurS2OrGHb6CLEIIIehv0MPpj4AQcLYEyCQimDQKTPEYlrt7aB5yiQjb284952u1CkEynE7NeaGvkKKa5/YrlVyClkpV0QeH55ormC9mnXJVFU4TDj88oeiKgeEMHSY1PKEo5twrD87H7X4YVTJoOYTut1eroa+Q4kCWtim+2XvGhp46HfQVMvTX6xGMxDPmygnBWZsP13xnD654aDe+/9KpFYeQ58pWCrfJ7KrTwhWIYHrZYzUWp/izxw5jzhXCj+/bhBrNuUM/Qgge2NGMoVkP3h4t3O/zzTM27Bux47PXtefcNHn1mmpo5JIL2upmXMIcapYijBp4ua3OE4xgajFQ8MBwBolYhG2tlRcMCxmcgQjiFEVrqWO4td+MA2OLrAL3JxyJ3KN8xQJc0VVIcVmrES/luT9iFK0t5YY6QWA7cJpAIr9JBkCz5I0ThJC/IIQMEkKOE0I+l3zf1wkhVkLIkeTbTRm+9kZCyClCyBlCyFe4XsOlgqFCCpVMzDrPiAtLA8MZNjUZMG73s/YAU5q0BOWZ38TQa9HiOIvg8AVvCOFY7taF1mpVWkudVExQzVI6nQs72qrQYFTi8f3cbXWUUvzHnhE0GJW4tY+bd57hyo5qHP/7G9BXz7fCSQpKAVdA2MyxYmLek/9GbzSVf5Z5QNFWrcb2tko8tn8i40Dv+YEZ/P7IND57XTt6l7THVMgkaK9RY4AHyfKRSSdUMjE6Mpxw1umVuG29Bf94ey9e+txVuLW/Dg+9MMTqtO3UrAexOE0psnIh1YC1bIMXjsZhXQwUzNfPZOE1GSvyWsBZDEpeFU6vDs3j8rbK88I0a3UKzAphqZvzoNPEX0PdUrrqtIJb6mZdQbx8Yo6zosKaUjgVZjNvSg4OVytMnU1gOANz38hmqxvPI4tDJCLY3GTEgQIqnHyhKA5PLmJ7eyWAc/eBQtrqHnkrEa7da9Hh3149gx3/vBt/8fhhHE5zeMisKQutcAIuVCh+96VTeGPYhr+/rRsbGw0XfN1t6y0wVEjx831nC3Kd0VgcD70whHqDEvdsy71fSS4R4/puE148PotQ9JzabCZ5qGku4dBwvuiu00EsIhfYqBh17GoNnADgivZKTDj8aQ/6Hb7EnqjYB063JPcImbLEljLh8K1KftNSbuiuxciCj1WhRCaYVtCywkkYWA2cKKXfSPfG5QcSQnoAfALAVgD9AG4hhHQkP/wvlNL1ybfn03ytGMB/AHgfgC4AHyaEdHG5jksFQggajBWpE1MhGLS6Ltjg5ZrjNOsOwh+O5d1Qx9Bj0cHuC2fdDDEvCPU53ixbq1Vw+MJwLskbmnYGUKtTCFIRLBIR3L2lEW+N2lNtfrmyb8SOo5NOfPLqtqw5GWyQ8vA9lsMMLVcKXLyYeHvUjq3f3IV3c1QDLmd0wQeNQoKqLLkA92xrxNRiAK8PL1zwsQVPCH/z2wH0WnRp2wt7LXoMWPNv+Do84URfvR5iFs8TkYjgO3f1YUuzAV/49dGsVeXMxrWbhVJiOWadAmq5BGeWKZyszgDitHCLEKbyuTPP/CKLXgkrTwqn0QUvxux+XJe00zGYdfwPKiilyYGTMIGv3XU6WJ2B8+7dfBCOxvHC4AweeHg/tv/zLnziFwc5KyqmFgPQKaWc1DlcMOsU8IdjcAejBfl5yxm0uiEVE3Sw+J0zn3M6S3B4vjbYTU0GjNn9vD9OMrF/zIFIjKZUw82VKmjkkoIFh/tCUfz60CRu6jXj4Qe24tUvXIOPXN6EXSfncceP9uG2/9iL3x+xIhxNWPymFv2QiUWCHLBlYm2t5gJL7HPHZvDjPSO4Z1sj7t6afrijkIrx4a2NePnEnKBqfyBx//qb3w5i0OrGl29cyzlH6Na+OniCUbxx+pxSZppROJW4pY4PFFIx1tZqLshxOjmzOg11S9mRfA6nUznZvYn7SWWRttQxNFep0F+vY9VWN+Hwc7Iu88l71yUiQl7Ow1Y3ZuOe+1cmO2xb6qoJId8hhDxPCNnNvHH8mesAvE0p9VNKowBeA3AHy6/dCuAMpXSUUhoG8DiA2zhexyVDvaFCsNBwJjB8qRoCSAx8ZGIR6400Y09r4ymsjdlwDmax1TGndA0cLHUAMLLEVjfjDArqrf/gpnqIRQSPH2AX/Lycf999BjUaOT6wsZ7nK+MP5tRn8RIJDv/tu4msnrdzaI9Lx6gt0VCXTRGys6sWVWoZHn37/McQpRRffWoAvnAM3/9Qf9phYq9FC5s3lJeiJRiJ4eSMO6fsL4VUjJ9+ZDMseiU+8YuDKw5cB60u6JRSTlYkQhKtNss3suP2wi5C+uv1EBHknUFhMSgx6wryYk/dPTQPINGgtJRanQLhWJzXAfGsOwhPMMp7YDhDVx37enU2nJn34JvPncDl39qFT/7yXZyc8eATV7WCEHBWyBSqoY6hNqmYEMIeyYbj0y50mjSsNueVKhkMFVKcWUHhFIrGMOMK5DUkZhRGfNiI2bDvjA0ysQibmxL5USIRQW+9rmADp98dscITjOL+y5sAJDacf3drN97+6/fgG+/vhjsQwV88fgQ7HtqNH7wyjBPTblgMSkEO2DKhkkvQXKlKBYefmvXgS08excZGPf7u1pXPnu+7rAmEEPzy7XFBr/HbL57C/x2cxJ9d1865hQ1IDC10Sul5CpMZZxAiAtTwbDUuVfrq9Tg25TyvnezUrAcauUSQaAu2tNeoUaORY+/Ihes65rWy2BVOQCI8fMDqWnHNFYzEMOcOrbrCqU6vRF+9Lq/YkTG7HyatHBWy3CywZdjBVqLwKIAhAC0AvgFgDMABjj9zEMBVhJBKQkgFgJsANCQ/9llCyDFCyM8IIRfqYgELEgHmDFPJ910AIeRBQshBQsjBhYULT/MvJRqMSkwu+gWRyy8PDGeQS8TordexVjixsQTlwjqzBiKSvamOa/AlY/1bGhxudQYEfZGr0SrwnrU1ePLgVOqUkS2Hxhfx1qgdD17Vumo+azYYKi4dhVM4GscLyRfHTPW+bBld8LEa1sokInxocwN2D82d581/8tAUXjk5hy/fsCaVZbSc3qR9Mp8N0PFpF6JxivUNuVkxDSoZHv7olkQex8P7Mz4+Bq2J4GGuVqxOk/qCzJRz9eqFWVAZVTL86hOX4WNXtOT1fSx6JaJxyksY9O6heXSa1Be00DBNgHza6k7NMoHhwgycmKa6fILDfaEo/u/ABO780V689/uv4+G9Y9jSbMTDH92CvV+5Dl993zqsMWnyGDgVrm4eOGfREcIemQ1KKQatLlb5TUBiMNxhSgSHZ2JqkVElcn/O9vBYlMCGN8/YsanJcJ5lta9ej6FZ93m2KiGglOKRt8bRZdam1OkMarkEf7y9Gbs+fzUefmALusxa/Msrp/HGsG1VQoK7zFqcmHHD5Y/gwUcOQiWX4Mf3bco6rKzTK3Fjdy0e2z8Bf1gYJd9PXx/Bj/eM4N5tjanCDa7IJCLc2F2Ll0/MpULcp10BmLQKXhTqFwPrG3RwB6MpKxSQCAxfUyuMHZsthBDsaK/CvjO284ZhQKKBFAAqi7iljuHmPjMA4NkV4gyYPdRqD5wAYGeXCUcmnZzXPGO2wmR1XqqwvWtVUkr/B0CEUvoapfRPAFzG5QdSSk8CeAiJTKgXABwFEAXwYwBtANYDmAHwvTRfnu4OknaKQin9KaV0M6V0c3V1NZdLvWhoMFTAH44JsolfHhi+lE1NBgxMuVg1nows+KCSiWHS8nNyUyGToK1anXXgNOkIoEotz3kI02CsgEREUjlOsTjFrDsoeJjjh7c2wu4L45WT7GWj1mTwsr5Cig9nkJwXCymF0yUwcNp7xgZXIIJqjTxjvS8bfKEoZlxB1vlnH97aCArg8QOJ2b3VGcDfP3MCW1uM+JMdmYccXWYtxCKS9Tm1EocnzgWG50pzlQr/df9mTLuC+MQvDl5wXwlH4zg162GVA5OJjhoNbN7QeY+/cbsfSqmY9wDrlbistRI6ZX52Kib/J19bnScYwf6zDly7zE4HCKOMYQYJQg2cqtRymLRyTjlOM64A/urJY9j6zVfwV78ZgCsQwV/ftBZvffU9+MlHNuHatTUpq+jmZgMOTzhzVphRyhRZFG4Bb2IGhy7hsh4zMe0KYtEfySnov6MmMRjOdIg2wQyJ89g86JRStFSpCpKhZPeGcHLGjR3J/CaG/nodIjGasgkJxf6zDgzNenD/5U0ZN+oiEcG1a2rwv3+yFbu+cDUevKoVD+xoFvS60tFVp8WkI4BP/vIQpp0B/OS+janHbzY+uqMZ7mAUvz1s5f26fn1wEv/0/BBu7jPj72/r4WXgcUu/Gb5wDHtOJRSmM85gOb9pCYz9nMlxopRiaNaDtebVs9Mx7Givgt0XxqllFn1mH8YcrhYzZp0SW5uNeGaFHKeJpEV1+WHUanBDdy0A7ra6MbsfLeWBk2CwHTgxCb4zhJCbCSEbAHD25VBK/4dSupFSehUAB4BhSukcpTRGKY0D+C8k7HPLmcI5NRSS18Cut/ESJtVUJ0BweLrAcIZNTQaEY3FWjUAjC160VKt4PZXotehSCqxMTDm5WRekYhEaKytSCqd5T8K6UiewjPeqzmrU6RR4bD87W92bwzbc8sM3MOnw4/sf6ocqx7aUQpNSOF0Clrpnj81Ao5Dg41e0YNYd5LxpP5tqqGOnDmwwVuDqzmr834EJhKNxfOnXRxGjFN+9q39Fe4RSJkZHjTqvE//Dk05Y9MrzWoRyYVOTAf/6R+txaHwRX/j10fNOD0/PeRCOxVkrJdJxLh/m3CKRCR9ezRNTLtQn70X5Boe/OWxDNE7xnrWmCz7GZInw2XB2as6Dao087WsKX3TX6TgpnL785DH87ogVN/eZ8ZtPXY5XPn81HryqLe0wcnOTEd5QFEOzuf0chy+MQCRWUEsIs2FfjaY6ZoDdncOguKNGDVcgkrGUZIwnG2yvRYeBAiic3kpaqncsa33ta2BUpcIOvX7x9ji0CgluW5/WMHABbdVq/PVN63BdmnuC0DDB4W+N2vH193djU9KCyIbNTQb0WLT4+d4xXhX/Lx2fxVeeGsCVHVX4/of6WeUTsuHy1kpUqmR4JtlWN+MKwLyKVrFio71aDaVUnDqwm3Yl7di1+dnR+YAZHi/PcXL4wtAoJJBJSkOldmu/GafnvCnl8XKY4X4xKJzaa9RoqVLhJQ4DJ08wAps3hKZyQ51gsH3E/yMhRAfgCwC+COC/AXyO6w8lhNQk/9sI4E4AjxFCzEs+5Q4krHfLOQCggxDSQgiRAbgbwNNcr+NSgamtFSIsMV1gOAPTFsLGVje64EvlIvFFt0WHOXdoxRawSUeA82S+tUqdyp5i7ElCD5zEIoIPbWnAG8O2FX+f8TjFf7x6Bvf/7B1Ua+R4+rM7VmVxmCtKmRhKqfiiVziFojG8dGIWN3TXYktLYsF8hKOtboSDHfXebU2Yc4fwyV8ewr4RO752cxer0Mdeiw6DLNofM3FkwslJ3bSUm3rN+Or71uK5YzP49ounUu8/nkPTVSYYO+FSW924w18Ui6lc4UvhtGtoHjqlFBvT/N6q1DKICL8Kp9NzHsHymxi6zFqcWfCyUt8yHBpfxBvDNnxhZye+fVc/NjUZVxxC5lqcwcD8vgppV5JJRKhSy1clw+m41QURAdblsElM9zxdyrjdD7Vcgso8h5Z99TpMu4Ks23a5sveMDRq55IK1VJ1OgUqVTFBb36wriBcHZ/FHWxrOs/MVKz0WHSQigru3NOCeHBXbhBB8dHsLhue92JcmX4cLb4/a8dnHDqPHosNPWFj7ckEiFuHGnlrsPjmfUjLXlRVOKSRiEXotupTC6VRyuL9uFQPDGcw6JVqrVXhz2cDJ7gvnfV8qJO/rNUMsInj6aHpV4IQjAKVUnLWwphAQQrCzy4S3RmxwB3NrumaiE8oKJ+FgO3BapJS6KKWDlNJrKaWbkFAmceU3hJATAJ4B8BlK6SKAbxNCBgghxwBcC+AvAYAQUkcIeR4AkiHjnwXwIoCTAJ6glB7P4zouCRoMjMKJ34ETExieaYNXrZGjqbIi64I7GIlh2hVgbQliS08yqyOTdSIWp5h2cs/KaKtWYdzuRyxOYU3W1RbiVPpDmxsgIsD/HZhM+3FXIIIHHzmE77x4Crf01eG3n97BWzZWITCqZHD4cnuxKDVeP22DJxjFLX1mdJm1kKSp92XL6IIPhOR2mn/tmmqYdQrsHprHNWuq8eGtDdm/CEBvfaL9cZrDxnTeE4TVGcCGHPOb0vHgVa24d1sjfvLaCB59JxECO2h1QyOX5JW1VJdsqhtOKpzicYoJhx/NPJUZFJIKmQRGlSxVjMCFeJxiz6l5XNVZnTY3RCIWoUaj4C37Jx6nGJ7zsmory4fuOi1icZrx1DYdP9jHguuSAAAgAElEQVQ1jEqVDPdd1sTq8+sNStRqFTg4ltvAaTXq5oFk4+AqZDgNTrvRXqPOadjBPD6G59L//sbtiZrufFWJfcncugGrsAqjvWfsuKyt8oLnGCEEffU6QRVOv9o/gRilrB/Xq021Ro5Xv3gN/umOXk6/31v6zKhUyfDw3rG8r2XQ6sLH//cgGo0VePijWwRRkN/SV4dAJIbfvDuFUDRebqhbRn+DDsen3QhH4ynraWcRDJwAYEdbFfafdZyXuerwhUoiMJyhSi3H9rZKPHN0Ju1B40TyQK5YFOA7u02IxCheTRadsGWcBxt2mZVhO3D6N5bvYwWl9EpKaReltJ9Suiv5vo9QSnsppX2U0vdTSmeS75+mlN605Gufp5R2UkrbKKXf5HoNlxIqeWLjwXdTHWNX66vPrCjY1GTAofHFFRURZ20+UMpfYDgD00Z0PEPmzJw7iGicpgZyudJarUI4FsfUoj+lcCqEv75Or8Q1a2rwxMFJRGPnh4efnHHj/f/+Jvacmsff3dqFH9y9vuhtdMsxqKQXfUvdc8emoa+QYkd7FRRSMdaZtZyDw0dtPtQblDnlkEnEInzy6jZY9Eo89IE+1osF5gSei83kSDK/KZeGukwQQvCN93fjmjXV+NvfH8erp+YxOO1CV502r9YkpqmOUU7MuoMIR+MlqXACEgPwfBROA1YXbN4w3pMmv4mhVqfgTRkztRhAIBITXOHEtJiyzXE6PLGI108v4BNXtbJusCGEYFOzAQdzDA5nQlgtBQ5k5vP3mAu5BIYzVKvl0CmlOJ1J4eTw89Iq2V2nBSHCBodPOvyYcPixo60y7cf76vU4M++FL8R/0HU4Gsdj+ydwTWd1SW20GowVnO/zCqkY92xrxK6huVQDKRfO2nz445/th04pxSMf2yrYEGFrixHVGjn+582zAIA6gXNCS42+en0qv/HUrAcWvRJaRX75h3yxo70K/nDsPPW63RuGUVVaLYO39tdhwuFPex+ccPiKIr+JYUODAVVqec62Or5s2GUys+LAiRByOSHkCwCqCSGfX/L2dQDFr70tk6LeoEwtZPlipcBwhk1NBti84VSwXDoYW1obzwonjSIR+pmp1pixpHFVODEDstEFH2acAWgVEmgK9EJ395YGzHtCqbpyAHjq3Snc8aO9CEZiePzBy/DAjpaiOXXIBUOF7KJuqQtGYnj5xBxu7K6FNHmi3d+QqL9e3mjChtEFLyc76h9vb8YbX76WdeAqAKxLqrG4nPgfnnRCIiKpzX6+SMQi/Ps9G7HGpMFnH30Xx6fdednpGDpq1DidDK5mTr2aS2gzthSLXglrHvf9XUPzEBHg6s7MxRu1WgVmeAqbZgJWhT6hrjcooZFLUvXq2fjBrmEYVTJ8JEcVyJYmA6ZdwZyGflOLideSfEPjcyXxeyzswGneHcS8J5RTfhOQbKqrUeNMmqa6WJxi0uHnZYCikkvQXp1fbl02mIyXKzqq0n68v0GHOM3euMuFF47PYsETwv2XN/P+vYuZ+y5rgpgQ/OKtcU5fP+sK4r7/fgcUwC8+tlVQ1ZFYRHBzrzn1WlRWOJ3P+iXB4UOzbqwrgsBwhstbKyEi5+c4lZqlDkiEcUvFBM8sa6ujNKEAL6YhjUhEcH2XCXuG5nNq9xyz+VCjkZfcAX0pkU3hJAOgBiABoFny5gZwl7CXVoZPGgwVeVkr0rFSYDgDmxwLJni7RQDbSo9Fh0Fr+lPsc9YFjgOn5PWOLHhhdQYFz29aynVra1CjkeOx/RMIRWP42u8G8PknjqK/Xo9n/+xKbG5mH6RZbBhVsota4bTn1Dx84Rhu6atLva+/Xg9vKIpRW+aq73TE4zSRf8ZxWJvrKbFCKkaHScNpA3Zkwol1Zm3OjZAroZZL8LOPboFWKUU4Gs+p6SoTnaZzTXXjJX7qZTEkFE5cM7deHZrHhkbDivf4Wp0Cc25+Mm6YsPaOGmEtdSIRwbo6LSuF05FJJ/acWsAnrmzNeTHK3IdzUTkVuqGOoVangCsQEawyPh3Mvz9jf8+FDpMap+c9Fzy2Z1wBRGKUt+dsX70ex6a459Zl480zNtRo5BlLH3otjK2P/4HTI2+NoTFZInEpYdIqcFOvGU8cmMxZOeb0h3H/z96B0x/Gzx/YwrqsIx9u6TsXcSt0E3KpUW9QwqiS4cCYA6MLPqwpEjsdAOgqpOi16FIDJ0opFn1hGIsg7ygXdEopru6swbPHZs47FF3whhCMFJ8CfGe3Cb5wLKectjG7r2QPFkuFFQdOlNLXKKXfAHAZpfQbyf//BwD/TSkdLsgVluGFeqMS1sUAJwVFJlYKDGforNFAI5fg4EoDJ5sPdToFa6tCLvTUaWF1BtKGUE/maV0wqmTQKaUYtfkw7QwUdOAkEYvwoc0NeO30Au768Vv45dsT+NOrWvHox7cVtL5dCC52hdOzx2ZQqZLhstZzQ0HmlO7IZG6bill3EIFIrCCLXoY+DsHhsTjFsSknL3a65dTqFHj4gS24dk01ruzIf+PUzuTDzHsx7vBDIiIlW0Vt0SsRjMQ5PZ/m3UEMWF24bgU7HZCwEXtDUXhyDOlMx+m5hCWiEErR7jothmY8iGV5TfzhrmEYKqS4//LcM27W1mpQIRPnFBw+tegvuJ0OOGcHL6StjlHtdHEZONVo4PRHYF/22J5IZXHwNXDSweYNCZJvFY9TvDVixxXtVRnVyNUaOep0ChzlWWV1fNqFA2OLuP/yprxsyKXKR3c0wxOK4ql3p1h/zaIvjAd+fgBjNj/+6/7NqYwvodnYaIBZp4BUTFBVYnYsoWFyzl46PodonGJtETTULWV7exWOTDrhDUXhDkQRjdOSUzgBiba6WXfwvL0c4xIptoHT9rZKqGRivHR8lvXXjNn9aC431AkK2wynbxFCtIQQFYATAE4RQr4k4HWV4ZkGQwXCsTjmVmhsywVXYOXAcAaRiGBDkwHvZlE4CRVqzVxfupPsqcUATFo551YRQghaq1UYXfBi2hUouLf+j7Y0gCKRJfDjezfiqzetSxvsW2oYVTJ4glFEluVTXQz4w1HsOjmPG3tqz/tdtVaroZZLcs5xYuyofAfur0RPvQ6L/khOisnheQ984VhqsMY3a2u1ePiBrahS578Y70w1YHkwYfejwVhRss+rfJrq9pxaAICsA6daHgcVp2Y96BQ4MJyhu06HQCSGs7bMOS7HppzYPTSPj3NQNwGJg4GNjQbWweGU0qTCqfADp9TvsYDB4YPTLrRUqTgNGJng8NPLgsPHeA5/ZTIqj+Z4GMCGoVkP7L4wtrent9OduwY978Hhj7w1DoVUhA9uYlcYcbGxoUGP/nodHt43lvUg1u4N4aEXhnDFQ7txdNKJH354fdbfGZ+IRAQfu6IF162tuSSHg9nor9cjkGwcXVtECicAuKK9CtE4xf6zdth9CSVwZYkpnADg+i4TlFLxeW11TFRKMWU4AYBcIsY1a2vw8om5rAdKAOANRbHgCZVUjl0pwnYV3UUpdQO4HcDzABoBfESwqyrDO8wNga/gcCaIO5vCCQA2NRpwas6TtqaS0vwsQdnoTp6cMgHnS5la9HMODGdorVLjxLQbTn+koAonIPE7/fkDW/Hcn1+B9/Was39BicDYdy5GW93uoXkEIjHc3Hf+70ssIufV+7KFseAVWuEE5JYpci4w3CDINfFJnU4BlUyM4TkvxpJtV6UK05pp5WCn3jU0B7NOkXUBX6vlZ1ARjcUxuuBLDfyEpsvMtJhmfhz/cNcw9BVS/PH2Zs4/Z1OTAUOzblYKMKc/An84tjqWOu1qKJzcqdfoXOmoSTxOziwLDh93+CCTiGDOIZtuJfLJrcvGvpGE1WZHe/rAcIa+Bh3G7X44eXpNdPkj+N0RK25fb4GuojgClgsNIQQP7GjB6IIPbyyrrmdY8ITwredP4spvv4qfvDaC69aZ8MLnrsKNPYVfb338ylb850c2F/znlgLMQZZMLBIkmiMfNjUZIJOIsPeMPaU0LrXQcCDRevuedTV4fmA2VVY0Yc8vlkRIdnaZYPOGcWQy+2EPE51QbI+diw22R3ZSQogUiYHTv1NKI4QQYQztZQShIXlDmHT4sbUl/3yfYzkMnDY3G0ApcHjCeUFWwIInBE8omspD4ht9hQz1BmXa/INJRwBbmvPbALdWq+AOJjIALAUeOAErh/mWKsaK5MDJF0GNpjStTJl47tgMqjVybGu5cIPR36DH/7w5imAkxjrnaHTBB5VMjJoC2ijX1GogEREcs7pYDzqPTDqhr5CiuQSykAghaDdpcHouoXDa3FT8Q7JM1HNUOIWiMbw5bMNtGyxZiweYENt8A6fH7H6EY/GCDZw6TGrIxCKcmHbjtvWWCz4+MOXCKyfn8cWdnVDnESS6pdmIePL176os9+t8cwXzgVE4FSo4fNEXhtUZwEc4WBUBwKSVQ6OQYHhZcPi4zY8Gg5I3JYhCKkYnx9y6bLx5xobWalXWIOj+pHXr2JQr62OIDb8+NIlgJM753/5i4aZeM775/En8fO/Z89ZS854g/vO1UTz6zjjC0Tje31+Hz17Xjvaa4lLPlEnAqBDba9RFp0ZWSMXY0mzA3jO21N6rFC11QKKt7tljM9g3YsdVndWYcPhRq1XwmsvJF9eurYFUTPDkIStEhCRt/wnrvycYhTsYhTf553JDXWFgu4r6TwBjAI4CeJ0Q0oREcHiZEsFiUIKQc7lF+cImMJyhv0EPEUkEhy8fkIykLEHCKTR6LbqUIoshGotj1h3M+yR5abNeoRVOFysGVeLE9WLLcfKGotg9NI+7tzRAnGYztL5Bh0iM4uSMm7USaCRpRy1kG6FCKsaaWg0GctiAHZ5wor9eXzKtiR01ajw/MAN/OIbGEpZZ65RSqGTinAsjDpxdhC8cw3uy2OkAoEabGHbmq4xhrFGFCn2VikXorFVnDA7/wa5h6JT5qZsAYH1j4vXv4JiDxcApv+bUfKiQJZrxCqVwOhcYzq1ZkmmqW26pG3f4eQ9/7W/Q4fmBWVBKebuHhaNx7D/rwAc21mf9XCYaYMCa/8ApHqd45O1xbG4y8NYYWqrIJCLcu60R//rKMM7afKiQifHjPSN4bP8EonGK29db8Jlr2wRdn5bJn0q1HGtrNdic5wGyUGxvq8J3XjyF4eS9yliiA6erO6uhkUvwzNHp5MCpeBXgWoUU29uq8Nj+CTy2fyLt56jlEmgUibf3rjOlVLNlhIHVwIlS+kMAP1zyrnFCyLXCXFIZIZBLxDBpFLxZ6tgEhjOo5RKsrdWmzXFiLEFCZtD0WHT4w+As3MEItMmsiBlXELE4RYMxv4X90oVIeeDED8aL1FK36+QcQtE4bl7STreU9Q2JxdLRSSfrgdPogm9VFll99ew3YN5QFKfnPXhfb22Bri5/Ok1qPHkokQnRVKQLKjYQQlJNdbmwe2gecokI29uy55QopGIYVbK8LXWn5zwgpLD20C6zFq+cnL/gcTxodeGVk3P4/PWdeQeYq+USrDNrVyzOYDincFqdx5xZpyhYhhNjc+dqqQMStrpXTs6l/kwpxbjdd14hAx/0WvR4bP8kJh0BNPJ0Cn5k0gl/OIYdLLKAdEopWqpUOWf8peO14QWM2/34ws41eX+vi4F7tjXiP149gz995CDG7H7E4xR3brTg09e0o7lssSkZnvzUdkjFxXmgdUV7YuD07LEZAKU7cFJIxdjZXYsXjs/iH+/owYTDjyvai9dl8a07e3FgzJEcKklT/1XLJVDLJWkPfssIx4raQ0LIfcn/fn75G4A/L8gVluGNBqOSF4UT28DwpWxuNuDwxGLK+8swuuCDQipCXRZJeT4wC9oTS06yJ1MnyfktHpsqKyAigIgAphJvhysWGEvdxaZwevbYDGq1iowWrVqdAiatHEdYbioC4RiszkBBN+gMPRYdXIEIqwH2sUknKIVggeFCsPSkq9SbSyx6Zc4ZTruH5nB5WyWUMnZS+VqtIm9lzJl5LxoMFax/Jh901+ng8IUvGLL8cNcwtAoJPrqjmZefs6XZiCOTzqxFCFOLfmgUCaXRamDi4ffIlkGrCxY9O5V0JjpMath9Ydi9iTBemzcMfzjG+5A4FRzOY3D33jM2iAhweevK+U1Lr4EPW98v9o2hSi3Hjd2lcwAgJDUaBe7YYMFZmw8f2GjBq1+8Bt++q788bCox1HIJ5wIgoemx6KBVSDA064FKJi5KCxpb3r++Dp5gFC8dn8OcO1TUNrQ6vRK3rbfgurUmbGk2Ym2tFha9EjqltDxsWgWymV2ZO64mw1uZEqLBUIEpR/4Dp1wCwxk2NRngC8dwapn8fXTBi+ZKlaDNG4xsfGnI8VRyo5xvaLhcIka9oQImraLovOOlij6V4XTxDJzcwQheO7WAm3rNKz7W++v1rOuvmXatQjbUMfRZEsOjdNloyzmcHKCV1MAp2YBFyOqpTfgiV4XT6IIXY3Z/1na6pdTqFHln/4ws+M6zKBcC5jDiuPXcYcSJaTdeOjGHP7miJaWIzZdNTQb4wzGcnFk5iWBqMbAqWYAMZh5+j2w5Pu1GjyW/CvMO0/nB4ROOZBYHz8OCTpMGMomI1f2OLXvP2NBr0bEO7e6r12PWHcR8Hgq0cbsPe04v4J5tjZBJyusVhn+8vRcH/+Z6fOvOvqJr3CpT+ohFBJe3JQbLxhJsqFvK9rZKGFUy/HjPCAAUraWuTPGx4isOpfQ/k//9Rrq3wlxiGb6oN1Zgxh1EOJpf3fwAh4HTxqRFaLmtbtTmQ1uNsAqNao0ctVrF+QOnRT9E5FxQaj5sbjbkpPYqszIyiQgauQSOi8hS9/LxOYRj8Qva6ZbT36DHWZuPVRtRyo5aVXiFU2etGlIxwTEWzU1HJp1orVKlBomlgEWvhEomhrlIAzFzwaKvgCsQgTcUZfX5u4fmAQDXrslt4DSXx0Y4HqcYXfAWXK231qwFITgvx+mHu4ahUUjwwI4W3n4OY3s9OLayrW5qMbCqA85anQI2byjvNUI2PMEIztp8nPObGDqSa4fTyYHTmC1xoMa3wkkmEWGdWYtjPCmcvKEojkw6sZ2FnY6hP6Wy4j70+uXb4xARgnu2NnL+HhcjMonokm3rK1MYrkg+10uxoW4pUrEI7+upxYnk4Ul5QFuGLayOOAgh3yaEaAkhUkLILkKIjbHblSkdGgxKUApM55jnsZxjOQSGM9QblKjRyM/LsQhFY5h0+NFWAOlyj0WHwSWbiqnFAGq1Cl5O+b5zVz9+ct+mvL9PmXMYVLKLSuH03MAMLHolNjaurPJhVEBsrBOjC6tX5SqXiLG2VnveEDcdlFIcnnCWlLoJSGQfddfp0FmgAGshsTBNdSxtdbuH5tFpUue0kDRrFXD4wghGYpyu0eoMIBSNC374sBy1XILmShVOzCQexydn3Hjh+Cwe2NHCq63NrFPColfi4Lgj4+dQSmF1Bla1YtqcPIDJZ3jIBsbenu9BjVmngEomxpmkcnrckThIEmJo12fRYdDqRjyef0Hz/rN2ROM0tQllQ1edFiICDHAcegXCMTxxcAo3dtfyctBWpkwZ9jDD5VJtqFvKrf3nckjLCqcybGG7295JKXUDuAXAFIBOAF8S7KrKCAKzCMu1sWg5uQSGMxBCsLnZgENLBk4Tdj/iVNiGOoYeixYjC174w4lT/slFP+p5ulGKRaTsB+YZg0oGhz+y2pfBCy5/BG8ML+DmPnPWgO1e5hSbRY7TyIIXFr2yoJk3S+lNZopQmnkDZnUGYPOGsD7LoK0Y+fd7N+C7H+xf7cvIG8aiZXVmt1O7gxEcGHPg2hzsdMA5pSjXQcXIQkKhshp5ZF112pTC6d92D0Mjl+BjPKqbGDY3G3BwbDHj84VRoa3mwKk2maUo5MDJF4riD4OzAPIfOBFC0G7SYDipcBq3+1CnVwpiF+ur18EbimI0aWXOh71n7JBJRNiUIc8vHRUyCTpNGs4Kp6ePWuEKRHD/5U2cvr5MmTLcaa1SobVatSoHhHyzpdkIk1YOpVSMqhK3CJYpHGxflZmjvpsAPEYpzXxMV6ZoYRrZ8gkO5xIYzrCx0YCpxUBqMTuyULgMmp46HShFKkMjYV0ot8oVK8YK6UWjcHrx+CwiMYqbe1e20wGJKte2ahWrcNrRBd+q5Dcx9Fp08ASjGLdnvp8wAegbGoqzrnglajQKVKlLW/4OIHWfW0nh5A5G8JPXRnD9919DJEZxQ46BwszAiWvgNPNaUOgMJyCR4zS1GMCBMQeeH5jFR3c0C2Kv2dxsxLwnlPHAZ7Ub6oBE+DsA3nOc/OEonj02jU/98hA2/sPL+Pm+MWxtMaKah6KNzhr1koGTH82VwjyG+uqZ3Lr8bXV7z9iwpdmQs103ERzuXHHInw5KKf533zjWmDTY2sJvg1+ZMmWyQwjB7z+zA1++sfTbIcUigk9d3YY7NlqyHqKWKcMgYfl5zxBChgAEAHyaEFINoDDJkmV4w6xTQiIimMwjOJxLYDgDc5p3aHwRN/WaUxk0hZj4MwOyQasbPRYdZt3BvAPDywiHQSXD6Tnval8GLzw7MINGY0Wq6Sgb/Q16vH7adkFV+1IoTWTefHBzA5+XmhPMPWDA6srY6HN4wgm5RIS15tK3ppUq1Wo5ZGIRptJYqWdcAfzszbN4bP8kvKEodrRX4nsfXJ/K3GMLY8Va3vbGlpEFL/QV0lWpi+4yJ4Krv/DEUajlEnzsCv7VTQBS7ZQHxhxp7YpTqebU1VQ45Tc4XEowEsOrQ/N4dmAGu0/OIxCJoVojx91bGnBzX13Gts5c6TCp8etDU3D6wxi3+/A+FoN9LrRVq6CUinF00oU7NtRz/j4LnhCGZj340g25bzz76vV44uAUphYDOVle95914MSMG9+8o6e8QSxTZpXQ8FRCUQx8VAAVcJmLG1YDJ0rpVwghDwFwU0pjhBA/gNuEvbQyfCMWEdTplZjMw1LHJTCcobtOB7lEdG7gtOBDjUZekJuwSStHlVqGQasLM85qULq6C/syK2OskGHxIggNd/jC2HvGhgevamW90F/foMdT71ox7QpmbKya94TgC8dWVeHUadJAJk40Ny319C/lyKQTvRYdpOUGx1VDJCIw6xXnKZyGZt346eujePrINCiAm3rN+NOrWjlbnBgrFldlzMh8IjB8NTbDTIvphMOPz1zbJli4fadJA41cgoPji7hz44UDC0bhtJoHIVqFBBUyMeffYzASw2unF/DcsRm8cnIO/nAMVWoZPrDJglv66rCl2ci7/byjJjHMPjS+iEV/BM0C1XRLxCL0WLR5N9XtG7EBQE75TQz99ecy/tgOnOJxim/9YQg1Gjnu2GDJ+WeWKVOmTJky+cJq4EQIqQDwGQCNAB4EUAdgDYBnhbu0MkLQYFTmpXAa4BAYziCTiNBfr0/lOI0seAu2YSaEoMeiw4DVVRTWhTIrY1DJ4A/HEIzESrol7IXBWcTi7Ox0DMym4uikM+PAicm8WY2GOoZEc5MGAxkyRcLROAatLnzksnJmyGpj0SthdQawb8SGn74+ij2nFqCUinHfZU342BUteTfNqOUSqOWSvCx1162tzusauFKtkaNGI4cvFMXHr2gV7OeIRQQbmww4OJY+kWBqMQC1XAKtkq3wnH8IIXk1Dn7ql4fw6qkFGFUy3L7Bglt6zdjaYoREwIFzhylxD3zlZKJdsdEo3Jqi16LHr/aPIxqLc/477Ttjh1Yh4TTcXVObGPIfm3JmbTxleObYNI5MOvGdu/pQIVu9x1aZMmXKlLl0YfuK+TCAMIDtyT9PAfhHQa6ojKA0GCpS0n0uDHAIDF/KxiYDjk+7EIzEkhk0hdsw99TpMDzvxZn5RKMNk2lVpvhgrDWlrnJ6bmAaLVUqdNf9//buPD6uu7z3+OcZSaPN0mjGlixZku1YsbN4TazshC2QxUAIUMoS2hRKKS1LSKGsbeGy3bD0tvfSXiAsbVogUAiUfUlDw3KzWUkcW1kd2fIiy7ZsySNrX+Z3/5gziiJLtkYazTma+b5fr3lpdGbOOT+fnyTPPPM8z69y1vucW5d8U3G6xuF7stj/7HQ21Edo7YhPu3LTk4d7GR5LLMqG4bmmvqqUR/af4I1feYDWjjjvfek67v3gi/nY9esztqxxbaRkTgGn+MAox/qGfWkYnvKel6zjEzdsmNMHKeloXhXl6SN9xKdZEOFgzwAN0VLfS55qK0vojKefBT0wMsZvdx/jjy5dxYMfvopPv2ojl5+9bEGDTQArIqWUhQv49ZNHAFi9bOE+SNrUEGFoNDHRMypdzjl+/8wxLmtaOqdMr1SQfzY9/iC5Mt1nfv4kG+orec00WXUiIiLZMNtXAk3Ouc8CowDOuUFAheCLUGOsjGN9IxOrtaVjPg3DU5pXRRkdd9zz1FHig6OsyeKKDRvqKxlPOO5+8igFIZtokCrBE/XKWroXcePwrpPD3Nd2nJfPYnW6yYoLCzh/ReVEw+3ptHX1UVpU4PvP8KaGCCeHx9g3TdbkRMPwNPsBSea96NwaNjdE+NSrNvD7D7yYd121NuPBlbpICZ1zyIxpO+bfCnUpb7xk5bRlbpnWvDrZsPnh/T2nPBaUhSzmGjjcsf8E4wnHVefVLHiQabJQyDi7ZglHeoeBhV2mO9WHb6aszjPZ3z1Ax4lBrphDOd2zY6iitaN32iD/VF/93R4OxYf425edT0gr6YqIiE9m+6pgxMxKAQdgZk3A8FxPamY3m1mrmT1mZu/xtn3OzJ40s51m9gMzm/ZjcTNrN7NdZrbDzFrmOoZ8lXpBO9NKOaczn4bhKRd6jUK/23IQyO6bjFSvjvvajrOiqiSrL4olPRMZTv2nZgIsFr9o7SThmHXpw2RbGqvY1RFnfIY3FakV6vx+E7GxPtVT5NTg2CP7T1BdUcyKiAK7ftu2sY4fvvN53HjJqgUrUV1eWSafDkwAACAASURBVMLhOWTGtHnZIk01/gWcsmVLYxWFIWP7lLI65xwdPYOBKPOui5Rw5OTwjH97ZrK9vQezZ/+Pz6azvZ+d6oriBS0bW720nIriQnbOcaW63z+T7N80v4BThL7hsYlFV2ZypHeIL/6mjWvX13LJmqVzPp+IiMh8nfEdtyU/mv8S8Aug0cy+CdwNvH8uJzSzDcCfARcDm4GXm9la4C5gg3NuE/A08KHTHOZFzrktzrnmuYwhn6XKJ+bSx2k+DcNTYuVh1iwr556nu4DsBpwaoqVESosYSzgaqvx/YS8zi5UnG8l3L+KSup/s7OTsmiWcszz9Fdo2N0YYGBlnt1f+OdWeY31ZLUedydrlSwgXhqb9xH/HgRNsaazyvURIsqMuUkLXyWHGxhNp7dfW1U9RgdEYgOyehVYaLmD9ikpa9j03w6l3cIyTw2MByXAqZTzhONaX3meKLfu6Obe2kkofVmJa5/2NXaiG4SmhkLGxIcLOOWY43fvMcWorS+aV2b258dnG4afzuV8+xdi440Pbzp3zuURERDLhjAEn55wDbgZeDfwJcAfQ7Jy7Z47nPA+43zk34JwbA34DvMo59yvve4D7ARWcL4DUCjhzDTjVV82tYfhkW1dFGU84woUh6rP4AtvMJoJlQXhhLzNLldT1LNKSuiO9QzzY3s3LNqZXTpcyuXH4VEOj4xzsGcxqOepMigpCnF936spNPf0j7D3WzwXq35Q3aiMlJBx0pRmoaOvqY/XS8rzJOG1eHePRAycYGXs2MHfA66sYhP+XUmW66ZTVjY0neHhfDxet9qd8dq2X4bSQDcNTNjZEeKKzl+Gx8bT2G0847m07xhVnL5tXEL6pegll4YLTBpxaO+Lc+fBB3nzFalYt9f//CRERyW+zfYV3P7DGOfdT59xPnHPH5nHOVuD5ZrbUW/1uG9A45TlvAX4+w/4O+JWZPWRmb5vpJGb2NjNrMbOWrq6ueQw3tyxbEqa0qGBOJXW7OuITPQzmY6uXcr96aVnGl0g+k/X1yebNmWqUKwsjUlqE2eLt4XTnwwdxDl6xOf1yOkiWblSWFLLjwKlvKvYdH8A5/xuGp2ysj/DYoef2FNnhldhtaVTAKV+kAhWdafb/aevq87V/U7Y1r4oyPJag9dCzv9up/4/rA5B5WxdJfx6fPHyS/pHxif/bs21tTTLDadUCZzgBbKqvYnTc8dTh6bNPZ/KTnYfoGRjlJefVzOv8BSFjw4rIjI3DnXN8/CePEysL844Xnz2vc4mIiGTCbANOLwLuM7M2r8fSLjPbOZcTOueeAD5DsoTuF8CjwEQHazP7iPf9N2c4xBXOuQuB64B3mNnzZzjPbc65Zudcc3W1P8stB5GZ0RAtnfhEdbYy0TA8JfWi1I8l3TesUIbTYlBYECJSWrQoV6nbd7yfL9z9DC86p5qza9Ivp4Nk6cbmxqppM5zauvxvsjzZRq+nyN7j/RPbduw/gVmywa3kh1ovUHEkjUDF6HiC/ccHaKoJRvA0G7Z6WUAPtT9bVncwSBlOkVSG0+w/lGrxelJd5DVFz7bGWCn/4/r1/GHz1M8uMy/1oVs6ZXVj4wn+8b92c87yCq5ZX5uRMTx+qJfRacpXf/nYYR7c280tL13nS3mjiIjIVLMNOF0HNAEvBl4BvNz7OifOua855y50zj0f6AZ2A5jZTd6xb/RK+abb95D39SjwA5K9oCQNjbEyDnSnl+GUiYbhKU3VS1hTXc4la7L/4vTKtct4yXnLubxp7k07JTtiZeFFl+GUSDje/72dFIaMT79647yOtbmhiqeOnGRw5LmlG3u8gNNZASipg+lXbtpx4ATnLK9gSfHCNfCVYKmLJIMl6WTG7Ds+wFjCBSZ4mg01FSWsWlr2nMbhHScGKQ8XUFXmf4AgVhYmXBBKa8XB7ft6qK8qZUWVPwEzM+Omy1dPBMsWUkO0lGhZUVor1X3/kQ72Huvnr65el5GFHjY1VjE8ljgly2p4bJxP/+xJ1i1fwusvWvjgm4iIyGzMKuDknNs33W2uJzWzGu/rSpK9oe4ws2uBDwDXO+emTb8xs3Izq0jdB64mWaInaZhLhlMmGoanhELGr9/7Qt58xVnzPla6qsrCfPWm5qy8MJX5iZaHF12G0zce2McDe7v525efP/EGfK42N1YxnnA8dui5b2z2dPVTFymhPCDBnLOrl1BSFJr4G+Gcm2gYLvkjWlZEuDDE4TQCFUHL1suWrauiPLSvh9Tnage9FeqC0GA/FDKWR4pn3cPJOUdLezfNPvVvyjYzY2ND1YwlbVONjCX43/+1m431Ea4+f3lGxrA5FeSf0jvv9nvb2d89wN+87Py86YkmIiLB59f/SHea2ePAj4F3OOd6gH8CKoC7zGyHmX0JwMxWmNnPvP2WA783s0eBB4GfOud+4cP4F7XGaBknh8aID8x+yflMNQwXma1oWZju/tn/jPpt//EBbv35kzx/XTWvbZ7/mgepNxU7ppTVtR3rD0z/JkiWP55fVznxif/eY/3EB0fVMDzPmBm1lSVpNZtOBZyC9POcDRetjnHca6wPqYCT/+V0KenM48GeQY70DtPsU/8mP2xuiLD7aN8p2afT+U7LATpODPLeq9dlLKC4MlZGpLSInZOCXsf7hvnC3c/w4nNreP46tZEQEZHg8OUjcufcldNsm7a7oVdCt827vwfYvLCjy32NseQL2wM9A0TKZpex1NoRz0h2k8hsxcqLaO2Y2/LT2ZZION5/56OEzLj11Rsz8saiprKEFZESHp1UuuGcY09XHzdsqZ/38TNpY32E7z50kPGEmwiQbWnMnzegklQbSTPgdLSf5ZXFVORZr5lUcKZlXw9rqpdwsGeAiwOUIVQbKX1OMON0WvYlSwObferf5IeN9RHGE47HO3tP2yh9aHScf/r1bppXRXlBBoNAZsamhgiPTlpU4n/d9TSDo+N8eNt5GTuPiIhIJijnNg81RJMruRzonl1ZXXxwlPbjA2zMwAp1IrMVLQ/TPTDCDO3cAuWbD+7n/j3d/M3LzstoH5OpjcOP9Y1wcmgscBkhGxuqGBgZZ++xPh7Zf4LycAFn1+RXmZQkM2M6e2ffHzDfVqhLaapeQlVZEQ+19xAfHOXk0NjE/8tBUBcpoTM+NKu/vdvbe6goKWTd8rktkLAYpRZDOFNQ7hv37+NI7zDvu+acjJdLbmqI8NSRkwyNjvPU4ZPc8eB+3nTpKv3dFRGRwFHAKQ81xryA0yz7OGWyYbjIbMXKwoyMJRiYRdmCnw50D/A/f/YEV65dxusy3Kh1S2MV+7sHJpqnP1uCFKw3Fam/DTsPxtlx4ASbG6soyEBzXFlc6iIlHIkPzypQ4ZzL24BTKGRsXRll+77uiRXq6gNWUjcylqBnFmX3Le3dbF0Vzavf99pICTUVxadtHN4/PMYX72njeWcv49I1SzM+hk0NqR5/vXzyp49TUVLEzVetzfh5RERE5ksBpzwUKS2isqRwVivVDY6M8+Xf7iFkCjhJdqX6hQV5pTrnHB/8/k4MuPU1mzL+KfZmr/F2KstpT1ey58uagKxQl9JUXU5pUQHb23t4orNXDcPzVG2khJHxxKx+Z7v6hjk5NEZTwLL1smXr6ih7uvonghaB6uHkLapxpvLI+MAoTx/p46I8KqdL2dQQYedpSr7/9d52jveP8FdXr1uQ82/2sqy+8Ovd/G73Md591Vr12BQRkUBSwClPNcbKzpjhFB8c5Y+//gC/3d3FJ27YoBczklWxsuTPW5BXqrvjwQP8v2eO8+GXnUf9AiwJvrE+QsiebRy+p6uP4sLQgpxrPgoLQqxfUcmPHz3EWMIp4JSn6rxARecs+ji1HU0GT5vytAQoFaT54Y5DAIEqqZsIOJ2hPPKh/cn+TafrY5SrNtZX0dbVR9/w2CmPxQdH+fJv2rjq3BouXLkw12Z5ZTHVFcXc81QXZy0r548uXbUg5xEREZkvBZzyVGO07LQ9nI6eHOJ1X76PHQdO8IU3XMCNl+jFjGRX0DOcDvYM8KmfPs7lTUt548UrF+Qc5cWFrK2pmFiCe8+xfs5aVk4ogOUrG+ojE2++tmiFury0vDIZqDjSO4uAk1cemo8ldZAMJocLQty/9zhl4QKiZcFpnD7bwOH29h6KCmwi2yafbGqM4BzTLmzxtd/vpXdojFteujDZTZBsHJ5ayfQj284jXKiX8yIiEkz6HypPNcZKOdgzOG2vjX3H+/mDL97H/u4Bvv4nF/HyTSt8GKHku1h5cDOcnHN86Pu7cMBnFqCUbrLNjREePXBiYoW6oL5B3+S9+amvKqWmosTn0Ygf6iLJzLtZZTh19VEWLqC2Mj9/VkqKCtjYkAxaNERLF/RvSLqqlxQTsjOX1LW0d7OhPkJpuCBLIwuOVIuBqX2cuvtH+Prv97JtYy0bFrgNwU2Xr+YdL2riqvNqFvQ8IiIi86GAU55qjJUxPJagq2/4OdsfP9TLa754H71Do3zrzy7lyrWZW8pXJB2pkrru/jM3rs2272w/wO92H+ND286baMK/UDY3VtEzMEpbVx8HegYDt0JdSuoNmLKb8ld1RTEFITtjoAKgraufNdXBzNbLlmavFC1I5XSQLJGtrig+beBweGycRw/G87J/E8CyJcXUV5VOZJ+mfPm3bfSPjHHLSxYuuynlyrXV/PU15wYqWCkiIjKVAk55qtF7gTu5cfj29m5ed9t9FBUY33v7ZerDIr6qKCmkIGT0BKykruPEIJ/86RNctmYpNy5QKd1kqXKVH+04xHjCBTbgtKZ6CZecFeMVm+r8Hor4pCBkVC8p5vBsSuqOBjdbL1tSvY+C1pMNoDZSetrSyNaOOCNjibzs35SyqSHCrkkldUdPDnH7ve3csKWetcsrfByZiIhIcCjglKcaY8kXuKklme9+4ghv+uoDVFcU872/uJyza/RiSfwVChlVpUV0B6ikLlVKl3COz/7BpqxkZ5xTW0FxYYgf7OgAgtvzpiBkfOfPL+PaDQo45bPaSMkZM5wGR8bpODEY2J/lbGleHSNcGGLd8uBdh7rKktNmOG1v7wGezdLKRxsbIuw7PkB8IJmF+3//u43RccfNV631eWQiIiLBoYBTnmqYyHAa4M6HDvK2f3+Ic2or+O6fXxbIT1slP0XLw4HKcPpuy0F++3QXH7zu3AUvpUspKgixoT4ykY141rJgZjiJQLLhdGf89Kub7TmW3w3DU2LlYX793hfw+ixkSqbrTIHDlvZu1lSXs3RJcRZHFSyp7NOdHSc4dGKQbz2wn9dubWC1/kaLiIhMKPR7AOKPkqICli0p5o4HD9BxYpDLm5Zy2x83s6RYPxISHLGycKBWqbv9vnY21kd4U5ZXbdzcUMVD+3qoqSimoiQ4q1mJTLW8soTf7T522ue0dfUD0FSjN+ZB69+UUhcpoW94jJNDo6f8zUkkHC37erjm/FqfRhcMG1Yk+9btPBjnZ7sOA/AuZTeJiIg8hzKc8lhjrJSOE4Ncu76Wf3nzRQo2SeBEy4sCs0rd0Og4Tx0+yfPWLst6o+NUI+6g9m8SSZkcqJhJ29E+zGD1Uv08B1VtJLl64HR9nPYc6+PEwChbV+dvOR1ApKyI1UvL+EXrYb7bcoA3XrJSGeIiIiJTKOCUx9548Ur+8oVN/PONF1JcmH/LGkvwxcrDgVml7ukjJxlLuInV2LJpS0Mq4JTfJUgSfKlAxenKsdq6+miMllFSpP93gqq2MjmP0/VxSvVvytcV6ibb1FDFro44hQXGX76wye/hiIiIBI5SWvLYa5sb/R6CyGlFy8L0DIzgnPN96efUakSpMopsaoyV8vqLGrl+84qsn1skHZMDFTOt1NXW1U+TsvUCrS6SzNSZPuDUzbIlYVYvDWY5YDZtaojwo0cPcdNlq6nxfvZFRETkWQo4iUhgxcrDjCccvUNjREr97V3U2hEnUlo0scJjNpkZt75mU9bPK5KuVKDi8DSlWJDs/7Onq48rmpZmc1iSpprKZDPw6TLVWtp7aF4V8/1DgCC4Zn0tj+w/wdtfoOwmERGR6aikTkQCK1oWBgjESnW7OuJsqK/UmyyR0zhdoAKg48Qgw2MJmmpUHhpkJUUFxMrDp2Q4He0dYn/3AM153r8ppTFWxj/feCHR8rDfQxEREQkkBZxEJLBi3ov4bp8bhw+PJRuGb/Chf5PIYjJToCKlrasPgCb1Iwu82sqSU5qGt+xL9m9qVv8mERERmQUFnEQksFKfGvud4bT7SB+j486X/k0ii810gYqUtq5+APVwWgTqIiWnBA63t3dTUhRi/YpKn0YlIiIii4kCTiISWDGvpK7b54BTqmG4HyvUiSw20wUqUtq6+qgqK5rIXpTgqo2UcDg++JxtLe09XNAYpahALx9FRETkzHx5xWBmN5tZq5k9Zmbv8bbFzOwuM9vtfZ22QYCZ3eQ9Z7eZ3ZTdkYtINkXLk43Ce3wuqdvVEaeipJBVWpVJ5IymC1SktB3to6l6iXqhLQK1lSX0DIwyNDoOQP/wGI939nKR+jeJiIjILGU94GRmG4A/Ay4GNgMvN7O1wAeBu51za4G7ve+n7hsDPgpc4u3/0ZkCUyKy+C0pLqSowOjuH/V1HK0dcTasiOhNssgsTA1UTNbW1a9yukWiNlICMFEeuePACcYTjq3q3yQiIiKz5EeG03nA/c65AefcGPAb4FXAK4HbvefcDtwwzb7XAHc557qdcz3AXcC1WRiziPjAzIiWhX3t4TQ6nuDJzpNsbFA5nchsTA1UpMQHRjnWN6yG4YtEXaQUYKI8cnt7NyGDC1dW+TksERERWUT8CDi1As83s6VmVgZsAxqB5c65TgDva800+9YDByZ9f9Dbdgoze5uZtZhZS1dXV0b/ASKSPbHysK+r1D195CQj4wk1yRWZpamBipS2Y1qhbjFJBQ4Pe/PY0t7DubWVVJQU+TksERERWUSyHnByzj0BfIZkdtIvgEeBsVnuPl09i5vhPLc555qdc83V1dVzGquI+M/vDKdWNQwXSUttpBg4NcOp7agXcKpRwGkxSAWcOuNDjI0neHh/j/o3iYiISFp8aRrunPuac+5C59zzgW5gN3DEzOoAvK9Hp9n1IMlsqJQG4NBCj1dE/ON3htOujjhLigtZvVR9Z0Rmo3amDKeufooKjMZoqR/DkjQtKS6koriQw/FBnjx8koGRcfVvEhERkbT4tUpdjfd1JfBq4A7gR0Bq1bmbgB9Os+svgavNLOo1C7/a2yYiOSpaXuRrhtOujl7Wr6gkFFLDcJHZeDZQMTXg1MfqpeUUFvjy0kPmoDZSwuHeIba3dwMow0lERETS4tervjvN7HHgx8A7vAbgtwIvNbPdwEu97zGzZjP7KoBzrhv4BLDdu33c2yYiOSpWFubE4CjjiWmrZxfU6HiCJzp7VU4nkqblkZJpA07q37S41Hrz2NLeQ31V6UR/LhEREZHZKPTjpM65K6fZdhy4aprtLcBbJ33/deDrCzpAEQmMaHkY5yA+OEqsPJzVcz9ztI+RsQQbFHASSUtdpITOST2cRscT7D8+wHUban0claSrLlLCk4dP0hkf4vKmpX4PR0RERBYZ5bWLSKClgkzdPpTV7fIahivgJJKe2soSDscHJ77fd3yAsYRThtMiU1tZQtfJYY6eHKZZ/ZtEREQkTQo4iUigRcuSAaceHxqHt3bEKQ8XsGaZGoaLpKM2kgxUjI0ngGQ5HaCA0yJTO6mErln9m0RERCRNCjiJSKD5meHU2hFn/YqIGoaLpKk2UkLCQVffMPBswGlNtYK3i0ldpASAipJC1tVU+DwaERERWWwUcBKRQIt6Aadsr1Q3Np7g8c5e1tdXZvW8IrkgFajo9BqHtx3tZ3llMRUlRX4OS9JU681j86qoAu8iIiKSNgWcRCTQYl5JXXeWS+rauvoZGk1ohTqROVhemQxUHEkFnLRC3aK0oqqUogLjMjUMFxERkTnwZZU6EZHZKg0XUFIUynqGU6phuAJOIumr83r/dMaHcM7R1tXHDVvqfR6VpCtSWsRP3nUlZ6mPnYiIiMyBAk4iEnixsjDd/aNZPWdrR5yycAFrlJUhkrZoWRHhwhCHe4fo6hvm5NAYTerftCidU6veTSIiIjI3KqkTkcCLloezvkpda0ec8+sqKVDfEpG0mRm1lSV0xodoO9oPQFONgrciIiIi+UQBJxEJvFh5OKur1I0nHI8d6mWDyulE5qw2UsKR+NDECnXq4SQiIiKSXxRwEpHAi5ZlN8NpT1cfg6PjCjiJzENdpITO3kHauvooCxdQ6zUSFxEREZH8oICTiARetjOc1DBcZP6SGU7DPHO0jzXV5YRUnioiIiKSVxRwEpHAi5aFOTk0xuh4Iivna+3opaQopCbHIvNQW1nCyHiCR/afUDmdiIiISB5SwElEAi9WXgSQtbK6VMPwwgL9iRSZq7pIsoSub3hMAScRERGRPKR3UyISeNHyMAA9/aMLfq5EwvHYobj6N4nMU22kdOK+Ak4iIiIi+UcBJxEJvFhZMuCUjT5Oe4710z+ihuEi8zW5SXhTjcpTRURERPKNAk4iEngTGU5ZKKlrVcNwkYyoriimIGSYweqlCjiJiIiI5JtCvwcgInImsfLsZTi1dsQpLgyxtkYlQCLzURAyaiqKKSoIUVJU4PdwRERERCTLFHASkcCrKvOahmch4LSrI855ahgukhHn11VSWVrk9zBERERExAcKOIlI4BUXFrCkuJDuBS6pSzYM7+WGC1Ys6HlE8sWX/mir30MQEREREZ/4EnAys1uAtwIO2AW8GbgLqPCeUgM86Jy7YZp9x719APY7565f+BGLiN+i5UULnuHUfryfvuEx9W8SyZAiZQqKiIiI5K2sB5zMrB54N3C+c27QzP4DeL1z7spJz7kT+OEMhxh0zm3JwlBFJEBiZWG6B0YX9Byth3oBtEKdiIiIiIjIPPn10WMhUGpmhUAZcCj1gJlVAC8G/tOnsYlIAEXLwwue4dTaESdcEGLd8oozP1lERERERERmlPWAk3OuA/g8sB/oBOLOuV9NesqrgLudc70zHKLEzFrM7H4zO6XkTkRyU6wsvOCr1O06GOfcugqVAYmIiIiIiMxT1t9VmVkUeCVwFrACKDezN016yhuAO05ziJXOuWbgjcA/mlnTDOd5mxeYaunq6srQ6EXEL9HyMD0L2DTcOUfrobjK6URERERERDLAj4/xXwLsdc51OedGge8DlwOY2VLgYuCnM+3snDvkfd0D3ANcMMPzbnPONTvnmqurqzP7LxCRrIuVhxkYGWdodHxBjr/v+AAnh9QwXEREREREJBP8CDjtBy41szIzM+Aq4AnvsdcCP3HODU23o5lFzazYu78MuAJ4PAtjFhGfRcvCAAuW5dR6KA6ggJOIiIiIiEgG+NHD6QHge8DDwC5vDLd5D7+eKeV0ZtZsZl/1vj0PaDGzR4H/Bm51zingJJIHYuVFAAvWx2lXR5yiAlPDcBERERERkQwo9OOkzrmPAh+dZvsLp9nWArzVu38vsHGhxyciwTOR4dQ/uiDHb+2Ic05tBeFCNQwXERERERGZL72zEpFFIVaeDDh1L0BJnXOO1o5eldOJiIiIiIhkiAJOIrIoRMtTGU6ZDzgd7BkkPjiqFepEREREREQyRAEnEVkUqkoXrofTrg41DBcREREREckkBZxEZFEoLAgRKS1akFXqdnXEKQwZ59SqYbiIiIiIiEgmKOAkIotGrDy8IBlOrR1x1i2voLiwIOPHFhERERERyUcKOInIohEty3yG08mhUXYejKucTkREREREJIMUcBKRRSOZ4TSaseONjSd457ceoW94jFdfWJ+x44qIiIiIiOQ7BZxEZNGIloUztkqdc46P/fgxfvN0F5+8YQOXrFmakeOKiIiIiIiIAk4isojEysN0D4zgnJv3sb72+7184/79/PkL1vCGi1dmYHQiIiIiIiKSooCTiCwa0fIwI2MJBkbG53WcXz52mE/97Amu21DLB645N0OjExERERERkRQFnERk0YiVhQHmtVLdzoMnuPnbj7C5oYp/eN0WQiHL1PBERERERETEo4CTiCwa0fJkwGmuK9Ud7BngT29vYdmSYr7yx82UFBVkcngiIiIiIiLiKfR7ACIisxUrLwLmluHUOzTKn/5rC0Oj43zrrZdQXVGc6eGJiIiIiIiIRxlOIrJoRMvmluE0Op7gHd98mLauPr70pq2sXV6xEMMTERERERERjzKcRGTRiJWnejiNznof5xwf/dFj/G73MT77mk1ccfayhRqeiIiIiIiIeJThJCKLRmVJESGDnjRK6r7yuz1864H9/OULm/jDixoXcHQiIiIiIiKSooCTiCwaoZARLQvTPcuSup/v6uTTP3uSl22q431Xn7PAoxMREREREZEUldSJyKISLQ+fMcPpmaMn+faDB/j3+/dx4coq/v61mwmFLEsjFBEREREREQWcRGRRiZWFp12lbnBknJ/u6uQ72/ezvb2HwpBxzfpaPv7K9ZQUFfgwUhERERERkfylgJOILCrR8iL2Huuf+P6xQ3G+/eAB/nNHByeHxjhrWTkfuu5cXrO1gWVLin0cqYiIiIiISP7yJeBkZrcAbwUcsAt4M/Al4AVA3Hvanzjndkyz703A33jfftI5d/vCj1hEgiJWHubBvd1864H9fHv7fnYejBMuDLFtQy2vv3gll5wVw0zlcyIiIiIiIn7KesDJzOqBdwPnO+cGzew/gNd7D/+1c+57p9k3BnwUaCYZrHrIzH7knOtZ6HGLSDBEy8L0DIzy4R/s4pzlFXz0FefzqgvqqSoL+z00ERERERER8fhVUlcIlJrZKFAGHJrlftcAdznnugHM7C7gWuCOBRmliATOqy+sZyzhuHZDLRc0VimbSUREREREJIBC2T6hc64D+DywH+gE4s65X3kPf8rMdprZ7+FAygAACLFJREFUP5jZdM1X6oEDk74/6G07hZm9zcxazKylq6srg/8CEfHT2TUVfHjbeVy4Mqpgk4iIiIiISEBlPeBkZlHglcBZwAqg3MzeBHwIOBe4CIgBH5hu92m2uenO45y7zTnX7Jxrrq6uzsjYRURERERERETkzLIecAJeAux1znU550aB7wOXO+c6XdIw8C/AxdPsexBonPR9A7MvxxMRERERERERkSzwI+C0H7jUzMosWQ9zFfCEmdUBeNtuAFqn2feXwNVmFvUypa72tomIiIiIiIiISEBkvWm4c+4BM/se8DAwBjwC3Ab83MyqSZbN7QDeDmBmzcDbnXNvdc51m9kngO3e4T6eaiAuIiIiIiIiIiLBYM5N2wIppzQ3N7uWlha/hyEiIiIiIiIikjPM7CHnXPN0j/lRUiciIiIiIiIiIjlMAScREREREREREckoBZxERERERERERCSjFHASEREREREREZGMyoum4WbWBezzexwZsgw45vcgJCs01/lDc50fNM/5Q3OdPzTX+UNznT801/lDc50Zq5xz1dM9kBcBp1xiZi0zdYCX3KK5zh+a6/ygec4fmuv8obnOH5rr/KG5zh+a64WnkjoREREREREREckoBZxERERERERERCSjFHBafG7zewCSNZrr/KG5zg+a5/yhuc4fmuv8obnOH5rr/KG5XmDq4SQiIiIiIiIiIhmlDCcREREREREREckoBZxERERERERERCSjFHCaBzNrNLP/NrMnzOwxM7vZ2x4zs7vMbLf3Neptv9HMdnq3e81s86RjXWtmT5nZM2b2wdOc8ybvuLvN7KZJ2z9lZgfMrO8MY95qZru88/wfMzNv+2u9f0PCzLQ05BQ5NtefM7MnvbH9wMyq5nt9ckmOzfUnvHHtMLNfmdmK+V6fXJJLcz3p8feZmTOzZXO9Lrkol+bazD5mZh3e7/UOM9s23+uTS3Jprr3H3uWN4TEz++x8rk2uyaW5NrPvTPqdbjezHfO9Prkkx+Z6i5nd7811i5ldPN/rk0tybK43m9l93mM/NrPK+V6fRck5p9scb0AdcKF3vwJ4Gjgf+CzwQW/7B4HPePcvB6Le/euAB7z7BUAbsAYIA48C509zvhiwx/sa9e6njnepN56+M4z5QeAywICfA9d5288DzgHuAZr9vrZBu+XYXF8NFHr3P5Mas245OdeVk57zbuBLfl/fIN1yaa69xxqBXwL7gGV+X98g3XJproGPAe/z+5oG9ZZjc/0i4L+AYu/7Gr+vb5BuuTTXU57z98Df+X19g3TLpbkGfjXp/jbgHr+vb5BuOTbX24EXePffAnzC7+vrx00ZTvPgnOt0zj3s3T8JPAHUA68Ebveedjtwg/ece51zPd72+4EG7/7FwDPOuT3OuRHg294xproGuMs51+0d5y7gWu/Y9zvnOk83XjOrI/kG9D6X/Mn/t0lje8I591TaFyFP5Nhc/8o5NzbN2IScm+veSU8tB7RKxCS5NNeefwDej+b5FDk41zKDHJvrvwBudc4Ne8c7msalyHk5Ntep5xjwh8Ads7wMeSHH5toBqUyXCHBolpchL+TYXJ8D/Na7fxfwmllehpyigFOGmNlq4ALgAWB56ofT+1ozzS5/SjICCslfogOTHjvobZtqts+bSb23z1z3F3Jurt8yaWwyRS7MdSodGLgR+Ls0jptXFvtcm9n1QIdz7tE0jpeXFvtce97plQ98PVVWIKfKgbleB1xpZg+Y2W/M7KI0jptXcmCuU64Ejjjndqdx3LySA3P9HuBz3muzzwMfSuO4eSUH5roVuN67/1qSmeh5RwGnDDCzJcCdwHumZBTM9PwXkfyF+EBq0zRPm+4T6tk+b8ZTz3P/vJdLc21mHwHGgG+mcdy8kStz7Zz7iHOukeQ8vzON4+aNxT7XZlYGfAQFFM9osc+19/WLQBOwBegkWX4jU+TIXBeSLPG4FPhr4D9SvUHkWTky1ylvQNlNM8qRuf4L4BbvtdktwNfSOG7eyJG5fgvwDjN7iGR54Egax80ZCjjNk5kVkfxl+KZz7vve5iNeel0qze7opOdvAr4KvNI5d9zbfJDnRjwbgENmdok920Dw+pmed5qxFUza/+Pe/pPLp067vzxXLs211xDv5cCNXvqnTJJLcz3Jt8jTVN7TyZG5bgLOAh41s3Zv+8NmVpvOtch1OTLXOOeOOOfGnXMJ4CskywZkklyZa++x77ukB4EEoAUBJsmhucbMCoFXA9+Z/RXIHzk01zcBqfF/F/0NP0WuzLVz7knn3NXOua0kA8lt6V2JHOEC0Ehqsd5IRjT/DfjHKds/x3Obmn3Wu78SeAa4fMrzC0k2KDuLZ5uarZ/mfDFgL8lPu6Le/diU55ypqdl2kp+UpZqabZvy+D2oaXhOzzXJuuTHgWq/r2sQbzk212snPeddwPf8vr5BuuXSXE95TjtqGp6zcw3UTXrOLcC3/b6+Qbrl2Fy/Hfi4d38dybIP8/saB+WWS3PtPXYt8Bu/r2sQb7k01yR7Er3Qu38V8JDf1zdItxyb6xrva8j7N73F7+vry5z6PYDFfAOeRzJlbieww7ttA5YCdwO7va8x7/lfBXomPbdl0rG2kezC3wZ85DTnfIv3S/UM8OZJ2z9LMsKa8L5+bIb9m0nWk7YB/4T3wgV4lbffMHAE+KXf1zdItxyb62dIvmhNjU0rl+XuXN/pbd8J/Bio9/v6BumWS3M95TntKOCUs3MN/Duwy/u3/IhJASjdcm6uw8A3vMceBl7s9/UN0i2X5tp77F+Bt/t9XYN4y6W59v4tD5EMgDwAbPX7+gbplmNzfbN3/qeBW8nTDwxSF0NERERERERERCQj1MNJREREREREREQySgEnERERERERERHJKAWcREREREREREQkoxRwEhERERERERGRjFLASUREREREREREMkoBJxERERERERERySgFnEREREREREREJKP+PwS+5Vs4hf4uAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "%matplotlib inline\n", "fig, axs = plt.subplots(3, 1, figsize=(20, 15))\n", @@ -346,20 +162,9 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAANOCAYAAABUfxZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3hUZdoG8PtMSWYyKZPee08IIfQOUqQFQVx7Z1ndVWEXdtWPVVexr6vCFlxRVARWXVeFUKQpvSYQgiGFhPTee532/YGgSEmbmZNk7t91cUFmTnkmLzM5ec77PK9gMBgMICIiIiIiIiIiMhKJ2AEQEREREREREdHgwoQTEREREREREREZFRNORERERERERERkVEw4ERERERERERGRUTHhRERERERERERERiUTOwBz0Ov10OkGx2J8UqkwaF4L3RzH2nJwrC0Dx9lycKwtB8facnCsLQfH2nJwrI1DLpfe8DmLSDjpdAbU17eKHYZRqNU2g+a10M1xrC0Hx9oycJwtB8facnCsLQfH2nJwrC0Hx9o4XF3tbvgcS+qIiIiIiIiIiMiomHAiIiIiIiIiIiKjYsKJiIiIiIiIiIiMigknIiIiIiIiIiIyKiaciIiIiIiIiIjIqJhwIiIiIiIiIiIio2LCiYiIiIiIiIiIjIoJJyIiIiIiIiIiMiqZ2AEQERGZy8HsaggCEO1hBxdba7HDISIiIiIatJhwIiIii5BW3oSnt6Vf+drN1gpRHnY//XG3g52CPxaJiIiIiIyBV9ZERGQR1p8ogINChr/eFoWsqhaklTUio6IZBy/WXNnGz1GJ6B8TUNPDXODKWVBERERERL3ChBMREQ166eVNOJpbi99NCMAIXzVG+KoBeAMAGts1yChvRlp5E9LLm5BUWI9dGZX48mwJvnh4JKxkbHdIRERERNRTTDgREdGgt/5EAewVMtwV53XNc/YKOcYEOGJMgOOVx47k1GDF1jR8nlyCh0f7mjNUIiIiIqJBgbdtiYhoUMusaMKR3FrcN8Ibttbdu88yKdgZk4Od8fHJQlQ3d5g4QiIiIiKiwYcJJyIiGtTWnyiEnbUMd8d592i/P0wJgkavx7+O5psmMCIiIiKiQYwJJyIiGrQuVDbjUE4N7u3B7KbLfB2VuHe4D3amVeB8WaOJIiQiIiIiGpyYcCIiokFr/YkC2FpLcU8PZzddtnisL5xVVnjnQA70BoORoyMiIiIiGryYcCIiokEpq7IZBy/W4N7h3rBT9G6NDJWVDE9NCsD5sibsSq80coRERERERIMXE05ERDQorT9ZCFtrKe4d7tOn48yNcke0hx3+eSQPLZ1aI0VHRERERDS4MeFERESDTnZVMw5kV+OeuN7PbrpMIgj407Rg1LR04pNTRUaKkIiIiIhocGPCiYiIBp2PThZCZSXFvSN617vpl4Z42mNetDs+O1OMoro2oxyTiIiIiGgwY8KJiIgGlYvVLfg+qxp3D/eGvUJutOM+NTEAcokEaw7lGu2YRERERESDFRNOREQ0qHx04tLspvuGG2d202UuttZYPNYPh3NqcDK/1qjHJiIiIiIabEyWcFq5ciXGjRuH+Pj4K4+tWbMG8+fPx4IFC7B48WJUVFRcd9+33noL8+bNw5w5c/Dqq6/CYDCgra0Njz32GGbPno158+bh7bffNlXoREQ0QOVUt+D7rCrcFecFB6XxZjdddu9wb/ioFXj3QC60Or3Rj09ERERENFiYLOG0aNEirF+//qrHlixZgu3btyMhIQFTp07F2rVrr9kvOTkZycnJ2LZtG3bs2IHU1FQkJiYCABYvXozdu3djy5YtSE5OxqFDh0wVPhERDUAfnSyEUi7FfSP6tjLdjVjJJPjDlGDk1bbif+fKTHIOIiIiIqLBwGQJp1GjRsHBweGqx2xtba/8u62tDYIgXLOfIAjo7OyERqO58reLiwuUSiXGjh0LALCyskJUVNQNZ0gREZHlya1pwXcXLs1uUptgdtNlk4OdMNbfER8cz0dda6fJzkNERERENJCZvYfT6tWrMWXKFGzfvh2///3vr3k+Li4OY8aMwcSJEzFx4kRMmjQJwcHBV23T2NiIAwcOYNy4ceYKm4iI+rmPTxZCIZfgfhPNbrpMEASsuCUYbRo93j9WYNJzERERERENVDJzn3D58uVYvnw51q1bh82bN2PZsmVXPV9QUICcnJwr5XKLFy9GUlISRo0aBQDQarVYsWIFHnzwQfj6+nbrnFKpALXaxrgvRCRSqWTQvBa6OY615eBY911OVTP2XqjCbyYGIsDLoesd+ihObYMHx/jh05MFeHhiIKI87bvch+NsOTjWloNjbTk41paDY205ONamZ/aE02Xx8fF4/PHHr0k47du3D7GxsVCpVACASZMmISUl5UrC6YUXXkBAQAAeeeSRbp9LpzOgvr7VaLGLSa22GTSvhW6OY205ONZ9t2ZfFqylEvxqiLvZvpcPDffG1pRSPPlZMoKcVdDq9dDqDNAZDNDqDNDqL/3R6Q3Q6vVwsLHCCzND4e/EC5vBju9py8Gxthwca8vBsbYcHGvjcHW1u+FzZi2py8/Pv/Lv/fv3Iygo6JptvLy8kJSUBK1WC41Gg6SkpCsldatXr0ZzczP+/Oc/mytkIiLqp6pbOrE3sxJv7MvG3sxK3DnMC442VmY7v51ChudvDYNSLkVZYzvqWjVo0+ih1xsgl0lgp5DB1dYKPmoFQlxUyK9pxUu7L0CrN5gtRiIiIiIisZhshtOKFSuQmJiIuro6TJ48GUuXLsXhw4eRl5cHQRDg7e2NVatWAQBSU1PxxRdf4LXXXsOsWbNw8uRJzJ8/H4IgYNKkSZg2bRrKy8vx/vvvIygoCLfffjsA4IEHHsCdd95pqpdARET9SHVLJ5KL6pFc3IAzRfXIr20DAKispJgS4oKHR3evzNqYpoQ4Y0qIc7e2PVrYgOX/O4dNSUV4dIyfiSMjIiIiIhKXYDAYBv2tVo1GN2imynHan+XgWFsOjvX1dWr1OJRTgzNF9UguakBe7aXvkcpKimHeDhjh64ARvmqEudlCJrl21dP+xsFBiSc2n8HBizXY9MBwhLiqxA6JTITvacvBsbYcHGvLwbG2HBxr47hZSZ1oPZyIiIhuxGAw4PlvM3Egu/pKgmn+EHcM91UjfIAkmH5JEAQ8Oz0UycUNeHFXJjbcHwe51OyLxRIRERERmQUTTkRE1O9sT6vAgexqPD7eH4+M8RuQCabrUdvI8eeZofhTQjo+OlmI304IEDskIiIiIiKT4K1VIiLqV4rr2/DO/hyM8HXAo4Mo2XTZlBAXzItyw4ZThUgvbxI7HCIiIiIik2DCiYiI+g2t3oAXd12ARAK8NDsc0kGWbLrsj7eEwFllhZd2XUCHVi92OERERERERseEExER9RsbE4vwQ2kjnp0eCg97hdjhmIydQobnZ4Uhr7YV647lix0OEREREZHRMeFERET9Qnp5Ez44UYBbw10xO9JN7HBMblyAExYN9cTm08U4V9IgdjhEREREREbFhBMREYmuTaPDC99mwtlGjmdnhIgdjtksmxIIT3trvLT7Ato0OrHDISIiIiIyGiaciIhIdH8/lIvCuja8NCcc9gq52OGYjcpKhr/MDkdxfTv+dThP7HCIiIiIiIyGCSciIhLVsdxafH2uDPeN8MYoP0exwzG7Eb5q3DvcG1+mlCKxoE7scIiIiIiIjIIJJyIiEk1dayde3nMBIS4qPDExUOxwRPPExAD4OSrxyp4sNHdoxQ6HiIiIiKjPmHAiIiJRGAwGvLY3G00dWrwyNwLWMsv9kaSQS/HS7HBUNndgzcFcscMhIiIiIuozy726JyIiUSWkluNQTg2enBiIEFeV2OGILsbLHg+O8kXC+XIcy6sVOxwiIiIioj5hwomIiMyuqK4N7x7MwUg/Ne4d4S12OP3GY+P84e+oxLsHcqDV6cUOh4iIiIio15hwIiIis9LqDfjLrkzIJBK8OCsMEkEQO6R+w0omwe+nBKGwrg1fnSsTOxwiIiIiol5jwomIiMyitVOHE/m1WLX7As6XNeH/ZoTAw14hdlj9zsQgJ4z2U+PDEwVoaNOIHQ4RERERUa/IxA6AiIgGpzaNDj+UNOJ0UT3OFDUgvaIJOr0BUomAe4Z749YIN7FD7JcEQcAfpgbh/o3J+PhUIZZPDRY7JCIiIiKiHmPCiYiIjKJdo8MPpY0482OCKa28CdofE0xR7nZ4cKQPRvqqMdTbHkq5VOxw+7VQV1vcFuOBL8+W4o5YL/g5KsUOiYiIiIioR5hwIiKiPmvX6HD3htMobeyAVAAiPexw/0gfjPB1QKyXA2ysmGDqqd9OCMC+zCr883Au/rYgWuxwiIiIiIh6hAknIiLqs8M5NSht7MDKGSGYFekGlRV/vPSVi8oKj4zxxXtH83GmqB4jfNVih0RG1qHVw0oqQGDjfCIiIhqE2DSciIj6bFdGJdxsrbBwqCeTTUZ073BveNhZY/XBXOgNBrHDISNqatdizvsn8dmZErFDISIiIjIJJpyIiKhP6ls1OJFfh1kRbpBwpoZRKeRSPDUpEBcqm7EzrULscMiIThbUoalDi49OFqKpXSt2OERERERGx4QTERH1yXdZVdDpDZgdyVXnTOHWCFcM8bTDe0fz0abRiR0OGcmx3BooZBI0dWix+XSR2OEQERERGZ1JE04rV67EuHHjEB8ff+WxNWvWYP78+ViwYAEWL16Miorr37F96623MG/ePMyZMwevvvoqDD+WEpw/fx7z58/HzJkzr3qciAY2nd4ArU4vdhjUC7szKhHkbINQV5XYoQxKgiBg+dRgVLd0YlMSExODgd5gwPG8OkwJccbMcFd8nlyCmpZOscMiIiIiMiqTJpwWLVqE9evXX/XYkiVLsH37diQkJGDq1KlYu3btNfslJycjOTkZ27Ztw44dO5CamorExEQAwEsvvYSXX34Ze/fuRX5+Pg4fPmzKl0BEZvLnHRl46D9n0dCmETsU6oGShjacK23E7Eg3Nj42oaFe9pgZ7oqNScWoaOoQOxzqo/TyJtS1aTAxyBmPj/dHp1aPDYlMJhIREdHgYtKE06hRo+Dg4HDVY7a2tlf+3dbWdt1fUARBQGdnJzQazZW/XVxcUFlZiebmZsTFxUEQBCxcuBDff/+9KV8CEZmBVm/Ayfw6ZFe1YMXWNLSzbGjA2JNRBQAspzODpyYFwmAw4N9H88QOhfroaG4tJAIwLsAR/k42iI/2wNfnSlHe2C52aERERERGI8pSQqtXr8bWrVthZ2eHjRs3XvN8XFwcxowZg4kTJ8JgMOCBBx5AcHAwUlNT4eHhcWU7Dw+PG5bk/ZxUKkCttjHqaxCLVCoZNK+Fbs6Sxvp8SQNaNTrEx3hi5/kyvLA7C+/dFwe51DLazA3UsTYYDNibVYWR/o6I9HMSO5x+r6/jrFbb4NHxAVh3JA+/nhyMGG+HrnciUXQ11icL6xHnq4a/56UxXDErHN9mVGBTcileWzjE5PGllzXipe3p+Pvdw+DpoDD5+Qazgfr5TT3HsbYcHGvLwbE2PVESTsuXL8fy5cuxbt06bN68GcuWLbvq+YKCAuTk5ODQoUMAgMWLFyMpKQnW1tbXHKs7JRw6nQH19a3GCV5karXNoHktdHOWNNaHMy8ljn87zg8x7iq88d1FPP1lCv4yO9wiVj0bqGN9oaIZOVUtWDnDc0DGb27GGOd7Yj3x5elivLI9DevujmUZYz91s7Gubu5AWmkjnpgYcGUbGwCLhnriq+Ri3DXUA/5Oprv4NRgM+MvW8zhX2oi132fhT9NCTHYuSzBQP7+p5zjWloNjbTk41sbh6mp3w+dEnT4QHx+PvXv3XvP4vn37EBsbC5VKBZVKhUmTJiElJQUeHh4oLy+/sl15eTnc3FjGQTTQpZQ0wsveGu521lgU64XHxvtjZ3ol/nmYpUP92a6MSsgkAqaHuYodisWwtZbhtxP8cbakEQcu1ogdDvXCsbxaAMDEoKtnBT46xg9yqQQfHC8w6fn3Z1fjXGkjPOyssTW1HLWtbFZOREREpmH2hFN+fv6Vf+/fvx9BQUHXbOPl5YWkpCRotVpoNBokJSUhODgYbm5uUKlUSElJgcFgwNatWzF9+nQzRk9ExmYwGJBS3IBhPj+VBy0Z64c7h3lh8+lirsrVT+n0BuzJrMT4QCc4KOVih2NRbovxRLCLDf55OBedWq7sONAcza2Fm60VQlyuXtXRWWWFe0d4Y++FKmRVNpvk3B1aPf5xOA+hrir8/Y4h6NTq8UVyiUnORURERGTShNOKFStwzz33IC8vD5MnT8b//vc/vPPOO4iPj8f8+fNx7NgxPPfccwCA1NTUK/+eNWsW/Pz8MH/+fCxYsAARERGYNm0agEur1D3//POYOXMm/Pz8MHnyZFO+BCIysYK6NtS1aTDsZ/1oBEHAH28JxowwV/zjcB52pJXf5AgkhjNF9ahu6cQcNgs3O5lEwB+mBKG4vh1fppSKHQ71QKdWj8SCekwMcr5uOeQDI31gZy3D+8fyTXL+L8+WoLShHb+fEoQgZxWmhbngfymlaO7QmuR8REREZNlM2sPp3XffveaxO++887rbxsTEICYmBgAglUrx8ssv33C7HTt2GC9IIhJVSnEDACDuFw2QpRIBq+aEo7Fdg1f3ZMFBIcekYGcxQqTr2J1RCZWV9JqyIDKPsQFOGOvviE1JRfhVrCcUcqnYIVE3nC2+tEDChBu8b+wVcjw4ygfvHc1HamkjYrzsjXbuutZOfHSyEBODnDDG3xEA8MhoX3yfVY2vUkrxyBg/o52LiIiICBC5hxMRUUpJAxyVcvg7Ka95zkomwVsLohDmZouVOzJwrqRBhAjpl9o1OuzPrsYtoS5MdIjokTG+qG3V4Nv0rldrpf7haF4trKQCRvmpb7jN3XHecLKR4z0jz3L64HgB2jU6/H7yT60MItztMDbAEZ8nl6BdozPq+YiIiIiYcCIiUZ0taUSst/0NV9tSWcnw90VD4G5njeVb0nCxusXMEdIvHc2tRUunDrNZTieq4T4OiPKww3/OlECnN4gdDnXDsdwajPBVQ3mTRK2NlRSPjvHD6cJ6JBbUGeW8uTUt2PJDGe6I9UKA89Ur4D0y+lLictt5Ji6JiIjIuJhwIiLRVDZ1oLShHXE+DjfdztHGCv+8IwYKuQTLvk5FWWO7mSKk69mdUQkXlRVG+t54lgaZniAIeHCkDwrr2nAohyvW9XcFta0oqm/vVhnqoqGecLezxntH82Ew9D2Z+PdDuVBaSfGbcf7XPDfcxwFDveyxKakIWh2b0BMREZHxMOFERKJJ+bFEbpj3zRNOAODloMA/FsWgXaPHsq9TuTqXSBraNDiWV4tbI1whlVx/VhqZzy2hLvB2UGBTUpFREhNkOsfyagHghv2bfs5KJsFvxvkhrbwJh/uYTDyRX4vjeXVYMtYfaptrV5QUBAGPjvFFeVMH9mRW9elcRERERD/HhBMRieZscQNs5FKEudl2a/sQVxVenhuO/No2rlwnku+zq6HVG7g6XT8hlQi4f6QPzpc1IaWkUexw6CaO5tYi0MkG3g7X9qu7nnnRHvBzVOLfx/Kh72UyUas3YM3BXPioFbhzmNcNt5sQ6IRQVxU+TSzq9bmIiIiIfokJJyISTUpJI2K87CDrwUyZCYFOiPG0wyeniqBh+YfZ7c6oRICTEuHdTBKS6c2PdodaKcfGpCKxQ6EbaOnU4mxxQ7dmN10mkwh4fLw/cqpbsbeXM4+2pZYht6YVSycHwUp240s+QRDwyGhf5NW24tBFlmcSERGRcTDhRESiaGzXIKe6pVvldD8nCAJ+Pc4f5U0d2JnGJrfmVNbYjrPFDZgd6XbDJu9kfgq5FHcN88LR3Frk1rCpPgC0aXR4dls6zhTVix0KAOBUQT20ekO3+jf93IxwV4S6qrDueH6P+ys1d2jx/rECxHnb45YQ5y63nxbmCh+1Ap+cKmR5JhERERmFTOwAiMgynStphAHosmH49YwPcESUhx0+OVWI+Gh3yKS9z50bDAZ8dqYEDe0aONpYwVEph6ONHI5KOZxs5FAr5X06/mCyJ6MSADArguV0/c2dw7zwaVIRNicV4y+zw8UOR3TvHc3H/uxqNHdoMaIfNLc/llsDW2spYr3se7SfRBDwxMQALN+Shk2ni/HwaF9Iupns3ZBYhLo2DdZMHdKtBLFMIuChUb54fV82EgvqMSbAsUexEhENRG0aHXKqW5Bd1YKLVS24WN2C+nYtxvipMTPcFUM87XiTjagPmHAiIlGklDRAJhEQ7WHX430FQcCSsX5YsTUN32ZU4rYhHr2O47usaqw5lAsBwI3u6dsrZFD/mIAa5u2Ah0f7wtba8j4+d2dWYqiXPXzU3etBQ+ajtpFjwRAPfPNDGX43MQCuttZihySas8UN+G9yCVxUVkgsrEdxfZuo/2f1BgOO5dVhrL9Tr5LXEwKdMNpPjfeO5uPb9Ao8NMoXsyPdIL/JsUob2vH5mWLMjXJDVA8+Y+dFuePDEwXYkFjIhBMRDSoGgwElDe1XEkvZ1S24WNWM4vr2K9d/NnIpQlxV8HFU4qtzpfg8uQSe9taYEeaKmRGuiHCzZfKJqIcs7zcmIuoXzhY3ItLdDgq5tFf7TwxyQqS7LT45VYi5Ue496gN1WXOHFu8cyEGEmy0+uW8YWjp1qGvToK5Vg7rWTtS1aVDbqkF966W/q1s68GliEbadL8cTEwMwf4hHt2cbDHTZVc3IqW7FM9NDxA6FbuC+kd746lwpvkguwdLJQWKHI4p2jQ4v77kALwcF1iwagrs3nMb28+X43cRA0WK6UNmMmpbOHpfTXSYIAv5+Rwz2Z1VhQ2IRXt6ThXXHC3D/SB8sjPGA8jqfof86kgdBEPBED1+3lUyC+0f4YM2hXKSWNiKmhzOyiIj6qzWHcvHZmRIAgADA11GJMDdbzI1yR6irCiGuKnjaKyARBKjVNiiuaMShizXYd6EKnyWXYNPpYviqFZgR7oqZ4a4IcVEx+UTUDUw4EZHZtWt0yKhown0jvHt9DEEQ8Oux/vhTQhp2Z1QgPrrns5zWHslDXWsn3l0YDZlUAgelBA5KOQJu8nthRkUT3tmfg1f3ZuPrc2X44y3BiO1hH6qBaFd6JaQSATPDXMUOhW7A20GJ6WGu+PpcGR4d42eRs/DeO5qP4vp2vH/XUAQ42WB8oBO2p1XgN+MDepWUNoajubUQAIwP7P2MIZlEwK0RbpgZ7orj+XX4NLEI7x7IwUcnCnB3nDfujPOCWikHAPxQ2oh9F6qwZKwf3O16PtPt9qGe+ORUITYkFuGdhdG9jpmIqL8ob2zHf8+WYkaYCx4Y5YtgZ5sub3jaWsswL9od86Ld0dCmwcGL1dh3oQobE4vwyakiBDgpcWuEGx4a5QvrmyzKQGTp+O4gIrNLK2+CVm/occPwX5oc7IQwVxU+OVUErb5nTW7PlzXi63NluHOYV49KTiLd7fDhPbF4dW4Ealo6seSLc3h+ZwbKG9t7Gv6AoTcYsCezEuMCHKG2kYsdDt3Eg6N80NKpw5YfysQOxezOFjfgi+QS3DXM60rfpgVDPFDV3InjebWixXUstxbRnnZwtLHq87EEQcCEQCd8cHcs1t8Ti1hvB3xwogDzPziFdw/koLyxHasP5sBFZYUHR/n26hw2VlLcHeeNwzk1uFjFJvREZH5anR6fJ5eguqXTKMfbmFQMAcDvpwQh2qPns+sdlHIsiPHEv341FLt+Oxb/NyMEziorfHC8AJtPc4VYopthwomIzO5scQMEALHefSvXEAQBS8b5o7CuDXszK7u9n1anx+v7suFqa4XfTgjo1XlnRbrhq8WjsGSsHw5erMGvPjmND08UoF2j6/Hx+ruzxQ2obO7EnEg2C+/vIt3tMNJPjS+SS6Dp4apmA1m7RodX9lyAp4MCT076qYxsYpATnGzkSEgtFyWu2tZOpJc3YUJg78rpbibW2wHvLIzGFw+PwPQwF3x5tgQL1ififFkTfjcxADZWvStXBoC74ryglEuwIbHQiBETEXXPhh9ncb69/2Kfj1Xd0omE1DLMi3aHh72iz8dztLHCHbFeeP+uWIzwdcDOtAqu7El0E0w4EZHZpZQ0INhFBXtF32fLTAlxRoiLCh+fLISum7OcPk8uQXZVC/44LaRPZUdKuRSPTwjAl4+MxKQgJ3xwvAB3fnIa312oGlQXH7syKmEjl2JycNdLq5P4Hhzpg8rmTuzpQRJ2oPv3sXwU1bfjhVvDrkq0yKQSzB/igWO5Nahq7jB7XMfzamEAet2/qTuCXVR4aU4EtiwZjTuHeWFulBvmRbn36ZgOSjkWDfXCvgtVKK5vM1KkRERdy65qxkcnC+GolOP7rGqkljb26Xj/OV0Mrd6Ah3s56/Nm4qPdUVTfjh/6GCPRYMaEExGZlVZvQGppE4b1cXbTZRJBwJJxfiioa8N3F6q63L6ssR0fHC/ApCAn3BJinASKl4MCb8yPwvt3DYWdQoaVOzLwxFepaGrXGuX4YurQ6vF9VhWmhjr3usE7mde4AEeEuKiwKal4UCU+b+RcSQM+P1OCX8V6YqSf+prnbxviAZ0B2JFWYfbYjuXWwkVlhXA3W5Ofy9NegT9NC8GqORGQGqFf1f0jvSGVCNiUVGyE6IiIuqbV6fHy7izYK2T49IE4OKus8I/Dub3+WVbfqsHX50pxa4QbfB2Nv1rptFBXKOUSbBfh5wvRQMGEExGZVVZlM1o1OsT5GK/R9i2hLghytsFHJwuhv8lFicFgwFvfX5qe/fT0EKOvLjLCV41NDwzHs9NDkFLcgGXfpKK5Y2AnnY7n1aK5Q4fZLKcbMARBwIOjfJBb04rjeXVih9Mt7Rod8mtae7Xfy3uy4GlvfcOV+fwclRjh64CE1PKbfj4Ym1anx4n8OkwIdBqQKxm52lpjfrQHtqeVo1qE2WFEZHk2JhUjs7IZz84Ihae9Ao+N90dKSSMO59T06nifny1Bm0aPR8cYf3YTcKnn3bQwV3x3oWpQtlQgMgYmnIjIrFJKGgCgzw3Df04iCPj1WD/k1bbi+6zqG2534GINjkiLA98AACAASURBVObW4vEJAfA0Qh3/9UglAn41zAtvzo9ERkUzln09sJNOuzMq4WQjxyi/3q+wReZ3a7gr3O2ssTGp/zczNRgMeG5nJu7ccBrP7ehZA/5/H8tHYV0bnp8VdtOeRQtjPFHS0I7ThfXGCLlbzpU2oqVThwkmLKcztQdH+UCrM2Dbed69JyLTuljdgg9PFGBmuCumhboAuDRDNcBJiX8ezuvx4jDNHVp8ebYE00JdEOSsMkXIAID4KHe0dOpw8GLvkmJEgx0TTkRkVmeLG+DloIBbL5brvpnpYa4IdLLB+hMF153F0Nyhxdv7LyLUVYV7hnsb9dzXMyXEBW/ERyK9ohnLvj6Pls6Bl3Rq7tDiaG4NZoa7irakPPWOTCrBvcO9kVzcgLSy/t1b4kB2NQ7n1GCsvyMO5VxqwP/+sXy0dXG3+HIp3R2xnl0mRG8JdYG9QmbW5uFHc2shkwgY7X9tmd9A4aNWIsLdVtRV/oho8LtUSncBdtYyPD0t+MrjMomApyYFoaCuDdtSe7b66v9SStHcocPiMX7GDvcqw30d4GlvjZ0sqyO6LiaciMhsDAYDzpU0Is5I/Zt+Tiq5NMspt6YVB7OvneX0/rF8VDd34s8zQ82WPLkl1AWvz4tAenkjfj8Ak077s6vRqTOwnG6AWjjUA7bWUmw63X978DR3aPG3/TkIc1Vh9aIh+OrRkZga4oyPThbijo+T8G16xXUTyJdL6TzsrbF0cuB1jnw1a5kEcyLdcOBiNerbNKZ4Kdc4mluD4T4OUFn1fmGC/mBcoBNSyxrR2G6e7xsRWZ5Np4uRUdGM/5sRAkcbq6uemxzshDhve6w7XtDt66g2jQ7/OV2MCYFOCHc3bQ89iSBgbpQ7ThXUoaKJ5cdEv8SEExGZTUFtG+raNEYtp/u5GeGu8HdUYv0vejmllTfhy7OluCPWE0M8jZ/suplpYa54dV4kzpc14g/fnEdr58Cp8d+dUQkftQLRHnZih0K9oLKS4Y5YLxzIrkZRXf9caexfR/JQ29qJP98aBplEgIe9Aq/Oi8T6e2LhorLCi7suYPFnKdesUvT+sQIU1rXhhVlh3U7oLIjxgEZnwLfppr8LXVjbivzatgFdTnfZ+ABH6A3AqQLzlSMSkeW4WN2CD44XYEaYK6aFuV7zvCAIWDYlCLWtGvynmzdQvjlXhoZ2LRaPNe3spsvio91hALDLDD9fiAYaJpyIyGzOXu7fZMSG4T8nlQhYPNYP2VUtOPxjLb1Wb8Ab+7LhpLLCk5O6nglhCjPCXfHKvEikljbiD1vOd1kq1B9UN3fgdGE9ZkW4DciGx3TJPXFekEoErDuej8SCOpzKr8PxvFocy63FkZwaHLpYg4PZ1difXY3vLlThWG6t2Va2O1fSgK/PleGuOO9rkpqx3g7YcH8cXpwdhoqmDiz+PAXP77zU3+lcSQM+O1PcrVK6nwt1tUW0hx0SUstN/hoPZl1aMXNikHFWwhRTtKc97BUyltURkdFp9Qa8vPsCbK1leGZ68A23G+Jpjxlhrth8urjLRQw6tHpsPl2Mkb4OGOplnpuMPmolhnnbY0dahUWsDkvUEyab571y5UocPHgQzs7O2LFjBwBgzZo1+P777yGRSODs7Iw33ngD7u7uV+138uRJvPHGG1e+zs3NxerVqzFjxgycOHECb731FvR6PWxsbPDmm2/C39/fVC+BiIwspaQBTjZy+JtgadrLbo1ww/oTBVh/shBTQpzx5dkSXKhsxhvxkbC1Fq+0ZWa4KwwGA174NhPLt5zH6tuHQCm/cZNjse29UAUDwHK6Ac7F1hrzotyxNbUcezKrurXPX+dHXvcuszFpdHq8vi8b7nbW+O2E6/8clwgC4qM9MC3UFZ8mFmLz6WIcvFgDO2sZ3O26V0r3SwtjPPDavmycL2tCjAl/ETl4oQp+jkr4mfCzzlxkEgGj/RxxIr8OBoOBCWgiMprNSUXIqLh0jfbLUrpfenJSAA5erMaHJwqxcmboDbfbfr4c1S2deHluuLHDvan4aHe8ujcbaeVNZp9NT9SfmWyG06JFi7B+/fqrHluyZAm2b9+OhIQETJ06FWvXrr1mv7FjxyIhIQEJCQn49NNPoVQqMWHCBADASy+9hLfffhsJCQmIj4/Hv//9b1OFT0QmkFLcgFhvB5P+wiL7cZbThcpmfHWuDO8fy8f4QEdMD3Mx2Tm769YIN6yaE4GzxQ1YseV8v15Cd3dGJSLdbRHgZCN2KNRHf7wlGOvuHooP7o7F+nti8dG9w7DhvmH49P44bHogDpsfHI7PHhqOzx8aAS97a3xxttTkMW1KKkZuTSuemR7SZUmcjZUUv5sYiP89OgqTgpxR36bB8z0opfu5mRGuUMol2NrD5rM90abR4VR+LSYOgnK6y8YHOqKmpRNZVS1ih0JEZrT2SB5e+DYT+7OqjD47O6e6BR+cKMCMMBfMCO/6JoePWok7Yj2RkFqGvJrW626j1enxaWIRYjztMdLXvAs2TA9zhbVMgh1sHk50FZMlnEaNGgUHh6vLZmxtf2ra1tbW1uUvnXv27MGkSZOgVP50h7C5ufnK325uvPNONFBUNHWgtLEDw0zQMPyXZke6w9tBgbe+vwi9AXhmeki/uSs/O9INL84Ox5miBizfmtYvk075ta3IqGjGrAh+xg4GCrkUw33UiPNxQKz3pRKDaE97RHnYIcLdDuFutgh1tUWIqwq/GuaFs8UNuFDZbLJ4Cuva8NHJAkwPc8Hk4O6XnHk5KPDG/EgcWjoBY/y7X0r3cyorGW4Nd8PezCo0dxi/iX+HVo+/fn8RnVr9oEo4jQu89FpYVkdkOVo7ddh0uhh7Myvx7PYMzHzvBJ5OSMPOtIo+LyKg1Rvw8p4sqKxkeHp6SLf3+/VYPyjkUqw9knfd57/NqER5Uwd+PdbP7Nd9ttYy3BLqgr2ZVejQ6s16bqL+zOz1JatXr8bWrVthZ2eHjRs33nTbnTt34tFHH73y9WuvvYbHHnsM1tbWsLW1xZdfftmtc0qlAtTqwXGXXiqVDJrXQjc32Mb6SOGlhrOTI9zN8rqemhaClVvOY+ktIYj27199VO4bHwil0grPbknFMzsy8PjkYIS728LF1lrs0AAAh86UQBCAX432g9peIXY4g8ZAeE8/NDEIH54oxNa0CrwRZvyEo8FgwN++OQ8rmRSrFgwR5f/XA+MDkHC+HMeKGnD3SF+jHbe4rhVL//cDzpc24qlbQjAjxqvfJLr7Sq22QZSnPZKKG7B8Vv/+P2xuA+F9TcZhaWOdml0Fnd6ADx8cAYVMgr0ZFdibXoGDF2sgkwgYE+iEmVHumBnpBje7nn2Wrzuci/TyJvz9rlgEeXV/JpJabYPfTg7CO99lI7u+HaMCfkrs6/QGbDpdjChPe8yN8+7T529vx/ru0X7YnVGJ5PJmzBni0evzk/lY2vtaDGZPOC1fvhzLly/HunXrsHnzZixbtuy621VWViIrKwsTJ0688tiGDRvwwQcfIDY2FuvXr8cbb7yB1157rctz6nQG1Ndff+rlQKNW2wya10I3N9jG+lhWFWzkUngoZWZ5XdMDHfHJfcMQ5WHXL7+PtwQ64i+zwvDq3mycyE0CADjZyBHmZoswVxXCXG0R6qaCn6MNZBLz/dJqMBiQkFKCEb5qWOv1/fJ7N1ANlPf0nEg3bDtXisfH+EFtIzfqsXekleNkXi3+b0aIaP+//G3lCHaxwWenCjErxDjJ6JP5tXh+Zya0egPeXhCNBSN9B8RY98RoXwdsSipCcUWjqP3w+puB8r6mvrO0sT6YUQmZREC4owJKuRQREwLw1Hh/ZJQ3YX92DQ5erMZL29Oxans6YrzsMdbfET6OCng7KOHtoICTjfy6SZ/cmhb8fX82poW6YJyPfY+/pwuj3LDpZAFe/zYDH9877Mo59mZWIr+mFX+dH4mGhr6tzNrbsY50UsLN1gr/TSzEOB/2cRoILO19bSqurjde0Vq0K4b4+Hg8/vjjN0w47dq1CzNnzoRcfulit7a2FpmZmYiNjQUAzJ07F0uWLDFbvETUNyklDRjqZW+25IkgCP2+aWN8tAcmBzujtFWL5LwaZFW1ILuyGZ8V1kOrv7TKibVMgiBnG4S52WJ2hBtG+pm2J0F6eROK6tvxyGjzLCVM/c9dcV745ocybEktw6NjjPf/oK61E2sO5mKolz1uH+pptOP2lCAIWBjjiXcO5CCrshlhbrZd73QDeoMBG04V4f1j+QhyscFbt0UPikbh1zM+0AkbEouQWFBn8qbyRCS+M0X1iPawu2qBE4kgINrzUln2U5MCkFvTigPZ1TiQXY0PThRctb9CJoG3+qcElLeDAt5qBdafKISNXIpnZ/Su3YFCLsXjEwLwyp4s7M+uxvQwV+gNBnx8qhCBTjaYGipez06pRMDcKHdsSipCdXNHv5m5TiQmsyac8vPzERAQAADYv38/goKCbrjtzp07sWLFiitf29vbo6mpCXl5eQgMDMSxY8cQHHzj5TOJqP9oaNMgp7oVM7vRFNLS2Cvk8PNwQITTT7+kanR65Ne2IruqBRcqm5Fd1YL9WdVISC3HGH81npgYiCiPG99J6IvdmVWwkgqY1g+arJM4gl1UGO2nxlcppXhwpA9kUuO0e1xzKBctnTr8eWYoJCKXms2JdMM/D+ciIbW8R/1Dfq6pXYuXdl/A4ZwazIpwxXO3hvXrlSf7KsbLHrbWUhzPY8KJaLBr7tAis6IJD9/kpoMgCAh2USHYRYUl4/zRrtGhvLEDJQ3tKGlou/R3fTtKGtqRVFiHNs1PfY1emxcBpy5WpbuZeVHu+OxMMdYeycPkYGccy61FTnUrVs0JF/3ny7xod2xILMKujEo8OMp4ZdtEA5XJEk4rVqxAYmIi6urqMHnyZCxduhSHDx9GXl4eBEGAt7c3Vq1aBQBITU3FF198caU8rri4GGVlZRg9evRPgcpkePXVV7Fs2TIIggAHBwe8/vrrpgqfiIzoXGkjAGCYt0MXWxIAyKUShLpeauQ8N8odwKVmxF+llOKTU4V4+D9ncUuoC343IQCBzsarO9fqDdibWYkJQc4smbFwdw/3xh+3puHgxZpurR7UlVP5dfg2vRKLx/gi2EVlhAj7xkEpxy2hLtiVUYmlkwOh6GGi6GJVC57ZlobSxg786ZZg3BU3ePo13YhMImC0nyNO5NfCYDAM+tdLZMlSShqgMwAjfbt/3aaQSxHgbIOA61yXGAwG1LVpUFLfjk6dHiP6uIKcVCJg6eQg/OGb8/jmXBl2plfA20GBW/vBYicBTjaI8bTDzvQKPDDSh5+VZPFM9hvFu+++e81jd95553W3jYmJQUxMzJWvfXx8cOTIkWu2mzlzJmbOnGm8IInILFKKGyCTCIg20awcS2Atk+D+kT5YEOOBz84U4z+nS3DoYjXmRrnjsfH+8DRC8+XThXWobdVgdqT4F2wkrgmBTvB2UOC/Z0v6nHBq1+jwxnfZ8HNUYvFYfyNF2HcLYzyxJ7MKBy5WY06ke7f325NRiVf3ZkFlLcP7dw7FMB/LSaSPD3TE/uxq5FS3IsRV/MQhEZnG6cIGyKUCYozUmkAQBDjZWPVpVtMvjQ9wxEg/Nf55JA8dWj2emxlq1p6XNzMv2h1vfncRmZXNiHTntS9ZNuPMkyciuomUkgZEedj1eBYBXcvWWobHxgdg65JRuGe4N/ZmVuKOj5Pw9v6LqGnp7NOxd2dWwdZaigmBg2c5d+odqUTAXXFeSClpRGZFU5+Otf5kIUoa2rFyRiisZf3nsmO4rwN81Aps/aG8W9u3durw9v6LeP7bTES622LzA3EWlWwCgHE/rgh1PK9W5EiIyJTOFNUjxtO+X1+3CYKAZZMD0aHVw83WCvOiu3/jwNRmhrvCSipgZ1qF2KEQiY41E0RkUu0aHdIrmnH/CB+xQxlUHG2ssHxqMO4d7o31JwvxVUoptp0vx73DvfHgKN8el8S1a3Q4mF2N6WEu/SopQOKZH+2B94/l44uzpXhpdnivjpFd1YzNp4sRH+1u8ob3PSURBNw2xAPvHc1HQW0r/J1s0NqpQ3F9G4rq21BU9+Pf9e0oqmtD9Y8J3ftGeGPppECj9bYaSNzsrBHiosKJ/Fo8NJq9SYgGo6Z2LS5UNmPJuP6/eEikux2enhYCP0cF5P3oM9leIcfkYBfszqjE76cE9avYiMyNCSciMqnzZU3Q6Q2I4/KwJuFhr8Dzt4bhwZE+WHe8AB+fKsL+7Gqsv2cYHJTdX9L+aG4tWjp1LKejK+wUMsyLckfC+XIsmxzY41KIdo0Oq3Znwc5aht9PufEiIWKaH+2OdcfysezrVHToDNfMEnRWWcFXrcDYAEf4OSoR42nf7xJn5jY+0BGfnSlBS6cWKiteRhINNsnFDTAAfe6zZC53xXmJHcJ1xQ9xx3dZVTiaW4tbRFw5j0hsvFIgIpM6W9IAAUCsl2WVnpibv5MNXo+PxMIYD/xhy3k8sy0d/7wjBlbdnK20O6MSLiorDPcZGBeYZB53xXnjq3Nl2PJDGX7dg/5LBoMBr+7NQlZlM95eGA11D5Kf5uRia40HR/niXEkDfB2V8FEr4atW/vhvBRMq1zE+0Akbk4qRVFAv6vLjRGQaZ4rqYS2TGK1/k6Ua4+8IZ5UVdqZVMOFEFo1XUkRkUinFDQhxVcFOwY8bcxjt74i/zArHC99m4pW9WXh5TniXK6Q0tGlwLK8Wd8V5QdpPGm5S/xDobIOx/o74KqUMD4/y7XYZ2cakYuzJrMITEwMwOdjZxFH2zZOTAsUOYUAZ6mUPlZUUx/NrmXAiGoROF9Ujxsu+2zes6PpkEgFzI93wWXIJ6lo74WjEhulEAwk/SYjIZLR6A1LLGhHrxbtk5jQ70g2/mxCA3RmVWHe8oMvt92dXQ6s3sJyOruvu4V6obunE/uzqbm1/JKcGa4/k4dZwVzzCPj+DjlwqwSg/NU7k1cFgMIgdDhEZUX2bBtlVLRjpy1npxjAv2h06vQG7M6vEDoVINEw4EZHJ5FS3oE2jR6w3L1zM7dExvrhtiDs+OlmI7edvvgrX7oxK+DsqEeFma6boaCAZH+gEX7UCXySXdrltXk0rXvg2E+FutnhhVliXs+toYBoX6ITypg7k1baKHQoRGVFycQMAYOQA6d/U3wW7qBDpbosdXVyHEQ1mTDgRkcmcL2sEAAzxtBM5EssjCAJWzgjFaD81XtuXjcSCuutuV97YjrPFDZgV6cbkAF2XRBBwV5w3UssakVbedMPtGts1+OPW87CWSfC3BVH9ejlt6pvxAY4AgON51/9cIaKB6UxhPRQyCaI8eN1mLPHR7siqakFWZbPYoRCJggknIjKZ1NJGONnI4e2gEDsUiySTSvDX26IQ4KTEM9vScbG65Zpt9l2oggHA7AiW09GNxUe7w0YuxZdnS677vFZvwJ93ZKCssQNv3RYFD3u+5wczD3sFAp1tcCKvVuxQ0K7R4aHNyXjsixSsPZKHo7k1aGzXiB0W0YB0uqgew7wdIO9mvz7q2q0RbpBJBHx2pljsUIhEwU8TIjKZ1LImDPG058wZEdlay7Dm9iFQyKVY/s15VDd3XPX8roxKDPG0g6+jUqQIaSCwtZZh/hB37M2sQnVL5zXP/+NQLk4V1GPljFCW0FqI8QFOOFvSgNZOnahxnCtpREZFM2pbNdh0uhjLt6Rh+toTuHvDaby+LwvfpleguL6N/aaIulDb2oncmlYMZ/8mo1Ir5XhgpA92plfe8KYN0WDWZcKpra0Na9euxfPPPw8AyM/Px4EDB0weGBENbPVtGhTWtbGcrh/wsFdgze3RaGjXYMXWNLRpLv2CmFPdguyqFszi7CbqhjuHeUGrN2DLD2VXPb7tfDk+Ty7BPcO9cVuMh0jRkbmND3SERmfA6aJ6UeNILKyHVCJg4wPDcfCp8Xj/rqH43YQAuNtZY9+FKry46wJu/ygJc9adwrPb0nGupEHUeIn6qzNF7N9kKr+bGIApwc5450AOTuSLPzOUyJy6TDitXLkSVlZWSElJAQB4eHhgzZo1Jg+MiAa2tLJLvV6GcoW6fiHC3Q6vzYvEhcpmPLcjAzq9AXsyKyERgJnhrmKHRwOAv5MNxgc64utzZdDo9ACAcyUNePO7bIz2U+P3U4JEjpDMaZi3A5RyCY6LXFZ3uqgeMZ52sLGSQiGXYoSvGovH+uEfd8Tg+yfH4/OHRuDZ6SEY5adGSkkDntmWjpZOragxE/VHZ4rqYSOXItKdC4gYm0QQ8PLcCAS7qLByewbyarjgAlmOLhNOhYWF+M1vfgOZTAYAUCgUnJZMRF1KLWuERAAi3TnDqb+YFOyMP00LwZHcWrx7IAd7Miox2s8RziorsUOjAeLuOG/UtHTi+6xqlDe245lt6XC3s8br8ZGQSVg6a0msZBKM9FXjRF6taNeFTe1aZFY03XBGhkQQEOKqwq+GeeGVuRF49/YhqG3V4NPEIjNHStT/nSmqxzAfe8jYv8kkbKykeHdhNKxlEizfch71rew1R5ahy08UKysrtLe3X+nBUlhYCCsr/nJCRDeXWtqIYBcVbKy4UlV/cucwL9w/wgdfppSitLEDsyNZTkfdNzbAEX6OSnx2phjPbEtHh1aPdxZGw0EpFzs0EsH4QCeUNnagoK5NlPOfKaqH3gCM8u9eCVC0hx1mR7rhP6eLUdbYbuLoftLcocXTCWk4lc9V/ah/qm7uQH5tG8vpTMzDXoF3FkajqrkDz2xPvzJbmGgw6zLhtHTpUixZsgRlZWX44x//iEceeQRPP/20OWIjogFKpzcgrbyJ5XT91LIpgZgR5gK1Uo6poc5ih0MDiEQQcHecFzIqmpFZ0YxX5kYgyFkldlgkknGBjgAgWlnd6aJ6WMskGOLR/Z81T04MgCAIWHskz4SRXe3vh3Jx8GIN/rwzw6yJLqLuuty/aQQTTiY3xNMef5kVjrPFDXhjXzYrh2jQk3W1wYQJExAVFYVz587BYDDgueeeg5OTkzliI6IBKr+2FS2dOjYM76ckgoDX4yPRqtFBZdXljwGiq8yLdkdCajnmRbtjUjATlpbM20EJf0clTuTX4b4RPmY/f2JhPeK8HWAl634JkIe9AveP8MbHp4pw73BvRHua9sZIUmEdtqaWY3akG47k1GDl9gx8eE8sl52nfuV0UT1sraUId2P/JnOYFemG/NpWrD9ZiEBnGzw4ylfskIhMpsufdmlpaSgtLYWrqyvc3NxQVlaGwsJCaLVsuEhE15da2ggAiDHxhTz1niAITDZRr6isZPjPQyNESTBQ/zM+0AnJRfVo/3H1S3OpbulEXk0rRvn1fEbGQ6N94WQjx+qDuSadXdCm0eHVvdnwc1TiuZmh+MusMKSVN+FfZpxdRdQdZ4ouJW+l7MVnNr8Z748ZYS745+E8HLpYI3Y4RCbT5W8bq1atQnp6OsLCwgAAWVlZCA8PR319PVatWoWJEyeaPEgiGljOlzXBXiGDn6NS7FCIiMiExgc64vPkEpwpasCEIPPNgD9dWA8AGNmLhJPKSobfTQjAa/uysT+7GtPDTLNS57+P5qO0oR3r7h4KhVyKaWGuuDuuAZ+dKUGctwOmhrqY5LxEPVHR1IGi+nbcEesldigWRSIIeHF2OEoa2vHCtxn46N5hCHXlDDMafLqc4eTt7Y0tW7bgm2++wTfffIOtW7ciLCwMGzZswN/+9jdzxEhEA8wPZY0Y4ml3ZbEBIiIanOJ81LCWSczexympsA521rJelwDNH+KBEBcV/nE4D51a4zfu/aG0EV8kl+BXsZ4Y7vNTUmzZ5CBEedhh1Z4LKGkQp9k60c+dKfoxecv+TWankEvxzsJo2FnLsGJLGmpaOsUOicjoukw45ebmIjQ09MrXISEhSE9Ph68va02J6FpN7Vrk1bSynI6IyAJYyyQY6avGiXzzJpxOF9ZjhG/vS4CkEgF/mBKE0oZ2/PdsiVFj69Tq8eqeLLjbWeOpyYFXPWclk+D1+AgIELBye4ZJkl1EPXG6sB72ChlC3bgAhBhcba3xzsJo1Ldp8HRCGjr4mUCDTJcJp8DAQLz44otITExEYmIiXnrpJQQEBKCzsxMyGft/ENHV0subALB/ExGRpRgf6Iii+nYU1Zlnxk5xfRtKGzt61b/p58YEOGJCoBM+PlWI+laNkaIDPjpViLzaVqycGXrdXnneDkr8ZVYYMiqa8Y/DuUY7L1FvnCluwHAfB0g4K100Ee52WDU3AqllTfjrd9lih0NkVF0mnN588034+/vj008/xYYNG+Dr64s333wTMpkMGzduvOF+K1euxLhx4xAfH3/lsTVr1mD+/PlYsGABFi9ejIqKimv2O3nyJBYsWHDlT0xMDL777jsAgMFgwOrVqzFr1izMmTPnpucnInH8UNYIAUA0V6gjIrII4wIu9W4yV1ld0o/9m0b5Ofb5WMumBKKtU4cPTxT0+VgAkFXZjE8TizAvyg3jA2/c02pqqAvuHe6N/54txfdZVUY5N1FPlTW2o7ShHSNYTie6aT9+JuxMr0BtK0vraPDoMuGkUCiwePFirF27Fu+99x5+/etfQ6lUQiKRQKW68dTLRYsWYf369Vc9tmTJEmzfvh0JCQmYOnUq1q5de81+Y8eORUJCAhISEvDpp59CqVRiwoQJAIBvvvkGZWVl2LVrF3bt2oV58+b19PUSkYmdL2tEoLMNbK05A5KIyBL4Oirhq1bgZEGdWc53urAeLiorBDj1fWGKIGcVbh/qia/PlSK/prVPx9LqDXhlTxYcFDIsnxrc5fZLJwci2sMOr+zJQnE9+zmR+V1pvs+EU79w2xAP6A3A91nVYodCZDRdJpzy8/OxbNkyzJ07F9OnT7/ypyujRo2Cg4PDVY/Z2v7U2LGtra3LhsJ79uzBpEmToFReuqD4/PPP8eSTT0IiuRS2N2GrVgAAIABJREFUs7Nzl3EQkfkYDAacL2tiOR0RkYUZ4atGSkkDdHqDSc9jMBhwuqgeI/3URluY4rHx/lDIpfh7H8vbNicVIbOyGc9OD4GDUt7l9nKpBG/Mj4RUcqmfE3u3kLmdKaqHWilHkIuN2KEQgGAXGwQ622BfZqXYoRAZTZdTEFauXIlly5bh9ddfx8aNG/HNN9/AYOj9xcTq1auxdetW2NnZdVkSt3PnTjz66KNXvi4qKsK3336Lffv2wcnJCc8//zwCAgK6PKdUKkCtHhwfpFKpZNC8Frq5gTjWuVXNaGzXYkyIy4CLXUwDcayp5zjOlsMSx3pCmCu2ppajskOHSBPedLhQ3oTaVg2mRLgZ7XusVtvgianB+NveLKTVtGJCsEu397081rlVzfjwZCFmRblj0Wj/Hp37rTuG4rf/Sca/TxTipflR3dqvrVMHAFBaSbt9Luqbwfa+NhgMSC5pxNggJzg5smH4z4k51rfFeuEfBy6iTZDA00EhSgyWZLC9r/ujLhNOHR0dGDduHADA29sbS5cuxX333Ydly/6fvTsPj6q+/gf+vrNlkskySWayb2QjARIIOwIBZRMhgFhcWrFiXdpabbFqi7a2fkWtVoH+1NatrSjuFAz7joAoS9gSSCAL2fdtsm8zc39/hESRLJNkJjOTvF/Pw2Myc+fek1xnMnPu55zzeL8OuHr1aqxevRrvvPMONm3a1O1+ysrKkJ6ejhkzZnTe1traCgcHB2zZsgX79u3DM888g08++aTXYxoMInS6gS2TthVqtdOQ+VmoZ/Z4rr9Nb78iE+rmYHexW5M9nmvqO57n4WM4nuuR18rbjqaVwtfRciXVh1JLAACjNeb9HS+N9sLHJ3Lx4s40fHTveJOn36nVTqiqbsDTm5OhlEnwu/gRfY5rgo8z7p0YgE2n8jBK64T5UV7X3V/R0IqM8nqklzUgvawe6eX1yKtugp+bElsemGS2lV7Us6H2vC7QNaG4phn3TggYUj+XOVjzXM8MVuMfIrA1KQ8/nRBglRiGk6H2vLYWrbb73r29viNQKBQwGo0IDg7Gpk2b4O3tjcrKygEHtXjxYjzyyCPdJpx2796NefPmQS7/fkmyt7c35s+fDwCYN28e1qxZM+A4iMh8UorqoFJIMcKTVwqIiIYTX1clfFwccL6wBneN97fYcU7nViNArYSvq3mv/DvIJPhNfCie2ZGGHZdKsDTG1+THbj5fhAtFtfjrrSOhUSn6dfxHZ4TgQmEtXtqfgYZWAwp0TUgvb08wVf1ggp6vqwMitM7wcVXiRE41Khvb+n1MGt46+zcFufWyJQ2mYA8njPRyxr7L5Uw40ZDQaw+nZ555Bk1NTfjTn/6ES5cuYdu2bXj11Vf7dbCcnJzOrw8dOoTQ0NBut925c+cNTcHnzp2LEydOAABOnTplUjkdEQ2elOJajPF14WhdIqJhKC7ADWcLagbUeqEneqOIswU1FmtwPDdSgxhfV/zreC4ar5Ws9aaguhFvHsvGtBB33DbKq/cHdEMmleClxVGQSQS8tD8Dn5wpRHVjG24a4YEnbg7D23fG4uCj07DtoSl4fdlo3D85EACQUV7f72PS8JaUr4OHkxwjPHiR0NbMH6nFpZI6FNZwmADZv15XOBUWFiI2NhYqlQovv/wygPbVR2PHju3xcU888QROnTqF6upqxMfH47HHHsPRo0eRnZ0NQRDg7++P559/HgCQkpKCzz77DC+++CIAoKCgAMXFxZg8efJ1+3z44Yfx5JNPYuPGjXBycurcnmxDq96I/yUXY+kYHzixp8Cw09hqQFZFA+KnBFk7FCIisoJxAW7YnVaGvOomBFvgQ+zl0jo0tBowKcgyCSdBELB6dige+PQ8NhzJwqxwDWQS4ft/Usl130slAl4/chUCBDwzL2LApW0+rkpsWjkedS16hHg4QS7t/rpwhLa9505GWQOmhXgM6Lg0/IiiiDP5NZgQaL7m+2Q+c0dq8caxbOy/XI77+b6a7FyvCad3330XCxcu7PW2H1u3bt0Nt61YsaLLbWNiYhATE9P5fUBAAI4dO3bDdq6urnj33Xd7C5msZPOFIqz/+ira9Ebcd+3KGw0fqSV1MIrghDoiomFqvH97ac65ghqLJJxOd5YAWW6Ee4yfK24b5YWtySXYmlxi0mOenhMOHzOV+Pm4KuFjwnauSjm8XRyQzhVO1A951U2oaGjFxECW09kiPzclYnxdsP8KE05k/7pNOB05cgRHjx5FaWkp1q5d23l7fX09pFKuXqHrNbcZ8OHpAgDAVynFWDkpgFdMhpmU4loAwGjf7pvGERHR0BXs4Qh3RznOF9ZgWazpPZBMdTpPh3CNCh5Olu1Z9NyCkbhnvD/aDCL0RhF6o7H9v53ft99mMIrw0zhjnJd1JnxFaFXIKG+wyrHJvp3Jb0/eTrBQeSoN3LwoL6w7nIWcykaEsDcq2bFuE07e3t4YPXo0Dh06hNGjR3ferlKp2KybbrAluRiVDa24PdYHW5NLcCa/xqJXIMn2XCyuQ5C7I9SO8t43JiKiIUcQBIwLcMO5ghqz77tFb0RyUS2WWyCR9WNSiYAob9MunlhzwlGkVoXvsqvQojfCQdZrW1aiTkn5NdA6KxDk7mjtUKgbcyM1WH84C/uvlOOhm4KtHQ5Rv3WbcIqKikJUVBSWLFkCmcxy423J/nWsbpoYpMYTs8Nw4EoFvkopZsJpGBFFESlFtbgplH0kiIiGs7gANxzOqEBJbbPZyswAILmoBi16o8X6N9mjcK0zDCKQU9mIkd7O1g6H7ER7/yYdJge7sxrBhmmdHRAX4IZ9V8rw4LQgniuyW91mkhISEnp84Pbt280eDNmnjtVNLy2OglIuxW2jvLAluRi6pjaudhkmCmuaUd3UhhiW0xERDWsdfZzOF9biVjMmnJLydJAK7QktatfRODy9vJ4JJzJZclEtqhrbmLy1A/NGavHKwUxkVjQgQsvnONmnbhNOb7/99mDGQXbqh6ubxge0/+FaFuOLz88VYVdqKX46IcDKEdJg6OjfNIYNw4mIhrVwrQoqhRTnCmpwa7SX2fZ7Ok+HUT4ucHbgqvsOgWpHOMgk7ONEffLZ2UK4OMgwN1Jr7VCoF7dEavDaoUzsu1zOhBPZrW4Lvv39/Tv/OTg4ID09Henp6VAqlfD39x/MGMmGdaxuemja9xMUwrUqxPi64KvkEoiiaMXoaLBcLKqDo1yCMI11GqcSEZFtkEoEjPV3NWsfp/oWPVJL6liq/yNSiYBwjQoZnFRHJiqubcahjAosi/GBk4JDoGydh5MCk4Lcsf9KOT9Tkd3qtcPgrl27sGLFCuzZswe7d+/u/Jqoq9VNHZbF+CK7qhHJRbVWio4GU0pxLUb5uEAmYX05EdFwF+fvhuyqRlQ3tpplf+cKamAQwRKgLnRMquOHUTLFl+eKIAC4M87P2qGQieaN1KKwphmppUwsk33qNeH09ttvY/PmzXjllVfw6quvYvPmzfjnP/85GLGRjetqdVOHeVFaqBRSbE0psUJkNJia2wxIL29gOR0REQH4vs/S+ULzXHQ6naeDQiog1o/9m34sQuuMmmY9yurNk9yjoaux1YCvUkpwc4TGrA39ybJmR3hCJhGw73KZtUMh6pdeE06iKMLT07Pze7Vazaso1OPqJgBwlEuxIMoLB66Uo65Zb4UIabBcLq2HwSgihgknIiICMMrHBQ4yidnK6pLydYj1d4ODrNe3rcNOR+PwTPZxol7sTC1FXYsed49naxR74qqUY1qIOw5cKYeRn8HJDvX6l3vmzJn4xS9+gS1btmDLli14+OGHER8fPxixkQ3raXVTh9tjfdCiN2J3GjPyQ1lHw/AYP06oIyIiQC6VYIyvi1kSTlWNrcgob8BkltN16YeT6oi6YxRFfHa2EKN8XBDrxwuE9mZelBZl9a1INtOqUaLB1GvCSavVIiEhAenp6bhy5QruuusuPPXUU4MRG9mo5jYDNp7K73Z1U4cobxdEeTnjq5Riu1wVd7G4FrqmNmuHYfNSiuvg76aEh5PC2qEQEZGNiPN3Q3p5PepbBrbKOSlPB4D9m7rj7CCDn6sDJ9VRj77LrkZedRPuGe8PQWC/TXsTH+YJB5kE+6+UWzsUoj7rNeHU0NCA9957D8nJyQgKCkJcXNxgxEU2bEtyMaoa23pc3dRhWawPMsobkFpSNwiRmU9VYyse+uwCntt12dqh2DRRFJFSVIsxvlzdRERE34sLcINRxICHhyTl66BSSBHlzb8z3YnQOnNSHfXo07MF0DorMCdSY+1QqB9UChlmhHrgQHo59Eb7u4hPw1uvCaff/OY32LlzJ5577jmUlZXh3nvvxf333z8IoZEtMnV1U4cFUV5QyiR21zx83+X2F/TvcqpxMrfa2uHYrNK6FlQ0tLJ/ExERXSfGzxVSiTDgsrrTeTqMD3DjFNQeRGhVyKtuQnObwdqhkA3KqmjAyVwdVozzg1zKPmj2at5ILaoa23A2X2ftUIj6xORXHU9PT2g0GqjValRWVloyJrJhfVndBLQv9Z4fpcW+y2VoaLWf5uG7UksRrlHBz9UB/zhyFQZeTehSSnH7yrUY9gMgIqIfcJRLEe3tjPOF/U84Fdc2o0DXjIksp+tRhJczjCKQVdlo7VDIBn12thAOMgluj/G1dig0ANNHeMBJLmVZHdmdXhNOn3zyCVauXIn7778f1dXVWLt2LbZv3z4YsZGN6evqpg7LYnzR1GbEvsv28QKZXdmItNJ6JIzxxqMzRyCjvAG700qtHZZNulhcCweZpLNpKRERUYc4fzdcKqnr98qb09f6N00OcjdnWENOhKZjUh3L6uh6usY27E4rw8JoL6id5NYOhwZAKZciPtwThzMq0GYwWjscIpP1mnAqKirCM888g507d+Lxxx9HeHj4YMRFNqivq5s6jPF1QZjGCVuTiy0UmXntSi2FRADmR3lh3kgtRvu44F/f5HCpehdSimoR5eXMJdpERHSDuAA3tBlEXOpnH8fTeTq4O8oRpnEyc2RDi79aCSe5lI3D6QZbU4rRojfi7vH+1g6FzGDeSC1qmvU4lcuyOrIfvX5KfPLJJxEdHT0YsZAN6+/qJgAQBAHLYnyRVlqPK2V9u/pW36JHbfPgTYoziiJ2p5VhSrA7NCoFBEHAb2eFoqy+FZ+cKRy0OOxBq96Iy2X1LKcjIqIujfV3hQD0q4+TKIpIytNhYpCaU7V6IREEhGlUSGfCiX6gzWDEl+eLMCVYjTANV6IPBVOD3eHiIMP+K2XWDoXIZFyWQCbp7+qmDgujvaCQCviqD6ucvsupwvJ/n8bKj84OeKyyqc7m16C0rgWLRnl33hYX4IbZ4Z7YeCoflQ2tgxKHPUgvr0ebQUQMJ9QREVEXXJVyhGtV/erjlFPVhIqGVkxi/yaTRHqpkFFeD1Fkz0lqdzC9AuX1rbhnfIC1QyEzUcgkmB3uia8zK9GiZ1kd2QcmnKhXA1nd1MHNUY45kVrsTivrtTRNbzDizWPZePx/F+GilKGkrgUbvr7ar+P21a7UUqgUUswK97zu9t/MHIEWgxHvfZc7KHHYg45R11zhRERE3Ynzd0NyUS30few5svFUHmQSAdNC2L/JFBFaFepbDCipa7F2KGQDRFHEp2cLEeTuiGkj+BwaSuZHadHQasC32VXWDoXIJEw4UY9EUcQbR7MHtLqpw7JYHzS0GnqcrlBS24xHvkjGxlP5uD3WBx+vHI+VkwKReLEE31y17HTE5jYDDmVU4OYIDZRy6XX3BXs44Y5YX3yVXIwcToEBAFwsroO3iwO0zg7WDoWIiGzUuAA3NLUZ+1RSf7ZAh52pZbh3YgB8XJUWjG7oiNA6AwDSy1hWR+1ThFNL6nD3eH9IWJI6pEwMcofaUc5pdWQ3mHCibomiiP93NBtfnC/C3eP9+726qUOcvxuC3R3xVUpJl/cfyazAzz46i6yKBry4KArPzIuEUi7Fw9OCEaFVYe2+DOiaLNfP6UhmJRpaDdeV0/3Qg9OCoJRL8caxbIvFYE9SimpZTkdERD2K829fBXuusNak7fUGI145kAlfVwf8YurALnQNJx2N1TMrOKmOgE/PFMLFQdbte1qyXzKJgDmRGhzNqkRD6+C0HCEaCIslnNasWYNp06Zh8eLFnbdt2LABCQkJWLp0KR544AGUlt44av7EiRNYunRp57+YmBgcOHDgum1eeOEFxMXFWSp0Qnuy6a1vcrApqQA/GeuLJ2aHDnifgiBgaYwPkotqkVXx/RW4Vr0Rrx/OwpOJqfBzVeKje8djfpRX5/0KmQR/vXUkapra8OrBzAHH0Z1daaXwdnHA+EC3Lu93d1Lg/smBOJpViTP5w3s6RHl9C0rqWlhOR0REPdI4OyDI3dHkxuGfni3E1cpG/P7msBtWG1P3VAoZAtRKTqojlNQ243BGOZbF+MBJwefQUJQwxgcteiO2Jnd9EZ/Illgs4bR8+XK8//7719324IMPYvv27UhMTMTs2bPx1ltv3fC4qVOnIjExEYmJidi4cSMcHR0xffr0zvtTUlJQW2vaVTLqv3e+zcXGU/lYHuuLp+aEm21CzOLR3pBJBCReW+WUX92EX3x6Hp+dLcTd4/3x73vGIdDd8YbHRXo546Fpwdh/pRz7Lpt/MkNFQytO5lTj1mivHpce3z3eH94uDvjHkaswDuPGnOevXamOZcKJiIh6EefvhvOFNb3+3Syta8F73+ViRqgH4sM8e9yWbhShdWbCifDl+SIAwJ1xflaOhCxltI8LJgWpsSmpgM3DyeZZLOE0adIkuLldv1LE2dm58+umpqZekxh79+7FzJkz4ejYnoAwGAx49dVX8dRTT5k/YOr03ne5+PeJPCwd44M/zA03a+23u5MCs8M12Jlaip2XSrFy01kU1jTj70tG4fc3h0Eh6/5/yfsmB2K0jwtePZiJinrzNsXcd7kMBhG4bZRXj9sp5VL8ekYI0krrsdcCiS97kZSng0ohRZQ3S+qIiKhn4wJcUdusx9VeeiCu/zoLRhF48pYws13oGk4itCrkVzehqZfhLGQbGlr1aDVzsqCpzYCtySW4OULD/mdD3ANTglDZ0Iodl7jKiWzboPdwWr9+PWbNmoXt27fjt7/9bY/b7ty587qSvE2bNmHOnDnw8uo5KUD9958TeXj321wsHu2NZ+ZHWKTR4LJYH9Q26/HXPVcQ6qnCx/eNx+wITa+Pk0kE/PXWkWjWG/Hi/gyzjv7dlVqGaG9nhHqqet321mgvjPRyxj+P5QzbqwpJ+TrEBbhBJuEHAiIi6llcQPsFyJ7K6r7LqcLB9AqsmhIIf7cbVzpT7yK1KogAMrnKyeZV1Lfgzv8mYcUHSWZt07DzUinqWvS4e7y/2fZJtmlCoBtifF3w4al86I3Dt+qCbJ9ssA+4evVqrF69Gu+88w42bdqExx9/vMvtysrKkJ6ejhkzZgAASktLsWfPHnz00Ud9PqZUKkCtdhpQ3LZCKpVY7Gd55+hV/Ot4DpaO9cMry2MgtVAyYZ6rI25NK8MIjQqP3RwOudT0vOc4tROenB+JF3ddxoGr1VgxIWDA8aSX1uFKWT2evS3K5N/ts4uicd9/TyMxrQwPzxx4f6uuWPJcD0RxTRPyqptw79Rgm4zPHtnquSbz4nkePniur+fm5ggfVyUuldbjoS5+Ly1tBrx++CpCPJ3wm7kj4dDDamdbY0vnekJY+8W7goZWzLSRmIYSc53rFr0Rz3yRjPpWAzTOMvzyi2SsnBqEJ+dFwknR/49mRqOILy8UI9bfDfGjfLhKcABs6Xndk0dvicAvPz6Lb/J0WDaOScb+sJdzbc8GPeHUYfHixXjkkUe6TTjt3r0b8+bNg1wuBwCkpaUhLy8P8+fPB9Bekjdv3jzs37+/12MZDCJ0uqExyl6tdrLIz/JxUgE2HLmKBVFarLklDHW1TWY/xg+9cOtIAEBDXXOfH7skSos9KcVYuzMNozVO8HMb2JLhz0/mQioA8cFqk3+30R6OmBHqgX9+nYX5YZ5QO8kHFENXLHWuB+rgtaW7Y7S2GZ89stVzTebF8zx88FzfaKyfC05mV6G6uuGGD8LvfZeL3KpGvHlHDJrqm2HZdyDmZUvnWgURKoUUybnVWGjCynHqG3Oca1EU8eL+DJzL1+GVhGhMG+GBt45l46MTeTh8uQzPLRjZuSKwL3IqG/HB6XxcrWjAC7dFoabGnp5FtseWntc9ifNWIVyjwj8PZyE+WG2RypShzl7Ota3TartvszKol5BycnI6vz506BBCQ7tfGbJz504sWrSo8/vZs2fj+PHjOHToEA4dOgRHR0eTkk3Uu8/OFmLDkauYG6nBXxdGWWxlk7lIBAHPLRgJQQD+b++VATXvNhhF7Ekrw7QRHvBwUvTpsY/Fj0BTmwHvn8jt9/HtUVKeDmpHOcI0vZcfEhERAe1ldRUNrSisuf5CU4GuCR+czMPcSC2mhLhbKbqhQRAERGhVbBxuw/53oRiJKSV4YEogbonUwlEuxZO3hOPtO2MhisAjn1/AusNZaDahD5coijhboMMTWy9ixQdJOHClHHfF+WFuJJONw4VEELBqSiCyqxpxJLPS2uEQdcliCacnnngCd999N7KzsxEfH48vv/wSr7/+OhYvXoyEhAQcP34czz77LID2yXMdXwNAQUEBiouLMXnyZEuFR9d8ca4Irx/OwuxwT7xwW5Td9OTxc1Ni9exQnMmvwefnivq9nzP5OpTVt2JhdN/7goV6qrAsxhebLxQjr3p4XEkSRRGn83SYGOjGqyhERGSyjlUbZ3/Qx0kURbx2KAsyiQSrZ1umPH24idA6I7OiYVhP0rVV5wpq8NrhLMwI9cDDN4Vcd9+EQDU+uW8CfjLOD5+eLcTPPjqLC4Vd9zzTG0Xsv1KO+z85j0c+T0ZKcR0enhaM7Q9NxpO3hEPWh1YVZP/mRGoRqFbivyfzzNrflshcLFZSt27duhtuW7FiRZfbxsTEICYmpvP7gIAAHDt2rMf9nzt3bmABDjOiKKKmWY+S2mYU1baguKYZ2ZWNSLxYgvgwT7y0ONru/kAtGeODrzMr8daxbEwLcUeIR9/rb3ellkKlkPZ7/PJDNwVjT1oZ/rQzDX+YG4HRPkN7altedRPK6lsxMUht7VCIiMiOjPBwgtpRjnMFNVgyxgcAcCSzEsezq7B6dii8XBysHOHQEKFVoaHVgKKaZgSo2XzdVpTUNuOP21Ph76bE/3VTTeCkkOLpOeG4JUKDF/ZewUOfXcDPJgbgkZuCoZRL0dhqwLaLJfj0TAGKalsQ5O6IP84Nx6JR3lDKpVb4qcgWSCUC7psUiBf3Z+BkbjWmhnhYOySi61ithxNZTkpRLc4X1qC4tgXFtc3t/2pa0Pij5bkqhRS3Rnvhz/Mj+9S421YIgoBn50Xgro1n8NfdV/D+PeP6tEKrqc2AQxkVmD/Sq99/qDUqBZ6dH4FXD2bi/o/PYXa4Jx65KQTh2qFZbpZ0bZLKpCCWPRARkekEQcA4f1ecv7Zqo6nNgNcOZyFco8KdcWx2ay6R195/ZJQ3MOFkI5rbDHh6Wypa9Ea8fedouCh7/vg1MUiNT34+AW8czcampAIcy6rEjFBPbL9UgtpmPcb6uWL17DDMDPO0+TYYNDhuG+WN977LxX9P5jPhRDaHCach5lhWJZ5MvASjCDg7SOHrqkSAmyMmBbnD19UBvq5K+Lkq4ePqAFelzO4nWGicHfCHOeF4dudlfHQ6H6umBJn82K8zK9DUZsTCUX0vp/uh+VFemB7qgU/PFGJTUgGOZJ7B/CgtHr4pBEHuQ+vNXlKeDl7OCgSqB9aonYiIhp+4ADd8nVmJsroWfH6uCKV1LVhrR+X89iBUo4IAIKO8HjezcbjViaKIvx3IQFppPV5bOhojPE1bja9SyPDHuRG4OUKDtXvT8cmZAtwcocHPJgYg1s/VwlGTvVHIJLh3UiDWHc7ChcIajPXve+N5IkthwmkIuVxah2d2pGGklzP+sXwM3PvYBNtezY/ywuGMSrx9PAd1zXo8Mj3EpJHKuy6VwdfVoV/TQH5MpZDhwWnBWDHOD5uSCvDZ2UIcuFKORaO98eC0YPi62n+CxiiKSMqvwfQR7nafqCQiosHX8fd2S3IxPj5TgITR3hhnhr/B9D1HuRSB7o5sHG4jPjtXhJ2pZXj4pmDMCu97+4Ypwe74ctVENLYZ+jzchoaXZTE++M+JPHxwKh/rb+frKtkO+6ujoi6V1DZj9dZLUDvKse724ZNs6vDnBZFYMsYHHyUVYOWms0grretx+4r6FpzKq8bCaC+zNr92c5Tj0Zkj8NWDk7Eizh+708qw/N+n8feDmaiobzHbcawhs7wBuqY29m8iIqJ+idA6Q6WQ4t8n8qBSSPFY/AhrhzQkRXJSnU04nVeNf3zdPpjnF1NNX4H/Y0q5lMkm6pWjXIp7xvvjm6tVuFJWb+1wiDox4TQE1LfosXrrJTS1GbB++RhoVMPvj5KTQopn50fiH8vHoKFFj1Ufn8Pbx3PQZjB2uf2ey+UwisDCUd4WicdTpcDvbw7DlgcmIWGMN/6XXIxl/z6N977NtdsJEh39myYGMuFERER9J5MIiLlWDvTojJBhd3FssERonVFY04z6Fr21Qxm2imqasWZ7GoI8nPDXhSM52ZcGxYpxflAppPjgZL61QyHqxISTndMbjFizIw3ZVY14JWEUwjVDs1m1qW4a4YHPfj4Rt0Z74d8n8nD/x+eQUX5jln9XailG+7j0a7JdX/i4KvHMvEhsXjUR00Lc8e53ubhsp1cdTufpEOTuCJ8hUB5IRETW8ZOxvlgyxhtLY3ytHcqQFXGtcXhWBVc5WUNzmwFPJl6CQRTx2tLRUCnYwYQGh4tShhXj/HAwvRy5VY3WDocIABNOdk0URfz9UBZO5FTjj3PCMSWewdq2AAAgAElEQVSEk8OA9hfbvy6MwmtLR6GioRX3bTqH/5zIg97YvrIoo7weGeUNuG2AzcL7IkDtiOcWjISDTILElJJBO6656I0izhXUcHUTERENyKxwDf68YCSna1lQR8IpnWV1g6q2uQ1nC3T4867LyCxvwNpF0UNueAzZvnsm+EMhk+DD09Zd5SSKIiobWq0aA9kGptzt2KakAmxJLsbPJwdiWSyvFP7YrHANxvq54dVDmfjX8RwcyarEX28diV2pZZBKBMwfOXgJJ6A9EXZzhAZ7L5fhd7NCoZRLB/X4A5FWUoeGVgMmsX8TERGRTfN2cYCLg6zLFd40cK16I3KqGpFZ0YCsigZkVjQgs7wBZfXff7h+PH4Epo/geHoafB5OCiyL8cHmC8V4aFqw1SoT1n99FZ+fK8Q/lo/B1BA+F4YzJpzs1MH0cvy/o9mYG6nFr2eEWDscm6V2kuOlxdG4OUKDVw5k4N6PzkAulWD6CA+oneSDHs/SMT7Yk1aGw5kVWBhtmf5RltDRv2lCIKdeEBER2TJBEBChVSGTK5zMpqS2GWsPZCKlQIfc6iYYrq2al0kEjPB0wvhANcI1KoRrVIjQquDl4mDliGk4u3diADZfKMampAI8eUv4oB9/T1oZPj1bCAeZBH/ZfQUfrxwPjTOfE8MVE052KKWoFn/ZfQUxvq74y62RbERognkjtRgf4IaX92fgSFYlloyxTrJnfKAb/NyU2Hax1K4STqfzdIjQqtjglYiIyA5EaFXYdrEERlHk+8QBatEb8fS2VORWN2FCgBtmhXsiXKNCmEaFYHdHyKTsUEK2xcdViUWjvPBVSgkemBo0qFMOM8rrsXZfOuL8XfHkLeF44NPz+PPuK3jzjhiWUg9TfIW0M3lVjfj9V5egUSnw+rJRdlWWZW2eKgX+vnQUEh+cjFnhGqvEIBEELBnjjaQ8HQprmqwSQ1+16I1ILqpl/yYiIiI7Eal1RlObEQW6ZmuHYvc2fJ2FtNJ6vP6TWKy7fQx+PWME5kd5IUyjYrKJbNZ9kwLRqjfi0zOFg3bM2uY2PJWYClelDC8ljEKklzOeviUcSXk6fHAqb9DiINvCFU52pLa5DQ99ngyDKGLD8jFcbdIPgiDAz826U9YWjfLGO8dzsf1iKX45PcSqsZgipagWLXoj+zcRERHZiQiv9sbhGeX1bFw9APsul2HzhWLcOzEAc6O9odNx8hfZh2APJ8yJ1OLL80UY6eUMQQBEERDR3tC7Q8dtADA+wK3f5aBGUcSfd11GaV0L3rlrLDSq9s+pCWO8cSqvGu9+m4vxAWrEBVi+PceV0npUNrbiJvZRswlMONkJg1HE09tSkV/diDfuiEGIh5O1Q6J+8nFVYmqIO3ZcKsVD04Jtfnnp6XwdpAIG5Q8EERERDVyopwoSoX1S3ZxIrbXDsUs5lY1Yuy8d4/xd8Sj7pZIdWjUlEIcyyrFmR5pJ27spZVi7KKpfTb7f+zYX32ZX449zwxHr59p5uyAIWDMvAqkldfjTzjR8vHKCRfvotuqNeHp7KiobWrH7kalwUTLdYW08A3aivkWP/OomvHx7DCawtMnuLRnjgzU70nAqrxrTbHxyQ1KeDtE+LnB24MsFERGRPXCQSRDs7oSMMk6q64+mNgP+sD0VSpkULy6KZukc2aVIL2d89eBkNLQYgGvXtwUAggAIENB5yVsAGlr0WLsvA7/dchG/mh6Cn08OhGBi/7ejWZV4/0QeEkZ7Y3kXk9NVChleWhyNBz49j+f3XsG6ZaNN3ndfbUkuRlFNeynxztRS3D3e3yLHIdPx1dNOuDnKsePhKVg61s/aoZAZxId5wk0pw7aUUmuH0qOGVj0uldSxnI6IiMjORGhVyKyw3qS6SyV12JZSYrXj95coinjlQAayKxvxwqIoTpwju+brqkS4VtU5RTFMo0KopwojPJ0Q0vHPwwmjfV3xn5+Ow9xILd76JgdrdqShoVXf6/7zqpvw3K7LiPZ2xtNzwrtNJEV5u+C38aH45moVPrFQX6n6Fj3+fSIPk4LUGO3jgi0Xiq8rHyTrYMLJjlgqE0yDTyGTYOEobxzJqoCuqc3a4XTrfEEtDEaRDcOJiIjsTIRWheLaFtQ19/6h0RLeOZ6Dvx3MgN5gtMrx+ysxpQQ7U8vw0LRgTAl2t3Y4RIPGUS7F2kVR+O2sUBzOqMCqT84jr7r7IUeNrQY8ve0SZBIBryzpfZjVnXF+mB3uiTePZeNSSZ25w8dHp/Oha2rDY/EjcMdYX2RXNeJsQc2A91uga8Lct77FkcxKM0Q5/DDhRGQlS8Z4o80gYk9ambVD6dbpPB3kUuG6WmwiIiKyfRFezgCAjIrBL6tr1RtxrqAGbQYR+XY0Ke9KWT3+figTk4PUeGBqkLXDIRp0giDg3okBeOOOGFQ1tOK+TWdxLOvGRIsoili7Lx3ZlY14cVE0fF17H8okCAL+vCASGpUCz+xIQ32L+ZLhFfUt+PhMIeaP1CLa2wXzRmrhqpRh8/niAe9746l81DTrseFIFtrMlEDXG0U0tRnMsi9bx4QTkZVEaJ0R7e2MbRdLbHa5Z1K+DrF+rr1esSAiIiLbEqm9NqmubPDL6lKKa9Gsb/9glmXFsr6+qG/R44/bU+HmKMcLi6JsfqgLkSVNDnbHRyvHI0DtiCe+uoT3vs2F8QefVz45U4j9V8rx6xkjMCXE9JWArko5XlwcjdLaZry4L91sn4He/S4XBqOIX11r8K+US7F4tDcOZ1agoqG13/stq2vBjkuliPZ2RoGuGVsuDDyBJYoiVm+9iD9uTx3wvuwBE05EVrRkjA8yyhtw2Qabeuqa2pBeVs/+TURERHZIo1JA7ShHRvngJ3xO5lZDKgASAVbtI2UqURTxwt50FNc046VF0fBwUlg7JCKr83VV4v27x2LRKC+8+10unvzqEupb9EjK0+GNo1dxS4QG900K6PN+Y/1c8asZI3AgvQJbkweewMmpbMS2lBLcMdYXAWrHztuXx/rCYBQH1Evu4zMFEEURf0sYhUlBarz3Xe6AV2btu1yOEznVmBnqOaD92AsmnIisaEGUFxxkEptsqnk2XwcRYP8mIiIiOyQIAsK1KqSXD/5FrZO5OozxdUWg2tEuVjh9dq4IhzIq8OjMERgX4GbtcIhshlIuxV9uHYmnbgnDtznV+PnH5/DMjjQEujviuVsj+91jeOWkAEwNccfrh7OQMcDXqLe+yYaDTHpDGWywhxMmBamxNbkYBmPfV1Lpmtqw5UIxFkR7wc9NicfjR6CmWY+Np/L7HWt9ix7rj1xFtLczbu9iot9QxIQTkRW5KGW4OUKDPZfL0Gxjdbyn83RwlEsw2sfF2qEQERFRP0RqVbha2divD1v9VdPUhrSSOkwJdkeYpv34tiylqBb/OHIVs8I8ce/Evq/WIBrqBEHAnXH++NeKWNS36NFqMOLvS0ZDpZD1e58SQcDzC0fCVSnHMzvS0Njav89BFwpr8HVmJVZOCuhyZeJPxvqipK4Fx7Or+rzvz88WollvxM8nBwJon7S3MNoLn54tRGldS7/ifefbXFQ1tOIPcyOGTdkuE05EVrZ0jA/qWwz42sYmHyTl6xAX4AaZlC8TRERE9ihS64wWvXFQVxmdubZCenKwGmEaJ+RXN9ncRbUOuqY2rNmRBm8XB/zl1pGcCE3Ug7gAN3x+/0R8ct8EhHg6DXh/Hk4KvHBbFPKqm/C7LSl9LlUTRRFvHsuGh5McP53QdbI4PswTGpUC/7tQ1Kd9N7Tq8fm5IswO90Sop6rz9l/NCIFRFPHO8Zw+7Q9oH0rwxblCLB/rO6wu6Fvsk+SaNWswbdo0LF68uPO2DRs2ICEhAUuXLsUDDzyA0tLSGx534sQJLF26tPNfTEwMDhw4AAD4/e9/jwULFmDx4sVYs2YN2tpsd5w8kanGB7rBz02JxIu2U1ZXVteCnKomTAriOGAiIiJ7NTXEHVIB2H+lfNCOeTJXB5VCitG+rgjXqCACyK6yvVVOoihi7d50VDW24m8J0XBR9n+1BtFwoXaUw8+t94l0ppoYpMYLt0UhubgOj25OQU2T6Z/vj2ZV4XxhLR6+KRhOiq4HHMmkEiyN8cF32dUorGkyed9bLhSjrkWP+6dcX6bn66rEXXH+2HGptE+lgEZRxCsHMuGmlOPX1xqbDxcWSzgtX74c77///nW3Pfjgg9i+fTsSExMxe/ZsvPXWWzc8burUqUhMTERiYiI2btwIR0dHTJ8+HQCwZMkS7NmzB9u3b0dLSwu+/PJLS4VPNGgkgoCE0d5IytP16YWwL07mVGNvWpnJkyCS8nUAgEns30RERGS3PFUKTAlxx560susmTFnSydxqTAhUQyYREKppXxlgi32cdqeV4UhWJX41PQTR3sNntQGRrZkf5YVXl4xCZnk9fvlFMipNmCqnN4p465tsBLk7YukYnx63XRbjA0EAtiabdnG/RW/Ex2cKMTlI3eVKpFVTAuGilOGNo9km7Q8Atl8sQUpxLR6fNQKuSrnJjxsKLJZwmjRpEtzcrm+65+zs3Pl1U1NTr8tW9+7di5kzZ8LRsb3b/KxZsyAIAgRBQGxsbJcrpIjs0eLR3hAAbL9o/v+ny+pa8PS2VPxp12U8s+OySctVk/J0cFPKEOGl6nVbIiIisl0Lo71RUteCcwU1Fj9Wga4JhTXNmBLcfsEqQO0IhVRAZrltrXAqq2vBa4eyMNbPtdtSHCIaPPFhnlh3+xgU6JrwyOcXeu2RtPNSCbIrG/HojJBe23/4uCoxM9QT21JK0Ko39hrLjkslqGxoxaofrW7q4KqU44EpQfgupxonc6t73Z+uqQ1vHM1GnL8rFo3y7nX7oWbQ146uX78eX331FVxcXPDhhx/2uO3OnTuxatWqG25va2tDYmIinn32WZOOKZUKUKsHXmdqC6RSyZD5Weh7arUTZoRrsCutDE8tjIZUIpjtXP9lbzoMoogHZ4zAf7/NQXpFA/5x51iM8e96CosoijhTUIOpoZ7wcGfCaTDweT088DwPHzzXw4c9nOslEwLw8oEMHMqqwpwYP4sea3dGBQBg7hjfzt9LuJcL8mqabeb3JIointyehjajEa/dORaeHqa917GHc03mwXNtHQvUTvBUO+Ghj87gl18kY+OqSQjyuPE8NLUa8N53eRgb4IbbJwWZ1Hvt59ND8MCHZ3CyqBYJsd+/Dv74XOsNRmxKKsS4QDfMifHtdt8Pzg7H5gvF+OfxXMyL8YOkhwbgrx25iPpWA15YFgP3YfjZatATTqtXr8bq1avxzjvvYNOmTXj88ce73K6srAzp6emYMWPGDfc9//zzmDhxIiZOnGjSMQ0GETqdbV1Z6S+12mnI/Cx0vduitFiTWYH9yYWYGuJhlnN9Mqcauy6W4OGbgvHQlEBMDXDFMzvSsOLdE/jtrFDcFed3wwtpga4JRTXNuHdiAP9fGyR8Xg8PPM/DB8/18GEv53p2uCd2XSzG4zNC4CCz3DCQr9PK4O3iAHeZ0Pl7CXFXIilPZzO/p20pJTiSXo7f3xwGtVQwOS57Odc0cDzX1hPu5oC3fhKDx/+XgnveO4G3fhJ7Q4PyD07mobSuBf9320jUmNiOZLTGCQFqJT76Ngczg75vGfLjc70rtRQFuiasnh3a674fuSkYf951GZ+dyMFt3axcSimqxedJBfjZhAB4K6VD9v8rrbb7smSrjZ9avHgx9u3b1+39u3fvxrx58yCXX1/j+Oabb6Kqqgpr1qyxdIhEgyo+zBNuShkSU8xTVteqN+LVQ5kIVCtx36T2cZ5j/d3w8X0TMC3EHa8fzsLT21JR23x9c77TeezfRERENJQsjPZCfYsBx69abiKuwSgiKV+HKcHq6y5mhXmqUFbfesP7DWsoqW3Guq+zMD7ADXfGWXa1FxH1zygfF7x951jojSIe/vwC0su+b86ta2rDxtP5mBHqgfEBpn9WkQgClsf64lxhLTK76SlnFEV8cCof4RoVZoR69LrP+VFaRHk541/f5KCli1I9vVHEKwcz4eWswEM3dV2eNxwMasIpJyen8+tDhw4hNDS022137tyJRYsWXXfbl19+iW+++Qbr1q2DRMJR7TS0KGQSLBzljSNZFdD1YUJDdzYlFSCvuglPzQm/7mqm2lGO15eNxurZofjmahXu/egsUopqO+9PytNBo1Ig2MNxwDEQERGR9U0KcoenSoHdaWUWO8blsnrUNusx+UcTbsO0HY3DrXtlXxRFrN2XDqMo4s8LIiExoQyHiKwjXKvCu3eNhVwq4JdfJONicftnlf+ezENjqwGPzhzR530mjPaBQipgy4XiLu8/mlmJ7MpG3D850KTXB4kg4PFZI1BS14IvzhXecP//zhfhSlk9Vs8Og0oxfKdgWixr88QTT+Duu+9GdnY24uPj8eWXX+L111/H4sWLkZCQgOPHj3f2YEpJSbmuH1NBQQGKi4sxefLk6/b5l7/8BRUVFbjrrruwdOlSvPnmm5YKn8gqEkZ7o80gYs8A3xAW1jThPyfzMCdSg2khN2boBUHATycE4P27x0IA8NDnF/DR6XwYxfark5OC1CbVQxMREZHtk0oELIjS4purVX0aO94Xp641z50UfP2qg7Br5TDWnlS3NbkYJ3N1eDw+FAFqXlQjsnXBHk547+5xcHOU4dEvU7ArtRRfni/ColHeCNf0vReS2kmOOZFa7EotRWOr4br7RFHEf0/lw99NiTkjtSbvc1KQO6aP8MB/T+Zf99paUd+Cfx3PwdRgd8yJ1PQ51qHEYqm2devW3XDbihUrutw2JiYGMTExnd8HBATg2LFjN2yXmppqvgCJbFCklzOivZ2x7WIJHrk5vN/7ef1QFiQCsHp2WI/bjfZ1xaaVE7B2Xzr+39FsHM6oQFVjGyYGsZyOiIhoKLkt2hufnCnEwfRyLB9r/nKyk7nViNSq4OGkuO52bxcHODtIuy1jGQyFNU3YcOQqJgepccdYX6vFQUR94+emxLt3jcWjX6bgL7uvwEEmwcM3Bfd7f3eM9cXutDLsuVyG5bHfvxacztMhtaQOa+ZFQNZDA/Cu/CZ+BH724Rn852Re52evfxzNRqvBiKfmhA/7i/isSyOyMUvG+CCjvAF7LvWvl9ORzEocu1qFh6YFw9vFodftXZQy/C0hGk/PCcflazXSk5hwIiIiGlIivVQY4elkkbK6pjYDLhTWYkqw+w33CYKAME8Vrlop4WQURbywNx0SQcCfFkQO+w9/RPZG6+yAd+6KxeQgNX45PQQ+rsp+7yvWzxXhGhX+d74Ioih23v7fU/nQqBRY3E3z756Ea1RYPNobX54vQmFNE5LydNiTVob7JgUiyJ2rKZlwIrIxt43yxmgfF/zui/PYmtx1jXF3mtsMeP1wJkI9nXDPeH+THycIAlaM88PGn8Xh+YUj4TuAF3IiIiKyPYIgYGG0F84X1qLQxMlOpjpXUAO9Uewy4QQAYRoVsiobr/uAN1g2ny/Cmfwa/G5WKN/fENkpdycF3loRi3snBgxoP4Ig4I6xvkgvb8ClkjoA7ZPkkvJ0uHdiABT9nOL5yE0hkAgC3jiajVcOZsDPTYn7JwcOKNahggknIhvjpJDiX3fGYma4Bi/tz8B73+Wa/AbtPyfzUFzbgj/MDYdM2vend4TWuduxnkRERGTfbo32AoAB94r8sZO51VBIBYz1d+3y/jCNE2qb9SivbzXrcXuTX92EN45mY1qIO5bG+AzqsYnINi0c5QUnuRSbrzUP/+BUPtyUMtwe2/9yWy8XB/xsgj8Oplcgp6oJT90SBqVcaq6Q7RoTTkQ2yFEuxb9+Nh6LR3vj3W9z8bcDmTAYe0465VQ14qPTBbhtlFefxoQSERHR8ODrqkRcgBt2p5aZdbXRqVwdxvq7dfsBK+xag9+sysErqzMYRfzf3iuQSQU8O5+ldETUTqWQYeEoLxy4Uo5TOVU4mlWJu+L84aQYWIJo5aRAeDkrMDdSgxmhnmaK1v4x4URko+RSCZ5bEIn7JwdiS3Ix/rg9Fc1thi63FUURrx7MhFIuwePxoYMcKREREdmLhdFeyK1uQlppvVn2V9HQisyKhm7L6QAgzPNawqmi0SzHNMXn5wpxvrAWv785zKSelkQ0fNwx1hcteiN+/ck5OMoluDNu4IMUnB1k+GLVRLy4ONoMEQ4dTDgR2TBBEPDozBF48uYwHMmsxG82p3Q5znj/lXKcztPhV9NHwFOl6GJPRERERMCcSA3kUsFszcNP5VYDAKYEd7+6Wu0kh6dKMWiT6nKqGvHPb3IwM9QDi9gqgIh+JELrjFg/V9Q0teGOsX5wc5SbZb8qhQwSrqa8DhNORHbgrvH+eGlxNFJL6/DQZxdQUtvceV99ix7rv76KKC9njvolIiKiHrkq5ZgZ6ol9l8ug76Vc3xSn8nRwU8oQ6eXc43bhGqdBm1T3ysFMOMgkeGZeBEvpiKhL900KhI+rEj+bYPqgJeo7JpyI7MTckVq8cUcMyupb8ItPz3deJXzvu1xUNrTij3PDIZXwTRURERH1bGG0F6oa2zpXJ/WXKIo4lVuNSUHuvV7VD9OocLWysdeelANVUd+CpDwd7hnvD40zS+mIqGuzwj1x7KnZfJ2wMCaciOzIhEA13rt7LIwi8NBn57H5fBE+P1uI22N9Mdq368kwRERERD900wgPuCplAy6ry65qRHl9a4/ldB3CPFVo0RtRWNPc67YDcexqFQBgdrjGoschIqLeMeFEZGcitM74z0/HwdNJgVcOZsJFKcevZ4RYOywiIiKyEwqZBHMjtfg6owKNrV0PJDHFyVwdAGBKSPcNwzuEaZwAAFkWLqs7mlUJPzdl5/GIiMh6mHAiskO+rkq8f884LIjS4s8LIs3W6I6IiIiGh4XRXmjWG/F1ZkW/93EqtxpB7o7wdVX2um2opmNSneUSTo2tBpzKrUZ8mCd7NxER2QAmnIjslNpRjrWLohEf5mntUIiIiMjOxPq7ws/VAbtT+1dWpzcYcSZfh8lBvZfTAYCjXAp/N6VFE04nc6vRahAxi++NiIhsAhNORERERETDjEQQcGu0F07lVaOivqXPj08prkNTmxGTg3svp+sQplEhq6Kxz8cy1ZGsSrg4yDDOn30tiYhsARNORERERETD0K3R3jCKwL4r5X1+7MncakgEYGKgaSucACBc44S86ka06o19Pl5vDEYR32RVYnqoB2RSfsQhIrIFfDUmIiIiIhqGRng6IdrbuV9ldadyqzHaxwUuSpnJjwnTqGAQgZwq869ySi6qRU2znq0GiIhsCBNORERERETD1MJR3rhcVo+rlab3Vqpr1uNSSV2fyumAHzQO78OxTHU0qxIyiYBpJkzMIyKiwcGEExERERHRMDV/pBZSAdiTZvoqpzP5OhhFYEofE07B7o6QSQSz93ESRRFHsyoxMVANZwfTV1wREZFlMeFERERERDRMeaoUmBzsjj1pZTCKokmPOZlbDUe5BGN8Xfp0LLlUgmAPR7NPqsutakJedRPiw1lOR0RkS5hwIiIiIiIaxhaO8kJxbQs+OJmP0rreJ9adytNhQqAa8n405w7zVJk94XQkqxIA2L+JiMjGMOFERERERDSMzQ7XYJSPC/51PAeL3z2JlR+dxXvf5eJKWT3EH616Kq5tRl51U5/7N3UI16pQXNuC+ha9OUIH0N6/KcrLGd4uDmbbJxERDRyLnImIiIiIhjFHuRQf/HQccquacCSrEkezKvHet7l499tc+Lg4ID7ME/Hhnhgf4IaTOdUAgCnB6n4dK9SzvXH41cpGxPq5Djj2yoZWpBTV4qGbgge8LyIiMi+LJZzWrFmDr7/+Gp6entixYwcAYMOGDTh48CAkEgk8PT3x8ssvw9vb+7rHnThxAi+//HLn91evXsX69esxd+5c5Ofn44knnkBNTQ1GjRqFV199FQqFwlI/AhERERHRsCAIAkI8nRDi6YSfTw5EZUMrjl+twpGsSiReLMEX54vg7CCFk1wKrbMCIzyc+nWcME3747IqGsyScPrmaiVEsJyOiMgWWaykbvny5Xj//fevu+3BBx/E9u3bkZiYiNmzZ+Ott9664XFTp05FYmIiEhMTsXHjRjg6OmL69OkAgNdeew33338/9u3bB1dXV2zevNlS4RMRERERDVueKgWWxPjg9WWjceDX0/Da0tGYE6GFUQQWRntBEIR+7dfPTQlHucRsfZyOZlXBx8UBkVqVWfZHRETmY7GE06RJk+Dm5nbdbc7Ozp1fNzU19fqHau/evZg5cyYcHR0hiiJOnDiBBQsWAABuv/12HDx40PyBExERERFRJ6VcilnhnvjTgkjs/uVUPBYf2u99SQQBoWZqHN7cZsDJ3GrEh3n2OwFGRESWM+g9nNavX4+vvvoKLi4u+PDDD3vcdufOnVi1ahUAoLq6Gq6urpDJ2kP28fFBaWmpSceUSgWo1f1b9mtrpFLJkPlZqGc818MHz/XwwPM8fPBcDx881/0T7eeKQ1fKB/y7O5hWhha9EbeN87P4eeC5Hj54rocPnmvLG/SE0+rVq7F69Wq888472LRpEx5//PEutysrK0N6ejpmzJjR7b5MvZJhMIjQ6Rr7Fa+tUaudhszPQj3juR4+eK6HB57n4YPnevjgue6fQFcHVDW04mqRDh5O/e/Huiu5ECqFFJFqpcXPA8/18MFzPXzwXJuHVuvS7X0WK6nrzeLFi7Fv375u79+9ezfmzZsHuVwOAHB3d0dtbS30+vYRqiUlJfDy8hqUWImIiIiIyDzCNO39ljLL+19WZzCKOJZVhekjPCCXWu0jDRER9WBQX51zcnI6vz506BBCQ7uv/965cycWLVrU+b0gCJgyZQr27t0LANi6dStuueUWi8VKRERERETm15Fwyqrs/8qCi8W1qG5qw6xwTqcjIrJVFiupe+KJJ3Dq1ClUV1cjPuRws34AACAASURBVD4ejz32GI4ePYrs7GwIggB/f388//zzAICUlBR89tlnePHFFwEABQUFKC4uxuTJk6/b51NPPYXVq1djw4YNiI6OxooVKywVPhERERERWYCnkxxqR/mAGocfzaqCVCJgWoiHGSMjIiJzsljCad26dTfc1l2CKCYmBjExMZ3fBwQE4NixYzdsFxgYiM2bN5svSCIiIiIiGlSCICBM4zTAhFMFJgS4wUU56C1piYjIRCx4JiIiIiKiQRXmqcLVikYYRbHPj82takROVRPiw1hOR0Rky5hwIiIiIiKiQRWmVaGxzYCS2pY+P/ZoViUAIJ79m4iIbBoTTkRERERENKjCPJ0AAJn9KKs7llWJCK0Kvq5Kc4dFRERmxIQTERERERENqs5JdX1MOOka23ChqBazWE5HRGTzmHAiIiIiIqJB5ewgg4+LQ58TTseuVsIospyOiMgeMOFERERERESDLkyjQlZFY58eczSrEl7OCkR5OVsoKiIiMhcmnIiIiIiIaNCFaZyQU9UIvcFo0vbNbQacyKlGfJgnBEGwcHRERDRQTDgREREREdGgC9OooDeKyNM1mbR9Ur4OzXojy+mIiOwEE05ERERERDToOhqHZ5ab1sfpSGYlVAopJgSoLRkWERGZiczaARARERER0fAT4uEEqQBkVfbcx8koikgtqcPRrEpMC3GHQsZr5kRE9oAJJyIiIiIiGnQOMgkC3R1xtYtJdc1tBpzM1eFYViWOXa1EVWMbpBIBy2J9rRApERH1BxNORERERERkFWEaFa6U1QMAyutbcOxqFY5lVeJ0ng4teiNUCiluGuGB+DBPTAtxh5uj3MoRExGRqZhwIiIiIiIiqwjzVOFQegXu23QWaaXtiSc/NyVuj/XFzFAPxAW4QS5lCR0RkT1iwomIiIiIiKxifKAbJCcAmUSCX88IQXyYJ0I9nSAIgrVDIyKiAWLCiYiIiIiIrGJCoBrHfzcTUgkTTEREQw3XpxIRERERkdUw2URENDQx4URERERERERERGbFhBMREREREREREZkVE05ERERERERERGRWTDgREREREREREZFZMeFERERERERERERmxYQTERERERERERGZFRNORERERERERERkVkw4ERERERERERGRWQmiKIrWDoKIiIiIiIiIiIYOrnAiIiIiIiIiIiKzYsKJiIiIiIiIiIjMigknIiIiIiIiIiIyKyaciIiIiIiIiIjIrJhwIiIiIiIiIiIis2LCiYiIiIiIiIiIzIoJJyIiIiIiIiIiMismnAaguLgYK1euxMKFC7Fo0SJs3LgRAKDT6bBq1SrMnz8fq1atQk1NDQBg27ZtSEhIQEJCAu6++25cvny5c19Hjx7FggULMG/ePLz77rvdHnPr1q2YP38+5s+fj61bt3bevn79esyaNQtxcXE9xnzx4kUkJCRg3rx5WLt2LURRBADs3r0bixYtQlRUFFJSUvr9OxmqhtK5fuWVV3DrrbciISEBjz76KGpra/v9exmKhtK53rBhAxISEv4/e/cdHlW1tQH8PTMpkz7pvVeSkNBbqKGJ9CbXgqio14pYr9jBChZA7lXxCjYICggqKEhN6GBCQgik9957n5nz/YHwySVAykySmby/58kjZk7Zc1amrVl7bcyePRsPPfQQiouLO31ddJEuxfqqTZs2wd/fHxUVFR2+HrpMl2K9YcMGjBkzBrNnz8bs2bMRFRXV6euii3Qp1gDw/fffY+rUqZg+fTrWrFnTqWuiq3Qp1suXL7/2mA4PD8fs2bM7fV10kS7FOjExEXfddRdmz56NefPmIT4+vtPXRRfpUqyTkpKwaNEizJw5E4899hjq6uo6fV20mkidVlxcLCYkJIiiKIq1tbXilClTxNTUVHH16tXixo0bRVEUxY0bN4pr1qwRRVEUY2JixKqqKlEURTEyMlJcsGCBKIqiqFAoxIkTJ4o5OTlic3OzOHPmTDE1NfWG81VWVorh4eFiZWWlWFVVJYaHh187XmxsrFhcXCwOGDDglmOeP3++eP78eVGlUolLly4VIyMjRVEUxbS0NDE9PV287777xPj4eDVcHd2iS7E+fvy42NraKoqiKK5Zs+bamOkKXYp1bW3ttW2+/fZb8fXXX+/KpdE5uhRrURTFgoIC8aGHHhLHjx8vlpeXd/Hq6BZdivWnn34qfvXVV2q4KrpJl2J9+vRpccmSJWJzc7MoiqJYVlbW1cujU3Qp1n/3/vvvixs2bOjkVdFNuhTrBx988Nq/IyMjxfvuu6+rl0en6FKs582bJ549e1YURVHcsWOHuHbt2q5eHq3ECqcusLOzQ1BQEADA1NQUXl5eKC4uxuHDhzFnzhwAwJw5c3Do0CEAwKBBg2BhYQEAGDBgAIqKigAA8fHxcHd3h6urKwwMDDB9+nQcPnz4hvOdOHECYWFhkMvlsLCwQFhYGI4fP37teHZ2drccb0lJCerq6jBw4EAIgoA5c+ZcO4+3tze8vLzUcFV0ky7FevTo0dDT07thbHSFLsXa1NT02naNjY0QBKErl0bn6FKsAeD999/Hiy++yDi3QddiTTenS7Hetm0bHn30URgYGAAArK2tu3p5dIouxfoqURSxb98+zJgxowtXRvfoUqwFQUB9fT0AoLa29rbH6mt0KdaZmZkYOnQoACAsLAwHDhzo6uXRSkw4qUleXh4SExMRGhqK8vLya3+cdnZ2bU5t2LlzJ8aOHQsAKC4uhoODw7Xb7O3t25z60t7tbuZ/93dwcOAUm07QpVj/9NNP18ZGN9KFWF8tB96zZw+eeeaZdh+3r9H2WB8+fBh2dnYICAho9/H6Km2PNQBs3boVM2fOxIoVK65NK6AbaXuss7KyEB0djYULF+K+++7j1Jtb0PZYXxUdHQ1ra2t4eHi0+7h9jbbH+pVXXsGaNWswbtw4rF69Gs8991y7j9vXaHus/fz8riWf9u/fj8LCwnYfV5cw4aQG9fX1WLZsGV555ZXrKgpu5syZM9i5cydeeOEFALihBweANr+hbu92N9PV/Um3Yv35559DKpVi1qxZ7T5uX6IrsX722WcRFRWFmTNnYsuWLe0+bl+i7bFubGzEF198wYRiO2h7rAHg7rvvxsGDB/HLL7/Azs4OH3zwQbuP25foQqyVSiVqamqwfft2vPTSS1i+fHmb2/d1uhDrq/bu3cvqplvQhVhv27YNK1asQFRUFFasWIFXX3213cftS3Qh1u+++y4iIiIwb9481NfXX6tW7WuYcOqi1tZWLFu2DDNnzsSUKVMAXCl5LikpAXClzM7Kyura9klJSXjttdfw2WefwdLSEsCVTOjfpzUVFxfDzs4OFy5cuNZA8PDhwzfd7maUSuW1/devX3/D/kVFRSzj7ABdivXu3bsRGRmJjz76iEnHNuhSrK+aMWNGny3lvRVdiHVOTg7y8vKuNZstKirCvHnzUFpaqp6LpCN0IdYAYGNjA6lUColEgoULF3KhjzboSqzt7e0xefJkCIKAkJAQSCQSVFZWquEK6Q5diTUAKBQKHDx4EHfeeWcXr4pu0pVYX21QDQDTpk1j5WIbdCXW3t7e2Lx5M3bt2oXp06fD1dVVDVdHC3VLpygdpVKpxBdffFF85513rvv9Bx98cF1Ts9WrV4uiKIr5+fnipEmTxJiYmOu2b21tFcPDw69rapaSknLD+SorK8UJEyaIVVVVYlVVlThhwgSxsrLyum1u19Rs3rx5Ymxs7E2bFbJpeNt0KdZRUVHitGnT2FT4JnQp1pmZmde2+e6778Snn366fRehj9ClWP/dhAkT+Pj+H7oU6+Li4mvbfP311+Ly5cvbeRX6Bl2KdUREhLhu3TpRFEUxIyNDHDt2rKhSqTpwNXSbLsVaFK+8P7v33nvbfwH6EF2K9R133CGeOXNGFEVRPHXqlDh37twOXAndp0uxvrrQg1KpFF988UVxx44dHbgSukMQRdbmdlZ0dDTuvfde+Pn5QSK5Uiz23HPPISQkBMuXL0dhYSEcHR2xfv16yOVyvPrqqzhw4ACcnJwAAFKpFLt27QIAREVF4b333oNSqcT8+fPx+OOPt3nOnTt3YuPGjQCAxx57DPPnzwcArFmzBnv37kVJSQns7OywcOFCPP300zfsf/HiRaxYsQJNTU0YO3YsXn/9dQiCgIMHD+Ltt99GRUUFzM3N0a9fP2zatEnt10xb6VKsJ0+ejJaWFsjlcgBAaGgoVq1apd4LpsV0KdZPP/00MjMzIQgCnJ2dsXLlStjb26v9mmkrXYr134WHh2Pnzp3XffvX1+lSrF988cVryz47Oztj1apVrFb+G12KdUtLC1555RUkJSVBX18fL730EkaOHKn2a6atdCnWAPDyyy8jNDQUd999t3ovlA7QpVhHR0fjvffeg0KhgKGhId58800EBwer/ZppK12K9bfffouIiAgAwOTJk/H888/3yZklTDgREREREREREZFasYcTERERERERERGpFRNORERERERERESkVkw4ERERERERERGRWjHhREREREREREREasWEExERERERERERqRUTTkREREREREREpFZMOBERERERERERkVox4URERERERERERGrFhBMREREREREREakVE05ERERERERERKRWTDgREREREREREZFaMeFERERERERERERqxYQTERERERERERGpFRNORERERERERESkVkw4ERERERERERGRWjHhREREREREREREasWEExERERERERERqRUTTkREREREREREpFZMOBERERERERERkVox4URERERERERERGrFhBMREREREREREakVE05ERERERERERKRWTDgREREREREREZFaMeFERERERERERERqxYQTERERERERERGpFRNORERERERERESkVkw4ERERERERERGRWjHhREREREREREREasWEExERERERERERqRUTTkREREREREREpFZMOBERERERERERkVrp9fQAuoNKpYJSKfb0MNRCKhV05r7QrTHWfQdj3Tcwzn0HY913MNZ9B2PddzDWfQdjrR76+tKb3tYnEk5KpYiqqoaeHoZayOXGOnNf6NYY676Dse4bGOe+g7HuOxjrvoOx7jsY676DsVYPW1uzm97GKXVERERERERERKRWTDgREREREREREZFaMeFERERERERERERqxYQTERERERERERGpFRNORERERERERESkVkw4ERERERERERGRWjHhREREREREREREasWEExERERERERERqRUTTkRERERERESk9U5klOP7P3MhimJPD4UA6PX0AIiIiIiIiIiIuiKrogEv70lEs0KF/OomvDTRBxJB6JZzK1QiPo3KgK2pAe4e7AI9Sfect7djwomIiIiIiIiItFarUoU3fk+CTE+CmUH22HmhEAqViFcm+2o86SSKIlYfSsXPF4sAAAeTS/HaFD/42Zlq9LzagAknIiIiIiIiItJaX57KRmJxHVbPCsQEH2uYG+lj85kcKFUiXpviB6kGK46+OpODny8W4YFhrgiwN8Waw2m4f2sslgxzxdLhbjDQ67udjJhwIiIiIiIiIiKtdD6vCt+ey8WsYHuE+9oAAB4P84CeRMCXp7KhVIl44w5/jUxz++ViIb48lY3pgXZ4YrQHBEHAYFc51kamY/OZHBxNLcPrU/zQ38lc7efWBn031UZEREREREREWqu2SYE3f0+Gi1yG5yf4XHfbIyPd8cRoD+xLLMGbvydBoVJvI/ETGeV4/2AqRnhY4rUpfhD+mronN9LHymkBWDc3GPXNCizdFoe1kelobFWq9fzagAknIiIiIiIiItI6qw+norSuGavuDICxgfSG2x8c7oanx3jiQHIpXvstEQqlSi3nTSiswct7EuFnZ4rVMwOhJ70xtRLmZYUfHxiCeaGOiIjJx93fxuDPnEq1nF9bMOFERERERERERFplX2Ix/kgqxcMj3RHsePMpa/cPc8Wz471wOKUMK/YmorWLSafsigY8u/sSbEwMsHZucJuJrqtMDfXw8iRffHFXCCQC8MSOi3j3QArqmhVdGoO2YMKJiIiIiIiIiLRGQXUTVh9KQ4iTOR4Y7nbb7e8Z7IIXJngjMq0c//r1MloUnUs6lde3YNmuBADAp/P7w9rEoF37DXaVI+L+wbhviAt+TSjCW/uSO3V+bcOm4URERERERESkFZQqEW/tSwIArLqz/c3AFw1yhlQiYPXhNLz062VsXDy4Q+etb1Fg+a4EVNS34Iu7QuBmadSh/WX6Ujwzzgt3BtpBqeZ+Ur0VE05EREREREREpBW++zMXsfk1WDnNH84WHUv6LBjgBKlEwHsHU/HQd9GYEWiHUCcLOJobXmv63RaFUoWXf01EamkdPp4TjKBbTOG7HV9b007vq22YcCIiIiIiIiKiblVY04SNJ7PgammEqQF2cJHfPnl0qagWG09lY7K/Lab1s+vUeeeGOEJPIuDjyHScy7rSxNvGxAAhTuYIdTZHiJM5/O1Mof9XI3BRFPHOgRScya7E61P8EOZl1anz9kVMOBERERERERFRt0kuqcPyXQmobVagWaHCFyezEehghqkBtpjsbwtbU8Mb9mloUeKN35NgY2KAlyf53LIi6XZmBjvg7pEeiEkvQ3xBzbWfI6llAABDPQn62ZsixMkCNU2t+O1yCf45yh2z+jt0+px9ERNORERERERERNQtzmVX4qVfL8PEQIpv7h0IUwMpDiaX4kBSKdZGZmBdZAYGuVpgaoAdwn1tYGGkDwBYG5mO3MpGfH5XCMxl+l0eh55UAn87U/jbmWLhACcAQGldMy4W1OBCQQ0uFtQgIiYPCpWIeSGOWDri9s3J6XqCKIo6362qtVWJqqqGnh6GWsjlxjpzX+jWGOu+g7HuGxjnvoOx7jsY676Dse47GGvN2p9YgpX7k+FmaYT184LhYC677vasigYcSCrBH0mlyKlshJ5EwAgPS/jZmmDz2VzcP9QVT4/1VMtY2hPrZoUKRTVNcLM06lJFlS6ztTW76W2scCIiIiIiIiIijRFFEVui8/DpsUwMdLHAx7ODYCa7MR3hYWWMR0d54JGR7kguqcMfSaU4kFSCExkVCLAzxWNh7t06bkM9CdytjLv1nLqECSciIiIiIiIi0giVKGJdZAa2nc/HJD8bvDUtAIZ6klvuIwgCAuzNEGBvhqfHeuJyUS2cLWTXGnmTdmDCiYiIiIiIiKiPEkVRY9PFmhUqvLUvGYdSSrFooBOem+ANSQfPJREEBDuaa2R8pFlMOBERERERERH1QcfSy/HJ0XR425hg5TR/mBqqL0VQ26TAC79cwvm8aiwb64n7hriwD1Ifw3o0IiIiIiIioj6kuLYZL/5yCc//fAmCAJzMrMCDEbHIrlBPw/Ti2mY88mMc4gtq8PadAVg81JXJpj6ICSciIiIiIiKiPkChEhERk4e7vo7G6axKPDHaA9sfGIL/LOiPqkYFHoiIxanMii6dIy6vGg9FxKKophnr5wXjjn52aho9aRtOqSMiIiIiIiLScZeLavH+wVQkldRhpIclXproAxe5EQBgsKsc3947EC/8cgnP7k7A02O9cO9g5w5VJRXXNmPDsQz8kVQKezNDbFwUCn87U03dHdICTDgRERERERER6ai6ZgW+OJmFHXEFsDQ2wHsz+mGSn80NySQnCxk23T0AK/cnY31UBlJL6/DKZL/brijX1KrE1pg8fHM2FyKApSPcsGSYK4z0pRq8V6QNmHAiIiIiIp2WWd6AN/clobpJgZEelhjlaYWhbnJ+GCIinSaKIo6kluHjo+koq2vBggFOeGK0xy0bgxvpS/H+jH7YdCYHG09lI6uiER/OCoSdmWGbxz+aVo71kekoqGlGuK8NnhnnBScLmSbvFmkRJpyIiIiISGf9frkY7x9MhZG+FEGOZvjtUjF+ulAIfamAQS4WGOVphVGeVnC3NGJDWyLSCXXNCpzKrMCeS8U4k1UJP1sTfDgrEEGO5u3aXxAEPDzSHT42JnhzXzKWbI3FmlmB6O/0//unldbj48h0ROdUwdvGGJ8vDMEQN7mm7hJpKSaciIiIiEjnNLUq8fHRdPx8sQgDnc3x7ox+sDU1RItChdj8apzKrMCpzAqsjczA2sgMOFnIEOZphVGelhjiKoeM1U9EpEUKa5pwPL0cx9LLEZNbDYVKhKWRPp4d74W7BjpDT9LxhPp4XxtssjTC8z9fwj+3X8Ark30xxssaG09l46cLBTAz1MNLE30wN8SxU8cn3SeIoij29CA0rbVViaoq9Szv2NPkcmOduS90a4x138FY9w2Mc/dSiSIkPVStwlj3vJzKRry85zJSS+uxZJgrHgvzuOmHofzqRpzKrMSpzApE51ShSaGCp5UxIpYMvu0HKMa672Cs+w5tibUoikgqqcOxtCtJppTSegCAu6URxvlYY6y3NYIdzSFVQyKoqrEVK/YmIjqnCsb6UjQplJgf6oR/jnKHhZF+l4/fU7Ql1r2dra3ZTW9jhRMRERFpxIeH05BT2YiHRrhhoItFt503Kq0cb+1PwvMTvDEjyKHbzku9w6HkUrxzIAV6EgFr5wZhtJf1Lbd3tjDCwgFGWDjACc0KFXbHF+Ljo+k4k1Vx232JiLpbbZMCn5/MQlRaGUrqWiARgBAncywb64kx3tbwsDJW+znlRvrYML8/PjueicyKBjw52hM+tiZqPw/pnlu3m9eQY8eOYerUqZg8eTK+/PLLG27/888/MXfuXAQGBmL//v033F5XV4cxY8Zg1apV3TFcIiIi6qCaplb8FF+IczmVePTHC3hyRzwu5Fdr9JyiKGJLdB5e/OUS6pqV+P1yiUbPR71Li0KFDw+nYcXeRHhZG2PL4kEdThgZ6kkwP9QRlkb62JNQrKGREhF13ldnrkxnC3QwwxtT/bD/sRH47z8GYPFQV40km67SkwhYNs4La+cGM9lE7dbtFU5KpRKrVq3C119/DXt7eyxYsADh4eHw8fG5to2joyPef/99bN68uc1jrFu3DsOGDeuuIRMREVEHHU+vgFIl4ou7QpBYXIfvzuXi4R8uYISHJf45yh3B7Wxc2l4KpQprjqRhd3wRwn1tYG1igN3xhahvUcDEgAXdui6/uhEr9iQisbgO9wx2xlNjPKEv7dz3qvpSCaYF2mF7bAEqG1pgaWyg5tESEXVOU6sSey8VI9zXBu/PDOzp4RDdVrdXOMXHx8Pd3R2urq4wMDDA9OnTcfjw4eu2cXFxQUBAACSSG4eXkJCA8vJyhIWFddeQiYiIqIMOp5TCwcwQg1wscN8QF/zyyDA8PcYTiUW1eDAiDst3JeByUa1azlXT1IpluxKwO74IDwxzxfsz+2Ginw0UKhHnsqvUcg7qvaLSyrH4+1jkVjVizaxAPDveu9PJpqtmBjtAoRKxL5FVckTUexxKKUVNkwLzQ516eihE7dLtX/kVFxfDweH/+ynY29sjPj6+XfuqVCqsXr0aa9aswenTp9t9TqlUgFyuufLC7iSVSnTmvtCtMdZ9B2PdN/SlONc2KXA2pwr3DHWFpeWVsns5gGVT/PHQOG9sOZONTSezsGRrLML9bbEs3BdBTp2reMquaMCjP8Yjt7IBH8wNxvxBLgCAseZGMDW8jOj8Gswd6qauu9YufSnWPe1yYQ1e+vUS+jma49NFA+CmpukkQ+TGCHG2wO+JJXg83BfCTRrQ60qsRVHE4aQS9He2gL25rKeH0yvpSqzp9npzrHcnFMPLxgQT+zve9HmJ2q83x1pXdHvCqa1F8dr7YImIiMDYsWPh6OjYoXMqlaLOdJ9nJ/2+g7HuOxjrvqEvxfmPxBK0KFQY7S5v8z7/I9QRMwJs8WNsPrZG52PO56cw2ssKUwJsMcbLGqaG7Xt7EpdXjRd+uQQA2DC/Pwa7Xn++4e5yHE0uQWVlfbe+Me9Lse5Joiji7T2XYGaohw1zg2EmgVqv+7QAW6w+nIYzKSXoZ9/2Cjy6EuujqWV46dfLMJfpYcUkX0zyt+3pIfU6uhJrur3eGuuk4lrE51Xj+QneqK5u7Onh6ITeGmtt06tWqXNwcEBRUdG1/y8uLoadnV279o2NjUVMTAy2bduG+vp6tLa2wtjYGC+88IKmhktEREQddCS1DDYmBuh/i6olU0M9LB3hjkUDnbEtJh8/XyzEiYwK6EsFDHe3RLivDcZ6W990ueXfLxfjnQMpcDSXYe3cYLhZGt2wTZinFQ6nlCGlpB7+9qZqu3/UOxxLr0B0bjVeDPeBmUz9b2mnBthhXVQG9iQU3zThpAuaWpVYF5kOTytjGBtIsWJvIo6ll+OliT7tTv4SkebtvFAImZ4E0wPte3ooRO3W7a8i/fv3R1ZWFnJzc2Fvb4/ffvsNH3/8cbv2/ft2u3btQkJCApNNREREvUhjqxInMyswK9gBknZUFZka6uGRUe5YOtINCYW1OJxSiqOpZTiRUQGpRMBQVznC/Www3scalsYGEEURG09lY9OZHAx2tcDqmYE3TUqN9LQCAJzMrGDCSce0KlX49FgGPK2MMS+0Y5Xv7WUm08N4H2vsTyzBM+O8YKjXI4s7a9yW6DwU1DTjs4X9MdDZAl+fzcWmM9mIzavGW9P8MdhV3tNDJOrzapsU+COxBFMD7DSSYCfSlG7/a9XT08Mbb7yBhx9+GEqlEvPnz4evry/Wr1+P4OBgTJw4EfHx8XjqqadQU1ODo0ePYsOGDfjtt9+6e6hERETUQaczK9CsUCHc16ZD+0kEASFO5ghxMsfycV5ILK7D4ZQyHE0txXsHU/HBoVQMcrGATF+KExkVmBVsj5cn+d6yObSNiQH62ZviREYFHhrRvX2cSLN2xBUgp7IR6+YGQ0+iuemSM4Md8EdSKaLSyjAloH0V+dqkqKYJ35zLxUQ/Gwx1swQAPDLKHSM9LfHmvmQ8vj0e9w5xweNhHjDQ0YQbUWcoliEZwgAAIABJREFUlCr850QWSmqb0axQ/fWjRLNSvPLfa79ToUWhwuKhLnh0lEenz/fb5WI0KVSYP0AzCXYiTemR9Oi4ceMwbty46373zDPPXPt3SEgIjh07dstjzJs3D/PmzdPI+IiIiKhzjqSWQW6kjwEuFp0+hiAICHQwQ6CDGZ4a44HU0nocSS3D4ZRS5FY24ukxnlg81KVdfZlGe1nhq9M5qGpohdy47Uoo0i7Vja3YdCYHI9wtMcrTUqPnGuomh4OZIfYkFOtkwunTY5kAgGfGeV33+2BHc2xZPAjrozKwJToPZ7MrsWpaAHxsTXpimES9zsGUUmyJzoOzhQzGBlIY6klgqCeB3EAKA6kBDPUkkOld+X1GRQM2ncnBeB8b+Nl1vNpWFEXsulCIIAcznZ7eS7qJ9XhERESkFs0KFY6nV2BKgK3aqk4EQYCfnSn87EzxWJgHWpWqDi15H+Zphf+ezsHp7ApM68e+F7rgv6ezUdeswDPjvTTeDF4iCJgRZI9NZ3JQVNMEBx1awS0mtwoHk0vx6Eh3OLZxv4z0pXh5ki9Ge1nh7T9ScP/W83hytCfuHuzcrumyRLpKFEVsi8mHh5URfnxgyG0fD9WNrZi/+U98dCQNGxeFdvh563xeNTIrGvDGVL+uDJuoR7A2loiIiNTibHYlGlqVCPfr2HS6juhIsgkA+jmYwdJIHyczKjQ0IupOWRUN2HmhEHP6O8LHpnuqbWYE20PElSktukKhEvHx0XQ4mhti8VCXW2472ssaPywZjDBPK6yLysCTO+JRXNvcTSMl6n3i8muQWFyHfwxqX/LVwkgfT4zxRGx+DQ4klXb4fDvjCmEu08Nkrh5JWogJJyIiIlKLIymlMJfpYWgvajIsEQSM8rTEmaxKKFViTw+HuujTqAzI9CR4dJR7t53T2cIIQ1wtsCehGCpRN/6GdscXIrW0Hs+M84JMX3rb7S2NDbBmViBen+qHy0V1eHNfUjeMkvqaZoUK2RUNOJNVgd8vF6OmqbWnh9SmbefzYS7T69BqcbODHRBgZ4r1xzLQ0KJs935l9S04mlaGGUH27XqsEvU2nFJHREREXdaqVOFYegXG+lhDr4NVSJoW5mWN3y6XIKGwBqHOnest1axQobSuGS5yIzWPjtrrXHYljmdU4KkxnrA2MejWc88MdsCb+5IRm1et9au2VTW24ouTWRjiatGh5v6CIGBWsAOqGlqx4Xgm0krr2dOJOkShVKGwphkFNU0orG5CYU0T8qubUFjTjMKaJpTWtVy3vbOFDB/ODoSvbddXGW1VXmngbWrYtY+/+dWNiEorw+Khrh1KAEklAl6c6IOl2+Kw+WwOnhrj2a79frlYCKVKxLwQNgsn7cSEExEREXVZdG4VapsVHV6drjuMcLeEVABOZlZ0OuG0an8yjqaVYeviwfC0NlbzCOl2lCoR66Iy4GRuiH8Mcu7284f72mDN4TTsSSjS+oTTFyezUN+swPMTfDrVA2tWfwd8eTobO+IKsGKyrwZGSNpMJYooqW1GblUjciqv/8mvbrqu0lQqAPZmhnC0kGGEuyUcLWRwMpfByUKGZoUSK/en4KGIOLw+1a9LTfvj8qqx8o9ktCpFbH9gCIwNOl8ptD22AIIg4K4BTh3eN8TJHNMD7bA1Og+zgh3gZnnrLzCUKhG744swzE0Odyu+7pB2YsKJiIiIuuxwShlMDKQY7q7ZVcM6w0ymhxBnC5zIqMATo9v3rfLfZVc04GByKUQA7x5IwZf/CGXT5G62J6EIqaX1eG9GPxjqdX8FnUxfiikBtvj9cgleCFd0uUqip6SU1GF3fCEWDnDqdHWS3EgfUwNs8fvlYjw5xgPmMq7+2JcpVSL+SCrBsfTya4mlZoXq2u2GehK4WRrB19YE4b42cJUbwVkug6O5DHZmhrdcYOL7+wbi5T2JePW3JCQV1+GJMZ4dWpCiqVWJz09mYVtMPmxNDVBS14JvzuV06nUAAOqaFfjlYhEm+dnAzsywU8d4aqwXItPK8cnRdKybF3zLbU9kVKC4thnPTfDu1LmIegPtfLUkIiKiXkOhEhGVVo7RXlY9kgxoj9GeVthwPBMltc0d/qDw7blcGOhJ8MhId/z7eCZ2xxdifmjHv92mzqlvUeDzk1kIcTLHJA02pL+dmUEO2B1fhEPJpZijhdNbRFHER0fTYWao1+UeWHcNcMavCcXYe6kY9wy+ddNx0l1nsirw6bFMpJbWw8ncEF42JhjqJoe7pRFcLY3gZmkMW1ODTifobUwN8fldIfjkaDq+j85Dckkd3p3RD3Kj2yc5EwprsHJ/MrIqGjE/1BHLxnrhg0Op2Bqdh9n9HeBs0fHp0XsuFaO+RYm7u/A3b2NigIdHumN9VAaOp5djjLf1Tbf96UIBbE0NMPYW2xD1dr3zXSERERFpjdi8KlQ1tiLcr/euoDPKywrAlWl1HVFU04TfE0swp78D7h/qgiFucmw4diVxRd3j23O5qGhoxXPjvTo1BUxdgh3N4GlljF8TtHO1uoPJpYjNq8YTYzy7XJXkb2+KUCdz7Igr0JlG6tR+ySV1eGpnPJ7+KQH1LUq8Oz0Aux8ehrVzg/HseG/MC3XCUDdL2JsZdrkaVF8qwb8m+eL1KX6Iza/Gki3nkVxSd9PtWxQq/Pt4JpZui0Njqwr/nt8fL0/yhbGBFE+N8YREELDhWGaHx6FUifjhfD5CncwR5GDWlbuERQOd4GFlhE8i06+rBvu7vKpGnM6qxNz+jh2q6iLqbZhwIiIioi45klIGmZ4Eozx633S6q7ytjeFgZoiTGR1LOH3/Zx4A4L4hLhAEAa9M8oVCJeLDI2maGCb9j8KaJmyNzsMd/ewQ5Gjeo2MRBAEzg+1xsbAGWeUNPTqWjmpsVWJ9VAb87UwxO9hBLce8a6AT8qqacDqzUi3Ho96vsKYJb+5LwuLvzyOpuA7PjvfCjgeGYEqAncanGc/q74D/LgqFQiVi6bY47Eu8MfGbVFyL+7eex7fncjEjyB4/LBmM4X97XbIzM8SSYa44nFKGmNyqDp3/eHo5CqqbcPfgrveQ05dK8PwEb+RVNSEiJq/NbXZdKIRUAGb3V8/jlainMOFEREREnaYSRRxNK8coT6tevWSzIAgI87LCuZxKtNzkG+X/VV7fgl8SijA90A4O5jIAgKulER4e4YbItHIcTS3T5JAJwH+OZ0IQBDw52qOnhwIAmBZoD6kA7LlU1NND6ZBvzuWipK4FL0zwhlRN1RITfG1gY2KA7XH5ajke9V41Ta34NCoDCzb/iUPJpVg81BW7lw7DPYNdYNCN06iDHM3x3X2DEOhghjd+T8YnR9OhUIlQKFX48lQWHoiIQ3WjAmvnBuH1qf5t9lq7b4gL7M0M8cnR9OsamN9OxPl8OJobYpyPeqb1jvCwwngfa2w+k4Pi/6mYbVao8GtCEcb6dL5XFFFvwYQTERERdVp8fg3K61swsQd767RXmKcVGltViM2rbtf2ETH5aFWqsGSY23W/v2+IC3xtTfDhkTTUNSs0MVQCcLGgBn8kleLeIS7XEn49zcbEAGFe1vjtcgkUHfiw2pPyqhqx5c9cTA2wxQCXzq3S2BZ9qQTzQhxxKrMSuZWNajsu9R4tChW2Rudh7qY/sSU6D5MD7PDTQ0Px9FhPmMl6phWwtYkBPlvQH4sGOmHb+Xw8uSMeD0TE4b+nczDF3xY/LBmM0V4373kk05di2VhPpJTWY09C+xLHScW1iM2rxl0DndU6vW35eC+IAD6Nyrju94dTSlHdpMD8UO3rFUf0v5hwIiIiok47kloGA+mV6qHebqibHIZ6knb1cappasVPFwowyc/2hqWr9aQSvDrFD+X1Lfj38Y73AtGU2iYFLhXVQtSBnjqiKGJtZAasTQywZKhrTw/nOjOD7FFe34LTHewH1lPWR2VAKhGwbKyX2o89N8QBUomAHXEFaj82dY+mViUyyutxPL0cP5zPx8dH0/Hc7gQs+iYaE/9zCuuiMhDoYIYtiwfhrTv8e0XyV08qwQvhPlg5zR+XimpRWteMNbMCserOAFi0o6H4ZH9bhDqZ4/OTWe360mDb+XwY60sxR83T25wtjLB4iAsOJJdeN8XvpwuFcLM0wlA3uVrPR9QTuEodERFptcZWJbbHFsBCpgdnuQwuciPYmRqqbdoI3ZwoijiSWoYRHlYwMej9bylk+lIMdrXAycyK2y4zvT22APUtSjwwvO1kR5CDGRYNdMa28/mY1s8Ooc7qqxzprPcPpeJgcin62ZvigWGuGOdjo5WPg7TSevz7eCYuFtbg9Sl+MDboXVM1R3tZwcpYH78mFGHm4N6VDPu72iYFNp/NQWRaOZ4Y7aGRqTk2poaY5GeDPZeK8FiYR6+LFd3oUmENdl8sQmZ5A/Krm1Be33Ld7Ub6EjhbGMFVboTh7pYI87LCcPfe2Z/vzkB7DHKxgImBXocqrgRBwHMTvLFkayw2n8nBsnE3T8aW1TXjQFIp5oc6tjlFr6uWDHPF3kvF+OhIOr5fPAgZZfWIL6jBs+O9NN4Xi6g79P53h0RERLfw3blcfHUm57rf6UkEOFnI4GQhg7PFlSSUs4UMrnIjeNsY9+hKV7rkclEtimub8XiYR08Ppd3CPK3w4ZF05FQ23lC5dFVDixI/nM/HGC8r+Nqa3vRYj4V5IDKtDO8eSMWWxYO6tZfJ/yqsacKRlFIMd5ejoLoJ/9qTCHdLI9w/1BXTAu2gL+39Re0F1U3YeCoL+y6XwNRQD8vGemJGsH1PD+sGelIJ7uhnhx9jC1Be34LelmJpVaqw60Ih/ns6G9VNCkwPsse9XVjG/XYWDnDCH0ml2JdYjPmhTho7D3WeUiUiKr0cEdF5uFBQAxMDKQLsTRHmaQlniyuvj87yK6+XciN9rXqN7GzFVaCDGWYE2WPb+XzMDXGE601eD3ZcKIRSJWLRwK43C2+LTF+KZ8d74V97ErHrQgHSyxpgqCfB9MDe99xH1BlMOBERkdaqaGjB1pg8hPva4JlxXsirakR+ddOVn7/+famwFrV/K5mfGWSP16f6adUb6t7qcEoZpBIBY7x7/3S6q0Z5WgFIx8nMCrhZtv0BYnd8IaqbFHhwuFubt19lbCDFvyb5YvmuBHx7LhePjHLXwIjb58fzV6Y0vTbFD7amhjiSWoZvz+Xi7QMp2HgqC/cMdsGcEIdeWYlW2dCCTWdy8NOFQkglAhYPdcGSYa4wl91+akxPmRnsgIiYfPx6oQBzA+16ejgArlQcRqaV49/HM5FT2YghrhZ4ZpwXAuy7toT77YQ4mcPfzhTbYwswL8SRz629SEOLEnsSirDtfD7yq5vgZCHD8xO8MTPYvlc+F3S3J0d74EhKGT49loEPZwfdcHtTqxK7LhRijLf1TRNS6jDB1wZD3eT44mQ2FCoVJvvbtmtqIJE24DMNERFpra/P5qJFocLjoz2uVTS1paapFfnVTdifWIKImHy4WhrdNplAt3Z1Ot0wN3mvTgz8Lxe5ETysjHAyoxx3D7ox4dSsUGFLdB6GuMnR38n8tscL87TC1ABbfH0uB5P8beFpbayJYd9SfYsCP18sxEQ/22vf9k/2t8UkPxucza7Et+dysS4qA5vP5mDhACcsGugES2ODbh/n/6pvUSAiOh9bovPQrFBiZrADHhnprhWrMvnYmCDIwQw7Y/Iwxafnp5QmFNZgXWQGLhTUwNPaGGvnBiHM06pbkj+CIOCugU54+48UnM+rxmBX9p3pacW1zdgeW4Dd8YWobVYgxMkcy8Z6au00W02xMTXEA8Nd8dmJLPyZU4mhbtdPHdyfWIKqxlbcM1gz1U1XCYKAF8K9cc+3MVCKwAI2CycdwoQTEfVpoihi76Vi+NqaaPxbYFKvwpom/HShADOCHeBhdesP+eYyfZjL9BFgZ4rKhlZ8diILzhYyTAnoHZUJ2iiltB751U14YFjv7WFzM2Ge1tgel4+GFuUNPWf2XipCWX0LVt3p3+7jPTfBG2eyKvHugRR8+Y9QdQ/3tn5NKEZ9i/KGD0WCIGCEhxVGeFghobAG357LxaYzOdgSnYc5/R1w92BnOFto7lv7m2lRqLArvhCbz+SgsrEVE/1s8FiYx20fx73N7P4OeO9gKsZvOAULmd61Kbx//6+ThREczQ01NqUxv7oR/zmehYPJpbAy1seKyb6YFeyg1pW02mOKvy0+jcrAj7EFTDj1oOTiOmyNycOB5FKIoohwXxvcM9ilXcnzvuqewS74Ob4QnxzNwPeLB1177IiiiG3n8+Fra4JBalzd8Wa8rE3wyCh3pJTUI9CB70dJdzDhRER92sHkUqz6IwVSAVg6wh0PDneFnhb0OiHgy1PZEAA8MrL905gEQcBrU/xQWNOElfuT4WAuQwjfiHfKkZRSSAVgvI9NTw+lw0Z7WWFrTB7+zKnEuL+NX6ES8d25XAQ7mmFIBz40Wxkb4JlxXlj1Rwp+ji/EQ+N8NDHsNilVIn44n49QJ3MEOd78bznY0Rwfzg5CZnkDvvszFzsvFGJHXAEm/PWBtLseB6cyK7D6UCoKapoxxE2Op8Z4IkhLP1zN6e8AN1szXMypQEFNEwqqm5BcUofItHIoVP+/UqAAwNHcEK9N9buhgqKz6poV+Op0DrbH5UMiCFg6wg2Lh7r0WKWVTF+K2f0dsCU6D0U1Tb1iJbO+oqlViYPJpdgdX4SLhVf6My0a6IRFA51vWvVL/89QT4Jl47zw8p5E/HKx8FofsnPZVcgob8Cbd3TfFPylI3puWjaRpjDhRER9VmldM1YfTkOwoxncLI3w5elsHM8ox8ppAT0yLYbaL6O8Hr9fLsbdg1xg38HpNwZ6Enw4KwgPbovFCz9fwtf3DuiRKg9tJooiDqeUYaCrHHJj7ZlOd1WoszlMDKQ4mVlxXcLpQFIJCmqa8Xy4T4c/YMwIssfviSX49Fgmpg90QXdNCotKL0dBdROeucUqS3/naW2MN+/wx+NhHtgeV4BdFwpxOKUM/R3NcM9gF4z3tdFIdYwoioiIycf6qAx42Rhjw/xgDHe31Op+P4IgYGI/Owx2vL6xvFIlorSu+VoSqqC6Cb9dLsF7B1Px45Ihamku//rvSTiZUYGZwfb45yjNrEDXUfNDnbAlOg+74gvxxGjPnh6OzkspqcPPF4uwL7EYdc1KeFgZ4dnxXpgV7KCR1dR0WbivDQa6WOCLk9mY4m8HOYCI83mwMtbHFH9WQhN1Bb/GJ6I+SRRFvHMgBc0KFVZOC8DKaQFYPbMfCqqbsHjLeWw7nw+VKN7+QNQjPj+RBSN9aaenc8mN9bF2bjCUoohnd11CbZPi9jvRNRnlDciubES4r/ZVNwGAvlSC4e6WOJlRAfGvx7lKFPHN2Vz42ppgjFfHm6ALgoBXJvlCoRKxcm8ilKruef7YFpMHJwsZxnlbd2g/OzNDPDXGE3sfHY4Xw31Q2diKFXsTMW/TOUTE5KGuWX2PiValCu8cSMG6qAyE+9ng63sGYoRH9/QX6glSiQAHcxkGucgxI8gBj47ywMuTfJBX1YTtcQVdPv6JjHKcyKjA02M98fpU/16RbAIAJwsZxnhZY3d8EZoVqp4ejk5qbFXi14tFeDAiFvd+fx6/XCzEGC9rfLkoFNsfGIJ7Brsw2dQJgiDg+fHeqG5sxVdnspFWUodTmZVYMMCpR1cfJdIF0rfeeuutnh6EpqlUIpqaWnt6GGohk+nrzH2hW2OsNevni0WIiMnHc+O9/lq1CvC0NsGdQfZIL6vHj7EFiMurxhBXucbfvDHWHZNQWIP1UZl4aLgbRnUiMXCV3EgfwY5m2HY+H5eLajE1wBYSDfY90aU4/3ShEOdzq/HaFF8Ya+lKR40tSuxLLMF4HxtYmxjgaFo5dsQV4PkJ3vCxNb39AdpgYaQPqUTADzFXqjyyKxohCIC9maFGpupeKqrFFyez8cgo905PidOXShDkaIaFA5wQYG+KzIpG7I4vws64AlQ2tsLDyhhmXXgOrGpoxbM/X0JUWjmWjnDDSxN9YKBD05bb+7h2lRvhclEt9iUWY3awA4z0pbfdpy0tChWe//kSLI308dY0/17XANrCSB+74gvhZmkEP7vOPY56q558Dk8ursNXZ7Kxcn8yDqWUwcRQDw+NcMNbd/hjWqA9HM1lOpvA7S42pgYormvG7vgiZFc0oLC6EW9PD+j0Y5W0gy69N+tJJiY3/+JDO98lEhF1QX51I9ZFZmComxwLBjhdd5uNiQE+mROEXxOK8MnRDPzj2xi8EO6N6YH2fDPXC4iiiP8cz4SlkT7uVsOqMYNd5Xh1si9W/ZGC1YfT8Mpk3z4bZ4VShYMppahtUkAUARVwrfpHFHGt4k8Ugd8uFSPU2Rw2pr2jsqIzriYrT2ZWwNfWBN+czYGrXIaJfrZdOu7ioS7wdTTH3gsFOJRSil8SiiDTk2CEhyXG+9ggzMsKcjUtd70tJg8mBlLMCrbv8rGkEgHjfGwwzscGl4tqERGThx/P5+PH8/mYHGCHJcNc4WNj0qFjZpTX47ndl1Ba14y37wzAHf369tSUZ8Z54e5vo7HxVDZenuTbqWNExOQht6oJG+YHa6wReVcMc5PDw8oIP8bm485Auz77fKoO9S0KHEgqxe74QiQW18FQT4JJfjaYG+KIECdzXlsNeDzMA4eSS3EstQyzgu1h1QtW8yTSdkw4EVGfohJFrNyfAkEA3pjqB0kbb9gEQcDs/o4Y4ibHyn3JWLk/BVFp5Vgx2ZdvPnrYuewqROdW4/kJ3mprjjsz2AG5VY34+mwu3CyNsHio9q26pg7/PZ2NzWdz2739Q8PdNDgazbMxMUA/e1OczKhAgL0pEovr8NoU3y5XjEgEAXf2d8QoVwu0KlWIya1CZFo5jqeXIzKtHFIBCHW2wDgfa4zzse50/7CimiYcSi7FPwapv1F0oIMZ3pneD0+N8cSPsVf6PO1PLMFYb2s8ONwVwbdoTn7VycwKvLo3EYZ6EmxcFNqufXSdp7UxFgxwwo64AiwY4NThBF5JbTM2n83BeB9rjPDofHWnJgmCgIUDnPHhkTRcKqpl3DshsbgWu+ML8UdiKRpalfC2McbzE7xxZ6AdzGXa1zNPm1ibGOCRke7YcDwTdw9y6enhEOkEQRR1v0lJa6sSVVUNPT0MtZDLjXXmvtCtMdaaERGTh7WRGXhjqh9mBjvcdnul6sqyuJ+dyISpgR7evMMfYV2YxtUWxrp9RFHEkq2xqGpsxc4Hh6q1r4JKFPHq3kQcTinD6lmBmKCB3kS9Oc6Z5Q2457sYTPSzwfMTvCFAgCDgys///FsiXEmq6EJfiy9OZuHrsznwszVFZWMrdi8dqpaqkbZirRJFJBbX4VhaGaLSy5FeduX2f45yx8MdWGnxqg3HMrAlOg8/PzwMjhpeEay6sRXb4wrw4/l8VDcpMMRNjgeGuWKYm/yGKourS4mvj8qAj40JPp4TpNMrlnX0cV3V2Ir5m/9EP3tTbJjfv0NVKq/9loijqWX48YEhcJH33oUO6lsUmL7xLMZ6W2PVnQE9PRy10eRzeH2LAn8klmB3fBGSSq5UM032t8XcEEf0dzRjNVM3EkURLVIpDFXsQ9YX9Ob3ZtrE1vbmq82yh5OW4TzTvoOxVr/M8gas2HMZYV7WeGqMZ7vewEkEASFO5hjnY4Nz2ZWIiMmHhZHeLZcf7yjGun2OpJbhh/MFeG68NwLVvIy6IAgY7WWFczlV2HmhECM8LGGr5ulivTXOoiji5T2JqGlSYO28YFgZG0CmL4VMXwpDPSkM9SQw0JPAQCqBvlQCPamk1/WN6SyZvgQ/XyxCWX0LHg/zQIizhXqO20asBUGAnakhhrpZYsEAJ9wZaIfKhiuJHCcLww71u2loUeL135MwxssGc0Ic1TLmW5HpSzHY9coUZLmRPo6ll2PnhUKczKyEpZE+3KyMIAgCWpUqfHAoDd+cy8U4H2usnRcMSx2vCu3o41qmL4WBngQ74woR6GAGN8v2rYgam1eNdVEZeGC4G8K7OO1T0wykEpTVt2DvpWLMDXGEsYFu9MBR93O4+FcS+stTV3ozHU0rh9xIH0tHuOOtO/wxJcAO9maGTDZ1M0EQYGNh1Ctfr0n9eut7M23DHk5E1OcplCq8uS8JxgZ6nerT42Njgk13D8DrvyfhwyPpKKhuxrJxnm1OyespZXXNWLk/BVYm+njrDn+depOqUIn4/EQWPK2NcWdg1/vVtEWmL8VHs4PwUEQsnvv5Er64KwTulkZduo51zQrkVDYiu7IBrYIE03yte13fld8uF+N8XnWfnDLaz94MciN9CABm9799xaM6uciN8NY0f1Q2tuKdA6mwMzXEMHfLdu2791IR6pqVuEcNfcw6wthAinuHuGDhACfsvVyM787l4sVfL8PT2hj3DXHB75eLEZNbjQeHu+KxMI9e9fzYmywMdcRPcQVYF5mBEe6Wt20or1SJ+PBIGuzNDDu9Mmd3WxDqhB9jC/DzxUIsHdHxCj5d16q80vz9dFYlZHoSTAm4Us0U5MBqJiLSLUw4EVGf8PW5XCQW1+GDmf1gbdK5D9UyfSk+mBmItZHp2BqTh6LaJrx1hz9kvWAFkwv51Xh5TyLK61sgAhjvY6ORaWE95bdLRciubMSaWYEara6xNjHAJ3ODsXRbHBZ+HQ1DPQnsTA1gb2YIe3PZlf/+9ePw138NpBLkVTcip6IROZVXfxqQXdmIiobrvzVTTvbF3G6oSGmvqsZWrI/KRH9Hc8zp5oRLbyCVCHhtih9kepIeeRzrSyVYPTMQD/8Qh3/tuYyv/jEA3rfp66NUifjhfD76O5qhfydXpusqAz0J5oU4YlawAw4ll+Kbczl4+48U6EsFrJzmr7GksK7Qk0qwfLwXnt19CTsvFOIfg26dONwdX4jU0nq8P6Nfr3i9aQ8Pa2MMd5fjx/MFmB02Je58AAAgAElEQVTsoNULDGjCR0fScTqrEk+O9sCCAU4aXw2XiKin8NmNiHReUnEtNp3JwdQA2y6vQCWVCHgh3AdOFjKsi8xAaV0LPp4dBLlxzzTyFEURO+IK8UlkOpzMDfH94kFYuT8ZHx1Jw3B3S52YytCsUOHLU9kIcjDDeB9rjZ/P28YE39wzEGezK1FU24zi2mYU1TTjz+xKlNW3QHWbzodWxvpwtzTCGC9ruFkawc3SCO5WxnhjfzK2xxZgTn+HXvMN9r+PZ6K2qRUrJvfvs9Uo47rhb+pWzGR6WDcvGA9GxGH5rgR8fe9A2NwiKX4ioxy5VU14YrRnN46ybXoSAXf0s8OUAFucyaqEtYkB/DswNbAvC/O0wnB3Of57OhvT+tnB4iYrF1Y1tuKLk1kY4mqBiX7a9SXC8nHeeDAiFi/vScTnd4X0uurOnrLrQgF2xRdiyTBXPKDliy8QEd0OE05EpNOaFSq8uS8ZVsb6eGmij9qOe89gFziYGeKNfclY+kMc1s8L7vYmrk2tSnxwKBW/XS7BaC8rrJoWADOZHl6e5Iul2+Lw5alsLB/v1a1j0oSdcQUoqWvBW9O6b5qgh7UxPKxv7K2iUIkoq/v/JFRxbTOaFEq4WhrBzdIYbnIjmMnafmm9f4Q7Xvk5AefzqjHYVa7pu3BbcXnV+OViEe4b4gJfWyYJepKjuQxr5wbh0R8u4LndCdi4KBRGN6lkiYjJh6O5Icb3ogpGiSBglGfvXDWttxIEAcvHe+Pe72Lw39PZeCG87denL05moa5ZgefDfXpNorq9fGxN8PpUP7z6WxLWRmao9TVYW13Ir8aHR9Ix0sMSj4d59PRwiIg0jl81EJFO23gyCxnlDXhtip/alxMO97PFZwtDUN3Yigcj4nCxoEatx7+V/OpGLN0Wh98vl+DRUe74eE7QtURHiJM55oY44IfzeUgtreu2MWlCXbMCX5/NwXB3OYa6ta+/jSbpSQQ4mMsQ6myBqf3scP8wVzw6ygPT+tkjyMHspskmAJgZ4ggLmR62xxZ044jbplCq8P6hVDiYGeLRUeyv0hv0szfDuzP6IbmkDq/uTYSyjVK6pOJanM+rxqKBztDTkcbtfZmPjQnmhjhiZ1wBsspvXCUpuaQOu+MLsWCAE3xuM9Wyt5oSYIf7hrhgR1wB9iQU9fRwelRJbTNe+vUyHM0N8c70AJ1ZfIGI6FaYcCIinRWXV40t0XmYF+KosW/fQ5zMsfmegTAzlOLxHfE4mlqmkfP83emsCty/JRaFNc34ZG4QHhnpfsN0qCdHe8Jcpo/3D6ZBJd5mDlgvtjU6D9VNil4xfairZPpSzO7vgKi0MhTVNPXoWCJi8pFR3oAXwn1uWklD3W+stzWen+CD4xkVWBuZfsPtETH5MP7r74h0wz9HuUOmL8X6YxnX/V4URXx0JA3mMn2tTwo/OcYTQ93k+OBQKi4X1fb0cHpEs0KFl369jKZWFT6cHaT2L8CIiHorJpyISCfVNSuw8o9kOFrIsGycZpMVbpZG2HT3APjZmuBfv17GtvP5GjmPShSx+UwOnvkpAXamhvjuvoEY7dV2/xkLI308M84LFwtr8MtF7fxWuaKhBVtj8jDRzwaBDmY9PRy1WDDACSKAny4U9tgYCqqb8OXpbIzztu7x/kV0o7sGOuGewc74MbbguueSktpmHEguxez+DmwwrEMsjQ3w8Eh3nMiowJmsimu//yOpFHH5NXhytIfWJyf0JALem35lwY6Xfr2MyoaWnh5StxJFER8cSsWlolqsnOZ/24UBiIh0CRNORKRzmlqVeP7nSyisvrKKnImB5j+cWRob4LOFIRjnY41PjqbjoyNpaFGo1Hb8umYFXvrlMj4/mYUpAbbYfM+A2/aMujPQDoNcLPDv45mo0LI3+KIo4sPD6WhWqPDYKI+eHo7aOJrLMNbbGj9fLEKzGv8+2ksUryyvLhGAF8K9u/381D7PjPPCBF8brD2ajsi/qiZ3xBVAFEUsGuTUw6MjdbtrgBNc5DKsjcyAQiWioUX5f+zdd3hUZd7G8XtKKiEJ6Y2WQgmhW1Z6MbAYIs1eXldXV1+xoC666OqurC7i6lpwLayuHbsoEORVIIDYlqah9wiBZFJIh7SZ8/6BZmVpgUwymZnv57q4gJk55/nN+ZGQ3Hme5+jZVXvUMzpImWmeMZstNNBHj1+cqrIj9ZqxaKsaTnf3BQ/ywfcHtWizTTdd0KlN7b0GAK3BJYHTqlWrNHbsWKWnp2vu3LnHPb9mzRpNmjRJqampWrJkSePjBw4c0OTJkzVhwgRlZGTonXfeac2yAbiBertD9y3cog155Xp4XA/1TwhptbH9fSx6LDO1cXbCtW+t1+b85u/r9G3uIV371nqt3lOiu0cm6S8X9WjSMiiTyaQ/XJjy0zcve5tdR2t67d/7tXRHkf53cJcTbt7tzi7rH6eyI/X6fFthq4+9YleJVu85pN8N6qKYYP9WHx9NYzaZNHNcd/WKba8/Lt6mdfvL9HFOvkYkRyg+pHVvToCW52s1685hidpTclif5OTrlW/3qaiqTtNHJXvUPj89otvr/vQUrdtfrjn/tYTQU63bX6a/Z+/WsKRw3XiBey+NBICz0eqBk91u18yZM/Xyyy8rKytLixYt0q5du455TWxsrGbNmqXx48cf83hkZKTeffddffrpp3r//ff1z3/+UzabrTXLB9CGNTgMPbh4m77eW6oZ6Ska2zOq1WuwmE26a0SSnp6cpqraBt3wzvd6duUe1dTbz/hcBRU1unfBFt3+0SaZJD1/WR9dOSD+jO5U1DU8UNeem6CszTat2192xjW4wspdxXp+da7G9ojUded1dHU5TndOx1Alhgfq/Q1HZ6y0luq6Bj2xfJdSItvpiv7Mkmnr/H0senJiL4W389XUD3JUUdOgqwbGu7ostJDhyeEa2DFEL3yVq3nr8pTRK1q944JdXZbTXZQarcv7x2neugNasrX1Q/fmOFzXcEavz6+o0R8WblXHDgF6eFz34/ZaBABv0OqBU05Ojjp37qyOHTvK19dXGRkZWrZs2TGvSUhIUI8ePWQ2H1uer6+vfH19JUl1dXVyOFp/OQKAtslhGHr08x1atqNYd41I1KQ+sS6tZ3DXML33m3N0cVqM3lybp2veXK8fDpQ36di6Bof+9e0+XfLqWn2995D+d3AXvXPdORqQEHpWtdxwfifFBftp9tJdqre37c+bu4qr9dDi7eoZHaQ/junmdrcBbwqTyaTL+sdpW2GVclrxzoZzv/5RRVV1+sOFKbJaWFHvDsICffXMpDS187Oqd2x79fHAAAJHmUxHf1hRWdMgP6tZtw11/xslnMy04YnqHx+sRz7foR2F7nEn1U9y8tX3L0t1xetr9ezKPVq7r+yU/5/W1Ns1/dMtqrc79MSEXuy7BsBrtfpnP5vNppiY/6xHj46OVk5OTpOPz8/P1+9+9zvt27dP9957r6Kjo097jMViUmioZyzJsFjMHvNecGr0uukMw9BfFm/Vos023TEyWbeOSnZ1SZKkUEl/u6yfJg4s1gOfbNJN7/2g637VWXdf2E0Bvv9ZEvfLXq/cUaS/ZG3Vj4cOa2xqtGaM66H40+zV1BQPT0jTTW+u00ebbLpleNvcu+dQdZ2mL9iidn5Wzf2fczxuydcv+3zFr7roH6tzNX+zTcN7tXw4uiW/Qu9tOKjLz+2oYamesSdMW+bMz9/9QgO15I6h8rGYFBro65Rzwnmc2evzQwP16MQ0Rbb3U3L82f2AwV08f81ATXzha923aKvm33JBm/63vb/0sJ5auUdpccEK8rPq3Q0H9ObaPLXzs2hQYoSGd4vQsJRIxYYc/T/LMAzN/DBHO4qq9NLVA9Q3kX2b3A1fg3sPet3yWj1wOtHygTP5CXZsbKwWLlwom82mqVOnauzYsYqIOPUncrvdUFnZ4TOutS0KDQ30mPeCU6PXTffC6r1687v9umpgvK7pH9vmrluv8EC9fe0APbdqr1775kct3WrTH8d008COR7+hCA0N1JYfD+nv2bu1cneJOnUI0JwpafpVlzBJzvn81S+qnUalROi5Fbs1pHPoaTccb20Ndodu+2ijCitq9NLlfeXvcLS5PjbXf39Mj0+N1vvfH9TOvFJFBvm12Lh2h6H7P96oYD+rbjovweOua1vk7M/fPpJkl8rOcEkPWp6ze52eFCZJHv9xapX02Pie+t17P+j2eRv09OS0NrlflcMwNP2DHJkk/ePK/gqUoeq6Bq35sUxf5x7S13tL9cXWo9t7JEUEalCXMDkMaWFOvm4d0kX9o4M8vpeeiK/BvQe9do7IyJPfTbrV59THxMSooOA/t+i22WyKijrzfVaio6OVkpKitWvXOrM8AG7m9X/v17++26+JvWM0bXhim12C1c7XqvsuTNGLl/WRYUi3vJ+j2Ut3quxwveZk79Jlr63Vv/eV6rahXfXudQN/Cpuc6+6RSbKYTHpi+e5W3TuoKZ7M3q11+8v1wJhuSov1jmVDl/aLk8Nh6OMf8lvk/Ifr7Fq6vUj3LdiizQWVmjYi0e1vrw7Ac6TFBuveUcn69sdSvfhVrqvLOaEPNhzUuv3lumtEouJ++kFNO1+rRqRE6P70blp403l697qBumNYV3UI9NU76w/o7XV5Gt0tQr/xwD0IAeBMtfoMp969eys3N1f79+9XdHS0srKy9OSTTzbp2IKCAoWGhsrf31/l5eVav369fvOb37RswQDarA++P6jnvtyrsT0i9YcLU9ps2PRLAzuG6p3rBur51bl6b/0BfZyTL4chXdgtUtNGJCq6fcvNdIlu76ebB3fWUyv2KHtXiUa1kdszf/TDQX34Q76uPSdBF6Wefpm0p+jYIUCDuobp45x83fCrTvJxwr5KZUfqtWp3iVbsLNZ3P5aqzm4oNMBH/3Nugsa5YBN9ADiViX1itcVWqdf+vV9DEsPUN7717ix7OvtKj2jOl3s1qGsHXZx24qXIJpNJSRHtlBTRTtee21HVdQ3aUlCpPnEhbvE1CQC0tFYPnKxWqx566CHdeOONstvtmjJlilJSUvTMM88oLS1No0ePVk5Ojm677TZVVFQoOztbc+bMUVZWlnbv3q3HHntMJpNJhmHohhtuUPfu3Vv7LQBoA7I22/T4sl0alhSuP/+6e5ucin8yAT4W3TMySRd2i9B7Gw7qmgu6KDW8dZa4XdY/Xos22/Tk8l06v3Oo2vm6diPTdfvL9LfluzWoawdN9eBNck/msv5xuvPjTVq6o0jjep5d2GarrNXKXcXK3lmsDXnlshtHw8VJfWI1MiVCfeNDZHWjjw8A3uXuEUn6cvchzVm1V/+8om+bCGrsDkMzl2yXr8WsB9KbfgOLdr5WndupQwtXBwDuw2S0tXUVLaC+3u4xazNZZ+o9vK3Xy3YUac2+MoUF+igs0Ffh7XwVFujz0+++CvzFJtvLdxZrxsItGtgxVE9NSpOf1b3vuNXavd54sEK/fed7Te4bq7tGJLns+h0oP6Lr3tqg0AAfvXZ1f4+/i8+J+uwwDF366loF+1v16lX9m3wuwzC0aLNNH/2Qr80FlZKkrmGBGpESrpEpEeoRFdQmvmnzVt72+dub0WvnmJ+Tr79+sVNPTOil4cnhri5Hb63N0zMr9+jhcd0bZ97Sa+9Br70HvXaOU+3h5Nlf3QNwC8t2FGnGwq3y9zHrSP2JbzMc4GNWWODR8GmrrVK9YoL1xIRebh82uULvuGBN7hurj37I16LNNp3bKVSDuoZpUNcOig9pnZlW1XUN+v0nW+QwpCcneu8to80mky7tF6cns3drc0GlesWc/D/sn9U2ODR76U4t3GxTt8h2unVIF41MjlCXcO6yAsA9ZabF6O21efrHl3s1ODHMpbMyc0sO64XVezUsKZylyADQTN75FT6ANuP7vHI9tHibescF6x+X9JbVbFLpkXodqq5XyeE6HTpcp5Lq+p9+r1PJ4XqNSA7X/endjpn1hDMzfVSyhiaG6+u9h/TV3kNaveeQJKlzhwANTgzToC5h6p8QIt8WCPQchqE/f7Zde0qq9czkNHUO8+6gZHyvaL2wOlfvbzigh8f1OOVrCypqdN/CrdpSUKkbf9VJNw3qLDMzmQC4OavZpKlDu+reBVuUtblAE3rHuqSOBoehPy/ZrgAfi2aku8fekADQlhE4AXCZ3EOH9ftPNysm2F9PTuglf5+jAVJkkF+L3iYeksVs0uDEMA1ODNPvDUP7So/o69xSfb3nkD78/qDmrTugAB+zzukYqiGJYbooNbqxP81R2+DQsyv3aMWuEt01IrFF7sbnboL8rMroFa1PNubrzuGJCgv0PeHr1ueVacbCraptcOiJCakantw2Nn0HAGcYkRyu3rHBmvv1jxrbI8op/+ecqTfX7Nfmgko9mtFDEe1O/LkYANB0rEUB4BIl1XW68+NNMptMemZymkIDuV27q5hMJnUOC9SVA+I155LeWjp1kJ6a1EsZqdHaXXJYs5bu0uWvrVX2zmI1Z9u/73JLdeXra/X+9wd1ef84XTkg3onvwr1d1i9O9XZD83Pyj3vOMAy9u/6Abv1go9r7WfXaVf0JmwB4HJPJpNuHdVVhVZ3e23Cw1cffVVStuV//qNHdIpTePbLVxwcAT8QMJwCt7ki9XXfN36SS6jq9dFkfJYS2zr5BaJoAH4uGJIZrSGK4DMPQuv3leiJ7l+5dsEXndQrV70clq+sZ7BdUXF2np1fs1v9tK1KnDgF67pLeOr8zd/H5pS7hgTq/c6g++iFf153bUVbL0Z8H1dTbNWvpTi3eUqjhSeH687juXrvfFQDP1z8hREMTw/Tav/dpYu8YhQS0zg+jGuwO/XnJdrX3s+q+0ckspQMAJ2GGE4BW1eAwdP+irdpeWKW/ju+pXrHBri4Jp2AymXROp1C9de1A/X5kkrbaqnTlG+v01IrdqqptOOWxdoehD74/qEtfXaPlO4v1uws6a97/DCRsOonL+serqKpO2btKJEn5FTW66d0f9NmWQt08qLMen5BK2ATA4906tKsO19n16nf7W23MV/+9X9sLqzQjPUUdTrKsGQBw5vjKFUCrMQxDf1u2S6v3HNJ9o5M1LMn1tz5G01jNJl0+IF5jekTq+dW5emfdAS3ZWqjbh3XVRanRx21cvd1WpVlLd2pzQaXO6xSqe0cne/3m4KczuGuY4kL89f6GAwoNsOr+RdtUb3foyYm9NJSPFQBeIjminTJSo/X+9wd0+YA4xQb7t+h4221VeuXbfRrbI1IjU1iuDADOxAwnAK3mtX/v18c5+fqfczvqkn5xri4HZ6FDoK8eGNNNr13dX/Eh/np4yQ7d+M732lJQKUmqrmvQ37N363/eXq/8iho9clEPPXdJb8KmJrCYTbq0X5y+P1Ch2z7cqA6BPnr96v6ETQC8zu8GdZZJ0ktf/9ii49T/tJQuNMBH00clt+hYAOCNmOEEoFV8ttWm51fnamyPSE0d2sXV5aCZUmPa6+Ur+2nxFpvmrNqr37y9QWN6RGpDXrmKquo0pW+sbh3SVe39+W/mTFycFq031+xX/4QQPTi2m9r5cv0AeJ+YYH9d3j9eb63N0zUDE5Qc2c6p56+pt2vFrhLNz8nXruJq/X1ir1bbLwoAvAlfyQJocWv2lWrmkh0a2DFED43tftzyK7gns8mk8b1iNCI5Qi9/s0/vbjigpPBAzb44VWnszXVWgv19lHXzr2Q18zECwLv95vyO+mRjgf6xeq+empTW7PPZHYbW7S/T4q2Fyt5RrMP1dsW099PdI5OYSQoALYTACUCL2lVcrXsXbFHHDgH628W95GtlJa+nCfKzatqIRP3mvI5q72+VhbCkWQibAOBoAH/9+R317Kq9Wre/TAM7hp7VeXYVVWvxFpv+b1uhCqvq1M7XovTukRqXGqX+CSH8EAwAWhCBE4AW0+AwdM8nm+VvtejZyWksr/JwoYEsRwAAOM+l/eL07voDmrNqr169qp9MTQyHiqvrtGRroRZvsWlnUbUsZpMu6NJB00ZEa2himPx9LC1cOQBAInAC0II25JXpYHmNZo3vqZgWvssMAADwLP4+Ft08uIv+8n87lL2zWKO6RZ70tQ0OQ1/tOaQFmwr01Z4S2Y2j+w3+fmSSxvSIVIdA31asHAAgETgBaEHLdxTL32rWkMQwV5cCAADcUEZqtN5em6d/rM7VsKRwWS3HLs3fV3pECzYVaNFmm0qq6xTezldXn9NRmWnR6sIdUgHApQicALQIh2Eoe1eJBnVl6joAADg7FrNJU4d21T2fbNaCTQWa3DdONfV2Ld9ZrE83Fmh9XrksJmlQ1zBN6B2rwV07HBdKAQBco1mB07p16zRw4MDTPgbA++QcqFBJdZ1GpUS4uhQAAODGhiaGqX98sOZ+s087iqq1ZGuhquvs6hjqr6lDumh8r2hFBPm5ukwAwH9pVvz/yCOPNOkxAN5n+c5i+VpMGsxyOgAA0Awmk0m3DUtUSXWdFm22aVhSuF68rI8+uuFc/eb8ToRNANBGndUMpw0bNmjDhg06dOiQXn311cbHq6qqZLfbnVYcAPdkGIaW7yzW+Z07KMiPlbsAAKB5+sQF661rBygu2J+73gKAmzirz9b19fU6fPiw7Ha7qqurGx8PCgrSs88+67TiALinLQWVslXW6pbBnV1dCgAA8BDdo4JcXQIA4AycVeB03nnn6bzzztOkSZMUHx/v7JoAuLnlO4tlMZs0LCnc1aUAAAAAAFygWfNR6+rq9OCDD+rAgQNqaGhofPyNN95odmEA3JNhGFq2o1jndgpVsL+Pq8sBAAAAALhAswKnO++8U1dccYUuvfRSmc3cfhSAtKOoWgfKa3TdeR1dXQoAAAAAwEWaFThZrVZdddVVzqoFgAdYvrNYZpM0IpnldAAAAADgrZo1LWnkyJF6++23VVhYqLKyssZfALxX9o5iDUgIUYdAX1eXAgAAAABwkWbNcJo/f74k6ZVXXml8zGQyadmyZc2rCoBb2lNSrb2HDuuSfsmuLgUAAAAA4ELNCpyWL1/urDoAeIDlO4plkjQyheV0AAAAAODNmrWk7siRI3r++ef14IMPSpJyc3OVnZ3tlMIAuJ/lO4vVJy5YkUF+ri4FAAAAAOBCzQqcZsyYIR8fH23YsEGSFBMTo6efftophQFwL/tLj2hnUbVGdYtwdSkAAAAAABdrVuC0b98+3XTTTbJaj67M8/f3l2EYTikMgHtZvrNYkjQqhcAJAAAAALxdswInX19f1dTUyGQySToaQPn6cmcqwBst31ms1Jj2ign2d3UpAAAAAAAXa9am4bfffrtuvPFG5efn65577tGGDRs0a9YsZ9UGwE3kV9RoS0Glbh/a1dWlAAAAAADagLMOnAzDUGJioubMmaMffvhBhmHogQceUFhYmDPrA+AGsn9eTsf+TQAAAAAANSNwMplMmjp1qj7++GONGDHCiSUBcDfLdxQrJbKdEkIDXF0KAAAAAKANaNYeTn379lVOTo6zagHghoqqavXDwQqNZnYTAAAAAOAnzQqcvvvuO11xxRW68MILlZmZ2fjrdFatWqWxY8cqPT1dc+fOPe75NWvWaNKkSUpNTdWSJUsaH9+6dasuv/xyZWRkKDMzU4sXL25O+QCcIHtniSRpVEqkiysBAAAAALQVzdo0/J///OcZH2O32zVz5ky9+uqrio6O1iWXXKJRo0YpOTm58TWxsbGaNWuW/vWvfx1zrL+/v2bPnq0uXbrIZrNpypQpGjJkiIKDg5vzNgA0Q/bOInUNC1TX8EBXlwIAAAAAaCPOOnByOBy6+eabtWjRojM6LicnR507d1bHjh0lSRkZGVq2bNkxgVNCQoIkyWw+dgJW167/uQNWdHS0wsLCdOjQIQInwEVKD9dpfV65rj+/k6tLAQAAAAC0IWcdOJnNZnXv3l0HDx5UXFxck4+z2WyKiYlp/Ht0dPRZ7QOVk5Oj+vp6dep0+m90LRaTQkM9Y/aFxWL2mPeCU3OHXv/frhI5DGnCgIQ2X2tb5g69RvPRZ+9Br70HvfYe9Np70GvvQa9bXrOW1BUVFSkjI0N9+vRRQMB/7k714osvnvQYwzCOe8xkMp3RuIWFhZo+fbpmz5593CyoE7HbDZWVHT6jMdqq0NBAj3kvODV36PWiHw4qIdRfMf6WNl9rW+YOvUbz0WfvQa+9B732HvTae9Br70GvnSMysv1Jn2tW4HTbbbed8TExMTEqKCho/LvNZlNUVFSTj6+qqtLNN9+sadOmqV+/fmc8PgDnqKip15p9Zbp6YMIZh8YAAAAAAM/WrMDpvPPOO+NjevfurdzcXO3fv1/R0dHKysrSk08+2aRj6+rqNHXqVE2YMEHjxo0747EBOM+q3SWyOwyN6hbh6lIAAAAAAG1MswKn/v37N85sqK+vV0NDgwICArR+/fqTD2i16qGHHtKNN94ou92uKVOmKCUlRc8884zS0tI0evRo5eTk6LbbblNFRYWys7M1Z84cZWVl6bPPPtPatWtVVlam+fPnS5Iee+wx9ezZszlvA8BZWL6jWDHt/ZQaHeTqUgAAAAAAbYzJONGmSmdp6dKlysnJ0d133+2sUzpFfb3dY9Zmss7Ue7TlXlfVNmjMC9/o0n5xumtEkqvLcXttuddwHvrsPei196DX3oNeew967T3otXO02B5O/+3CCy/U3LlznXlKACdhGIaezN6tvLIa+VnNJ/llke9Pf+4bF6ykiHbNHrfe7tADWVvVYDc0tkfT918DAAAAAHiPZgVOn3/+eeOfHQ6HNm3axObBQCvZXFCp9zYcVKcOAbKYTaptcPz0y666Bofq7MdOXvSzmvX4xaka1DXsrMe0Oww9tHibvt5bqvvTU5Qac/I0GwAAAADgvZoVOGVnZzf+2WKxKD4+Xi+88EKziwJwep9sLFCAj1lvXPd0QS0AACAASURBVNNf7XyP/1B2GIbqfgqhymsaNGPhFt3zyWb9dXxPjUw5842+DcPQrC92aumOYt05PFGT+sQ6420AAAAAADxQswInh8OhBx54QMHBwZKk8vJyPfbYY5o1a5ZTigNwYofr7PpiW5Eu7BZ5wrBJkswmk/x9LPL3sSgkwEcvXtZXd368UTMWbtGfx/XQr3s2fTmcYRh6euUefbqpQL/9VSddc06Cs94KAAAAAMADmZtz8Pbt2xvDJkkKCQnR1q1bm10UgFNbur1Ih+vtmtA7psnHtPe3as4lvdUvIUQPLd6mT3Lym3zsy9/s07x1B3R5/zjdPKjz2ZQMAAAAAPAizQqcHA6HysvLG/9eVlYmu93e7KIAnNonGwvUNSxQfeKCT//iX2jna9XTk9J0QdcOevSLnXpn/YHTHjNvXZ7mfvOjxveK1t0jk9inDQAAAABwWs1aUnfDDTfoiiuu0NixY2UymfTZZ5/plltucVZtAE5gT0m1NuZX6M7hiWcV/vj7WPTEhF76Y9Y2/T17t2rq7br+/E4nfO2CjQV6asUejUqJ0ANjuslM2AQAAAAAaIJmBU4TJ05UWlqavv32WxmGoeeee07JycnOqg3ACXy6sUBWs0kXpTZ9D6b/5mMx69HxPTVzyXY9vzpXh+vsunVIl2MCrKXbi/ToFzv0q84d9JeLeshqJmwCAAAAADRNswInSUpOTiZkAlpJXYNDi7cUanhyuMICfZt1LqvZpD+P664AH4te+/d+Ham3656flsx9vfeQHly8Tb1jg/X4hFT5Wpu1+hYAAAAA4GWaHTgBaD2rdpeo7Ei9Lk5r+mbhp2I2mfSHC5Pl72PWvHUHVNPg0LieUbp3wRYlRbTT05PTFOBjccpYAAAAAADvQeAEuJFPNxUour2fzu/cwWnnNJlMmjY8UQE+Fr3y7T4t2FigzmEBmjMlTUF+fIoAAAAAAJw5vpsE3ER+RY2+yy3VjRd0ksXJ+ymZTCbdMriL2vtZtWxHsWZl9lSHZi7ZAwAAAAB4LwInwE0s3FQgScp00nK6E7n6nARdfU5Ci50fAAAAAOAd2AkYcAN2h6EFm2w6v3MHxQb7u7ocAAAAAABOicAJcAP/3lcqW2WtJvRuudlNAAAAAAA4C4ET0Ex2hyHDMFp0jE83FijE36phSeEtOg4AAAAAAM7AHk7ACRiGoX9+86O22qpU0+BQbb1DdXaHahvsqm1wHPOrwWEoKshXF6fF6OLeMU5f8lZ6uE4rd5Xosv5x8rWSEQMAAAAA2j4CJ+AEPttaqH9+s09dwwPV3s8qfx+zQgKs8rea5Wc1y9dqlp/VIj+rWX4WszbmV+iVb/fplW/36fwuHTSpd4yGJoXLx9L8gGjxlkI1OAxd3IKbhQMAAAAA4EwETsB/KTtSr6dW7FHv2PZ6+cp+MptMTTouv6JGCzcV6NONBbpv4VaFBfooIzVaE3rHqHNY4FnVYhiGPt1YoN6x7ZUU0e6szgEAAAAAQGsjcAL+y3Or9qqypl4z0ns3OWySpNhgf/1uUBf99led9W1uqT7ZmK956/L05to8DUgI0YTeMRqVEiF/H0uTz5lzsEJ7Dx3WH8eknM1bAQAAAADAJQicgF/YkFeuTzcV6NpzEpQSGXRW57CYTRqcGKbBiWEqrq7Tok0F+nRTgf702XY9vWKP7h6ZpLE9ImVqQpi1YFOBAn0sSu8edVa1AAAAAADgCuxADPyk3u7QrKU7FRvsp5sGdXbKOSPa+eo353fSRzecqxcu7aP4UH89uHib7pq/WQUVNac8trKmQZ9vK1J690gF+jZ9VhQAAAAAAK5G4AT85K21edpbcljTRyUr4AyWvTWF2WTSOZ1C9fIV/XTPyCStzyvT5a+t0/sbDshhGCc8ZvGmfNU0ODShN5uFAwAAAADcC4ETICmv7Ihe+XafRqZEaGhSeIuNYzGbdMWAeL173TnqEx+svy3frZve/UF7Sw4f99oP1uUpMTxQabHtW6weAAAAAABaAoETvJ5hGHp82S5ZTCbdMzKpVcaMC/HXs5PT9PC47vrx0GFd/eY6/fObH1Vvd0iSdhVV64e8ck3oHdOkvZ4AAAAAAGhLCJzg9ZbuKNY3uaW6ZUgXRbf3a7VxTSaTLkqN1vvXn6NRKRGa+/WPuvat9dqUX6FPNxXIx2LSRT2jW60eAAAAAACchbvUwatV1Tboyezd6hEVpMv6xbmkhrBAXz2S0VNje0TpsaU7dcO87+VrNSu9Z7RCA31cUhMAAAAAAM3BDCd4tedX56r0cJ1mpKfIYnbt0rWhSeF67zfnaErfWNkdhq4+v5NL6wEAAAAA4Gwxwwlea3N+hT78/qAu6x+n1Ji2sTF3kJ9V912YontGJikiPEhlZcdvJg4AAAAAQFvHDCd4pQaHob9+sVMRQb66ZXAXV5dzHKuFD00AAAAAgPviu1p4pfc3HNCOomrdMzJJQX5M9AMAAAAAwJkInOB1Cipq9OJXuRrcNUyjUiJcXQ4AAAAAAB6HwAle58ns3XIY0r2jk2UyuXajcAAAAAAAPJFLAqdVq1Zp7NixSk9P19y5c497fs2aNZo0aZJSU1O1ZMmSY5777W9/q3POOUc333xza5ULD1FYWav7FmzRil0luumCzooL8Xd1SQAAAAAAeKRW37zGbrdr5syZevXVVxUdHa1LLrlEo0aNUnJycuNrYmNjNWvWLP3rX/867vgbb7xRR44c0XvvvdeaZcON2R2GPvj+oF78KlcNDkO3Dumia85JcHVZAAAAAAB4rFYPnHJyctS5c2d17NhRkpSRkaFly5YdEzglJBwNA8zm4ydgXXDBBfruu+9ap1i4va22Ss36Yqe22qr0qy4ddN/oZCWEBri6LAAAAAAAPFqrB042m00xMTGNf4+OjlZOTk6LjmmxmBQaGtiiY7QWi8XsMe+lJVXWNOjpZTv11nc/Krydn56+rK8uSotxqz2b6LX3oNfegT57D3rtPei196DX3oNeew963fJaPXAyDOO4x1o6BLDbDZWVHW7RMVpLaGigx7yXlmAYhrJ3FuuJ7N0qrqrTlL6xunVIV7X3t6q8/Iiryzsj9Np70GvvQJ+9B732HvTae9Br70GvvQe9do7IyPYnfa7VA6eYmBgVFBQ0/t1msykqKqq1y4AHOlheo78t36XVew6pW2Q7/e3iVPWKDXZ1WQAAAAAAeJ1WD5x69+6t3Nxc7d+/X9HR0crKytKTTz7Z2mXAw6zZV6q75m+W2SRNG56oywfEy2p2n+VzAAAAAAB4klYPnKxWqx566CHdeOONstvtmjJlilJSUvTMM88oLS1No0ePVk5Ojm677TZVVFQoOztbc+bMUVZWliTpqquu0p49e3T48GENGzZMjz76qIYOHdrabwNtzBv/zlNogI9evqKvYoL9XV0OAAAAAABezWScaFMlD1Nfb/eYtZmsMz1eYWWtMv/5na4/v5NuGdzF1eU4Db32HvTaO9Bn70GvvQe99h702nvQa+9Br53jVHs4mVuxDqBFfLa1UA5DykiNdnUpAAAAAABABE5wc4ZhaNHmAvWNC1bHDgGuLgcAAAAAAIjACW5uS0Glcg8dUUYvZjcBAAAAANBWEDjBrS3abJOf1az07pGuLgUAAAAAAPyEwAluq67Boc+3F2l4UriC/Fr9hosAAAAAAOAkCJzgtlbvKVFFTQPL6QAAAAAAaGMInOC2Fm22KaKdr87v3MHVpQAAAAAAgF8gcHITVbUNumv+Jm06UO7qUtqEQ4fr9HVuqcb1jJLFbHJ1OQAAAAAA4BcInNyEr8WsPcXVuu3dDSo/Uu/qclxuydZC2R0Gy+kAAAAAAGiDCJzchK/VrL9mpqqwslZ/XrJdDsNwdUkulbXZpp7RQUqKaOfqUgAAAAAAwH8hcHIjvWLa6/5xPbR6zyG9uSbP1eW4zM6iKu0oqtZ4ZjcBAAAAANAmETi5mavP66QLu0XqhdV7tT6vzNXluMSizTZZzSaN6RHl6lIAAAAAAMAJEDi5GZPJpD+OTVF8aIAeWLRNJdV1ri6pVTXYHVqytVBDEsMUGuDj6nIAAAAAAMAJEDi5oXa+Vj2W2VOVtQ16cPE22R3es5/TN7mlOnS4nuV0AAAAAAC0YQRObiolMkj3jk7Wmn1levmbH11dTqvJ2mJTaICPBnUNc3UpAAAAAADgJAic3NjFaTEa3ytar3y7T9/mHnJ1OS2u/Ei9Vu0u0dgekfKx8E8XAAAAAIC2iu/a3dx9o5OVGBGoBxdvl62y1tXltKgvthep3m6wnA4AAAAAgDaOwMnN+ftY9FhmquoaHLp/0VY12B2uLqnFZG2xKSkiUN2jglxdCgAAAAAAOAUCJw/QJSxQD4xJUc7BCv1jda6ry2kRuYcOa1N+pTJSo2UymVxdDgAAAAAAOAUCJw8xpkeULukbq7fW5mnlrmJXl+N0WZttMpukcT2jXF0KAAAAAAA4DQInD3LXiCT1jA7Sn5dsV17ZEVeX4zR2h6HFW2z6VZcOigjyc3U5AAAAAADgNAicPIiv1axZmT1lkkl3fLRRRVWesYn42v1lKqyqU0Yqm4UDAAAAAOAOCJw8THxIgJ6enKaS6nrd+kGOSqrrXF1Ss2VttinIz6LhyRGuLgUAAAAAADQBgZMH6hMXrKcm91JBRa2mfpijssP1ri7prFXXNSh7Z7HSu0fKz8o/VwAAAAAA3AHfwXuoAQmhenJiL+WV1ei2jzaqosY9Q6dlO4pV0+BgOR0AAAAAAG6EwMmDnde5gx6/OFV7Sqp1x0ebVFXb4OqSztiizTZ16hCgPnHBri4FAAAAAAA0EYGThxvUNUyzxqdqW2GV7vx4kw7X2V1dUpPtLz2iDXnlGt8rWiaTydXlAAAAAACAJiJw8gLDk8P1aEYPbc6v0N2fbFJNvXuETos2F8hski5iOR0AAAAAAG6FwMlLjO4WqT+P66H1+8v1+083q7bB4eqSTsnuMLRos03nd+6g6PZ+ri4HAAAAAACcAQInL/LrnlF6cGw3ffdjme5bsEV1bTh0WrOvVIVVdcpMi3F1KQAAAAAA4AwROHmZzLQYzUhP0Vd7D+mBrK1qsLfN0GnBJptC/K0anhTu6lIAAAAAAMAZInDyQpP7xGr6qCSt2FWix5btcnU5x6moqdfKXcUa2yNKvlb+iQIAAAAA4G74bt5LXdY/XlcOiNfCTQU6UH7E1eUc4/+2FanObigzjc3CAQAAAABwRwROXuyacxJkMpn03vqDri7lGAs3FSglsp26RwW5uhQAAAAAAHAWXBI4rVq1SmPHjlV6errmzp173PNr1qzRpEmTlJqaqiVLlhzz3Pz58zVmzBiNGTNG8+fPb62SPVJUez+ld4/Ugk0FqqptcHU5kqRdRdXaaqtSZlqMTCaTq8sBAAAAAABnodUDJ7vdrpkzZ+rll19WVlaWFi1apF27jt1HKDY2VrNmzdL48eOPebysrEzPPfec3n//fX3wwQd67rnnVF5e3prle5yrBsarus6uTzcWuLoUSdLCzQWymk0a1yPK1aUAAAAAAICz1OqBU05Ojjp37qyOHTvK19dXGRkZWrZs2TGvSUhIUI8ePWQ2H1ve6tWrNXjwYIWGhiokJESDBw/Wl19+2Zrle5ye0e3VPyFE7204oAaH4dJa6u0OfbalUMOSwhUa6OPSWgAAAAAAwNmztvaANptNMTExjX+Pjo5WTk7OWR9rs9lOe5zFYlJoaOCZF9sGWSxmp7+Xm4Ym6tZ3NmjNwUqNS4s5/QEt5PMtNpUeqdcV53fymH41R0v0Gm0TvfYO9Nl70GvvQa+9B732HvTae9DrltfqgZNhHD+Lpql79ZztsXa7obKyw00ao60LDQ10+nsZEBOk+BB/vfzlHl2QEOzUc5+Jd7/7URHtfNU7sp3H9Ks5WqLXaJvotXegz96DXnsPeu096LX3oNfeg147R2Rk+5M+1+pL6mJiYlRQ8J/9gmw2m6KimrZfT3OOxclZzCZdMSBeOQcrtCm/wiU1FFfX6eu9h3RRarSsZjYLBwAAAADAnbV64NS7d2/l5uZq//79qqurU1ZWlkaNGtWkY4cMGaLVq1ervLxc5eXlWr16tYYMGdLCFXuHzLRotfO1aN66Ay4Z/7MtNtmNo3UAAAAAAAD31upL6qxWqx566CHdeOONstvtmjJlilJSUvTMM88oLS1No0ePVk5Ojm677TZVVFQoOztbc+bMUVZWlkJDQ3XrrbfqkksukSRNnTpVoaGhrf0WPFI7X6sm9o7Vu+vzVFDRVTHB/q02tmEYWrjJpj5xweoSxhpaAAAAAADcnck40cZIHqa+3u4xazNbcp1pfkWNJr38b101MEF3DE9skTFOZFN+ha6f970eSE/RxD6xrTZuW8eaYu9Br70DffYe9Np70GvvQa+9B732HvTaOdrUHk5ou2KD/TUyJVLzN+brcJ291cZdsKlAflazLuwe2WpjAgAAAACAlkPghGNcNTBeVbV2LdpccPoXO0FNvV2fbyvShd0iFOTX6is8AQAAAABACyBwwjF6xwWrd2x7vbP+gOyOll9tmb2rWNV1dmWmxbT4WAAAAAAAoHUQOOE4Vw5MUF5ZjVbvKWnxsRZssikuxF/9E0JafCwAAAAAANA6CJxwnJEpEYpp76d56w606DgHy2u0dl+ZMntFy2wytehYAAAAAACg9RA44ThWs0mXD4jX+rxybbdVtdg4WZttMkka3yu6xcYAAAAAAACtj8AJJzSxd4wCfSyatz6vRc7vMAwt3FygczuFKibYv0XGAAAAAAAArkHghBMK8rMqMy1an28rUlFVrdPPv25/mfIranUxm4UDAAAAAOBxCJxwUlcMiJfdYeiD7w867Zx1DQ4dKD+i9zccVJCfRcOTw512bgAAAAAA0DZYXV0A2q6E0AANTw7Xxz/k64bzO8nfx3LK19f+FCbZKmtVVFmnwqpaFVbVqqiqToWVtSqsqlPZkfrG11/aL+605wQAAAAAAO6HwAmndOXAeK3YVaLFW2ya3DdOdoehgsoa7Ss9on2Hjhz9vfSI9pUeVn5FrYz/Or5DgI8ig3wV1d5PabHBjX+OCvJVv/gQl7wnAAAAAADQsgiccEr940PUMzpIL3z1o97bcFB5ZUdUZ/9PrNTO16JOHQLUOy5Y43sFqmOHAMW091Nke19FtvOTr5VVmwAAAAAAeBsCJ5ySyWTSLYO76Lkv9you2F+Du4apU4cAdQoLUOcOgQoL9JHJZHJ1mQAAAAAAoA0hcMJpDeoapkFdw1xdBgAAAAAAcBOsdwIAAAAAAIBTETgBAAAAAADAqQicAAAAAAAA4FQETgAAAAAAAHAqAicAAAAAAAA4FYETAAAAAAAAnIrACQAAAAAAAE5F4AQAAAAAAACnInACAAAAAACAU5kMwzBcXQQAAAAAAAA8BzOcAAAAAAAA4FQETgAAAAAAAHAqAicAAAAAAAA4FYETAAAAAAAAnIrACQAAAAAAAE5F4AQAAAAAAACnInACAAAAAACAUxE4NUN+fr6uvfZajRs3ThkZGXr99dclSWVlZbr++us1ZswYXX/99SovL5ckLViwQJmZmcrMzNQVV1yhbdu2NZ5r1apVGjt2rNLT0zV37tyTjjl//nyNGTNGY8aM0fz58xsff+qppzR8+HD179//lDVv2rRJmZmZSk9P1yOPPCLDMCRJn332mTIyMtSjRw9t3LjxrK+Jp/KkXs+ePVu//vWvlZmZqalTp6qiouKsr4sn8qReP/3008rMzNSECRN0ww03yGaznfV18USe1OufvfLKK+revbsOHTp0xtfDk3lSr+fMmaOhQ4dqwoQJmjBhglauXHnW18UTeVKvJenNN9/U2LFjlZGRoccff/ysromn8qReT5s2rfFjetSoUZowYcJZXxdP5Em93rp1qy677DJNmDBBkydPVk5OzllfF0/kSb3etm2bLr/8cmVmZuqWW25RVVXVWV8Xt2bgrNlsNmPTpk2GYRhGZWWlMWbMGGPnzp3G7NmzjZdeeskwDMN46aWXjMcff9wwDMNYt26dUVZWZhiGYaxYscK45JJLDMMwjIaGBmP06NHGvn37jNraWiMzM9PYuXPnceOVlpYao0aNMkpLS42ysjJj1KhRjefbsGGDYbPZjH79+p2y5ilTphjr1683HA6H8dvf/tZYsWKFYRiGsWvXLmP37t3GNddcY+Tk5Djh6ngWT+r1l19+adTX1xuGYRiPP/54Y804ypN6XVlZ2fia119/3XjwwQebc2k8jif12jAM4+DBg8YNN9xgjBgxwigpKWnm1fEsntTrZ5991nj55ZedcFU8kyf1+ptvvjGuu+46o7a21jAMwyguLm7u5fEontTrX5o1a5YxZ86cs7wqnsmTen399dc3/nnFihXGNddc09zL41E8qdeTJ082vvvuO8MwDOODDz4wnnrqqeZeHrfEDKdmiIqKUq9evSRJQUFBSkxMlM1m07JlyzRx4kRJ0sSJE7V06VJJ0oABAxQSEiJJ6tevnwoKCiRJOTk56ty5szp27ChfX19lZGRo2bJlx423evVqDR48WKGhoQoJCdHgwYP15ZdfNp4vKirqlPUWFhaqqqpK/fv3l8lk0sSJExvHSUpKUmJiohOuimfypF4PGTJEVqv1uNpwlCf1OigoqPF1R44ckclkas6l8Tie1GtJmjVrlqZPn06fT8DTeo2T86Rev/POO/rd734nX19fSVJ4eHhzL49H8aRe/8wwDH322WcaP358M66M5/GkXptMJlVXV0uSKisrT3sub+NJvd67d6/OPfdcSdLgwYP1+eefN/fyuCUCJyfJy8vT1q1b1bdvX5WUlDT+44yKijrh0oYPP/xQw4YNkyTZbDbFxMQ0PhcdHX3CpS9Nfd3J/PfxMTExLLE5C57U648++qixNhzPE3r983TghQsX6s4772zyeb2Nu/d62bJlioqKUo8ePZp8Pm/l7r2WpLfffluZmZmaMWNG47ICHM/de52bm6u1a9fq0ksv1TXXXMPSm1Nw917/bO3atQoPD1eXLl2afF5v4+69vv/++/X4449r+PDhmj17tu6+++4mn9fbuHuvu3Xr1hg+LVmyRPn5+U0+rychcHKC6upq3XHHHbr//vuPmVFwMt9++60+/PBD/f73v5ek4/bgkHTCn1A39XUn09zj4Vm9fuGFF2SxWHTxxRc3+bzexFN6fdddd2nlypXKzMzUW2+91eTzehN37/WRI0f04osvEig2gbv3WpKuvPJKffHFF/r0008VFRWlxx57rMnn9Sae0Gu73a6Kigq9//77uvfeezVt2rQTvt7beUKvf7Zo0SJmN52CJ/T6nXfe0YwZM7Ry5UrNmDFDDzzwQJPP6008odePPvqo5s2bp8mTJ6u6urpxtqq3IXBqpvr6et1xxx3KzMzUmDFjJB2d8lxYWCjp6DS7sLCwxtdv27ZNf/zjH/X888+rQ4cOko4mob9c1mSz2RQVFaUffvihcQPBZcuWnfR1J2O32xuPf+aZZ447vqCggGmcZ8CTej1//nytWLFCTzzxBKHjCXhSr382fvx4r53Keyqe0Ot9+/YpLy+vcbPZgoICTZ48WUVFRc65SB7CE3otSREREbJYLDKbzbr00ku50ccJeEqvo6OjlZ6eLpPJpD59+shsNqu0tNQJV8hzeEqvJamhoUFffPGFLrroomZeFc/kKb3+eYNqSRo3bhwzF0/AU3qdlJSkf/3rX/r444+VkZGhjh07OuHquKFW2SnKQzkcDmP69OnGI488cszjjz322DGbms2ePdswDMM4cOCAceGFFxrr1q075vX19fXGqFGjjtnUbMeOHceNV1paaowcOdIoKyszysrKjJEjRxqlpaXHvOZ0m5pNnjzZ2LBhw0k3K2TT8BPzpF6vXLnSGDduHJsKn4Qn9Xrv3r2Nr3njjTeM22+/vWkXwUt4Uq9/aeTIkXx8/xdP6rXNZmt8zauvvmpMmzatiVfBO3hSr+fNm2c8/fTThmEYxp49e4xhw4YZDofjDK6GZ/OkXhvG0a/Prr766qZfAC/iSb3+9a9/bXz77beGYRjG119/bUyaNOkMroTn86Re/3yjB7vdbkyfPt344IMPzuBKeA6TYTA392ytXbtWV199tbp16yaz+ehksbvvvlt9+vTRtGnTlJ+fr9jYWD3zzDMKDQ3VAw88oM8//1xxcXGSJIvFoo8//liStHLlSv31r3+V3W7XlClT9L//+78nHPPDDz/USy+9JEm65ZZbNGXKFEnS448/rkWLFqmwsFBRUVG69NJLdfvttx93/MaNGzVjxgzV1NRo2LBhevDBB2UymfTFF1/oL3/5iw4dOqTg4GD17NlTr7zyitOvmbvypF6np6errq5OoaGhkqS+fftq5syZzr1gbsyTen377bdr7969MplMio+P18MPP6zo6GinXzN35Um9/qVRo0bpww8/POanf97Ok3o9ffr0xts+x8fHa+bMmcxW/gVP6nVdXZ3uv/9+bdu2TT4+Prr33nt1wQUXOP2auStP6rUk/eEPf1Dfvn115ZVXOvdCeQBP6vXatWv117/+VQ0NDfLz89Of/vQnpaWlOf2auStP6vXrr7+uefPmSZLS09N1zz33eOXKEgInAAAAAAAAOBV7OAEAAAAAAMCpCJwAAAAAAADgVAROAAAAAAAAcCoCJwAAAAAAADgVgRMAAAAAAACcisAJAAAAAAAATkXgBAAAAAAAAKcicAIAAAAAAIBTETgBAAAAAADAqQicAAAAAAAA4FQETgAAAAAAAHAqAicAAAAAAAA4FYETAAAAAAAAnIrACQAAAAAAAE5F4AQAAAAAAACnInACAAAAAACAUxE4AQAAAAAAwKkInAAAAAAAAOBUBE4AAAAAAABwKgInAAAAAAAAOBWBEwAAAAAAAJyKwAkAAAAAAABOReAEc0E9KAAAIABJREFUAAAAAAAApyJwAgAAAAAAgFMROAEAAAAAAMCpCJwAAAAAAADgVAROAAAAAAAAcCoCJwAAAAAAADgVgRMAAAAAAACcisAJAAAAAAAATkXgBAAAAAAAAKeyurqA1uBwOGS3G64uwyksFpPHvBecGr32HvTaO9Bn70GvvQe99h702nvQa+9Br53Dx8dy0ue8InCy2w2VlR12dRlOERoa6DHvBadGr70HvfYO9Nl70GvvQa+9B732HvTae9Br54iMbH/S51hSBwAAAAAAAKcicAIAAAAAAIBTETgBAAAAAADAqQicAAAAAAAA4FQETgAAAAAAAHAqAicAAAAAAAA4FYETAAAAAAAAnIrACQAAAAAAAE5F4AQAAAAAXqC2waHbP9yobbZKV5cCwAsQOAEAAACAFyioqNG3P5bqq72HXF0KAC9A4AQAAAAAXqCqtkGSlFdW4+JKAHgDAicAAAAA8AJVtXZJ0oGyIy6uBIA3IHACAAAAAC9Q+fMMp3JmOAFoeQROAAAAAOAFfg6ciqrqVFNvd3E1ADwdgRMAAAAAeIGf93CSpAPMcgLQwgicAAAAAMAL/DJwYuNwAC2NwAkAAAAAvEBlrV1Ws0mSdKCcjcMBtCwCJwAAAADwApW1DYoK8lWQn4UZTgBanNXVBQAAAAAAWl5VbYPa+/so2N9HeWXMcALQsgicAAAAAMALVNU2KMjPog4BPtpRVO3qcgB4OJbUAQAAAIAXqKxtUHs/q+JDA3SwvEZ2h+HqkgB4MAInAAAAAPACVbV2BflZlRDirwaHIVtlratLAuDBCJwAAAAAwAscXVJnVUJogCSxjxOAFkXgBAAAAAAezu4wVF1nV3s/ixJC/SVJeeXcqQ5AyyFwAgAAAAAPV13XIEkK8rMqMshPPhaTDjDDCUALInACAAAAAA9XWfufwMliNiku2F95ZcxwAtByCJwAAAAAwMNV1dglSe39rJKkhNAA9nAC0KIInAAAAADAw1X9tKTuP4GTvw6U18gwDFeWBcCDWV1dwIwZM7RixQqFh4dr0aJFkqTZs2crOztbPj4+6tSpk2bNmqXg4GBJ0rZt2/SnP/1JVVVVMpvN+vDDD+Xn5+fKtwAAAAAAbVplzc9L6iySpPjQAFXX2VV2pF4dAn1dWRoAD+XyGU6TJ0/Wyy+/fMxjgwcP1qJFi7Rw4UJ16dJFL730kiSpoaFB06dP18MPP6ysrCy98cYbslpdnpkBAAAAQJv2yz2cJCkh5Kc71bGPE4AW4vLA6dxzz1VISMgxjw0ZMqQxSOrXr58KCgokSV999ZW6d++uHv/P3p3HN1bf98L/HO3L0WZbsrzMjO2xPSsMEGCAIUMaoAUeYBJuSHmeNiQkt0mbTPrccvskpa8+NG3Sh5AXpWloSylrE25600C4FG4ChRRCQ4ZhGTIwq5fxeLzJlmxtR8uRjnSeP46ObI9tWcuRdGR936/XvBjksfWTj3SW7/ku27cDAFwuF7RabW0XTAghhBBCCCENhkut7OEEAJNh6uNECKmOugec1vPss89i//79AICxsTEwDIMvfOEL+OQnP4lHH320zqsjhBBCCCGEEPXjciV11lzAqdNhAgPKcCKEVI+q69EefvhhaLVa3HrrrQCATCaD9957D8888wzMZjM+97nPYffu3bjyyisL/hytloHTaanFkqtOq9VsmNdCCqNt3TxoWzcH2s7Ng7Z186Bt3Tw2wrZOAbAatGhrseYfa7eb4I+nG/61KWkjbOtqSWeyEDIizIaNUWVE27r6VBtweu655/D666/jqaeeAsMwAACv14vLL78cLS0tAID9+/fj+PHj6wacMhkRoVC86muuBafTsmFeCymMtnXzoG3dHGg7Nw/a1s2DtnXz2Ajbej6ShNWgXfY6Ou1GnJnjGv61KWkjbOtqefC1URydjuCff+fiei9FEbStleF229b8mipL6t544w08+uijePjhh2E2m/OPX3311Th9+jQSiQQEQcA777yD/v7+Oq6UEEIIIYQQQtQvygv5huGybqcJk2EqqSPFGQ7EMDTHIZMV670U0iDqnuF099134+2330YwGMT+/fvx1a9+Ff/0T/+EVCqFu+66CwCwZ88e/OVf/iUcDgc+97nP4VOf+hQYhsH+/fvxsY99rL4vgBBCCCGEEEJUjuOFfMNwWbfTjPnYLBLpDMz6jVEmRarHH+UhZEX4OR5eu6neyyENoO4BpwcffHDFY7fffvua//7AgQM4cOBANZdECCGEEEIIIRsKx2fQxhqWPdblkIIGU6Ek+t3W1b6NkLxALAUAmAonKeBEiqLKkjpCCCGEEEIIIcpZvaROal8yGUrUY0mkgcRSAmKpDABgmsowSZEo4EQIIYQQQgghGxzHC2DPmy7W7ZSyVKiPE1mPP5rK/50CTqRYFHAihBBCCCGEkA1MFEWph5NpeYaT3aSH3aSjDCeyLn+Mz/99OkIBJ1IcCjgRQgghhBBCyAaWSGeREbGiaTgg9XGaClEAgRTm56QMp1argTKcSNEo4EQIIYQQQgghG1iUFwAA1lUCTt1OMybDlOFECpMDTns67RRwIkWjgBMhhBBCCCGEbGBcLuC0WoZTt9OEmYg07p6Qtfg5HlaDFv1tVvi5FFJCtt5LIg2AAk6EEEIIIYQQsoEtBpy0K77W7TAjkxXho748pIA5LgU3a0CnwwQRwAy9X0gRKOBECCGEEEIIIRuYXFLHrtbDKTepjvo4kUICHA83a0SnI/d+obI6UgQKOBFCCCGEEELIBsbxGQCrB5y6nWYAoD5OpKA5LgVPLsMJAPVxIkWhgBMhhBBCCCGEbGDRAj2c3KwBBi2DScpwImvIiiICsRTaWCPcrAF6LUMBJ1IUCjgRQgghhBBCyAbGFSip0zAMuhxmTIYow4msLhhPI5MV4WEN0DAMOuwmTFMPJ1IECjgRQghRpZSQhZ/j670MQgghpOFxvACDloFRt/rlX5fTRD15yJrk8zE3awQAdDpMlOFEikIBJ0IIIar0P49M4dNPvYt0hsbuEkIIIZWI8sKq2U2ybqeU4SSKYg1XRRqFn0sBkMovAaCLAk6kSBRwIoQQokpT4SQ4PoOx+Xi9l0IIIYQ0tGgyUzjg5DAhkc5iIZ6u4apIo1iR4WQ3IZwU8qWahKyFAk6EEEJUKZSQTnqH/bE6r4QQQghpbFxKWLVhuCw/qY76OJFV+LkUGACtFj0A0KQ6UjQKOBFCCFElOeA05OfqvBJCCCGksXF84YBTl1MKIFAfJ7IaP5dCi9UAnVYKH1DAiRSLAk6EEEJUaTHgRBlOhBBCSCWiSQGsUbvm1zvtJjCgDCeyujmOhyfXvwlYEnCiSXVkHRRwIoQQokr5kro5jpqYEkIIIRXgUoV7OBl0GnhsRkyGKIBAVgrEUmizLgacHCYdrAYtZTiRdVHAiRBCiOqIoohwIg2bUYdwUshPRyGEEEJI6dYrqQOAbqeJAk5kVXNRHh6bMf//DMOg02GiEkyyLgo4EUIIUR2OzyAjAh/Z5ABAfZwIIYSQcqWELHghWzDDCQC6HWZMhamkjizHC1mEk8KyDCdAKsOkDCeyHgo4EUIIUR25nO6yzU4ANKmOEEIIKReXkkbXrxdw6nKasBBPI5aiUfdkUSDGAwA8rHHZ450OKeBEbQ9IIRRwIoQQojrBXMCpy2lGp8OEoTkKOBFCCCHliCalAJLNtHbTcADodpoBAFNUVkeW8EeltgZu23kZTg4TkkI2f85GyGoo4EQIIUR15Awnl1mPQbcVw1RSRwghhJSF43MZTob1ezgBwCSVSZEl/LFcwMm6MsMJAJXVkYIo4EQIIUR15ICT06zHgNuKc8EEEulMnVdFCCGENB6Ol46f6zYNd8gZTtTHiSzyc1JJnZtdmeEEUMCJFEYBJ0IIIaoTXhJwGnSzEAGMBqisjhBCCClVVM5wMhUOONlMOjhMOppUR5aZi6Zg1GlgP+/902mXAk40qY4UQgEn0lREUcSRyRAyWWpuR4iahRJpGLQMzHoNBjxWAMAQNQ4nhBBCSpYPOBkK93ACpN6Jk5ThRJYIxHi0WQ1gGGbZ4xaDFi6znjKcSEEUcCJN5YQvii/96AM88quz9V4KIaSAUCINp1kPhmHQaTfBatBieI76OBFCCCGlkns42dbJcAKAboeJejiRZea4FDznldPJ5El1hKyFAk6kqUzkUoSfOjyBI5OhOq+GELKWUEKAw6wHADAMgwG3FcOU4UQIIYSUjOMFaBjAol8/w6nbacJsJAkhk63BykgjCHA82ljjql/rdJgwHaGAE1kbBZxIU/HldogddiP+/Ken82NiCSHqImc4yQbdLIb9MWRFKoclhBBCShHlM2CNuhUlUavpcpqREYGZCF+DlRG1E0URc1xqRcNwWafDBF+Ep3YlZE0UcCJNxRflYTfp8Fc374Cf43H/z4frvSRCyCrODzgNuK2IpzOUtk0IIYSUiOMFsOtMqJN1O6VG0JNh6uNEpP5fvJCFp0CGk5AV85PsCDkfBZxIU5mN8mi3GbG7w47/euUWvHzKj5dOztV7WYSQ86wIOHlYANQ4nBBCCClVlBdgKzbg5DADAE2qIwAAP5cCgDUznLpoUh1ZBwWcSFPxRXh4bVKE/nN7N2NPpx3ffnUYM1R7TIhqCFkRkaQAp3nx5HhrqwUaBtQ4nBBCCCmRlOG0fv8mAGhjDTDqNDSpjgBAPnPJXSDDCQBloJM1UcCJNBVfNAlvLhKv0zD4i5u2AQD+/KenqPaYEJWIJNMAAKd58W6aSa/FFpeFMpwIIYSQEnF8pugMJw3DoNNhwhRlOBGsn+HktRvBgAJOZG0UcCJNg+MFcHwmn+EEAF0OM752bT/en4rg++9M1HF1hBBZKCEHnJafHEuT6ijDiRBCCClFtIQeTgDQ7TBRDycCYDHg1GZdPeCk12rgsRlpUh1ZEwWcSNPwRaWUUK99eUrojTs8uH6bG4/8ahwnfNF6LI0QssRiwEm/7PEBtxUzEZ6mSxJCCCElKKVpOAB0O82YCiUh0mTYpjfH8XCYdDDp1y7JpIw4UggFnEjTmM2Nd223LQ84MQyDP7muH21WA/7fn55CIp2px/IIITmhhBRQWhFwyjUOHw5QlhMhhBBSjExWRCyVga3IHk6ANKkuKWQxH0tVcWWkEQS4FNrWKKeTdTpMlOFE1kQBJ9I0fFFpRyj3cFrKbtLjL27cholgAn/z+mitl0aIYl445sMLx3z1XkZF1spw2ua2AgCG5qiPEyGEEFKMWEq6iVNKhlOXkybVEckcx6/ZMFzWZTfBz6XAC9karYo0Ego4kabhi/DQMmvXIH9kkxOfuWwTnvvAh1+MBGq8OkKU8dTbE3jq7cbuRxbOBZwc5wWcWq0GuMx66uNECCGEFCnKlx5w6s5NHqM+TsTPpeBe49pJJk+qo6nfZDUUcCJNYzbKw2MzQqth1vw3v79vC7Z7WHzr34cRoDRi0mCS6QwmgglMBBOIpxq3NDSUSMOi18KoW36IYhgm1zicMpwIIYSQYnBJ6Xyg2Cl1gBRA0DCU4dTshKyIhXgKbts6GU65gBNNqiOroYATaRq+KL9sQt1q9FoNvnnTdiTSGfzlS6epWSJpKGfm4xABiEBDZwGFEukVE+pkA24Wo4EYhCx9NgkhhJD1cLmSulICTnqtBu02IyZDlOHUzBZiKWRFwFNEDyeAAk5kdXUPON1zzz248sorcfPNN+cfu//++3HDDTfglltuwVe+8hVEIpFl3zM9PY2LL74Yjz/+eK2XSxrYbCSJ9lX6N52vp9WC/3ZNHw6dDeJ/n5itwcoIUcZIYDHzZ6iBs4CC8fSKcjrZoMeKVEbEuWC8xqsihBBCGo882ZUtoWk4IPVxmqIAQlPz56o92qyFb9i3sQYYtAwFnMiq6h5wuu222/DYY48te2zfvn148cUX8cILL6CnpwePPPLIsq/fd999+OhHP1rLZZIGl8mKmOVS62Y4yf7Lng7YjDqc9DVulghpPqOBGIw6DRwmHYbmGve9K2U4rRFwckuT6qhxeGM4MhnCT0/MIknTPwkhpC7K6eEESH2cqKSuufmj0oRvj61whpOGYeC106Q6srq6B5wuu+wyOByOZY9dffXV0OmkneJFF10En29x4tKrr76K7u5uDAwM1HSdpLHNx1LIZEV47cUFnBiGgcOsQziZrvLKCFHOiD+GvlYLBj1sQ2c4hRNpuCyrB5x6WszQa5mGLhlsJt/5+Qj+/Gen8X/802E8+Noozi5QZhohhNQSlyq9hxMAdDvNCCXS4HIBK9J85jgpw2m9KXWAVFZHGU5kNaXteerg2WefxY033ggAiMfjePTRR/HEE0/giSeeKPpnaLUMnE5LtZZYU1qtZsO8lloai0gR+q0djqJ/fy1WIxIZsW6/b9rWzUOpbT06H8fHtrnhNOvx9OFzYG0m6LR1v69QsnBSQLvTvObvpN/NYiyYbLjPR7N9pkVRxFQ4iY8NumE1aPHM0Wn8y5EpXNHbgv/r8s24drsHBl3jvT+L0Wzbup54IYsvPf0eDv5GPy7d4qr589O2bh6Nuq0FSMNyujy2ks4JBjulhIBwBuhuwNddiUbd1krjhCy0Gga9HY6CQ5cAoNfN4mfHfA33e6NtXX2qDjg9/PDD0Gq1uPXWWwEADz30ED772c/CarWW9HMyGRGh0Ma4q+p0WjbMa6ml4ekwAIDVoOjfn0WnwQLH1+33Tdu6eSixrRfiKczHUthsN8Jp1oMXsvjg7Dz6WkvbX9YbL2QRS2Vg1jBr/k62tlpw6Gyw4T4fzfaZDnA8kuksLut24NMXd+KrV/fg34758NwHM/jDH/0aLRY9PnGBF5+4sAMdRfTXayTNtq3r6dRsFG+OzmOH24p+R3FZzEqibd08GnVb+8MJWPRacNHSsk9a9FJw6tRkEF0WVV8yKq5Rt7XSzs3H0GrRIxpZv3l8m0mHUCKNydlIyeWb9UTbWhlut23Nr6n23fDcc8/h9ddfx1NPPQWGkSKqR48excsvv4wHHngAkUgEGo0GRqMRv/u7v1vn1RK1m83VIBfbwwkA7CYd1SKThjGSK6Hb2mZFq1WqtR+aizVcwCmckMpY12oaDgADbitePD6L+Vgq/1qJ+sjNZrucUjCp1WrAXXs3487LNuGt8SCe/fU0nnp7Ak8ensC+vhbcedkmXNztKPQjCVlhOLfv8+dKPwghy3G8UHLDcGBx3019nJpXgOOLKqcDlk+qG/Sw1VwWaTCqDDi98cYbePTRR/H000/DbDbnH//hD3+Y//tDDz0Ei8VCwSZSFF+EB2vUlhRxt5t0iCSpbp00BnlC3YDbCrtRB4OWwek5Djfs8NR5ZaUJ5QJOazUNBxYbhw/7ObRaW2qyLlK6fMDJsTx7SathsK+3Bft6W+CLJPHchz48/6EPB5/5AC/9/pWwmVR5akJUSt73zXF8nVdCiDpFeaGs/Spr1MFp1mMytH52C9mY5rgUtrjM6/9DUMCJrK3uzRPuvvtu3HHHHRgbG8P+/fvx4x//GN/85jcRi8Vw11134cCBA7j33nvrvUzS4HxRHl5baSUbUsApjawoVmlVhChnxB9Di0WPFosBOq0GW9usDTmpbjHgtPbJ8YBbytoabuDG6M1gKpQEAxQsl/PaTfiDfT346wM7kcqI+MVooHYLJBsCZTgVNhvl8RcvnUaCJkU2LY4XwBrKC+S7WQPmY/TZalZ+joen1Awnqg4h56n7bcQHH3xwxWO33377ut/31a9+tRrLIRuUL5IsekKdzG7SIysC8VSmoWqRSXMaCcSwtW2xfG7Qw+IXI/MQRTFfltwIislwcpj18LCGhp7E1wymwgm4WQOMRTQG3+m1ocNuxKunA7h5l7cGqyMbgSiKSwJOlOG0ml+NLeDF47P4WH8brulvrfdySB1wfAZtbHnl5y6zHqEEZfs3o0Q6U9J7x2HSwWrQ0qQ6skLdM5wIqYXZKI/2Evo3AcinH1NZHVG7TFbEmfk4+pcGnNwsQol0w931l09sCwWcACmg1ogZXM1kKpxEt7O4VHyGYXDdoBuHx4OIJNNVXhnZKOZjKYQSabRY9AgnBSQpi2eFuVwPy6NT4TqvhNRLlBfKvnHqNOsRSjTWeQRRhnz+WGyGE8Mw6HSY8uX0hMgo4EQ2vHgqg3BSKKlhOCBF6gHQxQ9RvalwEryQXRZw2uaR/j7kb6ygjHxiazetE3ByWzG+EAcvZGuxLFKGqXByRf+mQq7b5oaQFfGLkfkqropUC8cLNS/bGs71b7qqV+rlFqDSnxXkoSlHpyN1XgmpF6mkrvSm4QDgslCGU7OSs0ZLyY7rtJsow4msQAEnsuHlJ9SVOHZbvuANU4YTUTm5aW6/ezHgJP99aK6xys5CCQF2kw46TeEywAE3i4wIjM031utrFsl0Bn4ulZ9yVIwd7Sw67Ua8OuSv4spItfzfPzmGb748VNPnlKdzygEnahy+knwOdHI2SgH6JiSKIrgym4YDUgl7lBcgZOi902xKzXACpD5O0+EkROp/S5aggBPZ8HxRKdJeaoaTfHCOUsCJqNyInwMDoK/Vkn/MatBhk9OE0w1WdhZKpNctpwMWG4dTHyd1kpuGdjmKK6kDcmV129w4PB5COEGZpY0kJWRx3BfFexOhml5oDPtj8LAGbG2T9n3+KGU4nW82ysNq0CKdEXFqNlrv5ZAaS6SzyIiArcySOlfueByic+GmI2c4uUvJcHKYkBSyCNIxnCxBASey4fkicoYTldSRjWkkEMcmlxkm/fKU+UEP24AldcUFnLqdZpj1GurjpFJTITngVFpm6XXb3MhQWV3DGVuII5MVsRBPYyZSuyyjkUAMA242fweeMpyWE0URs1EeH90qNQs/OkVldc0mykuBImsFPZwAIBSnc+Fm4+dSMOs1sJZQjpmfVEdldWQJCjiRDc8X5aFhgLYSUkKBxbtB1DScqN3oeRPqZINuFpOhJDi+cd7DxQactBoG/W3W/IQqoi5y09BSSuoAYLuHRZfDRGV1DWZp4PfYTG2CGulMFmPzcfS7rbAatDDpNA03JKHaoryApJDFdg+LzS4zfk2Nw5uOfPwvO8PJIh2Pg9Q4vOn4OR5u1ljSpGMKOJHVUMCJbHizkSTcrHHdnjDnM+m1MOo0FHAiqpZMZzARTKC/zbLia9s8LIDFPieNIJxIw2ku7sR4wM1i2B+jXgEqNBVOwqzX5MsxisUwDK4ddOPtcyGEKCW/YQz5YzDqNDDqNDjuq03Z1vhCAkJWxECbFQzDwGMzUsDpPHL/pnabEXs67fhgOkL7SxX55Zn5qpc5Lgacymsa7pAznKhxeNOZ41LwlFBOB0hNwwHQpDqyDAWcyIbni/Il92+S2U06CjgRVTszH4cIoN/NrvjaYINNqhNFsegMJ0Dq4xTlhfxFFVGPqVACXQ5zSXdGZddva8uV1QWqsDJSDcN+DgNuK7Z5WByfqU3AaTgg7dfkAQlu1pDvOUIkywJOXXaEkwLGFxJ1XhUBpOPdX7w0hEcPnavq88gldWyFPZyCVFLXdAIcX3J1iMWghcuspwwnsgwFnMiG54vwJfdvktmMOkQaqByJNB85e6l/lZK6NqsBLrO+YSbVJdJZpDJi0QGnwVwGFzUOV5+pcBLdJZbTybZ5WHQ7TXj1NAWcGoEoihiai2HQzWJ3hw2n5riaTLQa8ceg1zLY4pIa07tZIwWczrM8w8kBADg6TWV1ajAfTyOUSMMXqe6FOcdnAJQfcJL7mdIgh+YiiiL8sdIznIDFSXWEyKoScIrH49X4sYSULJtrmNluK+/Cx2HSUdNwomojAamUZbXmzAzDYNBjbZgMJ7mEylFkwKm/zQoGoMbhKiOKIqbCyXwvh1IxDIPrBt1451yQyuoagC/KI8oLGPRYsctrAy9kMRqo/nngkD+G3hYLdFrpVNbDGuCPpahkbIm5KA8tA7RaDdjSYobDpMOvqXG4KowGpBslvipn6EYr7OGk02pgN+lo6liTCScEpDNiyRlOQC7gVOVAKmksigacjhw5gptuugk33XQTAODUqVP4xje+oeRTEFKShVgKQlYsP8PJpKeSOqJqI4EY+lot0K7Ro2zQzWIkEKtJxkGl5OBCsRlOFoMW3U4TNQ5Xmfl4GryQRZfDXPbPuG7QjYwIvD5MWU5qJ2dQDrhZ7OqwAQCO+aof1BjxxzDgXszsdLNGpDMiBSmXmI1KJTFaDQOGYXBhro8TqT854BRJCoilqneeyVVYUgdIx2T6XDUXeeJnuRlOvgiPTJaC/0SiaMDpvvvuw+OPPw6n0wkA2L59O959910ln4KQksh3jhqph5Moijg5G8U7Zxfw4XQEJ2ejGPZzGJuPYyKYwEwkCT/HIxhPNdT0MVIdo4HlF13nG/SwSGdEnG2Avh3BEgNOgNw4nDKc1GQqJL3XSp1Qt9Sgx4pNTppW1wiG/BwYSBmHnXYTXGY9jlW5j1MwnkIgllrWu06+MJqjxuF5Uob34vnPRV0OnAsmsBCn31G9yQEnQGr9UC0cL8CgZWDUlX/J5zTrKcOpycgDGNxlZjgJWZFKnEle+eHuNXR0dCz7f42G2kSR+pH7F5Sb4WSvQ0ndqTkOdz79ftH//r//xlbccUlXFVdE1Go+lsJCPI2tq/Rvki1tHN5fIDClBuEyAk6DHiteGw4glhJgNSh+SCNlkKfTrFbmWSyGYXDdNje+//YEQvE0nJbSpt2R2hma47DJZYbFIE3B2tVhq3rj8JGAnFW1PMMJkEZ5yxM6m91slMf2dlv+//d02QEAH0xF8LGBtnotiwAYCcRhNWgRS2Xgi/AFj+OViPJCRdlNgHRMnqESqaYiB4vcZWQ4dS2ZVOe1l38eQDYORc/OOzo6cOTIETAMg1QqhR/84AfYunWrkk9BSEnku0beMns42U06JNJZpDNZ6LW1CZ6eXZCpSARKAAAgAElEQVR6X3z7k7thAiBksxCyIoSMKP13yf//j/cm8auxBQo4NSn5omu1huGyzS4LjDoNTs9xuGlne62WVhY5Zd9VYoaTCKm8Zk+Xo0orU6cXj/tg1Glx/TZ3vZeyzFQoCQZAR4UnmtcNuvHk4Qm8NhLAJy/sWP8bSF0M+2PY0b4Y4NnlteHNMwvgFLjQLfScwPkBJ8pwWkoURcxxKVzTv3jDbXu7DXotg6PTFHCqp6wo4kwghn19Lfj5UAC+aPWCOdFkpuLPocusxwlfbaZPblR/8K9HcVGXA1/a11PvpRRFznBqs5ZXUgdIAaePbFJ0WaRBKXom8I1vfAN/9Vd/hdnZWVxzzTXYt28f7r33XiWfgpCS+KI8rAYtWKO2rO+3m6QL30hSQGsZO91yyEGyG3d7kVon7X04EMPrwwGIoljW+HHS2OSU/EKZSzoNg/42a0NMcgsl0tAyKOnzOph77cNNGHB67NA5WAwqDDiFE3CzhopKOAApmLDZZcarp/0UcFIpjhcwFU7iwAXe/GO7O2wQAZzwRXH5FldVnnfEH0OLRY8Wy+Jxuc1qAAPAX+UmzI0inBDAC1l4lpTUGXUa7Gi34egUTaqrp+lwEkkhi8u3uPD6yDxmqllSlxLKbhguc+R6ONG5Znl4IYsjk2HEUpnGCTjFeLjM+rJutnvtRjAATaojeYoGnFpaWvDXf/3XSv5IQiriiyTRbjOWfYCUx8FGaxhwmg4n4TTrYTHo1g047fba8PyHPkyEktjsKr9BL2lMq110rWbQY8V/DKk/MBlKpOEw60taY7vNCJtR13SNw5PpDKbDSWg1TE0zMIsxFU6iy1n5/kiaVteGp96eQDCegmud9zmpPflzN7ikl9JOr1TCdbyaAadVetfptBq0WA35O/PNTm4p0H5eD8uLuuz44XtTSKYzMOnLuxlHKjOS/9xY0W4zwlfFcjWOrzzg5LLoIWRFxFKVZ0s1o3PBOLKitL9MCVkYKrwZUwt+LlVWOR0A6LUatNuMFHAieYq+47/+9a8jElmcfhEOh3HPPfco+RSElOT8hpmlsuUCTuEa9nHyRXh0FNlzaneH1I/h2AxNnWlGI4FYwXI62aCbRTgp5C9A1CqUEErq3wRIQYlBj7XpGoePBxMQAQhZMV+GqxZT4WRF/ZuWum6bG1kReI2m1anS0Jz0uVsa/LGb9NjsMletj5OQFXFmPo7+tpV9mjysIT9dqdn51gg4XdjpgJAVcXK2ufaZajI6LwWc+lqt6LAbq9o0PJoUys7ylznN0rkwTaorz9i8dIwWsmK+FYLazUX5ZdmRpep0mCjgRPIUDTidPn0adrs9//8OhwMnT55U8imaFscL+PwPf42z842xo1ILX4Qvu2E4sLykrlZmIsmie5/0tlpg0WurPhGIqE9GvugqohH4YK6B7uk5de8/Qol0yQEnQJ5UF2uqEbzyCSwAVWV3JdMZ+LkUuiuYULdUf5sVW1xmvDpEASc1GvbH4DTrV9wJ391hwzFfFKKo/GdyMpgAL2RXnc7pZo2U4ZSzVobTnk7pPJ3K6upnxB9Hp8MEi0ELr82YDw5WA6dAVpLLLH2+g3EKOJVj6fH65GxjnK8HYqmy+jfJOh0mTFOjeZKjaMApm80iHF48gIVCIWQyGSWfommlMll8OBPBz0/N1XspDSOZziCYSJfdMBwA7LmDdJSvTcBJFEX4osUHybQaBju8LGU4NaHJkHTRVcxkm/42KxhIk+rUrPyAkxVJIYvJUKIKq1KnsfkYtAxg0DKqCjjJvUi6HMqU+DIMg2u3ufHeRIhGuavQkJ/DoNu6ogx2l9eG+ViqKlmVwwV617lZA43izpnjeOg0DFrOm/DotOixxWXG0Wk6b6iX0fnF7GSv3QQ/x0PIZKvyXEqU1FGGU2XGFuLodprgNOtx0qfu8zAASGeyWIin4WEry3DycynwQnXe16SxKBpw+vznP4877rgD3/3ud/Hd734Xd9xxB77whS8o+RRNq8VigIc14NgUnSAUSz7RrSzDSS6pq03AaSGeBi9k0VnCdKfdHXYM+2O0U28yo0VMqJNZDFpscpnz5S9qFS4z4NTXagEglZk1izPzcWxymdHXqq5ywqmwtA2UKqkDgOsHqaxOjYSsiNFADAPulaVtu3Ll3serMNlq2M9BywC9LZYVX/OwRoSTApJputk5G+XhYQ3QrNITb0+XHR9MR5CtQgYaKSwlZHFuIY6tbdL712szIisC/pjyAfWUkAUvZCvOcHLmgpZBCjiVZWw+jt4WC3a0szjRABlO87n3YluZPZyAxXOAGcpyIlA44PSJT3wC3/ve99DW1obW1lb83d/9HT7xiU8o+RRNbUe7DcenKQW6WGv1LygFa9SBARCtUQ8nuXGkt5SAk9cGISvitMqDCURZI4EYGCwGW9Yz6GZVPakuK4q5gFPpJ8byCN5m6hcwNh9Hb6sV/W6rqjKcJkPSNuhSqKQOALa2WdDTIk2rI+oxvhBHKiNi0LMy6D3otsKgZapS7j3sj2FLi2XVxrvyBVKgChfvjaZQD8s9XQ5EkoLq+r81g7MLcWTExZtFcguFalyYcynpZqlSJXVhCjiVTMiKOBdMoLfVih1eG84EYqoPiM/lypIrynCyN995GVmb4m3y+/r6cP311+Paa6+FxWLB9PS00k/RtLa3sxibj4OrUXlXo5uNVJ7hpNUwYI26mvVwms6tudim4YDUKwOgxuHNZiQgZbgUO2Vom8eK6XAS0Rr2IytFNCkgI0rjl0vlMuth0mma5sQmlSsf7G21YMBtxUI8nb8jWW9T4STMeg1cZWzHtUjT6tw4MhlWzeskiyW6co+4pfRaDbZ5WByvwnFpxL9yQp3Mkws4UR+nXIbTWgGnfB8nOm+oNblhuFwO354736tG43D5eG8zVdY03KzXwKBlqIdTGSZDCQhZEb2tZuzwsMiI6uq7uBq5LLncKXVAc94IJGtTNOD0gx/8AFdddRU+//nP40tf+lL+D1HGjnYpsECZLMXxRZNgUFmEHpDK6mpVUidnOBXbNBwA2lgj2m1GahzeZEaLnFAnky8KhwPq3H/IvSHKKaljGKapJqKcCyWQEYG+Fkt+HP2ISk5gp0IJdDnMK3r6VOpamlanOkNzMei1DHpcq/fr2um14eQsB0HBZv7RpABflF+1jA+QmoYDaPo+TllRhJ/j0b5GD8vNLjNcZj31caqDEX8cOg2DLbnPjddWvYCTfIOaNVSW4cQwDJxmfcP3cHrirXP4o+eO1fQ55YbhcoYToP7G4XLAvpKAUxtrgEHLNM15GSmssj3Qeb7//e/jpZdegsvlUvLHkpzt7dIJ1qlZDh/Z5KzzatTPF+HRxhqg11YWV7WbdDXLCpmJ8GCNWthMpX00d3fYqnInmahTIp3BRDCBG7Z7iv4eOeA0NBfDJd3q23/IJ7IuS3mZMc00EWXxBNaSz2AY8nPY21P/Y+9UOIlNTmUahi+1tdWC3hYLXh3y41MXdSr+80nphv0ctrZaoVvjGLu7w44fvT+NM4HYqllQ5Rgp0DAcWLzBNFdhhpMoisiIgE6jbOC0VoLxNNIZEe221S8YGYbBhZ12fECT6mruzHwMPS2W/OfGpNfCZdZXp6SOl0q3Km0aDkg3gxq9h9OLx32YjvAQsmLNPtty2WpPixkWvRYtFj1OzKrzxp/Mz/HQa5mybgDKNAwDr715zstIYYpmOHm9XthsNiV/JFmi1WpAu92o+si4WviifP7OUSXsJh0iNerhNBNJlpTdJNvdYcd0hKcpTk3izHwcIoCta1x0rabNakCLRa/aDMlQQgrqlnuC05XLcKrGGHa1GZuPQcNIWQpOsx4e1pC/EK8nURQxFU4q2r9JxjAMrtvWhiMTYerPowKiKGJoLrZq/yZZvtxbwcbhcinKwBrZnaxRC5NOU3GG01NvT+DAo4dxrkEHEcwW0cNyT5cdE6EklanW2Ig/lm8YLvPajfm+o0qSJyyzJd7EXI3Lom/oHk6ToQQmQklksmK+mqAWzszH0W4zwmrQgWEYKfOzCsMUlDTHpeC2GirOVG6mzHNSmKIBp02bNuEzn/kMHnnkETz55JP5P0Q5uzsdOKXyyLhaSA0zK7/wsZv0NSupKzvg5JX7OKn7IEaUMeovfkLdUoMeVrWT6sIVlNQB0olNLJWp2WdVdnQqjL//z7GaPufYfBxdDlO+f5daGofP56ZsdjmUz3ACgGsH3RBBZXVqEIilEEyk8yWdq+lymOAw6XBCwePSSICDw6Rbs9SDYRh4bEbMRSsLohydimCOS+ErP/6gphenSiku4OQAACqrqyGOl0pCt5537PbaTVV5n+UDTobKejgBjZ/hdHg8mP/7RKh2geSz83H0LhnusqOdxdmFOOIp9TYOD3A82ipsRwIs3ggkRNGAU2dnJ/bt24d0Oo1YLJb/Q5Szq9OOc8EEYil1Nv5VC1GU7mBU0jBcVquSOmnNfEkNw2Xb21loGVBZXZMYCcRg0mlKHj0/6GZxZj6OdCZbpZWVr5IeTkD9JqI896EPT709UdPswjO5CXWyAbc0UKLe23UqdxJfjQwnQGqy29tqoWl1KiBPvBwokOHEMAx2ddhwzKfccWnEH0O/21rwzrubNVSc4TQejGO7hwWXEvCVZz5suCygYgJO2z0sDFoGR6msrmZGA6vfLOqwG+GL8Ipn6Mo9nEpt07Aap1nf0E3D3zobBGuUAm8TwdqcJ2RFEWMLcfS2LA042ZAVodqbf4CU4eSpoH+TrNNuQjgp0LAromwPp4MHDyr548gqdnfaIUJqHK7GPixqEUykkcqIipbUiaKoeCPcpaK8gFgqA28ZGU4mvRb9bhYfUoZTUxgJxNDXZoW2xB4E2zxWCFkRY/NxxXqqKCWUSMOo08C0yqjzYiydiLLTW7vSbrlZ9/BcDHt7Kj9BW488YvmjW1vzjw20Sdv17EJ8zWbKtTCVC/aVGggtxfWDbjx6aByBWApt1ur/vsnq5IulQhlOALDba8ehsXHEUgKsFTYuzooiRgIx3LrbW/DfuVljRb2JUkIW0+EkPrd3M67qceHgMx/i4DMf4h8/fWFZUzTrYS7Kw7BODxaDToOdXhs+oAynmpEDTqtlOCWFLMIJAc4y+xiuhuMFaBjAUuQ020KcZj1iqQzSmWzFvVFrTchk8c65EK7b5sbLJ+cwWaMMJ1+EBy9kV2Q4AcCJ2Sgu6nbUZB2lCnApXNXbUvHPkUuuP5iOKPLzSONSdI+xsLCA+++/H7/3e7+HO++8M/+HKGd3p7RzorK6wuRpH0pkONmMOmREIJ6ubvrrTFhaczkZToDUL+OEL4psE/SwaXYj/hj6z+sBUQz54lAeZ64moUQaDpOu7KCuHHCqRuPVtQiZLM7kRlzX6ncqj1juW3ICK2eZ1LusbiokTQYtpyy4WJdudkIEMKLC93AzGZqLodNhArtOM+KdHTaIUOacZSqURCKdxcA6ves8rAH+WKrsbJHJcAJZEdjiMmNPlwMPfGIXxoNx/LfnjjVMdvlslIfHZlx3f7qny4GTsxySVT6/IZLRQBwWvXbFeV5+Ul1U2eNXlM+ANZZ/XF1KHujRiJPqjvuiiKUyuLLHhU0uc81K6vIDPpZkOLWxRnhYA06q9DqO4wXE0xlFMpwu6nLAqNMsK2ckzUnRgNMf//Efo6+vD5OTkzh48CC6urpwwQUXKPkUTc9tM8Kt4h2VWsjNF70K9HBymKSDbKTKZXXyhXK5F2u7vDbEUpn8RAyyMc3neqecf4e0GJtcZph0GgzNqa/UOZRIVzQRhTXq4DDp8lk2tXA2mEA6I13U1qoZ+9IJdbLNLgsMWqb+AadwAm7WAGOZWWrFkG8iVGOEOCnesJ/DYBFDC3Yp2F9wOD+hrnBWlZs1Ip0Ry74wPrcgXYxuyV0k7t3iwn0378BJXxR//L+ON0RwRuphuf7Nqz2ddmSyIo6rvInxRjESkBqGnx8AkgNQMwrv1zheWDcoXCz5+NyIAae3zgahYYDLNjvR7TTXLMNpTJ5Q17r8BuGOdvU2DvfnJny6FejhZNJrcXGXA4fOUsCp2Sl6VhgKhXD77bdDp9Ph8ssvx3333YejR48q+RQEUt39KZpUV5DcfLFdoR5OABBJVDngFK0sw+mCDjsAahy+0cnTyNa7y78arYbBgNuqykl1lQacgNpPRBnOZdl0Okw1C/bIAaeeJXdMdRoGfa3WfHlfvUgT6qrTMFzmthrAYLFHDam9RDqDc8HEuuV0gHSRuslpwjEF+guO+DkwALa2Fs7ulO/Mz3Hl9V0az02m2+JafC9f09+GP79xG96bCOOeF09CUGEfvKWKDThd2CmdN1BZXfWJoojRQGzVm0XyzVGlJ9VFeQE2hQNOjdjH6a3xIHZ5bbCbpP3RVFiaVldtY/MxtFj0K85tdnhZjAcTquxtJPe/W2swQ6n29rgwNh/fEMfs07NcTd43G5GiASedTtqpeTwevP766zhx4gR8Pp+ST0EgRcbHF6hxeCGzUR4mnQYOBRolys0WI3x1D7Iz4SSMOk3ZF92bW8xgjVocp4BTydKZrOLNOqtlraajxRr0sBjyc6p7vY0YcBrxx6DXMrhu0I3xhXhNMh/OzMfQYTfCfF5Pjn63te6lklPhZFX7NwGATquBmzVUZYQ4Kc6IPwYRi/051rPTK5V7V2rYH5OyNNfpRyPfmS+3cfj4QhytVsOKzJAbd7TjT67rxy/PLODen51W7YVHJivCH0sVFXBymPXobbHg6BQFnKptPpZCOCmsGnBymHUw6TSKT6qTMpwq798ENG6GUziRxglfFHu3uAAA3U4z0hmxJgGQsfnEsmxk2Y52KfNTjTf/lMxwAoArcr/3Ri+rOz3H4XefPoL/fWK23ktpSIoGnP7gD/4A0WgUX//61/H444/jz/7sz/Cnf/qnSj4FgTSRTITUpLYSp+e4DTudxBfh4bWv37+gGLUsqeu0m8pes4ZhsMtrw4c0qa4kQiaLWx99Gz96f7reSynKsF+6Y+aylHf3adBtBcdnFE/dr1QoIVQecLKbMBNJ1qyP2ZA/ht4WC3Z5WWREaXpctY2dN2JZNuC2YiGerts0rWQ6Az+XqnrACZAmb22Eu6WNSs7sK7ZB/e4OO+a4FOYq3GYjgVhRZXxuBTKcNrtWz9S7bU8n/nB/L1457cd9rwyrLnAPAAvxFDJZEZ4iLxgv7LLjg+kI9X+sspECN4sYhoHXbqxCSV1GsQynRu3h9O5ECFkRuKJHCnzIn+1q93ESRRFjC7Fl2ciyfONwFZbVKZ3htLXNgjarAW81eFndf47OAwDePLNQ55U0JkUDTna7HTabDYODg/jBD36An/zkJ3A41NmBv5HJO6qTFUbGv/XyEP7y5SEllqQ6viivSP8mYEmGU5UDTnKQrBK7OuwYDcSQaIAeE2oxEoghEEvh0NnGOIiMBmJlZzcByE+nU9NIXiGTRZRXIODkMCGVEWsWdBn2xzDgYWv2O81kRYwHE+htWbn95RLLepXVyRdKXc5aBJxMFHCqoyF/DKxxZePjtezuyPVxquDiKp7KYDKURH8RAae2XNmlv8z3yPhCfFk53fk+c9kmfOGKzXj+mA9/8/oZ1QWd5M9GMRlOAHBRlx1RXqhJwLyZjQak3+/WNQZ+eO0mxTOcogr2cLKbGjPgdOhsEFaDFrtybSe6c2Xf1e7jFIilwPGZZQM+ZC6LAR12oyr78fq5FFijdkUWdbkYhsHeHhfeHg+qNiu0GG+OSdcIb58LQmjg11EvigacvvWtbxX1GKlMG2tEm9VQUR+nQCyFU3McJkMJ8IK6exGUYzbKK9K/CUC+LK8WGU6VTnfa7bUhKwInqcdX0eSeV8dnoqq7cDhfJivizHy8qIuutfS3WaFh1DWpLpz7bFU6Drojl11Ti7K6hXgK87EUBt1WdDpMsBq0GKpysGcmkgQvZFc9gR1oq+8EwqmwdPLe7ahuDydgMcNJ7Z/XjWpojsOgmy06G3fQzUKnYSoq914sJV4/q0qn1aDFasiXhpQilEgjnBTyDcPX8qWrtuCOS7rwL0em8NBrIyU/TzWVGnDak5t+/MEGzXhXi5FA4exkr82o+DAEJZuG6zQMHCZdQ/VwEkURh88GcdlmJ3QaaX8lD7aYCFb3PGG1fotL7Wi3qfJcfY7jFSunk125xYVwUsApFd3oLEUwnsLxmWi+QuA4VZKUTJGA0/vvv48nnngCCwsLePLJJ/N/HnroIWQylGlRDdvb2Yoi42/lsjmyIjbcVLOUkMV8LJUfM1spo04Dg5ZBJFm9g2w8lUE4KZTdMFwm30mmPk7Fk++6h5MCJkO16/9TDjlAXEmGk0mvxWaXWVWT6uQ7ppVmOHXlAra1mFQnlzRLATypGXu1M5zOrDKhTua06OFmDfmyjVqbyn12apHh5LUbwQvZhrvTvhFksqKU2VdC0Nug02DQw+K4r/yT9OEShyV4WAP8sdIv3s+t0jB8NQzD4I8+1oebd7XjoddG8xeXalBqwKnbaUKLRY+j1Di8qtbLTu6wmxBMpBXrBZjJioilMrAp1MMJkHp+hao8QEdJ48EEfFEeV+bK6QCp/USXw1T1DCd5n7DaDSJAqlaZDCWrem1RjkAsBbdVmXI62eVbnACAww1aVnfobBAigD+8pg8aBjR1rwyKBJzS6TTi8TgymQxisVj+D8uy+N73vqfEU5Dz7GhnMb4QL7t06ldjQei1UrR/tE4XKNUyl6s/rrQ8TcYwDGwmfVUznGZyadSVZji5LAZ0OUw0qa4Ex2ci6Mxlxhyr4IKoFvJ3+SvIcAKAbbnG4WqxGHCq7E5sLTOc5AtgeVLXoJvFsD9W1T4oYwUCToB0MV6raXnnmwwnYdZr4KowaFgM+UKayupqbzKUQFLI5stIi7Xba8NJX/kTfkb8MVgNxZfxtZWZ4TSeuwG3XoYTIF24/p+XdEnrU9F51GyUh1GnyU/YXQ/DMLiw006Nw6tIzk5erWG4TD5nVWoggjxYSKkMJwBwmfUIJerTJ7Acct+gvUsCTgCwyWnGuWoHnBbiYI1atK4RvNnhlW4Qq62sbi7Kw63QDXuZy2LAdg+bT3ZoNL88s4AWix6XbXZil9fe8P2o6kGRgNPll1+OgwcP4kc/+hEOHjyIgwcP4stf/jJuv/129PT0KPEU5Dzb26XSqXLuqGeyIg6PB3HtoBs6DbPh6vbllGSlejgBgN2kq0nASYkg2e4OmyIjqJtBNCng7EICN+9qh0mnUX1m2LA/Bg0D9BZxMVTIoJvFTIRHWCUZImGFMpyMOg3arIbaBJz8HNysIV8GOOC2Ip7O5DN9qmFsPgYPu3J6lqy/jcXYfBzpOoxsnwol0OUwKzKoYT35CzOVNb5vBnLZ6LYiG4bLdnXYEE9nMFZmRvWwn0N/m7Xo95fHZiyrSfl4MAGthkFnkcfizS4zGEZdmeJzUR7tttKGplzU5cBUOIlAmZP9SGHT4eS62cnyfm1Wof1alJfOWZVqGg5Ix+hGynA6PB7EJqcJXeeVenc7zZgKJap+g6i3Ze19Vr4fr4oah2dFqQemR6GG4Utd0ePCBzNRcHzjvH8AQMiKeOtsEPt6W6BhGFzZ48IJX5QyrEukaA+nBx98EBzHIR6P46abbsINN9yAxx57TMmnIDn5HVUZkfHjvigiSQH7t7ZiS4t5w2U4+aLKBW9kdqMOkSruJOWGu50KTHjapdBEoGYgTwi5sNOOHV6b6jPDRgIxdDvXHwu+HnmceTHZMKF4Gm+PB6va602pkjpA+gxNK9x4dTXnlxXJGR/DVcwcO7PGhLr8GtxWCFmxLhe/U+FkTSbUAZThVE9Dcxy0Gqbg+3A1u7xyuXfpN0NEUSrjKyWz080aEE4KJe+3xhfi6HaYoNMWd3ps0mvR6TDlM6PUYDYXcCrFni6poTKV1VWHnAG3tcB7WM5wn1Ho+MXxUgWEkhlOTosewQa50E4JWbx7LoQrelpWfG2zSxowUs3z5LMLcfS2rl2aazfp0e00qSrDaSGeRkYE2qzKZjgBUsApkxXx3kRI8Z9dTR9MhxHlBVzdJ72Prux1QQTw9jhlOZVC0YDTyMgIWJbFq6++imuuuQavvfYann/++YLfc8899+DKK6/EzTffnH/s/vvvxw033IBbbrkFX/nKVxCJSAfAN998E7fddhtuueUW3HbbbTh06JCSy28obtaI1jIbh/9qbAEaBrh8sxN9rdYNm+FU7EjgYthNOkSqeJD1RZLQa5k1U29Lsdtb+USgZnHMFwED6WJot9eGIT+HVA2b6E+GEvj0k+/ikTfOFJWVUumEOpk8zny1sjpRFHFmPoZ/fnsC//Vffo3f+sdD+MozH+LWRw/jqcPnqnJ3Sr5j6jApFHCqcoZTOpPF2Hx82Vj4vlYLtAxwukolbaIo5k5g197+8gV5rcvqRFGUAk416N8ESGUdBi1DAac6GPbH0NtigUFX2unjZpcZdpOurKC+L8ojlsqU1DdKbnrrLzFjZzyYKKqcbqm+NhbjC9UtzylFOQGnbR4WRp2GyuqqZCQQA4O1+/kAgNtqgIZRrqSOq1qGU7ohBjZ8MB1BUshi7xbXiq8tTqqrzrlCKJHGQjxd8HgNqK9xuLy/rEaG04Wddpj1moYrR3vzTBBaDYPLc++jHe02OEw66uNUIkUDToIgIJ1O49VXX8W1114LvV6/bkrvbbfdtiILat++fXjxxRfxwgsvoKenB4888ggAwOVy4eGHH8YLL7yAb3/72/ja176m5PIbzo4yG4f/amwBuzvscJj16Gu1YDqcRDy1cZq7+6I8Wq2Gkk+IC7Gbq9vDaTosnSBqFChHGfTIE4FKP3H0RZL42cnZitfQKI7NRNHTYgFr1GF3hw3pjFjT3kavnPZjbCGOB14Zwu/84EjBOz+JdPFjwdfTajWgzWrIl+QKmSzeOSPeWwAAACAASURBVBfEg6+N4pOPv4Pffuo9/N1/jiEpZPH5vZvx7Vt2YNDD4u9/eRY3/9NhPPTGmKKlF8FEGlaDVpHPbKfDhNkoD6GKZWVj83EIWREDS4J/Jr0WW1osVWscPhvlkUhnC2aWbGmxwKBlyg44CZksXjntL7nPznw8DV7I1izDiWEYtNuMil2YkeIN+bl8hmQpGIbBTq8Nx8u4ESK/n0sJtssXTKX0ccpkRUyGEus2DD9fb5sV54IJVVyEC1kRgViq5ICTXqvBTq+NMpyq5Ewghi6nqeCoeZ1WAzdrhE+hDKdoUvmAk8usRyYr5rOn1OytcSlQ8JFNjhVf25T7jE9UqY/TWbnf4jrB6x3tUnuDYFwdfbHk/aW7CgEnvVaDj2xy4nCDZQa9OTaPi7vs+UxBrYbBZZtdODweVMU+v1EoGnD67d/+bXz84x9HIpHAZZddhqmpKbBs4Tr/yy67DA7H8p3B1VdfDZ1O2rAXXXQRfD4fAGDnzp1ob28HAAwMDCCVSiGVUseHtB62e1icLbFx+EI8hZOzHK7qlSK1cgPDcvsqqNFshFdsQp3MbtTl6+GrwRdNVtwwXGbUabDNw5Z1J/lb/z6Ee396GgsqOfhVkyiKOD4Txa7cZL9dHVJJQS3L6t46G8Sg24p//J1LwKcz+P1//QB//rNTmI+t/P2fmY9DRGkXXYUMeqx4dyKMP33xJK5/+BC+/OMP8ezRaWxpMeNPruvHi1/ci6c/cwm+tK8H1w668dB/uQBP/+4luKq3BU+/O4FbH3sb/98rQ5gIVn7CFkqk4VCo2XSX3YSsqNxd4tXI5RED5114D3rYqgWc5EzUvgInsDoNg75WK0bKDDi9cHwWf/riSfzHcKCk75vKnbSf3yejmtrtJspwqrFgPAU/l1qW2VeKXV4bRgOxkoedyO/n0krqSs9wmokkkc6I2NJS2vu4L9e/rZwm5UoLcDyyotTDqlQXddlxeo5TbEoaWTQSiGHrOtkuAOBVMJAun7NaFZxSJ5e9N0L/msNng7iw075qSaGHNUKvZao2qe7MQuEBH7KdKmscLu8v3QpWiCx1xRYXJkLJqk8IVIovksRoII59fa3LHr+yxwU/l8JoYONcO1ebcmFvAHfeeSfuvPPO/P93dXXh+9//fkU/89lnn8WNN9644vGXX34ZO3bsgMGwfhRWq2XgdFbWZFcttFpN/rVc2teGx946h5mEgEvctqK+/xdnpQyK37qgE06nBRf1Sh+imXga+zbI72gulsJgO6voNvc4zYilMrDaTNAX2duhFLPRFK4ZbFu25qXbulSX9LjwzHtTYG3F96L45UgAh8el98d0XEBfp7Os524UE8E4gok0LutrhdNpgdNpQbvNiKH5eE32Fxwv4IPpCL6wrwe/ucuLq/pa8fAbo3jsl2P45ZkF3H39IO64dBO0GinrbXpUmu5xSW69lbq0txW/GgviyGQYN+zy4uPbPNjX3wqLYe3Dwl6nBXu3eTA+H8Njb57FT96fwvMf+nDDLi+++NFe7OpceSexGLF0Fm2sUZHXNdglrSGSQdW247kID4NOgwt7Wpd9vvZsduGlk3PI6nVoWaU8tpLPtC8uZR7u6WuF07L2cW9nlwNvDPvLep6fj8zn/3v73i1Ff18od1zZsclZs2PtplYLDo0uqPbYXsm2VqvjuaDnJb3l7YP29rfh8bfOYSKWxuU9xZ2zAMB4OIlNLjO6PPaiv2fAKF0YRzNi0Ws9OicFtnZucpX0+vpz/dsCqSwG67zNz+RaCmz12kveRlcNevDk4QmMcyns7W1d/xuaUDmfaz6dwUQoiZty592FbG6z4v2JkCL7jkzu2NTtsRU8ZpSiOxdsFlS+f5vneJya4/BH1w6suc5NLgtmuPSaX69kHz7DpWDWa7F9kwsazdqVC5ebpO0yFuZxkwp+n5G0CA0D9HU6ir52KMVvXtiJB14bxQdzMezuUc8+Zq1t/dMh6ebbjXuWf3avv7AT3/z3Ifx6lsOlA+6arbORKRJwev7553HgwAE8+eSTq379rrvuKuvnPvzww9Bqtbj11luXPT48PIwHHngATzzxRFE/J5MREQptjCik02nJv5ZNrHRC9c5IAH1FNsh+5fgMWix6dFp0CIXisGsAg5bBsXMhXNe3srFeoxFFEdOhBK7Y4lR0m8uH6snZCFwKHbhlvJCFn+PRYtItW/PSbV2qgRYzEukMjowGihpfnRVF3P+zU2izGhCIpfD+2Dx2t9X/4FdNh07PAQC2Okz53/OOdhbvnwvWZH/xi5EAhKyIiztsyGSy4OM8Pn9pNz7e24L7/2ME33jhBP71nQn8yXX92NFuwwfngjDpNLBpoMj6Pn2BF1ducqCv1ZIv5UzFU0gVkd3m0DL47/t78dmPdOF/HpnCM7+exk+P+bB3ixN/9puD8JaYrReIJuGy6BV5XXat9FqGpkLYWaBhZyU+nAhha6sFXHR56cMmm7RveHfEn6/3X6qSz/SJyTBaLHowKQGh1NrZllscRgS4FEanQiX1hJuN8nh7bAE2ow6/GPJjfCZcdNbZ0EwYDAAro8x7sxguow5z0SQCCzHoCpzQ10sl21qtjpyRApKdZl1Zr60n9/k4POzHYAn9vk5Mh7G1tbTfpyiKMOk0OOfniv6+4xNSqUerQVPSc8k9n45PBKu2zynWyHQYAGAt4zix1W6EQcvgh2+NY1uJZYXNopzP9ek5DpmsiG6bYd3vbTHpMBNOYn4hlr/ZVC5/LvtYSKYLHjNKoc9KpeoTfg69Cg7mUdorJ6Xzuz1eds3feZfdiLEC+4dK9uGnpiPY4jIjElk/k2eLy4z3zy4gFOoo67mUNDnPocViWHFuoxSnFuiwG/HayVncNNhWlecox1rb+pXjPnQ6TGjRMcu+bobUj+21k7P41O72Gq5U3dwFkl8UCV8mEtIHKhaLrfqnHM899xxef/11PPDAA8v6QPl8Phw8eBD3338/Nm/erMTyG5abNaDFosfJIks4MrnRjlf0uPIXmFoNg54WC0bnN8akunBSQFLIlnzBux67SZf/+UqT6/U7FVzzbm+uPKzIfhmvnPLj1ByHr+7vlbJ8atx0uB6OzURh1GmWTY3Z3WHHZCiJULz66eKHzgZh0WtxYefyu/Y9rRb8w6cuwLdu2o7ZKI/PPv0+vvPzERyfiaCvzapIny9AKr3sr/DntVkNOPjRXrz4xb04+NFeHJkM4+l3J0v+OaFEGi6FSuo8NiO0DKo2qU6emLVaA+PB3GPV+PysN6FOJq+r1LK6V077IQK45/oBCFkRPx/yF/29U+Ek3KwBRgX75q3HazMiK4LGuNfQkD8GD2uA01LeZ9VlMaDTYSqpj1MyncG5YKLkUmKGYeCxGTEXLb7M7VwwAZtRV/K+qN1mhEWvVcWkOrnMtJy2AjaTDr99cRd+dmKuaqXBzUieBL21iJt4HXYjMllx1bL6UkV5ARa9VtGAfL6krgbnSJV4azwIh0mH7QVuuG5ymTERqk7vtbGF4o7XALDDq57G4XNcqir9m2QMw+CKHhfeOReqap9NJSTTGbxzLoSre1tW7Ud9RY8L70+FSy4Rb1aKnB3ecccdAICDBw+u+qdUb7zxBh599FE8/PDDMJsX77JEIhF88YtfxN13342PfOQjSiy9oTEMgx3ttqIn1Z2cjSKcFHDVeSNCt7ZZcSawMQIMs5HyT7YKkQNO1WgcLk/V8yp4t6jbaYLDpCuqcXg6k8U/vHkWA24rbtjhwaDbqujJ5t+8Popf5u6Mq8mxmSh2tLPLTsZ25/o5ldPYthSiKOLQ2SAu3exctUSTYRj81g4PnrnrUnz64k48e3QaH85ElzWpVhPWqMNnL9+Ene22snoRKNnDSadh0G6v3qS6+XgawUQa/av0sXFZDPCwBgwr3HheFEWMLcTWbUAKAANt0rqGS9ynv3RyDju9Nlw32IaeFjNeyt0hLsZUKIEuZ20zIuSmyNTHqXaG/VxRGbOF7PbaSuqTN7YQR1ZESRPqZG7WUFIPJ2lCnXndYTfnYxgGW1rMqphUN8elYNFrYTWU17fnc3s3wWbS4aH/HFN4Zc1rNBCDXstgcxH7SK9NuvE4o8ANE44XwCrYvwkAXBb193ASRRGHzwZx+RZXwSyxbqcZvJBFQIHg3lKxlIDZKF98wKmdxRyXqvvNk3AijYlgomr9m2RXbHEhlsqU3S/Vz/GIKZSxV8iRyTB4IYt9a1T/XNXTgnRGxJGJcNXXshEoejvyO9/5DjiOQzqdxmc/+1ns3bsXzz//fMHvufvuu3HHHXdgbGwM+/fvx49//GN885vfRCwWw1133YUDBw7g3nvvBQA8/fTTOHfuHP7hH/4BBw4cwIEDBzA/r74L2Vra3s5ibD5eVJPHQ2NBMAD29iwv9ehrtWCOS1Vl3Hmt+XJpoEoGb4DFgFO0CgEn+cRCqabhgHQCvLvDXtQO/SdHZzAdTuLgR3uhYRgMeliMLxT3nlqPn+Pxw/em8LV/O4HDKhohms5kcXouil3e5dlFO9pt0DDAsTIm/JViIpTEdDiJK3pWll0txRp1+OOP9+P7v3MJfmOgDTfu9FR1XZXa6bXh9BwHoYQpZ8l0Bol0Nn/nVAmdjuoFnORg0uAaF8ADbhZDc8oG8AOxFDg+s+6IZQBwWvRwlxj0GpuP4/Qch9/a7gbDMLhhhwfvT0WKvuiZCidrNqFOJu/j5YA9qS5eyOLsfHzN932xdnXYMBvli764yk+oK6NRuZs1lhRwOrcQL3lCnWxLiwVnVZLh1G4zlhw0k9lNety1dzPeOhtsuGlSajUSiKGnxVJUTxx5v6ZEID3KC7CZFG3VC5NOA6NOg6CKA06jgTgCsdS651ebcmW9Sk+qO5sLPBdzgwgAdrbXt3G4n+Px3dfP4JZHD2MqnMS+3sK/t0pdutkJDSNloZUqGE/hjn9+D3/z+pkqrGy5N88swKjT4JLu1XuTXtTtgFGnwaGzC1Vfy0ag6J7ozTffxNe+9jW88sor8Hq9+Nu//VvceeedOHDgwJrf8+CDD6547Pbbb1/13375y1/Gl7/8ZcXWuxHsaGeRFaVU9/NLc873q7ML2NVhW3FhJ0+qGw3EsKervKa/auGrWoaT9DsLJ5U/yM5EktAy5U2VKWRXhw2/GlvI3eVa/aPO8QIee+scLt3kwJW5g/Ogh0VGlEp45Aka5Trhkw6gNqMO/8+/Hcfff+pCXLDO+7QWhv0xpDJiPqNJZjFo0ddqLboUsVxv5Q5QV65zQiTb1s7iO7furOaSFLHTa8O/HJnCmUCs6EwIuUxVyYBTl92E/6xSVt1wLpi0VsbFoMeKt8aD4IWsYiVm+Ql1Rd4xHXBb8xfqxXj51BwYAL+5TWp++VvbPfjHN8fx8sk5fG5v4dL1ZG46V60DTpThVFtn5mPIiKg4w2mXdzGL9Jr+9Y95w/4YTDpNWe8vD2vA/8/ee4fHVd5p//eZ3ps0zapWsyT3hm1sCDbFpoYQyCYhyUJ+YZcNpC2QDXmzu7+UN+VNNtcbIJDChmwIkAIhEAgYU43BFq7YVrfKqM1oRpre23n/mDljydZozpk5Z2Zkz+e6uJLLtqzjmdE5z3M/9/e+HYEoSJLMKcAEownY/VHUa/PLLmzQplyB4VgCEiG7rhImUIJTIdy2bhn+dHwSD+8fwebPaFgb475YGZoJYn2WTeu5UIKTlQUh3R+JQ7FICUg+EAQBjVRY1oITJQBsWSBHcS61acfZhCuMDbXsff+RdERJI83ndZtBAR6RmkK5rLl4QdoT7hB+d3gcL3VPI5kkcU27AZ+7pI61JuRsqCRCrDSp0GVx4e7tjYy+9pfvW+ANx/EBx2I4SZI4MOLE5npN1vs5JUYdKqPD9HKGVYdTPJ7aOLzzzju4/vrrodFc2C1X5UB7WhnPNVbnDsbQbfWdN04HAE3puXJqU7OUsfkiEAt4rG5eAW5H6qzeCPQKMevBt6vMSpAAehYRT546MgF3KIZ7L2/KLMgzOTQsjNX1TPvAI4D//tQ6VMlF+Orzp/OubGcTyvl1ruAEpIS6HpuPk7l+ioOjLtRpJJkFz4VChzG1GWWSR0BZ89l2ODmDMU7qvQccfhiV4owIfS5tegUSSTKz6GSDkVl6FcsULdUp52uMRkYCSZLY22fHpnoNqtNW+lqNFKvNKrzal3usjtoY1TAIgWYDuUgApVjAWoV4hcU5K7QWJjitMCjA5xG0xynOOPxorpbnFaCsV4gRS5C0xn/GXKmfsQZdfvfkxrSbYcxV2rE6NgQnsYCHu7c3ot/ux2t99LPcKpyPL5war2qmee+WiwRQSQSZbM9C8EcSrDucgNSz2lPGglOXxYXlVbKcPwcmlQR8HoExlh1OI7MhCHgE7fWdTMRHo05WNIfTgN2P//VSLz7+m8N4uXsaN60y4bn/bzO+c10752ITxdZGDXpsPkafowG7H8+ftEKvEMHqjbAydpqNUWcIU54wduQo09raqIXFFeL0Wi4UWBWcdu7ciT179uD06dPYtm0bnE4nxOLybTG4EDBQweE5blSHLC6QAC5dwCppVkkgFfIywYZLGZu3MDt5NpRi7kbqbN4wzBy0fcw9SV6ImUAUTx2dwFVt1Zk/C6Q263IRn5Xg416bD01VctRqpHjk1tUQC3i497lTmGD5Ac+UbpsXOplwwQXJKpMS3nCcs41DNJ7EkTE3ti4g/i516rRSKMT8jLONDlT4KNuCE8DOKfG5ZAsMp6AcIGyO1Y3MBqGWCKCjGdbcppcjniRpZcr02HyYcIexp2P+uOaeDgOGZoI5R/MmPanvUaMuvnhqVIorDqciMeDwQyrkobZAYVEi5KNNL8fxCQ9cweiiwj4V0N+S5xifIR1+a/fnzmihflYa8nU4pYWqUo7VxRJJOANRGJSFh/5SeY6PHRhBNF4+4b7hWAI/2DeYEeHLneFZaiSU/mfYpBSzIqT7FnG3F4JWKoSrTEPDw7EEjk94aLnHBTwCNWoJ6+vRkdkA6rVSRofIHSbuDzo/nPTga8+fxu1PHsN7I058ZlMtXrhrC75xVWvRn99bG3VIksDhMTetP0+SJH769hCUYgG+e107AHCanfTeSMolt3354uv0bel1/ME8XU6hWIKVgoClAKuC0/33348//vGPeO655yAUCiGRSPDoo4+y+S0qnANBEGg3KtCXQ3B6f8QJjVSIjgVGpHgEgeVV8gvC4TTtC7M+Tgek2vwUYj4nI3VT3gjMHIyjqCRC1GulWU+S//ugBdF4Ev+yY/m8X+cRBFpZCA4nSRK90/6M66VGLcXDH1+NeCKJe549xShbg21OW31YZVYtKEyuMqdG/rgKDv9wyoNwPEl7nG4pwUsXGSzmqjsXrhxOAFjPcYrGk7A4g4sKTrWalIA/wGJwONV4Q1dIb8m05eW+hlf7HBDxCexqnV9RfPWKavAJ5AwPn3SnXuNij9QBqfETNpwAFXIzYPejVa9gZbxqbY0aH055cc1jh3D5Q+/hticO40vPncL39w3gia4x/L1nGscnPOid9sMTjuddlkCF387QEJzGXCEQQN6CWp1GCgKp4PFS4fBHQQIFO5yA1L38y5c3YcobwbMfThV+cSzx+KEx/OWkFXtpuC/LgTPpg1wmzhGTSsJKNl1qpI798U61VFC2oeHHJz2IJsic43QUdRopxln+mR1xBmmPv1N0GhVwBmO0xHGmhGMJ3PvsSXzhDx/itNWHu7c34MW7LsGXLm9CtZy7RrrF6DQpoRDzaY+jvXVmFkfHPbh7eyPW16qhlghwbIKeWJUP7w3PorlalrPxvFEnhVEpxsER5jlOJEni3mdP4d//3pfvZS4pWJW+Q6EQnnrqKVitVnz3u9+F3W7HyMgIdu7cyea3qXAO7UYlukbHsmYHJEkSh0Zd2NqozbpYbK6SZRTdpYzNF+FsI68SC+BjOVg9nkjC4Y/kvKnlyyqzEodGXedlWIy5Qnj+lA03rzGjfoGQ1Da9IjXXTZJ5bzCs3gjcodi8HKjmajl+dssqfPHPp3Dvs6fwq39Yy1o7GV284RjGXCHcsNK44O8vr5JBJuTjtNWH6zoX/jOFcHDEBQGPwMa6C3PkuMOoxNNHJ2hnGJ0VnNh7HFGC0yTLgtPIbBAJcvGxopRgq2C16XFkNoidrfSzHRp0Mgj5RM7x1USSxGt9dmxvqjrvJFwrE2Frow57+xy4J10osBCTnjCkQh5t9xWbGJVinJriNuC/HCBJEt98qQ/HJz1QiPhQSgRQiARQiAVQiPlQis/+f4VYgHajAk00AuaZfP8BR+A8F1y+3L29ARtr1bD6IrB5w7B6U//bP+1fMBsmX4eTPuNwyr15t7iCMKvEeecvSYR8mFViWErocKLcfmwITkCqYGZrgxa/OTSGG1eaOBnPYsIZRwC/PzIBgJ2R/2JwxhGAXMRn9J6YVWIcHS9sM02SJPwchIYDqWdDuQpOh0ZdEPGJrEHP51KrkeD4hIdWzhsdwrEEpjxh7Glndq/soILDbT7Wfn4p3jozgy6LG3dvb8CnN9ZCWsKMOQoBj8Dmem1q+ibHax+JJ/Gzt4fQUi3HzWvM4BEE1tWocWyCG4eTPxLH8Ukvbt+YO9iLIAhsa9RiX78D8USSVjEAxat9dpyc8uI/drcVcrlLBlbvRA8++CBWrlyJ48ePAwBMJhO+8pWvVAQnjulIhzwPOgILBjL3pRdxiwkxTdVy/K17Gu5gDJoSbBzYIJZIYsYfzdTKso1KImQ9w8nujyJJAmYOXFlAyq3z9x47rN5IZhMOAI8dGIWQR+AL2xoW/Lo2gxzBE6kHZ745Q1SOz7muupVmFX5ycye++pfT+Orzp/HzW9dAxsEpXDYo59LKLIHofB6BDpOCs6a6QxYX1tWoivpvLiYrTQrEkyTOOPxYac4dEO8OxUAAUGbJRMqHKpkQYgGPdYcT5RjKVdHeppfjlV47K4tYVzAKdyhGq6GOQsAj0FSVOzj8yLgbzmAMe9r1C/7+ng4D/v3vfTg+4ckqkKYa6phXybOBUSmGJxwveVAz1+zrd+D1AQd2NOkgEfDhj8Thj8Zh9Ybhjybgj8QRmTP2JOQTePIzGzKFIIUy5Q0jEE0UHBhOIRcJcMU5jjqKcCwBmzcCqy8lREXjSazLs8ykWi4CAdBy01qcobwDwynqdTJaY6xccVZwYm8NdO/ly/HZJ4/htx+M40uXL8/9BRyRJEl8f98gFCI+OoxKRqUIpWRoNojmajmj+6NRKUYgmoAvnL9gFIolkSDPxkGwiUYqQCCaQDSehIilYgy26LK4sK5GTft5UKeRIhhLwBmMoYoFt8+YK4QkST9vkaJVLwefAHrt/qz3xnx5tdcOk1KMO7fUl1UBwNZGLd4anMGoM7To6/X00QlMeSN49La2zJjihjo13hmaZSWz7lw+sLiQSJI585sotjVq8ddTNpy2+rCOptAZiiXwyP4RdBgVuD7L4feFBqt3irGxMdx1110QCFI3OIlEwuk8aoUU7Zmg3oVPfN4fcYLA4o1YlP1ziMWg22Jj90dSdnIO8pCAVHC4J8Su4EQFzXExUgecDcWeK55023x4fcCB2zfVZrXTns2hyf8Uscfmg4BHLDgOsblei+/f0IFemw/3v9Bd1IyI01YfCGDRBr6VJhUGHYF5mzg2cPgjGHQEMnPfFyKdmewwep8ddygGlUTAamg+QRAwq8SYYnncatARgFjAQ10OEbbNoEAgmmDl+2ca6mhWLFO06uU5R+r29tohF/FxaZacgo+0VEEq5C06VjfhDpVknA446+S4kIPDA9E4/u87w1hhUOAnH12JH9zYgYdvXY0nPr0ez35+M169eysOfGUH3vvKDuz9l6146rMbIBcJ8N29A4gn2Vl/UXlkK/J0GjFBIuSjsUqGbY063LLGjE9uqMkrMBwABHwetDJhzjEVkiQx5grlHRhO0aiTweIKlmzda0//HLCR4USxwqDAtZ0G/OHYREnHV58/acUpqxdfu6IZm+o1sPki8HIQccAmJEliaCaA5mpm925z2vFu8+X/elNufDlHGU4Ays7lZPdFMDQTxFYGUw61aYc/WzlOVIYbU8FJIuSjqVqOXpajHJzBKLpGXdjdYSgrsQkAtjSkDrEOLdI4Z/dF8ETXGHa2VmNz/dn3lXKwcTFWd2DYCaVYQLtRe3O9FnwCOMigOe93H4zD7o/ivp3NZfe+cAWrgpNIJEI4HM4o+WNjYxCJSjMfejFhVIqhlQqzNtW9P+JCh0kJrSz7e0GdhC7lHCdq5p1ttZtCJRHAF2H3AZsRnDgaqWutlkMs4GVcPSRJ4pH9w9BIhfjMpux20aaq1GlLfwGniD3TfrTq5VlPwD7SUo1/370Ch8fc+Nbf+1jbHOWi2+pDY5Vs0TDNVWYl4kkS/Szb9ql5dSYLoqUGdT+i21TnDsVZb5UEUmN1bDucBmcCtBqzzjY9Fi7gU+G4dCuWKVr1cjiDsayBlJF4Em8OzmBna3XW02CpkI+PtFTjjYGZBUVhkiRTDqciN9RRUBXi0xyEw5cL/31wDA5/FF+/smXRz51IwINOJkKbQYEHdjWj2+bD0+nxo0IZsPvBI8CaY6qYGBTinA4nhz+KYCxRsMOpQStFKJbkJIeFDtO+CBRiPuQidkWGu7c3gkSqkrwUzPgjeOTdEWyq1+C6TgPaDKnPYbm7nGYCUXjDccbNX9R9rZDSC39acOLG4VSeglNXesNPN78JQObwaJwlwWl4NggegbzuJZ1GJXqn/awK1vv6HEiQYG0cmk1q1FLUa6XoWiTH6ecHRhBPkvjyOe7KVr0CCjGf9eDwJEnivREntjZqaR+CKiUCrDSraOdRWb1hPHlkArvb9Vibp3t3KcKa4ESSJD75yU/iC1/4AqxWK+677z7ccccdeOCBB9j6FhWykAkOX2Bz7AnF0G3z4tIcG1yDQgS5S8tabAAAIABJREFUiF9QU10knsSv3h/NPOiKDWUn5yI0HOBmpM7KsUgm4POwwqDIBIcfsrhwZNyDL2ytX1RwEQt4aKyS5e1wSpIk+qZ9i7qIAOD6lUb8685mvDU4g++/NoAkxyfDJEnitNWLVTmuayFnGBscGnWhSi7KOZK1lCEIAp0m+sHh7nCMG8FJxa7gRJIkBu1+Wu9dc7UcPIKdnJGR2SDkIn6mcYsu1HVmy3F6b8SJQDSRM2tiT4cBvkgc7y+Q8TcbjCEST5bc4XShNtUNzwbw9LFJ3LTKiDU0T1sB4OoVeuxsrcYv3x/FKAuHSIOOVOvSUhxb1CtEcOQQgKhGUjYcTgBKluPExXgJkDoQ+4f1NXi5ezpnLhwX/Ndbw4jGk3jwqlYQ6Yw8AKw06XIJFRjOVKilMj0LCQ4/Kzix/zNLxW4slLdWSrosLuhkQkbrq2UqMfgEWAsOH3UGUaOW0MqvPJd2owLuUIxVx+6rfXa06uWMRc9isbVBi6Pj7gUPtE5bvfh7jx23b6w9L9qDz+Mmx6nf7oczGKM9TkextVGLXpsv07q8GA/vHwEA3HtZ6UaUSwFrghNBEPjd736Hhx9+GD/84Q9xww034Nlnn8WWLVvY+hYVFqHDqMDwTADhWGLer3dZXEiSwLYc1Y4EQaC5urCmuv1Ds/j1wTG8Ozyb999RCFw7nJQSAbzhOKunD1ZPGNVyUV4PJ7qsMivRb/cjEk/i4f0jWKaW4Ja15pxfV0jw8bgrBH8kkWmoW4xPbajBXdvq8bfuafyK4xPUSU8YnnA8IyhlQ68Qw6AQoTtLw18+JJIkuiyp8P5S5N0Ukw6jAqPOIILRRM4/6wlxJDipJfBF4vCxJBI7/FF4wvGMe2kxJEI+GrQyVjZEwwwb6ihaq1M/e4NZDhH29tqhkwmxsX7x8PotDVpopUK8ukAr1GT6VLjYlcoUBoUYBAobPSlXSJLEj98cgkzIZ7wwJQgC/3ZlC6RCPr6ztx+JAt2jAw4/2hYJyi9nDEpxZtQsGxZXat3TsECBBhMowWq0RDlOXAlOAHDHJXVQiAV4+N1hTv7+bLw37MTrAw58fmt9puCkWi6CTibEYJkHhw/NpD5XTAUnnUwIIZ8oaISRGqlb7GAxX6jntaeMBKckSaLL4ma8vhLweTCrJRh3s/MMGZ4NMspbnAuVd8rWWN2YK4TTVh+uLUN3E8WWRi3C8SQ+nJovHCVJEv/11hCq5SLcsaVuwa/dUKvGmCuEGRYbrw8M546gWYhtjVqQOOuyy8aJCQ/29Tvwuc21nJVFlSus7nLXrl2L8fFxXHHFFdi5cyd0ugs3p6TcaDcqkSDPnqhQvD/qgloiyBqQPJemKhmGZwJ5CyqULXKshIstrVTI2SmsWiJAPEkiFGMv18fqi8DMUeYUxSqzCpF4Eo+8O4JBRwBf3N4IIY0mhTa9HHZ/lJZify5UnlguhxPFXdsacFVbNf5wbJL13KS5UE4vOmHWq8wqnGZxnr5v2gdPOI5tDOzeS5VOkxJJErRGEt0cCU6U64YtlxM1vrFYQ91c2gxy1hxOyxnmNwGpU2i9QoTBBXKc/JE4DgzP4uoV+py2cQGPwNUr9Hh3aPY89yrVAlgqh5OQz0OVXHRBOpz29TtwZMyNf9nRuOg4fDaq5CLcv6sFp6w+PHNsMu/reGtwBlZvJJMVudTQK0TwhOOLPlcszhDEAh4MBYo11XIRZEI+xlwXlsMJANRSIe7cUof3R1w4PEY/q6QQQrEEfvTGIJbrZPjc5vmbzja9ougOJ5IkMZwjF28uZ2YCqJaLGD/feAQBk1JckNPFH0kd9nAhOFEZTq481oZc0W/3wx2KMRqno6jVSFnJcIonkhh3hTJOR6a0Vssh4BHoyZLHy5S9vXYQAK5h2JhXTDbVaSDgEeeNo73aa8dpqw/3XrY864jw2Rwn9lxO7w07sdK8eATNQnQYlVBLBIvmOCVJEj99ewgGhei8+9nFAKuCU1dXFz75yU/iqquuwo033pj5rwL3dCwQHJ4kSRwccWJLg5ZW6GZztRyecByzeTxESJLMBL+NsWRNZYrNF87MvnOBKt0WwmZQpc0b5lzlptw8fzg2iRUGBa7O0kh1LpngcAYLLIoemw9iAY/2SQ9BELh5tRmBaALvLTC6wxanrV5IBDxaJ46rzEpMecJwBdnJ4zg46gIBZvkCSxXqpC7XWB1JknCHYlBz5HACgEmWgm7pNtRRtOkVsPkiBZ0Ce0KpDCamAaQULdULN9W9NTiDaIKkneuwp8OAaILEm4Mz836dEpy4Kj2gg0klvuAEp7lB4besye1Gzcbudj0+0lyFX7w3mgmzZcLbgzN48KVerDaraLliyxG9IrUmWCzHyeIKol4rLTi8lSAINOikeb3WhRKJJ+EKxWBQcLcG+sT6GpiUYjy8f4Tz8XcA+NX7Fli9ETx4det5h2StejmGZwOIJ4pXOPL8KRt2P3QA//lKHwLR3M7ZIQfzwHAKk0rCisOJiwwnlUQIAuWV4UQJFvmsr+o0Uoy7QwVPL0y4w4gnyUwJE1NEAh5aWAoOJ0kSr/bZsbFOzZkIzQYyER9rls3PPwpGE3h4/whWmpS4tjP7GmWFUQmZkM+a4OQMRtFj82F7jomgheDzCFzSoEXXqCvr5+il7mn0TvvxpcubluR4eqGweif69a9/zeZfV4EBRqUYaolgXnD4QHoWNVsD0blQN8nh9KkMEyzOEKZ9ERAooeDkjWQs11xA1bZ7w3GY6MdpZCVJkrB5I9jFcgXquZiUYuhkQjiDMXzpsuW0F9WZ4GNHAJcwfIj3TvvQplcwah7bWK+BTibEvj47Z69Jt82HDiO961qZyXHy4bLmqoK/98HRVHg/lX9wIVMtF8GgEOUMDg9EE4glSGik7C+Kl7HscDrjCMCsEtM+MZ4bbLspx9haNqiNa1OeFv1WvQKHxyYQSyTnbdj29tlRo5bQcr4CKfG1ViPBq7123LTKlPn1SU8YBgW3I8G5MCrFJcmV4RIqKPxHN3bm3dAGpASQb1zVgn/4n6P47t4B/Oof1tL++945M4NvvNSLTqMCD318FetB1MWCyj5z+KPn5YBQWJwhdBjp/SzkokEnwwmWc0XoQAlqXG4uxQIe/mVHI/7zlX683u/g1DnRb/fjmaMT+OhqE9YvUDXeapAjliAx6goVJZ+GJEn84dgkdHJRxn3x/es7sCKL8y+RJDHiDOLjeQq1JqV40fauXPg5HKnj8wioJALOM5ySJImnjkxgJhBFPEEiQZKIJ0kk0v/N/f890z606eWoYrh3AYBajQT+SAKeULyg9dmIM7+Cj7l0mBR4vX8GJEkWFL3QY/NhzBXC5zZnLwcqF7Y2avHogVHMBqKokovw2w/GMBOI4v/c1LnofkXAI7CmRsWa4HRwxAUSYJzfRLG1UYt9/Q6cmQmc54QPRON49MAoVptV2E3z0P9Cg9VVYk1NzYL/VeAegiDQkW44oDjIsBGLcn0M5ZHjRD0YdzTpMOYq/KSAKWRavOHSLaTOOJzYyYSZ8UcRT5KcNdRREERqJOaqNj22MJhL1spSosFCIzmLEU+S6Jv2o9PEbARDwCNwZZse7w47aZ0eMiUaT6Lf7qc1TgekLLJ8AqyM1fnCcXRbvRd0O9250AkOp05IuRipU0mEUIj5rI7U0R2nAzAn2DZ/ezyVqZevw6lNL0c8ScIyZ8x5JhDF4TE3dncYaC9oCYLAnnYDjoy55zlFptwh1GTZxBcLozLlcCpVFT3bzA0Kp1vLvBjVCjHu29mMk1Ne/PE4vdG6/UOz+MbfetFuUOChj6/mZNNaLHI5nKLxJKzecMGB4RSNOilsvghCsdz5dWxCufy4djPs6TCgVS/Hzw+MLhj0ywaJJInv7xuEWio8r52KgsoUY2NsmQ7HJjwYmQ3igWva8Ngn1iAcS+DOZ47jj8cmF7z3TLhDiMSTeTc7mlUSzPijiOXp4PJH4hDxCc4OAzRSIecZTj02Hx7aP4K/fGjF3j473hqcwfsjThwZc+PklBf9dj9GnUFMeVNZqLcv0ry8GNRBdaFNdZlG2QLuJR1GJXyReMY9nC+v9Noh4hPY1Vr+4ga1Lu6yuDDpCeGpIxO4rtNA6/m3oVaNkdkgK5MIB4adqJKLMtMdTNmaPphfqK3uia5xzAaiuG9X8wWf4ZqNpbuKqHAe7UYFnjwygUg8CbGAh/dHnGg3KGgr/jqZEGqJAMN5NNV1WVyo00iwtVGHd4edmA1EUc2htftc/JEEgrEEZw11wFlrspelFj5r2i7NteAEAPfvasnr69oMCsbV7qPOIMLxJO38prnsbtfjzyem8M6ZWVzXaWT89Ysx6PAjliBzBoZTSIV8NFXL0c1CU93hMRcSJHK2RV5IdJqUePvMLLzhGFSShQUlD4eCE8BeU104loDFFcSuNvrOuyq5CNVyUUE5IyOzQUgEvLxHhVsyLkV/5v+/3u9AkkTOdrpz2dNhwOOHxvBanyOzsJ/whEs+ImpUihGOJ+EJxzn7HBULkiTx4zfO5BUUvhjXdhiwr9+BRw+MYkdT1aJO4APDs/i3F3vQZlDg4SUuNgHIjJjZszTVTXhCSJKFN9RRNKTr0MdcIazIc+OSD8USnHgEgS9fvhxfeu40/nxiKu9N/mI89+EUemw+fO+69qzPjgadDCI+seDIMBc8e2IKKokA168yIxKM4KnPbsS39/bjJ28N4ci4G9+6pm3eaDh1cJuv+8qoEoNE6n3N5sxbDF8kzunPrlYm5NzhdHjMDQB48a5L8sqxowv1+o67QwWJ/CPOIIxKcUFu0E7j2TiCfN53IHXou6/fgR1NVVBKyv/+vcKggEYqRJfFhXfOzIJHELhnB73nH5XjdHzCg11t+YtrsUQShyxO7Gqtznu02qAUo7lahoOjLnx2TkbThDuEp49O4PpOA21X+YVI6XzwFVinw6hAIknijMMPXziOU1NeXLqc/maAaqqjmjXoEkskcXTcjS0N2kzLi6XIY3VUS1FRMpxYeshSrXpcXnOhtOnlGHEGGQV5U/PnnXmMKKxepoJJKca+fgfjr81FJjCcwQ1/lVmJHpu/4LyK90ddUIj5tN1VFwLU+9+7SACmO5QSbzkTnNTsCE7Ds0EkSdBqqJtLq76w4PCRdENdvgugBp0MQj4xb+Rsb58dbXo5Y9dUg06GDqMCr/am2urCsQQc/mjJAsMpqEOGCyHHaV+/A0fGPfhinkHh2SAIAg9e1Qohn8D39vZnvZ+9N+LE11/sQatejkc+vnpJbFZyoRDzIRHwsjqcKPdfvTb/MZi5UIHBliLnOBVLcAKArY067GjS4ecHRlg5kJmL3RfBowdGsbVBi2sWGT0R8Ag0VckZO7DzweGP4K0zs7hxpQlSUSp7RSMT4qc3r8TXrmjCgWEnbn/yGD6cPDvaM+QIgADyzvOhymSodSJTfOEEp4KTRirkPMPp6LgbLdVyTsUmIHUwxSNS7cqFMDIbzNuNTNFUnRJSF1s35eIDiwvOYIx2RmOp4REEtjRo8MbADN4cnMGdW+ppFzh0mpQQC3gFj9UdH3fDH0lge1Nh8RlbG3Q4MemZ53D92TvDEPAI3MPiIdJSpCI4XUC0z9ngdVnSjgqG4WdNVTIMzzJrqjs55UUolsTWRm3mlLDoghMl3nC42KJOr9gaqZsqosMpX1r1KRFzZJb+KWKPzQe5iI/6PE6Meenxv4OjLtYXM6dtPlTLRYwW5KtMKvgi8YJyyUiSxKFRFzbXaxllWi11OtIjlYuN1XE5UgekBSdvuOBxK0qwaWFYDd9mUGBkNpj3WEShC9izm7LU9Y+na5LzXYju6TCgz+7H6GwQ1vQ9t0ZT2vuXMX3/zHdjVi5QQeHtBgU+VkBQeDYMSjH+9YpmHJ/04s/Hp877/fdHnPj6C91orpLjkVsvDLEJSIltBqUYdt/CDidKGGpgKf+xViMBAcwbYy0G074I1BJB0cJo/3PPClTLRfj6iz1wslSsAQA/eWsI8SSJf7uqJefoSaoJNP9mZbr89aQNiSR5Xh4TQRD49MZa/Pen1kHIJ/DPf/wQT3SNIZEkMTQbQK1Gkvf7YVKm7mvWPIPD/dE4J4HhFBqpkNOWumg8iROT3rzzD5kgEvBgUooLGqlLkiRGncG8BUYKIZ+HVr0C3QVEObzaa4dSLMgr/LpUbGnQIhJPYplKjE9vpB/FI+TzsGZZ4TlOb/c7IOARuKTAz9u2Ri1iCRJHx1PuvCNjbrx9ZhZ3bqnPjHdfrFQEpwsIs4oKDvfj4KgTSrGAsaOiuVqOQDTB6LS4y+ICnwA21mlgUIohFvAwVuTFFrX5MXIo3kgEPAh4BGsjdTZvaoEoE5VvW0GmqY7BWF3vtB/tRkXerozd7QYkkiTeOqcRq1C6rV6sMisZzU9TweHd1vwf/qPpQP1tF9E4HZDKUKrTSGgJTlqOgtRr1BJE4sm8mjfnMuDwQyrkoZahuEJlKA3nkYvnj8Qx7YtgeZ4VyxStejkG02PSe/tS7qSrV+RnPb+m3QAeAbzSZ8ekJ3WPr1GXPsMJWPoOp8fTQeFfv7KloKDwxbhhpRGXLtfikXdH5tWAHxp14oEXutGok+GRW1dnHWNaqugVouwOJ1cIVXIRa24QiZAPs0oMi6v4Die6rgA20EiF+PFNK+EJx/Hg33pZaYt758ws3hqcwRe21tMaJ2rVK+BKN3lyRTyRxPOnrNjWqEVdFlGy06TEk5/ZgCvb9Hj0wCi+9Nwp9Nh8eec3AWfva7Y872v+CPeCkycU40zs67b5EIknsanu/MB4LqjVSDHhzt8NbfWGEYknMw7HQtjSoMHxCQ+O5yGihGIJvH1mBle2VUNUwjIPpmxv0sGsEuP+XS2MRdoNtWqccQQKyhR7e8CBdbXqgp8D62rVEAt4ODTqQiJJ4qdvD6VFtPIPb+eapfNprJATgiDQblSgZ9qHg6MubGnQMHZUNKUrXJlskA6NurB6mQoKsQA8gkCdRoqxIi+2Tlm90MmE0HHYAEYQqWYOb5idUx2rN1zW7iYgdVorFfJoBx/HEkkMOPwFNf60GeSo10rxWnpzzAbuUAzj7jDj+elGnQwyIR+nCxgbODjqBICLTnACcF6Rwbm4QzHweQTkHImubDXVDToCaKmWMxZRzwq2zO3xlPNieZ4NdRStejlmA1E4g1G82mvH+lp13uUK1XIRNtdrsLfXnlmcl3qkTicTQsgnMO1jJxy+FAzPBvDMsUl8dJWJlaDwbBAEgW9e3QY+j8B39w4gSZLoGnXh/hd60KCT4ee3rZmXQ3OhoFeI4cgiSoy5Qqy5mygadDKMlsDhVOz68xVGBb55dSuOTXjw0P6Rgv4ufySOH795Bi3VcnyGZi5U65wmXa54Z2gWDn8Ut65btuifU4gF+N717fjWNa04OeWF1RspSHASCXiokotgy9Ph5AvHoRBzd5iplQmRIFNZUVxwZMwNHgFsqOXe4QQAdVrpPBGeKaOzqa8t1OEEAHdsqccytQTf3duPMMPygXfOzCIUS+LazqUxTkehk4nw4l1b8mqE3linAQngxGR+LierN4xBux87WHCEiQU8bKxT4+CoCy+csmLQEcCXP9JU0ibfcqHyClxgtBuVGHQE4PBHsS2PHx6qfnuIZnC4OxhD37R/XnBsvVZa0AgSU5IkiQ8sLmyu1+TtqqGLSiKAj6WROqs3DHOJN2u54BEEWvUK2hvmoZkAYgkyr8BwCoIgsLtdj6Pjnqyn0kyh7MmrGDr++DwCnabC7M0HR11YrpNx2qBYrnSalJj2RbKeQLtDMWikQs5aO9gQnEiSZNxQR1GnkUIi4OW1ISq0oY6C2pS93D0NiyuEPQVW8u7pMGDSE8bePjskAh6nIj8deAQBg0K8ZB1Oc4PC77mskfPvZ1SK8bUrmnBswoP//doA7nuhG/VaKR69dc2SD13PhkEhwox/4SZDizPIWmA4RYNOBoszWHD2HxPsJRCcAOC6TiP+Yf0yPHNsMpPvxhS7L4K7/3QSDn8ED17dCgGf3takGE11z56YglklpjWeRBAEPrrajN99Zj2ubKteNIOKDmaVOO9RYX+U+wwnAJyN1R0ed2OFQVG00d46jRSecDxvl8xwOnaCDYeTVMjHv1/ThnF3GL94z8Loa1/pnYZRKca6muI4w8qBlQXmOL2ezoxlawRxa2Oqrf2h/SNYX6vGrlb6ZTMXMhXB6QKjw3h2U5RPI5ZGKkSVXETb4fTBmAskMK/uvV4rxYQnjHiyOIutM44AnMFYUSrnVRIhPCwITiRJwuqNZIIhy5k2vRwDDno5CdT41NzPYT5cs8IAEsDrA+yM1XVbvSBwNleICSvNKgw4AoxPmoBUsPLxCU9RPpvlCCU8ZhurSwlO3C0ol6kKF5ymfRH4IvGMcMMEPo/IOzh8ZDYIEZ/IiGb50lqd+sz/9oNx8HlEQU0uAHBFSzXEAh5OW32o0UjKouLXVMDGrNRwFRS+GDetMmFrgxYvnp5GnSYtNpVYOOQSvUKMaIKEJzT/2e0OxeAJx1kLDKdo1EkRjidhL5IIGo4l4AnHSyI4AcBXP9KE9bVqfO+1AfQzvNf1Tvtwx9PHMeEO4ac3r8IaBg4/pUQAs0rMWVPd8GwAR8Y9uGWNmdGYa1OVHD+8sTNzgJsvJqW4rEfqAHASHB6OJXDa6sWmuuK4m4CzTXX5upxGncFU0zdLov2meg0+vtaMZ45N4NQUPYe9MxhF16gLu9sNnB++lxMiAQ+rzEocG2cuOEXjSTx9dBLbmnRoZMGdBgDb0gaMYDSB+65oLos1UjlQEZwuMNrTG/02vRzVeQaUpYLD6QlOXRYXlGLBvBGqeq0UiSTJSjsU3WsAUJR67tRIXeGCkzsUQySeXBKulzaDAoFoIhNyvhg9036oJYKCx2waq2Ro08tZG6s7bfWhqVqWV13tKpMSiSTJeCENAMcnPYjEkxet4LTCoACPSG0qFsKTdjhxhUTIh04mLOheRG1m8hGcgNTPz4DDzzjrYsQZRINOVnDQvEYmhF4hgjccx7ZGbcGvt0IswGXpJpfaEuc3URiVS9PhxHVQeDYIgsB/7GnD5zbX4tHbVl/QYhOQynACAPs5jlm2A8MpGtICVrHKU4rZULcQAj4PP7ihA2qJAF9/sYe2S+StwRn80x8+BJ8g8Pgn12F7E3OHQatewZng9NwJK4R8Ah9dbeLk78+FSSWBLY/Si2g8iUg8yanDicpd5EJw+nDKi1iCLEpgOEWdNrVmHc8zx4mNhrpz+dLly2FQiPGdvf20mqJf73cgQWLJjdOxwYZaNQYcfvgZjni+1DONmUAUd1/ezNq1NOikaNXL8Yn1y7CiwMP3C4mK4HSBsUwlwXKdrKA6zOZqOYZnAjnt4FT71iUNmnmnPw1pS2mxcpy6LC40VcmK0gCQGqkr/AE7lT6NX7YUHE4MgsN7bT50GJkFc2djd7sBp62+gubqgdTntMfmY5zfRLGKCg7PY6zu0KgLYgEPG2ovHnvzXGQiPhp1MvTYFhbrXBwLTkBqrG4yzxwM4Kzg1JKv4KSXwx9JMD6pHp4NFhwYTtGSzhK5lqWaZOr5UuqGOgqTUgyHP4JEkVy1bPGbQ+Nw+KN4gMOg8GzoFWJ86fKmormqSgm1NnD454/2UoJQA0s/ZxSNVFtvkXKcSi04AUCVXIQf3dQJhz+Cb73ct+jPIkmS+J8PxvH1F3vQopfjt7evL+j+anEF83IgL0YgGsfLPdO4qk1fsp8RsyrlzHMyHFvzR1Ob7mKM1HEhOB0dd4PPI4o6FlajloIA8mqqI0mS1ec1hVwkwDevacWoM4RfH8w9WvdKrx2tennmeX8xsaFWgyTJLMcpniTx5OFxdJqU2JaH2J0NgiDw1Gc34L6d7IlYFwIVwekCgyAI/OnOTfjs5rq8/46mKhnC8WTOOtZRZwh2f/Q8Z1F9+rSwGDlOxR5ZYmukjgqCXAoOp+YqGXhE7pyEcCyBoZlAXmNrC3F1Ov9gX3q+Ol/G3WF4wnHGjY0U1QoxjEoxTufRVHdwxIX1NeqiVVWXI50mJXpsvgVPad2hOPeCk0oCa0EOJz9q1JK83HFAfsHhoVgCVk+YtRPTtTUqqCWCvAI5F+LS5dr0f+VRu2xUipEggRkO26rYxuIM4umjE7h+pZHRGFEF5hiyOJzGXCEIeIWPrZ5LlVwEuYifcVBxTTkITkAqI/GBXS04ZHHhF++NLvhnYokkvrt3AI+8O4JrVujx2G1rUCXPX9BpNSiQJIGhPJpAF+PVXjsC0UTOsHAuMSpTn0umhxVUzqhSwmFoOIcZTkfG3FhpUha1wVks4MGgFOd1wDkTiCIQTbDucAKAbY063LTKiN8fHl+08XfcFcJpq4+1Q6WlxiqzEkI+wWis7o1+BybcYdx5SR3rY28EQVRG6c6hIjhVOA+qWWNoZvEH+KEso2waqRBqiaAogtOJSQ+iCbIo43RAyuEUiCYKzqeyph1OSyHDSSLko0Eryxl8POgIIEECnQU01M3FrJJgzTIVXusrTHCiGuZWFRBkvsqsRDfDpjqbN4wRZ/CiHaej6DAq4QrFzht5SiRJeMMxzluxlqklsPnyd78MOAJ5j9MBqfspAXoOQQqLMwgS7DTeAMA/bq7Dc5/fDClLwqeQz8PPblldtPtuLoxp4T7fRqdiQ5KpumSxgId7L1te6su54KmWi0AA55VQWJxB1GokBY+tngtBEKjXSmEpksubEtKK4fLOxcfWmHHzahN++8E43hycn8HoDsVw77On8LfuaXxhaz2+d317wYcxbel78yCLweEkSeLPJ6awwqDAajM765l8oNaHTO9r1FiRIs9DEjpIhHyIBTy4Q+y21AWicfTYfNhUV3xXeJ1GgnEX82cIWwUf2fjqR5qhk4vwnb39iCUWHq17tdcOAsA17Ren4CQR8rHSpKQdHJ5J5MeNAAAgAElEQVQkSTzxwRiWV8lweQs7B3EVFqciOFU4D2qTM5yjqa5r1IV6rXTB08HUYot7wanL4oaQTxRtZEmVtij7C3Q5WT1hyEV8TkMd2aTNkDv4OBMYXoCwcy672/U4MxOg3Zq4EN1WHyQCHpoKsBmvNCkx5Y3AGaTvoDg0mhJkty0vj015qViZdrydezrni8SRJFGUkbpEkjzP3UCHUCyBcVco04aUD1IhH/VaKQYc9DdEZxew7FjjBXzeBVl3T0E5O5ZKjtO7w068P+LCXdsaUF2Au6MCPQR8HrQyIewLjNSxHRhO0aiTYbSII3VaqbBsqrcf2NWCVWYlvv1Kf6a9y+IM4vNPH8cpqxffuW4F/nl7IysOgGVqCeQifl5NoNk4MenF0EwQt641l9SlYMoITszua/5IaryQ6/WlViqEO8Suq/TEhBcJEkXNb6Ko00rzcjiNUs9rlkfqKJQSAb55dSuGZoL4zaGx836fJEm82mfHhjp1yV2OpWRDrRp90z4Eorn3ZweGnRiaCeKOS+ouqoD1UlIeT6cKZYVCLIBRKV7UohyNJ3F03I2tWU6467VSjBXBTt5lcWFtEUeWVOlGLU+BOU5WbxhmVXk0PNGhTa+AzRdZNAy0d9qHKrkoM77ABle26cEjgNcKGKs7bfOhw6Qs6BR7VXocj8lY3cFRFwwKEWeLkKVCq14BAY9A9zk5TlT2A5ctdQAygng+weHDMwGQyD+/iaLNoGA0UjcyGwSfR6CuTDKSyh3TEhKcIvEkfvrWEBp1UnxifenGdS42DArxPIdTIkliwh1iPTCcokEnxbQvghDL2UILMe2LlNVGUyTg4Yc3dkIi5OGBF3rwzpkZfP6ZE/BHEnjstjW4tsPI2vfiEQRaquUYZCDo5+LPJ6agEPMLykJlA6VYALmInzPe4lx8lMNJwu2zVSMVsu5wOjzmhohPYHWeEQiFUKeRwhWKMQ6eHnEGoRQLChoNzcWOpipc12nAEx+Mn1dg0zPtx5grdNGO01FsqNUgQQInc7T6kSSJ33aNYZlKjGtWFNbaW4E+FcGpwoI0VckWdTidnPIiHE9iS5ZxoXqtDHZ/lNPF1kwgikFHIKvoxQUqccol4GP4QDoXmy+SOb1aCrQZ0rb1RU4Re2x+dBgVrIpoVXIRNtVp8FqfnXFTC5Da3A3Y/QWN0wFAh1EBPgHaY3XxJIkPxlzY1qhbMqIiV4gEPLRUy89rqqPESy3HzhuqMXEyD8FpoMCGOoo2vRxT3gi8NANWR51B1GulEPArj2g6KNIbs6UgOD19dAKTnjDu39kCYeX9LRp6hWheaLjVG0YsQaJBx43g1EiVpxTB5VRughOQch3+4MaO1Gf9hR5UyUV44vZ1WMtBEHSrXo5BR+6iGzrMBKJ4c3AGN640lTx7kSAIGJVixg6njODEcQaSRiaEi+XQ8CPjbqxepirJa1+rSd0LmAaHj8wG0aiTcb7W+9crmqGWCPCdV/sRnzNa90rPNIR8ArtaL27xZE2NCnxe7hynYxMenLL68NnNdZU1VhGpvNIVFqS5Wo5RZzBr7skhiwt8HoGNWeasqUUclzlOH2QypIpnvVVJKIdTYYLTlCeMZUsgMJyiNT1SlG0sKBCNY9QZRCeL43QUu9sNmHCH0TPN/ARzwO5HPElmmubyRSLko7laTtvh1G31wh9JXPTjdBSdJiV6p33zNgRnHU7cCk4mpRg8Ij+H06AjALmIX3CoMBUc3kuz6XB4NshaftPFgknFfGNWbGzeMH5zaAxXtFRlPaypwA0GpRj2OYJkpqGOo5E66u8tRo5TOQpOQMpx8B+723DDSiN+86l1qFFzI+61GRQIRBN53ePP5YVTViSSJD6+1szClRWOWSVhHBpOOXSURXE4sSc4eUIxDNj92FRX/HE6IOVwAlIB3EwYKdLzWi0V4htXtWLAEcD/HB4HkDrc3NfvwI6mKs7f73JHKuSj06jImeP0RNcYdDIhblxlKtKVVQAqglOFLDRVyRBNkFnnmbtGXVizTJW1uakYTXVdFhc0UmFmM1cMKMHJW8BInS8cRyCaWFIOpyq5CFVyUdachH67HyTYCwyfyxWtVRDwCLzWZ2f8tafTG/x8G+rmssqsQrfNl/UUlSRJnJry4oevD+Jf/9oNEZ/A5hLkEJQjnSYF/JHEvIVcsQQnAZ8Hg0Kcp+DkR0u1vOAZf+oe1WfL7pBLkiS6LC58/cUejLlCF2W1cSEYleKydzg9tH8EJICvXVGpSy42eoUInnAckXjKGUA1yHHlcKrTpmrWLRw7nALROPyRBAxlKDgBwHWdRvznnhVQcJgnlAkOLzDHKZ4k8ZcPrdjSoEFDmYzCp4R05qHhPAKQcewS0kqFcLPYUndswgMSKJngVJMeYZ9w03+9Hf4IXKEYGot0QLSztRpXr9Dj8YNjGJoJ4AOLC85g7KIfp6NYX6tBj82HcJbpmh6bD10WN27fWFs2mXcXC5VXu8KCUAHLwwvkOLmCUfTZ/YuOslEnBWMcne6RJIkuixuX1GuKGvhGCU6+AhxO1Dy+eQk5nIDUoi5bDk1POp+nw8S++KeSCHHpch1e73cwtsx3W73QK0SsnP6uNCsRiCbO20BQroVbnziCzz9zAi91T2NboxaPfWItVJILN6iZCR1pIbJ3jkuNyn7gWnACUjlOTAUnkiQx6AgUnN8EpFqydDLhgg4ndyiG3x+ZwK2/OYx7nz2FY+NufHZTLT69sbbg73sxYVJKylpwOjruxr5+Bz63ubZgx1wF5lANblSO05grBKVYwNn9RyzgwayWYJTjLEu7LzUmWI4Op2LRXC0Hj0DBOU7vDs3C7o/itnXlk61mUorhCccRjNKPp/BFElCKBZyPeGmkQgRjiYyIWyhHx92QCHhYWaJmQKmQD71CxGik7omucfAJYEeTjsMrm88Du5qhFAvwnb0DeLl7GkqxANuXF+/7lzMb6tSIJ8msOU6//WAcSrEAt5SJg/Fi4uL231XICmUPHZoJYGdr9bzf+8DiBoBFRwIkQj6MSjFnDqehmSBmA9GijyUo0wJCISN11vTYh3mJbTraDAocPjKBWCJ5XvZIr80Hk1IMnYyb0MTd7XrsH5rF8QkPNjI4/Tpt9WElS2N+1FjeaasXRqUYbw468HKPHUfH3CABrK9V4x8312FXWzWnp7lLkaZqOcQCHnpsvkwQqysYg1jAK0pWwzK1BF3pEVy6WL0RBKKJzOl5obQZFOhNj2SSZGpB9JeTVrze70A0QWJdjQp3XdqAXa36yslbHhiVYrhCMYRjiZJnr5xLPEniJ28OwaQU43Ob60p9ORclVJmFwx9FrUYKizOIBp2U0015QxHaeqd9KSH9YhacJFQTqL0wh9OfT0zBqBRje1P51KSb0geTNl8YTTRbS/2ROORFWINoZKn1sDsUY+Xzd3jMjXU16pJm29Vp6DfVjc4G8ZcPp3DzGnMms60YaGUiPHBlC775Ui96bD7cvNoEUWXNAABYu0wFHpFyy11yjiliZDaItwZn8Pmt9ZU1egmovOIVFkQqTOWWLORwOmRxQS0RoD3HKFu9VsqZnfxQJr+puIKTgEdALuKz5HBaWgvENr0c8SSJ4dkgVpzz3vdMp5rguOKy5ipIBDzs63fQFpycwSgmPWF8bA07JxmNOhnkIj4eP2jBj988g1AsiVqNBHdd2oDrOg2c5VNcCAh4BFYYFPOCw93hWFHcTUBKcHL4o4jEk7TFHOq0nMovK5Q2vRzPHJvEn09M4fmT1kw+1EdXm3HLGjMrTqqLGWrDY/dHMyPd5cJfPpzCmZkAfnRjR9mJYRcL5zqcLK4QLuF45LlRJ8PxCSuSJMmZE5ty9V3MghOQuk/TLfVYiNHZIA6PufHFHY0FNdqyDbVOtHkjtAUnXyQOZTEEJyl7gtNsIIrh2SCu62SvwTAf6jRSvDs8S+vPPrR/GBIhH/90aQPHV3U+V7VVY19rNd4anCl5m2I5oRALsMKwcI7T/xweh0TAw6fW15TgyipUJNEKWWmukmHonKY6Mp0zsrleC36Oh3K9VooxVyivdrFcdFlcWK6TlWSRpZIICspwsnrDEAt4nLdzsQ2VQ3PuWJ03HMOEO4xOI3dZWlIhH5c3V+H1fse8do5sHBiexZ1PnwAAXMJSqDyPILClQQtPOI7d7QY8/sm1+MvnN+OubQ0VsYkGHUYF+qZTIe5AKiC0WIIT1VTHpF56wBEAAbAmBLXpFYglSPyfN86ARxD45tWt+Ps/b8XXr2ypiE0sYMpszAoPDmYTVzCKX7xnweZ6zXlu4QrFw5ARnKIIRhNw+KOc5/Q06KQIx5PzwsrZxu6LgkAqo+pipjXdBJrvYeCzH05BwCNwU5kFCWccTgzua/5IHEox98I2tYZlI8fp6HhqcmJTiXMvazUSOIMxBKKLf46OjLnx7rATd1xSx5mzfzEIgsC3rmnFt69dgQ217Dc/LmU21GrQbfXOG/Wc8oTxas80PrbGnHHmVSguFcGpQlaaquWwuEKIzdngD88G4fBHsbUx90OhQSeDLxJntcUCSFXdH5/wlKzlRyURFjRSZ/NGYFaJOZ+vZ5s6jRQSAe+84HAql4dLhxMAXNNugCccR9eYO+ufsXnDeOCFbnzt+W6I+Tw8dtuaTH4QG3z/hg68/sVt+F/XtGFtjXrJvYelpNOkRDiexGjaNekOxaCRFsdkSzVCMslxGrD7UaeVQsqSI+UjLVX42pWteOLT6/DkZ9bjY2vMkHFcW30xQR0+lFuO02PvjSIYjeP+Xc2V+0UJUYj5kAh4sPsjmWzJBo6dcNSYDZfB4dO+CHRyUUnHkMoB6kBscIZ5jlMolsBL3dO4sq0aVfLyEu6q5SLweQSjpjp/JFGUkaG5DqdCOTLuhlzEP889X2zq0veExYLDkySJn70zDJNSjE9uKJ1bRiUR4rpOY+W5cg4b6tSIJkicnuN4/P2RCRAEgds3VbIxS8XF/YSqsCjN1TIkkuS8HKYuBqNsXDXVnZj0IBJPLhpaziVKiaDgkTrTEgsMBwA+j0DrAsHhPekg5A4OHU4AsK1RC6VYgH0LtNXFE0k8eXgctz1xBAdHXbhnRyOe+twG1k/L+DwCgot8YZ8vnWlBsic9VucuosOJCmmmKzidmQng3WEnqy2DEiEfX7yiGavMqsoCkQMoBwvTCnEu6Z324a8nbfjE+hra4zAVuIEgCBiUYjj80YwAVK/l2OGUXgNZOCpPAVKC08U+TgfMaarLI8fplV47AtFEWYWFU/B5BIwKUSb7kw6+SLwoghPlcHKxIDgdHfdgQ6265OOMtRpKcMq+b3m1144+ux9fvKyxMiJdhqyvUYMAcGw8NVY3G4jixdM2XN9prNwrS0hl51QhK9QCeW6OU5fFhUadlJZgcnaxxa7g9IHFBQGPwIa60thI1RIBvAWGhi+1/CaKVr0CAw7/vDHJ3mk/6jQSzhvZRAIedrZW4e0zs/MqT49NuHH7k8fw0P4RbGnQ4k93bMIdW+ov+hPfcqNeK4VcxM8IlMUUnKoVIoj4BC3BKUmS+OG+QShEfNx9aSP3F1eBFUQCHnQyYdk4nJJJEj9+YwhambAkGR8VzqdaLoLDH4HFFQSB1PgMl1TJRZCL+Bjl2OFU2USl3luNVIhBBzPBKUmSeOboBNr0cqxZpuLo6grDqJLkMVLHveCklAhAoHCHk80bxpgrVPJxOuBsw/Z4ln1LOJbAz98dQYdRgd3tleykckQpEaBVL8exidQ0xDPHJhFLJPG5SyqFHaWksiOrkJVGnQw8Apkcp2g8iaPjHtpB3SaVBAIewbrD6dCoC2trVKyNujBFKRbAG8lPcArFEnCHYjAvQYcTALQZ5PBHEvNcBD02X8a9wjXXrDAgEE3g/REnnMEo/v9X+vDPfzyJUCyB/7p5JX5y88pK5XiZwiMIdBgV6LH5EE8k4Y8kiiY48QgCJpUEUzQW7X87bcOHU158+SNNlVn/JYZJJcE0AycAl7zw4RROWb2457LllUacMkGvEMGedjiZVWLO3QkEQaBBJ4PFyZ3Dye6vCE5A6rVu08sx4GA2Undg2IlRZwif3VxXts5Ts0oMG837WiJJIhBNQFGEDCc+j4BaKixYcDqadqJsYtBAzBUyER9VclHWkbqnj07C7o/iq1c0cVYEUKFwNtRpcMrqw2wgimdPTGFXq77sykQuNiqCU4WsiAU81GqkGYfTh1PpUTaa2UkCHoFajYTVxdZsIIoBR6Do7XRzUUmE8IZjeYWhn22oW5qiSJt+fnD4bCCKaV+E1ZykxdhYr4FOJsQv37fg1t8cwd4+B+64pA5/umMTLm8unyrjCgvTaVJi0BGAIxAFgKIJTkBqrC6Xw8kVjOLh/SNYX6PCjStL25ZTgTlGpbgsHE42bxg/fm0Aq8xK3FD5HJUNBoUYM/4ILK4Q6otUY96glbLu8qbwR+IIRBMwXOSB4RStegWGZgKZYgo6PHl4HGaVGFe1lW+gv0kphsMfofXvosKuiyVya6SCggWnI+NuqCWCsinPqNNIMLbASN1sIIr/+WAcV7RUYUNt6cWxCtnZUKtGJJ7Ed/b2IxBN4I4tFXdTqakIThUWpblannE4HRp1p0bZGNxo67UyVh1Oh9OB0aUUnNQSAWIJEuF47ra0c6Hm8JfqSF2LXg4CwEA6J4Gque8wFSfoUcAjcPUKPYZng1hhkOPpz23EPZctr8zRLxE6jErEkySOpH+Oiyo4qXILTj/bP4JANIFvXN1atqfdFbJjUoph84U5aUalg8UZxHf39uNj/30Y7lAU9+9qqZyClxF6pRjRBIkzMwHOA8MpGnUyTPsiCM0ZA2cLymlccTilaDPIEU2QmVD4XJyc8uLEpBef2lhb1tmMJpUECRKY8ecW031p930xRuqAVI6Tq4CWOpJMrQc21mnK5l5Zq5EumOH0q/ctiCSSuPey5SW4qgpMWF+Tilx5f8SF7ct1JQ+jr1AGgtODDz6Ibdu24YYbbsj82o9+9CPs2bMHN954I+655x54vWeT5n/5y1/i6quvxu7du/Huu++W4pIvKpqqZJhwhxCJJ9FlcWHNMhWjZqUGberGnWBw4rQYhywuqCWCkt48lJLUgzyfHCfbEnc4SYV81GulGdt6r80PAkC7oTgOJwD4lx2N+MUn1uDR29ZgeVVxTqkrsAM1evn+SKp8oNgOJ084Dn+Wcdij42683D2Nz26urQQ8L1GMSjFCsWRm01Us+qf9ePBvPbjtiZTr8pY1Zuz76uVYWaRR4wr0oJxAiSTJeWA4RYMuXZ7CQY7TdEVwmsdZBza9HKcnD49DJRHgo6tMXF5WwZjSB5R0gsP9kZSwWTSHk0xUUGj4pCcMmy9SFvlNFHUaKRz+KILRs8+R4dkA/nrKilvXmtFQJHdkhfzRyIRoqU6t4+6oZDeVBSUXnG655RY8/vjj835t+/bteOmll/C3v/0NjY2N+OUvfwkAOHPmDF5++WW8/PLLePzxx/Htb38biQT7p0YVztJcLUeSBE5MeNBv99Mep6Oo10oRTZCsjDmQJImuURcuadCCX8ImC3VGcGL+kJ3yRCDgEahewhb4NoMiM1LXM+1DY5WsqPXucpEAG+s0FQfKEsSsEkMtEWTaLostOAELN9VF40n8YN8glqkl+PyW+qJdUwV2oTZmdPNOCuX4hAdffu4UPvP7Yzg46sI/XlKHF75wCR64sgU1mkpeRLmhV5wVZighiGuozekoBzlOFcFpPo06KYR8AoM0cpwsziDeOTOLW9eai7p+yQezMvXssvlyZxD6i+xw0kgF8BQgOFFu53LIb6KgygTG54jED70zApmIjy9srRRALBVuWWvGR1eZsK62NAVTFeZTcsFp8+bNUKvnfxh27NgBgSB1s1y3bh1sNhsA4I033sD1118PkUiEuro6NDQ04OTJk0W/5ouJprSD5JljkwCYj7LVU6d7LNQCD88GMROIYktDaR9MhTqcjEpx2ViH86FVL8eUNwJfOF7UwPAKSx+CINBpUmYcKBpp8cKUFxOcnjwyDosrhH+7sqUynrmEoTbeXOY4kSSJ94aduOsPJ/BPf/wQfdN+fHFHI176py2457LlqJIv3cOEC525WUfFGqmr00hBALCwsAY6l+GZAHgEUK2oCE4AIODzsFwnwwCNprqnjk5AyCfwifU1RbiywjDSFNLDsQS6ramYg2KO1HlCMSTzHGM+Mu5GlVyExiIJwHSgwqWp/NkuiwvvjTjx+S31lSKRJcRt65bhW7vbSn0ZFdKUfXXKc889h2uvvRYAMD09jbVr12Z+z2g0Ynp6OuffwecT0GguDAskn88r6r9ltSLVNPfeiBNamRBb2gyM3EWr+anNmyOcKPi6T/bYAQBXr14GTQlPj2tCqc1ygs9n/G9yBGOor5LR+rpiv9d02bC8CjgwimPTfjiDMWxs1JXldS4lyvW95oINjTocHE05nOpNaogExTn36BCmHneuWHLea22ZDeA3XeO4dqUJ162v5fQaLqb3uRS0pXNYvHGSk9f59KQHD/71NPpsPpjVEvzH9R24dUMtpAs4JCrvdfkhV0pAEIBEwEdbrRY8lpzSud7rWq0UU74oa58HqyeM7/29F6/1TOPS5ipU6yojwBSrajXYP+hY9LWe8Ufwco8dH1tfg+YaZgeYpfi51gDQyoRwRuavo0mSxMC0HweGZnDgzAwOj7oQiSehEAvQVqeBRsa9+G3SyZEgAZ5YyPj7kSSJYxNeXNpcBa22fD7DKyUpUWncFcKV7QY88u5x1Gqk+KcrWiCuHEhdkFSe19xT1oLTY489Bj6fj5tuugkAFgwCpTNWk0iQcLu5q6UtJhqNrOj/lnptqqluU50GPi+zHAIBSUIu4qNv0lPwdb/VO41GnRQylPb95MVSgpN11g+3m5m7Z9wZxLZGLa3rL8V7TYcaWeq28UyXBQCwXC0uy+tcSpTre80Fy9NOI7mIj6A/jGL9qwmShEzIx5DNm3mtSZLEt54/DSGPwJd2NHD+HlxM73MpEJAkBDwCI3Yf669zLJHEV/54AqFYAv+xuw17OgwQ8nmIBCOILPCtKu91eaKVClEtF8HLcC2zGLne6zqNBIPThX8m40kSfzo+iV++Z0GCJHHPjkbcvqm28jmbQ4NajBl/FEOT7qxuw18fGEEsnsRtq02MX7tS/VyblGJYHH4MT7nRZXGha9SFLosbM+nG1+VVMtyyxowtjVpsqFWDiMbhjnKfZSchUvuyUZsXjQyzjUZmg3D4I1hjVJTdZ1grFWJkxo+n3h9B37QP//v6doQCEXDTN1mh1FSe1+yg12ffE5et4PT888/j7bffxm9/+9uMqGQymTLjdUDK8WQwGEp1iRcNTVVyDM8GsTWPZjiCIFCvlRbcVBeNJ3FswoObV5c+3DHfkbpoPImZQHTJBoZTVMlF0MmEODruAZ9HoFVfaX+oQJ+V6UbDYuY3Aal70TL1/Ka6ff0OHLK4cP/O5nn5LhWWJjyCgEEpzpQzsMkzRycx5grh/96yCtuX61j/+ysUhw21mqK3xDZoZTg27kGSJPMep++2evGD18+g3+7Hpcu1+PqVLahRl88YUrlABYcPOvyokp//cxqMJvDsh1Z8pKVqSYU/G5VivDs0i92PHQKQyhLd0qDFlkYttjRoS5bjRT3H88lxolqnyykwnKJWI0WvzYc3++xYZVbi6hX6Ul9ShQpLmrIUnPbv349f//rX+P3vfw+p9OwDddeuXbjvvvtw5513Ynp6GqOjo1izZk0Jr/TioM0gxxsD/6+9ew+PsjzzB/6dU2Ymh8lMEiYhIQkSiIkogaxZi0A0qQRimIJBPBRsF3qtle1iEYstWtsVrQrb9VD2UvEn7YVUvFoR1soWKvIrqFWQICZRCQcJh5wDmczkMJPM4dk/khlBEsgkkzm88/38pcM77zx57mTmnfu9n/tpxT8Ps3dShkGL6gbr1Q+8gsoGC3qcbp97SI2GaJUCCrnM54STp69ISoAvdv1NJpMhe0wsDpwxY2JSDNQBWhJF0pAUq4YxNirgCSegr49TvaUv+d1hd+K5faeQmxyLO6emBnwsNDqS49Ro8XMPp9bOHmw6cBazJiQw2RTmnjHlBvw1xydoYXe60dLRgxQfbzh19jjx0kense3zBiTFRuFZUy6KJyVx04xBTBrTtzTreEsXvjP+8r/Vd75ogtXuxA8KwmvnqpIcI+wON/LT4/Gd8QZca4wNiV6ghv7PcXO37wmnw+fakRKnRlp86N2ETTdo8Nf+Nh7PzMvl3xvRCAU94bRq1Sp8+umnMJvNKCwsxIoVK/Dqq6+it7cXS5cuBQDk5eVh7dq1mDRpEkpLS3H77bdDoVDgV7/6FRQKrqcdbXdNS0X+uHifL5Q8Mg3ReK+mFT1O97CTEwdOt0Mpl+GfQmAnC5lMBp1a6fPW2439d91TQ/DD1VfZxhgcOGNGbjKrm8h39xWkQ6UI/AVcarwGh86aIYTASx/Vwtzdi+fvmBzUXS/Jv1Li1Pi83uLXc/7ug1o43W6sKsry63kpMngqac602YZ8HSWEwJ5jrXhu3ym0dfXirmmpeGDG+IBtdx+u4rUqJMepcXyAneqcLje2VtRhapoON6TqgjC64Zt97ZiQrLLx3Dhq97HCyS0EDp9rx6ysxJBM5ozr7xNbPCkJeWnc5YxopIL+yfXcc89d9tiiRYsGPX758uVYvnz5aA6JviUmSjmiN9wMgxYCQF27DVlJw2sM+OkZM25I1YXM9rU6jRIW2/ASTuFe4QR8U7aeyx3qaBjuyQ/OzkCp8RrYHG78o7YNb1c24q5pqchN5u+wlCTHqdHS2QuXW/glkfh5nQW7j7Zg2U3p3i8hRL7wJJxOt3XjpvFXr9Kua7dh3d6TOHDajBxjLJ5bMJm7wfpg0pgYnBhgp7r3j59HU0cPVn93YhBGJU2ehPPuZ+wAABp7SURBVJPZx4TTydYuWOxOFITgcjoAmJqmQ1JsFP591jXBHgqRJAQ94UTSl9G/3elZ8/ASTubuXtS0dGL5jPF+Htnw6TQqWO2+fcDWXrBBpZAhWQK9Ym7KNOCWrEQUTuDyEgofqf3VBf+x6xiSYqPwQAi9p5B/pOjUcLkF2rp7R9yXy+UW+M//fxLJcWr8y00ZfhohRZrEaBViohQ4c5VelubuXvz+4Dls+7wBaqUcDxdlYdHUVFZg+ijbGItPatsuqaoXQmDLoXMYn6DFTF63+I1GpYBGKfe5wqniXF//plBYtTCQggwDPn6kCBYL24QT+QMTTjTq0vvvCp9pG94OAJ+e6ftgGsqdwUDRaZRo6+716TlVDRZclxwHpSL8ex7po1X47YLJwR4GkU88vSIsdieeNeVyeYoEeZrnNll7Rpxw2lHViOOtXXh6Xi603A6bhkkmk2F8QjROD3IN1N3rwtbDdfhjRR1sDhdM16fg/umZMAapEXS4yx4TA5cATl3o8lawfnqmHcdbu/B4SXZI9D6SEkO0yueE06Gz7cgwaIPW7HwoQnGpH1G44tU2jbpYtRKJMVHD3qnu4BkzdBolcoyh0y9Ip1Gi1ocEmt3hwtHmTtwbpKVERNS3pE4hA74zPgHFk5KCPRwaBZ4vMM0dPbhhBOdptznwyj9O48b0eNyWzd8VGpnMBC0q+nfl8nC63Pif6ib8v0/OoK3bgVsnJuLfZl6DaxLDZ/e0UOTZOfdEyzcJpy0V55AUE4W5udzZ2t/0Wt8STk63wJE6C0pyQq8nFRGNDiacKCAyDdphJZyEEDh4xox/ztCHVFm5TqP0aUldTXMnnG6BvLTwalRJJCXRUQr8951TkG2M4d1LiUqJ66tiaxrhTnWv/OM0OnuceLh4In9XaMQyDdH461ct6O51QauS4/3j5/HyR7U4127HtDQd/nP+ZEwJs0bWoWqcXgOtSu5tHH6spRMHz7Tj32ddgyjuqut3eq3Kp13qjjV3oKvXhRtDdDkdEfkfE04UEBkGLfafvODz82rbutHS2YubMkNnOR3Ql3Dq7HENuTFtZYMVAHhBSRRkN4Zok1Lyj1i1AtEqBZpHkHA61tyJ7ZWNuDs/DROHudEF0cXG9/ey/J/qRuw+2oKjzZ3ISorGcwsmY+aEBCY1/Uguk2FiUiyO9zcO33LoHKJVCpRPGRvkkUmTXqvyqWXGnmPnoZDLQrZhOBH5HxNOFBAZBi3MNgesdgd0GtWQn3cwBPs3AfD+DB09Tu8uHVdSWW9BhkELQ3TUaA+NiChiyWQyJOvUaOrfFdRXQvQ1CtdrVbh/eqafR0eRKqN/p7rn951Ccpwav56bjdLc5JCq3JaSbGMM/lbTggaLHe8fa8U9+eMQp+FXntFgiFYNeZe6HqcbO79swi1ZibweJoogfPelgMgw9F1snTPbMHns0BNO+0+eR4ZBi7H9u0uFCl3/hUuH/eoJJyEEqhqsKMxKDMTQiIgiWnKcetgVTruOtqCywYrHS7L5BZX8ZnxCNG6/zoiJSTG4a1qad/c0Gh3ZY2LwdqULz/39a0Amwz35qcEekmTptSrYHG7YHS5orrK5wt9PnIfF7mS1GVGE4SceBUSmoX+nOh/6ONU0d+DwOQvmX58yWsMaNk/CaSh9nM6YbbDYnVxOR0QUACnDTDh19Tqx4YNaTE6Jw7zrk0dhZBSplHIZnijNwX0F6Uw2BYCncfj+ry9gbs4YpITYTUsp8dx0HUrj8O1VjUiL16Agk8vpiCIJP/UoINL0fbtD+ZJw2nKoDjFRCpTnhd6dEM+SOovdedVjq+r7+jflpcWP6piIiKivwqmt24Eep9un52365CzOd/VidXEWt04nCmMTx8TA8xe85Mb0oI5F6jwJJ4vtytfDpy9040idBXdMGcv3V6IIw4QTBYRKIUdqvAZn24aWcKq32PD+8VaUTxmLWHXoLWvQqb9ZUnc1lQ0WxGuUyOxvGkpERKMnRacGALT4UOV0uq0bb35Wj+9dn4zJY1mNShTOtCoFJo2JwawJCZg4ho3/R5OhP+FktvVe8bgd1Y1QyGWYN5nVo0SRJvS+yZNkZRiicdY8tJ0stlbUQy6T4Z78tFEe1fDotH1/OkOpcKqst+KGVB3v6BARBUByXF/CqbmjB+mGqyf6hRD4r79/DY1Kjp/Muma0h0dEAfDyXVMQpeB99dH2zZK6wa+He5xu/O+XzSiamIjEGDYLJ4o0fCemgMkwaHHWbIMQ4orHtXc78M4XTZiba4Sx/4tDqPFWOPVcec16e7cDZ8w25LF/ExFRQKTE9fVraeoY2k51H3x9AQdOm3H/zeORwJ2TiCRBp1FdtYk1jZw+2lPhNPj18N7jrbDYnbiDzcKJIhITThQwGQYt7E43WjuvXHb7VmUDepxuLLlxXIBG5julQo5olQLWq1Q4VTX29W+aksaEExFRIBgvqnC6mkNnzVj7t+OYkBiNRSHYL5CIKJTpNErIZUB79+DX9juqGpGu1+DGDDYLJ4pETDhRwGR4d6obfFmd3eHCn480YOaEBGQlhfa6e51GedUldZX1VijlMlyXHBegURERRTa1Uo6EaBWarFdOOL31eQNWbKtGUkwU/mvBZCi5/IaIyCdymQzxGtWgS+q+Pt+Fz+utbBZOFMF4dUUB40k4nb3CTnXvftmMdpsDPygI/V1F4jTKqzYNr2qwICc5lmXdREQBlBynHrTCyely49n3T2D93pOYfk0CNt07FeP03NSBiGg49NGqQZfU7ahqhErBZuFEkYxNwylgjHFqaJTyQRNOTrfAGxV1uGFsHKaGwRK0eI0SVvvga9Z7nW581dSBO6emBnBURESUHKfGmQE+a9ptDvzi3a9w+JwFPyhIx7/NHA+FnHfdiYiGS69VoX2AhJPd4cJfv2pB0cQkGNgfjyhiscKJAkYukyG9v3H4QP5+4jzqLXbcV5AOWRiU3cZpVFfs4XSspRO9LoG8tPgAjoqIiJLj1Gi29lyyScWpC134lzeOoLrBiidKr8WKwmuYbCIiGiGDVoX27ssTTu8fb0VHjxPl7I9HFNFY4UQBlWnQ4nhr12WPCyGw5dA5ZBi0KMxKDMLIfKfTKK+YcKps6G8Yzh3qiIgCKkWnQbfDhc4eF+I0Snx06gJ++b81UCvleOWuPNzA92UiIr8YrMJpe2UTMg1a5I/jjVeiSMYKJwqoDIMW9e02OF3uSx4/fM6Co82dWHLjuLC543y1JXWV9RakxWuQFMMyYiKiQEq+aKe6LYfOYdWOL5Gu12Lz4mlMNhER+ZE+WgWL3QH3RRWlJ1u7UN3Y1yw8HFYtENHoYYUTBVSGIRouAdRZ7BifEO19/PVD55AQrcLt14VPU8E4tRK9LgG7w3VZU3AhBKoarPjOeEOQRkdEFLk8Caf/2H0Mx1o6cVv2GPx6bjY3cCAi8jO9VgW3AKx2J/RaFQBge1UjohQylLFZOFHEY4UTBdRAO9WdaO3EJ6fNuCc/DWpl+PxK6vo/VAdaVldvsaOt24E83kknIgq4lP6E07GWTvz45kw8PS+HySYiolFg6L8e9vRxsjlc+OtXzSjOHuNNQBFR5GKFEwXUQAmnLYfqoFXJsTDMmgrq1H1/PtYeJ4z9X248Kus9/Zu4bp2IKNCSYqPw/X9Kw9S0eBRNSgr2cIiIJEuv7bse9vRx2lPTiq5eF8qnhNd1PRGNDiacKKDitSrotSqcNXcDAJqsdrxX04K789Og04TXXRCdpj/hNEAfp8oGC2LVCkxIir7s34iIaHTJZTI8dGtWsIdBRCR5Bm1fr1Jzf8Jpe1UjrkmIxtQ0VvkTEZfUURBkGLTeCqc3P6sHZDLcm58W5FH5Lr4/QWa1Xb6krrLeihvG6iBno0QiIiIikqj4iyqcjrV04sumDtyRx2bhRNSHCScKOE/CyWp3YEdVI+bkjEGKThPsYfksTvPNkrqLWe0OnLrQjTze2SEiIiIiCfP0aWq39V3Xq5VylF1nDPKoiChUMOFEAZdh0KK1sxevH6qDzeHGfTemB3tIw/LNkrpLE07VjR0AgDz2byIiIiIiCdOoFNCq5Giw2LH7aAtuy04KuzYZRDR62MOJAi6zv3H4GxV1uPkaAyaOiQnyiIYnJkoBhQzo+FYPp6p6CxQyYPLYuCCNjIiIiIgoMAxaFf5W0wKbw4072CyciC7CCicKuAxDXyNtp1vgBwXhWd0EADKZDHEaFSzfqnCqbLAi2xgLLbfgJiIiIiKJi9eqYHO4kZUUjSmpbClBRN9gwokCbpxeAxmA3ORY5I8L72VnOo3ykiV1TpcbXzR28MOWiIiIiCKCIbpvCV35FDYLJ6JLcUkdBZxGpcCqoizkpenC/kNJp1Gi46KE0/HWLvQ43chLC+9EGhERERHRUCTFREGtlKM0NznYQyGiEMOEEwXFPflpwR6CX+g0Spi7v+nhVNlgBQBWOBERERFRRPjX6ZlYcMNY7w7OREQefFcgGgGdRoUzbTbv/1fVW5ASp0ZynDqIoyIiIiIiCowUnQYpOk2wh0FEIYg9nIhGQKdWoqOnb0mdEAKVDVbkpbG6iYiIiIiIiCIbK5yIRsDTw8ktBJqsPWjt7MWUVPZvIiIiIiIiosjGCieiEYjTKCEAdPY4UdXfv4kVTkRERERERBTpmHAiGoF4Td82sFa7E5X1FkSrFJiYFBPkUREREREREREFFxNORCOg69+Nw2J3orLBiuvHxkEhlwV5VERERERERETBxYQT0Qh4Ek5NVju+Pt/F5XREREREREREYMKJaER0/UvqPq5tg1sAeWwYTkRERERERBT8hNOaNWswffp0zJs3z/vYrl27UFZWhpycHFRXV3sfdzgc+PnPfw6TyYTS0lJs3LgxGEMm8orrr3D66FQb5DLg+tS4II+IiIiIiIiIKPiCnnAqLy/Ha6+9dslj2dnZ2LBhAwoKCi55fPfu3ejt7cW7776L7du3409/+hPq6uoCOVyiS+jUfQmntm4HJibFICZKGeQREREREREREQVf0L8dFxQUXJY0ysrKGvBYmUwGm80Gp9MJu90OlUqF2NjYQAyTaEBRSjm0KjlsDjempLJ/ExEREREREREQAhVOvpgzZw60Wi1mzpyJoqIiLFu2DHq9PtjDoggX11/llJfG/k1EREREREREQAhUOPmiqqoKcrkcH374IaxWK77//e/j5ptvRnp6+hWfp1DIoNdHB2iUo0uhkEvmZ5GKhBg1Wjp7MSs3GXq91m/nZawjB2MdGRjnyMFYRw7GOnIw1pGDsY4cjPXoC6uE086dOzFr1iyoVCokJiYiPz8f1dXVV004uVwC7e3dARrl6NLroyXzs0hFTJQcxtgoRAu3X2PDWEcOxjoyMM6Rg7GOHIx15GCsIwdjHTkYa/8YM2bwjbPCaknd2LFjcfDgQQgh0N3djcrKSkyYMCHYw6IId9+N6Xjo1izIZLJgD4WIiIiIiIgoJAS9wmnVqlX49NNPYTabUVhYiBUrVkCv1+PJJ59EW1sbfvzjHyM3NxebNm3C4sWLsWbNGsybNw9CCJSXlyMnJyfYPwJFuBkTEoI9BCIiIiIiIqKQIhNCiGAPYrQ5HC7JlMqx7C9yMNaRg7GODIxz5GCsIwdjHTkY68jBWEcOxto/JLOkjoiIiIiIiIiIQh8TTkRERERERERE5FdMOBERERERERERkV8x4URERERERERERH7FhBMREREREREREfkVE05ERERERERERORXTDgREREREREREZFfMeFERERERERERER+JRNCiGAPgoiIiIiIiIiIpIMVTkRERERERERE5FdMOBERERERERERkV8x4URERERERERERH7FhBMREREREREREfkVE05ERERERERERORXTDgREREREREREZFfMeFERERERERERER+xYTTCDQ2NuK+++5DaWkpysrKsHnzZgBAe3s7li5dipKSEixduhQWiwUA8Je//AUmkwkmkwn33HMPampqvOf64IMPMGfOHMyePRuvvvrqoK+5Y8cOlJSUoKSkBDt27PA+/vzzz+OWW27BtGnTrjjmL774AiaTCbNnz8ZTTz0FIQQAYNeuXSgrK0NOTg6qq6uHPSdSJaVYr1u3DnPnzoXJZMJPfvITWK3WYc+LFEkp1i+88AJMJhPmz5+PZcuWobm5edjzIkVSirXHpk2bcO2116Ktrc3n+ZAyKcV6w4YNmDVrFubPn4/58+dj//79w54XKZJSrAFgy5YtmDNnDsrKyrB+/fphzYlUSSnWK1eu9P5NFxcXY/78+cOeFymSUqyPHj2Ku+66C/Pnz0d5eTmqqqqGPS9SJKVY19TU4O6774bJZMIDDzyAzs7OYc9LWBM0bM3NzeKLL74QQgjR0dEhSkpKxIkTJ8S6devExo0bhRBCbNy4Uaxfv14IIcThw4dFe3u7EEKIffv2iTvvvFMIIYTT6RTf/e53xdmzZ0VPT48wmUzixIkTl72e2WwWxcXFwmw2i/b2dlFcXOw935EjR0Rzc7OYOnXqFce8cOFC8dlnnwm32y1+9KMfiX379gkhhDh58qT4+uuvxZIlS0RVVZUfZkdapBTrDz/8UDgcDiGEEOvXr/eOmfpIKdYdHR3eYzZv3iwef/zxkUyN5Egp1kII0dDQIJYtWyZuvfVWceHChRHOjrRIKda/+93vxGuvveaHWZEmKcX6k08+ET/84Q9FT0+PEEKI8+fPj3R6JEVKsb7YM888IzZs2DDMWZEmKcV66dKl3v/et2+fWLJkyUinR1KkFOvy8nJx8OBBIYQQb731lnj++edHOj1hiRVOI2A0GjF58mQAQGxsLCZMmIDm5mbs3bsXCxYsAAAsWLAA77//PgAgPz8f8fHxAICpU6eiqakJAFBVVYXMzEykp6cjKioKZWVl2Lt372Wv99FHH2HGjBnQ6/WIj4/HjBkz8OGHH3rPZzQarzjelpYWdHZ2Ytq0aZDJZFiwYIH3dbKysjBhwgQ/zIo0SSnWM2fOhFKpvGxs1EdKsY6NjfUeZ7PZIJPJRjI1kiOlWAPAM888g9WrVzPOA5BarGlwUor1m2++ifvvvx9RUVEAgMTExJFOj6RIKdYeQgjs2rUL8+bNG8HMSI+UYi2TydDV1QUA6OjouOq5Io2UYl1bW4uCggIAwIwZM/Dee++NdHrCEhNOflJXV4ejR48iLy8PFy5c8P5yGo3GAZc2bNu2DYWFhQCA5uZmpKSkeP8tOTl5wKUvQz1uMN9+fkpKCpfYDIOUYv322297x0aXk0KsPeXA7777Ln76058O+byRJtxjvXfvXhiNRuTk5Az5fJEq3GMNAG+88QZMJhPWrFnjXVZAlwv3WJ8+fRoVFRVYtGgRlixZwqU3VxDusfaoqKhAYmIixo8fP+TzRppwj/Wjjz6K9evX45ZbbsG6deuwatWqIZ830oR7rLOzs73Jp927d6OxsXHI55USJpz8oKurCw8++CAeffTRSyoKBnPgwAFs27YNP/vZzwDgsh4cAAa8Qz3U4wYz0ueTtGL98ssvQ6FQ4Hvf+96QzxtJpBLrhx56CPv374fJZMIf//jHIZ83koR7rG02G1555RUmFIcg3GMNAPfeey/27NmDd955B0ajEc8+++yQzxtJpBBrl8sFq9WKP//5z3jkkUewcuXKAY+PdFKItcfOnTtZ3XQFUoj1m2++iTVr1mD//v1Ys2YNHnvssSGfN5JIIda/+c1vsHXrVpSXl6Orq8tbrRppmHAaIYfDgQcffBAmkwklJSUA+kqeW1paAPSV2SUkJHiPr6mpwS9/+Uu89NJLMBgMAPoyoRcva2pubobRaERlZaW3geDevXsHPW4wLpfL+/wXX3zxsuc3NTWxjNMHUor1jh07sG/fPvz2t79l0nEAUoq1x7x58yK2lPdKpBDrs2fPoq6uzttstqmpCeXl5WhtbfXPJEmEFGINAElJSVAoFJDL5Vi0aBE3+hiAVGKdnJyM2bNnQyaTYcqUKZDL5TCbzX6YIemQSqwBwOl0Ys+ePbj99ttHOCvSJJVYexpUA0BpaSkrFwcglVhnZWXh97//PbZv346ysjKkp6f7YXbCUEA6RUmU2+0Wq1evFk899dQljz/77LOXNDVbt26dEEKI+vp6cdttt4nDhw9fcrzD4RDFxcWXNDU7fvz4Za9nNptFUVGRaG9vF+3t7aKoqEiYzeZLjrlaU7Py8nJx5MiRQZsVsmn4wKQU6/3794vS0lI2FR6ElGJdW1vrPeb1118XK1asGNokRAgpxfpiRUVF/Pv+FinFurm52XvMH/7wB7Fy5cohzkJkkFKst27dKl544QUhhBCnTp0ShYWFwu12+zAb0ialWAvRd322ePHioU9ABJFSrOfOnSsOHDgghBDi448/FnfccYcPMyF9Uoq1Z6MHl8slVq9eLd566y0fZkI6ZEKwNne4KioqsHjxYmRnZ0Mu7ysWW7VqFaZMmYKVK1eisbERY8eOxYsvvgi9Xo/HHnsM7733HlJTUwEACoUC27dvBwDs378fTz/9NFwuFxYuXIjly5cP+Jrbtm3Dxo0bAQAPPPAAFi5cCABYv349du7ciZaWFhiNRixatAgrVqy47PnV1dVYs2YN7HY7CgsL8fjjj0Mmk2HPnj148skn0dbWBp1Oh9zcXGzatMnvcxaupBTr2bNno7e3F3q9HgCQl5eHtWvX+nfCwpiUYr1ixQrU1tZCJpMhLS0NTzzxBJKTk/0+Z+FKSrG+WHFxMbZt23bJ3b9IJ6VYr1692rvtc1paGtauXctq5YtIKda9vb149NFHUVNTA5VKhUceeQTTp0/3+5yFKynFGgB+8YtfIC8vD/fee69/J0oCpBTriooKPP3003A6nVCr1fj1r3+N66+/3u9zFq6kFOvNmzdj69atAIDZs2fj4YcfjsiVJUw4ERERERERERGRX7GHExERERERERER+RUTTkRERERERERE5FdMOBERERERERERkV8x4URERERERERERH7FhBMREREREREREfkVE05ERERERERERORXTDgREREREREREZFf/R8PLt2fqZaFjgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "fig, axs = plt.subplots(3, 1, figsize=(20, 15))\n", "plot_fleet = fleet.loc[fleet[\"vehicle_id\"] == 2]\n", @@ -376,26 +181,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 7238\n", - "1 1762\n", - "Name: target, dtype: int64\n", - "\n", - "Percent of failures in the dataset: 0.19577777777777777\n", - "Number of vehicles with 1+ failures: 49\n", - "\n", - "0 0.804222\n", - "1 0.195778\n", - "Name: target, dtype: float64\n" - ] - } - ], + "outputs": [], "source": [ "# let's look at the proportion of failures to non-failure\n", "print(fleet[\"target\"].value_counts())\n", @@ -422,38 +210,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " percentage of failures\n", - "vehicle_id \n", - "84 1.00\n", - "65 1.00\n", - "17 1.00\n", - "71 1.00\n", - "28 0.99\n", - "15 0.92\n", - "3 0.88\n", - "63 0.76\n", - "31 0.74\n", - "40 0.73\n", - "75 0.67\n", - "6 0.66\n", - "73 0.61\n", - "42 0.58\n", - "64 0.49\n", - "85 0.42\n", - "16 0.40\n", - "22 0.38\n", - "39 0.36\n", - "26 0.35\n" - ] - } - ], + "outputs": [], "source": [ "p = fleet.groupby([\"vehicle_id\"])[\"target\"].sum().rename(\"percentage of failures\")\n", "fail_percent = pd.DataFrame(p / 100)\n", @@ -463,123 +222,9 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "target 0\n", - "vehicle_id 0\n", - "datetime 0\n", - "make 0\n", - "model 0\n", - "year 0\n", - "vehicle_class 0\n", - "engine_type 0\n", - "make_code_Make A 0\n", - "make_code_Make B 0\n", - "make_code_Make E 0\n", - "make_code_Make C 0\n", - "make_code_Make D 0\n", - "model_code_Model E1 0\n", - "model_code_Model A4 0\n", - "model_code_Model B1 0\n", - "model_code_Model B2 0\n", - "model_code_Model A2 0\n", - "model_code_Model A3 0\n", - "model_code_Model B3 0\n", - "model_code_Model C2 0\n", - "model_code_Model A1 0\n", - "model_code_Model A5 0\n", - "model_code_Model A6 0\n", - "model_code_Model C1 0\n", - "model_code_Model D1 0\n", - "model_code_Model E2 0\n", - "vehicle_class_code_Truck-Tractor 0\n", - "vehicle_class_code_Truck 0\n", - "vehicle_class_code_Bus 0\n", - "vehicle_class_code_Transport 0\n", - "engine_type_code_Engine E 0\n", - "engine_type_code_Engine C 0\n", - "engine_type_code_Engine B 0\n", - "engine_type_code_Engine F 0\n", - "engine_type_code_Engine H 0\n", - "engine_type_code_Engine D 0\n", - "engine_type_code_Engine A 0\n", - "engine_type_code_Engine G 0\n", - "voltage 0\n", - "current 0\n", - "resistance 0\n", - "cycle 0\n", - "engine_age 0\n", - "dtype: int64\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
targetvehicle_iddatetimemakemodelyearvehicle_classengine_typemake_code_Make Amake_code_Make B...engine_type_code_Engine Fengine_type_code_Engine Hengine_type_code_Engine Dengine_type_code_Engine Aengine_type_code_Engine Gvoltagecurrentresistancecycleengine_age
\n", - "

0 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [target, vehicle_id, datetime, make, model, year, vehicle_class, engine_type, make_code_Make A, make_code_Make B, make_code_Make E, make_code_Make C, make_code_Make D, model_code_Model E1, model_code_Model A4, model_code_Model B1, model_code_Model B2, model_code_Model A2, model_code_Model A3, model_code_Model B3, model_code_Model C2, model_code_Model A1, model_code_Model A5, model_code_Model A6, model_code_Model C1, model_code_Model D1, model_code_Model E2, vehicle_class_code_Truck-Tractor, vehicle_class_code_Truck, vehicle_class_code_Bus, vehicle_class_code_Transport, engine_type_code_Engine E, engine_type_code_Engine C, engine_type_code_Engine B, engine_type_code_Engine F, engine_type_code_Engine H, engine_type_code_Engine D, engine_type_code_Engine A, engine_type_code_Engine G, voltage, current, resistance, cycle, engine_age]\n", - "Index: []\n", - "\n", - "[0 rows x 44 columns]" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# check for missing values\n", "print(fleet.isnull().sum())\n", @@ -588,30 +233,9 @@ "fleet[fleet.loc[:, \"voltage\":\"resistance\"].values == 0]" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---\n", - " \n", - "## Feature Engineering \n", - "\n", - "\n", - "[contents](#2_Contents)\n", - "\n", - "For PrM, feature selection, generation and engineering is extremely important and very depended on domain expertise and understanding of the systems involved. For our solution, we will focus on the some simple features such as:\n", - "* lag features \n", - "* rolling average\n", - "* rolling standard deviation \n", - "* age of the engines \n", - "* categorical labels\n", - "\n", - "These features serve as a small example of the potential features that could be created. Other features to consider are changes in the sensor values within a window, change from the initial value or number over a defined threshold. For additional guidance on Feature Engineering, visit the [SageMaker Tabular Feature Engineering guide](). " - ] - }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -622,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -642,135 +266,9 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
vehicle_idvoltage_rolling_mean_4current_rolling_mean_4resistance_rolling_mean_4voltage_rolling_std_4current_rolling_std_4resistance_rolling_std_4
level_1
0014.0340300.173326128.3127600.0542980.0042014.661643
1014.0340300.173326128.3127600.0542980.0042014.661643
2014.0340300.173326128.3127600.0542980.0042014.661643
3014.0340300.173326128.3127600.0542980.0042014.661643
4014.0119340.172462121.8480690.0285050.00339810.347376
\n", - "
" - ], - "text/plain": [ - " vehicle_id voltage_rolling_mean_4 current_rolling_mean_4 \\\n", - "level_1 \n", - "0 0 14.034030 0.173326 \n", - "1 0 14.034030 0.173326 \n", - "2 0 14.034030 0.173326 \n", - "3 0 14.034030 0.173326 \n", - "4 0 14.011934 0.172462 \n", - "\n", - " resistance_rolling_mean_4 voltage_rolling_std_4 \\\n", - "level_1 \n", - "0 128.312760 0.054298 \n", - "1 128.312760 0.054298 \n", - "2 128.312760 0.054298 \n", - "3 128.312760 0.054298 \n", - "4 121.848069 0.028505 \n", - "\n", - " current_rolling_std_4 resistance_rolling_std_4 \n", - "level_1 \n", - "0 0.004201 4.661643 \n", - "1 0.004201 4.661643 \n", - "2 0.004201 4.661643 \n", - "3 0.004201 4.661643 \n", - "4 0.003398 10.347376 " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# create rolling stats for voltage, current and resistance group by vehicle_id\n", "stats = pd.DataFrame()\n", @@ -801,136 +299,9 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
targetvehicle_iddatetimemakemodelyearvehicle_classengine_typemake_code_Make Amake_code_Make B...engine_agevoltage_lag_1current_lag_1resistance_lag_1voltage_rolling_mean_4current_rolling_mean_4resistance_rolling_mean_4voltage_rolling_std_4current_rolling_std_4resistance_rolling_std_4
0002020-01-01 00:00:00Make AModel A12018TruckEngine A1.00.0...214.1034210.177269133.05960314.034030.173326128.312760.0542980.0042014.661643
1002020-01-01 02:00:00Make AModel A12018TruckEngine A1.00.0...214.1034210.177269133.05960314.034030.173326128.312760.0542980.0042014.661643
\n", - "

2 rows × 53 columns

\n", - "
" - ], - "text/plain": [ - " target vehicle_id datetime make model year \\\n", - "0 0 0 2020-01-01 00:00:00 Make A Model A1 2018 \n", - "1 0 0 2020-01-01 02:00:00 Make A Model A1 2018 \n", - "\n", - " vehicle_class engine_type make_code_Make A make_code_Make B ... \\\n", - "0 Truck Engine A 1.0 0.0 ... \n", - "1 Truck Engine A 1.0 0.0 ... \n", - "\n", - " engine_age voltage_lag_1 current_lag_1 resistance_lag_1 \\\n", - "0 2 14.103421 0.177269 133.059603 \n", - "1 2 14.103421 0.177269 133.059603 \n", - "\n", - " voltage_rolling_mean_4 current_rolling_mean_4 resistance_rolling_mean_4 \\\n", - "0 14.03403 0.173326 128.31276 \n", - "1 14.03403 0.173326 128.31276 \n", - "\n", - " voltage_rolling_std_4 current_rolling_std_4 resistance_rolling_std_4 \n", - "0 0.054298 0.004201 4.661643 \n", - "1 0.054298 0.004201 4.661643 \n", - "\n", - "[2 rows x 53 columns]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "fleet_lagged = pd.concat([fleet, stats.drop(columns=[\"vehicle_id\"])], axis=1)\n", "fleet_lagged.head(2)" @@ -938,680 +309,9 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countmeanstdmin25%50%75%max
target9000.00.200.400.000.000.000.001.00
vehicle_id9000.044.5025.980.0022.0044.5067.0089.00
year9000.02016.073.062006.002015.002017.002018.002020.00
make_code_Make A9000.00.400.490.000.000.001.001.00
make_code_Make B9000.00.240.430.000.000.000.001.00
make_code_Make E9000.00.200.400.000.000.000.001.00
make_code_Make C9000.00.110.310.000.000.000.001.00
make_code_Make D9000.00.040.210.000.000.000.001.00
model_code_Model E19000.00.180.380.000.000.000.001.00
model_code_Model A49000.00.130.340.000.000.000.001.00
model_code_Model B19000.00.090.280.000.000.000.001.00
model_code_Model B29000.00.090.280.000.000.000.001.00
model_code_Model A29000.00.070.250.000.000.000.001.00
model_code_Model A39000.00.070.250.000.000.000.001.00
model_code_Model B39000.00.070.250.000.000.000.001.00
model_code_Model C29000.00.070.250.000.000.000.001.00
model_code_Model A19000.00.040.210.000.000.000.001.00
model_code_Model A59000.00.040.210.000.000.000.001.00
model_code_Model A69000.00.040.210.000.000.000.001.00
model_code_Model C19000.00.040.210.000.000.000.001.00
model_code_Model D19000.00.040.210.000.000.000.001.00
model_code_Model E29000.00.020.150.000.000.000.001.00
vehicle_class_code_Truck-Tractor9000.00.670.470.000.001.001.001.00
vehicle_class_code_Truck9000.00.200.400.000.000.000.001.00
vehicle_class_code_Bus9000.00.090.280.000.000.000.001.00
vehicle_class_code_Transport9000.00.040.210.000.000.000.001.00
engine_type_code_Engine E9000.00.310.460.000.000.001.001.00
engine_type_code_Engine C9000.00.270.440.000.000.001.001.00
engine_type_code_Engine B9000.00.180.380.000.000.000.001.00
engine_type_code_Engine F9000.00.090.280.000.000.000.001.00
engine_type_code_Engine H9000.00.070.250.000.000.000.001.00
engine_type_code_Engine D9000.00.040.210.000.000.000.001.00
engine_type_code_Engine A9000.00.020.150.000.000.000.001.00
engine_type_code_Engine G9000.00.020.150.000.000.000.001.00
voltage9000.013.650.4011.5513.3713.7013.9315.94
current9000.00.170.060.010.130.160.190.39
resistance9000.087.0222.9234.3858.7994.69102.61138.36
cycle9000.050.5028.871.0025.7550.5075.25100.00
engine_age9000.03.933.060.002.003.005.0014.00
voltage_lag_19000.013.650.4111.5513.3713.7013.9315.94
current_lag_19000.00.170.060.010.130.160.190.39
resistance_lag_19000.087.0222.9534.3858.8494.69102.64138.36
voltage_rolling_mean_49000.013.650.4111.7713.3613.7013.9315.87
current_rolling_mean_49000.00.170.060.020.140.160.190.39
resistance_rolling_mean_49000.087.0322.9335.2258.7594.81102.56136.35
voltage_rolling_std_49000.00.040.040.000.010.030.060.28
current_rolling_std_49000.00.000.000.000.000.000.000.02
resistance_rolling_std_49000.01.020.730.000.520.891.3610.94
\n", - "
" - ], - "text/plain": [ - " count mean std min 25% \\\n", - "target 9000.0 0.20 0.40 0.00 0.00 \n", - "vehicle_id 9000.0 44.50 25.98 0.00 22.00 \n", - "year 9000.0 2016.07 3.06 2006.00 2015.00 \n", - "make_code_Make A 9000.0 0.40 0.49 0.00 0.00 \n", - "make_code_Make B 9000.0 0.24 0.43 0.00 0.00 \n", - "make_code_Make E 9000.0 0.20 0.40 0.00 0.00 \n", - "make_code_Make C 9000.0 0.11 0.31 0.00 0.00 \n", - "make_code_Make D 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model E1 9000.0 0.18 0.38 0.00 0.00 \n", - "model_code_Model A4 9000.0 0.13 0.34 0.00 0.00 \n", - "model_code_Model B1 9000.0 0.09 0.28 0.00 0.00 \n", - "model_code_Model B2 9000.0 0.09 0.28 0.00 0.00 \n", - "model_code_Model A2 9000.0 0.07 0.25 0.00 0.00 \n", - "model_code_Model A3 9000.0 0.07 0.25 0.00 0.00 \n", - "model_code_Model B3 9000.0 0.07 0.25 0.00 0.00 \n", - "model_code_Model C2 9000.0 0.07 0.25 0.00 0.00 \n", - "model_code_Model A1 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model A5 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model A6 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model C1 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model D1 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model E2 9000.0 0.02 0.15 0.00 0.00 \n", - "vehicle_class_code_Truck-Tractor 9000.0 0.67 0.47 0.00 0.00 \n", - "vehicle_class_code_Truck 9000.0 0.20 0.40 0.00 0.00 \n", - "vehicle_class_code_Bus 9000.0 0.09 0.28 0.00 0.00 \n", - "vehicle_class_code_Transport 9000.0 0.04 0.21 0.00 0.00 \n", - "engine_type_code_Engine E 9000.0 0.31 0.46 0.00 0.00 \n", - "engine_type_code_Engine C 9000.0 0.27 0.44 0.00 0.00 \n", - "engine_type_code_Engine B 9000.0 0.18 0.38 0.00 0.00 \n", - "engine_type_code_Engine F 9000.0 0.09 0.28 0.00 0.00 \n", - "engine_type_code_Engine H 9000.0 0.07 0.25 0.00 0.00 \n", - "engine_type_code_Engine D 9000.0 0.04 0.21 0.00 0.00 \n", - "engine_type_code_Engine A 9000.0 0.02 0.15 0.00 0.00 \n", - "engine_type_code_Engine G 9000.0 0.02 0.15 0.00 0.00 \n", - "voltage 9000.0 13.65 0.40 11.55 13.37 \n", - "current 9000.0 0.17 0.06 0.01 0.13 \n", - "resistance 9000.0 87.02 22.92 34.38 58.79 \n", - "cycle 9000.0 50.50 28.87 1.00 25.75 \n", - "engine_age 9000.0 3.93 3.06 0.00 2.00 \n", - "voltage_lag_1 9000.0 13.65 0.41 11.55 13.37 \n", - "current_lag_1 9000.0 0.17 0.06 0.01 0.13 \n", - "resistance_lag_1 9000.0 87.02 22.95 34.38 58.84 \n", - "voltage_rolling_mean_4 9000.0 13.65 0.41 11.77 13.36 \n", - "current_rolling_mean_4 9000.0 0.17 0.06 0.02 0.14 \n", - "resistance_rolling_mean_4 9000.0 87.03 22.93 35.22 58.75 \n", - "voltage_rolling_std_4 9000.0 0.04 0.04 0.00 0.01 \n", - "current_rolling_std_4 9000.0 0.00 0.00 0.00 0.00 \n", - "resistance_rolling_std_4 9000.0 1.02 0.73 0.00 0.52 \n", - "\n", - " 50% 75% max \n", - "target 0.00 0.00 1.00 \n", - "vehicle_id 44.50 67.00 89.00 \n", - "year 2017.00 2018.00 2020.00 \n", - "make_code_Make A 0.00 1.00 1.00 \n", - "make_code_Make B 0.00 0.00 1.00 \n", - "make_code_Make E 0.00 0.00 1.00 \n", - "make_code_Make C 0.00 0.00 1.00 \n", - "make_code_Make D 0.00 0.00 1.00 \n", - "model_code_Model E1 0.00 0.00 1.00 \n", - "model_code_Model A4 0.00 0.00 1.00 \n", - "model_code_Model B1 0.00 0.00 1.00 \n", - "model_code_Model B2 0.00 0.00 1.00 \n", - "model_code_Model A2 0.00 0.00 1.00 \n", - "model_code_Model A3 0.00 0.00 1.00 \n", - "model_code_Model B3 0.00 0.00 1.00 \n", - "model_code_Model C2 0.00 0.00 1.00 \n", - "model_code_Model A1 0.00 0.00 1.00 \n", - "model_code_Model A5 0.00 0.00 1.00 \n", - "model_code_Model A6 0.00 0.00 1.00 \n", - "model_code_Model C1 0.00 0.00 1.00 \n", - "model_code_Model D1 0.00 0.00 1.00 \n", - "model_code_Model E2 0.00 0.00 1.00 \n", - "vehicle_class_code_Truck-Tractor 1.00 1.00 1.00 \n", - "vehicle_class_code_Truck 0.00 0.00 1.00 \n", - "vehicle_class_code_Bus 0.00 0.00 1.00 \n", - "vehicle_class_code_Transport 0.00 0.00 1.00 \n", - "engine_type_code_Engine E 0.00 1.00 1.00 \n", - "engine_type_code_Engine C 0.00 1.00 1.00 \n", - "engine_type_code_Engine B 0.00 0.00 1.00 \n", - "engine_type_code_Engine F 0.00 0.00 1.00 \n", - "engine_type_code_Engine H 0.00 0.00 1.00 \n", - "engine_type_code_Engine D 0.00 0.00 1.00 \n", - "engine_type_code_Engine A 0.00 0.00 1.00 \n", - "engine_type_code_Engine G 0.00 0.00 1.00 \n", - "voltage 13.70 13.93 15.94 \n", - "current 0.16 0.19 0.39 \n", - "resistance 94.69 102.61 138.36 \n", - "cycle 50.50 75.25 100.00 \n", - "engine_age 3.00 5.00 14.00 \n", - "voltage_lag_1 13.70 13.93 15.94 \n", - "current_lag_1 0.16 0.19 0.39 \n", - "resistance_lag_1 94.69 102.64 138.36 \n", - "voltage_rolling_mean_4 13.70 13.93 15.87 \n", - "current_rolling_mean_4 0.16 0.19 0.39 \n", - "resistance_rolling_mean_4 94.81 102.56 136.35 \n", - "voltage_rolling_std_4 0.03 0.06 0.28 \n", - "current_rolling_std_4 0.00 0.00 0.02 \n", - "resistance_rolling_std_4 0.89 1.36 10.94 " - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# let's look at the descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution\n", "round(fleet_lagged.describe(), 2).T" @@ -1630,28 +330,9 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:288: UserWarning: Data must have variance to compute a kernel density estimate.\n", - " warnings.warn(msg, UserWarning)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABEEAAAQ7CAYAAABg2LBzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXRb9Z03/vfVvluWF8lbnM1JnM0JaxhC8mCapBC2hGRoZ8qhtJAp0xmgtHQOp0A7HKBnWqDAM89TmuEp0PZ0fvOwJAEyT1lMaCCEPcRJnJDVjld5kWRZ+3Z/f8h2EuJFtiXfK+n9OifnxPK91x9Z8tW9n+/3+/kIoiiKICIiIiIiIiLKcQqpAyAiIiIiIiIimg5MghARERERERFRXmAShIiIiIiIiIjyApMgRERERERERJQXmAQhIiIiIiIiorygkjqAqUgkEojHJ9fcRqkUJr2vVBhz5mVbvID0MavVSsl+9kRM5XwhB1K/ztONzzf38FwxMXJ/TzC+yZNzbID08fFcIR2pX/vplE/PFcjd5zvZ80VWJ0HicREeT2BS+1qthknvKxXGnHnZFi8gfcwlJWbJfvZETOV8IQdSv87Tjc839/BcMTFyf08wvsmTc2yA9PHxXCEdqV/76ZRPzxXI3ec72fMFl8MQERERERERUV5gEoSIiIiIiIiI8gKTIERERERERESUF5gEISIiIiIiIqK8wCQIEREREREREeUFJkGIiIiIiIiIKC8wCUJEREREREREeYFJECIiIiIiIiLKC0yCEBEREREREVFeYBKEiIiIiIiywu7du7Fu3TqsWbMGW7duPe/7kUgE99xzD9asWYPNmzejra0NAOB2u3HLLbdg+fLlePjhh8/Z5+DBg7juuuuwZs0aPPLIIxBFcVqeCxFJQyV1AETjCYtAIBpPy7EMaiW0QloORUR5YKLnH55jKN9N5jNbo1IiEpvYPvxby0/xeBwPP/wwnn/+edjtdmzatAn19fWYO3fu8DYvvfQSLBYL3n77bezcuROPP/44nnrqKWi1Wtx99904duwYjh07ds5xf/GLX+Dhhx/GsmXLcMcdd2D37t1YvXr1dD89WUjndfdIJvP3noljB/tDCEUyf66Sw7EBQBGKZuzY2YhJEJK9QDSOXUe603KsKxeUQqtRpuVYRJT7Jnr+4Tkm/Xbv3o1HH30UiUQCmzdvxpYtW875/vPPP4+XXnoJSqUSNpsNjz32GCoqKgAAtbW1mDdvHgCgrKwMzz777LTHn28m85l9WU0J9h7rmdA+/FvLT42NjaiurkZVVRUAYP369WhoaDgnCfLuu+/in/7pnwAA69atw8MPPwxRFGEwGHDRRRfh9OnT5xyzu7sbPp8Py5cvBwDceOONaGhoyNskSDqvu0cymb93ABBFEcFoHJ5gDP2hKAKROMKxxDn/rAY1egbCSIgiEmJyn4SI4a/PplQISCRECIPJ1DM5VeGcxxQKAWqFAJVSQLnVAJc/DLVCgEapgFGrglGjhFGrQpFBDZ168uekyf5eUnV1XQX0GTt69mEShIiIiGQplVHf2tpavPLKK9Dr9fjzn/+MX//613jqqacAADqdDjt27JAqfCJKM6fTCYfDMfy13W5HY2PjeduUlZUBAFQqFcxmM9xuN2w2W0rHdDgccDqd48aiVAqwWg2TeRqypVQqoNOqYdBrMvYzVEpFSsePJRJo7g3gtCuAVncAbe4gQrHEedspFQJ0KgW0KiX80TjC0QQUQjJ5oRAEKBSASlBAEAABAgARQ/mQoVVPw/kR8fzvReMiApE4ogkRzoEIApE4YokEovHzl0yZdSqUmrWoKjRgTokRM2wGKITUpqyl+nuZLEEhwGrOrffrVDAJQkRERLKUyqjvihUrhv+/bNkyvPbaa9MeJxFNj5FqdQhfu8lMZZupbD8kHhfh8QTG3S6bWK0GhMJRBIKRjP2MWDwx5vG7B8L4vNWDw04fwoNJj1KTBrV2E4pMWlh1KhTo1TBqldCqFFApzpS4nMhsCoNeM+Hnefbx44lkcsQfiWEgHEOfP4IeX/LfX4/24L2jPTBolFjkMOPCKisKDeoxjz3e72WqxETuvV8BoKTEPKn9mAQhIiIiWUpl1PdsL7/8MlatWjX8dTgcxsaNG6FSqbBlyxZ84xvfyGi8RJRZDocDXV1dw187nU6Ulpaet01nZyccDgdisRgGBgZgtVpTPmZXV9d5x6TM6/NH8N6xXhzt8UOlELDAbsICuwkzCvXQquS39E2pEGDWqWDWqeAAUFNy5nuhaBynXAEc7vLh81YPPj3twZJyM1bPKYZZx9tvOeCrQERERLI0kRHaHTt24ODBg/jTn/40/NiuXbtgt9vR2tqKW2+9FfPmzcOMGTPG/JlymeKuVCpkEcdoRosv2B+a8JTuyUwD12nVsBboJhyfHMg5NkDe8S1ZsgTNzc1obW2F3W7Hzp078cQTT5yzTX19PbZt24bly5fjzTffxIoVK8ac2VFaWgqj0Ygvv/wSdXV12L59O2655ZZMPxUalBBFfNLiwV+P90KlEHDFbBsunGGFfgr1NaSmUytRazej1m7GQCiGT1rc+Ly1H185fVgzvwRLyi0pzTaizGEShIiIiGQplVFfAPjwww/x7LPP4k9/+hM0mjM303a7HQBQVVWFSy65BE1NTeMmQeQyxd1qNcgijtGMFl8oEp/wlO7JTAMPhaPweM6vDzBefHIg59gA6eMba3q7SqXCQw89hNtvvx3xeBw33XQTampq8PTTT2Px4sW46qqrsGnTJtx3331Ys2YNCgoK8Jvf/GZ4//r6evh8PkSjUbzzzjv4/e9/j7lz5+IXv/gF7r//foRCIaxateqcGWWUOeFYHNsbu3CyL4D5pUasW1AKoza3bk/NOhWuml+CC6qs+O8mJ3Y2daPFHcQ1C+1QKpgIkUpuvcuIiIgoZ6Qy6tvU1ISHHnoIzz33HIqKioYf7+/vh16vh0ajgcvlwhdffIHbb799up8CEaXZ6tWrz+vccvfddw//X6vV4plnnhlx33fffXfEx5csWYI33ngjfUHSuPzhGP6/L9rR44/gm7WlWFaR27MjCg1qfPvCCnx40oX3T7owEI5hU105NCrF+DtT2jEJQkSy5vV68cADD+Do0aMQBAGPPfYYZs2ahR/96Edob29HRUUFnnrqKRQUFEgdKhGlWSqjvr/61a8QCASGb4KGWuGeOHECP//5zyEIAkRRxB133HFOQVUiIpJGKBrHf+3rgDsQxd8uK8fsYqPUIU0LhSBg5ZwiFOjV2NnkxCv7O7F5edk5xV1pejAJQkSy9uijj+KKK67AM888g0gkglAohGeffRaXXXYZtmzZgq1bt2Lr1q247777pA6ViDJgvFHfF154YcT9LrjgArz++uuZDI2IiCYoFk/glf2d6PGFsTmPEiBnW1JugSiK2NnUjZ2HnLh+sWP8nSitmHYiItny+Xz49NNPsWnTJgCARqOBxWJBQ0MDbrzxRgDAjTfeiHfeeUfKMImIiIgoBX/8+DROD9bEyMcEyJClFQVYPbcITV0+fN7aL3U4eYdJECKSrdbWVthsNtx///248cYb8bOf/QyBQAB9fX3DxRFLS0vhcrkkjpSIiCZKFEWEY6MXNyWi3HK8x49tX3ZgeWUBlpRbpA5HcpfNLMTcYiMajvbgeLdP6nDyCpfDEJFsxWIxNDU14cEHH0RdXR0eeeQRbN26dVLHkkvby8mSc8vCTJDL851ou8/x2naORi7Pl2g6tHmCePdoLzq9ISRE4J2jvai1GzG7KH9HhYlyXTgWx18Od6PaZsA35hVLHY4sCIKAaxfb8dzeFvzPXcexeVk5O8ZMEyZBiEi2HA4HHA4H6urqAADf/OY3sXXrVhQVFaG7uxulpaXo7u6GzWYb91hyaXs5WVK3LJxucnm+E233OV7bztHI5flm0lhtLyk/iKKI3Sdc+PCUC2atCpdUF0IhAMd7A2hs78c1C0tRV8Ei10S56K/H+zAQjuHn19aizxuSOhzZ0KuVWLugFK/u78Snpz1YMbNQ6pDyApfDEJFslZSUwOFw4OTJkwCAvXv3Ys6cOaivr8f27dsBANu3b8dVV10lZZhERJSC9wcTIEvLLdhyeTWurCnG6rnF+F/fWoZZRQb8d1M3DnUOSB0mEaWZcyCMz1v7cWFVAebZmRD/uvmlJlw6y4b3T/RhIBSTOpy8wCQIEcnagw8+iJ/85Ce47rrrcPjwYfzgBz/Ali1bsGfPHqxduxZ79uzBli1bpA6TiIjGcKhzAHsGEyDXLCyFRnnmElSrVmLTsjJUFOjw1pFu+MK8CSDKJX893gudSoEr5hRJHYpsff/ymUiIIvacYp276SDJcpj7778f7733HoqKivDGG28AAP7t3/4Nu3btglqtxowZM/DLX/4SFgsL5hDlu9raWrz66qvnPf7iiy9KEA0REU2UJxjFm0e6UVGgw9W1pRCE89e8qxQKrF9kx//56DTeOtKDjXVlEkRKROnW6g7iRG8A/2NuEfRqpdThyJbDosOyygJ82daPS6qtsBlSr0dGEyfJTJCNGzfiueeeO+exyy+/HG+88QZef/11zJw5E7/73e+kCI2IiIiI0kQURfy/JidEEbhusQOKMYr+FRk1WDnbhq+6fWjzBKcxSiLKlN0n+mDSKHHRDKvUocje5bNsUAoC9pzkbJBMkyQJcvHFF6Og4NzCVytXroRKlZyYsmzZMnR1dUkRGhERERGlybEeP5pdQayeW4RCg3rc7S+aYYVercDeU+5piI6IMqmzP4TT7iAunVkItZJVGMZj0qqwrLIATV0D8IaiUoeT02TZHeaVV17B1VdfPe52U2l5mY3tCPM15om2qBzLeO0r8/V3TERElG7xhIh3j/WiyKjBBZWpdX3RKBW4qMqK90+60D0QRqlZm+EoiShTPm5xQ6tSoK6CJQ5SddEMKz477cHnrf24soathDNFdkmQ3/72t1Aqlbj++uvH3XYqLS+zsR1hvsY80RaVYx5rnPaV+fo7ngq2vSQiopHsb++HOxDF5mXlYy6D+boLZ1jxcYsbH7e4cd1iRwYjJKJM6Q9GcaTbh0tmWKFVsRZIqqx6NRbYTdjX1o+/mWWDVsUZNJkgq9/qtm3b8N577+Hxxx8fsWgWEREREclfIiHio2Y3Kgp0mFM8sdmKerUSixxmHHH6EI7FMxQhEWXSvrZ+QARrgUzCxdWFCMcSONTplTqUnCWbJMju3bvxH//xH/jtb38LvV4vdThERERENElNzgH0h2K4bGbhpAa2FpdbEEuIOOL0ZSA6IsqkRELEgQ4v5hQbYdGNXwuIzlVu0aLUpMH+DiZBMkWS5TD33nsvPvnkE7jdbqxatQr//M//jK1btyISieC2224DANTV1eHhhx+WIjwiIiIimiRRTM4CKTZqMLfEOKljVBToYDOocaBjAHUVqdUTISJ5ONHnhy8SZy2QSRIEAUsrCvDOVz2sjZQhkiRBnnzyyfMe27x5swSREBEREVE6tbqD6PFFsH5h6aSXNwuCgCXlFvz1eB/cgWhKnWWISB4a270wapSYUzy5JCgBixxm7Drai/3tXqxZUCJ1ODlHNsthiIiIiCj77Wvvh1alQK1jaoWzFw3u/1U3l8QQZYtAJI7jvX4sLjNDOYGCyHQug0aJeaVGHOryIp4QpQ4n5zAJQkRERERp0R+M4itn8gZIrZzaZWaBXg27WYujTIIQZY2j3T4kRGDhFJOglPwdBqMJtLiyq3NlNmAShIiIiIjS4u3D3YiLIpZXpqeOx7wSI9r7Q/CHY2k5HhFl1mHnAAoNyQQmTc3sIgO0KgUOs0B02jEJQkRERERp8c5XPSgv0KHElJ4boJpSEwDgWI8/LccjoswJRGJocQVRazdNuh4QnaFSKlBTYsTRbh+XxKQZkyBERERENGWn+gI42etP6zT4UpMGBToVjvZwJJRI7o44fRAB1Nq5FCZdFthNCMUSONXHJTHpxCQIERHRBHT2h7BtfycOdHghihyZIRry5pFuKASg1m5K2zEFQUBNiQktriBi8UTajktE6Xe0xw+bQY0Sk0bqUHLG7CIjtCoFayOlGZMgREREKdp7yoUXPmnF0R4f3jjkxI4DXUgwEUIEURTx9lc9WFpRAJNWldZjzyoyIJYQ0eoJpfW4RJQ+4VgCp11B1JQYuRQmjZQKAbOLDDje6+fASxql91OKiIgoR7kDUew+0YeaEiPWL7Ljs9MefHDShTnFA1hSbpE6PKK0C4tAIBof8XvB/hBCkTPfO97jw2l3EBuWlac9jhmFeigEoNkVwKwiQ9qPT0RT19wXQFwUMbfYKHUoOWdOsRGHnT50ecMoK9BJHU5OYBKEiIgoBX893gulIGDdglLo1UqsnG3D8R4/PjjZh4UOM5QKjnxRbglE49h1pHvE7xn0GgSCkeGv3z/RBwC4aKYNTW2etMahUSlQadXjVF8AV9ak9dBElCbHe/3QqRSosOqlDiXnzCk2QkDyd8wkSHpwOQwREdE4urwhHHb6cEl1Icy65PiBIAhYNbcInmAMX7b3SxwhkbSO9/hRUaBDgV6dkePPKjLAORCGP8JWuURyI4oijvf6MbvYwAGBDDBolKiw6nCcXbLShkkQIiKicRzsHIBSEHBJtfWcx2cXGVBeoMO+NiZBKH95Q1F0DYRRU5K5afAzbcllMM3skEAkO53eMAKROOZwKUzGzC02omsgjIEQE8HpwCQIERHRGERRxBGnD7OLDdCpled8TxAELHKY0eOLoNcXlihCImkNjU5mMgnisGihUynQ4gpm7GcQ0eQ0u5LJydms2ZMxQ/WQhn7XNDVMghAREY2hzRPCQDg2atvPBYOPH3ayfR3lp+O9flj1ahQZM9cWUyEIqLTqcdrNJAiR3DT3BWA3a2HQsNxkptjNWujVCiZB0oRJECIiojEcdg5ApRAwt2TkJIhJq8KMQj2OMAlCeSiWSKDFFcScYkPG22LOKNTDHYxyOjiRjETjCbR5QphpY0HUTBIEATNtBjS7AmyVmwZMghAREY1CFEV81Z1cCqNVjf6RucBuQq8/wnoFlHc6PCHEEuJwzY5MmlGYvMlq9XA2CJFctHqCiIvTcw7IdzNtBvjCcfT5o1KHkvWYBCEiIhpFqzsIXziOOUVj1zqYNzhL5LMW93SERSQbp1xBCDiToMgku1kLjVLBJTFEMtLcF4RSEFA5DeeAfDeTdUHShkkQIiKiUewfbH07Y5xpvmadCkVGNbvEUN5pcQVQVqA7r2hwJigUAiqtOiZBiGSk2RVAhVUHjZK3lZlm1ath1atxirNOp4zvViIiolHsb+uHWatCoV497rbVhQYc6OhHNJ6YhsiIpBeOxdHhnd5aADMK9ejzR+AORKbtZxLRyELROJwDYVRzFsi0qS7Uo80TZF2QKWIShIiIaASiKGJ/uxfVNn1KBR9n2gwIRRNo6hqYhuiIpHfaHYQoYlprAVRakzdbR/h3lrd2796NdevWYc2aNdi6det5349EIrjnnnuwZs0abN68GW1tbcPf+93vfoc1a9Zg3bp1eP/994cff+GFF7B+/Xpce+21uPfeexEOs+V5Kto8IQBAFZMg06ayUI9QLIEeHxPBU8EkCBHJWn19Pa677jrccMMN2LhxIwDA4/Hgtttuw9q1a3Hbbbehv59LECj9TvQF0B+MpjzCNcOmhwDgk9OezAZGJBOnXUEoFQIqCnTT9jMdFi0UAtDUySRIPorH43j44Yfx3HPPYefOnXjjjTdw/Pjxc7Z56aWXYLFY8Pbbb+O73/0uHn/8cQDA8ePHsXPnTuzcuRPPPfcc/vVf/xXxeBxOpxN/+MMf8Morr+CNN95APB7Hzp07pXh6WafVE4RCAMqn8RyQ71ggOj2YBCEi2XvxxRexY8cOvPrqqwCArVu34rLLLsNbb72Fyy67bMSRIKKp+qI1mcyYkeIot16txJwSIz5lEiStxhv1ff7553HNNdfguuuuw6233or29vbh723btg1r167F2rVrsW3btukMOy+0eoIot2ihmsZaAGqlAnazljOu8lRjYyOqq6tRVVUFjUaD9evXo6Gh4Zxt3n33XWzYsAEAsG7dOuzduxeiKKKhoQHr16+HRqNBVVUVqqur0djYCCCZXAmFQojFYgiFQigtLZ3255aNWt1BlFl0ULMeyLQp0Klg1qrQytpIU6KSOgAioolqaGjAH//4RwDAjTfeiFtuuQX33XefxFFRrmns8KLYqIE1hXogQ5ZVFmBHYycisQQ0Y7TUpdQMjfo+//zzsNvt2LRpE+rr6zF37tzhbWpra/HKK69Ar9fjz3/+M37961/jqaeegsfjwb//+7/jlVdegSAI2LhxI+rr61FQUCDhM8odkVgCzoEwLq0unPafXVGgx4FOL2LxxLQmYEh6TqcTDodj+Gu73T6cyDh7m7KyMgCASqWC2WyG2+2G0+lEXV3dOfs6nU4sX74c3/ve93DllVdCq9Xi8ssvx8qVK8eNRakUYLXmVltYpVIBnVYNg14z7raRWAJd3jD+Zk5RStsPUSkVE9p+IiZybIVCmHAccol9ZrERzX1+6HXqlJbrAoCgEGA159b7dSqYBCEi2fv+978PQRBw88034+abb0ZfX9/wKE1paSlcLte4x8j2ixWlUpHV8U+UHJ7vkW4/FpZbJnTBU1elwcv7OtAejGF5lTXl/eTwfOXo7FFfAMOjvmcnQVasWDH8/2XLluG1114DAHzwwQe4/PLLYbUmX4fLL78c77//Pq699tppfAa5q90TREI8U6NjOlVYdfis1YNjvX7U2s3T/vNJOiMVg/z6TeBo24z2eH9/PxoaGtDQ0ACz2Yy7774bO3bswA033DBmLPG4CI8nt7p0WK0GhMJRBILj15tocQUQF0U4TJqUth8SiycmtP1ETOTYBv3E4p7o8SdqIscuN2twoL0fHS4/Cg2pXaOIidx7vwJAScnkPgOYBCEiWfvP//xP2O129PX14bbbbsPs2bMndZxsv1ixWg1ZHf9ESf18+4NRtLgCuGp+yYQueJYOJj72Hu3GLHPqyROpn+90mMyFSiqjvmd7+eWXsWrVqlH3dTqd4/5MuSRM5ZAYC/aHRk0Cnh5sB13jsECvOdMedzIjpRPdZ67dDBzownF3CJfNt4+4jRx+f6ORc2yAvONzOBzo6uoa/trpdJ63dMXhcKCzsxMOhwOxWAwDAwOwWq2j7vvhhx+isrISNpsNALB27Vrs27dv3CRIvhuqSVFpZT2Q6VY1XBcklHIShM7FJAhltYFQDM2uAPpDUcwtNsJh4Yk419jtyQvcoqIirFmzBo2NjSgqKkJ3dzdKS0vR3d09fOFClC6Hncl6A/PtJnj8qSdBiowalFu0aOzw4u8uzFR0+SOVUd8hO3bswMGDB/GnP/1pwvueTS4JUzkkxkKR+KhJwJa+AIqNGojxOALB+PDjkxkpneg+aoiwGdX4+EQvrltQMuI2cvj9jUbOsQHSxzdWwnTJkiVobm5Ga2sr7HY7du7ciSeeeOKcberr67Ft2zYsX74cb775JlasWAFBEFBfX48f//jHuO222+B0OtHc3IylS5dCoVBg//79CAaD0Ol02Lt3LxYvXpzpp5n1OvpDKDZqoFMrx9+Y0qrYqIFWpUCHJ4il5Rapw8lKkiykvP/++3HZZZedMyWV3R5ooo73+PEfe1vwxiEn3j/hwvMft2J7YydiiYTUoVGaBAIB+Hy+4f/v2bMHNTU1qK+vx/bt2wEA27dvx1VXXSVlmJSDDg0WXZxXaprwvkvKLTjQ4U13SHkplVFfAPjwww/x7LPP4re//S00Gs2E9qWJS4giWl0BVEk0AiwIAhY6LDjADjF5R6VS4aGHHsLtt9+Oa665BldffTVqamrw9NNPDxdI3bRpEzweD9asWYPnn38eP/nJTwAANTU1uPrqq3HNNdfg9ttvx0MPPQSlUom6ujqsW7cOGzZswHXXXYdEIoGbb75Zyqcpe6Ioor0/hArOApGEIAgoL9ChvT8kdShZS5KZIBs3bsR3vvMd/Mu//MvwY0PdHrZs2YKtW7di69atLHRIo2rqGsCOA12wm7W4ZmEpLDo1Pmv1YM9JF5QKAdcusqdcKIjkq6+vDz/84Q8BJAskXnvttVi1ahWWLFmCe+65By+//DLKysrw9NNPSxwp5ZpDnQOYadPDqJ34x+SSMgvePNKDLm+Is9OmKJVR36amJjz00EN47rnnUFRUNPz4ypUr8eSTTw4PqnzwwQe49957pzX+XNXnjyAUS6BcgnogQxY6zPjgRB/6/BEUGTkdPJ+sXr0aq1evPuexu+++e/j/Wq0WzzzzzIj73nnnnbjzzjvPe/yuu+7CXXfdld5Ac5grEEUompjW9th0rvICHT486WIh9kmSJAly8cUXo62t7ZzH2O2BUtXnj+D/NTlRadXhWxdUDLflWjWnCAoBeP+EC3azFpdIULGe0quqqmq4yOHZCgsL8eKLL0oQEeUDURRxqGsAl82c3DlkaUVyampjh5dJkCk6e9Q3Ho/jpptuGh71Xbx4Ma666ir86le/QiAQGL4JKisrw7PPPgur1Yp//Md/xKZNmwAAP/zhD4eLpNLUdHrDAIByCd/ftWXJJRMHOrz4HzXFksVBlI86BmcglDMJIpmKAh1EAJ3eEKpt8qzhI2eyqQky3d0e5Fz0aTT5GvPZhdniCRGvf9IKlVKBb108AwVfa125ZqEDTl8EH5x04eJZReeN4uq0aljHOGHn6++YiM7o9kXgCkSx0DG5iuM1xUZoVQoc7BzA2gVcfjFV4436vvDCC6Puu2nTpuEkCKVPZ38IGqUCRcbU20enW02JCSqFgAOdTIIQTbf2/hC0KgWKOQtLMkMJqPZ+JkEmQzZJkMmYSvEyqYs+TUa+xnx2YbZ9bf3o7A9hw1IH1BBHLKS2erYNzzl9aDjsxDfmn1swLRSOwuMZvWZIvv6Op2KyramI5Oqr7mQdmvmTqAcCJDtdLCg1oamL9QooN3V6Qyi36iRddqpRKbDAbmL9HSIJdPSHUGaR9hyQ7/RqJWwGNdo9rAsyGbJZQDTU7QEAuz3QiMKxBN4/0UlszjQAACAASURBVIdKq27Mm5NikxZLyy34orUf3lB0GiMkolxwrCeZBJlbYpz0MRY6zDjS7UMscX6HEqJsFk+I6B6IoELCeiBDlpRZ0OT0IRZnQXSi6RKJJ9A9EGY9EBmoKNChoz80Yjc0GptskiDs9kDj+bTFDX8kjvp5JeNmni+fbUNcFPFlG0eIiGhijvX4UVGgg1Ez+cmSCx1mhGMJnOz1pzEyIul1D4QRF0V5JEHKLQjHEjjaw78zouni9IYhgvVA5KCsQIdANI6BcEzqULKOJEmQe++9F9/61rdw6tQprFq1Ci+99BK2bNmCPXv2YO3atdizZw+2bNkiRWgkU5F4Ap+2elBTYkwp81ygV2NOsQH7O/qR4EgsEU3AsR4/aqYwCwQAFg3WE+GSGMo1nd7k1OtKOSRBziqOSkTTY+gc4LBoJY6EHObka9A1WKyaUidJTZAnn3xyxMfZ7UF6YREIRONpOZZBrUzLcQCgsd2LUDSBFRPo1rCsogCv7O/E8V4/5k1ybT8R5ZdgNI5WdxDfnGJB00qrDhadCk3OAdyIsjRFRyS9Tm8YerUCVoMaQYmXnNrNWhQbNTjYNYCbJY2EKH90ecMwa1UwTaKFPKVXqVkLAcnXhPc6E8N3L50jEI1j15HutBzryjR1RYgnRHzS4kZFgW5CI09zi40waZX4sr2fJwYiSsmJXj9EYMozQQRBQK3dhEOdnAlCucU5EIbdLI+CiIIgYHGZGYc6OROEaLp0ekMo4ywQWVArFSg2adA1wOKoEyWbmiBEo9l70oX+UAyXTmAWCAAoFAIWl1lwqi+AYJpmtxBRbhuqLVBTOrUkCJCsC3Ki148Qzz+UI+IJEb2+iKymwS9ymNHqCcETZCF0okwLx+JwBaJwWFgPRC7sZi2Xw0wCkyAke/99qAtmrQo1xRO/KZlfakJCTK7xJyIaz7FuH4waJcrTcIG3yGFGXASLNlLO6PNHEBdFlJrkkwRZXGYBABxi/R2ijBu62eZMEPlwWHTwR+LwsTjqhDAJQrLW3h/E56c9qKuwQKGY+NTbMosWFp0KXzl9GYiOiHLN8d5kUdR0TPVfOFgclTdnlCucA8kbILtZPjdAtQ4TFAK4JIZoGgwlQTgTRD6GiqMOFayl1DAJQrK2vbELggDUVVgmtb8gCJhfasIpVwDhWCLN0RFRLhFFESf7AphdNPWlMABQYtKixKRhhxjKGc6BMFQKATajWupQhhk1KswuMuIg6+8QZVynN4QCnQoGTfqaH9DUDCWlnVwSMyEsjErniSdE7GvrR0d/CBCSU7pnFxmmvQhaLJ7Aawe7cMnMQlh0k7/gml9qwqenPTjRyynpRDQ6VyAKbyiGmUWGtB1zod3MJAjljO6BMEpMGihkUBT1bIvKzNh1rBeiKMqiYCtRrnIOhGHnUhhZ0agUKDKq0TXAJMhEcCYInaOzP4QXPj6Nt7/qQasniFO9AfzffR34r30d0z6TYveJPrgCUaxf5JjScSqsOujVCiZBiGhMza4AAGC2LX1JkEVlZpx2BzEQ4lpdym6iKMLpC8tqKcyQxQ4zvKEYTruDUodClLMi8QRcgaisagJRkt2sY3HUCeJMkBwRFpPtbaciGInj528chjcUw8alZZhXakRCBD5v9eDdY734v/vacfPyCmhU05M7e7WxE3azFhdVF2L30Z5JH0chCJhpM+BUXwAJUUxjhESUS072JZMgs9I8EwQAmpwDuLR6Yh2uiORkIBxDKJpAqRyTIGcVR61OYxKTiM7okWFNIEoqs2jR1DUAfyQGo4a396ngbylHBKJx7DrSPaVjbG/sxGl3AH+7vByzBtfEKwXgkupCmLUq7DjQhdcPdWHj0rKMTzdt8wTxcYsHW/6mGspJFET9utnFRhx2+nCq14+iioI0REhEuaa5LwCjRokSkyZtx6x1mAAATV1MglB2k2NR1CGzigwwqJU42DmAaxbapQ6HKCfJ+RyQ74Zeky5vGHOKeXufCi6HIQDJaeCHnT58++Kq4QTI2WodZlxZU4yj3X7sb898BfbtB7qgEIAbFk9tKcyQWYMjQ5+d9qTleESUe066ApiV5vpHFp0aVVYd64JQ1uvxRQAgrUnCdFEqBNQ6TDjIDjFEGdPti0CnUsCi40223AwXR2VdkJQxCUIQRRHvHeuFRafChmUVo253SbUVM216vPNVD9yBaMbiicYTeP1gF1bOLkrbtFuzToUSk4ZJECIaVXNfADMzMJV+oYPFUSn79fgisOhU0Krk2RVikcOCYz1+doIjyhDnQBilZi2LD8uQTq1EoV6NLrbJTRmTIIRjPX50esNYOds2Zr0PQRCwfpEdEICGKdToGM/7gwVRNyxNzyyQIbOLjDjU4UVwirVTiCj3eENR9PojmJ3GeiBDFjrM6PZF0OvjCA1lr15fWJazQIYsLjMjlhDxVbdP6lCIck5CFNHjC7Moqow5LFoWR50AJkEIH7e4YdWrsWSwsNhYLDo1Vs624ViPP2PdVrY1dsFu1uKymba0HnemTY9YQkTjNCznISJ5CouAOxI/71+jM3njVGzRnfN4PA21lBc5ksVRD3Xx5oyyUyIhos8fRYmMb4AWlyX/zrgkhij93IEoonERdrN8E6H5zmHRoj8U42BvirioK8/1+sJo84RQX1MMRYoFSC+eUYj97V6881UPZtoMaSlcOqS9P4iPWtxpK4h6tgqrHgoB+KLNg0tnskAhUT4arYj0/vZ+AECHO4hd4TPfv6ymZMo/c36pCUoh2SFm9dyiKR+PaLq5g1HERRHFRvneAJWYtLCbtTjUyaVnROnWPVhrQo7doSjp7LogmVjam2s4EyTPfdnuhUIAlpSbU95HqRBQP68YrkB0+MYhXbY3JguiXp+mgqhn06oUqCk14fPW9MZMRNmv1xeBSiGgQJ/+sQGdWonZxUY08eaMslTP4FIuOS+HAZKzQTgThCj9un1hKASgWObngHw2tFSph0tvU8IkSB6LxRM40OHF/FITDBPsKT232IhKqw4fnHQhkqYiZLF4Aq8d7MLls2wZa79VV1GAQ10DCHGqGBGdpdcfQZFRA0WGCr4tdJhx2DkAUUzD+hqiadbji0AAUCTjmSBAculZhzcMVyAidShEOcU5EEaRUQOVgreOcmXUqmBQK9E9wPNfKvhOzmMnegMIxRKoqxi/FsjXCYKAK2uK4Y/E8UmLOy3x7D7pGiyIWpaW441kaYUlWRekgyNFRHRGnz+CIqM6Y8df6DCjPxRDez8rt1P26fFFYDWooVbK+7Jx8WBts4OcdUWUVt0DES6FyQKlZg1ngqRI3p9mlFFHun3QqxWoLpzcurFKqx7zS434uMUNfyQ25Xhe/rIDpSYNLpuV3oKoZ1tUbhmsC8IlMUSUFIkn0B+KodiYuQu84eKovDmjLNQj884wQ2rtyfo7h7gkhihtApEYBsIx2GVcGJmSSkxa9PgiSHDW6biYBMlTsUQCx3v8mFdiSrkg6khWzy1GNCFiz0nXlOI52u3Dp6c9+NvlFVCluSDq2YwaFeaXmvBlmmuZEFH26vMnp45mcibInCIDtCoFmpxMglB2iSdEuINRWRdFHaJTKzGn2MiZIERp5BxcXpGppeqUPqUmDWIJEZ5AVOpQZI9JkDx1qi+ASDyB+XbTlI5TZNRgWUUB9rX1T2kN7p8/b4NercCGpekviPp1S8stONQ5gFiCWVIiShZFBZDRmSAqpQLzSkxo6uLNGWUXTzAKUQRsBvknQYDkkphDXQNI8DOeKC3YGSZ7lAwXR2VdkPEwCZKnvur2QatSpKWF0srZNigVAnYf75vU/j2+MN480oPrFztg0WVuJHbIkjILQrEEjvf4Mv6zaOri8ThuvPFG/MM//AMAoLW1FZs3b8batWtxzz33IBLhiZ6mps8fgUIACg2ZPf8sdJhwxOljApayypmZUtmRBFlUZoY/EseJXr/UoRDlBKcvDLNWBYNGKXUoNI5ikwYCkt18aGxMguQhURRxvCeAOcVGKNOw9MSkVeGS6kIcdvrQMYmify983AoRwLcvrJhyLKlYUp4snNbYwRHZbPCHP/wBc+bMGf768ccfx3e/+1289dZbsFgsePnllyWMjnJBrz+CQoMmLedDQRDgjsRH/DezxIhQLIH9XQPDj4WZDyGZG0qC2DKcJEyXpYOf8ftOp6doO1G+6x4Io9ScHUnQfKdWKlBoULM4agqYBMlDXd4wgtE45hRPfRbIkEurC2HQKPHOVz0TagHZ0R/Cq42duGGxAxUF+rTFM5YyixZFRg0OsHCa7HV1deG9997Dpk2bACQTeB999BHWrVsHANiwYQMaGhqkDJFyQJ8/guI01QMJxhLYdaR7xH/uwempr+3vGH4swHbdJHOuQBRGjRI6dXaMAlcX6mHVq/EZkyBEUxZPiOjzR1DKoqhZo9SkZZvcFKikDoCm38m+AABgVlH6kiBalQJX1hRj5yEnvmz3YnllQUr7bd3bAoUAfH/FjLTFMh5BELC03IIDbJMre4899hjuu+8++P3Jac1utxsWiwUqVfLU5XA44HQ6UzqWUinAak3fe366KZWKrI5/ojL1fIP9IRj0Z0a0YokEPMEollQUnPP4EJVSMeLjoxlre51ODZ1KgR5/dHgbnVYNa4Eu715fyh59/kjW1AMBkp/xdeUWfNHikToUoqznCkSQEJPLLCg7lJg0ONLtQySegEbmbc2lxCRIHjrV54fDrIVRk96Xf0mZGQc7vNh1rBdzi43jbv95qwc7Dzlxy0WV015saUmZGbuO9cIVyK6Lu3yya9cu2Gw2LF68GB9//PGo2wlCaksY4nERHk8gXeFNO6vVkNXxT1Smnm8oEkcgeGaEpM+fvMAza5TnPD4kFk+M+PhoxtveYdHitCswvE0oHIXHk8iL17ekxCx1CDQJrkAE80unVkR9utVVWPDXE33o80eyppYJkRwNFQ4v4UyQrFEyeE/V64ugvEAncTTyJbv00AsvvID169fj2muvxb333otwmGua0ikUjaO9P5TWWSBDBEHAutpSJBIith/oRCyeGDOOR946iooCHe74m+q0xzKeoTXDnA0iX1988QXeffdd1NfX495778VHH32ERx99FF6vF7FYDEByuUxpaanEkVI2G+pqlemiqEPKLDr0+MJjnh+J5MIbjCIYTWTdYEFdRXI26n5+xhNNSY8/AgFAUZbUBKJkm1wArAsyDlklQZxOJ/7whz/glVdewRtvvIF4PI6dO3dKHVZOaXEHkRCB2SnM1JiMIqMGVy+0o80Twu8+aB6xPkhCFPHIW0fR5gnhwXXzoJdgnfECuxkqhcDiqDL24x//GLt378a7776LJ598EitWrMATTzyBSy+9FG+++SYAYNu2baivr5c4Uspm7kAUwPS1/ywr0CEhAs4BXpyQ/LV6ggDk2RlmrCLE9kI9NEoBn5z2nPM4CxETTUyvLwKrQQ0Vl1VkDateDbVSYF2QcchuOUw8HkcoFIJKpUIoFOIob5q1uAJQKwRUZHB61KIyMzq9Iexo7IROo8Q9V8yCarDrQiyewK/ePY43j/TgH1fOxIVV1ozFMRatSoH5pSYc6OiX5OfT5N1333340Y9+hKeeegq1tbXYvHmz1CFRFnMFotCpFNCrp+cCr8ySnKba6Q2jwjo9xaCJJqvNnUyC2NJUODidgrEE9h7rGfX7ZQV67D3lwrySM4M+Vy4ohZZtPolS1uMLo0SGSVAanSAIKDFpORNkHLJKgtjtdnzve9/DlVdeCa1Wi8svvxwrV64cdfupFDrMxiJ0Y8X89WJ/o2n1hFBdZIDZOPLavokWARzNdXXlWFBmwR8/Po1PTrlw0wWVAIBXvmjDqb4A/uGKWfjR2vkpHSvV55aKoSKEAHDRLBv+67NWGM06qAcz3Ln2vsgVl156KS699FIAQFVVFdviUtq4AxEUGtQp15aZKrNWBZNGiQ7vxNuJE023NncQCgGw6uSXBBnPDJsBe070IhpPDH/GU27YvXs3Hn30USQSCWzevBlbtmw55/uRSAQ//elPcejQIVitVvzmN79BZWXyOvR3v/sdXn75ZSgUCjzwwAO44oorAABerxcPPPAAjh49CkEQ8Nhjj2H58uXT/tzkJJZIwB2MYoE9u2oCUbI46tFuH0RRnLbrm2wjqyRIf38/Ghoa0NDQALPZjLvvvhs7duzADTfcMOL2Uyl0mI1F6MaK+evF/kYSiMTRPRBGrd006rYTLQI4llsuqcKls2z43++dwONvHwUAzLIZ8JsNi3D5LFvKv/9UnluqhooQAsD8IgNC0QQ+PdaDhY5kwb5ce19MBxY7pGzmCkRRNY0zMgRBQFmBDp39TIKQ/LV6gig0aKBQZN9FdLXNgPePA539Icyw5fZAQT6Jx+N4+OGH8fzzz8Nut2PTpk2or6/H3Llzh7d56aWXYLFY8Pbbb2Pnzp14/PHH8dRTT+H48ePYuXMndu7cCafTidtuuw1vvvkmlEolHn30UVxxxRV45plnEIlEEArxHO3yRyGKLIqajUpNWuxv98IficOkldXtvmzIKjX+4YcforKyEjabDWq1GmvXrsW+ffukDitntA5Oa51ROH0X/OsWOfDC3y3Dm3euwHv//Df4r+9eiJWzi2SRlVxSlrx5Z3FUovwUjSfgDcWmrSjqkDKLDq5AFKFofFp/brbavXs31q1bhzVr1mDr1q3nff/TTz/Fhg0bsHDhQvzlL38553u1tbW44YYbcMMNN+AHP/jBdIWcM9rcwawtiFhlS17rtDHhmFMaGxtRXV2NqqoqaDQarF+/Hg0NDeds8+6772LDhg0AgHXr1mHv3r0QRRENDQ1Yv349NBoNqqqqUF1djcbGRvh8Pnz66afYtGkTAECj0cBisUz7c5ObnsHOMMVcDpN1SgaLo3ZzScyoZJUaKi8vx/79+xEMBqHT6bB3714sXrxY6rByxml3ECqFgDLL9LZLEgRBlpXlHRYdSk0aHOj04mZUSB0OEU0zT3CoKOp0J0GSo2pdXl6cjCeVUd+ysjL88pe/xO9///vz9tfpdNixY8d0hpwzYgkRHf0hXDRDmtpdU2XQqFBs1CQHgGZJHQ2li9PphMPhGP7abrejsbHxvG3KysoAACqVCmazGW63G06nE3V1defs63Q6odPpYLPZcP/99+PIkSNYtGgRfvazn8FgyO8ZRL3+MARBnjWBaGxDs3d6BiKYXZSZZhjZTlZJkLq6Oqxbtw4bNmyASqVCbW0tbr75ZqnDyhmn3QFUWnVQZuG01kxZUm7hTBCiPOWa5s4wQ8oG6xJ1si7IuM4e9QUwPOp7dhJkaK2/QiGrya1Zr7M/hFhCzNqZIABQadXhsJPr4nPJSF0Hv/7ajrbNaI/HYjE0NTXhwQcfRF1dHR555BFs3boV99xzz5ixTKU2oVwplQrotGoY9Bq4gzEUGTWwGNM7eJqu+oNTPbZCIUw4DrnEPh6DHjBpVXCHYsPHFBQCrObcer9OhaySIABw11134a677pI6jJwTjMbR7Ytg1ZwiqUORlcVlFjQc7YUrEJHlbBUiyhx3IDnVd7qXw+jVShQa1GjnNP1xpTLqO5ZwOIyNGzdCpVJhy5Yt+MY3vjHuPnK5sZG66PU+pw8AUG4zjnhhPtoNxGQu5DOxj0IhYHapGV+2ezEQE+GwaM8pji4lqV/b8cg5PofDga6uruGvnU7neZ0kHQ4HOjs74XA4EIvFMDAwAKvVOuq+DocDDodjeJbIN7/5zRGX3n3dVGoTypXVakAoHEUgGEGXN4RSkzZtdfmGpLP+4FSObdBrJhyHXGJPRbFRja7+4PAxxUTuvV+BydcmlF0ShDKj3ZO82K60Sv/hLyeLBguiHuocwBVMEBHlFVcgCoNaCZ16+ltmVln1ONbjQ2KEkUk6I5VR37Hs2rULdrsdra2tuPXWWzFv3jzMmDFjzH3kcmMjddHrplYPAMCgFEa8MB/tBmIyF/KZ2Meg16DUkLzMPd7lhUWtOKc4upSkfm3HI3V8Y93ULFmyBM3NzWhtbYXdbsfOnTvxxBNPnLNNfX09tm3bhuXLl+PNN9/EihUrIAgC6uvr8eMf/xi33XYbnE4nmpubsXTpUiiVSjgcDpw8eRKzZ8/G3r17MWfOnEw/TVmLxRPwBKLDjQMo+xQbtdjf0c+ZcKNgEiRPtPcHIQhnpmFT0gK7CUoBONjFJAhRvnEHotM+C2RIpVWHxg5vsvAkLzJHlcqo71jsdjuAZGvtSy65BE1NTeMmQSipxR2ARaeCQTP9ScJ0serVMGtVaHEFcUFVdtY2oXOpVCo89NBDuP322xGPx3HTTTehpqYGTz/9NBYvXoyrrroKmzZtwn333Yc1a9agoKAAv/nNbwAANTU1uPrqq3HNNddAqVTioYceglKZfH8/+OCD+MlPfoJoNIqqqir88pe/lPJpSq4vEIUIoIRFUbNWiUmDaFxEfygGqz57lzVmCpMgeaLNE4LdrIVGyTXTZ9OrlZhdbERT54DUoRDRNHP5I5hVJM2U76G2vAc6vKhjEmRUqYz6jqa/vx96vR4ajQYulwtffPEFbr/99gxHnDtaXEFUTmM3uUwQBAEzbXoc7/WPOKuIstPq1auxevXqcx67++67h/+v1WrxzDPPjLjvnXfeiTvvvPO8x2tra/Hqq6+mN9As1jPYVaTYxCRIthp67Xp8YSZBRsA74jwQH6zwXlmQ3RczmbK4zIxDXQOclk6URyKxBHyROGwSjXIVGtQwaJQ4xMLMYzp71Peaa67B1VdfPTzqO9QWs7GxEatWrcJf/vIX/PznP8f69esBACdOnMBNN92E66+/HrfeeivuuOOOcwqq0tiaXYHhZF02q7YZEIwm4BxgNyaiVPX6IlAI0184nNJnqLVxry8zNUyyHWeC5IHugTBiCZH1QEaxyGHGtsYutLqDsBWyjRRRPnAPtseVajmMIAiosupxoJNJkPGMN+q7dOlS7N69+7z9LrjgArz++usZjy8X+cIxuALRrJ8JAgAzbcnZXi2uoMSREGWPHl+yYQA7SmYvnVoJs1aFXj+TICPhTJA80Naf/OCvYBJkRIvKLACAQ11cEkOUL1yDnWGkHOWqtOrg9IY5Qk2y0+JKFsWszIGZIGadCkVGDU655FuIlEhuev0RlHApTNYrNmnQw5kgI2ISJA+0e0Kw6FSw6LgebCSzbAbo1QocYl0QorzhDgzOBJFwnWzV4Cj7/vZ+yWIgGkmLOzl4UpUDM0EAYKZNjzZ3ENG49J1hiOQuFI3DE4wOL6eg7FVi1KDPH+GS/xEwCZIHOr0hlLMrzKiUCgG1djNnghDlEZc/ApNGCY1Kuo9Bu0kLnVqBL9u5JIbkpcUVgDKHOsrNtBkQTYg4zM95onGdHkyCsihq9is2aRBLiPAMLgGmM5gEyXGBSAyeYAxllty4kMmUxWVmHO3xIRzjKBFRPnAFoiiUuOCbQiGg1mHGl5wJQjLT4g6iwqqHOkc6ys0o1EMA8GUr/9aIxtPSl1w6VmLSShwJTdXQa8jiqOfLjU83GlWnN7nWvNzCE9lYFjnMiMZFHOniiCxRPnAHorAZpV8iuKTcguM9fng5SkMy0uIKYkaOLIUBkgUCHRYt9rV5pA6FSPaSM8EESZeLUnoMLWliXZDzMQmS4zr7QwAAO2eCjGmoOOr+No4SEeW6UDSOQDQOm0SdYc62qMwCEcC+Vt6ckTwkRBGtniCqCw1Sh5JWM20GHHH64I/EpA6FSNZaXAHYjGoo2Bkm62lUChToVOj1swD71zEJkuM6vCEUGzXQSrjuPRuUmjQoNmrQyCQIUc4bLooq8XIYAFjgMEOpEPBZi1vqUIgAAF3eMMKxBKptuTMTBACqbQbEEyL28XOeaEzNrgCLouaQYpOGy2FGoJrKzuFwGH/+85/x+eefQxAEXHjhhfj2t78NrZZLL+RAFEV0esOYU5xbozmZIAgCFjnMaORU2Yzh+YLk4kx7XOlngujVSiwoNeGzFje+f3Gl1OFkFM8B2aHFnawHkGtJkEqrDmqlgE9Pe7BydpHU4dCgcDiMbdteQmPjfggCsHTpMtxxx208L0jEH47B6Q1jfolJ6lAoTUpMWjT3BRFLJABO7hk2pekBP/3pT3Hs2DF85zvfwd///d/jxIkTuO+++9IVG02RNxRDIBJnUdQULSoz41RfAN4Q1+ZnAs8XJBeuwZkgVpmsd15eWYD9bR6EonGpQ8kongOyQ4sr2Rki15bDqJUKLCkvwJ6TLqlDobM88sjPcerUSWzadDNuuulmNDc387wgoeM9PgBACTvD5IxiowZxUUT7YNcfSprSTJBTp07htddeG/56xYoVuP7666ccFKVHpzdZD4RJkNQscpgBAE1dA1gx0yZxNLmH5wuSC3cgCotOJZvOFxdWFeBPn7XhYOcALpphlTqcjOE5IDu0uAIwaZWwGdTwRHOrY9pls2z4X7tPosUVQLUtt5I82er06Ra8+OJ/Dn99wQUX4fvf/3sJI8pvx7qTSRAuh8kdQ62OT/UFsCDHZvhNxZSuABcuXIgvv/xy+Ov9+/fjggsumHJQlB6d3jCUgoBSM09kqVjoMEMQgIOdA1KHkpN4viC5cAUislgKM2RZRQEUAvBFji/H4zkgO7S4k0VRBSH35k2vmFUIAHifs0FkY968+Th48MDw14cOHeR5QULHu33QKBWwyugzkqZmKKHV3OuXOBJ5mdJMkP3792P79u0oLy8HAHR0dGDOnDm47rrrAACvv/761COkSevsD6HUrIFKIY/RTrkzaVWYXWzEoS4mQTKB5wuSC3cgitrBmV9yYNKqsLDMgs9bc7tgI88B2aHFFcjZGUl2iw41JUbsPtGH71yU2zV4skVT00H85S87Ybc7AABOZxfPCxI61u1DVaEeihxMguYrtVIBq16NU0yCnGNKSZDnnnsuXXFQmg0VRV1cs2xhkQAAIABJREFUJp8L/WxQV2nFriPdEEUxJ0fBpMTzBcmBNxhFKJaQ1UwQALh0lg1//KgF4VgiZ7t58Rwgf8FoHN2+SM7VAznbFbNteOGTVniCUdnUBcpnTzzxP897zGYzShAJAckkiJwGCSg9SkwanOpjEuRsU0qCVFRUpCsOSrM+fxSReAJlBawHMhFLKwvw6r52dHrDKOfvLq14viA5aPMkC4MVyiwJcsksG/7PnmYc7PTiwqrcHIXnOUD+Tg8VRc3hdeOr5hTh9x+34sNTLlyz0C51OHnP4Sg777GSEt6ES8EXjqGzP4Rv8u8i5xQbNfjktAfReEI29dCkxt9CjhoqilpuYYuxiairKAAALokhylHtnuS50WaQV62ki2YUQgDwRY4viSF5a3YNtsfN4ZkgtQ4ziowavH+iT+pQiGTlVF/y739mDidB81WxSYN4QsRpdogZxiRIjurwhqBRCrCxuvOEzHeYoVEKONjplToUIsqA9v4gBMinPe4Qi16N+aUmfJ7jxVFJ3lrcAQgAKq25OxNSIQhYOduGvc1uROO51f2GaCpODi6XqC7K3SRovioxJQfFT7AuyDAmQXJUZ38IDouOhY0mSK1UYH6pGU2cCUKUk9o9IRTo1VAq5HduvKCqAAc7BxCO8caMpNHiCqLMooVOrZQ6lIxaNacI/kicM6+IznKyLwCdWgGHJXeToPmqyKCGQki+xpTEJEgOiidEdA9EUMaT2KQsLjPjsNOHGEeIJBcOh7Fp0yZcf/31WL9+PZ555hkAQGtrKzZv3oy1a9finnvuQSQSkThSyhbtnqDs6oEMuaDSinAsgUNdnIlG0mhxB1Fty/1R4EtmWKFVKbCbS2KIhp3o9WNuiYkDqDlIpVSgwqpnEuQsTILkoO6BMOKiiLIC1gOZjEUOM8KxBE7wRCE5jUaDF198Ea+99hq2b9+O999/H19++SUef/xxfPe738Vbb70Fi8WCl19+WepQKQuIooh2T1BWnWEEQYA7EkdnfwizSk0QAOxpdsMdiZ/3LyxKHS3lMlEUcdodyIskiE6txKXVhfjriT4kRP5hEQHJWQI1pSapw6AMmVlsxEkuhxnGJEgOOlMUlTNBJmPRYFvhQ6wLIjlBEGA0JlvlxWIxxGIxCIKAjz76COvWrQMAbNiwAQ0NDVKGSVmiLxBFMJqQVVHUYCyBXUe68dejPfis2YVSsxZ/PdaLXUe6z/sXiMalDpdyWLcvgmA0gerC/CiKeNW8YjgHwjjQwc96ooFQDD2+COYyCZKzZhcZ0eoJcsntoCm1yM0Er9eLBx54AEePHoUgCHjsscewfPlyqcPKKp3eMAxqJSw62b28WaGiQIcCnQqHugawsU7qaCgej2Pjxo04ffo0/u7v/g5VVVWwWCxQqZLvb4fDAafTOe5xlEoBVmv2jnAqlYqsjn+iMvF8jw12hikr1MOgTy0RolIqUt52KtsrFAIMeg1mlxjxabMbGo0Kqq+1sdNp1bCydTdlSMtQZ5g86Qyxak4RtCoF3jrSM9wZjihfDRVF5UyQ3DWz2IiEmDzXz+PrLL8kyKOPPoorrrgCzzzzDCKRCEKhkNQhZZ2O/hDKCrQQuKZvUgRBwKIyM9vkyoRSqcSOHTvg9Xrxwx/+ECdPnjxvm1Te6/G4CI8ne5c4Wa2GrI5/ojLxfA+3JjuvGJQCAsHU6sjE4omUt53K9ga9BoFgBOVmLWIJESecA6j62oh8KByFx5O9IzglJWapQ6AxtAy2Tszl9rhnM2lVuHyWDe8c7cGPrpwDlQyLJRNNl6El4DWlJkQ56zAnzRrs+nOyj0kQQGbLYXw+Hz799FNs2rQJQLIegMVikTiq7BKJJdDnZ1HUqVrssODk/8/efYfHWV+JHv9OLxpJMyqjXqzmbmMw2KYZG2xjDLEBE7LZZQNZQpYUIAESyoYEspts4YaS3N3FlxtCssteAgFMEGDANhiwMWBsy92WZDVbfWbUps+89w9ZDgYXySrvlPN5Hj2A9M7oDJry/s57fud0eRkIhtUORRyTlpbGvHnz2LFjB729vYTDg3+btrY2nE6nytGJeNDk8aHTakg3x05PkC8aSnw0HVuQCjFRGl1erAYd2bbY2S423pZNycblDbGtSUZTi+RW3zWAxaAlPz05KsGSUVGGFZ1WI2Nyj4mpSpDm5mYyMjK4//772b9/P9OnT+fBBx/Eaj35VYnRlLfHY2n56WL29fixWox0dA+gAJOybSMqyR4y0lLu0zGbDGPy/3nosY1VTKcrJx+K94KKLNZsaaS5P8T8sthOxMXjc3m4XC4Xer2etLQ0/H4/mzdv5lvf+hbz5s1j3bp1rFixgpdffpnFixerHaqIA03uwfGf2hi+4msx6HDajDS5vVxEhtrhiCTS6PZR7LAkVRXphZMySDHqWLe/g3mlDrXDEUI19d1eJmWmxPTnoxgdg05LsUMmxAyJqSRIOBxm7969/OQnP2H27Nn84z/+I2vWrOGuu+466fGjKW+Px9Ly08XsD0bw+oIc7ugHIMOsG1FJ9pCRlnKfjj8QIhKJjvr/89BjG6uYTldOPvT/uDR1MOmy5VAnU2J8f7Taz+XxLHHv6OjgvvvuIxKJoCgKV155JYsWLaKiooIf/OAHPP7440ydOpUbbrhh3GIQiaPZ7aPAHtuvZ4DiDCs7WnqIRBV0ckIqJkiTy8vM/NhO+o81s0HHZRWZbKzt4r5wJUZ9TBVICzFh6ru9LJBEYMIrz7Sy/9haMdnFVBIkNzeX3NxcZs8e7EZ55ZVXsmbNGpWjii+tvX7SzXqsxpj608addIuBSRlWdh6RrvFqmjJlCq+88sqXvl9UVCRjccWIRBWFZo+PWYWx3wCx2GHh0yYPrb1+CuMgaSPinz8UobU3wNXTE7Oq8HSWTnFSvbeDzYddXFaZpXY4Qky4Hl+I7oEg5VkpaocixllZZgrrD3bhD0UwG3Rqh6OqmFopZ2dnk5ubS319PWVlZWzZsoXy8nK1w4orrb1+8mJkeoBGo6G1x48/OLoGSxFljAJiMCb3aeLxfS7eKbmpvF/XRXcgjPYL5cFWgw6TXKAVIm509gcJhKMU2GPj/fF0io4lPhpdPkmCiAnR4vGjkDyTYT7vgmI76WY9bx3olCSISEpD2yPKMpMvCZpsyrOsKMBhl5epOcndrDymkiAAP/nJT7jnnnsIhUIUFRXxy1/+Uu2Q4oY3GMbjCzOnMDZO8n3hKB81dI56K8uCyuwximgwpi2HOk/586EJDQBaDfQHIry4rYVsm+mE4xZNcWIyJncGVYh40nys0WhBuoUe79hsrxsvVuNgc8omt4+L1A5GJIVG97HxuEkyGebz9DotV0zO5rU97XiDEazy2S6SzFCjTEmCJL6yzMFqn/ouSYLEXBJk6tSpvPTSS2qHEZdaewMA5KeZznCkGI7CYxU1LR7/l5IgQoj40uQ5lgSxm2M+CQKDW2JqjvRKXxAxIRpdg6+P4iSsBAG4coqTP+1sZcOhTq6enqt2OEJMqPpuLylGHTmpcq6b6AodFgw6DfXdMiFGOkAlkNYePwA5Mh53TDisBqwGHS0eGVUpRLxrcvkw6jRkx8lJXonDSiiq0NrrVzsUkQQa3V6cNiOWJN0jPrsgjYJ0M9V72tUORYgJV989QFmmNakmQyUrvVZDicMqE2KQJEhCOdrrJyvFiEm6m48JjUZDod1Mi0cWIULEu2bPYH+NL/b3iVVFjsEr8k1uScKK8dfg8lGSkbyl8BqNhhXTcvi0uUcSjyLp1Hd5j2+TEImvPMt6fAtUMpPVcoJQFIXW3gB56fFxlTNeFNoteHwh+gNhtUMRQoxCs9tHsSN+Sv0/3xdEiPGkKApNbi+lSZwEAbhquhOAN/Z2qByJEBPH5Q3i9oUoy0ru138yKctMobU3gHeUgyvinSRBEkRnfxBvMEKebIUZU4X2ob4gshARIl5FogotPb7jU1fiRbHDQovHRyQ6hiOyhPiC7oEg/YEIJXGUJBwPBekW5hSmU723HUWR15xIDkMVATIeN3kMNcA9nOR9QSQJkiD2t/cBSBJkjOWmmdFrNbIlRog41t4XIBRRjm8xiRfFDguhiEKblOeLcXR8PKZcCebqaTk0uX3sau1TOxQhJkRd1+DrX5IgyaPs2N+6Lsn7gkgSJEEcbO9Hp9HgTDWqHUpC0Wk15KWZpBJEiDjWdGz8ZzxthwHpCyImRoNr8PUxKcm3wwAsrsrCpNdKg9QYt2nTJpYtW8aSJUtYs2bNl34eDAa56667WLJkCTfccAMtLS3Hf/bUU0+xZMkSli1bxvvvv3/C7SKRCKtWreLb3/72uD+GWFHXNYDdYiDTalA7FDFBCtLNmPTapO8LIkmQBHGgox9nqhG9Vv6kY63Qbjl2JTmqdihCiLPQ5B6spIi3JEiKUU9WivQFOdOC55NPPuHaa69l2rRpvPnmmyf87OWXX2bp0qUsXbqUl19+eaJCjiv13V5STXoyU+Qiis2kZ1FlFm8f6CQQls/8WBSJRHjkkUd4+umnqa6u5rXXXqO2tvaEY1544QXS0tJ4++23ufnmm3n00UcBqK2tpbq6murqap5++mkefvhhIpG/9EX4/e9/T3l5+YQ+HrXVdQ1QniWTYZKJTquhNEMmxMiKOQFEFYVD7f2yFWacFNjNRJW/jCAWQsSXZo8Pi0FLVhwu8pK9L8hwFjx5eXn88pe/5Oqrrz7h+x6Ph9/85jf88Y9/5IUXXuA3v/kNPT09Exl+XDjcPdgUVRZBg66elkNfIMymum61QxEnUVNTQ0lJCUVFRRiNRlasWMH69etPOGbDhg1ce+21ACxbtowtW7agKArr169nxYoVGI1GioqKKCkpoaamBoC2tjbeffddVq9ePeGPSS2KolDX5aVcJsMknbJMK/VJXgmiVzsAMXqNLh/eUIS8dEmCjIfCY80Umz1+iqVcWIi40+weHI8bj4u84gwLn7X00NYXUDsUVXx+wQMcX/BUVFQcP6awsBAA7RcqIT/44AMuuugi7HY7ABdddBHvv//+l5Ilya7B5eWSsky1w4gZc4vtOG1Gqve0s2RyttrhiC9ob28nNzf3+H/n5OQcT2R8/pi8vDwA9Ho9qampuN1u2tvbmT179gm3bW8f3Pr0i1/8gnvvvZeBgeEvDHU6DXZ7/J4XHvEMrh9mFjuOPw6dTovZZMBqGb+LBnqddtzufyT3rdVqRhxHrMR+NjRaDfbUwb/z9EI7b+zrQGsykGZJzq1QkgRJAHvbBht45afJeNzxYDEMjqpslr4gQsSlZo+Pyuz4vNJVPJSEdSdn2epwFjwjue3Qgud0YmVho9Npxz0OtzeIyxtiWmH6SX+Xr8d/ypPyUy0gzuZEfjxuc7L4zCYD9mFcMLp2TgFPf9hASKcjO3Xsz60m4m87GrEc38km93wxwX2qY071/Y0bN5KRkcGMGTPYunXrsGOJRBQ8nvh9b/7sWLVTnlV//HHY7Vb8gRBeX3Dcfm84Eh23+x/JfVstxhHHESuxnw0l+pfna37KYOJje30XswvSx+13ToTs7NSzup0kQRLAnrY+LAYtGXFY6h0vShxWdhzpIRJV0Gnj72qyEMkqHIlyxONjcWWW2qGclZRjvRoaXcmZhB3OgmesbxsrCxu73TrucexsGdwelGM1nPR3+YORU56Un2oBcTYn8uNxm5PF5w+E8HjO3OvjivJMnnr/MM9vbeRv5haOKK7hmIi/7WioHd/pFjW5ubm0tbUd/+/29nacTueXjmltbSU3N5dwOExfXx92u/2Ut92wYQMbNmxg06ZNBAIB+vv7ueeee473EklUMh43eQ1NA6vv9sZ9EuRsSU+QBLCnrY9Kpw1tHJZ6x4uSDAvhqMIR6QsiRFw50uMnosRfU9TPS+a+IMNZ8IzHbZNF/bHJMGWZsXnVXy2lmVam56ZSvaf9pMk0oZ6ZM2fS0NBAc3MzwWCQ6upqFi9efMIxixcvPt4Ied26dcyfPx+NRsPixYuprq4mGAzS3NxMQ0MDs2bN4u6772bTpk1s2LCBX/3qV8yfPz/hEyAwOCI1N9WEzSTXxJNNXpoZs16b1M1RJQkS5wLhKAc7+pmae3alQGJ4ih0WNECjK3nfLISIR43HJquUxHE/n2KHhWBEobazX+1QJtxwFjyncvHFF/PBBx/Q09NDT08PH3zwARdffPE4RxxfDnd7Meu15IzDlo9YpNFocAcjw/paNDmb2q4B9nQkd/PAWKPX63nooYe49dZbueqqq1i+fDmVlZU88cQTxxukrl69Go/Hw5IlS3jmmWe45557AKisrGT58uVcddVV3HrrrTz00EPodDo1H46qBifDSBVIMtJqNJRlpST1mFxJ/cW5/e19hKMKU3NTCQQjZ76BOCtmg46cNBONLi+XlEsDOSHixVDisiTOK0EAdh7pYX6RXeVoJtbnFzyRSITrr7/++IJnxowZXH755dTU1PC9732P3t5eNm7cyK9//Wuqq6ux2+185zvfOT7t4bvf/e7xJqliUEO3l0mZ1qSpJPWFo2w51DmsY/Ua0Gk0vLq7lRk5leMcmRiJhQsXsnDhwhO+d+eddx7/d5PJxJNPPnnS295+++3cfvvtp7zvefPmMW/evLEJNIaFI1EaXF4WlDrUDkWopCzTypYGt9phqEaSIHFud+tgU9QpOansbPaoHE1iK82w8nGjm2DkzPuJhRCxocntw24xkB7H3c9tJj2ZKQZ2HelVOxRVnGnBM2vWLDZt2nTS265evTqpRl6OVH33AHOLJTF0MhaDjorsFDYc6OJHl5Wj10nxtEgcTR4foYgilSBJrCzTymt72unxheL6HOlsyTt6nNvd2kt+mkmaok6AkgwLUQVa3MnZoFCIeNTo9sV1FciQYruFXUd7CSdhXxAxPvoDYTr6g5TG8Vax8TYzP5UeX4jNSXy1VCSmuq7BKklJgiSvsmN/+2TtCyJJkDi3q7WPmflpaoeRFArtFrSav/QYEELEvkaXl5KMBEiCZFjxBiMc7Ei+viBifDRKU9QzKstMId1ioHrPmUcrCxFP6roG0GqQJGgSKz/23p+sfUEkCRLHOvoCtPcFmJEnSZCJYNRpKUi30CDNUYWIC/2BMC5viBJH/J/kDfUF+ezYSFMhRmvo6t+kTLkSfCo6rYbFVVm8X99Njy+kdjhCjJm6rgGK7BZMelkKJqucVBMpRp1Ugoj4s7t1cH/4zDyZDDNRSjIstPUG6POH1Q5FCHEGx5uiJkAliM2kp9BuZpv0fhJjpMHlxaDTkJ9uVjuUmLZkqpNQROGtA8NrqCpEPKjrGqAiWxKgyUyj0VCWaaW+WypBRJzZ1dqHUaehymlTO5SkMVQ2WHNErsYKEeuOj8dNgEoQgFkF6Wxv6SEifUHEGKjv9lLisKLXJsdkmLNVnpVCRVaKbIkRCcMfitDi8VMuVWBJrywz5Xh/mGQjSZA4tru1l8nOVAzSsXzC5KebMWg17JCSdCFiXqPLi04DBfbEuNI9qyCdgWCEQ53SF0SMXoPLK/0AhkGj0bBieg572vpoSNKycZFY6ru9KEB5lrz+k11ZlhWPL0T3QFDtUCacrJ7jVDgSZV97PzPzZSvMRNJpNRQ6LHwmJelCxLxGt28wcZkgieJZBYP9n7Y1SxJWjI4/FOGIxy9NUYfpyqlOdBp4ba9Ug4j4N9RguzJbKsmTXeWxLVG1ncm3JSYxzgyT0MHOAQLhKDOlKeqEK8u00uz20eKRKTFCxLJGl4+SBLrSnWUzUeywSF8QMWqNbh8KUCpJkDPSaDToDDrOK3ZQvaedLn8YdzBy2q+A7FgTMexg5wApRl3CVEmKs1d1LBF2IAknz+nVDkCcnaGmqDOkKeqEq8hOYf3BLj6sd3HjuQVqh5PQWltb+dGPfkRXVxdarZavfvWrfOMb38Dj8fCDH/yAI0eOUFBQwOOPP056erra4YoYElUUmj0+Liixqx3KmJpTmM6Gg11Eogo66eUgztLQSMSKLOkJcCa+cJQthzrJTzPxcaObZ7c0MukMyaNFU5yYjLoJilCIkTnY0U9ldgpajXyGJLt0i4HcVBMHk3CbrVSCxKldrX1k24zkpJrUDiXpZFiNFNotfHDYpXYoCU+n03Hffffxxhtv8Pzzz/Pcc89RW1vLmjVrWLBgAW+99RYLFixgzZo1aocqYkx7X4BAOJpQlSAA5xWl0xcIJ2Xpqhg7hzoHMOo0FDnif3LSRKnMTsGs17Lr2EUoIeJRVFE41DlwvAJAiMlOW1JWgsRcEiQSibBq1Sq+/e1vqx1KTNvd2suMvDQ0ksVVxbxSB9uaPXiDEbVDSWhOp5Pp06cDYLPZKCsro729nfXr17Nq1SoAVq1axTvvvKNmmCIGHR+Pm2CLvHMLBytbtrXIlhhx9g519lOelSKTYUZAr9MyJcfGwY5+QpGo2uEIcVZaPH68oQiTZbKkOKbKmUKjy4cvlFxrmpjbDvP73/+e8vJy+vuTLyM1XF39AVo8fq6blad2KElr3iQHf9pxlI8b3VxWmaV2OEmhpaWFffv2MXv2bLq7u3E6ncBgosTlOnNVjk6nwW6P36oAnU4b1/GP1Ggfb4e/E4BZpZnYP1cx5+vxY7UYh30/ep12Qo7XajVnvJ3ZZGCSM5XiDCu72vqT6vkgxtahzgEumpShdhhxZ2pOKjuO9FLf5WVyjiwiRfwZuuJf5ZStcGJQVbYNhcHmqDPzk6fXZEwlQdra2nj33Xf5+7//e373u9+pHU7M+uzYeNZzixJrr3s8mZGXRopRxweHXZIEmQADAwPccccdPPDAA9hsZ3fiGYkoeDzxO97QbrfGdfwjNdrHu/9IDylGHfpwGI/nL1c3/MEIXt/wR8GFI9EJOd5qMZ7xdv5ACI8nypz8NDbWduFyD8TVnu7sbOlhFQu6B4K4vCEqsmURNFLFDgtWg4597X2SBBFx6WBHPzqthrJMef2LQUPvZQc7+5MqCRJT22F+8YtfcO+996LVxlRYMWd7Sw9Wg05K2VSk12lZUOrgw3oXUUXawI+nUCjEHXfcwTXXXMPSpUsByMzMpKOjA4COjg4yMuSKpjhRo8tLSYY1IbcMnluUTq9f+oKIszP0vJGeACOn1WqYnGOjtnOAoGyJEXHoQEc/ZZlWjHpZa4lBuakm0sz6pOsLEjOVIBs3biQjI4MZM2awdevWYd1mNOXt8VhaPhTzztY+zitxkJXxlyzuSEu8T2Wkpdxnuq/hlHhPdEynu6/hxms2GVg6I493DnZx1BtmRoF6k0ni8bk8XIqi8OCDD1JWVsYtt9xy/PuLFy/mlVde4bbbbuOVV17h8ssvVzFKEYsa3T7OLUzMiUFDj2tbSw9VkgwXIzQ0BUAqQc7O1Bwb21t6qOsaYGqOVDeJ+HKwc4D5pQ61wxAxRKPRUJWdwsGO5LqwEjNJkM8++4wNGzawadMmAoEA/f393HPPPTz66KOnvM1oytvjsbTcbrfScLSHQx39LKnKOiH+kZZ4n8pIS7nPdF/RqDLq+xvrmE53X8MpSYfBsvRzclLQAG/sPEphimFM4jsbaj+Xx7PEfdu2baxdu5aqqipWrlwJwA9/+ENuu+027rrrLl588UXy8vJ44oknxi0GEX98oQjtfQFKMhKrKeqQ3DQzBelmPmv28FcypluMUG3XAE6bEbtFvc+teFbksJBi1LG/rV+SICKudA0E6R4IUiUJUPEFVU4bf9rZSjiqJE3D7JhJgtx9993cfffdAGzdupXf/va3p02AJKvtR471A0nQK5zxxGE1MiMvjQ8Ou/jWhSVqh5OQ5s6dy4EDB076s2effXaCoxHxosntA6DEkZgVUjD4GbCprpuoosRVXxChvkOdA5RnySLobGk1g1tiao70EgxHZVuBiBsHj213kO304osmO20EwlGa3N6k6Rcj79xx5rOWHkx6LdNy5epDLLikPIO9bX109AXUDkUIcczx8bgJWgkCcF6RnR5/mLqu5CpfFaMTCEep7/YyRZp6jsrUnFTCUYVaef2JOHJ8Moz0AxJfMPScSKa+IDGZBJk3bx5PPfWU2mHEpO0tPczMS8Wgi8k/XdJZdGwyzPpDXSpHIoQYUtftRadJ8EqQomN9QZp7VI5ExJPazn4iUYUpso1jVArtZmxGHfvb+9QORYhhO9gxQH6aiVRzzGwEEDGiNMOCUadJqr4gspKOI72+EAc7+jm3UEbjxorSDCuV2Sm8vb9T7VCEEMfUdw1QaLckXJm6RqPBHYzgDkYwmw3kpJnY2uQ5/r0vfgVkcJX4gn3tg1f5pkolyKgMbYmp6/ISCMuUGBEfDnb2SzNtcVJ6nZbyrJTjW6aSgaQC48i2JjcKMEf6gcSUJZOz+fcPGmjr9ZObZlY7HCGSXn23NyF7HvjCUbYc+kvC1Wkzsq3JzYZ97ScdBbxoihOTUTeRIYoYt7+9n3SzntxUk9qhxL2pOalsax6cEiNblEWsGwiGaXb7uHKqU+1QRIyqyrbxbm0XiqKc9Jwi0STWZbIE93GDG4NOw4w8+bCNJUsmZwPwzkHZEiOE2gLhKC0eH2WZibsVZkixw4ovFKVrYGymZ4nEt7e9j6k5qUlxgjve/rIlJnmunIr4Vds5gII0RRWnVuW00eMP09GfHOcUkgSJIx83uJiem4rZIFf2Ykmh3cLUHBtvH5AtMUKorcntJaqQJEmQwcavjS6fypGIeCBNUceWRqOhKsdGXdcAwYhsiRGx7cCxXg8yHlecymTn4HMjWZqjShIkTniDEfYc7ZWtMDFqyeRs9rb10eKRxYgQaqrvGpwMkwwj3uwWA+lm/fGRwEKczlBTVOkHMnamOm2Eo4pMaRIxb197Hw6LgRzZCidOocppQ6uBfW3J0fBZkiBxYseRHiJRhXMlCRKTrhjaEiPVIEKoqr57AJ3mL1USia7IYaHJ7UNRpAuqOL2hpqgyGWZX8upiAAAgAElEQVTsFDospMiWGBEH9rT1MS1XtsKJU7MYdEzKtLJHkiAilmxtdGPUazmnQJIgsSgvzcyMvFTZEiOEyuq7vRQ5Em8yzKmUOCz4QhHpCyLOaHdrLw6Lgbw0uRI8VrQaDVVOG3WdA4RkS4yIUQPBMA3dXqZLA19xBtNzU9nb1pcUF1aS4ywxAWxtdDO3xCH9QGLYksnZHOwcoNHlVTsUIZJWfbc3KbbCDCnOGOx9IltixJnsau1jZn6aXAkeY1NzbIRkS4yIYfvb+1FAphiJM5qWm0qPP8yRHr/aoYw7SYLEgc7+AHVdXi6uyFI7FHEaV1Rlo9XA63vb1Q5FiKTkC0Vodvsoz0r8pqhD0s160qQviDgDjzdEk9vHTJkuN+aK7BasBtkSI2LX3mPbG6blSj8gcXpD1UJ7k2BLjCRB4sDHjR4ALirPVDkScTrOVBPzSx28tqedSDTxy8iEiAUBBdzBCO5ghO2tfShAvsN6/Htf/Iok2EtTo9FQ7LDQ5JK+IOLUdrX2AjCrIE3lSBKPVqthsjOF2i7ZEiNi0962PvLTTDisRrVDETGuIisFo07D3rbET+rq1Q5AnNlHjW4yrAam5KTS2ytX+2LZyhm5/PjP+9ja6ObCSRlqhyNEwvOGImzc3wHA9pYeADp6/ce/90ULKrMnLLaJUuywsLu1j+6BIFk26fcgvmxXay86rYa8YwnC4Uq0pOF4mZyTyvYjvdR3e5nslKvtIrbsPdYUVYgz0eu0VDlt7G3rVTuUcSdJkBgXiSpsbXAzr9SBViv7eGPdJeWZ2C0GXt3dJkkQISZYe18Ak15Lujm5PtqGJuE0uX2SBBEntetoL2VZVrbUdY/odomYNBwPJQ4LFoOO/e19kgQRMcXtDXK0N8Dqc/LVDkXEiem5qazd1UY4qqBP4LWnbIeJcXvb+nD7QlxSJgvqeGDQaVk+1cl7td14vCG1wxEiqXT0BXDaTEnX+NFuMZBqkr4g4uQiUeXYeEzZCjNejm+J6RwgLFtiRAypOTrY22FWvrz+xfDMzEvDH45S15nYzZ4lCRLjPjjsQqeB+aUOtUMRn6PRaE7Zc+CyydmEowov7W475TGf/wpIubEQo6YoCh39AZypybfneagvSKNb+oKILzvQ0Y8vFGWaNEUdV5NzbAQjCvXdMiFOxI6ao73otRqm5MjrXwzPUO+onUcTe0tMctUMx6EP6rqZVZBOmtmgdijic3zhKFsOdZ7y53lpJl7cfoR0k+6MV6UXTXFiMsroYyFGw+0NEYoo5KQm53aQYoeFPW19uLwhMlOSLxEkTm1b82Bz9VkF6dQc+3cx9kocVswGLfs7Er+hoIgfu472MDXHhkkv173F8OSmmsi2Gak52sNX5yTuNip5RcSwjr4ABzsHuFh6S8SdWflpdPYHaesNqB2KEEmhvX/wteZM1iRIxmBfkEaXXIUWJ9rW3ENphkWSY+NMp9VQlW2jtnOAoGyJGVebNm1i2bJlLFmyhDVr1nzp58FgkLvuuoslS5Zwww030NLScvxnTz31FEuWLGHZsmW8//77ALS2tnLTTTexfPlyVqxYwbPPPjthj2U8hSJR9rb3M1O2wogR0Gg0zMpPY1drYo/JlSRIDPugfrCB2UXSDyTuTMtNRa/VsONIj9qhCJEUOvoCaDSQnaQLPYfFgM2kS8i+IGe74GlpaWHWrFmsXLmSlStX8tBDD0106KoLRxV2HOnhvCK72qEkhSk5NgLhKJ81ScXNeIlEIjzyyCM8/fTTVFdX89prr1FbW3vCMS+88AJpaWm8/fbb3HzzzTz66KMA1NbWUl1dTXV1NU8//TQPP/wwkUgEnU7HfffdxxtvvMHzzz/Pc88996X7jEcHO/oJhKPMliSIGKFZ+Wkc7fHT1Z+4F3MlCRLDNtZ2U2Q3U5ZpVTsUMUJmg47puansbu3DFxr+OEIhxNk52uPHaTOh1yXnx9pgXxArTQnWF2Q0Cx6A4uJi1q5dy9q1a3nkkUcmOnzVHWjvYyAYkSTIBCnNsGLWa9lU26V2KAmrpqaGkpISioqKMBqNrFixgvXr159wzIYNG7j22msBWLZsGVu2bEFRFNavX8+KFSswGo0UFRVRUlJCTU0NTqeT6dOnA2Cz2SgrK6O9vX3CH9tYG+rpIJUgYqSGGunWJHA1SHKeLcaBXn+IT5o8LKrMTrpJB4nivGI74ajCziOJ3VhICLUpikJrb4D8tOTcCjOkxGFhIBjBlUCTqUaz4BHwafNgNeK5hekqR5IcdFoNlc4UttS7CIZlS8x4aG9vJzc39/h/5+TkfClh0d7eTl5eHgB6vZ7U1FTcbvewbtvS0sK+ffuYPXv2OD6KiVFztJe8NBPZMjpdjNBkpw2jTsPOBK5ol8aoMer9OheRqMLiyky1QxFnKSfVRLHDwmfNHi4osaOVZJYQ48LlDREIR8lLN6sdiqqKHIN9QZrcvoTp/3CyRUtNTc2XjjnZggcGFzSrVq3CZrNx1113MXfu3DP+Tp1Og92ufgWmTqcddRw7WnupyLZRXmCntceP1TKy54Vepz3lbbRazUl/drrbnM3vOdvbnCy+iYjtnCIHu472sdfl47Kq7JMeMxZ/2/EUy/GdLMH5xYuFpzrmTLcdGBjgjjvu4IEHHsBms50xllh5rzgZRVHYcaSXiyuyRhSjTqfFbDKM+HUyEmfzOhyP+z7Ve9hY3f9Ijed9A2i0Guypw38uzC6ys6utL2af46MlSZAYtfFQFzmpJqblykireHZeUTov17RR2zlAlfPMH6hCiJE72uMHID/JkyAZVgM2o44mt5c5CXLlfzQLHqfTycaNG3E4HOzevZvvfve7VFdXn3FxE4koeDzqN5i1262jisMXivDxYRerz8nH4/HiD0bw+oIjuo9wJHrK21gtxpP+7HS3OZvfc7a3OVl8ExFbns2IzaTjxU+aOMeZctJjRvu3HW9qx5edfepz39zcXNra2o7/d3t7O06n80vHtLa2kpubSzgcpq+vD7vdftrbhkIh7rjjDq655hqWLl06rDhj5b3iZA53e+keCDIzJ2VEMdrtVvyB0IhfJyNxNq/D8bjvU72HjdX9j9R43jeAEh3Z83V2biq/3dpES3svNlPspgxO935xOrIdJgYNBMN81OhmUWWWbIWJc1XZNtLMej6VJmlCjJujPX6MOk3CVD+cLY1GQ5HDQpMrcfqCjGTBA5yw4DEajTgcDgBmzJhBcXExhw8fnrjgVfZpk4dgROFCmTA3oXRaDZdVZfNubTf9gbDa4SScmTNn0tDQQHNzM8FgkOrqahYvXnzCMYsXL+bll18GYN26dcyfPx+NRsPixYuprq4mGAzS3NxMQ0MDs2bNQlEUHnzwQcrKyrjlllvUeFhj7rOWwfPOcwulH5A4O+cWpRNVSNht/ZIEiUHvHuomEI5yRVWW2qGIUdJqNZxbmE6j20dnAndYFkJNR3v95KWZZcsZUJJhpT+B+oKMZsHjcrmIRAYbUw8teIqKiib8Mahl82EXFoOWOQWJURUUT5ZOcRIIR1l/sFPtUBKOXq/noYce4tZbb+Wqq65i+fLlVFZW8sQTTxzvF7R69Wo8Hg9LlizhmWee4Z577gGgsrKS5cuXc9VVV3Hrrbfy0EMPodPp2LZtG2vXruWjjz46Pk3qvffeU/Nhjtq25h6cNiOF9uSukBRnb2ZeGgadhm3NiXkhN3ZrW5LYm/s7yE8zHe/MK+Lb7IJ0Pqh38WmTh+XTctQOR4iEEgxH6egLcEGJQ+1QYkJpxmBfkMPdsVmiPVKfX/BEIhGuv/764wueGTNmcPnll7N69WruvfdelixZQnp6Oo899hgAn3zyCU8++SQ6nQ6dTsfDDz+M3Z4cV0UVRWHzYRdzi+wY9XK9a6JNzrFRmmHhtT3trJyZp3Y4CWfhwoUsXLjwhO/deeedx//dZDLx5JNPnvS2t99+O7fffvsJ35s7dy4HDhwY+0BVoigKn7X0MLcoXSrKxVkbmnT5WUtiNkeVJEiM6R4I8nGjm29cUCRvXAnCatQxIy+VXa19XFKeGdP76mLN/fffz7vvvktmZiavvfYaAB6Phx/84AccOXKEgoICHn/8cdLT5UpnsjrQ3kdUgYIk7wcyxGE14rAaqOsaUDuUMXO2C55ly5axbNmycY8vFjW6fBztDfC3FyRP5Uss0Wg0XD09l9+8f5hmt+9402IhJkKj20f3QFBGY4tRO7fIzrNbm+gPhBNu/SKXB2LM2wc6iSpw5VTnmQ8WcWNeiYNoVOET6Q0yItdddx1PP/30Cd9bs2YNCxYs4K233mLBggWsWbNGpehELNhx7AqFLDL+ojwrhSa3D38oonYoQiXv1XUDcJH0A1HN8qlOtBp4bW/7mQ8WYgwNnWtKEkSM1nmF6UQU2J6A1SAxlQRpbW3lpptuYvny5axYsYJnn31W7ZAmXPWedqqyUyjLPHlHcRGfMlKMTMmx8VlzjyxMRuD888//UpXH+vXrWbVqFQCrVq3inXfeUSM0ESN2HukhN9WExaBTO5SYUZ5lJRxVqDmSeCctYnjWH+xkem4quWlSIaUWZ6qJeSUOXt/TTjRBGhWL+LC1wU1+moki6QciRml2QTomvZatjW61QxlzMZUE0el03Hfffbzxxhs8//zzPPfcc9TW1qod1oQ50N7P/o5+Vs7MVTsUMQ7mlzoIRqIJu7duonR3dx+fDuF0OnG5XCpHlHwCCriDkWF/DUSHf3xgBGsFfyjCvtY+ijOkCuTziu0WDFoNnzRK5VkyOtrjZ197P5dLc3XVXT09h7a+QMI2FhSxJxyJ8mmzh3mlDtlWL0bNpNdybmE6WxoSLwkSU5t7nE7n8cWNzWajrKyM9vZ2KioqVI5sYqzd3YZRp5GtMAkqN83MpEwrnzR5OL/YjkEXUznIhKfTabDbrWqHcdZ0Om3MxN/a42drY/ewjz+vxMG2YS7IF1ZlY083D+vxbqnvJhRVqMpNw2oZ3nhcvU477GMn8nitVnPG243kvsuyU/ik0U16ukVOhJPMhkNdACyqlCSI2hZWZGEz6Xh1dzvnF0vzZjH+drX2MRCMML9UtsKJsTG/1MFj79ZztMdPfgL1X4upJMjntbS0sG/fPmbPnn3KY0azqImlBQUMXtF8c38HV07PpTj35E0eTxezr8c/ohPvUxnpCfyZ7ms4J/YTHdPp7mu48Z5tTIsmO/nt5gb2dw4wb1ImAGaTAfso3lRi7bk83jIzM+no6MDpdNLR0UFGxvA+6CMRBY8nfidm2O3WmInfH4zg9QWHfXw4Eh328f5ACI8nOqzH++7eNrQacFr1w77/kcQykcdbLcYz3m4k913isPDW/k5qDndTkhEb7w/Z2alqh5AU1h/sZIrTRqFdKqTUZtJrWT41h1d2tfKDy8rIsI7NuYwQp/JRgwudBs6XfiBijCwozeAx6vmo0c11sxJn2lVMJkEGBga44447eOCBB7DZbKc8bjSLmlhYUAQU8B7rD/HWvnb6/GEuKc/kcEffSY83mwz4A6GT/iyiMKIT71MZ6Qn8me4rGlVGfX9jHdPp7ms4C5HRxOS06ilIN/P+oS6mOW3otJrji76zpfZzeaIXNosXL+aVV17htttu45VXXuHyyy+f0N8vzswXiuDyhghHothMeiLR8dkPv7XRQ5XThkkv/UC+qDwrBejkw8OumEmCiPHX5Paxu7WP718ySe1QxDFfPSefF3Yc5eWaVv5ufona4YgE91Gjh+l5aaSaY3KJJ+JQaYYFp83IRw2SBBlXoVCIO+64g2uuuYalS5eqHc648oYibNzfgaIo/GFrM1kpRrr7/GzcHzjp8adboC+ozB7PUMUY0Wg0XFSWwR+3H6XmaC9zCmW06+n88Ic/5OOPP8btdnPppZfy/e9/n9tuu4277rqLF198kby8PJ544gm1wxQMJj5qjvSyq7WXzv4T36f+8Ekzldk2zitKH7NGje19Afa09XHLAllUnIzdYqDIYWHLYTdfP69Q7XDEGPv8RZTPe7GmFa0GLqzIxB088ecR6c2pitJMK/NLHby4o5VvnF+EXrbCinHSNRBkX1sft10on4ti7Gg0Gi6clMHbBzoJhqMY9YnxHhZTSRBFUXjwwQcpKyvjlltuUTucCdPi8dPeF+DKqU7Zu50EyjKtFKSb+bDexcw8KQ8/nV/96lcn/X4yTo6KVeFolE+beth82EUgHKUg3czCikyybUYMWi29gTCBiMKmQ53UHO3lnII0FlVmYR7lNJeNx/oeXFyeQW17/1g8lIRzQYmDV3e14gtFZHpOghm6iPJ5UUXhtV1tTMq0UnOSBtxysUQ9X5tTwF0v7+btg50sn5qjdjgiQb1f140CLKzIVDsUkWAuLc/klV1tbGvxsCBB+s3EVCpn27ZtrF27lo8++oiVK1eycuVK3nvvPbXDGnefNHkw67XMkAVxUtBoNCysyKQvEJZJMSKudfQFeHZrMxsPdVFoN/PN+cX87QVFXDgpg8psG6WZVmblp3HH4gq+e8kkLii2U3O0l2e2NtPed/KKt+HacKiLskwrRQ7Z6nEqF5Q6CEUUPmmSyRTJoMHlpS8QZmZ+mtqhiC9YMMlBWaaV321tlnG5YtxsqusmP91MRVaK2qGIBHN+sR2LQct7tcNvih/rYqoSZO7cuRw4cEDtMCaUayDIwY5+5pU6ZFpIEinJsFKaMViq7gtGcBjlKq2ILzuP9LBuXydmg5bV5+RRmX3q/k0AZoOOyydnMznHxss1rfzh42auPyePSZkjP1nrHgiyo6WHv5tffLbhJ4Xp+WmkGHVsquvm0nK5MpjodrT0YjZoqcyWBVCs0Wo03DyviIdeP8Cm2m5WnS9/IzG2vMEIHze6uX52vlSVizFnNuiYX5rBprpufnR5BdoEeI7JqltlHzW40Wk1XFAsXZyTzaXlmXhDEV7ZeVTtUIQYtlAkyq/freP1vR0UOczcuqDkjAmQzyu0W7hlXjEOq4E/bj/KgY6Rb2V560AnCrC4SkaAno5Rp+Xisgzeq+0mPE7NaUVs6PGFONjRz5yCdPRaObWLRUsmOylIN/PbrU0oUg0ixthHDS6CEUW2wohxc1lFJp39g31nEoF8Uqqooy/ArtZeZhWkkWKKqaIcMQEK7BYqslJ4YfsRev0nn/ojEldAAXcwMqyvQIycL7u8Qb7zQg1/3tXGvBI7N84pwHoWVUw2k56vzy0kN83MKzWtHBxBIiQSVfh/nx1hVn7aiJIvyWpRZRYeX4idR2TrXSL7rKUHNEiz7Rim12r45vxi9rX38+aedrXDEQlmw6Eu0s16ZhfIe4AYHxdNykCn1bD+YJfaoYwJSYKo6I/bWgCYX+JQORKhlksrMhkIRPi/HzWpHYqYYEONDYfzdbIpEBPtUGc/3/iv7exr7+e+pVUsrspGqz37ckiLQcfXzs0nN83MyzWtHBpmImRTXTdHe/z89XkFZ/27k8mFkzIw6bVsSJCTFvFloUiUHS09TM62kW4xqB2OOI0V03KoyErh0bcPEopE1Q5HJAhvMMJ7td1cMTkb/Sg+l4U4nXSLgQWlDt460JkQvY0kCaKSFo+P1/e0Mzs/TU5aklhOqokrp+fw/PajNLi8aocjxEltquvm1v/ZSTiq8NSNs1k8eWymTJj0Om6ck09OqomXalo51Hn6RIiiKPz3py3kp5lYWCFbYYbDYtCxoNTBxtquhDhpEV+2vaUHfzjK+SWyrTbW6bQavn/pJJpcXl7YIVthxdh4r64LfzjKlVOcaociEtyyKU7a+wLsPNKrdiijJkkQlazZ3IhWo+GiMtm7l+xunl+MWa/l8Xfr1Q5FiBMoisIfPmnmnlf2UJJh4dm/nsP03LGdYmU26PjauQU4U028vLONrYddpzz2z3va2Xm0l5vOL0InV7uG7fKqbDr7gwlx0iJOFI5E2drgpsRhodBuUTscMQwLSh0srMziPz9soK3Xr3Y4IgGs29dJbqqJWQUyGUqMr0vLMzHrtaz7woj2eCRJEBUc6OjnzX0drJqdR6pZeoEkO4fVyLcWlPDhYRcf1p96ASjERPKHIvx83UGe3HSYy6uyWHPjbJyppnH5XUOJkGybkUde389bJ/lwPdrj51cb6zi3MJ3rZueNSxyJauik5c198X/SIk6082gv/cEIF5VlqB2KGCaNRsPDX5kOwC/fOSRNUsWouL1BPmpwsXSKMyEmdojYZjXqWFiRyTsHOgmG43tLnyRBJpiiKDy6oZZ0i4GvzS1UOxwRI746J59ih4XH3q2TfcJCdQc6+vnb/97On/e0c+v8Yv7p6qmYDeM7xtli0PG18wqodNp4sHo/97+8i0aXl6ii8GmTh2/9vx0A/PTKyXKiN0LHT1oOdsr7SwIJRqJsrndRaDdT7JAqkHhSYLdw+8WT2HzYzUs1rWqHI+LYa3vaiSiwYrpshRETY8X0HHr8Yd6tje9eY5IEmWBv7e9kx5FevntxKTaZCCOOMei0/PCychrdPv5n2xG1wxFJKqoo/NenLdzy3Hb6/GF+ff0Mvn1R6YQlHSwGHY9eN4O/Pb+Ql3ccZfUzn3Lh4x9w+ws1mA06/uOrs8hPN09ILIlm+bQcev1hNp9mu5GILx83uOkPRlhUmYVGEoMxRaPRnHbiV2uPn6XTc5hbbOd/bajj45aemJkCJuJHVFF4qaaVOYXplGWmqB2OSBLzShzkp5vjPoErq/AJ1OsP8dh79UzNsXHNjFx647yMSIyti8oyuKwikzVbGllYkUlJhlXtkEQS2dbs4fF369nf0c9lFZk8uKQKu3XimzbrdVq+f2kZ315UwfMfNdLrD5ObZmL51JyzGscrBs0rceCwGKje2yFNZROAayDIR41upjht0gskBvnCUbYc6jzlz60WI15fkIsmZXCgvZ8H1u7hP//qHCrkc1+MwCeNHlo8fv7+wlK1QxFJRKvRcN2sPH7z/mEaur2UZsbn+5ZUgkygJ987jMcb5IElldLUT5zUj6+oxKTX8vN1B4lE5bKQGF99/jDVe9r55nM7+Ps/1uDyBvn5VVP4169MUyUB8nnOVDM3nV/Edy+ZxPWz8yUBMkp6rYYV03PYVNdNV39A7XDEKK35sIFIVGFhpTRXj2dWo47rz8nDF4rw4Kt76fOH1Q5JxJEXdx7FbjGwqFIS22JiXTMjB71Ww4s743fKlVSCTJCtDW7W7m7jGxcUMSVnbKcriMSRlWLk7kXl/PSNA/xxx1H+6twCtUMS4ySqKHT1B+n2BgmGo2g1kGLUYzPpsJn0mPTa4yXuGo2G1h4//mAEfyhCa6+fZrePxm4vTS4vXQNB+gNh+gJhQhGFFKMOq0GH1aQn1aQnzTL4T4NOSygSxeUN0dDtpaF7gKgC+elmvrewjKVTnZgNOjyh01epRSQ/F5eunZXHf33awqu72/nm/GK1wxFnaWujmw0HOrmoLIMMq1HtcMQo5aWZuW52Hi/uaOXv/7iTJ6+fSWaK/F3F6TV0e3mvtptb5hVh1Ms1bTGxMqxGlk3JZu2uNm5dUILdou6Fs7MhSZAJ4PYG+dmbB5iUaeVWOfEUZ7B8qpO39nfyv98/zCVlGVLqnGB6fCH+e1sLf97TTld/8JTH6bUabCY9qSYdr+/roHsgiHsgyEAwcsJxdouBdLMes0GL3WxBp9WQbjXS4vbS6wvR3uvHF4rgD0WJKgpajYYUow6H1cj8UgcV2TauP6+Qj2q72FLXPazHsKAye1T/D4Q6ih0Wzi+288quVr5xgYwZjke+UIR/eecQBXYzF5Y61A5HjJFJmSk8fPVUfv76fm79fzv4t5XTqciSHg/i1J79pBmjXsvX5GKZUMlN5xdRvbeD5z87wrcvKlU7nBGTJMg4UxSFn687SI8/xJPXzxj3CQsi/mk0Gu5fUsmNv/uUn71xgP+8cTZ6WazEPUVReHV3G7/edJi+QJi5xQ4uKLbjtJkwG7REFRgIhOkPRo5XdfQHwvQHIgTCUUw6LeVZKTisBuwWA5kpRjKsBgy6L18BWlCZfdr96F8kTRWTx3Wz8rj/tX18UO9iYYVspYg3T7xXT4vHz79eOwOXbGtKKOeXOPj3G2Zx76t7ufm/t3Pv4nK+MiNX3p/Fl7T1+nljXwerZ+fhkGowoZLyrBQWlmfyxx1H+ZvzC0kxxldaIb6ijUO/+7iZ9+td3L2onMpsm9rhiDiRk2ri/isq+YfX97NmcwPfuXiS2iGJUfCHIvzynUO8vreD84rSuWdRBZnpZjbu7zjhuFOVQC+ozGZnSw9e36krR4QYjssqMslLM/GHT5olCRJnPqx38aedrfz1eYXMLkz/0vuHiH8z89P4r5vO5SfV+/jHtw7x1v5OfnBZORXZUhUi/uL/bGlEA/zN3EK1QxFJ7pZ5Rbz3XDfPfXqEb11YonY4IyKbyMbRh4dd/McHDSybks2Nc/LVDkfEmWVTnaycmcvvtjbzYb2MtYxX/YEw3//TLt7Y28FtF5bw7zfMkhNaoRq9TsvfzC1k59FedrT0qB2OGKbWXj8/fWM/FVkp3H5xqdrhiHGUlWLkf98wi/uuqGBPWx9f//02HnhtHw3dXrVDEzHgYEc/f97dzlfn5JObJiPjhbqm56VxeVUWv/+kmc44q06UJMg4OdDRzwN/3kdldgr/sLRKyhnFWblnUTlVThsPVssJUDzq9Ye4/Y817G7t45+unsq3FpSglfcCobKvzMjFYTHwzMdNaocihiEQjvLjV/cSjir8y1emYZImiAlPq9Fw/ex81t56ATfPK+KD+m5ufPZT7nllD5vqugnL9LikpCgKT7xXT5pZz99Jj0ERI753ySQiisJ/fNCgdigjIp+k46DF4+Oul3aTatbz2LXSB0ScPbNBx6MrB096f/jKbtxe2Q4RLwaCYe58aTd13QM8unI6SyZLM1ERG8wGHV8/r4DNh91sa/aoHY44jaii8OUbKmoAACAASURBVLM3DrCvvZ+Hl0+m2CGNspNJusXAdy6exNpbL+Bvzy9iV2svd7+yh2vWbOWxd+v4rMUjCZEk8vreDj5u8vCtBSWkmeNvGodITIV2C1+bU8Cf97TzSZNb7XCGTZIgY+xoj5/b/1hDKBLlietm4Ew1qR2SiHO5aWb+beV0OvqD3PnSbrxfmA4iYo8/FOGHL+9hX1sfv1gxlYvKMtQOSYgTfO3cAnJSTTzxXj1RRRZRsUhRFH6z6TDvHOzkjksnsbAiS+2QxDjSaDS4g5GTfqHX8fV5xfzXzXP52YopVDhTeGH7Ub79fA3L/mML9722j+e2H2V3Rz+uQPiU9+MORgjIyz0udfYH+F8b65idn8bqc2SLvYgtt11YQrHDwj+uOxg36xRpjDqGGrq9fP9PuxgIRviPG2ZRLuPNxBiZlZ/GL66eyo/W7uGul3fz+LUzsBqlwigWBcNRfvTqXra39PDIVVO4rFIWLiL2mA06vntJKQ+9foDqPe1cMyNX7ZDEF/x6Yy1/+LSFG87JlwaIScAXjg57qteiiiwuLM3AYNRRXdPKlnoX6w8M3jbVpKfIYaH42FeG1XDCluxFU5yY5PwhroSjCj994wDBSJSfLKuS8eYi5pgNOn6ytIrbnt/Jv6w/xM+unBzzrSAkCTJGdh7p4e5X9qDTaviPG2YxOUcmwYixdWl5Jo9cNYWHXt/PHX/axa+unS7lkDEmGI7y4z/vZUuDmweWVHLlVKfaIQlxSsumOPnTjlYee7eeeSUOqVyMEYqi8J+bG/ntR01cPT2HexaXx/zJpJh4Jr2WBeVZaKMKiqLQPRCiye2lye2j0eVlb1sfAFajjmK7hSKHhdIMC4pUfsWdX2+q55MmDz9ZVkVJhlXtcIQ4qXMK0/nWhSWs2dzIZKeNr58X28l7SYKMkqIovFzTyr9tqCMvzcST18+k0C57dsX4WDrFiU6r4Sev7+fv/mcHj107A7tdPhBjwVDzwg8Pu7jvigqunZWndkhCnJZWo+GnV07m67/fxs/XHeSJ62dI416VhSNR/nl9LWt3tXHDeYXcfekk+ZuIM9JoNGTZjGTZjJxbZEdRFNzeEE1uH80eH01uH/s7+gF4dU87l5Zlcml5BnOLHeilqiCm/c9nR3hu2xFunJPPV6RiT8S4v5tfzMGOfp54rx6nzcQVMdwPT5Igo9DjC/HLdw6x/mAXC0od/OOKKXJlXoy7y6uycVgN/GjtXr7x39v5l+tmMjcvVe2wklogHOXetXvY0uDm/iWVXCcJEBEnihwW7lxYxr+sr+U/P2zgOxdPUjukpNU1EOT+P+9lx5FevjmviPtWTKOnx6d2WCIOaTQaMlKMZKQYOacwHQCPL8Thbi8ef4hXd7fxwo6jZFgNLJmczfKpTqblpkrFUYz5n8+O8KuNdSyqzOKuhWVqhyPEGWk1Gh5ePoU7X9rFP1TvQ4GYHQwgSZCzoCgKb+zr4In36un1h/neJZP4m7mFskdPTJhzC+387q/ncP+f93H7c9tZOTOXOy6dJEk4FXQPBLl37V52tfby4JJKVkkCRMSZ62fncaCjn2e2NpObauK62dJ0b6JtONjJL9+pxR+K8E8rprB0ilMWpGJM2S0G5hSms2iKE4sGNje4eXNfBy/VtPL89qMUOyxcOcXJ8mlOqTBVWTgS5dGNdfxpZyuXVWTyixVT0OtkloWID1ajjsevm8Gdf9rNA6/to8Hl5e/mF8dcVaMkQUZAURQ2N7h56sMG9rX3MzMvlV9fX0mVU/p/iIlXaLfwf//qHJ7ZdoTffniY9+u6uXVBCdfOzJUPywmyrdnDT984gMcX4p+vmcrlVbGZ7RbidDQaDT++vILO/iC/fKeWHn+Ymy8okkX4BGh0eXn8vXo+qHcxNcfGz5ZPpixTmqqL8WU26FhcmcXiyiz6/GE2HOrkzX0d/J8tjazZ0sh5xXaWVmVxxeRsubgywfa39/HzdQc52DnATXML+e4lk+Qiq4g7KUY9//uGWfzi7YOs2dzItmYPDy6poiiGxrxLEmQYugaCrD/Qycu7Wqnr8pKXZuKnV1Zx1bScmMtqieRi1Gv58bLJLCy186t36/nX9bU8+3EzN87JZ/lUJ1k2aXQ4HtzeIGs2N/Knna0U2s08/bXZTMmRLUkiful1Wv5t5TQefvMA//5BA3vb+vjxFZVkpRjVDi0hHejo57ltLazb14HZoOP7l0zi6+cVSAJbTLhUs56VM/NYOTOPtl4/b+7rYN2BLn75Ti2PbqzjkrJMlk91Mr/UgdkgU2XGS333AL/b2sy6/R04rEb+9SvTWCTT5UQcM+m1/OzKycwpSOfx9+q58dlPWTUzj5vOLyQvzax2eLGXBNm0aRP/9E//RDQa5YYbbuC2226b8BjCkSiHugbYeaSX9+q6+azZQ1SBquwUfnplFcumODHIiYqIIVNyUnnqq7PY3ODmD5808+Smw/x602HOKUzniqoszi92UJJhSaiknRrvFQ3dXl7e1craXW34QxFuOCef7106CYucGIoEYNBpeeSqKUx22vjPDxtY/dtP+OqcfFbPzld1csyZXuvBYJAf/ehH7NmzB7vdzmOPPUZh4WBX+qeeeooXX3wRrVbLP/zDP3DJJZeo8RCIKgr72vrYfNjNprpu9nf0Y9ZrufHcAm46v0iSTSIm5KaZuXleMXcuncxHBzt4fW8Hb+3vYMOhLow6DecW2blwUgZzCtKoyEpRLWk3Hu8JE31OEY4qNLq8bG10s+FgFzuP9mLSa/nr8wq5eV6RVOCIhKDRaFg1K4+LyjL4P1saeammlRd3HGVeiYPLKjM5v9hBod2syvokppIgkUiERx55hGeeeYacnBxWr17N4sWLqaioGJP7VxSFSFQhGFEI9wdo7BrA4wvRPRDkSI+fZvdgB+0DHf34w1EAih0WvjmvmCVTsqVEVcQ0jUbDRZMyuGhSBoe7vbxzsJN3DnTybxvqAEgx6piaY6M8K4W8NDN56WacNiM2o54Uk44Uox6LQRsXJfDj+V4RVRQGAhH6g2E6+gI0un3sbetjW7OHBpcPnVbD5ZVZ3LqghEmZsm9aJBatRsNN5xdxSVkmT21u4Hdbm/nd1mZm5qdxbmE6VU4bOakmclJNZKUYx71Meziv9RdeeIG0tDTefvttqqurefTRR3n88cepra2lurqa6upq2tvbueWWW1i3bh063fgkLSNRhV5/iG5vCNdAkNZeP/XdXuq7vOzv6MfjC6EBpuWmcveicpZPdZJukYWOiD0ajYapOalMzUnlzksnsa25h80NLj6sd/GrjYPnFEadhirn4DlFQbqZgnQzuWlm7BYD6WY9qWb9uCxsxuM9ARi3c4pQJMpb+zvpGgjS6w/h8oao6xqgvttL4NhaoyzTyh2XTuLq6Tk4rJIQFYkn22bigSVVfHNeMa/ubuP1vR388zu1AFgNOsqzUijLtGK3Dr5/5KWZWVyVNa7JkZhKgtTU1FBSUkJRUREAK1asYP369aN6E2rr9XPb8ztxeUOEIlGipxmPnpVipNBuZuXMXGblpzErP43cGCjXEWKkJmVa+daCEr61oIRGl5ddrb3sae1jT1sfr+1pZyD4/9m78/CoyrN/4N9ZMtm3yTKThBAgBAgQgloESgBJZLEhErbXpbaKC9YdUV5EX/AnCqhQC1qLprYo1WorCKgIKGETFEFFwr4vCSETSCaTZTL78/sjZkwkgSwzc2aS7+e6etWcOct9DuecOXOf57kfe5PLyWV1zdeCVUq8Prk/UmK8s96NO+4VAPDwxwX4/nwFfn2bCFYp0D8uFFPS45HVK5rdjKjD6xYVhEU5fVGor8Wmo6X4+nQ5/vV9Eey/+hJVKWR4dEQP3HF9glviaMm1vmXLFjz66KMAgLFjx2L+/PkQQiA/Px/Z2dlQqVRITExEUlISCgoKcN1117U7rjUFF/GP3edhsTlgsTtgtjlga+IBw18pRzd1EDJ6qDE4KRJDkiIREcTEB/kOpUKOwd0iMbhbJJ68KRnFBhMOXqzE4ZJqHNZV4etTZSg3WptcVqWQwU8hh0ohh0opx/VdwjH/d33aFY877gkA3PJMAQAFxZX4fxuPAQD8FDJEBPohSR2EyelxSIkJxnVdwpEQ7j11EojcSRsWgOm/7YYHhibhbHkt9l8w4MSlGpy4VI2vT5eh0mSDzSGgkMvwn5gbkKR238tGr0qC6HQ6aLW/jIGt0WicN6em+PkpEBNz9X74MTGh+PbZm10WoyvFAOiVEOGy9Q3oGulV63Hlujp6TO11tesgJiYUv+mt8WA07tfaewXQsvvFxw8Pc0l8LdHa67+155uvzw9c/bx2zoPW30e9bV9bM7+n7zsxMaG4vlcs5nh0q79oybWu0+kQF1c3KpNSqURoaCj0ej10Oh3S09MbLavT6a65zZbcK6ZnhWJ6Vq/W7EqbNBdHW58f2nL+cJmOt0xLNHvuxYQivad0RcDddU9o7TMF0LJ7xbiYUJy9PvHaO+ZFeiVEuPT3SVPc+V3m7u9JX47dm8TGhuHGPtL9PvGqwhZCXPkWxRea5hORZ/FeQdQ5tORab24e3ieIOh533BN4ryDqfLwqCaLValFSUuL8W6fTITY2VsKIiMgb8V5B1Dm05FrXarW4ePEiAMBms6GqqgoRERG8TxB1QO64J/BeQdT5eFUSJC0tDWfPnkVhYSEsFgvWr1+PzMxMqcMiIi/DewVR59CSaz0zMxNr1qwBAGzatAlDhgyBTCZDZmYm1q9fD4vFgsLCQpw9exYDBgyQYjeIyEXccU/gMwVR5+NVNUGUSiXmzZuH+++/H3a7HZMnT0ZKSorUYRGRl+G9gqhzaO5aX7ZsGfr374+srCxMmTIFs2bNwujRoxEeHo6//OUvAICUlBTccsst+N3vfgeFQoF58+a5bWQYIvIMd90T+ExB1LnIRFMd4YiIiIiIiIiIOhiv6g5DREREREREROQuTIIQERERERERUafQIZIgc+bMwdChQzF+/HjntKVLlyInJwcTJkzAvffe6xwH/NeKi4tx7733OvsIFhUVAQCeeeYZZGZmYsKECZgwYQKOHDniFTHv3r3bGdOECROQlpaGzZs3AwAKCwsxdepUjBkzBjNmzIDFYvHqeL31GAPAq6++iuzsbNxyyy146aWXnMOnHTx4EDk5ORg9enSj6d4c8x/+8AeMHTvWeZzLyspcGjO1344dOzB27FiMHj0aeXl5V3y+d+9eTJw4EX379sXGjRsbfbZmzRqMGTMGY8aMcRaC83Zt3d8jR47gtttuQ3Z2NnJycvDFF194Muw2a8+/LwBUV1dj+PDhmD9/vifCJTdo6t6+YcMGZGdno0+fPjhw4IBz+qefftroe7NPnz5Nfj++8cYbGD58uHO+7du3uzS+V155BePGjUNOTg4eeeQRVFZWOj97++23MXr0aIwdOxZff/11k+t05TNJa+LbtWsXJk2ahJycHEyaNAnffvttk+t01fFrTWxFRUUYMGCAc5vz5s1rcp0VFRWYNm0axowZg2nTpsFgMLQpttbGJ8W5R97hWt9THUFmZqbzeXrSpEkAXHutSa2pa725/RNC4KWXXsLo0aORk5ODQ4cOSRW2dEQHsGfPHnHw4EGRnZ3tnFZVVeX87/fee0/MnTu3yWXvuususXPnTiGEENXV1cJoNAohhJg9e7bYsGGDV8ZcT6/Xi0GDBjljfvzxx8Xnn38uhBBi7ty54oMPPvDqeL31GP/www/itttuEzabTdhsNvE///M/Yvfu3UIIISZPnix+/PFH4XA4xH333Se2bdvm9THfddddoqCgwKVxkuvYbDaRlZUlzp8/L8xms8jJyREnTpxoNE9hYaE4cuSImDVrVqNrRq/Xi8zMTKHX60VFRYXIzMwUFRUVnt6FVmnP/p4+fVqcOXNGCCFESUmJGDZsmDAYDJ4Mv9Xas7/1XnzxRTFz5kzxwgsveCpscrGm7u0nT54Up06duuo9+ujRoyIzM7PJz15//XXxzjvvuC2+r7/+WlitViGEEK+++qp49dVXhRBCnDhxQuTk5Aiz2SzOnz8vsrKyhM1mu2KdrnwmaU18hw4dEiUlJUIIIY4dOyYyMjKaXKerjl9rYissLGw0X3NeeeUV8fbbbwshhHj77bedy7s7voY8de6R9FryPdURjBo1SpSVlTWa5sprTWpNXevN7d+2bdvEfffdJxwOh9i3b5+YMmWKJDFLqUO0BBk0aBDCw8MbTQsJCXH+d21tLWQy2RXLnTx5EjabDcOGDQMABAcHIzAw0L3B/qytMTe0adMmDB8+HIGBgRBCYPfu3Rg7diwAYOLEicjPz/faeD2hrTHLZDJYLBZYrVbn/0dHR6O0tBTV1dW47rrrIJPJkJub69Jj7I6YyfsVFBQgKSkJiYmJUKlUyM7OvuK86tKlC/r06QO5vPEte+fOnRg2bBgiIiIQHh6OYcOGNftW1lu0Z3+7d++Obt26AQA0Gg3UajXKy8s9FXqbtGd/gbrWZ2VlZc7vKfJNTd3bk5OT0aNHj6sut379+kZv9dylqfgyMjKgVNYNIjhw4ECUlJQAAPLz85GdnQ2VSoXExEQkJSWhoKCg0bKufiZpTXx9+/aFRqMBUDcaiMVicWnL2PbE1lL5+fnIzc0FAOTm5jpb0HoyPk+deyS9lnxPdVSuvNak1tS13tz+1U+XyWQYOHAgKisrUVpa6vGYpdQhkiDN+ctf/oKRI0fis88+wxNPPHHF52fPnkVYWBgeffRR5Obm4pVXXoHdbm+0fE5ODhYuXOjWL9DWxNxQwy8ovV6PsLAw55eaVqttttuEN8TbcHlvO8bXXXcdBg8ejIyMDGRkZGD48OFITk6GTqeDVqt1zuepY9yemOs9++yzmDBhAt58802Xd+Gh9vn1eaXRaFp8XrVnWam4KuaCggJYrVZ07drVleG5XHv21+Fw4JVXXsH//u//uis88nJffPEFsrOzm/38gw8+QE5ODubMmePWZtyrV6/GiBEjALTsnPb0M0nD+BratGkTUlNToVKpmlzOE8fv17EVFRUhNzcXd911F77//vsmlykrK0NsbCwAIDY21q3J3uaOnbece+R+vvgs0Vb33XcfJk2ahP/85z8APHutSaG5/ZPyN4236NBJkCeffBLbt29HTk4O3n///Ss+t9ls+P777zF79mysWrUKRUVF+OSTTwAAM2fOxMaNG7F69WoYDAaP9Y+7Vsz1SktLcfz4cWRkZDQ7z7VaZrhCe+L11mN87tw5nDp1Ctu3b8eOHTuwe/du7N27t8nkgSeOMdD2mAFgyZIl+Oyzz/DBBx/ghx9+wLp16zwSM7VMe84rKc/JtnJFzKWlpZg1axYWLVrUZOsJb9Ke/f33v/+NESNGIC4uztVhkQ/Yv38/AgMD0atXryY/v+OOO/DVV19h3bp1iI2Nxcsvv+yWOJYvXw6FQoFbb70VQNvPaXfdm34dX70TJ05gyZIlzdbS8cTx+3VssbGx2Lp1K9auXYtnnnkGTz31FKqrq12+3bbGV89bzj3yDF98lmiLDz/8EGvWrMHf//53fPDBB87n5M6os/ybX413Pz26yPjx4/Hll19eMV2r1aJv375ITEyEUqlEVlYWDh8+DKDui0omk0GlUmHSpEmNipZJGXO9DRs2YPTo0fDz8wMAREZGorKyEjabDQBQUlLizPx5QmvjBbz3GH/11VdIT09HcHAwgoODMXz4cPz000/QarWNmox6+hgDrY8ZgLNZcEhICMaPH39Fs2WS1q/PK51O1+Lzqj3LSqW9MVdXV+PBBx/EjBkzMHDgQHeE6FLt2d99+/bhgw8+QGZmJl555RWsXbsWS5YscVeo5GXWr19/1Tfx0dHRUCgUkMvlmDp1qlu+Q9esWYNt27ZhyZIlzgfklpzTnnomaSq++u09+uijeOWVV5ptLebu49dUbCqVCpGRkQCA/v37o2vXrjhz5swVy0ZFRTmbppeWlkKtVrs0tubiq+cN5x55ji8+S7RF/fNwVFQURo8ejYKCAo9ca1Jqbv+84TeN1DpsEuTs2bPO/96yZUuT/W7T0tJgMBicTYO+++479OzZEwCcJ4wQAps3b0ZKSopXxFzv119QMpkMgwcPxqZNmwDUfbllZma6LVagffEC3nuM4+PjsXfvXthsNlitVuzduxfJycmIjY1FcHAwfvrpJwghsHbtWmRlZXl1zDabzXl+W61WbNu2zSPHmVouLS0NZ8+eRWFhISwWC9avX9/iazcjIwM7d+6EwWCAwWDAzp07r9o6zBu0Z38tFgseeeQRTJgwAbfccoubI3WN9uzvn//8Z2zbtg1btmzB7NmzkZubi6efftrNEZM3cDgc2Lhx41V/iDbsv+2O79AdO3bg73//O5YvX96olldmZibWr18Pi8WCwsJCnD17FgMGDGi0rCeeSZqLr7KyEtOnT8fMmTNxww03NLu8O49fc7GVl5c7u13XH7vExMQrls/MzMTatWsBwC3PGs3FB3jHuUee1Z7vKV9hNBqdra6MRiN27dqFlJQUt19rUmtu/+qnCyHw008/ITQ0tNMlQWSiAxQImDlzJvbs2QO9Xo+oqCg89thj2LFjB86cOQOZTIaEhAS88MIL0Gg0OHDgAD766CMsWLAAQN1QavXN+Pr164f58+dDpVLhj3/8I/R6PYQQ6NOnD1544QUEBwd7RcxFRUW44447sH379kZNwQsLC/Hkk0/CYDAgNTUVS5YsabYfrDfE663H2G6344UXXsDevXshk8kwfPhwzJkzBwBw4MABzJkzByaTCSNGjMDcuXNd2nzM1TEbjUbcddddsFqtcDgcGDp0KObMmQOFQuGymKn9tm/fjoULF8Jut2Py5Ml46KGHsGzZMvTv3x9ZWVkoKCjAo48+isrKSvj7+yM6Ohrr168HAKxatQpvv/02AOBPf/oTJk+eLOWutEhb93fdunV49tlnnclqAHj55ZeRmpoq4d5cW3v+fet98sknOHjwYLNDapJ3a+reHhERgRdffBHl5eUICwtDamoq/vGPfwCoeynz5z//Gf/9738bree5557D7bffjrS0NMyaNQtHjx4FACQkJGD+/PltfohtKr68vDxYLBZEREQAANLT051dS5YvX47Vq1dDoVDg2WefxciRIwEADzzwAF566SVoNBqXPpO0Jr6//e1vyMvLQ1JSknP5f/7zn4iKinLL8WtNbJs2bcLrr78OhUIBhUKBxx57zPljs2Fser0eM2bMwMWLFxEXF4dly5Y51+XO+ADPn3vkHZr6nupICgsL8cgjjwAA7HY7xo8fj4ceesil15rUmrrWb7755ib3TwiB+fPn4+uvv0ZgYCAWLlyItLQ0qXfBozpEEoSIiIiIiIiI6Fo6bHcYIiIiIiIiIqKGmAQhIiIiIiIiok6BSRAiIiIiIiIi6hSYBCEiIiIiIiKiToFJECIiIiIiIiLqFJgEIbcrKirC+PHjAQBHjhzB9u3bJY6IiDqT7777Dj/++KPUYRBRO3344YdYu3Zts5/zWiei9mj4m4U6NqXUAVDncuTIERw8eBAjR46UOhQi8nJ2ux0KhcL5txACQgjI5a3L3+/ZswdBQUG4/vrrXR0iEbVDa6/pO+6446qf81onIqKWYBKE2mTx4sWIj4/H73//ewDAG2+8geDgYFy6dAlff/01ZDIZHnroIfzud79zLmOxWPD666/DZDLhhx9+wIMPPoguXbpg4cKFMJlMCAgIwMKFC9GjRw/U1tbimWeewenTp5GcnIwLFy5g3rx5SEtLw86dO/HGG2/AYrEgMTERixYtQnBwsFSHgohaYO3atfjHP/4BmUyG3r17Q6FQ4KabbsK4ceMAANdddx327duH7777Dn/9618RGxuLI0eOIC8vDw888AAGDx6Mn376CW+++SbOnDnT5D0gMzMTubm52Lp1K2w2G5YuXQp/f3989NFHkMvl+PTTTzF37lz85je/kfhoEHVeRUVFja7pu+++Gx999NEV1/OSJUuwZcsWKBQKZGRkYPbs2XjjjTcQFBSE++67DytXrsRHH30EhUKBnj174qmnnrriWq+srMTy5cthtVoRERGBJUuWIDo6Gm+88QaKi4tRVFSE4uJi3H333fjjH/8I4Mp71eLFi1FeXo7nn38excXFAIBnn30WN9xwg5SHkYia0fAaTkxMxJEjR7Bp0yb4+fmhuroat956KzZt2oTi4mI8//zzKC8vh0KhwLJlyxolZO12O5YsWYI9e/bAYrHg97//PW6//XYJ94xcShC1waFDh8Tvf/9759+33HKL+OSTT8Q999wjbDabuHTpkhg5cqTQ6XSisLBQZGdnCyGEWL16tXjhhRecy1VVVQmr1SqEEGLXrl3i0UcfFUII8c4774i5c+cKIYQ4duyYSE1NFQUFBaKsrEzceeedoqamRgghxNtvvy3eeOMNj+wzEbXN8ePHxZgxY0RZWZkQQgi9Xi9mz54tNmzY4Jxn4MCBQgghdu/eLdLT08X58+eFEEIUFhaK3r17i3379gkhxFXvAaNGjRIrV64UQgjx/vvvi2effVYIIcTrr78u3nnnHQ/sKRFdS8NrurnrWa/XizFjxgiHwyGEEMJgMAghGl/Lw4YNE2azudnPhRCioqLCuY7//ve/YtGiRc75brvtNmE2m0VZWZm48cYbhcViafJeJYQQM2fOFHv37hVCCHHhwgUxbtw49x0gImqzpq7hZ555Rnz11VdCCCE++ugj531gypQp4ssvvxRCCGEymYTRaGz0m+Wjjz4Sb775phBCCLPZLCZOnOh8NiHfx5Yg1CZ9+/ZFWVkZdDod9Ho9wsLCcOTIEWRnZ0OhUCA6OhqDBg3CgQMH0Lt372bXU1VVhdmzZ+PcuXOQyWSwWq0AgB9++MH5VqZXr17Odezfvx8nT550Nom1Wq0YOHCgm/eWJUgPGgAAIABJREFUiNpj9+7dGDduHNRqNQAgIiLiqvOnpaUhMTHR+Xd8fLzzOr/WPWDMmDEAgP79++Orr75y6X4QkWvUX9Nbt25t8noOCQmBv78/nnvuOdx000246aabrlhH79698fTTTyMrKws333xzk9spKSnBk08+iUuXLsFisaBLly7Oz0aOHAmVSgW1Wg21Wo2ysrJm71XffPMNTp486Vy2uroa1dXVCAkJcdUhISIXaOoanjJlCt555x3cfPPN+OSTT/Diiy+iuroaOp0Oo0ePBgD4+/tfsa5du3bh2LFj2LRpE4C63yznzp1r9HxCvotJEGqzsWPHYtOmTbh8+TKys7Nx/vz5Vq9j2bJlGDx4MN58800UFRU5Ex9CiCbnF0Jg2LBheO2119oVOxF5TlPXs0KhgMPhcH5enwAFgKCgoEbzNvz7WvcAPz8/AIBcLofdbm937ETkevXX9NWu51WrVuHbb7/F+vXr8f7772PlypWNPs/Ly8PevXuxZcsW/O1vf8P69euvWMdLL72Ee+65B1lZWc6udvVUKpXzvxUKBWw2W7PPHg6HA//5z38QEBDQpv0lIs9o6hq+4YYb8MILL2DPnj2w2+3o1asXqqurW7Su//u//8Pw4cPdESpJjKPDUJtlZ2fjiy++wKZNmzB27FgMGjQIGzZsgN1uR3l5Ob7//nsMGDCg0TLBwcGoqalx/l1VVQWNRgMAWLNmjXP6DTfcgA0bNgAATp48iePHjwMABg4ciB9//BHnzp0DANTW1uLMmTNu3U8iap+hQ4di48aN0Ov1AICKigokJCTg0KFDAID8/PxGSZCracs94Nf3HSLyDs1dzzU1NaiqqsLIkSPx7LPP4ujRo42WczgcuHjxIoYMGYJZs2ahqqoKRqPxqs8YVxtVpl5T9yoAyMjIwPvvv++c78iRI+3bcSJyi+au4dzcXMycOROTJk0CAISEhECr1WLz5s0A6uoW1tbWNlpXRkYGPvzwQ+fzyZkzZ2A0Gj21K+RmbAlCbZaSkoKamhrExsYiNjYWo0ePxr59+zBhwgTIZDLMmjULMTExKCoqci4zePBg5OXlYcKECXjwwQdx//3345lnnsGKFSswZMgQ53x33nknnnnmGeTk5KBv377o3bs3QkNDoVarsWjRIsycORMWiwUAMGPGDHTv3t3j+09ELZOSkoI//elP+MMf/gC5XI6+ffvi6aefxsMPP4wpU6Zg6NChV7T+aE5b7gGjRo3C448/jvz8fBZGJfIizV3PwcHBePjhh2E2mwEAc+bMabSc3W7HrFmzUF1dDSEE7rnnHoSFhV1xrT/66KN44oknoNFokJ6e3uh5pClN3atefvllPPfcc5g/fz5ycnJgt9vxm9/8BvPnz3fPQSGiNmvuGs7JycHSpUsbDX/76quvYt68eVi2bBn8/PywbNkyyGQy5+dTp07FhQsXMGnSJAghEBkZib/97W9S7Ba5gUw01/aPSEJ2ux02mw3+/v44f/487rnnHmzcuLFR81UiIiIiIqKr2bhxI/Lz87F48WKpQyEvwZYg5JVqa2vxxz/+0dlH9/nnn2cChIiIiIiIWuzFF1/Ejh07kJeXJ3Uo5EV8uiWIw+GA3S5N+AqFTLJttxRjdA3GeHV+fgpJtttabb1f+MK//68xZs9gzK3T0e8V3sQXz8326Ez72xn2lfeKtvHmc4OxtY03xwZ4R3xtvV/4dEsQu12gokKaAjUREUGSbbulGKNrMMari4kJlWS7rdXW+4Uv/Pv/GmP2DMbcOh39XuFNfPHcbI/OtL+dYV95r2gbbz43GFvbeHNsgHfE19b7BUeHISIiIiIiIqJOgUkQIiIiIiIiIuoUmAQhIiIiIiIiok6BSRAiIiIiIiIi6hSYBCEiIiIiIiKiToFJECIiIiIiIiLqFCRJgsyZMwdDhw7F+PHjndMqKiowbdo0jBkzBtOmTYPBYJAiNCIiIiIiIiLqoCRJgkyaNAnvvPNOo2l5eXkYOnQovvzySwwdOhR5eXlShEZEREREREREHZQkSZBBgwYhPDy80bT8/Hzk5uYCAHJzc7F582YpQiMiIiIiIiKiDkopdQD1ysrKEBsbCwCIjY1FeXn5NZdRKGSIiAhyd2jNbFsu2bZbyhdirLbYUStzbS4u2F+BsAA/l63PF46jL8RI5AlmARit9navJ8hPAX+ZCwIiok6htfce3mOoo2rqWqg1mGCyXPv64HVBnuI1SZC2sNsFKiqMkmw7IiJIsm23lC/EWCuTY8P+Cy5d56g+sXCYrC5bny8cRyljjIkJlWS7RE0xWu3YerS03esZ1ScW/iqFCyIios6gtfce3mNcb8eOHViwYAEcDgemTp2K6dOnN/p8xYoV+Pjjj6FQKKBWq7Fw4UIkJCQAAFJTU9GrVy8AQFxcHN566y2Px99RNHUtBAWqYKy1XHNZXhfkKV6TBImKikJpaSliY2NRWloKtVotdUhEREREROTl7HY75s+fjxUrVkCj0WDKlCnIzMxEz549nfOkpqZi9erVCAwMxL///W8sXrwYS5cuBQAEBARg3bp1UoVPRB7mNUPkZmZmYu3atQCAtWvXIisrS+KIiIiIiIjI2xUUFCApKQmJiYlQqVTIzs5Gfn5+o3mGDBmCwMBAAMDAgQNRUlIiRahE5AUkaQkyc+ZM7NmzB3q9HiNGjMBjjz2G6dOnY8aMGVi1ahXi4uKwbNkyKUIjIiIiIiIfotPpoNVqnX9rNBoUFBQ0O/+qVaswYsQI599msxmTJk2CUqnE9OnTcfPNN19zm1LWJmyKt9SHqzWYEBSoajRNLpddMa0pAf5+iAgPcFdoTfKW49YUb44N8P74rkaSJMhrr73W5PT33nvPw5EQEREREZEvE0JcMU0ma7rC5rp163Dw4EG8//77zmlbt26FRqNBYWEh7r77bvTq1Qtdu3a96jalrE3YFG+pYWey2K+o/9HSmiAmsxUVFQ53hdYkbzluTfHm2ADviK+ttQm9pjsMERERERFRa2m12kbdW3Q6nXPUyYa++eYbvPXWW1i+fDlUql9aJmg0GgBAYmIibrzxRhw+fNj9QRORZJgEISIiIiIin5WWloazZ8+isLAQFosF69evR2ZmZqN5Dh8+jHnz5mH58uWIiopyTjcYDLBY6loplJeX48cff2xUUJWIOh6vGR2GiIiIiIiotZRKJebNm4f7778fdrsdkydPRkpKCpYtW4b+/fsjKysLr776KoxGI5544gkAvwyFe+rUKTz//POQyWQQQuCBBx5gEoSog2MShIiIiHxeZWUl/u///g/Hjx+HTCbDwoUL0b17dzz55JO4cOECEhISsHTpUoSHh0sdKhG5wciRIzFy5MhG0+oTHgDw7rvvNrnc9ddfj88++8ydoRGRl2F3GCIiIvJ5CxYswPDhw7Fx40asW7cOycnJyMvLw9ChQ/Hll19i6NChyMvLkzpMIiIikhiTIEREROTTqqursXfvXkyZMgUAoFKpEBYWhvz8fOTm5gIAcnNzsXnzZinDJCIiIi/A7jBERETk0woLC6FWqzFnzhwcPXoU/fr1w3PPPYeysjLnCBGxsbEoLy+/5roUChkiIoLcHbJbKRRyn9+H1vCG/a01mBAUqLr2jD8L8PdDRHhAq7fjDftKROTrmAQhIiIin2az2XD48GHMnTsX6enpeOmll9rc9cVuF6ioMLo4Qs+KiAjy+X1oDW/YX5PFDmOtpeXzm62oqHC0ejvesK/uFhMTKnUIRNTBsTsMERER+TStVgutVov09HQAwLhx43D48GFERUWhtLQUAFBaWgq1Wi1lmEREROQFmAQhIiIinxYTEwOtVovTp08DAL799lskJycjMzMTa9euBQCsXbsWWVlZUoZJREREXoDdYYjIa82ZMwfbtm1DVFQUPv/8cwDAK6+8gq1bt8LPzw9du3bFokWLEBYWJnGkRCS1uXPn4umnn4bVakViYiIWLVoEh8OBGTNmYNWqVYiLi8OyZcukDpOIiFrAYnNgTcFFbD5+CRcrzYgPD8D4vhqM76+BXCaTOjzycUyCEJHXmjRpEu666y7Mnj3bOW3YsGF46qmnoFQqsXjxYrz99tuYNWuWhFESkTdITU3FJ598csX09957T4JoiIiorYoNJjzz2WEc0VUjJSYY13cJx4lLNXjxy+P47FAJlkzoh/BAP6nDJB/GJAgRea1BgwahqKio0bSMjAznfw8cOBAbN270dFhERERE5Aa6KjPu+/An1FrtePXWvhiVEg0AEELgs0M6vLz5BGauPYQ3p6QhwE8hcbTkq5gEISKftXr1atxyyy0tmretw1764nCEnTnm1g5T2ZyWDF/ZmY8zERGRq9Va7fjftYdQa7XjndsHomdMsPMzmUyGW/trEaxSYM5nR/DipuNYMD5VwmjJlzEJQkQ+afny5VAoFLj11ltbNH9bh730xeEIO3PMrR2mstn1tGD4ys58nNuCw14SEdHV/H3XWZy4VI3541MRFR4AvcV+xTzXd1PjD4O7YuV355GREo0h3dUI8lPAn2VCqBWYBCEin7NmzRps27YN7777LmQsjkVERETk04oqavH5gRIM6hqBGpMNW4+WNjuvNkSF6GAVlmw+gQeGJmFsfy38VewaQy3HIXKJyKfs2LEDf//737F8+XIEBgZKHQ4RERERtYPDIbDxSCmiQ1QYkRx1zfkVchnGpcai0mTD3vMVHoiQOhq2BCEirzVz5kzs2bMHer0eI0aMwGOPPYa8vDxYLBZMmzYNAJCeno758+dLHCkRERERtcWhkipcqrZg9thekDtEi5ZJjAxEj6gg7D2vR63Vjki2BKFWYBKEiLzWa6+9dsW0qVOnShAJEREREbmaQwh8c6YcsSEq/LZHFHafvNziZYf1UONfe4uw4ZAO992Y6MYoqaNhdxgiIiIiIiLyuCMlVSg3WjGsh7rVdd66RASia2QgVv14AbYWtiAhApgEISIiIiIiIg8TQuC7cxWIDlahd2xIm9ZxY9cIXK6xYNfpMhdHRx0ZkyBERERERETkUcWVZuiqzLghMbzNo/0lRwdDHeyHtQdKXBwddWRMghAREREREZFH7SuqgEohQ7+4sDavQy6XYWyqBt+cKYeuyuzC6KgjYxKEiIiIiIiIPKbWaseRkmr004bCX9m+n6S39NPCIYD/7r8IvcXe4v+ZWUak0+LoMEREREREROQxR0qqYHMIDOwS3u51RQSrkBgRiPUHSxAfqmpx15pRfWLbvW3yTWwJQkRERERERB5zuKQaUcEqaEL9XbK+VG0IymosuFRtccn6qGNjEoSIiIiIyA3sDgEh2OaeqKEqkw2FFbXoqwlpc0HUX+sTGwIZgCO6apesjzo2dochIiIiInKhilorNh+7hDNlRkQE+uF/rotHeKCf1GEReYUjuioAQKo21GXrDPZXIkkdiCO6KoxIVrssuUIdE1uCEBERERG5iEMIfHqgBOfKa5EWF4pqsw0r9xRCb2QzfSKgrrWGJtQfUcEql643VRMKvdGKUnaJoWtgEoSIiIiIyEX2nqvABYMJY1NjMK6vBncN6gKz3YEdp8qkDo1IctVmG4oNJvTRhLh83SmxwQCAE5fYJYaujkkQIiIiIiIXqLXaseNUGVJigtHv56b+MSH+uCExAodLqlFWwzfU1LmdulwDAOgZHezydQerlIgPD8CJSzUuXzd1LEyCEBERERG5QP2wnxk9GtckGJwUAT+5DLtOl0sYHZH0Tl6qQViAEjEhru0KUy8lJhgllWZUmWxuWT91DEyCEBERERG5wP7iSsSGXDnsZ5BKiYFdwnFYVwWjxS5RdETSsjkcOFNuRHJ0sNsKl9a3MDl5ma1BqHlMghARERERtVNplRkllWYMSAhv8gdeWnwYhACOl7JeAXVOhfpaWO0CydFBbttGTIgK4QFKnGSXGLoKJkGIiIiIiNrpwMVKyGVw1gL5tdgQFSID/ZzDgxJ1NqcuG6GQy9BN7b4kiEwmQ3J0MM6VG2FzONy2HfJtTIIQEREREbXTqcs1SFIHIUilaPJzmUyGVG0IzulrYai1ejg6IumdKzeiS0QA/BTu/QnaPSoIVofAhQqTW7dDvsvrkiDvvvsusrOzMX78eMycORNms1nqkIiIiIiImlVaZUZZjRU9oq7+hruPJhRCADs5XC51MkaLHaXVFiRFuq8VSL2ukYGQyYCz5Ua3b4t8k1clQXQ6HVauXInVq1fj888/h91ux/r166UOi4iIiIioWT+c1wOoewN9NbEhKkQE+uG7sxwlhjqX8/q6hESSOtDt2wrwUyA+LABnypgEoaYppQ7g1+x2O0wmE5RKJUwmE2JjY6UOiYiIiLxcZmYmgoODIZfLoVAo8Mknn6CiogJPPvkkLly4gISEBCxduhTh4eFSh0od0A/nKxDqr0R08NWH/ZTJZOimDkTBhUrYHAJKuXtGyCDyNufKa+GnkCEuLMAj2+sWFYRdp8tRa7Uj0K/pLmrUeXlVEkSj0eDee+/FqFGj4O/vj2HDhiEjI6PZ+RUKGSIi3N+kqultyyXbdkv5QoymKjOCAl07TniAvx8iwl13g/WF4+gLMRIRudt7770HtVrt/DsvLw9Dhw7F9OnTkZeXh7y8PMyaNUvCCKkjsjsE9hUa0D0qqEXDfnaLCsJPFypxpKQKafFhHoiw89ixYwcWLFgAh8OBqVOnYvr06Y0+X7FiBT7++GMoFAqo1WosXLgQCQkJAIA1a9Zg+fLlAICHHnoIEydO9Hj8Hdk5fS0SIwKh8FDir7u6LglyrtyIPpqmixVT5+VVSRCDwYD8/Hzk5+cjNDQUTzzxBNatW4cJEyY0Ob/dLlBRIU0zp4iIIMm23VK+EKOQyWGstbh0nSazFRUVrqsG7QvHUcoYY2L4xUJE3ik/Px//+te/AAC5ubn4wx/+wCQIudzR0mpUmW0tHvGivibCnvN6JkFcyG63Y/78+VixYgU0Gg2mTJmCzMxM9OzZ0zlPamoqVq9ejcDAQPz73//G4sWLsXTpUlRUVOCvf/0rVq9eDZlMhkmTJiEzM5Mtx1ykymRFWY0FAzx4vseHB0ClkONMGZMgdCWvSoJ888036NKli/MtzpgxY7Bv375mkyBERERE9e677z7IZDLcdtttuO2221BWVubsVhsbG4vy8mvXYZCylamrdLbWgVLv7/HDpQCA3nFhCAr0u+b8QYFASmwI9hVXtTpuqffVmxUUFCApKQmJiYkAgOzsbOTn5zdKggwZMsT53wMHDsSnn34KANi5cyeGDRuGiIgIAMCwYcPw9ddfY/z48R7cg47rfHktACAxwjNdYQBAIZeha2Qgzv68baKGvCoJEh8fj/3796O2thYBAQH49ttv0b9/f6nDIiIiIi/34YcfQqPRoKysDNOmTUOPHj3atB4pW5m6ii+0YHQlqfd37+kyxISooIRocevW9IQwrCu4iJJLVQhoRb0CqffVE9rawlSn00Gr1Tr/1mg0KCgoaHb+VatWYcSIEc0uq9Pprro9b0uYekuCrNZguqKre9GZcijlMnTXhEIpb35cDqVC3qZu8s0t11sbipMHS2ByAOom6vUE+Pt5zXFrijfHBnh/fFfjVUmQ9PR0jB07FhMnToRSqURqaipuu+02qcMiIqIOoNZqR1mNBWEBSoQFXPttLfkWjUYDAIiKisLo0aNRUFCAqKgolJaWIjY2FqWlpY3qhRC5yoHiSvTVtu6H+8AuEVi1rxgFxZW4MSnSTZF1LkKIK6Y1V6Nl3bp1OHjwIN5///1WL1vP2xKm3pIgM1nsVyQDz5UZoQ3zh8Vsw9XShDa7o03d5JtbLiHMHwBwpNiA67pc2bXJZLbCbnd4xXFrirf8mzbHG+Jra9LUq4bIBYDHH38cGzduxOeff47FixdDpXJt0Uwi8h1z5szB0KFDGzVHraiowLRp0zBmzBhMmzYNBoNBwgjJF9gcDmw8Uoql207jX3uLsHznWXxxWAezzS51aOQiRqMR1dXVzv/etWsXUlJSkJmZibVr1wIA1q5di6ysLCnDpA7oUrUZJVVmpMa1rtZBv7hQyADsL650T2CdkFarRUlJifNvnU7X5CiT33zzDd566y0sX77c+TujpctS69nsDhQbTOgS4f6hcX9NHeSHUH8lh8qlK3hdEoSIqN6kSZPwzjvvNJpWP9rDl19+iaFDhyIvL0+i6MgXWO0O/Pv7C9hXZMD1ieGYMjAO13UJR0FxJdYUlMDhuPLtH/mesrIy3Hnnnbj11lsxdepUjBw5EiNGjMD06dOxa9cujBkzBrt27bpipAii9jrwcxIjtZUtQYL9lUiODkYBkyAuk5aWhrNnz6KwsBAWiwXr169HZmZmo3kOHz6MefPmYfny5YiKinJOz8jIwM6dO2EwGGAwGLBz586rjlBJLVdSZYbdIZDgwpEbW0omk6F7VBDOlRvhaKK1D3VeXtUdhoiooUGDBqGoqKjRNI72QK3x1dFLuGAw4db+WvSLq/uRkhITgtgQf2w4UorNxy9hTB++7fN1iYmJzgKHDUVGRuK9996TICLqLA5crIKfQobkmGCUVLSuAOOA+DBsOloKu0N4bNjQjkypVGLevHm4//77YbfbMXnyZKSkpGDZsmXo378/srKy8Oqrr8JoNOKJJ54AAMTFxeGtt95CREQEHn74YUyZMgUA8MgjjziLpFL7XKgwAYAkSRAA6KYOREFxJXSVZsRJFAN5HyZBiMintGW0B6DtBcx8sehTZ465YUG2giID9hdXYkRKNAb1iGo0329TYqA32bD7TDkGdY9Cwq+a6Qb4+yHiGg9Lnfk4E1GdA8WV6BMbCpWi9Y2r0xPC8EnBRZwpM6JnTLAbout8Ro4ciZEjRzaaVp/wAIB333232WWnTJniTIKQ6xQZaqEOUiHYX5qfnUk/D119Tl/LJAg5MQlCRJ1CWwuYeUPRp9bqzDHXF2Qz2xxYf/Ai4sMDMLRrRJMF037bLQL7iyqw8eBF3HFDl8brMVtRUeHwSMyeJGXMbS1eRuSt7A6BY6XVyB0Q16blB8TX1RHZX2xgEoQ6rIsGM7pHS3d+h/groQ7yw7lyI4Z0YxFiqsOaIETkU+pHewDA0R6oWd+d1cNosWN07xjIm2lm7q9UYFgPNc6W1+J0WY2HIyQiX1eor4XJ5kDv2Lb9wEsID4A6yA/7L7AuCHVM1WYbqsw2JERI2wIjSR2Eoopa2FkHjH7GJAgR+RSO9kDXUmWyYc85PVI1IYi/RtPX67qEI9RfiT3nKjwUHRF1FMdK60Yk6hUT0qblZTIZBsSH4cBFJkGoYyqpNAMA4iUYGaahJHUgLHaBkkqTpHGQ92AShIi81syZM3H77bfjzJkzGDFiBD7++GOO9kDXtPe8HjYhMLJn1DXnVcrlSE8Iw5kyIypqrR6Ijog6imOl1fBTyNAjqu11dvpqQ1FUYYKB9x/qgOqTDlLX4kiKrEvCnNO3rngxdVysCUJEXuu1115rcjpHe/AOZgEYrfZ2ryfIT+GCaOrUmG3YV1SJVE0IIoNULVomPSEMu06XY/8FA0b2jHZZLETUsR0rrUZyVDCUCjlgb9u9sO/PQ+se0VVhSDd276SO5WKlGVHBKvgrFS55XmirIJUSMSEqnCs34rfdeZ0RkyBERNRGRqsdW4+Wtns9o1w4RO36gyWw2B0YnNTy4mdhAX5Ijg7G/guVyOgRxaEqieiahKgrinpTOxOnfTV1SZDDJdVMglCHU1Jlco7OIrWukYHYf6ESNocDSjk7Q3R2PAOIiKhDsDkE1uy/iG7qQGjDWtf0Nj0hDDUWO86V+9ZoL0QkDV2VGQaTDb1i21YPpF5ogBJdIwNxuKTKRZEReYcqkw3VZjviwvylDgUA0E0dBJtD4KLBLHUo5AWYBCEiog5h56kylNVYcENiRKuX7REVBJVC5ix0SER0NcdK60aUauvIMA311YbiEJMg1MGUVP1cD6SVLyXcJbG+LghfdhCYBCEiog7ik4KLiA5WoWd063+UKBVyJEcH43hpDRyCQ+gR0dWduFSXME1p48gwDfXVhuJyjQWlVXxDTR2H7ueRYWJDvKMlSKCfAppQfxZHJQBMghARUQdQbDBh91k9xvXVQN7Gmh69NSEwWu0o4gMSEV3DqctGJIQHIEjV/sLOfTV1iRR2iaGOpLTajMhAP6iU3vNzMykyEBcqTLDaHVKHQhLznrOSiIh8zlFdFT768QJW7D6PLw7poDdaJIlj3YGLkMmAcf00bV5HclQwlHIZjrJLDBFdw6myGiS3odVZU3rHhkAhAw7rmAShjkNXZUFsqHe0AqnXVR0IuxC4YDBJHQpJjEkQIiJqNZtD4NWvjmNNQQkqjFYE+ClwqKQKed+cw4HiSs/GYndg3UEdfttd3a4HLpVSjm7qIJy8VAPBLjFE1AyLzYHz5Ub0jHbNqBcBfgr0iA5mSxDqMMw2BypqrYgNbdlQ9Z7SNTIQMhlwrpwtPjs7DpFLRNSJmEXd0Lbt9c9vzmHz0UsY1l2NYT3UUMhlqDbb8OnBEnx+SAcASIsPa/d2WmLH6XKU1VgwaUBcu9fVIzoIJy/X4EKFCWpN+/v6E1HHc05vhF3AZS1BgLq6IFtPXIYQAjIZh+km33apuq4eiMZL6oHU81cqoA31x3m9EUCU1OGQhJgEISLqRIxWO7YeLW3XOk5drsF/9xVjTF8Nbkj4JdER4q/E1IHxWPVTMb44rEN0iMojVeHX7L+I2BAVhnZXo8rWvn6+PaLq3ux+f16PNCZBiKgJpy7XjS7Rw8VJkHUHSlBUYXKOYkHkq+qL/HpbdxgASFIHYc85PSysC9KpsTsMERG1mN0h8OXRUkQHq/BARrcrPvdTyJE7IA7BKiU+PVDi9oeMC4Za7D6nR25aHJRtLIjaUGSQChGBfvjhfIULoiOijujU5Roo5DIkuTBZ0U8bCoDFUamKYEWFAAAgAElEQVRjKK0yI0ApR1iA971vT4oMhEOARdA7OSZBiIioxQ4UV6Ki1oZRKdHwVzY9KkKgnwI5/TUoN1qx/USZW+NZW1ACuQy4NU3rsnX2iArCT0UGWNrZqoSIOqZTl2uQFBkIP4XrHqOTo4Lgr5SzOCp1CLpqC2JC/L2ya1eXiEDIZeBQuZ0ckyBERNQidofArjPliA8PQPI1CgImqYNwXZdw/FBU4WwW62o2uwOfHizBsO5qaFzY5LZHVBDMNgcKPFzglYh8w6kyo0vrgQCAUiFHr5gQtgQhn+cQApeqzV5XFLWeSilHfHgAzpUbpQ6FJMQkCBERtcjhkipUmmzI6KFu0dudEclR8FfK8dWxS24ZbWXH6XKUG62YlN7+gqgNdVUHQS4D9haySwwRNWa02FFsMF0zEdwWfbUhOKqrhs3B0anId12qMsNqF4jxsqKoDXWNDEJJlRk1FpvUoZBEmAQhIqIW2X+hEpFBfs7iodcSpFJgZHIUzutrceJSjcvjcRZE7aZ26Xr9lXKkxIRgH5MgRJ2WWQB6i/2K/x34ubtKbFhgo+l2F+Qt+mpDYbI5cKbM9fdLIk8p/LmbSVSwd7YEAYAkdSCEAA5eYIvPzsr7qtUQEZHXKa+xoLCiFjf1jGpVH9+BCeHYe74C205eRs/oYMhdULwU+KUg6vShSVC4aJ0NDegSjrX7i2Gy2hHg13TtEyLquJobSevAz93kLlbUNvp8aEpMu7fZt0Fx1JQYjk5FvumXJIifxJE0LyE8AAqZDPsvGHC71MGQJNgShIiIrqmguBIyGZAWH3btmRuQy2W4qWc0ymqsOHDRdW9c1h1wfUHUhgbEh8FqFzh4kf3ziegXZTUWyGVAZJDrf+B1jQxEsEqBwyXVLl83kacU6msRoJQjyItfIPgp5EiICMBPRQapQyGJMAlCRERXJYTAgYuVSI4KRoh/6xsQ9ooNRnx4AL4+VQ6rC4bMrSuIqnN5QdSG+seHQS4DfmCXGCJqoKzGgsggP7e0QJPLZEjVhrI4Kvm083ojooJVXjkyTENJkYE4dakGFUaL1KGQBJgEISKiq7pgMKHabEdfbduaZ8tkMozqGYUqs80lSYXtp8pQVmPBxAGuLYjaULC/Er1jQ/Aj3xIRUQOXayyIdmOtg37aUJy4XAMzh+gmH1Wor/XqeiD1ktRBEAD2ntVLHQpJgEkQIiK6quOl1ZDL0K4hIbuqg9AjKgjfntGj1mpvVzwffH8B8eEB+G131xZE/bXruoTj4MVKWPhjhIhQN0y4vtbq1h94fbWhsDsETlxilxjyPZUmK/RG914jrhIX7g9/pRy7z5RLHQpJgEkQIiJqlhACx0prkKQOaneB0JtSomGyObC7HW9dCoorceBiJe68PsEtzdEbSk8Ih8UucKyUP0aICNAbLRDCvaNe9NXUtbhjlxjyRefKvb8oaj2lXI6+caH47kyZ1KGQBJgEISKiZl2qtqCi1orese0fqUAT6o9+caH4/nwFKk3WNq3jg++LEBagRE5/9xREbWhAXN1IDa4s6EruZbfbkZubiwcffBAAUFhYiKlTp2LMmDGYMWMGLBb2/aa2u1xTd/64szuMJtQf6iA/HGIShHzQ2XIjACAqyPtbggB1I9gd01VDz7ognQ6TIERE1KzjPzfJTolpe1eYhkYkR0EIYOfp1jc/PXm5BltPXMbk9DgEqdxfdT46xB9xYf7OITHJ+61cuRLJycnOv5csWYJ77rkHX375JcLCwrBq1SoJoyNfV1ZTl7xVuzEJIpPJ0I/FUclHnS2vhVIuQ0Sg97cEAYD0LuEAgB8KWf+rs2EShIiImnWmzIi4MP82jQrTlIhAP1yfGI6CC5UoqTS1atm3dp5FkEqBO2/o4pJYWiItLgwFTIL4hJKSEmzbtg1TpkwBUNeVa/fu3Rg7diwAYOLEicjPz5cyRPJxl2ssCA9QQqVo/+OzTCaD3mJv8n89YkNwtrwWRVVm6C12mIULgifygHPlRiREBEDu5u6qrtIrNgTBKgW+50hwnY5rnmqJiKjDMVntuGAwYWi3SJeuN6OHGodLqrDxSCn+eGNii5Y5UFyJ7afK8KdhSR59w5QWH4Yvj11CSaUJ2rAAj22XWm/hwoWYNWsWampqAAB6vR5hYWFQKusedbRaLXQ6nZQhko8rN1pc1gqk1ubAtycuNfmZ2WIDAPzn+yJ0jwrCqD6x8PdA6zei9jpTbkRXdZDUYbSYUiHHb5IiXTJyHfkWJkGIiKhJ5/W1EALoHuWarjD1AvwUyOoVjU8P6vBjoQFZqZqrzm9zCCzechLqID/ccb3nWoEAdUkQADhwsYpJEC+2detWqNVq9O/fH999912z88lk1347qVDIEBHhOw/xTVEo5D6/D63hjv2tNZgQFPhLwkMIAb3RiqTE4EbT6ykV8ianN+dq8/fQKAAU47LRin5dVAjw90NEeN39p7P925LvsNoduFBRi2HJUVKH0iqDe0Rh+4nLuFxtRnSIv9ThkIcwCUJEPundd9/Fxx9/DJlMhl69emHRokXw9+eXlyudLjNCpZAhIdz1P/77akNx8GIVtpy4jInXxaN7bGiz8/5rbyGO6KqxaHyqR2qBNNQrJhj+SjkOFFdidO8Yj26bWu7HH3/Eli1bsGPHDpjNZlRXV2PBggWorKyEzWaDUqlESUkJYmNjr7kuu12gosLogajdJyIiyOf3oTXcsb8mix3G2l+KJdZYbDDbHAhVKRpNr2ezO5qc3pxrza8O8sO5shoYa8NhMltRUVE3VHdn+LeNiWn++4C8V1GFCXYBJEYGSh1KqwzprgYAfF9owLjUa39HUMfAmiBE5HN0Oh1WrlyJ1atX4/PPP4fdbsf69eulDqvDOVNmRNfIILcMRSuTyZDTX4sgPwVe2nAMZTVN/xj4qciAvG/O4eZe0bhZgiSEn0KOvpoQjhDj5Z566ins2LEDW7ZswWuvvYYhQ4bgz3/+MwYPHoxNmzYBANasWYPMzEyJIyVfVV5fFDXIM93x4sMDUGwwQQgWBCHfUD8yTFcfS4L0jQtDiD/rgnQ2XpcEqaysxOOPP45x48bhlltuwb59+6QOiYi8kN1uh8lkgs1mg8lkatEbXmo5vdGKiloruke5r9l1kEqB3AFaXK624M53vruiUOqB4krMWHMQCeEBmJ2V4rY4riUtPgxHddUw2xySxUBtM2vWLKxYsQKjR49GRUUFpk6dKnVI5KPqh9D0VBIkLiwANRY7qsw2j2yPqL3qkyBdfCwJopDLcH2XCNYF6WS8rjvMggULMHz4cLz++uuwWCwwmVo3egARdXwajQb33nsvRo0aBX9/fwwbNgwZGRlSh9WhnNfXPcwkqd37MNMlIhCLJvTF8+uP4o6VP2Byejy6qQNRUFyJTw+UQBsWgL9NHYAID/3waEpaXBhsjiIc1VUhPSFcsjioZQYPHozBgwcDABITEzksLrlEudEKuQwID/BcSxAAKDbwOZh8w7lyI2JDVAhSed3Py2u6ITEcO06VsQh6J+JVZ2l1dTX27t2Ll19+GQCgUqmgUrlvLHYi8k0GgwH5+fnIz89HaGgonnjiCaxbtw4TJkxodpm2Fjv0xSJ0V4v518X+mnOxyoIglQJdo0OaLSbZ2kKAzRnUIxqfPPRb/OWr41i5txBCAH4KGe68sSseuSkZUa0oVNbS/buWhoUIM1I1wKeHcbLChJH94pzzdLRzg4iaV260IiLQz2NDf8aGqqCQyVBsMHtke0Ttdba8Fkk+NDJMQ79JjAAA/FBoQHY/JkE6A69KghQWFkKtVmPOnDk4evQo+vXrh+eeew5BQb55QRGRe3zzzTfo0qUL1Oq6YlZjxozBvn37rpoEaWuxQ18sQne1mH9d7K85py9VIzEiALUma7PztLYQYHNMZiu6x4Zi/rheeGJ4N9Ra7QgP8ENogBKw2Vt1/Fu6fy2Jqb4QoRJ1b2X3nCrD5H6/jGTT0c4Nd2OxQ/Jl5UYL1EGeezGnlMuhCfPHxUq2BGmpHTt2YMGCBXA4HJg6dSqmT5/e6PO9e/di4cKFOHbsGF577TWMGzfO+Vlqaip69eoFAIiLi8Nbb73l0dh9nRACZ8uN+F3fq4/25q16xgQjPECJvYUVyO7nm/tAreNVSRCbzYbDhw9j7ty5SE9Px0svvYS8vDzMmDGjyfmlHMbOF96m+UKMpiqzS97aNtTwDa4r+MJx9IUYXSk+Ph779+9HbW0tAgIC8O2336J///5Sh9VhGGqtMJhsGJQU4fFtRwV7Z+u/tLhQ/FhkgBCiRcOsElHHUT88bncPv+WOC/NHQXEl7A4WR70Wu92O+fPnY8WKFdBoNJgyZQoyMzPRs2dP5zxxcXFYtGgR/vnPf16xfEBAANatW+fJkDuUyzUW1Fjs6OajLUHkMhkGdY3AnnN6fs93El6VBNFqtdBqtUhPTwcAjBs3Dnl5ec3OL+Uwdr7wBtAXYhQyuUve2jbU8A2uK/jCcexsb3fT09MxduxYTJw4EUqlEqmpqbjttts8HkdHdV5fCwDoGumbDzPuMCA+HJuOXkJJlRlx7C9M1KlUmW2wOQTUHk7SxocH4IdCA86XGxEdH+bRbfuagoICJCUlITExEQCQnZ2N/Pz8RkmQLl26AADkcq8bF8Ln1RdF7ebmOmLuNLS7GpuPX8aJSzXoFRsidTjkZl6VBImJiYFWq8Xp06fRo0cPfPvtt0hOTpY6LCLyQo8//jgef/xxqcPokAorahGglCMmxDtbZUghLb4u2XfwYhWTIESdTLmxrltgpIcLNMf/fK85qqvC9UyCXJVOp4NWq3X+rdFoUFBQ0OLlzWYzJk2aBKVSienTp+Pmm2++5jJStkhvipStgkuPXQYADOgeBSFwRStvuVzWopbfba011tblAvz9nMdtXHo8Xtx0HPtKqnFjL+8YcdDbW3p7e3xX41VJEACYO3cunn76aVitViQmJmLRokVSh0RE1KkUVZiQEBEAOZuDOvWMDoZKIcOhi1UY3TtG6nCIyIPKazw7PG69yCA/BCjlOKqr9uh2fZEQV3YZak2Xhq1bt0Kj0aCwsBB33303evXqha5d/z97dx4fdX0nfvz1nXsmyWRyTe4EAgn3jQJeKFQoxQMrdntv6Vrb3XbVbmt/tla767bu5Wp1u7uVh9uudteulVawpR4IKOKBCAJyE0LuO5OZHHPPfH9/hKQoCAkk+X5n5v18PHg8JPnOzHtw8s33+/68P+932Xkfo2VF+rloWRV8pMmLw2zEGovhjZzdL8xhtwyr8vtie41d7OOCoQixWByv148FqMpLY+vhVv5sdsEFHzse9F6Nrof4LrYiXXdJkGnTpvG73/1O6zCEECIlBSMxuvrDTC+QUtAzmY0GprgzONzao3UoQohx1u2PYDIoZFjH97JZURQKM20ca+0d19dNRAUFBbS2tg79va2tDbd7+Kv5+fkDzTBLS0u5/PLLOXz48AWTIOJPaj1+yrPtCd9L44qJ2fxqdwO9wehAc3aRtGRTnBBCiCGtvQPjGItky8dZZhRmcKStj6g0KRQipXj8EbIdZk1u8IoybdR6/PSHo+P+2olk1qxZ1NbW0tDQQDgcZvPmzSxbtmxYj/X5fITDA1UEHo+HvXv3fqiXiLiwWk8gYZuinumKidnEVHi3vlvrUMQYkySIEEKIIS2+gXGMhaM4YSlZzCzIIBiNU9PZr3UoQohx5PGHyRrH8bhnKsm0EVfhUItUg5yPyWTigQce4Pbbb+dTn/oUq1atorKykscee4ytW7cCA81Tr7nmGl566SV+9KMfsXr1agBOnjzJrbfeyk033cSf//mf87WvfU2SICPgD8do6w0lRRJkVpGTdKuRt055tA5FjDGp8xFCCDGkuSdIlt2M3WzUOhTdmVF4ujlqa690jhciRcTjKt5AhCka/cwXZdpQgAPNPVxenqVJDIli6dKlLF269ENfu+uuu4b+e/bs2ezYseOsx82fP5/f//73Yx5fsqrrTvzJMINMBoXF5Vm8XSujcpOdVIIIIYQY0uILSRXIxyjOtJFpM3FYVmSFSBm+YIS4Ov5NUQfZzEbKcxwcaJZ+REKfhsbj5iReJYiiKLT4gnSHY0N/5pS66OgLs6e590NfP/NPSHbFJjypBBFCCAFAbzBKbyhKUaZV61B0SVEUZhRmcEiaFAqRMgbH42anaTcyfHpBBjuqO4mfYwKKEFqr9QQwKlCSmXiVIIFonHdqOz40WSYciQHw7HsNLJmYfc7HXTfVjdUiFbOJTCpBhBBCANDSc7ofiDRF/VgzCjKo6erHH45pHYoQYhwMJkGyNKoEAZhe6KQvFONUl35HZYrUVefxU+yyYzElx21lutVEfoaVk9L/K6klx6dVCCHEJWvpCWJQID9DKkE+zoxCJ3EVjrRJNYgQqcDjD2M1GXBo2CdpsB+RbIkRelTr8VOelXhVIOczKddBoy9IICILHslKkiBCCCEAaPYFcadbMRvlV8PHmZE/cDMikxqESA3d/ghZGo3HHVSUacNlN0sSROhOLK5S350c43HPVJmXjqoi1SBJTK50hRBCoKoqLT3SFPVCXA4zxZk26QsiRIrw9IfJ1mg87iBFUZhd5JQkiNCdlp4gkZiadEmQQqeVdIuR4+2SBElWkgQRQgiBxx8hFI1T6JStMBcyU5qjCpESovE4vmBUs8kwZ5pd5KS+O4CnP3zhg4UYJ4OTYcqTYDzumRRFodKdTk1XP9FYXOtwxBi4pOkwoVCIZ555hj179qAoCgsWLOBzn/scVqtcRAshPkzOF/rW7BtoiloklSAXNL0gg5ePdtDeG0Tb9eHkJOcKoRfewckwOkmCALzf4GVBQbrG0Yw9OQ8khsFmvclWCQJQmZfG+40+aj0BJuelaR2OGGWXVAnyve99jxMnTvDFL36RL3zhC5w8eZJ77rlntGITQiQROV/oW0tPELNRIUfDMZCJYkbB6SaFjT6NI0lOcq4QevGnyTDanxen5adjNCi8X9+tdSjjQs4DiaHOEyDbYSbTrn2icLSVZ9uxGA2c6OjTOhQxBi6pEuTUqVO88MILQ39fvHgxN9100yUHJYRIPnK+0LdmX5BCpw2Dhs3/EsUU98DNyP5GHwtPT20Qo0fOFUIvPDqqBLGZjUx1p7O3wQuXl2odzpiT80BiqPX4KU/CKhAAk8HApFwHJzr6+aSqatocWYy+S6oEmT59Ovv27Rv6+/79+5k/f/4lByWESD5yvtCvaDxOe2+YQqdshRkOm9lIZW6aVIKMETlXCL3o9odxmI3YNByPe6bZRU4ONPpSokeBnAcSQ63Hz4Qk6wdypsq8NPrDMZpObxkWyeOSKkH279/Pxo0bKSoqAqC5uZlJkyZx4403AvD73//+0iMUQiQFOV/oV3tvmJiqUpQpe62Ha0bhQF+QuKpK9cwok3OF0AuPP0J2mvZVIINmFzn59d4mjnX0D23LS1ZyHtA/rz+CLxhNyn4ggyblpmFQ4ERHPyWu5E32pKJLSoI8+eSToxWHECLJyflCv1p6BlY4pBJk+GYUZPDb/S3UeQJMzEneC0AtyLlC6IXHH9bVz/es081RDzT3JH0SRM4D+venyTD6+RkZbTazkbIsO8fb+7iuMlfrcMQouqQkSHFx8WjFIYRIcnK+0K9mX5A0ixGn7ZJ+JaSUGad7gRxq7dHVTVIykHOF0INAOEZfKEa2DpqiDsrPsFKUaeNAUw+fm5/cPydyHtC/wSRIMm+HAahyp/PK0Q46+8LkpuvnfCAuzSX1BBFCCJH4WnoGmqJK06/hm5DtIM1q5GBLr9ahCCHGQJMvAOijKeqZ5pW5ONAs/YiE9k55/FhNhqSvIq3KGxhJfbRdft8nE0mCCCFECgtGYnT1RyjKTO6LmNFmUBRmF2dyuFUuioRIRk3egW2CeqoEAZhflkV7X5jWHmnUKLRV5wlQlmVP+r5YGTYTJS4bR9tkVG4ykSSIEEKksNaeEACF0hR1xOaUuDje0U8omvyTGoRINY3egUqQLJ1VgswvdQEDfUGE0NLAZJjU2A46NT+djr4wXf1hrUMRo0SSIEIIkcKapSnqRZtdnEksrnKsXVaHtBYKhVi7di033XQTq1ev5vHHHwegoaGB2267jRUrVnD33XcTDssFrBieJm+ADKsJs1Ffl8pTCjKwmQySBBGaCkXjNPuCSd8PZNAU9+ktMVINkjT0dWYXQggxrlp8QbIcZuxmo9ahJJzZJZkAHJItMZqzWCw89dRTvPDCC2zcuJE33niDffv28fDDD/OVr3yFV155BafTyYYNG7QOVSSIJm9Qd/1AAMxGAzMKMyQJIjTV0B1AhZSpBHHazBRn2jjSJr/vk4UkQYQQIoU19wQpkiqQi5LvtOFOt3CoRW5GtKYoCmlpaQBEo1Gi0SiKovDOO++wcuVKAG655Ra2bt2qZZgigTR5A7pJgiiKQnc4Rnc4RosvSFV+Bsfa+2juCw99/cw/IVXriEWyS4XxuB8lW2KSi8xDFEIkpJ6eHn74wx9y/PhxFEXhoYceYt68eVqHlVB6g1H6QjEKpSnqRZtR6JRKEJ2IxWJ8+tOfpr6+ns9//vOUlpbidDoxmQYudQoKCmhra7vg8xiNCi5XYl/YG42GhH8PIzHa79frD9MTjJKfacdhH15jVJPRMOxjR3p8RIU9dV4ADAYFk9FAXIWNB1qoOD254kxLq/JwyXldjKFajx8FKM9Kje0wMJAE2Xq8U7bEJAlJggghEtJPfvITrr76ah5//HHC4TDBoHTKH6nBfiBFTmmKerFmFmSw/UQnXn8El05WjVOV0Whk06ZN9PT08M1vfpOampqzjhnOGOhYTMXr9Y9FiOPG5XIk/HsYidF+vwdPV3elmw34A8Nb9Y3G4sM+dqTHn3msw24hxz5w+V7d3ktB+tmJlGAogtebuA2b8/IytA5BXECtx0+h04othbbSDm6JOSpbYpKCbIcRQiScvr4+du/ezdq1a4GBfgBOp1PjqBJPiy+IQYH8DEmCXKwZhQMX64fkokg3nE4nixYtYt++ffT09BCNRgFobW3F7XZrHJ1IBPXdA5NhstP0NR53kN1sJDfNQqNXkv9CG7WeQEpthRk0NT+d9r4wjafPESJxSRJECJFwGhoayM7O5vvf/z5r1qzhvvvuw+9PnVXP0dLSE8SdbsWks+kHiWRqfjoKcLhFkiBa8ng89PQMrN4Hg0HeeustJk2axKJFi3j55ZcBeP7551m2bJmWYYoEUd8dwKCAy67f6q4Sl41mXxBVlQYgYnzFVZW6FBqPe6ap+QPbz3ZUd2ocibhUsh1GCJFwotEohw8f5v7772fOnDn8+Mc/Zv369dx9990f+5iL3eefiHvrzxdzwBfEYbcQV1VaekLMKckc0T72M410D/zHsVnNo/bvPPj+RiOmC+2pNxoNFLudVLrTOdrZnxCfk0T8PA9He3s79957L7FYDFVV+eQnP8l1113H5MmT+fa3v81Pf/pTpk2bxm233aZ1qCIB1HcHyM+wYTRcePuUVkpcdvY19dDRF8Yt1XxiHLX3hghG4ykzHvdMg1tidlR38c0rJ2gdjrgEkgQRQiScgoICCgoKmDNnDgCf/OQnWb9+/Xkfc7H7/BNxb/35Yg6GY/gDA93NQ9E4eWmWEe1jP9NI98B/nGAoQiwWH5V/58H3NxoxXWhP/eC/84yCdLYc68DT3Y9hGD0ntKTl53ks9/lPnTqVjRs3nvX10tJSGYsrRqyhO0CxS9+NRUtOx9foDUgSRIyrVJwMc6bBBql1Hn/K/hskA6mBFkIknLy8PAoKCoYaH7799ttMmjRJ46gSS7NPmqKOljlFmfSFYtR0JlayTAhxNlVVqe8OUOzS9yq3y27GYTHS6JO+IGJ81XoG+mGk4nYY+NOWmK3HZUtMIpNKECFEQrr//vv57ne/SyQSobS0lH/4h3/QOqSE0twTxGI06KLxn6IotPiCBMOxS36u2Chtj1cUhe4LxBM4HfNE98AF0Vv13eR8ZAuNw2zEqu/iECHEGbr8EfyRmO4rQRRFocRlo8krDRrF+Kr1+MmwmshO0YloTpuZaQUZvHq8g68uLtM6HHGRJAkihEhI06ZN43e/+53WYSSsFl+QQqdVF9s3AtE479R2jMo2liWVeaMQ0UBMb5/oOO8xDvvAViJVVUmzGNl2tIP0j4wLvG6qG6sldUYICpHo6rsHKrpKXHZ6AxGNozm/kkw7x9v76QtFSbfKJb0YH4NNUYczcjxZXTM5hyd21lLfHaAsS99VY+LcZDuMEEKkmGg8TltviMILNP4UwzOwImunUVZkhUh4DadHX+p9Owx8uC+IEOPllCeQkk1Rz3T15FwAth4//2KJ0C9JggghRIpp7w0TV6HIKUmQ0VLisuELRukNRrUORQhxCeq7A5gMSkI0Gy1w2jAZFBq90hdEjI/eYJSu/nDK9gMZ5M6wMqvQyZZjkgRJVJIEEUKIFDPYFLUwU/8X+Ymi5PSqcaNPVmSFSGT13QFKXPoejzvIaFAodFqlEkSMm7ru1J4Mc6ZPTMnlREc/dR5pip6IJAkihBAppqUnSLrFSIbsIR81+RlWWZEVIgkM7PFPnBu8Epedtt4Qkdj5R3oLMRoGx+Om+nYYgGWVg1tiZEpMItJdEiQWi7FmzRq+/vWvax2KEEIkpWZfkMJMW0o3NRttRoNCUaZNVmSFSGBxVaXRG6A0AfqBDCp22YirA82uhRhrtZ6B7WLF0lOMAqeNWYVOXpW+IAlJd0mQp59+mkmTJmkdhhBCJKW+UBSPP0KRXMCMuhKXjbbeEGFZkRUiIQ38/KqUJdAqd3Hm4FY8SYKIsVfb5afUZcdk1N0tpCZkS0zi0tUnuLW1lddee421a9dqHYoQQiSl4219ABRKU9RRV+Kyo6p/6rkihEgs9acnw5QlUCWIw2IkJ80sVWin7VGNL3QAACAASURBVNixg5UrV3L99dezfv36s76/e/dubrnlFqZPn85LL730oe89//zzrFixghUrVvD888+PV8gJ5ZTHz8ScxNkuNtaWV+UBsiUmEekqCfLQQw9xzz33YDDoKiwhhEgax9p6ASh0SlPU0TZYHiw3I0IkpqEkSFbiJEEASjLtNHmDqKqqdSiaisViPPjggzz55JNs3ryZP/zhD1RXV3/omMLCQv7hH/6BG2644UNf93q9/OxnP+M3v/kNzz33HD/72c/w+XzjGb7uhaJxGr0BKiQJMiQ/w8rsItkSk4h00xVv+/btZGdnM3PmTHbt2jWsxxiNCi6XNj+IRqNBs9cerkSIMdgbwmG3jOpz2qxmXKNY6p8I/46JEKPQh6NtfWQ7zNjMRq1DSTo2s5G8dIs0RxUiQTV0B7CZDOSlW/BGEmdbW4nLxv7mHrr6w+Smp26C+8CBA5SXl1NaWgrA6tWr2bp1K5MnTx46pqSkBOCsBdedO3dy5ZVX4nK5ALjyyit54403zkqWpLJaj5+4ChW5aVqHoivLq3J59LUa6jx+mZqTQHSTBNm7dy/btm1jx44dhEIh+vr6+O53v8vDDz/8sY+JxVS8Xm32YLlcDs1ee7gSIUZVMeAPhEf1OYOhCF7v6F28JMK/o5Yx5uVlaPK6YuRUVeVYW6/0AxlDJS47h1p6icdVDAkwYlMI8Sf13QFKs+wJ1zS6eHBEtzeY0kmQtrY2CgoKhv6en5/PgQMHLvqxbW1t532Mloux5zLWC2KtdV4A5k7IPu/rBHzBsxY4DQZlWIueJqPhohZHL+Vxw43tTGcuuN6ysIxHX6vhzXofcypyRxzD+eh9kVPv8Z2PbpIg3/nOd/jOd74DwK5du/jFL35x3gSIEEKIkWnvC+PxR1hQ6tI6lKRVnmXn/UYfLb0h6Z4vRIKp6/Yz1Z2udRgjlu0w4zAbafQGmFuSqXU4mjnXdqDhJrQu5rFaLsaey1gviB1q6MZoUHCZlPO+TjAcO2uB02G3DGvRMxqLX9Ti6KU8Lh5XR/zYMxdc7cDsIid/ONDM5+cWjjiG89H7Qqwe4rvYxVhpviGEECniUOtAPxCpBBk75aenSkineCESSzgap9kXpCwBy9kVRaHYZUv5rXgFBQW0trYO/b2trQ232z3mj00VNZ1+ylx2zDIZ5iyfmJLHiY5+auV3f8LQ5ad40aJFPPHEE1qHIYQQSeVQSw8mg4I7fXT78Ig/cVhMuNMtkgQRIsE0+gLEVZiQQONxz1TistMdiNAfimodimZmzZpFbW0tDQ0NhMNhNm/ezLJly4b12KuuuoqdO3fi8/nw+Xzs3LmTq666aowjTiw1Xf1U5CZeknA8LKsc2AazVRqkJgxdJkGEEEKMvg9aepmcl4ZJVnHGVHm2g0ZvkGgscRorCpHq6jwDk2HKsxLzJq/EdXo6VQqP6DaZTDzwwAPcfvvtfOpTn2LVqlVUVlby2GOPsXXrVmCgeeo111zDSy+9xI9+9CNWr14NgMvl4q/+6q9Yu3Yta9eu5Zvf/OZQk1QBwUiMRm9QJsN8jPwMK3OKnDIqN4HopieIEEKIsRONxTnc2sunZuZrHUrSK8+2s7veS1MK34wIkWgGy9gTbTzuoIIMK0ZFSfkR3UuXLmXp0qUf+tpdd9019N+zZ89mx44d53zsYAJEnK3OE0AFJubIZJiPs+z0lJhGb4ASV2KeR1KJLAcKIUQKqO7sJxSNMy1fpvmMtVKXHYU/rSwLIfSvrjtAbpqFdGtirg+ajAYKnNaU7wsixkaNpx9AKkHO49rJA1titp+QapBEIEkQIYRIAQeaB5qiTi90ahxJ8rOZjRRm2qjrlr4gQiSKeo8/YfuBDCpx2WntCRKOylY8MbpqOv0YDUrCVkqNh6JMG1V5abxW3aV1KGIYJAkihBAp4GBLD7lpFvKkKeq4KM+y0+wLEgjHtA5FCHEBqqpS1x2gPAEnw5ypxGUjrsLx9j6tQxFJpqbLT1mWTIa5kGsrc/mguYfO/pGP6xXjSz7JQgiRAj5o6WFmYQaKomgdSkooz3YQV+GD5h6tQxFCXIA3EKEnGE34Ve7B5qiHWuS8I0ZXTVc/k2QrzAVdNzkXFdhRLVti9E6SIEIIkeS6/WEavUFmF8lWmPFS4rJhVBT2NXq1DkUIcQG1g5NhErwSxGExke0wSxJEjKpgJEaTN8hESYIMURSF7nDsrD/ZTitFmTa2HO885/dDqtaRi0GJ2f1JCCHEsH3QMtAPZKb0Axk3ZqOBYpeNfY0+rUMRQlxA3enJMIneEwQG+oIcbulFVVWp/BOjYnAyTIVMhhkSiMZ5+0THOb9X6rKxu97Lix+0YDMbP/S966a6sVqM53ycGF9SCSKEEEnuYEsPRoPCtPx0rUNJKeXZdk529OMNRLQORQhxHnXdASxGhYIMm9ahXLLiTBs9wahMpxKj5mTX6ckwuVIJMhxV7nTiKpzs7Nc6FHEekgQRQogk90FzD1V5aWetSIixNTEnDRV4p7Zb61CEEOdR5/FTmmXHaEj8yokS10A1y/5mqUITo6Omy4/JoFDmSvxKqfFQnGkjzWLkeLskQfRMkiBCCJHEYnGVQ629zJKtMOOuyGkl025mZ42MyxtrLS0tfOlLX2LVqlWsXr2ap556CgCv18u6detYsWIF69atw+eTG0NxtrruAOVZybHKnZNmJsNm4oA0ZRajpKazn7IsOyaZDDMsiqJQ5U7nZFc/kZiMq9Yr+TQLIUQSO9nZTyASZ2ZRhtahpBxFUVg0IYu3a7uJxqUb2lgyGo3ce++9vPjiizz77LM888wzVFdXs379epYsWcIrr7zCkiVLWL9+vdahCp2JxOI0eQNJ0Q8EBs470wsy2N8kSRAxOk55/FRIU9QRqXKnEYmp1J7uNyT0R5IgQgiRxA6enhIglSDauHxCFj3BqIzKHWNut5sZM2YAkJ6eTkVFBW1tbWzdupU1a9YAsGbNGl599VUtwxQ61OQNElMTfzLMmWYUOqnrDuD1Sz8icWn6w1GavEEm5UpT1JEoz3JgNRlkS4yOSRJECJGwYrEYa9as4etf/7rWoejWgZZesuxmijMTv+FfIlpQ5sJoUNhZ49E6lJTR2NjIkSNHmDNnDl1dXbjdbmAgUeLxyP8H8WF13QMrteVZyVEJAjCjcKDyb78kX8Ulqu7oR2Wg2acYPqNBYXJuGic6+ohLJaguyYhcIUTCevrpp5k0aRJ9fX1ah6Jb7zf6mFPslFGJGkmzmJhfksnOmi7++pqJWoeT9Pr7+7nzzjv5wQ9+QHr6xV20G40KLldiVwUYjYaEfw8jcSnvt9UfBWD2xBwybOahrwd8QRx2y7Cfx2Q0jNnxZx5rMCgXfNzs0izMRoVjXX5uXlg67JiE+KjjHQOVDFV5UgkyUlXuNA619tLgDSRVpVmykCSIECIhtba28tprr/GNb3yD//7v/9Y6HF1q7QnS7Avy2fnFWoeS0q6qyObR12po9gUpkoqcMROJRLjzzju58cYbWbFiBQA5OTm0t7fjdrtpb28nOzv7gs8Ti6l4vYm9j9vlciT8exiJS3m/x5p95KRZiAUjeIN/2j4SDMfwB8LDfp5oLD5mx595rMNuueDj1Hicqe503q3pSsjPQV6e9LDSixMdfWTaTORnWLUOJeFU5KZhMigcb++XJIgOSRJECJGQHnroIe655x76+4e33/JiV3cTcUV1MObXa70ALJ2WP/QeRrq6eT4jXfk83/MMZ3VzvGO60PMMJ2ab1cyn5hbz6Gs17G3tZXr5hW/Cx1Iifp6HQ1VV7rvvPioqKli3bt3Q15ctW8bGjRu544472LhxI8uXL9cwSqFHA5NhkmcrzKBZRU427GsmHI1jMcnudzFyIRUOt/UxITcNb2T4U05isvsDAIvRwMQcB8c7+vjElFypyNUZSYIIIRLO9u3byc7OZubMmezatWtYj7nY1d1EXFEdjPmN4+1kWE3kW41D72Gkq5vnM9KVz/M9TzyujtpzjdfzDGdFNhiKkGUxUpZl55WDrdwwJe+SY7sUWn6ex3J1d8+ePWzatImqqipuvvlmAP7mb/6GO+64g7vvvpsNGzZQWFjIY489NmYxiMRU5/GzrCpX6zBG3ZziTJ7Z08TR9j5mF0ljbDFyvaEoJzv6mVeSyfaj7cN+3JJKbX/P6UlVXhonOvpp6w1R4JRKUD2RJIgQIuHs3buXbdu2sWPHDkKhEH19fXz3u9/l4Ycf1jo0XXm/0cfcYidGg6w+aO2qimw27GsmEIlhNxu1DifpLFy4kGPHjp3ze0899dQ4RyMShccfxheMMiEJS9XnnE587G/ySRJEXJQmb4BoXJWtMJdgcl4aCgO9VSQJoi9SHyeESDjf+c532LFjB9u2beORRx5h8eLFkgD5iM6+EPXdAeaXurQORTCQBAnHVHbVdmsdihDitJrOgaqoSTnJ1/QxJ81CicvGAZkQIy7Syc6B7caSBLl4DouJEpedE+3SwF9vJAkihBBJaG+jD4D5JZkaRyIA5hVnkmkz8erxDq1DEUKcNniTV5GbfJUgMFANsr+pB1WVJg1i5E529GNQBhJq4uJVudNo7wvT7Y9c+GAxbiQJIoRIaIsWLeKJJ57QOgzd2dvoI81ipMp9cWNCxegyGQ1cW5nLGyc9BCMxrcMRQgA1XX6cNhO5SXqTN7s4k+5AhAZvUOtQRAI63t6HO90qW2ovUWXewHXYiQ6pBtETSYIIIUQS2tvgY06xE5NcvOjG9VPy8EdivCVbYoTQhZqufipyHEk7teHMviBCjERcVTne3kehjHW/ZFkOM+50C8fbhzfNUIwPSYIIIUSS6ewLccrjZ36J9APRkwWlLrLsZrYclS0xQmhNVVVquvxUJGE/kEETcxxkWE3sl74gYoQaugP4wzEKndIPZDRUutNp9AbwBmRLjF5IEkQIIZLM7tOVBtIPRF9MBoVlVbnsrOkiIFtihNBUZ3+YnmCUipzk7AcCYFAUZhVlSHNUMWKH23oBKJSJJqOiKi8NFXjnlEfrUMRpkgQRQogk826tB7vZwLR86QeiN9dPySMYjfPGyS6tQxEipQ1NhslN3koQgDlFmZzq8uOTFWgxAkda+7CaDEnbL2e85WdYcdpMvFUjv/v1QpIgQgiRZN495WF2kROTUU7xejO3OJOcNAuvHu/UOhQhUtrJruSeDDNoTvFAX5APWqQaRAzf4dZeJuWlYZC+YqNCURSq8tLZU+/FH5ZKUD2QK2QhhEginf1hjrf3saBU+oHokdGgsLwyl7dOeegPR7UOR4iUVdPpx2U3k+1I7pXuGQUZGA0K+5skCSKGJxpXOdbexxSZLjeqqtxpRGIq79RJc3Q9kCSIEEIkkXdP/3JdMiFL40jEx7l+Sh6haJwdsiVGCM0c7+ijMi+5t8IA2MxGprjTpTmqGLZTXf0Eo3GqZEvtqCp12cmwmXi9WipB9UCSIEIIkUTeqe0mO81Clazg6NbsYifudAsvHm7XOhQhUlI0rnKys5+qvNQ4T84pcnK4tZdILK51KCIBDDbSnV7g1DiS5GIwKCyekM3OGg9R+VnUnCRBhBAiScRVlV113Vw5KQeDIvt49cqgKNwwI59ddd209Ya0DkeIlBBSoTscozsc44O2PsIxleJs+9DXPvonpmod8cVTFOVD72VSfjqhaJzdTT3nfK+hBH6vYvTtb+ohJ81CgYzHHXVXVGTTE4zyfpNP61BSnknrAIQQQoyO6o5+PP4IV03O1ToUcQE3zizgF7sa2Hyoja8uLtM6HCGSnj8SY/vRgeqrg6ebhHr6QkNf+6gllXnjFttoC0TjvH2iY+jvvcGB/kMv7G+m1Xv2VsnrprqxWozjFp/QtwPNPcwucqLIYsqoW1Dmwmoy8Hp1F5eVybZlLUkliBBCJIl3agf6gVw5KUfjSMSFlLjsLCjN5IWDrcRVWYYVYjy194YxKkrSN0UdlGEz4bKbaPAGtA5F6Fxnf5gmX5A5RbIVZizYzEYWl2fxWnUXqvzu15QkQYQQIknsPOWhMi+NfKdN61DEMNw0s4AmX5D3G6UsVojx1NYbIi/dgjGFxn+WZTmo9wTkxkuc12A/kNmSBBkzSyfn0NYb4lh7n9ahpDRJggghRBLwBSIcaPJxtVSB6MpH9+af+WdeeRYOi5EN+1s+9hjZty/E6FJVlfbeEO6M1Op3UJ5tJxiNSx8icV4HmnqwGBUZjzuGrq7IwaDAa9UyIU5L0hNECCGSwNu13cRUuLoiW+tQxBk+ujf/o6bkpfHaiU5mFWZgM59/T77s2xfi0vWFYvgjMfJTLQmS5QCgzhOgQKoFxcfY3+xjekEGFpOB/nBM63CSksthZm5xJq9Xd/GNKydoHU7K0lUlSEtLC1/60pdYtWoVq1ev5qmnntI6JCGESAg7a7rIspuZXpChdShiBGYXZxKNqxxpk7JYIcZDa28QIOWSIBk2EzlpZmo9fq1DETrVF4pyuLWX+aUurUNJeksn51Dd2U9Dt/Tp0YqukiBGo5F7772XF198kWeffZZnnnmG6upqrcMSQghdi8bivHWqmysrsmU0boIpdFrJS7ewX8blCTEumn1BFIWUHP9Znu2gwRsgFk/evXU7duxg5cqVXH/99axfv/6s74fDYe6++26uv/56brvtNhobGwFobGxk9uzZ3Hzzzdx888088MAD4x265t5v9BFX4TJJgoy5ZZUDU/y2HPv4SlExtnSVBHG73cyYMQOA9PR0KioqaGtr0zgqIYTQt72NPnpDUekHkoAURWFucSYtPSGafEGtwxEi6TX7QrjTrZiNuroEHhcTshxEYiotPcl5ronFYjz44IM8+eSTbN68mT/84Q9nLaY+99xzOJ1OtmzZwle+8hUefvjhoe+VlZWxadMmNm3axIMPPjje4WvuvQYvFqPCLGmKOuYKnDbmFDl5+WNGdIuxp9ueII2NjRw5coQ5c+Z87DFGo4LL5RjHqM58bYNmrz1ciRBjsDeEwz66I+psVjOuzNHb75oI/46JEKMYO9tOdGIzGbhigsycT0Szipy8Xt3FnnovxbMKtA5HiKSlqgMJgGn5qdn0sSzbDkBtl58Sl13jaEbfgQMHKC8vp7S0FIDVq1ezdetWJk+ePHTMtm3b+Na3vgXAypUrefDBB2Vizmm7673MLs7Eakq9BKEWVkx18y/bqqnu6GdyXprW4aQcXSZB+vv7ufPOO/nBD35AevrH/6KKxVS8Xm32NrpcDs1ee7gSIUZVMeAPhEf1OYOhCF5vfNSeLxH+HbWMMS9PelBoKRZXea26iysmZl+wsabQJ6vJwOwiJ3sbvSyryiXdqstfzUIkPI8/Qigap2gUF0oSid1spCDDSl13gKu0DmYMtLW1UVDwp0Ryfn4+Bw4cOOuYwsJCAEwmExkZGXR3dwMDC7Br1qwhPT2du+++m4ULF5739bRcjD2XS1kQ8/SHOdHRz7eXVw49R8AXvKiFSpPRcNbjDAZlWM91rsde7GsO93HDjW00Xu/MhdpbLyvlkddO8nptNwsr8855vN4XOfUe3/no7korEolw5513cuONN7JixQqtwxFCCF070NxDV394aH+pSEwLSjN5r8HL+40y5liIsdJ8estZqiZBYGBU7nv1PiKxeNJtCTpXRYfykT5ZH3eM2+1m+/btZGVlcfDgQb75zW+yefNm3S7GnsulLIhtO92bYqY7beg5guHYRS1URmPxsx7nsFuG9VzneuzFvuZwHxePqyN+7MW+3pkLtUYG+q+8sL+Zry4sPuuzCvpfiNVDfBe7GKurs5+qqtx3331UVFSwbt06rcMRQgjd23aiE4tR4UoZjZvQstMsTMp18H6jL6mbFgqhpWZfEItRISdtdLfhJpLybAcxVaXRm3xTKQoKCmhtbR36e1tbG263+6xjWlpaAIhGo/T29uJyubBYLGRlDWwpnTlzJmVlZZw6dWr8gtfYW6c8pFuNTE/RrWJaWTE1j2ZfkIMtvVqHknJ0lQTZs2cPmzZt4p133hnqzvz6669rHZYQQuhSLK6y9XgHiydkyxaKJLCg1EV/OMaRNrkYEmIsNPuCFDptKT1Fq9Rlx6BAnSf5kiCzZs2itraWhoYGwuEwmzdvZtmyZR86ZtmyZTz//PMAvPzyyyxevBhFUfB4PMRiMQAaGhqora0d6i2S7OKqypunPCwuz8aUZNVBenddZS4WoyINUjWgq6vmhQsXcuzYMa3DEEKIhLCnwUtHX5hvX+u+8MFC9ypyHGQ7zLxX72VmoXTnF2I09YeitPWGuGJialfNWUwGijJt1Hr0W2J/sUwmEw888AC33347sViMW2+9lcrKSh577DFmzpzJ8uXLWbt2Lffccw/XX389mZmZPProowDs3r2bxx9/HKPRiNFo5O/+7u9wuVJjVOyx9j48/ghXSUXpuEu3mrhiYjavHu/k29dOwmhI3QTteNNVEkQIIcTwvXSknTSLkavlwiUpKIrCglIXW4510NAdoDQr+aY3CKGVD5p7UBnoiZHqJmQ72FnjwR+O4bAkV0PtpUuXsnTp0g997a677hr6b6vVyuOPP37W41auXMnKlSvHPD492lnjQQGumCgT5rSwcqqb16q7eK/By6Jy+X8wXqTmSQghElAwEmPbiU6uq8yVqTBJZE6xE7vZyNu1Hq1DSSjf//73WbJkCTfccMPQ17xeL+vWrWPFihWsW7cOn8+nYYRCa/safRgNCsUp3BR1UEXuwDjOU139Gkci9ODNGg8zCjPIcqRurxwtXVWRTZrFyOZDbVqHklIkCSKESDgtLS186UtfYtWqVaxevZqnnnpK65DG3Rs1HvrDMVZNk60wycRsNLCwLJOTnX7ae0Nah5MwPv3pT/Pkk09+6Gvr169nyZIlvPLKKyxZsoT169drFJ3Qg/2NPkoybdLzACh0WrGbjZzsSr4tMWJkOvpCHG7tla0wGrKZjXxympttJzrpCUa0DidlyG8CIUTCMRqN3Hvvvbz44os8++yzPPPMM1RXV2sd1rh64YNWCjKsLChNjT3LqWRBqQuLUZFqkBG47LLLyMzM/NDXtm7dypo1awBYs2YNr776qhahpbSQCt3h2LD/9MdHdnxomIOUfIEINZ39lMlWGAAMikJFjoNTnf5zjowVqWPb8U5UYHllntahpLSbZxUQisZ56UiH1qGkDOkJIoRIOG63e2jsXXp6OhUVFbS1tTF58mSNIxsfzb4gu+q6+dqScmmilYTsZiPzSjJ5t87LNZMiZDnMWoeUkLq6uobOE263G49neEklo1HB5XKMZWhjzmg06OI9tPiC7KrrGvbxC8qz2FPnHfbxS6vycGXaLvh+321uQwWmFDhx2IdX8m8yGoZ97Fgff+axBoNywccN57mnFTk51NpLdyiOzWrGJduEUtLW4x1MynUwIUf780Uqm+pOpyovjU0ftPCZeUVah5MSJAkihEhojY2NHDlyhDlz5pz3uIu9sdHLzcSZfvleE4oCX7xyAq7Ms1c2zxdzwBcc0YX6+Yz0ov98zzOcC/vxjulCzzNaNyPncs0UN+81+NjT6OOmOQMXRKNxo6LHz7PexGIqXm9ibxNwuRy6eA/BcAx/IDzs46Ox+IiOD4YieL3xC77fVw624DAbybaZhv38I41lLI8/81iH3XLBxw3nuYszrAAcavISDBXi9caHFct4yMvL0DqElNDRF2JfUw93XFGudSgpT1EU1swu5J+3VvNBcw+zimRC3FiTJIgQImH19/dz55138oMf/ID09PTzHnuxNzZ6uZkIqeCPxIjG4jz7XgMLy7IIhqKcau8961ib1UwwdO59pTGVEV2on89IL/rP9zzxuDpqzzVezzNaNyPnYgJmFWawt8HL4nIX6VbT0A3fpdDy8zzeNzY5OTm0t7fjdrtpb28nO1v2vKeiWFxlR3UXl0/Iksq5MzgsRoozbZzokOaoqWpwK8wnqmQrjB58arqbf3/jFM++3yRJkHEgSRAhREKKRCLceeed3HjjjaxYsULrcMacPxJj+9F2jrT20tUf5rrKHLYfbT/nsee7OV8i+34TxqIJWexv7uHt2m6unyL/30Zq2bJlbNy4kTvuuIONGzeyfPlyrUMSp0VicU51+WnpCeLpjxBTVawmA619YcwK5KSN3pSK/c0+ugMRrpqUQyymn2oHPahyp7P9RCftvSGyZDtEynnxSDuVeWmyFUYn0iwmbppZwG/2NXPX0hB56VatQ0pq0hhVCJFwVFXlvvvuo6KignXr1mkdzrjaXe8ly25m8ukRhyJ5ZTsszCp08n6DTzrGX8Df/M3f8NnPfpZTp05xzTXX8Nxzz3HHHXfw5ptvsmLFCt58803uuOMOrcNMee29ITYfauOx12r47f4W3qntpr0vhC8QobbLzy/frmP9W3X8ancDDd2BUXnN7Se6sBgVLivPGpXnSyaVeQO/R96ukSbMqeZkZz+HWnu5YUa+1qGIM3xmXhHxuMqG/S1ah5L0pBJECJFw9uzZw6ZNm6iqquLmm28GBm6Cli5dqnFkY6vZF6TJF+QTU/JQFCnrTgVXVWRzsKWHN2s83Dy3WOtwdOuRRx4559dTcXy2HnX7w7xe3cWRtj7MBoUZhRlMy8+gJMuGyfCn9biqokx+9VYtu+u9/M97jcwszGDFVDdW08Wt2amqymsnOllUnoXdYhytt5M0ctIs5KSZeaumi69cVqJ1OGIc/f5gG0aDwqppbq1DEWcocdlZOjmH595v5ksLS5D5f2NHkiBCiISzcOFCjh07pnUY4+7dum4sRgOzi6RpXKrItJuZV5LJ3kYfTd4AWe7z974RQk98gQhbjnWwt8GLUVG4YmI2l5e7sJvPnZDISbOwaEIW80szeetUN2+f8tDkC3Lb3KKL2iKzu95La2+Iv7xqwiW+k+RVlZfOu/VeeoIRnDaZRJWMBnuKDYrGoFenRAAAIABJREFU4mw+3MbiCVlgMtIdjp3zcTGZnqyJdYvKeK36fTbsa+buldIbZKxIEkQIIRJAY3eAI219LJ6QhdUkK5qp5IqJ2exv6uF/3m3gH2+YpnU4QlxQMBLj13ub+O93GwiEY8wpdnJVRQ4ZtuFddpqNBpZOzmFijoPnD7Tw9O4GPjOvmOIRTkd69v1msuxmllfl4Y/LHd25VLnTebu2m9equ7hpZoHW4YgxMNhTbNDRtl68gQiFTuvH9hYD6SGmlekFGSyZkMX/7mnijusmax1O0pKeIEIIkQCe3dOIyaBweZkUR6aadKuJBaUuth3roKZLJjmkopAK3eHYsP6ERnivP5LnvtDzR2NxNuxrZs1/7eY/dtYyu9jJ7UvKWDU9f9gJkDOVZdn58mUl2ExGfv1eIyc7h//5b/QGeONkF7fMKbzo7TSpoNBppdBpY8uxDq1DEeNkd70Xl93EJOktplt/sbgMbyDCU2/XaR1K0pJKECGE0LmWniCvHutgbrGTNKuctlPR4glZfNDcw7/tOMWjt8zUOhwxzj66kns+100d2R7/kTz34PNbP9Jfoz8cZfOhdp7Z00iTL8jcYif/dOM0yvLSR/Tc55LlsPDly0p49v1mNuxrZvWMfGYWXrhE/P/2NmEwKNw6u/CSXj/ZKYrCNZU5bNjbhNcfweWQLTHJrKUnSKM3yPKqXAzSW0y35hRncu3kHJ54o4aVlTlkO0ZvYpYYIKlxIYTQufVv1WFQBm6ERWpyWIx8/vISdtZ4eLtWJjkI7amqyomOPh7ZfpLVT+ziX7ZV47Kb+ektM1n/Z3OYU5w5aq+VZjXxhYXFlLrs/P5gG3savOc9/lhbHxv2NXPDjHzcGTJm8kKurcwlpsK2E1INkuzeq/diMSrMLpJeE3r3rasnEorEWf+WVIOMBVlSFEIIHTvZ2c8fD7fx6blF0rQuxa2ZU8RLh9p4dHsNl33Zhcko6xhifEVjcQ4293Cgwcu2E53UdwcwGhQ+UZXLZ+cXD6tC42JZTUY+M6+I5w+08srRDnyBKNdUnd2zIBpX+fErx3E5LNx5zcQxiyeZVOSmUZZl5+WjHXx6TpHW4Ygx4g1EONzay/wSF7aPaU4s9KM828HnLi/lf3fVc+OMfGaM4fk1FUkSRAghdOw/dtZiNxv57IIS9tR1ax2O0JDFaODupZP47qZDbNjfwmfny8hcMbb6w1GavEEavQEavUFae0LEVBWjAgvLXHxhYQnXTh6/Um2T0cCn5xTy6rEOdtV184NNh7jv+kpcLsdQvD/cfJSj7X38043TJHE8TIqi8Knpbn7+Zh2N3gAlLrvWIYkx8PYpDwoKiyZIb7FE8e3lVbx8sJW/f+U4v/rifMyy+DFqJAkihBA69U6thx0nu/irqybgtMvFvIBrJmWzqNzF+rfq+ORUt+zfF6NGVVW6+iMDCQ/fQNKj2x8BwKgoFDitLCxzsWpmPleVZ5Gp0TnJaFBYOc1NfoaV10928dmn9nD5xGyyrEZ213vp6g/zveWTWXaOKhHx8VZPz+eJN+vYfKiNr185QetwxCjzBSIcaO5hbnGmJAcTSIbNxP/7RCXf2XiIJ9+u4y+vkuq20SJJECGE0KFILM6/bj9JicvGFxaU0C/jHQUDK7bfvnYSX3h6Dz9/q5Z7P1GpdUgigXX7w2w50cUfD7VS2+WnPxwDwG42UuKyMbc4kxKXjQKnFZNhYAXyioocMi3al9LPLcnkz5eU88L+ZvY29nC0JcisQid/Nr+Iy8qkf9JIFThtXF7uYvPhNr52Rbk0zUwyO2sGqkCWTJSfjURzzaQcbpyRzy93NTC3JJMlE7K1DikpSBJECCF06Nd7mqj1BHhkzQwsJsPQzYkQk3LT+My8Yn69t4kVU/OYXyKlzWL4eoIRXjvRxZZjHeyu7yamgsNsZEKOnQnZDkpcdrIdZpQEuAnOTrPw7Wsn4XI58Hr9WoeT8G6aWcB9m4+yu97LonK5WU4WJzv6ONDcw6Jyl1SBJKjvLZ/MkbY+HvjjMX75+bmyZW0USBJECCF0pr47wPq367h2cg5XT8rROhyhQ3951QR2nOzixy8f55kvL5Amd+K8+sNRdpzs4pWjHbxT2000rlKcaePLl5eycEI2DV39CZH0EGNr6eRcXHYzG/Y1SxIkSaiqyhM7a7GbDVwxUSoItKYoCt0jWNQK+IIETx//oxum8Vf/t49vbviAR9fOImuYvZgcZiNWOb2fRZIgQgihI3FV5SevHMdsVPje8slahyN0ym428sMVVfzlcwf4+Zt13H1thdYhCZ1QFIWGbj/HW3rYU+/lvfpuDjb1EImr5KVbWDOnkGsrc6l0p6MoCjEVGj3Dr6IYyUV8THbxJRSrycAtswt46t0GmnwBijNltTnRvXq8k32NPq6fkifJch0IROO8PYJR1A67BX8gDMCSyjzWzCrg13ua+Otn9/PZ+cWkWS98K3/dVDdWHWxh1BtJggghhI7873uN7G30cf+KKvLSrVqHI3RsYZmLW+cU8uu9jSyvymVWkYzPS0aqqnKouYfXqztp9oXoCUaIqyqKomBQFIzKQLNQo0FBVeHp3Q0DU1xO9xHKTbMwrySTKfnpFGfaUBSFpu4ATd0BYODCeiRGchE/0ucW2rt1ThFPv9vAhn0t3LVUkquJrCcY4eFt1VS505lfmql1OGIUlLjsrJ1byG/3tfCr3Y382fyiYVeEiA+TJIgQQujE4dZe/n1nLcsqc7lxZr7W4YgE8NfXTOTNGg8PvnyMX31xvqz0JRFVVdle3cWTb9dxoqMfRYH8dCvuDCsmg0IsrhJXB6rHBv57IOlRnOVgYm4aLquJ8my79AAQI5KfYeW6yjw2fdDKXywuI30YK81Cnx57vQZfIMKPb5pOQ5f0zEkWE3PS+OyCYp57v5lf7mrgxpn5VOalax1WwpEzmxBC6IA3EOH7fzhCjsPMD66vlP35YljSLCbuX1nFtzZ8wL9sq+b+lVO0DkmMgq7+MA9tOcGOk12UZ9n59rLJEI8PK8m1pDKP/Y2+oRJqIUbqy5eX8OrxDp7b18y6RWVahyMuwvYTnbxwsI0/v7yUyXnpkgRJMiUuO+sWl/G7/S1s2NfC7CIny6tyZSFkBAxaByCEEKkuFle5f/NROvpC/OON08m0y8qtGL7Ly7NYt7iMFw628cfDbVqHIy7RodZevvw/e9lV182d10zk/76ykFUz8uXiVoybafkZXFWRzf++10h/OKp1OGKE2ntD/OSV40x1p/P1K8q1DkeMEZfdzJcvK2HJhCw+aO7h52/W8l69l2gsrnVoCUGSIEIIoSFVVXlk+0neqevmnmWTpa+DuChfW1LO/JJMHtpygsOtvVqHIy7SW6c8fP3Z/RgNCr/43Fy+dFkpJoNUhYnxd/viMnzBKL95v1nrUMQIhKNx7v39YcKxOH//qamYjXKrl8xMRgPXVuaybnEZ7nQrW4518O87a9l5sgu/JDDPS34yhBBCQ7/a3chv9jXzhQUl3DK7UOtwRIIyGRT+8cZpZDvM3LPpEB19Ia1DEiP0xskuvrvpEOVZdp76wjyq3LLHW2hnRqGTaybl8N+7GuiU80lCUFWVf95WzQctvfztJ6cwIcehdUhinORnWPncgmI+t6CYQqeVN2o8/PsbtWw80MLbNV1EpDrkLJIEEUIIjfzm/Wb+7Y1TXD8ljzuXTtQ6HJHgshwWHr55Bn2hGHf+9iC9QVkFShTbT3TyvRcOU5mXzn9+ZrZ0+xe6cPfSCsKxOP++s1brUMQw/OfrNWz6oJV1i0pZViWTmVKNoihMyHbwmXnFfG1JObOKnNR6/Pxo81FW/uc7PPDHo/zxcBud/dIvCqQxqhBCaOI37zfxL9tOcs2kHP5u1RQM0ghVjIIqdzr/fPN07v7dQb79/EEeu3UmaRb5Va9nrxxt54E/HmV6gZPHb50p0ziEbpRm2fn8gmKe3t3ITTMLmFciY1b16nf7m3l0azWrprn5xpUTtA5HaCw33cInp7m5fkoeToeFt0928uapbl480g5AZV4ai8qzuLzcxdziTOwp2HNKftMKIcQ4UlWVn79Vxy/eqWfppBweumGa7NkVo2pReRY/Xj2V+/5whL/ecFBurHXsj4fb+LuXjjGnyMmjn5aEldCfv1hczrYTnfzoxaM88+UFci7RoQ37mvmnrdUsrcrj/pVVsqgihhgNCosmZnP5hCz+WlU52dHP3gYve+q9PLu3if95rxGTQWFqQQbzSjKZW5LJ1IIMzEYDDrMRaxJ/lORMJoQQ48QfjvHgy8fYeryTm2cVcO8nKqXpoRgTy6vyMNyo8P0/HOH2/9vHT2+ZSYHTpnVY4gz/t7eJf91+koVlLh5ZMyMlV+KE/jksRv5u1VS+9n/7+Ket1Ty4aoqMcNcJVVX5r3fqeeKtOq6qyObfPzePQF9Q67CEzgSicd4+0TH0d3eahVXT3CyvyqXRG6DOE6C2y8+v3m3gV+82YDYolGbZuWl2Iaum5pGdpNszJQkihBDj4FhbH/f/8Sh13X7uWlrBFxYUy4WkGFPXVeby2Kdn8v9eOMxXntnHT1ZPZblLGuVpTVVVfv5mLb/Y1cC1k3P48eppWE1SDSb0a3aRkzuuKOfnb9YxMdvBVxeXaR1SygtEYjy05QQvHWnnU9Pd/HBFFVaTgYDWgYmEYTEaqMhJoyInDSoHPlP13QHqPH5Odvbz0+0nefy1k8wtzuS6ylyuq8wlP8OqddijRpIgQggxhkLROE+9W88vdzXgspv5t1tncXl5ltZhiRSxqDyL//rcXL73wmH+6rkDfKOtny/MLcQiN92aiMbi/NPWajZ+0CrVYCKhfHVRGbWeAP/5Zi3ZDjNrZJqZZgYXVWo9fr5xZTlfXVQmiyriktnNRqa405niTkdVVcpz03mv1sP2E5386/aTPLL9JPNLM1k51c2yylwy7WatQ74kkgQRQogxEFdVthzt4D/frKXJF2Tl1Dy+u2wyrgT/pSESz6TcNJ7+4jz+ZWs1//H6SV78oIW7r61gyYQsuXAeR609QX7wh6N80NLDVxeV8o0rJ8i/v0gYiqJw/4oqvIEIP9lyAl8wypcvK5HP8DjqC0X5xTv1PLOnEZfDws/WyqKKGBuKojApL42FxU6+ceUEaj1+thzr4KUj7Ty05QT/vLWaKyZmc+uCEuYXpGNLwO2ckgQRQohR1BeK8sqxDn69p5FaT4DKvDR+tnYWi+RCRWgozWLib1dN5ZYFpfzohUPc9buDzCvJ5MuXlXDFxGxppDeGonGV3+5r5j/frAXgoRumcf0UGV8pEo/FZOCRNTP42xeP8bM3TnGguYcfrqiUkc5jrDcY5fkDLTy9uwFfMMpNM/O5a2kFTpssqojxMSHbwdeWlHP74jKOtvfx0pF2XjnawY7f7MdhNnJdZQ4rp7m5rCwrYaobdZcE2bFjBz/5yU+Ix+Pcdttt3HHHHVqHJITQIT2dK3yBCLvqutlyrIO3TnkIx1SmuNP5yeqpfGJKntxgCt1YWpXHc+sW8tv9LfxqdwPffv4Q7nQLy6vyWF6Vy6wiZ9J9XrU6VwQiMbYc7eC/362nwRtk8YQs/t/yyZS47OPy+kKMBbPRwN+vnsqMwgx+9sYpbvmv3XzpshJunVOki0rHC/28h8Nhvve973Ho0CFcLhePPvooJSUlADzxxBNs2LABg8HAD3/4Q66++mot3gIAwUiM/U09vHy0na3HO/FHYiwuz+KbV09gan6GZnGJ1KYoCtPyM5iWn8Gd11Rw3Bvkt7sb2Hqig82H28l2mLlyYjaXl2dxWZmLnDT9Jkh1lQSJxWI8+OCD/PKXvyQ/P5+1a9eybNkyJk+erHVoQggd0epcEY2rtPYEafAGaOgOcry9jwPNPZzy+AHITbNw65wirp+Sx8zCDCkTFrpkNhr47Pxibp1TyLbjnbxyrIMN+5v59d4mMm0mphdkMKMggynudIpdNgqdtoQdizme54pAJEatx8+J9n521XXz5ikP/eEYVXlpPHzzdK6ZlCPnBJEUDIrC5xeUsHhCFv/xRi0/f7OO/3qnnqsqclgyIYvp+RmUZdvHfeLRcH7en3vuOZxOJ1u2bGHz5s08/PDD/PSnP6W6uprNmzezefNm2traWLduHS+//DJG49i/h0gsTqM3SO3phpR7Gn0caPIRjqk4zEaWV+XyZ/OKmZKfPuaxCDFcRoPCkoocpmXbuWf5ZN465eGVo+28frKL3x9qA6Asyz7UZ2RybhpFmTYKnVZdbJ/R1VXNgQMHKC8vp7S0FIDVq1ezdetWSYIIIT5krM4Vz+xp5FBLL+FYfOBPNE4Mha6+EL5AhJ5gFPWM4502E7OLnKya7mZecSazipwYE6QMUAiz0cDKaW5WTnPTF4ryRk0Xexp8HG7t5Re76omf8WFPsxhx2kykWUykWYykW03YzUZMRoU1swpYUOrS7o2cx1idK3bVdfPb/S30haL0h2N4+sO09oaGvp/tMLO8KpfVM/KZV5wpyQ+RlCpy0nh4zQxOdPSx6YNWtp/oZPuJzqHvu9MtuDOsOMxGHBYjc4sz+cLCkjGLZzg/79u2beNb3/oWACtXruTBBx9EVVW2bt3K6tWrsVgslJaWUl5ezoEDB5g3b94lxdTtD/Or3Y30hqJEYnFC/5+9O4+LqlzcAP7MDAw7DCADLmQuuCUut7zFVbEg3JBA1F+blZbX6mapFCmadvWmZtlim8m13W5dc03J5YZ7uZaGFuaKgsqAMOzLbO/vD2ICGfZZ4fl+Pn1yzpxz5jmHc9458573vK9OQKM3oEyrh7pMA3WZFgXl2lrlbUiAByYO6oS/3uKL24N97OIHI1FDXJykxhFk9AaB33NKcPSyGr9mF+P09SL87/fcWvP7uDrBx80ZHnIZvFyc4OniBHe5DE5SCZykEijcnPHoX4MtWpFqV5UgKpUKQUFBxteBgYFIS0urd35nZxkCAmzXJMyWn91UjpDxycheto7QKEfYj46Q0VyaW1YATSsvZo7ua5Z8lhAAoFdn8/zQHHCL+fonMde62nImc26bOZg6DwIAdOvii0etH8eiLFVWjAvwwrg7rDdMaHPP/+Yec5ac39JZqjX2N2tJGdoe92NLBAR44W/9bD9aTFPOd5VKhY4dq7I6OTnBy8sLarUaKpUKAwcOrLWsSqVq8POaUlYEAPhXV/9mbknL1Ve+t/T6oaXHUWuOP2t/pqMsZ6vPbIypYy4o0BsjQjtZ7DPNwa7GyBNC1JnGuydEdDOWFUTUFCwriNqPppzv9c3DsoKofbGrSpCgoCBkZ2cbX6tUKiiVShsmIiJ7xLKCiJqCZQVR+9GU8z0oKAjXr18HAOh0OhQXF0OhULCsIGpn7KoSJDQ0FBkZGcjMzIRGo0FKSgoiIiJsHYuI7AzLCiJqCpYVRO1HU873iIgIbNq0CQCwc+dO3HXXXZBIJIiIiEBKSgo0Gg0yMzORkZGBAQMG2GIziMgK7KpPECcnJyxcuBDTpk2DXq/HhAkTEBISYutYRGRnWFYQUVOwrCBqP+o731euXIn+/fsjMjISEydORGJiIqKiouDj44O33noLABASEoIxY8Zg7NixkMlkWLhwoVVGhiEi25AIUw/BERERERERERG1MXb1OAwRERERERERkaWwEoSIiIiIiIiI2gVWgjTg+vXreOSRRzBmzBhER0fjs88+MznfkSNHEBsbi+joaEyePNnuMhYXF+Opp57Cfffdh+joaGzYsMGqGSsrKzFx4kTj57/zzjt15tFoNJg1axaioqIwadIkZGVl2V3GTz75BGPHjkVMTAwee+wxXL161e4yVtuxYwd69+6NU6dOWTGh/UtKSkJYWBjGjRtnnPb2228jJiYGsbGxePzxx6FSqUwue+3aNTz++OPGZ4arj9G5c+ciIiICsbGxiI2NRXp6ul1kPnz4sDFTbGwsQkND8f333wMAMjMzMWnSJIwcORKzZs2CRqOx+8z2up8B4LXXXkN0dDTGjBmDV155xTjU4unTpxETE4OoqKha0+017yOPPIJRo0YZ93FeXp7Z8pL57N+/H6NGjUJUVBSSk5PrvH/s2DGMHz8e/fr1w44dO2q9t2nTJowcORIjR440dg5pz1q6renp6bj//vsRHR2NmJgYfPfdd9aM3SKt+bsCQElJCYYPH47FixdbIy5ZkKnyffv27YiOjkafPn1qXdt9++23tb43+/TpY/L78d1338Xw4cON8+3bt8+s+ZYvX47Ro0cjJiYGzzzzDIqKiozvrV69GlFRURg1ahQOHDhgcp3mui5pTrYffvgB8fHxiImJQXx8PA4dOmRynebad83JlpWVhQEDBhg/c+HChSbXWVBQgKlTp2LkyJGYOnUqCgsLLZ7NFsecRQiql0qlEqdPnxZCCFFcXCxGjhwpzp07V2uewsJCMWbMGHH16lUhhBA3btywu4yrVq0Sr732mhBCiLy8PDFkyBBRWVlptYwGg0GUlJQIIYTQaDRi4sSJ4sSJE7XmWbt2rViwYIEQQoht27aJmTNnWi1fUzMeOnRIlJWVCSGE+PLLL+0yoxBVx8FDDz0kJk2aJNLS0qya0d4dPXpUnD59WkRHRxunFRcXG//92WefGY/Dm02ePFkcPHhQCCFESUmJ8ViYM2eO2L59u11mrqZWq8WQIUOMmZ977jmxbds2IYQQCxYsEF9++aXdZ7bX/fzTTz+J+++/X+h0OqHT6cT//d//icOHDwshhJgwYYL4+eefhcFgEE888YTYu3evXeedPHkyyww7p9PpRGRkpLhy5YqorKwUMTExdb7zMzMzRXp6ukhMTKx1zqjVahERESHUarUoKCgQERERoqCgwNqb0GSt2daLFy+KS5cuCSGEyM7OFkOHDhWFhYXWjN8srdnWav/6179EQkKCWLRokbVik4WYKt/Pnz8vLly40GA5febMGREREWHyvXfeeUesWbPGYvkOHDggtFqtEEKI1157zfi749y5cyImJkZUVlaKK1euiMjISKHT6eqs01zXJc3J9uuvv4rs7GwhhBC///67GDZsmMl1mmvfNSdbZmZmrfnqs3z5crF69WohhBCrV682Lm/JbDVZ65izBLYEaYBSqcRtt90GAPD09ET37t3r3FnbunUroqKi0KlTJwCAv7+/3WWUSCQoLS2FEAKlpaXw8fGBk5P1BgaSSCTw8PAAUDUmu06ng0QiqTXP7t27MX78eADAqFGjcOjQIbPeNTVHxrvuugtubm4AgEGDBtUaT95eMgLAypUrMW3aNLi4uFg1nyMYMmQIfHx8ak3z9PQ0/ru8vNzkPj1//jx0Oh2GDh0KAPDw8DAeC5bW0sw17dy5E8OHD4ebmxuEEDh8+DBGjRoFABg/fjxSU1PtOrM1tDSzRCKBRqOBVqs1/r9Dhw7IyclBSUkJBg8eDIlEgri4OLPuZ3PnJceQlpaGrl27Ijg4GHK5HNHR0XWOqy5duqBPnz6QSmtf4h08eBBDhw6FQqGAj48Phg4dWu9dWXvQmm3t1q0bbr31VgBAYGAg/Pz8kJ+fb63ozdaabQWqWp3l5eUZv6PIsZkq33v06IHu3bs3uFxKSkqtO/mWYirfsGHDjL8tal4jp6amIjo6GnK5HMHBwejatSvS0tJqLWvO65LmZOvXrx8CAwMBVI0OpNFozN4ytqXZmio1NRVxcXEAgLi4OGPrWWtls9YxZwmsBGmirKwspKenY+DAgbWmZ2RkoKioCI888gji4+OxefNmGyWsP+PDDz+MCxcuYPjw4bjvvvswf/58k1+ilqTX6xEbG4u//e1v+Nvf/lYno0qlQseOHQFUDXHm5eUFtVptVxlrWr9+PcLDw62YrkpjGX/77TdkZ2fjnnvusXo2R/bWW29hxIgR2Lp1K2bOnFnn/YyMDHh7e2PGjBmIi4vD8uXLodfray0fExODpUuXWvQLtDmZa6r5JaVWq+Ht7W38YgsKCqr3sQlza2nmmsvb234ePHgw7rzzTgwbNgzDhg3D8OHD0aNHD6hUKgQFBRnns9Z+bmneavPmzUNsbCzef/99q1ZEU9PcfFwFBgY2+bhqzbK2YK68aWlp0Gq1uOWWW8wZz6xas60GgwHLly/Hiy++aKl45CC+++47REdH1/v+l19+iZiYGCQlJbX4sYmm2LBhg/EauSnHtjWvS2pmq2nnzp3o27cv5HK5yeWsse9uzpaVlYW4uDhMnjwZx48fN7lMXl4elEolgKob45aq7K1vv9nLMdcSrARpgtLSUjz33HOYN29erTttQNWP0l9//RWrV6/GmjVr8MEHH+DSpUt2lfHgwYPo27cvDhw4gM2bN2Px4sUoKSmxaj6ZTIYtW7Zg3759SEtLw9mzZ2u9b+piu7E7xebWWMZqW7ZswenTpzFt2jSr5gMazmgwGLBs2TLMmTPH6rkc3ezZs7Fv3z7ExMRg7dq1dd7X6XQ4fvw45syZg/Xr1yMrKwsbN24EACQkJGDHjh3YsGEDCgsLTT7LbYvM1XJycnD27FkMGzas3nmsda61JrO97ufLly/jwoUL2LdvH/bv34/Dhw/j2LFjNivTWpoXAFasWIGtW7fiyy+/xE8//YQtW7ZYPC81T2uOK3v4nm0Oc+TNyclBYmIili1bZvWbP83Rmm39z3/+g/DwcOONJGqffvnlF7i5uaFXr14m33/wwQfxv//9D1u2bIFSqcSrr75qkRyrVq2CTCbDfffdB6Dlx7Ylyqabs1U7d+4cVqxYUW9/OtbYdzdnUyqV2LNnDzZv3oy5c+fi+eeft/pvt/qyVbOXY66l7PcbwU5otVo899xziImJwciRI+u8HxQUhOHDh8Pd3R1+fn644447cObMGbvKuHHjRowcORISiQRdu3ZFly5dcPHiRatmrObt7Y0777yzThPcoKAgXL9+HUDVD87i4mIoFApbRKw3IwD8+OORqDT9AAAgAElEQVSP+PDDD7Fq1ap6a4utwVTG0tJSnD17Fo8++igiIiJw8uRJPP300+wctRnGjRuHXbt21ZkeFBSEfv36ITg4GE5OToiMjMRvv/0GoOqLSiKRQC6XIz4+3ur7u77M1bZv346oqCg4OzsDAHx9fVFUVASdTgcAyM7ONt5FsJbmZgbsdz//73//w8CBA+Hh4QEPDw8MHz4cJ0+eRFBQUK2mo9bez83NC8DYLNjT0xPjxo2r02SZbO/m40qlUjX5uGrNsrbQ2rwlJSV48sknMWvWLAwaNMgSEc2mNdt64sQJfPnll4iIiMDy5cuxefNmrFixwlJRyU6lpKQ0eEe+Q4cOkMlkkEqlmDRpkkW+Qzdt2oS9e/dixYoVxkqMphzb1rguMZWt+rNmzJiB5cuX19tazNL7zlQ2uVwOX19fAED//v1xyy23mLzJ7u/vj5ycHABVlb5+fn4Wz1bNHo651mAlSAOEEJg/fz66d++OqVOnmpwnMjISx48fh06nQ3l5OdLS0mo1LbaHjB07djT2eHzjxg1cunQJXbp0sVrG/Px8Y4/CFRUV+PHHH+s81xgREWHsqX7nzp246667rHqHqikZf/vtNyxcuBCrVq2yet8vTcno5eWFI0eOYPfu3di9ezcGDRqEVatWITQ01OpZHUlGRobx37t37zb5zG1oaCgKCwuNzQyPHDmCnj17AoDxy0cIge+//x4hISF2kbnazV9SEokEd955J3bu3Amg6gsuIiLCYlmrtSYzYL/7uVOnTjh27Bh0Oh20Wi2OHTuGHj16QKlUwsPDAydPnoQQAps3b0ZkZKTd5tXpdMbjW6vVYu/evVbZx9Q8oaGhyMjIQGZmJjQaDVJSUpp8/g4bNgwHDx5EYWEhCgsLcfDgwQZbiNlaa7ZVo9HgmWeeQWxsLMaMGWPhpK3Xmm194403sHfvXuzevRtz5sxBXFwcXnjhBQsnJntiMBiwY8eOBn+QVn+HArDId+j+/fvx73//G6tWrarVl1dERARSUlKg0WiQmZmJjIwMDBgwoNaylr4uqS9bUVERpk+fjoSEBNx+++31Lm/JfVdftvz8fONj19X7LTg4uM7yERERxq4YzH2dUV82wD6OudaSCD70W6/jx4/j4YcfRq9evYzNKBMSEnDt2jUAVc18AGDNmjXYuHEjpFIpJk6ciClTpthVRpVKhaSkJOTm5kIIgb///e+IjY21WsYzZ85g7ty50Ov1EEJg9OjRmDFjBlauXIn+/fsjMjISlZWVSExMRHp6Onx8fPDWW2+ZPNltmXHKlCk4e/YsAgICAFRVLn344Yd2lbGmRx55BC+++CIrQWpISEjA0aNHoVar4e/vj2effRb79+/HpUuXIJFI0LlzZyxatAiBgYE4deoUvv76ayxZsgRA1VBq1U35brvtNixevBhyuRyPPvoo1Go1hBDo06cPFi1aZOzA1taZs7Ky8OCDD2Lfvn21moJnZmZi9uzZKCwsRN++fbFixQqztmyyRGZ73c96vR6LFi3CsWPHIJFIMHz4cCQlJQEATp06haSkJFRUVCA8PBwLFiwwW+WuufOWlZVh8uTJ0Gq1MBgMCAsLQ1JSEmQymVnykvns27cPS5cuhV6vx4QJE/D000/X+h5IS0vDjBkzUFRUBBcXF3To0AEpKSkAqvqzWr16NQDgqaeewoQJE2y5KY1q6bZu2bIF8+bNM1ZWA8Crr76Kvn372nBrGtaav2u1jRs34vTp0/UOp0mOwVT5rlAo8K9//Qv5+fnw9vZG37598dFHHwGoujHzxhtvYN26dbXWM3/+fDzwwAMIDQ1FYmKisaV6586dsXjx4ha3tjCVLzk5GRqNxtiKe+DAgcbHS1atWoUNGzZAJpNh3rx5GDFiBADg73//O1555RUEBgaa7bqkOdk++OADJCcno2vXrsblP/74Y/j7+1tk3zUn286dO/HOO+9AJpNBJpPh2WefNVYM1cymVqsxa9YsXL9+HR07dsTKlStb1JK+uX9Tax9zlsBKECIiIiIiIiJqF/g4DBERERERERG1C6wEISIiIiIiIqJ2gZUgRERERERERNQusBKEiIiIiIiIiNoFVoIQERERERERUbvAShAiIiIiIiIiahdYCUIWoVKp8Nxzz9k6BhFZUVZWFsaNGwcASE9Px759+6z22Y888ghOnTpltvVduHAB999/P/r374+PPvrIbOslIss5cuQIfv755wbneffdd81+Tj/xxBO444478OSTT5p1vUTt1VdffYXNmzfX+35TznVL27hxIxYvXmzWdSYlJSEsLMx4LUWWw0oQsojAwEC88847to5BRDZi7UoQc1MoFJg/fz6eeOIJW0chavP0en2t10IIGAyGZq/n6NGjOHHihLliNdm0adPw2muvWf1ziRxFc8/pBx98EHFxcfW+b6tz3dLi4+OxZs0aW8doF5xsHYDsz5YtW/DFF19Aq9Vi4MCBePnll3HHHXfg0UcfxZ49e+Dq6ooPPvgAHTp0wJUrV/DCCy9Ar9cjPDwcn376KU6cOIGsrCw89dRT2LZtGzZu3Ijdu3ejvLwcmZmZuPfee/Hiiy8CAA4ePIh3330XGo0GwcHBWLZsGTw8PEzmeu+997Bnzx5UVlZi8ODBWLx4MSQSCdLS0jB//ny4u7vjL3/5Cw4cOIBt27ZBr9djxYoVOHr0KDQaDR5++GE88MAD1tyVRA7v9ddfR6dOnfDwww8DqLqL6uHhgdzcXBw4cAASiQRPP/00xo4da1xGo9HgnXfeQUVFBX766Sc8+eST6NKlC5YuXYqKigq4urpi6dKl6N69O8rLyzF37lxcvHgRPXr0wNWrV7Fw4UKEhoY2q3yo6eWXX8apU6dQWVmJUaNGGVul7du3D8uWLYOvry9uu+02ZGZmYvXq1SbX4e/vD39/f4euyCGyhc2bN+Ojjz6CRCJB7969IZPJcPfdd2P06NEAgMGDB+PEiRM4cuQI3nvvPSiVSqSnpyM5ORl///vfceedd+LkyZN4//33cenSJZNlQEREBOLi4rBnzx7odDq8/fbbcHFxwddffw2pVIpvv/0WCxYswB133NFg1nXr1uG///0vtFotunbtitdeew1ubm71XtvUJywsDEeOHDHrfiRydFlZWbXO6cceewxff/11nfN5xYoV2L17N2QyGYYNG4Y5c+bg3Xffhbu7O5544gl8/vnn+PrrryGTydCzZ088//zzdc71oqIirFq1ClqtFgqFAitWrECHDh3w7rvv4tq1a8jKysK1a9fw2GOP4dFHHwVQt6x6/fXXkZ+fj5dffhnXrl0DAMybNw+33357o9u6e/duk5+fn5+P559/HgUFBQgNDcWBAwewYcMG+Pn5mVzPkCFDkJWVZb4/AtVPENVw/vx58eSTTwqNRiOEEOLll18WmzZtEr169RKpqalCCCGWL18u3n//fSGEENOnTxdbt24VQgjxn//8RwwaNEgIIURmZqaIjo4WQgixYcMGERERIYqKikRFRYW4++67xbVr10ReXp546KGHRGlpqRBCiNWrV4t333233mxqtdr47xdeeMGYJzo6Wvz0009CCCFef/114+d+/fXXxpyVlZVi/Pjx4sqVK2bYS0Ttx6+//ioefvhh4+sxY8aIjRs3iilTpgidTidyc3PFiBEjhEqlqnPeL1q0yLhccXGx0Gq1QgghfvjhBzFjxgwhhBBr1qwRCxYsEEII8fvvv4u+ffuKtLS0ZpcPkydPFmlpaUKIP8sKnU4nJk+eLNLT00VFRYUIDw83lgGzZ88W06dPb3T733nnHbFmzZqm7Syidu7s2bNi5MiRIi8vTwhRdS7OmTNHbN++3ThP9XXC4cOHxcCBA43nZGZmpujdu7c4ceKEEEI0WAbcc8894vPPPxdCCLF27Voxb948IUTTztea8+Tn5xunv/nmm8Z11ndt05DDhw83qUwhai9qntP1nc9qtVqMHDlSGAwGIYQQhYWFQoja5+nQoUNFZWVlve8LIURBQYFxHevWrRPLli0zznf//feLyspKkZeXJ/76178KjUZjsqwSQoiEhARx7NgxIYQQV69eFaNHj653+2pe59T3+YsWLRIffvihEEKIffv2iV69ehk/s6H9Vn0tRZbDliBUy6FDh3D69GlMnDgRAFBRUQF/f384OzvjnnvuAQD0798fP/zwAwAY79YAQExMTL3NQcPCwuDl5QUAxru9xcXFOH/+PB588EEAgFarxaBBg+rNduTIEaxZswYVFRUoKChASEgI7rjjDpSWluIvf/kLAGDcuHHYu3cvAOCHH37A77//jp07dwIAiouLcfnyZQQHB7dmFxG1K/369UNeXh5UKhXUajW8vb2Rnp6O6OhoyGQydOjQAUOGDMGpU6fQu3fvetdTXFyMOXPm4PLly5BIJNBqtQCAn376yXhXplevXsZ1/PLLL80qH2ravn071q1bB51Oh9zcXFy4cAFCCAQHBxvP/+joaKxbt67F+4WI6jp8+DBGjx5tvMupUCganD80NLTWd3KnTp2M53ljZcDIkSMBVF2T/O9//2tR3nPnzuHtt99GcXExSktLMWzYMABNv7YhooZVn9N79uwxeT57enrCxcUF8+fPx91334277767zjp69+6NF154AZGRkbj33ntNfk52djZmz56N3NxcaDQadOnSxfjeiBEjIJfL4efnBz8/P+Tl5dVbVv344484f/68cdmSkhKUlJTA09Ozwe2s7/N/+uknvPfeewCA8PBw+Pj4NHHPkaWxEoRqEUJg/PjxeP7552tN//jjjyGRSAAAUqm0zvO7jZHL5cZ/y2Qy6PV6CCEwdOhQvPnmm40uX1lZiUWLFmHDhg3o2LEj3n33XVRWVkII0eC2vPTSSxg+fHizshJRbaNGjcLOnTtx48YNREdH48qVK81ex8qVK3HnnXfi/fffR1ZWlrHio75zuDnlQ02ZmZn4+OOPsX79evj4+GDu3LmNlhVEZB6mzjOZTGbsC0AIYawABQB3d/da89Z83VgZ4OzsDKBl1yTV5s6diw8++AB9+vTBxo0bcfTo0Rath4hMqz6nGzqf169fj0OHDiElJQVr167F559/Xuv95ORkHDt2DLt378YHH3yAlJSUOut45ZVXMGXKFERGRhoftat2828QnU5X7zWBwWDAf//7X7i6ujZrO+v7fF572C92jEq1hIWFYefOncjLywMAFBQU4OrVq/XOP3DgQOzatQsATBZKDRk0aBB+/vlnXL58GQBQXl6OS5cumZy3srISAODr64vS0lJj6w4fHx94eHjg5MmTAIDvvvvOuMywYcPw1VdfGS+4Ll26hLKysmZlJKKqVhPfffcddu7ciVGjRmHIkCHYvn079Ho98vPzcfz4cQwYMKDWMh4eHigtLTW+Li4uRmBgIABg06ZNxum33347tm/fDgA4f/48zp49C6B55UNNpaWlcHNzg5eXF27cuIH9+/cDALp3747MzEzjs7Y1ywoiMo+wsDDs2LEDarUaQNU1ROfOnfHrr78CAFJTU2tVgjSkJWXAzeVOY0pLSxEQEACtVoutW7cap7fm2oaI6qrvfC4tLUVxcTFGjBiBefPm4cyZM7WWMxgMuH79Ou666y4kJiaiuLgYZWVlDV5jNDSqTDVTZRVQ9dth7dq1xvnS09ObtH31fX7Na5yDBw+isLCwSesjy2NLEKqlZ8+emDVrFh5//HEYDAY4Oztj4cKF9c4/b948JCYm4uOPP8bdd9/daHOxmvz8/LBs2TIkJCRAo9EAAGbNmoVu3brVmdfb2xuTJk1CTEwMOnfujNDQUON7S5YswUsvvQR3d3f89a9/NWaYNGkSrl69ivj4eAgh4Ovriw8++KDJ+YioSkhICEpLS6FUKqFUKhEVFYUTJ04gNjYWEokEiYmJCAgIqNWZ15133onk5GTExsbiySefxLRp0zB37lx88sknuOuuu4zzPfTQQ5g7dy5iYmLQr18/9O7dG15eXs0qH2rq06cP+vXrh+joaAQHBxsflXN1dcXLL7+MadOmwdfXt06lzc1yc3MxYcIElJSUQCqV4rPPPsN3333XrDKOqL0JCQnBU089hUceeQRSqRT9+vXDCy+8gH/84x+YOHEiwsLC6rT+qE9LyoB77rkHzz33HFJTU5vUMerMmTMxadIkdO7cGb169TL+qGrutc1DDz2EixcvoqysDOHh4ViyZAlboRLVUN/57OHhgX/84x/Gm51JSUm1ltPr9UhMTERJSQmEEJgyZQq8vb3rnOszZszAzJkzERgYiIEDBzbauaipsurVV1/F/PnzsXjxYsTExECv1+OOO+5o0jC49X3+jBkzkJCQgO3bt2PIkCEICAhosDxJSEjA0aNHoVarER4ejmeffRaTJk1q9POp+SSC7XSoFcrLy+Hq6gqJRIKUlBRs27YNq1atsmqG0tJS44gRycnJyMnJwUsvvWTVDETUMnq9HjqdDi4uLrhy5QqmTJmCHTt21Gq+ai7VZYUQAosWLcKtt96KKVOmmP1ziMix2cO1DRE5Po1GA6lUCicnJ5w4cQL//Oc/sWXLFlvHIjh4JYjBYIBe77DxAQAymcTht6Eat8X+WGM7nJ1lFl2/uThaedFWjsGWas/b31a3vb2WFfb+97T3fAAzmoO95wP+zNhey4qaHOHvVZOj5QUcLzPzmtbS8sKhH4fR6wUKChy7jweFwt3ht6Eat8X+WGM7AgK8LLp+c3G08qKtHIMt1Z63v61ue3stK+z972nv+QBmNAd7zwf8mbG9lhU1OcLfqyZHyws4XmbmNa2l5QU7RiUiIiIiojYjKSkJYWFhGDduXJ33PvroI/Tu3Rv5+fkAqkbweOWVVxAVFYWYmBhjR75E1HaxEoSIiIiIiNqM+Ph4rFmzps7069ev48cff0SnTp2M0/bv34+MjAzs2rUL//rXv/DPf/7TikmJyBZYCUJEREQOaf/+/Rg1ahSioqKQnJxc5/1r167hkUceQVxcHGJiYrBv3z4bpCQiaxsyZAh8fHzqTF+2bBkSExMhkUiM01JTUxEXFweJRIJBgwahqKgIOTk51oxLRFbm0H2CEBERUfuk1+uxePFifPLJJwgMDMTEiRMRERGBnj17GudZtWoVxowZg4ceegjnz5/H9OnTsXv3bhumJiJbSU1NhVKpRJ8+fWpNV6lUCAoKMr4OCgqCSqWCUqlscH0ymQQKRdOGfG4umUxqsXVbgqPlBRwvM/OaFytBiIiIyOGkpaWha9euCA4OBgBER0cjNTW1ViWIRCJBSUkJAKC4uLjRHzVE1DaVl5fjww8/xMcff1znPVMDZdZsKVIfdoz6J0fLCzheZuY1raUdo7IShIiIiBzOzXdvAwMDkZaWVmueGTNm4IknnsDatWtRXl6OTz75pNH1mvvurr3fDbP3fAAzmoO95wMsm/HKlSvIyspCbGwsACA7Oxvx8fH45ptvEBQUhOzsbOO82dnZrDAlauNYCUJEREQOpyl3b1NSUjB+/Hg8/vjjOHHiBF588UVs27YNUmn9XaJxiFz7w4ytZ+/5AMsOkdu7d28cOnTI+DoiIgLr16+Hn58fIiIisHbtWkRHR+OXX36Bl5cXK0GI2jh2jEpEREQO5+a7t6ae4V+/fj3GjBkDABg8eDAqKyuhVqutmpOIrC8hIQEPPPAALl26hPDwcHzzzTf1zjtixAgEBwcjKioKCxYswMsvv2zFpERkC2wJQkRERA4nNDQUGRkZyMzMRGBgIFJSUvDGG2/Umqdjx444dOgQ4uPjceHCBVRWVsLPz89GiYnIWt58880G36/ZQbJEImHFB1E7w0oQsnuVAijT6lu9HndnGVwa7+eKiMik5pRFLG8sz8nJCQsXLsS0adOg1+sxYcIEhISEYOXKlejfvz8iIyMxd+5cvPTSS/j0008hkUjw6quvNqnDQ7IP1edceWEFKjRNvw7g+UfUPC251uZ5Ro6MlSBk98q0euw50/rx2u/po4SLXGaGRETUHjWnLGJ5Yx0jRozAiBEjak2bOXOm8d89e/bE119/be1YZCbV55y7mxxl5ZomL8fzj6h5WnKtzfOMHBn7BCEiIiIiIiKidsEmlSBJSUkICwvDuHHjak3/4osvMGrUKERHR+O1116zRTQiIiIiIiIiaqNs8jhMfHw8Jk+ejDlz5hinHT58GKmpqdi6dSvkcjny8vJsEY2IiIiIiIiI2iibtAQZMmQIfHx8ak376quvMH36dMjlcgCAv7+/LaIRERERERERURtlNx2jZmRk4Pjx43jrrbfg4uKCF198EQMGDGhwGZlMAoXC3UoJLUMmkzr8NlSz1LaUF1bA3U3e6vW4ujhD4ePapHnbyt+lrWwHERERERGROdhNJYher0dRURHWrVuHU6dOYdasWUhNTW1wKDu9XqCgoMyKKc1PoXB3+G2oZqltqdDom9UrfL3rqdSioMDQpHnbyt/FGtsREOBl0fUTERERERGZi92MDhMYGIioqChIJBIMGDAAUqkUarXa1rGIiIiIiIiIqI2wm0qQe++9F4cPHwYAXLp0CVqtFr6+vjZORURERERERERthU0eh0lISMDRo0ehVqsRHh6OZ599FhMmTMC8efMwbtw4ODs749VXX23wURgiah+Kiorw0ksv4ezZs5BIJFi6dCm6deuG2bNn4+rVq+jcuTPefvvtOp0tE1mLEAICgJTfWURERER2zyaVIG+++abJ6StWrLByEiKyd0uWLMHw4cPxzjvvQKPRoKKiAh9++CHCwsIwffp0JCcnIzk5GYmJibaOSu1QUYUW605cQ36ZFkpPOaJvC0SAp4utYxERERFRPezmcRgiopuVlJTg2LFjmDhxIgBALpfD29sbqampiIuLAwDExcXh+++/t2VMaqeKK3T48vhVFJbrMLizDwrLddiUlg2NvmkdMBMRERGR9bEShIjsVmZmJvz8/JCUlIS4uDjMnz8fZWVlyMvLg1KpBAAolUrk5+fbOCm1R3vO30BJpQ4P3N4ZUX0CcF9oEPJKNfj+TK6toxERERFRPexmiFwiopvpdDr89ttvWLBgAQYOHIhXXnkFycnJLVqXTCaBQuFu5oSWI5NJHSqvudnj9pcXVsDdTQ4AyC/VID27GGHd/RES5A0AuK2LHH8rqMChi3korNSjm7Jlw0fb47YTERERtRWsBCEiuxUUFISgoCAMHDgQADB69GgkJyfD398fOTk5UCqVyMnJgZ+fX6Pr0usFCgrKLB3ZbBQKd4fKa272uP0VGj3KyjUAgD1nVJBIJPhLZ2/jNAAY2MkLP17Mw7cnr+JWL3mLPscet90cAgJaVilEREREZE58HIaI7FZAQACCgoJw8eJFAMChQ4fQo0cPREREYPPmzQCAzZs3IzIy0pYxqZ0p0+iRdq0IAzp5w9Ol9r0EhZszbvVzx870HOgNwkYJiYiIiKg+bAlCRHZtwYIFeOGFF6DVahEcHIxly5bBYDBg1qxZWL9+PTp27IiVK1faOia1I+dyS2AQwKDO3ibfH9TFG5vTsnHkshp/69Z4KyUiIiIish5WghCRXevbty82btxYZ/pnn31mgzREwO85JfBxdUKgl+mhcHsFeMLTRYbUs7msBCEiIiKyM3wchoiIqIkqdXpk5JWjt9ITEonE5DwyqQSDuihw5HIBhOAjMURERET2hJUgRERETXQ+txR6IdA70LPB+f4S7ANVcSWuqMutlIyIiIiImoKPwxARETXRudxSeMhl6Ozj2uB8t9/iCwDYezEf93mafmymmruzDC6mG5UQERERkZmxEoSIiKgJhBC4nF+O7h3c630UpprCQw4fVyfs+k0FL7mswXnv6aOESyPzkGn79+/HkiVLYDAYMGnSJEyfPr3W+0uXLsWRI0cAABUVFcjLy8Px48dtEZWIiIjsBCtBiIiImuCKuhxlWj1u8XVrdF6JRIJu/u5IV5XAYBCQStnUw9z0ej0WL16MTz75BIGBgZg4cSIiIiLQs2dP4zzz5s0z/vuLL77Ab7/9ZouoREREZEfYJwgREVETpF0tBAAEN6ESBAC6+rmjUmeAqqTSkrHarbS0NHTt2hXBwcGQy+WIjo5GampqvfOnpKRg3LhxVkxIRLaSlJSEsLCwWuf88uXLMXr0aMTExOCZZ55BUVGR8b3Vq1cjKioKo0aNwoEDB2wRmYisiC1BiIiImiDtahE8XWTwdXNu0vwdvav6DckuqjT+m8xHpVIhKCjI+DowMBBpaWkm57169SqysrJw1113NbpemUwChcLdbDllMqlZ12du9pyvvLAC7m5ySKUSuLvJm7ycq4szFI3022Nu9rwfAfvPB5g3Y3x8PCZPnow5c+YYpw0dOhTPP/88nJyc8Prrr2P16tVITEzE+fPnkZKSgpSUFKhUKkydOhU7d+6ETMbHFInaKlaCEBERNUIIgVNXC3GLb+P9gVRTuDnBzVmK64UVGNzFx8IJ2x9Tww/X97dJSUnBqFGjmvSjRq8XKCgoa3W+agqFu1nXZ272nK9Co0dZuQbubnKUlWuavlylFgUFBgsmq8ue9yNg//mAPzMGBHi1el1DhgxBVlZWrWnDhg0z/nvQoEHYsWMHACA1NRXR0dGQy+UIDg5G165dkZaWhsGDB7c6BxHZJ1aCEBERNeKyuhz5ZVr8tatvk5eRSCQI8nbF9aIKCyZrv4KCgpCdnW18rVKpoFQqTc773XffYeHChdaKRkR2bsOGDRgzZgyAqrJj4MCBxvcCAwOhUqkaXYe5W43VXrd1W+5Ut7pqjpotrhyhpdHNHC0z85oXK0GIiIgacepa1bPjwYrmNbHv6O2CQxll0OoNcJaxGy5zCg0NRUZGBjIzMxEYGIiUlBS88cYbdea7ePEiioqKeFeXiAAAq1atgkwmw3333Qegea3KajJ3q7GarN1yp7rVVbOWqdHiyhFaGt3M0TIzr7babjoAACAASURBVGktbTnGShAiIqJGpKtK4OYshb9H8+6UdfR2hRCAqrgSXRRN61CVmsbJyQkLFy7EtGnToNfrMWHCBISEhGDlypXo378/IiMjAVQ9CjN27NgmP8ZERG3Xpk2bsHfvXnz66afGMqE5rcqIqG2wSSVIUlIS9u7dC39/f2zbtq3Wex999BFee+01HDp0CH5+fraIR0REVEu6qhghSs9m/5Cu7hD1ehErQSxhxIgRGDFiRK1pM2fOrPX62WeftWYkIrJT+/fvx7///W+sXbsWbm5/lscRERF4/vnnMXXqVKhUKmRkZGDAgAE2TEpElmaTShBTPTYDwPXr1/Hjjz+iU6dOtohFRERUh05vwNmcEtw3oGOzl/VydYKnXMZ+QYiIrCghIQFHjx6FWq1GeHg4nn32WSQnJ0Oj0WDq1KkAgIEDB2Lx4sUICQnBmDFjMHbsWMhkMixcuJAjwxC1cTapBDHVYzMALFu2DImJifjHP/5hg1RERER1Xcgrg0YvEKL0BAx1nx1vTJC3K3KKKy2QjIiITHnzzTfrTJs0aVK98z/99NN4+umnLRmJiOyI3fTSlpqaCqVSiT59+tg6ChERkVF6djEAoJfSs0XLd/CUI69UA30LKlCIiIiIyLzsomPU8vJyfPjhh/j444+btZwlh6ayFnsfPqg5LLUtLRm2y5SaQ3k1pq38XdrKdhDZUrqqBF4uTujk44qzf1SINEeApxwGAajLNOjg6WKBhERERETUVHZRCXLlyhVkZWUhNjYWAJCdnY34+Hh88803CAgIqHc5Sw5NZS2ONtxRQyy1LS0ZtsvkemoM5dWYtvJ3scZ2tHRoKiJHka4qRt/A5neKWq3DHyPK5JayEoSIiIjI1uyiEqR37944dOiQ8XVERATWr1/P0WGIiMimdHoDzt8oxQODO7d4Hf4eckgA5JZo0DfQfNmIiIiIqPls0idIQkICHnjgAVy6dAnh4eH45ptvbBGDiIioQVcKyqHVC/QM8GjxOpxlUijcnXGjpPUt2oiIiIiodWzSEsRUj8017d6920pJiIiI6nfhRtXjZD06tLwSBKjqFyS3hCPEEBEREdma3YwOQ0REZG/O3yiFTALc6te6DoY7eLhAXa6FTt+0fomIiIiIyDJYCUJERFSPC7mlCPZ1g4tT674uAzzlEALIK9OaKRkRERERtYRddIxKRERkC5UCKNPq633/bG4pQpQeUGv00IuWf06AZ9UIMTdKKhHoxRFiiIiIiGyFlSBERNRulWn12HMmx+R7Gp0B14sq0DPAHXvO5CAspP4h2xvj6+YMAMhnSxAiIiIim+LjMERERCbcKK0azUXp2fqWG04yKXxcnZBfxhFiiIiIiGyJlSBEREQmVI/m0uGPR1lay89DjvxStgQhIiIisiU+DkNEdi0iIgIeHh6QSqWQyWTYuHEjCgoKMHv2bFy9ehWdO3fG22+/DR8fH1tHpTYmt0QDJ6nE+ChLa/m5O+NUQQWEEJBIJGZZJxERERE1D1uCEJHd++yzz7BlyxZs3LgRAJCcnIywsDDs2rULYWFhSE5OtnFCaovySjXw95CbrcLCz10Ojd6AUk39HbESERERkWWxEoSIHE5qairi4uIAAHFxcfj+++9tnIjaovwyDfzczdMKBIBxXewclYiIiMh2WAlCRHbviSeeQHx8PP773/8CAPLy8qBUKgEASqUS+fn5toxHbZBWb0BBuQ7+HubpDwSo6hMEANTsHJWIiIjIZtgnCBHZta+++gqBgYHIy8vD1KlT0b179xatRyaTQKFwN3M6y5HJpA6V19ystf3lhRVwd6tb0ZFdWAEA6OTrbnzfSSY1Oa8ppuZ1dXWGTCpBkUZf6z1XF2cofFyNr9v7356IiIjIklgJQkR2LTAwEADg7++PqKgopKWlwd/fHzk5OVAqlcjJyYGfn1+j69HrBQoKyiwd12wUCneHymtu1tr+Co0eZeV1W2ZczS8FAHg6S43v6/QGk/OaUt+8Cjdn5BRW1HqvolKLggLDn/O00b99QICX2de5f/9+LFmyBAaDAZMmTcL06dPrzPPdd9/hvffeg0QiQZ8+ffDGG2+YPQcRERE5Dj4OQ0R2q6ysDCUlJcZ///DDDwgJCUFERAQ2b94MANi8eTMiIyNtGZPaoLzSqkoKc/YJUr0+9gliHnq9HosXL8aaNWuQkpKCbdu24fz587XmycjIQHJyMr766iukpKRg3rx5NkpLRERE9oItQYjIbuXl5eGZZ54BUPWDZ9y4cQgPD0doaChmzZqF9evXo2PHjli5cqWNk1Jbk1emgY+rE5xl5r1X4OfujIs3yjhMrhmkpaWha9euCA4OBgBER0cjNTUVPXv2NM6zbt06PPzww8YhtP39/W2SlYiIiOwHK0GIyG4FBwfj22+/rTPd19cXn332mQ0SUXuRX6o1a6eo1RRuztALgeJKHbxdzdvKpL1RqVQICgoyvg4MDERaWlqteTIyMgAADzzwAAwGA2bMmIHw8PAG12vu/oPsvY8Xe85X3WePVCppcn88QN1+dqzBnvcjYP/5AMfISERtAytB2pBKAZRp9a1ej7uzDC68QUlE7ZQQAnmlGgT7+ph93Yo/Hq8pKGclSGsJIepMu7l1jV6vx+XLl/HFF18gOzsbDz/8MLZt2wZvb+9612vu/oPsvY8Xe85X3WePu5u8yf3xAHX72bEGe96PgP3nA/7MaIn+g4iIamIlSBtSptVjz5mcVq/nnj5KuMhlZkhEROR4iit10BqE2fsDAQCFa3UliBa3+LqZff3tSVBQELKzs42vVSqVcejsaoGBgRg0aBCcnZ0RHByMbt26ISMjAwMGDLB2XCIiIrIT7BiViIiohuqOSy3xOIyP25+VINQ6oaGhyMjIQGZmJjQaDVJSUhAREVFrnnvvvRdHjhwBAOTn5yMjI8PYhwgRERG1T6wEISIiqkH9RyWIrwVagsikEni7OqGQlSCt5uTkhIULF2LatGkYO3YsxowZg5CQEKxcuRKpqakAgOHDh0OhUGDs2LF47LHH8OKLL8LX19fGyckSNHoDfleVIFNdDoOJR6WofUlKSkJYWBjGjRtnnFZQUICpU6di5MiRmDp1KgoLCwFUPVr3yiuvICoqCjExMfj1119tFZuIrMQmj8MkJSVh79698Pf3x7Zt2wAAy5cvx549e+Ds7IxbbrkFy5Yta/CZXSIiIktQl2ngJJXAy8UyX5EKN2e2BDGTESNGYMSIEbWmzZw50/hviUSCpKQkJCUlWTsaWdHJrEKkns2FRl9V+fH92Vy8EXsbeik9bZyMbCU+Ph6TJ0/GnDlzjNOSk5MRFhaG6dOnIzk5GcnJyUhMTMT+/fuRkZGBXbt24ZdffsE///lPfPPNNzZMT0SWZpOWIPHx8VizZk2taUOHDsW2bduwdetW3HrrrVi9erUtohERUTuXX6aFws3ZYkPY+rg5sRKEyEzSVcXYnp6Djj6uePD2zrivfyB0BoFn1p/CxbxSW8cjGxkyZIhxaOxqqampiIuLAwDExcXh+++/rzVdIpFg0KBBKCoqQk5O6/vYIyL7ZZOWIEOGDEFWVlatacOGDTP+e9CgQdixY4e1YxEREUFdprXIozDVFG7OKKnUQ6s3wFnGp1KJWupGiQZbT6nQReGKSYM6Gc+n8YM744WNpzF706/472O3w9WZnb0TkJeXZ+w8WalUIj8/H0Dd4baDgoJMdrR8M3MPp1173dYdLrh6OOrmqDkUtSMOb+xomZnXvOxydJgNGzZgzJgxjc5nycLHWsx5gLSkADOlZqHWHJY62G2xXfZ+4jZVW9kOImsRQqCgXIseHSx33ij+6By1qEJnkc5XidqLvedvwEkmwYSBHWtVKHZWuGFJdB88tS4Nnx7NxFNDb7VdSLJ7TRlu2xRzD6ddk7WHNK4ejrpZy9QYitoRhmC+maNlZl7TWjqktt1VgqxatQoymQz33Xdfo/NasvCxFnMeIC0pwEyup0ah1hyWOthtsV2OVtDUxxrb0dLCh8geFVfqoDMI+LpbrnKiuhJEXaZlJQhRC2Wqy3EutxQjevrDXV73cvb2YAVG91Xi82OZGNsvkENSE/z9/ZGTkwOlUomcnBz4+fkBqDvcdnZ2dqOtQIjIsdlVO9xNmzZh7969WLFihcWexSYiIqpPvgVHhqlWXQlSWMF+QYhaav+FPHi5OGHILYp655k5ojucpBJ8fPiyFZORvYqIiMDmzZsBAJs3b0ZkZGSt6UIInDx5El5eXqwEIWrj7KYlyP79+/Hvf/8ba9euhZsba+uJiMj6jMPjulmuEsRDLoOTVIKCMlaCELXEjRINrqjLcU+If4P96nTwkOO+/kFY/8t1PD2sGwK9XKyYkmwpISEBR48ehVqtRnh4OJ599llMnz4ds2bNwvr169GxY0esXLkSQNUoU/v27UNUVBTc3NywdOlSG6cnIkuzSSWIqYIpOTkZGo0GU6dOBQAMHDgQixcvtkU8IiJqp9RlGsikEni7Wu7rUSKRwMfNGQVsCULUIr9cLYRUAoR28m503odu74L1J6/h65+vYuaI7lZIR/bgzTffNDn9s88+qzNNIpHg5ZdftnQkIrIjNqkEMVUwTZo0yQZJiIiI/qQu08LXgsPjVlO4ObElCFEL6AwGnLpehF4BnvAw0RfIzTr5uCKyVwA2pV3H38O6wl3OkWKIiNo7u+oThIiIyJYKyrXGPjssSeHmjMIKnclRCYiofudyS1GuNWBgl/pbgUgkEqg1euN/Y/oHoVSjx7e/qWpNv/m/Sp6ORETtgt30CUJERGRLQggUVuhwi6/lh5VWuDmjUmdAubb5I3ERtWe/q0rgIZfhVr/6z9NynQGHzuUaXwsh4OfujHU/ZUEurb+V1z19lHBhSxEiojaPLUGIiIgAVOgMqNQZ4ONm+fsDxhFiyvlIDFFT6fQGXLhRil4BHpA245E1iUSC0E7eyCyoQH6ZxoIJiYjIEbAShIiICH9WSPhY6XEYoOrxGyJqmkv5ZdDoBXopPZu9bGhHb0gAnLpWZP5gRETkUFgJQkREBKCwXAcAVukTxIeVIETNdjanFC5OUnRt4FGY+ni5OqGrnzt+yy5hXzxERO0cK0HIoWUXVeDQpXzsPpuL64UVto5DRA6sukLCx4LD41ZzcZLCzVnGShCiJjIIgXO5JejZwQOyBvr1aEjfQE8UlGuhKq40czoiInIk7BiVHJIQAj9eUuPAxTwIAUgkwJHLBRjY2Ruj+yqb9awwEREAFFZo4eIkhauzdTpGVLg5oeCP1idE1LDsokqUaw3o0cGjxevopfTEjjM5OKMqQZC3qxnTEbUdVwvKkXr2BvoGeeH2YB9eU1ObxEoQckh7zuXhyGU1+gV5Iqq3EjIpcPBCPo5eKYC7swx3h3SwdUQicjCF5TqrPApTTeHmjOtFvCNN1BSX8soAAN383Vq8Dvc/RpVJV5VgRE9/SPjjjqiW9OxibD2tglQKXP29AmdzSvDg7Z1ZEUJtDh+HIYdzRlWMI5fVGNzFB/f1D4K7XAYXJxkiewdgUGdvHMpQ42xOia1jEpGDKSjXWuVRmGoKN2cUVWihN7B/AqLGXMorQ6CXC9zlrTtH+UgMkWkavQE70nMQ6O2Cfwzrhnt7d8AVdTnOqHhNTW0PK0HIoZRU6pDyaw46+bgiqndAnbs4UX0CoPSUI/VsLn9YEFGTCSFQWKG1ysgw1RRuzjAI4EYJf4wRNaRSp8fVwnJ0829+h6g3CwmoGlnmXG5pq9dF1JaculaECp0Bkb06wF0uwx3BCnTwkOPgxXwY2JkwtTGsBCGHsvf8DegMBsTcFmiyYzQnqRQjenZAQbmOw+ARUZOVaw3Q6oVVK0GqPyubj8QQNSgjrwwGAXRrwagwN3OXy9DZxxXnWQlCZGQQAseuFKCjtws6+1T1lyORSDCshx/ySjVsDUJtDitByGFcK6zAqWvFGHKLL/w85PXO16ODOzr5uOKHS/nQGQxWTEhEjqp6lBaFFR+H8XGr+ixVMUe2ImrIhdwSOEkl6KIwT2emIQEeyC6uRHEFOyYmAoDjl9VQl2nx166+tVpZ91F6QuHmjDTeWKQ2hpUg5DD2nb8Bd7kMQ7v7NjifRCLBsO5+KKrQ4XcV7/QQUeMKK/4YHteaLUFc2RKktfbv349Ro0YhKioKycnJdd7fuHEj7rrrLsTGxiI2NhbffPONDVJSa126UYYuClc4ycxz2dozoGqEmfM3eI1ABAA/XsyHXCZFb6VnrekSiQS9lZ64nF+GCq3eRumIzI+VIOQQsgrKkZFfjru6+sLFqfHhK7v7u8PH1Yk110TUJIV/DFVb3TrDGmRSCbxcnKBiJUiL6PV6LF68GGvWrEFKSgq2bduG8+fP15lv7Nix2LJlC7Zs2YJJkybZICm1RoVWD1VRBYIVLR8V5mYdPORQuDnhXC6b+BMJIfDTlQLc6udm8lHzXkoPGARw8Y8RmojaAlaCkEP48VI+3JylGNzFp0nzSyQShHbyRkZ+GQr/aOZOjkmv1yMuLg5PPvkkACAzMxOTJk3CyJEjMWvWLGg0GhsnpLagoFwLV2dpkypZzcnHzQnZRXwcpiXS0tLQtWtXBAcHQy6XIzo6GqmpqbaORWaWVVABASDY13yVIBKJBD07eOJyfjm0ej42S+3bZXU5VMWV9XY83MnHFe5yGUdepDbFere8iFro4o1SXLhRhvAe/pA7Nb3eLrSTNw5ezMfp68UY2t3PggnJkj7//HP06NEDJSVVX74rVqzAlClTEB0djYULF2L9+vV46KGHbJySHF1huRYKV+s9ClPNx82ZQ3W2kEqlQlBQkPF1YGAg0tLS6sy3a9cuHDt2DN26dUNSUhI6duzY4HplMgkUitZ3wPnn+qRmXZ+52XO+8sIKXC+phEwqQc8gbzg38XEYJ5kU7m719x0GAP27+OB4ZgGulWjQN8gbAODq4gyFT8v6HbHn/QjYfz7AMTK2RYcy1ACA7h08TL4vlUgQ0sED6aoS6AwGOEl5D50cHytByO5t/uUanKUS/CW4aa1AqincnNHV1w2nrhfhb90a7keE7FN2djb27t2Lp556Cp9++imEEDh8+DDeeOMNAMD48ePx3nvvsRKEWq2wQocODXS4bCkKV2ekZxdDpzeYrb+D9kKYGLLx5mHT77nnHowbNw5yuRxfffUV5syZg88//7zB9er1AgUF5mv2rVC4m3V95mbP+So0elzMLUUXhRu0Gh2a2q5TpzegrLzhVoJKd2e4OEnx69VCdP2j4qOiUouCgpa1DLHn/QjYfz7gz4wBAV62jtKuHM7IR2eFKxQN9IkVEuCBX64V4WpBBbqaYZQmIltjJQjZtYIyLXb/fgP9O3rBzbn5zdT7BHpi55lc5JXykQlHtHTpUiQmJqK0tKrzOrVaDW9vbzg5VRVdQUFBUKlUTVqXue/uWlp7vyNmre0vL6yAm6sziiq06BPk1eDd46bcXW7uvAE+rjAIoFwqRfAf29ve//ZNFRQUhOzsbONrlUoFpVJZax5f3z8rwP/v//4PK1assFo+ar1yrR7ZRRUY1rOD2dctk0rQzd8d53NLIYSoU4FG1B7o9Ab8lFmI0f0CG5yvyx+Po2UWlLMShNoEm1SCJCUlYe/evfD398e2bdsAAAUFBZg9ezauXr2Kzp074+2334aPT/Pu/FPbs/nUdWj0Btx+i6JFy4cEVFWCnM1lD/COZs+ePfDz80P//v1x5MiReudr6oWrue/uWpoj3LWzJGttf4VGjxuF5dDqBdydpA3ePW7K3eXmzusmqzp+f88sgNcfh3Jb/dub++5uaGgoMjIykJmZicDAQKSkpBhbiVXLyckxVozs3r0bPXr0MGsGsqwz2cUwCODWevoqaK2eHTxwRlWC60WV6NTCx2CIHNn5G6Wo1BlwW0cvCEPd1nXV3JxlCPCUI6uAfVhR22CTtrfx8fFYs2ZNrWnJyckICwvDrl27EBYWZnKoO2pfdAaBb05ew+AuPgjwdGnROrxcndDR2wXnWAnicH7++Wfs3r0bERERSEhIwOHDh7FkyRIUFRVBp6saySM7O7vOnV+i5iqoqDqeGmoKbCnVw+ReK+SFZXM5OTlh4cKFmDZtGsaOHYsxY8YgJCQEK1euNHaQ+sUXX+D/2bvz+KgKe2/8nzP7lpnJJDOZbCQkBAgEw6YhUqVAAZWiuNWqtRWvD0/73OfB1pa+alt97vVWbb2tv6v3/m5bft6LSKu1ouBCWywBRBEQ2QmBQPZtMklmy2T2M+f3x2QiO1lm5pwz832/XrxeEs+c+YYkkzPf811WrlyJO++8E6+//jpeeOEFnqMmY3G2NzYLqjCBm2EuVJ6rBQPgPF0jkAxVbxsEAEzLu36SutioRpfLj+g1kiWEiAUvSZAbb7zxsiqPuro6rF69GgCwevVq7Ny5k4/QiIB8fL4fdm8Id1Vfe4jd9VSYdeh2BzDgpeGDYvLDH/4Qe/fuxa5du/DSSy9hwYIF+M1vfoOamhrs2LEDALB161YsWbKE50iJ2MU3SKVyPW6cXiWDhAG6aUPMuCxatAg7duzAzp078b3vfQ8A8MQTT2Dp0qUAYq8j27dvx/vvv4/NmzdTJYjInOkdRLZGDo0iOT+bGoUUBQYVmgYoCUIy02nbIAwqGaz6699sLDKqEWI59NL1NEkDgpkJMjAwMHJH12KxwOFwXPcxYuvxv5JE9n773YFR96tfy3inoye6j/2dkzYUGdVYNC0Pn57vH/d5big2Ym/TAA53ejC/bHR9xenSk58un8eF1q9fjx/84Af4t3/7N1RWVuL+++/nOyQiciNJEB62w0glDHJ1SvRQEoSQy5zt9Sa9TaU8V4u9TQMYCkaS+jyECFG9bRAz87NG1VpcnB37Wexw+pGvp/YxIm6CSYKMh9h6/K8kkb3fgRA76n71S4XZKGyeICQSBtMtWqi5sU9HT+TnctbuxaFWJ55YVIZwODLuzwsAdDIGepUMB5oH8MAN1us/AOnTk5+KzyMVU9xrampQU1MDACguLsaWLVuS/pwkc7j9YWjk0jGt4E6kvCwleqgdhpCL9A4GMTAUwtyi5M6HK8/VYG/TAJoGxP87n5Cx8IVYtAz4sHiUg4f1KjkMKhk6XX7cVEJbF4m4CSYJkpOTMzLAzG63w2Qy8R1SRvAGI9jV2I+G3tjwMQDY/HkHFk3JwWMLJqFyFD2CyfDWkS6oZBLcWZUHdoLnYhgGpSYNjne6wUY5SCU0AZ4Q8iVXIMJLK0xcnl6JE51u3p6fECGKzypIdiVIXpYSWoUUzf3UEpMpXnvtNbz99ttgGAZTp07FCy+8ALvdjieffBJutxszZszAiy++CIUi9WvTU+mMPXbtPzN/9Nf6RUY12p3+JEZFSGrwc9vrCpYsWYJt27YBALZt2zbSz0uSp93hw4bP2nCm14u5xUbcNzsf983OxwPzinC00401fzyKjQfbEeVSOwDJ6Qthxxk7Vs7Mgz5B5emlJg0GgxGctXsTcj5CSPpw+8Mw8DAUNc6apUKfN4QwO/YKPELSVX2PB3IJA0tWct+IMgyD8lwtWgZ8YGngY9rr7e3F66+/jnfeeQcffvghWJbF9u3b8etf/xqPPvooPvroI+j1+oyoOD1ti10Tz7COPgli1SsxGIzAS+1jROR4SYI8+eST+OY3v4mWlhbceuutePvtt7F27Vrs27cPy5cvx759+7B27Vo+QssYbQ4f/ny0G1lKGf6hdhKWTTOjwqxDhVmHx24uwdZ/uAmLK8z4z09b8c9/O4tICi8Mtp6wIcRyeGBOYcLOWWqKTZb/vM2ZsHMSQsQvynFwByK8bIaJsxqU4BAr/yeExNTbBlFm1kImSf6lanmuBoFIFA3D1SckvbEsi0AggEgkgkAgALPZjAMHDmDFihUAgLvvvntkw1Q6O9M7iLwsJUya0Sca47NAaI4VETte6n9feumlK35806ZNKY4kM7n9Ybx7vAcGtRwPzSuEVnn5t0GWSobnvz4dFQe1+O2+VkRYDs/eMT3prSQRNootx7uxoCQbk3MSN9BTq5ShLEeDg+0uPFozKWHnJYSIm3MoBDbKwaDisR0mK3ZR2e0OoChJq0AJERM2yqHB5sWyytSsQC81acAwwOetTtxSSrMO0lleXh4ee+wxLF68GEqlEgsXLsTMmTOh1+shk8V+D1itVvT29l73XMlc0JCKwfYtDj9mFOhhNGpGvVyhVC4FA2DAF7lokYIYB/GLLWaKN7EEMxOEpEY0yuH9UzZEOeC+2QVXTIDEMQyDxxZMgkzC4N8/aUGuToEffDW56wXrGvvR5w3hZ8umJvzcc4qNeP9kDwJhFiq5NOHnJ4SIj224+oLPdpi84dWE3TQclRAAQIvDB1+YxbQ8XUqeTyWXotiopmrRDOB2u1FXV4e6ujpkZWXhiSeewN69ey87bjTbUpK5oCHZg+3DbBRN/UOoLc2Gy+Ub03KFHK0CHQ4fAsEwXK5oSuJNBrHFTPFe2XgXNAhmJghJjc/bneh0BXBbpRnZmtFd9H/7pmI8MKcAbxzuwpZj3UmN709HuzApW43ayYm/E1NdZECY5UaGrRFCSK8nlgThsx3GrFNCylB5MSFx9T0eAMD0FA5nL8/VoLl/CHZqS0trn332GYqKimAymSCXy7F8+XIcPXoUHo8HkUhszoXNZoPFkpoqJL60Of1goxym5GrH/FirPrbWnUvxzEBCEomSIBnEG4xgX7MTU3K1mJmvH9Njf/DVciycbMJvdjclLYlwqseDUz2D+MbsAkhGkYEfq5n5ejAAjtIWBkLIMNtw4kHPYzuMVMIgL0uJbg+9+SIEiM0DyVLKUGhM7maYC5UPvxn8rMWRsuckqVdQUIDjx4/D7/eD4zjs378fU6ZMQU1NDXbs2AEA2Lp1K5YsWcJzpMnV1BfbhlSeO/Z2hXy9CkMhRRsFxQAAIABJREFUFgNDo6scIUSIKAmSQfY2DSASjWLp1NHtA7+QVMLgn26fhlytAk99cBpufzjh8b1xuAtahRRfr8pL+LmB2JyTKWYtjnVREoQQEtPrCUKrkEIu5ffXYb5BhR5qhyEEAHCqZxAzrVmjaklIlFytArk6BfZREiStVVdXY8WKFbj77ruxatUqRKNRPPDAA1i/fj02btyIZcuWweVy4f777+c71KRqGhiCVMKg1DT2JIh1uIWzkTYuEhGjmSAZYmAohONdHtw4yQiTdnzr5oxqOX65qhKP/+k4/ulvZ/Gb1TMTVrHR6vBh59k+PHJjEbSK5H1bzi404MN6GyJRDrIkD3klhAifbTDA6zyQuHy9CgdpHgEh8IdZNPcP4daanJQ+L8MwuKkkGx+f60eYjfKeGCXJs27dOqxbt+6ijxUXF2fEWty4831DmJStHtf3eV6WEgyA8/YhYHriYyMkFegVPkMcaHVCJmEmPGtjZr4e319Uhk+bHfjDoc4ERQe8drAdCpkED88vStg5r2ROkQH+cBRnKXtNCEGsEoTPzTBxBXoV+rwhhCJRvkMhhFdner1gOWCmNXXzQOJuKs3GUIjF8S5Pyp+bkFRqGvCNax4IAMilEpi0CjT1DyU4KkJSh5IgGcATCONUjwfVhfqEVFl8Y04BvjbVjP/8tAVHOl0TPl+ny4+/Ndhxzw35Y9pVPh5zCmOzUI7RXBBCMh4b5WAfDPI6FDWuYHjNoI2GMpIMF587NjM/9UmQOUVGyCQMtcSQtDYUiqDbHRjXPJC4vCxKghBxoyRIBvi8LZaoqCkZXRUIwzBwhtir/nGFo/jHxWXIN6jw1AcNaHL64Qyx6HEHLjouOMqh0f/vJy2QSyV45MbkVoEAQK5OiSKjiuaCEELQPxRCJMoJox3GEOuxprkgJNPV93hQoFcm/abIlagVUswtMlAShKS1loHY2tLynPFVggCxlhj7YDApMwIJSQX+a4BJUoXYKE50ezA9L2vUF/r+SBT7z/Vd97gV0y3Y9HkHfrz1FB6cWwidVnnRjvHF0y1QKqTXPMexTjd2NvZjbW0JzDrlqOKbqBsK9DjY5gLHcSkdukYIEZbu4YSDQc3/r8ICfawSpIvW5JIMV28bRNUYN9gl0sIyE/6fPc3odgdGKrQISSetjlgSZHLORCpBhoej9nlx46SJtdoTwgeqBElzp3sGEYxEMbfIkPBzW7KUuK3SgnanH3ubBsb8+EiUw0t7mmDRKfCtFFSBxFXl6zEwFEIPraMkJKP1DCccDCr+K0HMOiVkEmYkMUNIJor/buZjHkjczZNNAIBPm6kahKSnVocfMgmDwgkk+SzxJIidWmKIOFESJI1xHIejnW6YdQoUGZNzN2NWgR6zC/XY3+rE8THOB3ntYDsaer34/lfLoZZfu2IkkW4YvsN0qocGnxGSyYRUCSKVMMjXK9HloiQIyVzxeSBVPMwDiSs1aVCSrcbepn7eYiAkmdocPhQZVZBNYAOSViFDjlaBxj5aNEDEiZIgaczmCcI2GMScIkNS2z6WTTdjUrYaW492o3W4z/B66m2DePVAO1ZMN2PZNHPSYruScrMWSpkEJ3sGU/q8hBBh6XYHkKNVQCYRxq/CQqMaXW4/32EQwpv6Hg+kDDDNouM1jkVTcvBFhxuDgQivcRCSDG0OP0qyx98KEzfFrKVti0S0JnT7KxgM4o033sDhw4fBMAzmzZuHBx98EEplamY7kGs70eOBTMIkvaxUJpHg3up8/PFwF94+1o27b8jHFPPVhy11OP14cuspmLUK/HjplKTGdiUyCYMZ1iyqBEkxer0gQtPjCSBPL5zvv0KDCqdtmZmcpdcHAsRukEwx66BKYXXolSyakovXD3ViX4sDt1VaeI2F0OtDIkWiHDpcftxSnjPhc5XlavFFmxNBWu1ORGhCt79+/OMf49y5c/jWt76Fhx9+GE1NTVi/fn2iYiMTwEY5NNgGUWHWpuRiQiWX4rGbS5GrVeCd49042OoEG718PcxZuxf/e8sJsFEO/37vLOh56sWflZ+FM71eeuFOIXq9IELT7QnCqhfO4MNCgwqeQCQjp+2P9/Vh7969WLFiBZYtW4YNGzZc9bi//e1vmDZtGk6ePJnIsEkCRTkO9bZBXueBxFXlZ8GkkePj89QSIwR0/ZA43e4AIlEOJSb1hM9VbtaC5YDmAZoLQsRnQpUgLS0teP/990f+vmDBAtx5550TDopMXFP/EPzhaEonrGuVMjw4rxAf1vdi17l+dLoD+OacAkyz6OAPs9h9bgBvHe2CUS3HK/fOQukEplJP1Kx8PSLRTpy1e3FDAX9T6DMJvV4QIYlEOfR6AlhUkct3KCMKjbGL0k6nD4Ua/oe1ptJ4Xh9YlsWzzz6LjRs3Ii8vD/fddx+WLFmCKVMurjD0er3YvHkzqqurkxI7SYx2px/eIIuZPM4DiZMwDBZNycGOhj6EIlEoZMJomctUdP2QOG3Dm2FKTRO/Bi/PjVV9N9q9qJ2WN+HzEZJKE3pVnzFjBo4dOzby9+PHj2Pu3LkTDopM3KmeQWgUUpSlONGgkktxb3U+vj4zD75QBM/uaMTDm4/g8T8dx5+OdGLp1Fy8+Z15mMHznZ740DVqiUkder0gQtLnDYLlAKvA2mEAoN2ReXNBxvP6cOLECZSUlKC4uBgKhQIrV65EXV3dZce9/PLLePzxx6l0XuDqh+d0CaESBIi1xPjCLA51jG3oO0k8un5InDZn7PdLSfbEK0HyDSpoFVKcpQ0xRIQmVAly/PhxbNu2DQUFBQCA7u5ulJeXY9WqVQCADz74YOIRkjELRlic7x/CnCIDJJLkDUS9GoZhMKtAj/+zuBw9Dh96B4MAw2BekQEGtTDububqlMjXK3GyexCYx3c0mYFeL4iQxDfDWPUquIZCPEcT82USxIfaosyqUBvP60Nvby+sVuvI3/Py8nDixImLjjl9+jRsNhsWL16M//7v/07iZ0Amqt42CI1cmpA71IlwY7ERGrkUH5/vx8LhtbmEH3T9kDitDh+y1fKEXI9LGAYVZi0aaTgqEaEJJUFeffXVRMVBEuhc3xDYKIfKPH6nqzMMg5n5eszM5zWMq6rK1+NEN1WCpAq9XhAhiSdB8vRKwSRBdEoZjGo5Opyj27KVTsbz+sBxl8+dunATWjQaxQsvvIAXXnhhTOeVShkYjYl7Iy6VShJ6vkQTSnxn+ry4ociAHNOXg9X97gA0agUkEgYatWLU55JJJWM6Pk6llMNo+HJO0KKpZnza7IRer77uTSWh/DtejdDjA64eI10/JE67w5eQeSBxU806fFjfi+gV5gASImQTSoIUFhYmKo4Rr732Gt5++20wDIOpU6fihRdeoBLWMTrT60WWUjZyV5Fc2awCPf5+tg/2wSAsWfQ9lmzJeL0gZLx6PAEwAMw6Jc5COBtZCg0qdDgzrx1mPK8PVqsVNptt5O+9vb2wWL7c5DE0NITGxkZ8+9vfBgD09fXhe9/7Hn77299i1qxZVz0vy3JwuRKXiDIaNQk9X6IJIb5gJIqGnkE8NK/oolgCIRY+fwgatQI+/+iTlRE2OqbjR54vGIbL9eXA9JtLjPhrvQ37zvRi1nXmhwnh3/FahB4f8GWMZvPFLVF0/ZA4bU4/vlKWuMqmqRYtfMdYdDh9MEhTX31OyHgJatJTb28vXn/9dbzzzjv48MMPwbIstm/fzndYohKMsGge8GFanu6iO2LkcrPic0EydCUlIZms2xNLfsqlgvo1GEuCOIT9RkUoZs2ahdbWVnR0dCAUCmH79u1YsmTJyP/PysrCwYMHsWvXLuzatQuzZ8++bgKE8KPR7kUkyo3M6xKKhZNNkEoY7D5HW2KI+A2FInD4wig2Jq4SZJolVnV+uoeupYm4COvqD7Fp74FAAJFIBIFA4KK7OuT6hNIKIwZTzTrIpQxOUUsMIRmn2x1AgYCGosYVGlWxFYYsre++HplMhmeeeQaPP/447rjjDtx+++2oqKjAyy+/fMUBqUS46m3CGooal6WS4aZJRtQ19l2x/YoQMel0xdpAixMwFDVuco4WUgmDBlo0QERmQu0wiZaXl4fHHnsMixcvhlKpxMKFC/GVr3yF77BEpdE+BJ1CSq0wo6CQSTDdosNJeuEmJOP0uAOYW2zgO4zLFBnUYKMcejzBhF6opqtFixZh0aJFF33siSeeuOKxmzdvTkVIZBxO9Xhg0SkE2Zq6fLoZ//y3RtTbBlGVn1kDi0l66XTFWi2LElgJopRJMNmkwWmqqiYiI6gkiNvtRl1dHerq6pCVlYUnnngC7733Hu66664rHp/o4WV8SOSgKveADy0DPtxQZIBWM/4LifEOFLt0cNmlA8bGKz4YbaKuFM+8UhPePNQBbZbqorJ4MQwQGw2xfx7BYBAPP/wwQqEQWJbFihUrsG7dOnR0dODJJ5+E2+3GjBkz8OKLL0KhmPj3CMkMETYKuzeIAr3wksXxxEe7y09JEJIxTtsGMUNgVSBxX52Si+el5/DRmT5KghBRi8+bKjIm9nffVIsWhzvcCT0nIckmqCTIZ599hqKiIphMsYE9y5cvx9GjR6+aBEn08DI+JHJQ1ect/QixUZRmq8Y1ECxuvAPFLh1cdumAsfGKD0ab8HmuEE+FSY1gJIrD5/swPe/LCzAxDBAbjVR8HpcOMEskhUKBTZs2QavVIhwO46GHHsKtt96KjRs34tFHH8XKlSvxzDPPYMuWLXjooYeSFgdJL7bBIKIckC/Airl44qPD6Qcm8xwMISng8ofR4QrgrlnCXCWnU8pwc6kJOxv78P2vlkFC89aISHW6AsjRKqBVJPbt3zSLDn85bYfDF4JJQzekiDgIaiZIQUEBjh8/Dr/fD47jsH//fpSXl/MdlmgcaHZAJmFQahLvnf9Ui9/VOUkDnQSJYRhotbF1iZFIBJFIBAzD4MCBA1ixYgUA4O6776b+fzImPZ5YX7QQK0FyNHJoFdKM3BBDMtNpgc4DudDy6Wb0eUM4Qne7iYh1uPwoTnAVCBCbsQfEBhwTIhaCqgSprq7GihUrcPfdd0Mmk6GyshIPPPAA32GJAsdxONDqxOQcjeC2HQhZvl4Jk0aO+h4P7p9dwHc45ApYlsU999yD9vZ2PPTQQyguLoZer4dMFnv5slqt6O3tve55xNY+J/ZWpolK5ufvanIAAKYXGyGVjL79byytgmM59tJWvdJcLXq8oYz++pPMUd8zCAZApVW4A91vLc+BViHF9tO9mD/JyHc4hIxLh8uPmpLshJ+3why7WdVoH8KC0sSt3yUkmQSVBAGAdevWYd26dXyHITrn+oZgHwxivgAH/QkZwzCoytfjFFWCCJZUKsV7770Hj8eDf/zHf0Rzc/Nlx4xmHbTY2ufSpSVrvJL5+Z+3eSBlABXHYTAYHnW73VhaBcdy7KWteiUmDY53uNLu65/M1jkiXvW2QUzO0SS8RD+RVHIpvjbVjL+f7cOPl06BWi7lOyRCxsQfZtHnDSV0PW6cQS1HoVGFxj6qBCHiQSUDaeKT5gEAQHmuludIxKcqPwttTj88gTDfoZBr0Ov1qKmpwbFjx+DxeBCJRAAANpuNVmmTMelxB2DJUkImEWZvf0mOBj2eAMK0JpekOY7jcKrHg6p84SfIVs7Mgy/MYve5fr5DIWTMuobX4yZ6KGpcpVWPs9QOQ0SEkiBp4pMmB6bl6aBTCvdOilDFL77qab2X4DgcDng8sRXGgUAAn332GcrLy1FTU4MdO3YAALZu3YolS5bwGSYRmR5PAAUCHIoaV5qjRZQDutwBvkMhJKm63AG4AxFBzwOJm12oR6FBhQ/qr99+SYjQdAyvx03W1rHK/Cy0Ofzwh9mknJ+QRKMkSBro9wZRbxtE7WTqwxuPyrwsMABOdVMSRGjsdju+/e1vY9WqVbjvvvtw8803Y/HixVi/fj02btyIZcuWweVy4f777+c7VCIi3e4A8gU4FDWuNCc2C4SGo5J0F29FnWkV/upZhmFwZ5UVX7S70E4/m6Lm8Xiwbt063Hbbbbj99ttx9OhRuFwurFmzBsuXL8eaNWvgdqfXENzO4SRIkSFJSRCrHhyApv6hpJyfkESjsoE08GlzbMjfgskmtNGLz5jplDKU5WpwyubhOxRyienTp2Pbtm2Xfby4uBhbtmzhISIidqFIFH3ekCA3w8SV5sTaGuN37ghJV6d6PFDLJSg3i6OV986qPGzY34Z3j/fg+18t4zscMk7PPfccbrnlFrzyyisIhUIIBAL43e9+h9raWqxduxYbNmzAhg0bsH79er5DHbcgB/guqMo4P+CDQSVDRMLAGbq8WoPlJvZ8MwpiicxGu3dk8yIhQkZJkDTwSbMD+XolJudoKAkyTlVWPfac7wfHcaMaskkIEafewSA4QNDtMNkaObKUMrrbTNLeiW4PZlizBDOfh2Gu/AYxTqqQ4eYyE96vt+GbNxVBKZNCI5dCKYzwySh4vV4cOnQIv/zlLwEACoUCCoUCdXV12Lx5MwBg9erVeOSRR0SdBPGFWew+Yx/5e32PB1ql7KKPXai2wjyh5yswqJCllOGsnd6HEHGgJIjIhdkovmh34fYZFnrzPgFV+Vl475QNHa4AJiWpX5IQwr9uT2zORr5ByXMkV8cwDCZlq9FGSRCSxgJhFo19Q3hkfhHfoYzwR6LYf67vmscUGVT45PwAfre3BTcU6LF4ugVKBW2LEYuOjg6YTCY89dRTOHPmDGbOnImf/exnGBgYGBmybrFY4HA4rnsuqZRJ2irzia6J97sDF61pd/kjKM3RXHV1+1jWusdduN5dKpVgRoEeTQ6faNa7T/TfONUo3sSiJIjInej2wBdmUVua+L3fmSReuneqx0NJEELSWPfwsFEht8MAsbkgB1udfIdBSNI09HrBRjnMKhBX6XxJthq5WgUOtTkxSwRbbcjFIpEITp8+jaeffhrV1dX4xS9+gQ0bNozrXCzLJW2V+UTXxAdC7Mia9ggbhdsfRpZCetXV7WNZ6z7yHBesdzcaNSjLVuPdEz0YcAxBKpDqrmuZ6L9xqlG8V2Y2j+91mAajitz+ViekEgbzio18hyJqk3M00MilI0PaCCHpqccTgFTCwKwTbiUIAJSZNOgfCmEwEOE7FEKS4lRPbA6XGNbjXohhGNSUGGH3htDiEM8bEhJjtVphtVpRXV0NALjttttw+vRp5OTkwG6PtYrY7XaYTOmzbMDlj/0eydbIk/o80yw6BCNRGupNRIGSICJ3oNWJGwr0tBp3gqQSBjOsupGLMkJIeup2B2DNUgr+LlV8Qwy9ySLp6kS3B0VGFUyasZXgC8GM/CzoFFIcbHXxHQoZI7PZDKvViubmZgDA/v37UV5ejiVLlowMYt+2bRuWLl3KZ5gJ5Ryu8MhO8s/aVEtswPFZuzepz0NIIlASRMQGhkI4a/dSK0yCVOXr0dg3hADtOCckbXW7g8gX8FDUuMmmWBKkdYCSICT9cByHkz2DmCXSLRIyiQTzJxnR6vChwUYVpGLz9NNP40c/+hFWrVqFhoYGfPe738XatWuxb98+LF++HPv27cPatWv5DjNhnL4wACBbndxKkFKTBnIpg8Y+SoIQ4aPyARE72BbrF19ASZCEqMrPAhvlcNbuhXWc/WWEEGHr9gTwlcnCL3MuMKigkDJopiQISUM9niAGhkKimwdyobnFRhxsc+H1g+24eRK1JItJZWUl3n333cs+vmnTJh6iST6nLwyVTAK1PLn3vuVSCcpytGikDTFEBKgSRMQOtDqRrZZjmkXHdyhpYebIcFS6q0NIOvKHWQwMhVBoFH4liFTCoMSkQSu1w5A0FG89FfNgUaVMgtrSbBxud+Fop5vvcAi5Kqc/DKNGnpItktMtOjT0DoLjuKQ/FyETQUkQkYpyHA62OXFTiRESWo2bELlaBfL1SkqCEJKmuoY3wxSKoB0GiLXEtAzQHTWSfk50e6CSSTDFLO6bOHOLDTBp5Pj3vc2IRulNHxEmpy+c9FaYuJn5WXAHIuhwBVLyfISMFyVBROqcfQgOXxi1pcIv6xaTmVY9DUclJE11uWIT64uM4liDXZqjQY8nCD/NKSJp5mTPIGZYsyAT+IDi65FLJVhTW4KTPYN473g33+EQchk2ysHtD6dsAHG8xe1kN11LE2GjJIhI7W91AABqaB5IQs0qyIJtMIi+wSDfoRBCEkyMlSAcgDZqiSFpJBBmcdbuFfU8kAstq7SgKj8LL350Ft4grbQmwuL2h8Eh+etx48pyNNAqpDhJNxSJwFESRKQOtDlRYdYiVyu+1XJCNtMa608+3klr7whJN12uAHRKKfQqccwEL8uNbYhp6qckyNXs3bsXK1aswLJly7Bhw4bL/v+bb76JVatW4a677sKDDz6I8+fP8xAludCZXi/YKCfqeSAXkjAM1i+ZAsdQCP+2p5nvcAi5iCO+GSZFSRAJw6AqP4sqQYjgURJEhHwhFse7PLQaNwmmWXSQSRgc66AkCCHpptPtR5FBnZLhcIkwKVsDpUxC6wavgmVZPPvss3j11Vexfft2fPjhh5clOVatWoUPPvgA7733Hh5//HG88MILPEVL4uJ3iNOlEgQAZlizsPaWMrx3yoZPmgb4DoeQEU5/apMgAFCVr8f5/iH4QtTKSYSLkiAi9EWHC5EoR6txk0All6LCrMVRSoIQkna6XAFRbIaJk0kYlOVo0NhHw1Gv5MSJEygpKUFxcTEUCgVWrlyJurq6i47R6b4cvOn3+0WTAEtnRzvdKDaqUjajIFX+z+IpqDBr8S87GmHz0FBIIgxOXwgKqQQauTRlzzmrQI8oB5y20aIBIlyCqwn2eDz4+c9/jsbGRjAMg+effx5z5szhOyxBOdDqhEomQXWBge9Q0tLsQgPePdGDMBuFXEp5QkLSARvl0O0JYNGUHL5DGZOpFh32nOsHx3H0Bv4Svb29sFqtI3/Py8vDiRMnLjvuj3/8IzZu3IhwOIxNmzZd97xSKQOjUZOwOKVSSULPl2ipjI+Ncjje7cGKmdZRPaffHYBGrYBEwkCjHn3SRCaVjOn4iTxOpZTDaFBBKpXg3x+cg/t+fwA/2X4Gb/5DDdSK1L3xvB6hfx8C4ohRbJy+MLJTtB43Lt7qdqLbg/mTjCl7XkLGQnBJkOeeew633HILXnnlFYRCIQQClE2/1IFWB+ZPMkIhE/YbdIZh4ExAKRyb4q1zc4oMePNIF07bBlFdSIkmQtJBnzeIMMuhUCSbYeKmmrV476QNdm8IeVlKvsMRFI67/JfDlS70H374YTz88MP44IMP8Nvf/ha/+tWvrnleluXgciVuDovRqEno+RItlfGdtXvhCURQZdGO6jkDIRY+fwgatQI+f2jUzxNho2M6fiKPCwTDcLmiMBo1yJFL8C93TMOTW+vxj388jF/dOUMwN1OE/n0IfBmj2Zwe82KEwOkPp/x3h14lR4VZi8MdLjy2YFJKn5uQ0RJUEsTr9eLQoUP45S9/CQBQKBRQKNKrXHKiOl1+dLgCeGBOId+hXJc/EsX+c30TPk9thTkB0YzenOHEx5FONyVBCEkTYtsMEzfVHGvnONfnpSTIJaxWK2w228jfe3t7YbFYrnr8ypUr8U//9E8piIxczZFONwBgblH6/m79SlkOfrx0Cn5Vdx5P/+UM/uWO6YJJhJDMEh1ejzvdorv+wQk2r9iIrSd6EIpEBX/TlmQmQX1XdnR0wGQy4amnnsLq1avxs5/9DD6fsLPWqXag1QkANA8kiYwaOSosOhwdvlgjhIhflyuWBCkS0UwQAJhi1gIAztFckMvMmjULra2t6OjoQCgUwvbt27FkyZKLjmltbR357z179qCkpCTFUZILHelwoUCvhFUvrp/DsbpvdgF+8NUy1DX2Y927pzAYuHx1bpADnCF2zH+CKa6OJeLlDkQQ5VI7FDVufrERwUgUp2y0JYYIk6AqQSKRCE6fPo2nn34a1dXV+MUvfoENGzbg+9///hWPT3TfLh/G2v94uMuDIqMaN0zOuazsN947O1Hj7aW9tGd3vOdJVDyXivftjsZNk03YdqwLuiwVZCK+g0P9tYTEdLn9kDJAXpa43nzplDIUGlRotNOGmEvJZDI888wzePzxx8GyLO69915UVFTg5ZdfRlVVFZYuXYo//OEP2L9/P2QyGfR6/XVbYUjyRDkORzvduKVcXHN5xuuheUUwqOT4xUeN+M4fj+AXKysxw/plm4cvzGL3GfuYz7t4ugVKAc0aIcLlHG7tyuZhCPHcIgMkDPBFuwtzi2guCBEeQSVBrFYrrFYrqqurAQC33XYbNmzYcNXjE923y4ex9GhG2Cj2Nw9gxXQL3G7/Zf8/3js7UePtpb20Z3e850lUPJeK9+2OxvxJ2fjjwXYcOt+Hyjzx9qamogeYeneJGHS6ArDqVZBJxDdcdKpFRxtirmLRokVYtGjRRR974oknRv775z//eapDIlfRPOCDOxBJ61aYS62cmYdCgwo//8sZ/MObx/Cdm4rx6E3FUKVwUwfJXE7f8HpcdeorQbJUMkyz6PBFhxtrU/7shFyfoG5xm81mWK1WNDc3AwD279+P8vJynqMSjpM9gxgKsaihVpikmz/8b0wtMYSkhy53QHStMHGVeTq0O/3wBMJ8h0LIuB3pGJ4HUpw5SRAAmF1kwB8fmYuvTTPjvw6044FNh/FJ0wDfYZEM4PSFIZMw0Cn5SbrNLzbiZLcHgfDElyQQkmiCSoIAwNNPP40f/ehHWLVqFRoaGvDd736X75AE40CrA1IGuLGYysqSzapXociooiQIIWmi0+VHoUFcm2HiqobXDdbbBnmOhJDxO9rpQl6WEgVpPg/kSgxqOf7ljun47f03QCmV4Mlt9fi/HzbA5afEJkkePtbjXqimJBuRKIfP2128PD8h1yKodhgAqKysxLvvvst3GILgzVcjAAAgAElEQVS0v9WJmfl6ZKkE92VLS3MKDdjbNIAox0HC0y8QQsjEeYMRuAMR0W2GiavMywID4FTPIGpLTXyHQ8iYcRyHI51u1JRk8/aGTAjmTzLij9+eizcPd2HD/jYcanNiYZkJN5UYIZMI7r4kETmHLwSzjr+tYnOLDdAqpPikaQC3ZsgsICIe9IorEi5fGGd6vbQVJoXmFBngDkTQPCDuuTOEZLr4elyxtsPolDKU5Wpwqoem7BNxanX44fCFM2oeyNXIpRJ8+6Zi/Ne35qI8V4uPzw9g44EO2AeDfIdG0ggb5eDyh2HiYTNMnFwqQW1pNj5pdiDKcWPeiESbkEgyUUmBSHze7gQHoJaSICkzZ/hi7WinG1NytTxHQwgZry5XbJC0WNthAKDKqsee8/3gOC6j76QTcTrSGSuHn0vtvCMsWUrcU52Ppv4hbK/vxWufd+C26WbcUEiJIjJxNk8AUQ4waVO/GeZCt5TnYGdjPxp6vSgwaca0EYk2IZFkokoQkTjQ6oReJRP1phKxKTSoYNEpaC4IISIXrwQpFGklCBCbC+IORNDhCvAdCiFjdqTDjVytAsUi/hlMlvJcLR6vnYRiowrbT9vx8XCyk5CJiCf/+awEAYCbJ5sgYYC9NAyYCAwlQUSA4zgcaHPipklGSEW43lGsGIbBnCIDjnS66YKEJz09PXjkkUdw++23Y+XKldi0aRMAwOVyYc2aNVi+fDnWrFkDt5sSVeTqOl0BGFQy6JTiLX6sytcDALXEENGJchy+6HBhXrGBqpiuQqOQ4RtzCjG7UI/PWpzYdY4SIWRiOocT5iYNv5UgRrUcswsNqDvbR9/TRFAoCSICTQM+9HlDqCmhVphUm19sxMBQCC0OmgvCB6lUip/85Cf461//irfeegtvvPEGzp8/jw0bNqC2thYfffQRamtrsWHDBr5DJQLW5faj0CjeVhgAmJyjgVYhxfEuSoIQcTnXNwSHL0wzza5DKmFwW6UF84oN+LzNhU+bHXyHRESs0+WHSiaBWs7/W73bKi1oc/rRaPfyHQohI/j/ySDXdbDVCQB0AcGDmuF/8wPDXwOSWhaLBTNnzgQA6HQ6lJWVobe3F3V1dVi9ejUAYPXq1di5cyefYRKBuXT4WocrAEuW8oqD11gB3JhiGOaimHrcgcvi9ESiqCrQ41CHi4bKEVGJX8PQjZzrYxgGy6aZMasgC582O9BAa7HJOHU5/TBpFYKovvraVDMUUgY7z/TxHQohI8RbG5xBDrQ6MdmkgVVPvbSplq9XoSRbjQOtTjw0r4jvcDJaZ2cnGhoaUF1djYGBAVgsFgCxRInDcf07ZlIpA6NRk+wwE0YqlYgq3kSbyOff4w7gYFus/5iNcrB5Aphi0eFgm+uyY+eVZEOjHl25sEwqScqxYQ44fEFsEgmDaPTyDEa2RoGDrU78/Wwf9Krr93kvmmqGUaRrgUn6ONDmxJRcLa+rOsWEYWIVIU5fGB/W9yJHq4Ali/7tyNh0uvzIE8j3TZZKhlvLc7GnsQ/TzFpq7SeCQEkQgQuEWRztcuPuG/L5DiVjLSjNxraTNgQjUShlVDzFh6GhIaxbtw4//elPodPpxnUOluXgcomnrclo1Igq3kSbyOcfCLHw+UMAAIcvhCgHZMklIx+7UISNXvHjV5KqYzVqxRUfm58VS6qc6XaPzAi5lkAwDJcrOqoYUsFspsHemSYQZnGsy41vzC7kOxRRkUkkuOeGfPzXgXa8f8qGR28qhkxK1x+JxLIs7r33XuTl5eH3v/89Ojo68OSTT8LtdmPGjBl48cUXoVDwO09jvAJhFn3ekKCWKaycacHOxj6c7xvCtLzxXccRkkj0iipwx7rcCEai1ArDowWl2QhGojjeRcM3+RAOh7Fu3TqsWrUKy5cvBwDk5OTAbo+tWbPb7TCZTHyGSATMMRQGwP+awESwZCmhVUrR7vDzHQoho3Kk040wy2FBKa3GHSutUoY7ZuShzxvCx+dps0aivf766ygvLx/5+69//Ws8+uij+Oijj6DX67FlyxYeo5uYDoFshrnQglIT8rKUONRO7eVEGCgJInD7W52QSxnMLaK98XyZW2SETMJgP80FSTmO4/Czn/0MZWVlWLNmzcjHlyxZgm3btgEAtm3bhqVLl/IVIhE4hy9WUcH3hPxEkDAMZhUY0ObM3AohIi6ftTiglEkwu5CuYcZjilmLOUUGfN7uQo+H1mMnis1mw549e3DfffcBGN7CeOAAVqxYAQC4++67UVdXx2eIE9LuHE6CCCj5L5MwWF2djw5XAN1u+l4m/KMkiMAdbHNidqEBarmU71AylkYhxdwiA/bRpPaUO3z4MN577z0cOHAAd911F+666y58/PHHWLt2Lfbt24fly5dj3759WLt2Ld+hEoEaGApBJZdAo0iP19BZhQa4/BG4/GG+QyHkmjiOwydNA7hpkhGMTDrqgb5CG1zMt69OyYFWIcWOBjuitGI0IZ5//nmsX78eEknsbZDT6YRer4dMFpsSYLVa0dvby2eIExJPgmSrhVMJAgC3z8yDUibB5210U5Hwj2aCCJh9MIimfh/uuCWP71Ay3q3lOfj17ia0O/2YlC3uVZtiMn/+fJw9e/aK/2/Tpk0pjoaIkcMXRk4aVIHEzZtkxP8HoKl/CPOKqcWACFfzgA/dniC+UzMJvjCL3WfsYz5HbYU5CZGJi0ouxdKpuXj/VC+Od3mwtJKuCSdi9+7dMJlMqKqqwsGDB6963Gi2qiRz4PqEhoMPhWDWKWDMGv1g7LEM845TKeUjw7dHE6+fkeDG0mzsOz+AwXAUeddZ+HDh+ZNBbAPoKd7EoiSIgB1oo9W4QnHLcBLkk6YBPDyftsQQIhaOoRAm5wr3l/BYFRjVMGnkON9HSRAibJ8OV09+ZTLNbJqoGdYsHOl045OmAXzv1jJkp0llGx+OHDmCXbt2Ye/evQgGg/B6vXjuuefg8XgQiUQgk8lgs9lGNtBdSzIHrk9kOPh5mxcFRvWoh3MDYxvmHXfh8O3RxBsIsZhXaMAXrU785WQPHph77YHJyR7uLbYB9BTvlY136Dq1wwjYZy0O5GoVqDBr+Q4l4xUYVKgwa7G3iYaTESIWwQgLb4hNq0oQAJiSq0Wbw49QRDibXwi51KfNA5hm0dF61wRgGAaLK3IxFGLx7vFuvsMRtR/+8IfYu3cvdu3ahZdeegkLFizAb37zG9TU1GDHjh0AgK1bt2LJkiU8Rzp+7U4fiozCXI+uUUhx82QTmgd8aBkQzxt6kn4oCSJQETaKA61OLJxsGlVJHkm+W8pzcKzLTb34hIhEOm2GudAUsxYsx6HVQReQRJicvhBOdHvwlTKqAkmUIqMaUy1avH24Cy4fXYck2vr167Fx40YsW7YMLpcL999/P98hjYvLH4Y7EEGhUbit2/OKDTCqZdhxxo4wS8l8wg9KggjUsS4PhkIsFtIFRMIwDDPqYWw97sBlH5tbko0oB9TRqjpCRGFgeDNMjoDWBCZCkVENpUyC831DfIdCyBXtOT+AKAcsqcjlO5S0sqg8B/4wizeOdPIdSlqoqanB73//ewBAcXExtmzZgr///e945ZVXoFCIM3neMTwUtUjASRCZVII7ZuTB6QtjD11TE57QTBCB+rTZAZmEwU0l1POdKP5IFPvP9Y3qWI1acVlvJMdxMKrl+PsZO+6dZU1GiISQBHIMhcEAMKZZEkQqYVCWo0Fj3xBui3KQSDK3WnDv3r147rnnEI1Gcf/991+2KWrjxo14++23IZVKYTKZ8Pzzz6Ow8Np96GTidjX2o8ioonbeBMvVKfGVKTn489FufGt+EfSq9HptIxPXfkES5FzvIM/RXF2JSYN5xQZ80e7CZJMGU+i1gqQYVYII1L6WAcwtMkCroDyVUDAMg8o8HY52uOD0jW14FCEk9Ry+EAxqOWSS9PtVV2nNgj/Mom34gjcTsSyLZ599Fq+++iq2b9+ODz/8EOfPn7/omMrKSrzzzjv44IMPsGLFCvzrv/4rT9FmDk8gjEMdLiypyKV23iR4aH4xhkIs3jpCs0HI5dqdPkgZwKoX/iyexRW5sOgUeP+UDY4huq4mqZV+V4ZpoNPlR6vDT60wAlRpzUKUA3ad6+c7FELIdfR5Q8hNs3kgcWU5GiikDM4I+E5fsp04cQIlJSUoLi6GQqHAypUrUVdXd9ExCxYsgFodKwufPXs2bDYbH6FmlL1NA2CjXMa0wsRbba/URnutPyw3vuebYtFhweRsvHW0CzZfaNTP5wnQHJFM0O70o9Cohkwq/Ld4cqkE984uAMMAbx/rhi8U4TskkkEEV2bAsizuvfde5OXljfTpZZrPWobXypXl8BwJuZRFp0CRUY2PzvTh3uoCvsMhhFwFG+Xg8IXSthxfLpVgilmHs3Yvlk+3QJqBLTG9vb2wWr9sTczLy8OJEyeuevyWLVtw6623piK0jLbzbD+sWUrMsI5vbaHYxFttr9RGey21FeZxP1+ZSYMDLU789uNmVBcaRvW426sLIdwpESRR2px+TMoWz1faqJbjvuoC/OlIF/50pBsPzSuESk4roEnyCS4J8vrrr6O8vBxer5fvUHjzabMDk7LVonoRyxQMw2DJNDNeP9iOTpdf0IOnCMlkDl8IUQ4w69KzEgQAKvN0OG0bRJvDh7Lc9Ez2XAvHXX4r/WrtF++99x5OnTqFP/zhD9c9r1TKwGjUTDi+L88nSej5Ei2R8Q14gzjQ5sTjC0uRnf3l96TfHYBGPfafRZlUAo1aAYmEGdPj448b7/ON5zGpjHF6gQHWcwP4osONBeWjaztiJAyMWcL9PgSE/7MidFGOQ7vTjxsniWueYHG2GvdU52PLsW68cbgLD8wtoHEAJOkE9R1ms9mwZ88efPe738Vrr73Gdzi88IdZHO5wUZWBgC2vtGDzwXZ8UN+L7y0s5TscQsgV9Hljd2RzdcLvix6vshwNlDIJTtkGMzIJYrVaL2pv6e3thcViuey4zz77DL/73e/whz/8YVQbH1iWg8uVuPXDRqMmoedLtETGt+VIF9goh8VlpovOGQixY6qSiIuwUfj8oTFXWcQfN97nG89jUhmjPxDGvGIDttf3oqHLjdKc6ycOuGhiv6+TIf69aDZnRhVRonW7AwhGoigbxfeD0JTnanHf7AK8e7wHmw914v7Z9D6IJJegkiDPP/881q9fj6Gh0a39S/TdGj7Es96eQBhDQRb7OhwIsRxuLM+BnxlbPx8j48Z1V+FS4707celdkPGeJ1HxTOQ817qjU5ijxU2lJnxQ34tHbp487jJ0rVKa9MnudFeFZKo+bwgMk37rcS8kk0pQmadDfc8gQtOjUMiE3wOeSLNmzUJrays6OjqQl5eH7du34ze/+c1Fx5w+fRrPPPMMXn31VeTkUItpsv21wY6pZi3KMzApl2oz8nTYfa4fh9pdo0qCkPTXPBBLck3OEefPX3muFg/OK8SWYz3Y9HkHik0a3DZtfG1jhFyPYJIgu3fvhslkQlVVFQ4ePDiqxyT6bg0f4llvZ4jF7jN2/O10LxRSBjaHD391jW3qf22FeVx3FS413rsTl94FGe95EhXPRM5zrTs6g/4w8vUKHGx14Le7z437Ym/xdAuiSR5Uloo7kHTHhghRvzcIk0YuiuFwE1GVr8exLg/O2r2YVaDnO5yUkslkeOaZZ/D444+PzBOrqKjAyy+/jKqqKixduhQvvvgifD4fnnjiCQBAfn4+fve73/EceXpqc/hQbxvEE4vK+A4lI8ikEswtMuDTZgccQyGY0nQINBm95v7YTeSyHA3EOga3yKjGozXFeOdYN57+sAGnutz437dMpjkhJOEEkwQ5cuQIdu3ahb179yIYDMLr9eJHP/oRfv3rX/MdWspwHIfGviGU5WgzcsidmFSYtdAopDjS4aY7XoQIUJ83hLys9G2FiSsyqmBUy3Cqx5NxSRAAWLRoERYtWnTRx+IJDwAZ21rLh/dO2iBlgNum053bVJlTZMD+Fie+6HBh+fTLW8FIZmlx+GDRKaBTyuAMsXyHM25GtRzfuakY5wZ8eOtoN/acH8APvlpGa7dJQgnmFtkPf/hD7N27F7t27cJLL72EBQsWZFQCBAC63AEMhVhMtej4DoVch0wSuwNzvn+IdpsTIjDBCAunP4zcNB6KGscwDGbm69Hq8NMKTMKbUCSKD+p7cUt5TlrP4REanVKGGVYdTnZ7EIxE+Q6H8Ky534cykbbCXEomleB/3VqGDQ9UQ6+S4ScfNOB/bTmJs/bMXZxBEkswSRACNNq9kDBAeS71dorBnCIDpAyDLzpcfIdC0liQA5whdlR/gpcvy8hI7Y5YK2E6b4a5UFV+rCWtvmeQ50hIpvq4aQAufxj3VOfzHUrGmVNsRIjlcNpGP/+ZLMpxaHH4UJZm7yHmFBnw+rfmYv2SKWi0e/GtzUfw4/dP41wfJUPIxAimHeZCNTU1qKmp4TuMlOI4DmftQyg1aajvTSTid2BOdHtwS3kO1PR1I0ngC8fmBY3G4ukWKBX0fdg03BdtzpA70iaNAoUGFU71DGJBaTaVC5OUe/dED/L1StSUZPMdSsYp0Cth0SlwrNONOUUGvsMhPIlvhplsSq8kCADIJAy+MacAt1da8OaRTrxxuAu7z/VjSUUu/kdtCaaY06P6haQWVYIIRMuADy5/GNOoFUZUakqzEWY5fN5G1SCECMV5uxcKqQSmNN4Mc6mq/Cz0D4XQOxjkOxSSYRrtXnzR7sI9N+RDQgm4lGMYBtWFBtgGg7B5AnyHQ3jSMrwZJp3XpWepZFh7cyne/x834fEFk3CwzYkHXz+Mn3xweuTmByGjJchKkEz0adMAAKDCkr4vXunIrFNimkWHwx0u3FRipGoQQgTgXN8Q8rKUGVURUWnNws6z/TjVMwirXsV3OCSDvHGkCyqZhFpheFSVn4Xd5/pxrMuD2+jnPyONrMdNYSUIwzAjA1j97gAC1xnGyiaoZVevkuN/LizFN+cW4o0jXXjrSBf2nOvHt24sxrdrJmG0I2H97gAkHKDMnEsFcgFKggjEvqYBFBtV0CroSyI2Xykz4azdi0NtLtw6JYfvcAjJaJEoh+b+IdyQYZtS1HIpppg1qLcNYklFLiS0YYykQL83iB0NdtxzQz70qsypvBIalVyKyjwd6ntiP/8KGRV6Z5rz/UOw6BTIUqXufYQ/EsX+c30AAI1aAZ//2osCaisSuznKoJbjewtL8eDcQvzH3hZs+rwDnzQ7sHyaGdmjqATVqBWoKTFSG3GGoldJAehw+tEy4KOtMCJlyVJiukWHz9ud8AYjfIdDSEZrdfgQjERh1WfGPJALVeXr4QuxI3cECUm2N490gY1yeHBeId+hZLzZRQaE2CgaemlAaiZqtHsz9n2EUS3Hz1dMxb/dXYW+wSBeO9iODqef77CIwFESRAD2nO8HgIx98UoHiypywEY5fDLc1kQI4ceZ4TcA1qzMKwkvz9VCLZfgVI+H71BIBnD4Qvjz0W4sn25GkVHNdzgZr9CgQq5WgWNd9POfaYKRKNocPkzN8AGhC8tM+I8HqqFRSPHWkS60DNCcEHJ1lAQRgN3nBjDFrIVRTaWkYmXSKDCv2IjjXR7YaTAhIbw50+uFSi6BSZt5r6dSCYNKaxYa+4YQCI+2K5qQ8dl8qBMhNorHa0v4DoUgPiBVj253gAYkZ5iWgSGwHFBhppup+QYVvjW/CNkaOd451oNuNw0LJldGSRCedTp9ONkTW7FKxG1hmQkquRR/a7CD4xI0/YkQMiZner0oz9Vm7JaKWfl6sFEOZ+1evkMhaazfG8SWY91YMd2C0jRcySlWVfl6SCUMjnW5+Q6FpFCjPVbxQBXlMVqlDN+cWwitUoY/H+2G03ftWSUkM1EShGcfnOgBACyelthhQST11HIplkzNRZc7gONUjkpIyoXZKM5kcF80AOTrlTBp5DjZTXMBSPL856etYDkOa2+mKhAh0SikmG6JDUgNs1G+wyEp0tjnhVouQZExvdpA49tnxvInvoFGq5ThG3MKwIHDu8d76OeBXIZWkfCI4zi8d7wbcwr1sOpVaOimN85iNys/Cye7Pdh9rh9luRqalk8yTpADfKNsxdDIpQldTXem14tgJIqZBXqwkcy84GEYBlX5euxtGoDNE0B2bmb3iJPEO9M7iA/re/Hw/CKaBSJAswv1qLcNoqHXm3FbsjJVY98QpqRhBeSF22dG68INNDlaBe6ssuLPR7vx9zN9uGNmXqJDJCJGSRAeNdqH0NQ3hKe+NoXvUEiCMAyD2yst+O8D7dheb8c35xaASbNfSoRciy/MYvcZ+6iOXTzdktDVdPES8FkFehxrdyXsvGJTlZ+FvU0DqDvbh0pKgpAEinIcfr2rCQa1HI/VTOI7HHIFxdlqmDRyHOt0UxIkA3Ach3N9XqyYbuE7FEEqz9Xi5snZ+KzFifJcLablZW6lKLkYtcPw6C8NvZBLGSydSq0w6cSkVWDJ1Fy0Onw43EF9uRPx1FNPoba2Fl//+tdHPuZyubBmzRosX74ca9asgdtN/8Yk5liXB5Oy1cjWKPgOhVcGtRyTstXYeYbmE5HE2naiB8e7PVh362Rkqeg+mhAxDIPZhQZ0uQPo89KA1HTX4wnCG2RRkeGbYa7lK2U5sGYp8bcGO3yhCN/hEIGgJAhP2CiHj870YVGFGQbaCpN25hQZUJajwe5z/RgYooFM43XPPffg1VdfvehjGzZsQG1tLT766CPU1tZiw4YNPEVHhCTKcTje5cbsQrrzCcSqQbpcAdTbaDYISQz7YBCv7G3B/ElGfJ3KygVtVoEeUoahdbkZoGF4LXxlXhbPkQiXVMLg61V5CEai+OjM2NprSPqiJAhPvuhwoX8ohDurC/gOhSQBwzBYOTMPcimD90/awEbpbux43HjjjTAYDBd9rK6uDqtXrwYArF69Gjt37uQjtKRrGxjCL3eew8MbD+HlPc3YfKgDZ3oH6c7+VbQ6fHAHIqguNFz/4AwwPU8HhVSC7fW9fIdC0kCU4/DsjrOIRDn89GsV1OYpcBqFFFMtWpzq9tBAyEv09PTgkUcewe23346VK1di06ZNAMRbZVrfMwi5lKFKkOsw65S4eXI2Gnq9aB3w8R0OEQCqZeTJ3xrs0CqkWDLNDP8QlSumI51ShtsqLdh6woY95/qxlDYAJcTAwAAslljvq8VigcPhGNXjpFIGRqM4Vjm+fbgTv/hLAzgOmF+SDX+YRevAELaesGGqRYcH5hdDIbs8h61SymE08Dsd3u8OQKMeXTvKteKVSiVj+nqdPdcPAFhUmQeFTDrqGGRSieCOlUiYqz52tOfVALilIhc7G/vxz6tnXfH7hZDR+tORLhxsc+Gpr01BcTYNQxWD2UUGNPR6cdbuRVU+VcjFSaVS/OQnP8HMmTPh9Xpx7733YuHChXj33XdRW1uLtWvXYsOGDdiwYQPWr1/Pd7jXVW8bxDSLDnIpvcZfz4LSbJzsGcRHZ/vwDwtoplGmoyQIDwJhFrvP9WPp1Fwo5VL4+Q6IJM30vCzMLfbj83YXirPVGb26k28sy8HlEn72f/OhDryytwW1ZSb87GsVUChl2H3Gjmg0B4c7Xag7249N+1tx/5wCKC656AkEw3C5+L3rFwix8PlH1wJ2rXiNRs2Yvl67G+yw6BTQSwBXMDzqGCJsVHDHatSKqz52LOddXJGLujN2/OVoJ75akTuqxyST2Uzl2mJUbxvEf3zSglvLc3D3Dfl8h0NGqSRbjWx1bEAqJUG+ZLFYRm6k6HQ6lJWVobe3F3V1ddi8eTOAWJXpI488IvgkCBvl0NA7iDurrHyHIgoyqQTLppnx9rFuHGp3YUkltfVlMkob8mDXuX4MhVjcMYN++DLB0qm5sGYp8WF9L1z+MN/hiF5OTg7s9tj2EbvdDpPJxHNEibPtRA9e2duCr001Y+N3bkRelnLk/0kkDG6clI1VVXnocPqx/VSv4FpjPIEwPm91orl/KKWzcMJsFJ+3ObGwzERl+heYN8kIk0aOvzSMblsPyRxBDnCGWDhDLHrcgZH/vvRPqzuA9e/Vw6RVYN2Scvg45qrHXusPK6yXqozAMAxmF+nR4QrQbLKr6OzsRENDA6qrq8ddZcqnFocP/nAUM6yUYB6tKWYtKsxafNo8ADddk2c0qgThwdYTPZiUrcbcIupdzwQyiQSrb8jHxoPt2HqiB4/cWASZhPKP47VkyRJs27YNa9euxbZt27B06VK+Q0qIetsgflV3HgtKs/HsHdMglVz5zfzMfD08gQj2nB/AsS4P5gjgdaTD6cdLe5rwWYsDF46/ycuK9eBOs+iSmpw42unGUIjFwsk5SXsOMZJKGNxWacGfj3bD7Q/TEG4y4sJV1lerPIpEo3jrSDccvjAeubEIh1udqK0wY/+5sQ8WrK2gdlA+zCrQ4+PzAzjW6ca3+A5GYIaGhrBu3Tr89Kc/hU43virdZLbZjqYltKUplqipnWq57NixtKYCY2vhvNJjrtXGOd7nmGhMV7PqhgL8/+zdd1yT1+LH8U8S9t6goqiAiHtWrRt3EXdta7Xjdrd22atVe22rVu2ww9ppd2vH/VWtXuuqSt0LJw4UUaYyFMIeIcn5/cE1VxQUSEKCnPfr1VeFJE++T8g5Oc/JGR//ncCWM5mM6dzU4tOIa6q204Qtzdrzyk6QenYxu4jjlyq2l5PfWDYenk62RLb3Z82JdKLjrzJc7udeIzNmzODQoUOo1WoGDBjA888/z5NPPslLL73EqlWraNKkCcuWLbN0TKMVlGqZu/4MPs52vHVP29vO7e3d0pNkdQnbzl2hhacj3s6W2xJ2bWw670UnYKtS8lDP5rRr5sbJtDzS80s5npZfsY6JrzP3tPfH0VZllgx7E3OwUym4K8jDLMdvyO5p588vRy6x9dwVJnW58/yO9zoAACAASURBVBbi3rVrF4sWLUKv13Pvvffy5JNPVro9JiaGxYsXc+7cOT744ANGjhxpoaQNixCCTWeySFGXMKZDAE3cGsZFglSZs50NbXxdiE3Pp0yrw1El250A5eXlvPDCC0RFRTF8+HDgf6NM/fz8ajzK1JzTbGsyJfTwxWxc7W1wV3HTfWszNRVqN9WyqsfcahpnXZ/D2EzVsVdWtKP2XMwh5uJVBrRqGCOKaztN2NLqK29dp9paVSdIeno6s2bN4urVqyiVSiZPnszDDz9s6Vgmte5kBjbKip1DpMYlzM+Fni08iPnv+iCDZUfIbX3wwQdV/v7aau4NVZmo+Cb2mvejE8goKOPDSZ3Qq5SoNTpK8koprWYYuUKhYHR7f1bsS+avs1nc362ZWTtVb8x7zS8xqXx/IIUeLTx4ZWgo3s526ASoCzUEejjSPdCDQym57Ey4yk8xqdzbpRmeTqYfjbDnYg7dm3uYrZOlIWvj60ywjxMbz2TdcZ0gOp2OBQsW8N133+Hv78+kSZOIiIggJCTEcJ8mTZqwZMkSvv32WwsmbXj2XMzhVHoBA4K9ad9EDrVvyLo2d+dsViHRZ7OYINueCCF47bXXaN26NY8++qjh9w1xlOnJ9HzaBbiglF+q1tq1RVI/351Iv5ae8jVshKyqE6S6FZuvb9A0ZCXlOtafymRQiA9eTpb75laynMGhPlzKK2Xj6SzGdm6Kp1wotVG6fij6xewitsRl0aelJxm5JWTkViyVfO1bleqGkbvY2zAwxJu/zl7hTEYB7c248N31ea85lKxme/xVOjRxJSLUh9jUXKDysHelUkHvlp40dbNn9Yl0fj6cxtSegXiYcFpGYnYxKeoS7ut6Z13gm4pCoSCynT8f70okRV1CiztoZ4/Y2FiCgoJo3rw5AJGRkWzfvr1SmyEwMBAApZyCWGOxl/PZczGHjk1dubuVp6XjSEYK8nTEx9mOVUcvMb6dX6MfhXzkyBHWrVtHmzZtGDt2LFAx6rShjTLNKykn4UoRT/UNsnSUBslWpWR4uD+/H03jz1OZjOkoF5dtbKyqE6S6FZvvlE6QTWcyKSjTcn832VhvrFRKBeM6BvDtgRTe2nSO76d0wUF+e91olev0bD6ThbezLf1a1344ZtdAd05ezic6/iqhvvXXoRafVcj2+Ku08XMmsr3/bb9BaeHlxIM9Avn5cBq/HrnE1B6BuDqY5uPnz9MZqBQwpI1cc6A6I9r6sXxXIpvOZPJU35aWjmMymZmZBAT8r+Hq7+9PbGys0cc19Tx/a5wXff16AdfP5T+Tns+mM5m09nFmQreb16+qyxx9UzyuJusNmPL56vIYa854d7A3/4lN50K+hh5B1tuxVR9lpUePHpw7d67K2xrSKNPjl/IQQLdAOQ20rjo2c+P0ZVc+3ZNIRBsfXOyt6rJYMjOr/Wtfv2Jzdcy5IJGpCSH4/UQG7Zu6MaBdgKEn/lqFX9sFjKpS1w9UUx3nxgaApfMYc5xbNWaMzePkaMekboGsPJTCJ/uSeWtshzof63assfEt/c/BZDV5pVqmdG+GzW3WAamKUqFgaJgvP8WkcSBJzYh62CZPXVzO+lOZNHGzZ0yHgBoPIfVztee+bs349Ugavx69xNQezYzOotULNpzJom9rb4uui2Lt/FztuSvIg41nMnni7qA7ZthvVbsjmeJbblPP87fGedzXrxdwbdTZxewiVh1LJ8DNgXEdA9CUablxZn1d5uib4nE1WW/AlM9Xl8dYc8ZQHydcHWz4ZtdFQqLCa/2c9eVaWZHbad/e0bQ87G2UtJc7w9SZQqHgmQGteP7/YvnuYCrPD2hl6UhSPbLKTpCarthszgWJTO1gspqEK4W8PqINeXklht9fq/Bru4BRVer6gWqq49zYALB0HmOOc6vGjCnyNHe3Z3K3Zvz7cBrt/ZwZZaa9yuuj8S0bK3WTX1rOgUQ1bf1cCPKqe0dVoIcj4f4uHExWk1VQhqe3+Tq9dHrBupPpKBQwrlOT2y7geqOm7g7c26Up/z52md+OXmZQmB+ednUfCXUgKYfsIg1Rcp77bd3Tzp83Np3jhJXsKGQKAQEBZGRkGH7OzMw0jCaVaidVXcLq4+l4O9syuWtT7G3k9KE7iZ1KyeiOTfi/w6lkFrSutP261DAdTc2jQxNX7GRZNUqYvyuR7fz49Wga4zsFEOhx50wZlW7N6kpOVSs23wl+iknFy8lW7goiGTzSuwVdmrmxZOt5ErMbRmeeZDo7zmejBwa38TH6WINDfRDAt/uTjT7Wrey6kE16fhmj2vnVeV2PFl5OTOjchCuFZbz+ZxylVSy4WlNrYzPwdKzbVKLGZnCoD462SjaeybR0FJPp2LEjSUlJpKamotFo2LBhAxEREZaO1eBcyi3h/45dxs3Bhvu7N5MLDN+hxnVpigBWn7hs6SiSkQrLtMRfKaTbHdKhbWnP9W+FjVLBx7sSLR1FqkdW1QlS3YrNDV1cZgEHk3OZ0j1QfrsiGdiolCyKDMfBRsWr689QYsTFoNSwnE7P53RGAb2CPEyySKi7oy13tfAg+twVTqfnmyDhzRKziziQpKZLMzfC/Y0b/RPs48zo9gGcupzPaxvOotVXsQXObZzLLGTnhWwmdm5Sp6lEjY2jrYqIUB+2xV+hTKu3dByTsLGx4fXXX+fxxx/nnnvuYdSoUYSGhrJs2TK2b98OVCyeOmDAADZv3swbb7xBZGSkhVNblyuFZfywPxlHWyUPdG+Gs51VDhCWTKCJuyMDgr1ZcyLdqM5nyfKOX8pDL+R6IKbi62LPI3e14O/zVzny30XepTufVbUcr63YfODAAcaOHcvYsWPZuXOnpWMZ7cdDaTjbqZjYuYmlo0hWxs/VnoWRbUnKLmbJ1vNVznGX7ix6Ifh8VyIu9ir6tDTdCIY+rbzwdLLlgx0XTf4+UhdrWH8qEx9nO4aGmWYB0vZNXHluYGt2Xcjmrb/i0dcy8+d7k3BzsOHBHoEmydMY3NPOn8IyHbsvZFs6iskMHDiQLVu2sG3bNp555hkAXnzxRcP2lp06dWLXrl0cP36cgwcPsmHDBkvGtSpZBWX8cvgSNioFD3QPxM3B9NtXS9blvq7NyCvVsjEu6/Z3lqzW/kQ19jZKOsjtq01mSvdmNHGz573oBLS6O+OLAunWrKoT5NqKzevXr2fdunWsW7eOgQMHWjqWUS5mF7E9/gqTujSVqw5LVeoV5MkTdwexKS6LP05m3P4BUoO28Uwm8VmFDA71MelcXnsbJY/0bkHs5Xy2xV812XH1QvDe1vOUafWM7RhQ63VAbmVMpyY8eXcQG05n8taWeHQ1HBFyJDWXvYk5TOsRKOvVWuje3AM/Fzs23EFTYqS6uXCliF+OpKFSKnjs7pZ4OskOkMage3N3wv1dWBmTWuP6VrIuQgj2JObQs4WH3F3QhBxsVbwyOIQLV4tZeTjN0nGkemBVnSB3ohX7knG0VTG1u/y2UqreY71b0DvIk6XRCZzNLLB0HMlMijRaPtmdRFt/F7Os6D483J9QX2c+2XXRZFMefj6cxuGUXIa08cHPDIvpPd67BU/0acH605nM/TPuttPCcoo1vL7xLIEeDtzXzfgdZhoTlVLByHB/9iepySk2frFpqWE6m1nArLWnsFUpebBHM7xd5CKZjYVCoeCRXi1IzS1le/wVS8eR6iApp4TLeaX0l2thmdzAEG8Gh/rw9YEU0nJLbv8AqUGTnSBmdC6rkO3xV3mgezM85Lcs0i0oFQoW3BOGp6Mtr66PI7+03NKRJDP47mAq2UUanhnQ2iRbed5IpVTw8qDWXM4v42cTfJNxOqOAT/ck0be1l9l2FFEoFDx5d0teHtSav89f5bFfj5NUzULBRRotr/0ZR25JOW9HtZMLONbBPe380OkFf52VF0CN0ZmMAp79/SROtioe7BGIp5PcWrqxGRTiTUsvR74/lFrraYiS5e25WDGd8e5WshPEHP45OBhblYI3N52To6XucLITxIw+3Z2Iq70ND8pRIFINeDrZsSSqHZkFZSzYHC/XB7nDpOWW8MuRNCLb+RFuhlEg1/Rs4UlEqA/fHEgmOafuuw4VlGr514Y4fJzteHlIiFk6ba43pXsgH03oQGZBGQ/8eIS3N5815NfpBYdTcnnk52McTcvjteFtCPOrfvt0qXrBPs609XO5o3aJkWom9nI+z62KxdXBhvcmdDDJosxSw6NUKHi0VwvOXyni7/Ommzop1Y89F3MI9XUmwM3B0lHuSH6u9swaEsKJy/n8GJNq6TiSGclOEDPZm5jD/iQ1j/VugauDnLMu1Uynpm68MKAVOy9kyzmJd5hlOy9io1TwXP9WZn+umUNCsLdR1WnBUajodJi38Szp+WUsimxbbwsm3t3Ki98f7cGIcD++3ZfEpO8OE/HJPoZ8uo9nfo8lv1TLZ/d24p52/vWS5051T3t/4jILuZhdZOkoUj3ZczGbZ3+PxdPRli8nd5IXUI3ciLZ+tPJy4su9yfLb7gZEXazhxKU8uS28mY1s68fQNr58uS9Z7hZzB5OdIGag1elZtuMizT0cmNy1qaXjSA3MA92aERHqw6e7EzmWlmfpOJIJHExWsyMhm0d7tcC3Hubf+zjb8fKg1hy/lM93B1Nq/fhPdieyNzGHmRHBdG5mnmkw1fFysuPNkWHs+ucgZgwOZlS4HyPD/Vg8Opw/HruL7s3lloDGGtHWF5UCNp6RO0Q0Bn+ezuCfa0/TysuJr+7vIjtAJFRKBU/1DSIxp5jNcqeYBmPruavoBAwP87N0lDuGQqFArdFV+i+3XM9zg1rTxM2BV9fHcS672HBbWR36DMsENz3Hrf6ry3NItSeHKJjBL0cukZhTzNKx7U26k4LUOCgUCuaNaEPC1SJmrz/D9w92pYlstDZYGq2ed7cnEOjhwJR6nBo3ur0/h1Jy+XJvMu0CXGu8He/3B1NYeTiNSZ2bMLGz5TpxA9wceEAufGoWXk529GnlxaYzmTx9dxA28nOqwSoTUFzNYsJCCH47conv9ifTNdCdNyLborRVodbo0MlGdqM3ONSHcH8XPtuTSEQbH7nGUgOwOS6TUF9nQnydLR3ljlGi1bP/fNVrZN3Tzo8fDqXy4u8neLB7IM72Ngxu64e9Xe3KSnG5jr/P1ryzsS7PIdWebPmYWFpuCSv2JzMoxJuBId6WjiM1UC72Nrw/tj0anZ4Zf5ymSKO1dCSpjn6MSSVFXcKsISHYm3BL3NtRKBTMHRZKsI8zc9bHceLSrUcVCSH45kAyn+5JYkRbX/4ZEVJPSSVLmNS5KVmFGrbKHSIatGuN6xv/++t0Bi+vOsl3+5NpF+DC0DAfDl7MMdxeLqdANHpKhYKXBwWTVahhZYycfmvtUtUlnEwvYFS4HAVSX7yd7bi3S1PyS7T8cuSSUZsWCCEo0mhRF5dTVKaV6/5ZATkSxIT0QrDor3hslApmygsIyUgtvZ1YMjqcl9ac4vWN53h3TDtUSvMuTimZVqq6hO8OpjAszLfGIzFMydFWxbIJHXjm91ieX32S+aPaMjjU56b75ZaUszQ6gS1nrzAq3I/XR7SR77U7XJ9WnrTycmJlTBoj2/qZfeFbqf4UlGpZdeIyGfllDAzxpk9LT/n3larUNdCdoW18+SEmlcj2/jR1l6NOrdWmuEwUwPC2shOkPjX3dOTerk1ZdTydbw+k0tTTieFVtKNupBeC+KxCDibnsjcph5OX8tFe1/lsq1IQ4GpPGz8Xwv1d5fqRFiBfcRP6+XAah1PzeG1YKH6u5p/3L935erf0YsbgYN6LvsAnuxN5cWBrS0eSakgIwbvbE7BVKXl5kOX+bn6u9nw5uRMv/XGaWf85w8Bgb6I6+NPSy4nCMi17Lubw+/HLFJZpebZfSx65q7m8YGoElAoFD/Zoxlt/nedQSi69gjwtHUkygcTsItafyqRcp2di5ya0kbsoSbfx4sBW7E3MZsm283w8oYOs/62QRqtn9Yl0erf0xF9eX9S7IC8nHunVnDUn0nntP2fY0MqTe7s0pWcLT8MIX51ekKwu5vilfGKS1cSk5JJXWjGKu5W3E10C3fF0tMXORkm5Tk9OUTmpuSVsj7/K3+ev0rGpG31beeEud+2qN7ITxEROZxTw6Z4kIkJ9GNsxwNJxpDvI5K7NSMopYeXhNNwcbHi0VwtLR5JqYOu5KxxIVjMzIrheFkO9FR8Xe76f0oWfDqfxU0waOy9kG25TAL1aevLiwNaE+Mh5xo3JyHB/vtibzDf7k7mrhYe8+GnAdHrBrgvZHEhS4+NsxwPdm1m83pEahgA3B57r14qlf19g45ksItvL3beszea4LHKKy3mwR/2tKyZV5u1sx6O9mqMu0/J/Ry6xL/E0KkXF76FiRK3mv4st+bnY0T/Ym7uCPOjZwhOVraraNUFyijTEpOZy4lI+p9ML6NPKk/6hPoBcE8TcZCeICVwt0jBr3Wl8ne2YOyxUNiQlk3tlcDAFZVo+25OEg61KLhhp5a4UlvHu9gTaBbhadHHR69molDzaqwXTegRyNC2P7GIN9iolXQLd8XKys3Q8yQLsbZT8o3cL3t2ewL4kNX1byW0XG6LsIg3rT2WQnl9Gl2ZuDA3zlYuyS7UyqUtT/jp3hfeiE+gS6EYzd0dLR5L+SwjBz0fSCPV15q4Wcnc0S7JRKZncLZBHezTnSFoux9PyyCrUoADcHW0J8XGmfRNXgjwdK10LqjVVL14N4OVsx4i2fvQO8iT6/FV2X8ghY1Usi+8Jp6W3Uz2cVeMlO0GMVFquY9a6M+SXavn6gS5yGJNkFiqlgjdGhqHR6vng7ws42CgZ36mJpWNJVdALwYLN8ZRp9SwYFVava2tc2+rtdkKbuNHeRoVGW3Hf2z3GXDtJ3CpvSV4ppdfdZndd3tuRO1/U3LiOAfx8OI1PdyfSp6UnStmJ32CU6/T8HJPKyoOp2NooGNcpgHB/V0vHkhoglVLBgnvCmPrTUV778yxf3d9ZdqRZib8TsrmYXcybI8Pkl6xWws5GSZ+WXiZd683d0ZbxnZpwLrOQbfFXmLryKM/3b8Xkrk3l391MZCeIEcp1el5df4ZT6fm8HRVOmJx7K5mRjVLBW5FtmbnuDEu2nkej1XOfHBFidb4/mMqBZDWzh4YQ5FW/vfi32urtRn1CfWt1X3O4VV4nRzuKSzSVMlg6753IVqXkmb4t+dfGs6w5kc6kLtYxckm6tROX8nhnewLnrxQR7u/CsDBfnO1lk06qu2bujswb3oZX18fxzvYEXpMjmy2uTKtn2c6LtPZ2YoTcFaZRCPN34d4egSz/O4Glf19gb2IOb4wMM0y7kUxHdvPWUZlWz5z1cexLVDNnWCgRbWSjWzI/W5WSd8a0Y2CIN0v/vsDyXRfRya0Orcbeizl8sTeJkeF+TJAjdaQGYnhbX+5q4cEnuxPJLCizdBzpFjLyS3ntzzge/+0EeSXlzI9sy7hOTWQHiGQSEW18ebRXc9adzOCHQ6mWjtPo/Xokjct5pbwyOBgbuWNbo+HtbMdH4zswa0gIR9PyeOCHI+y5mH37B0q1IjtB6iCvpJznV59k54VsZkYEy2kJUr2yt1HydlQ7JnZuwo8xacxYe8qovcsl0ziTUcDcP+MI9XWW36BJDYpCoWDOsFB0esFbW+Jlx6oVyi0p55PdiUz67jA7L2TzeO8WrPpHT/q09rZ0NOkO83Tfloxo68une5L45UiapeM0WnHp+Xx9IIVBId7cJXfvanQUCgX3dmnKDw92xcfFjpf/OM2CP89QWl6zacHS7clOkFqKyyzgoZVHOXk5n7fuacvkrnI6glT/VEoFs4eGMmdoCAeTc3nghyPEpKgtHavRSrhSxAurT+LhZMuH4zvgYCtX9ZYalkAPR14eHMyBZDWf7UmydBzpv/JLy/l8bxLjvj7Ej4dSGRTizapHe/BU35Y4ynpGMgOlomINsohQHz7ccZEV+5LQC9kxWp8Ky7S88O/juDnYMGdYqKXjSBYU7OPMd1O68kC3Zvx0MIWHfz7GsbQ8S8e6I8jxkzWk0er59mAK3x9KxcfZjq/u70yHJm6WjiU1chM6N6WtvyvzNp7l2d9PEtnen+f7t5JzB+vR4ZRcZv7nNI62Kj6d1BE/V7ktpdQwTejUhPisQn6MSSXAzZ575fogFpOcU8y/j13mz9MZlJTrGdrGh8f7BBEst7GW6oGtSsmi0eG89Vc8X+1P4fyVIuaNaIObg1z839yKNTpeWXuaVHUJn9/bSe7eZmVqugD99Wq7WHtVz/Fo35Z0a+XFu1vO8eS/TzC4jQ+P922Jr4s9TrYq7Gs5+LhMQHEtRpXU5TmsnewEuQ2tXvDX2Sy+2JtEen4Z97Tz4+VBwXjIXWAkK9EuwJWfp3Xj6wMprDycRnT8Fe7v1oz7ujbDw0Nur2UuOr3gx5hUvtyXTAtPRz6e0IEANwdLx5Iko7wyOJisgootnvNLy3m0Vwu5Y0w9KS3XsetCNn+ezmR/khpblYLhYb482COQUF+58LpUv2yUCt4Y0YY2vs58vPMik78/wiuDgxnaxkdO9zSTq4VlvLo+jtPp+bw3qRNdA90tHUm6QW0WoL+mtou1V/ccTo52PHxXc/YnqdmVkM2ehGy6NXfnxYgQQmu5EH9xuY6/z2ZVe7sQglKtHo1WjwB6tfbC18EWTyfbO2bnKKvrBNm1axeLFi1Cr9dz77338uSTT1okx6W8ErbEXWFNbDqZBWW09XPhX8PbyHl5klVysFUxvX8rotr7s2JfMt8dTGXl4TSGt/NnQCsv7m7pecdN0bBUXSGE4FBKLp/sSuRsViHDwnyZMzQUVwerq04lqdZsVUreHdOOBVvi+WJvMkdT85g7PJRm7o6Wjlal29UDGo2GWbNmcfr0aTw8PPjwww8JDAy0UNqb5ZaUE5OSy+4L2exIuEpJuR4/Fzue7BPEhM5N5Kg+yaIUCgVTugfSPdCDBVvOMffPOH70c2Faz0AGh/rcMRdD11iqXaHTC/46l8X70Rco1epZPDqcqE5Nyc0trpfnlxoOW5WSAcHedGrqxs6EqxxKzmXq94e5u5UXw8J86dPSE88ajh4SQlBQpkVdXE5uSXml/6tLyinT6g33/fy6abKu9jb4utjRytuJ1t5OtPZ2prWPEy08HLFpQHWCVbXadTodCxYs4LvvvsPf359JkyYRERFBSEiIeZ9XL0hVl3A2q5C4zAIOJeeScLUIgB4tPJgZEUL/YC/5bZhk9YK8nFg0Opwn7g7i/45dZlv8FTaczMDeRknvIE86NHGlXYAr4f6uDfqi3RJ1RVpuCXsu5vCfUxmcv1JEgKs9iyLbMizMV34rJt1RbFRK5o8Ko0ugOx/tuMDEbw8zsq0v97Tzp1tzD6vZpaAm9cDvv/+Om5sbW7duZcOGDSxdupSPPvrIInm1Oj1JOSWczSrgXFYRJy7lcTazEEFFo3J4Wz9GhfvRNdBdtjckqxLm78IPU7uxOS6Tr/en8NqGs3g42tK/tRe9gjwJD3Al0MOhQb9vLdGuyMgvJfr8VdbGZpCYU0y4vwsLRrWlpbccxSvdmoejLWM7NmFAcDnq0nKiz11hz8UcAAI9HAjxcSbAzQFHWyUqhQKVUkGxRkd2sYbsIg2X88u4nFdaaSF0pQLcHWzxcLKlqbsDnk622NsoUSgUtG/qhkoIcoorOkkyCsqIzyokOv4q145go1TQytuJEB9nQnyc6dLKCx87FX4udlbZOWJVV0GxsbEEBQXRvHlzACIjI9m+fbtRFdC16Sw5xeWUlOsoLddTptVRWKYls1BDVkEZmQVlht4uO5WCTs3ceWFAK4aG+dJEDm+XGqCWXk7MGhLCgnEd+Pt0OtHxVzmQrGbnhf9tseXuYEOAmwNN3Oxxd7TFxc4GF3sVjrYqXOxVjGjrZ7WjR8xRV0DFDi9nswop0egoLteRU6ThUl4p8VeKyC7SANDG15nZQ0MY3T4Aexvrq9QlyRQUCgUTOjWhXysvVh5OY+3JdDacycLRVklbf1eauTvg7WyHt7MdQ0J9LLIWTk3qgejoaKZPnw7AiBEjWLBgAUIIozsuizU6Tl7ORysEOr1Aq6/4f4lGR36ZloLScgrKdOSXlpNdoiU1p5grhWVca2862CgJ93fhibuD6P3fi0hr6VySpKrYKBWMbh/AqHB/DiSr2XQmk78TrrL+dCYALvYqgr2d8XWxx8/VDm8nOxztVDjYKHGwrfh/ax8nqx1VZq52hU4v2JuYw9XCMvJKK751T8st4fyVIjL+uyV5uL8Li0eHM6SNT4PuSJLqn6eTLRO6NWPGwNaczSzkULKaM5mFJOUUE5OSS6lWb+josFMpDJ/bQV5ONHWr6OjwcKyY5uJmb4Oyms+hwW398LS7+ZqgtFxHck4JF7KLuHC1iISrRRxJzWVTXBbsTgQqOld8Xexp4mZPgJsDXk4V1xzO9irDtYdKqUSpqFiYWaGouEZpb+a1N62qEyQzM5OAgADDz/7+/sTGxhp1zLTcEhZuiUd73RvAwVaFk60KXxd72vg606+1F6G+zrT1c6WlV8MayiNJt2KjUtKzhSc9W1RM48orKedsZiHnsgq5nF9KRn4ZqbklnEovoLBMS+l/OwOVCmjl7Uynpta5+K856gqAeRvPkqIuMfzs5mBDgKs9vYM8aBfgSp+WXjT3tM4GnCSZg5+rPTMGB/Nsv5bsS1JzNDWXMxkVDa3s4nJ0ekFOkYbn+req92w1qQcyMzNp0qRiG3sbGxtcXV1Rq9V4eXkZ9dyf7Unk38cuV3u7UlExusPVwYYmHo70aO5OEzcHgrycCPNzoYWnIyrZ6SE1QCqlgr6tvOjbygutXpCYXURcRiFnMgtIyikm/kohey6WGdoT12vh6cjqf/S0QOrbM1e74khqLq+sPW342dFWSTN3Rzo2dePBpm70aelJxzFauQAAIABJREFUUC3Xc5CkGykVCtoFVIz2vpH4b2e9SqkwfAGg1tx6TZCacrBVEebvQph/5XWr8krKySjVcTZNzeX8MjLyS0nPL+PEpTzySrQ1WpT190d70NKMZcOqOkFEFVtw3erbGltbFb6+N/+xr+fr60rC4nuMzmZOvr6u+AJtmnkYfaxOLUyzZok8Tv0cpz5cX0Z8gZAWXoy2XByTqG1dATWrL3a9GmFUrpqqbXmvzftN3lfe11zua+rBfRZ55qrVpB4wV13xzn1deee+rjVIaV7GtB3q+j6Sj7PscxnzOHNo4u/G3e1Md7zblT1zMVddEenrSmSPFnXKZMxrUZe6oT7e++a+f308hzVmqi1TXXfe6vghQL82tVsUtj5Z1ZCHgIAAMjIyDD9nZmbi5+dnwUSSJFkjWVdIklSTeiAgIID09HQAtFotBQUFeHiYr+EnSVLDJNsVktS4WFUnSMeOHUlKSiI1NRWNRsOGDRuIiKifb2YlSWo4ZF0hSVJN6oGIiAj++OMPALZs2ULv3r3lQsaSJN1EtiskqXGxqukwNjY2vP766zz++OPodDomTpxIaGiopWNJkmRlZF0hSVJ19cCyZcvo0KEDQ4YMYdKkScycOZNhw4bh7u7Ohx9+aOnYkiRZIdmukKTGRSGqmgQnSZIkSZIkSZIkSZJ0h7Gq6TCSJEmSJEmSJEmSJEnmIjtBJEmSJEmSJEmSJElqFGQniAnNmTOHPn36MHr0/zYg/eijj4iKimLs2LH84x//IDMz86bHHThwgLFjxxr+69ixI9u2bQMgNTWVe++9l+HDh/PSSy+h0Wga7LnMnj2biIgIw21xcXFWfS4A7777LpGRkYwaNYq33nrLsIXaqVOniIqKYtiwYZV+39DOY9q0aYwYMcLwN8nOzjb7eTR2u3btYsSIEQwbNowVK1bcdHtMTAzjx4+nXbt2bN68udJtf/zxB8OHD2f48OGGxR4bmrqef1xcHPfddx+RkZFERUWxcePG+oxtMsb8/QEKCwvp378/CxYsqI+40m1UVS9v2rSJyMhI2rZty8mTJw2/12g0zJkzh6ioKMaMGcPBgwctlvGdd95h5MiRREVF8dxzz5Gfn2+47csvv2TYsGGMGDGC3bt3W11GtVrNtGnT6Nq1a72Vg9rk27t3LxMmTCAqKooJEyawf/9+q8sYGxtr+NwfM2YMW7dutap811y+fJmuXbvyzTffmD1ffbrd54BGo+Gll15i2LBh3HvvvaSlpRlus0T5rGteS5RVY/JaquzWNa8lyrGxma+xirItJJM5dOiQOHXqlIiMjDT8rqCgwPDvH374QcybN++Wx1Cr1aJnz56iuLhYCCHECy+8IP78808hhBDz5s0TP//8sxmS38wc5/Lqq6+KTZs2mSfwLdT1XI4cOSLuu+8+odVqhVarFZMnTxYHDhwQQggxceJEcfToUaHX68Vjjz0mduzY0SDPY+rUqSI2Ntbs2aUKWq1WDBkyRKSkpIiysjIRFRUlzp8/X+k+qampIi4uTsycObNSeVGr1SIiIkKo1WqRm5srIiIiRG5ubn2fglGMOf+LFy+KxMREIYQQGRkZom/fviIvL68+4xvNmPO/ZuHChWLGjBli/vz59RVbuoWq6uWEhARx4cKFm+rXlStXitmzZwshhLh69aoYP3680Ol0Fsm4e/duUV5eLoQQ4t133xXvvvuuEEKI8+fPi6ioKFFWViZSUlLEkCFDhFartaqMRUVFIiYmRvzyyy/1Vg5qk+/06dMiIyNDCCHEuXPnRL9+/awuY3FxseH3mZmZonfv3oafrSHfNdOnTxfPP/+8+Prrr82arT7V5HNg5cqVhvbcn3/+KV588UUhhGXKpzF5LVFWjclribJrTF5LlGNjM19jDWVbjgQxoZ49e+Lu7l7pdy4uLoZ/l5SU3HZrvi1bttC/f38cHR0RQnDgwAFGjBgBwPjx49m+fbvpg1fB1OdiSXU9F4VCgUajoby83PB/Hx8fsrKyKCwspGvXrigUCsaNG1cvfxdTn4dU/2JjYwkKCqJ58+bY2dkRGRl503snMDCQtm3bolRWrp737NlD37598fDwwN3dnb59+9bbt0CmYsz5t2rVipYtWwLg7++Pl5cXOTk59RXdJIw5f6gYgZadnU3fvn3rK7J0G1XVy8HBwbRu3fqm+yYkJNC7d28AvL29cXV15dSpUxbJ2K9fP2xsKjYI7NKlCxkZGQBs376dyMhI7OzsaN68OUFBQcTGxlpVRicnJ3r06IG9vb3Zc9UlX7t27fD39wcgNDQUjUZTL6N4a5PR0dHR8PuysrJ62Ta6NvkAtm3bRmBg4B23Q0tNPgeio6MZP348ACNGjGD//v0IISxSPo3Ja4myakxeS5RdY/Jaohwbmxmsp2zLTpB68OGHHzJw4EDWr1/Piy++eMv7btiwwTBUUK1W4+bmZniDBwQEVDvdob7U9Vyuf3xUVBSLFy+ut6k91bnduXTt2pVevXrRr18/+vXrR//+/QkODiYzM5OAgADD/Sz9d6nreVwzd+5cxo4dy6efflov03oasxvfO/7+/jV+7xjzWGthqnOIjY2lvLycFi1amDKe2Rlz/nq9nnfeeYdZs2aZK55kZm3btmX79u1otVpSU1M5ffo06enplo7F6tWrGTBgAGC99cz1Ga1Rdfm2bNlCeHg4dnZ2FkhV2Y0ZT5w4QWRkJGPGjGH+/PmGtqalXJ+vuLiYr776iunTp1s0kznUpIxlZmbSpEkToGLrXldXV9RqtUXKpzF5LcFUeeur7Bqb1xLl2JjM1lS2ZSdIPXj55ZfZuXMnUVFRrFy5str7ZWVlER8fT79+/aq9T3318lXHmHOZMWMGmzdvZvXq1eTl5VU5h6w+3e5ckpOTuXDhAjt37mTXrl0cOHCAmJiYKjsKLPl3qet5ACxdupT169fz888/c+TIEdatW1ff8RsVY9471va+qwtTnENWVhYzZ85kyZIlVY6WsGbGnP8vv/zCgAEDDI0KqeGZOHEiAQEBTJw4kcWLF9O1a1dUKpVFM33++eeoVCrGjBkDWGc9c2NGa1NdvvPnz7N06VKrWL+nqoydO3dmw4YNrFq1ii+//JKysjKrybd8+XIefvhhnJ2dLZbJXGpSxqq7jyXKpzF5LcEUeeuz7Bqb1xLl2JjM1lS2G1YLsoEbPXo0f/31V7W3b9q0iWHDhmFrawuAp6cn+fn5aLVaADIyMvDz86uXrLdT23MB8PPzQ6FQYGdnx4QJEyotGGdJ1Z3L1q1b6dy5M87Ozjg7O9O/f3+OHz9OQEBApSGb1vJ3qe15AIZhfy4uLowePbpehj03Zje+dzIzM2v83jHmsdbC2HMoLCzkqaee4qWXXqJLly7miGhWxpz/sWPH+Pnnn4mIiOCdd95h7dq1LF261FxRJTOwsbFh7ty5rFu3js8//5yCggLDFC9L+OOPP9ixYwdLly41NGCtrZ6pKqM1qS5fRkYG06dP55133rH4iLXbvYbBwcE4OjoSHx9vgXRV5ztx4gRLly4lIiKCH374gS+//PKWX7w1JDUpYwEBAYZRYlqtloKCAjw8PCxSPo3JawnG5q3vsmuq17c+y7Exma2pbMtOEDNLSkoy/Ds6OrrKecLXbNiwgcjISMPPCoWCXr16sWXLFqDigyIiIsJsWW/HmHOBim9woaJ3cNu2bRadC1aTc2natCkxMTFotVrKy8uJiYkhODgYPz8/nJ2dOX78OEII1q5dy5AhQ+ox/f8Ycx5ardawpkJ5eTk7duyw+Py8O13Hjh1JSkoiNTUVjUbDhg0balym+/Xrx549e8jLyyMvL489e/bcctSYNTLm/DUaDc899xxjx45l1KhRZk5qHsac//vvv8+OHTuIjo7m1VdfZdy4cfzzn/80c2LJlEpKSiguLgYqdiFQqVSEhIRYJMuuXbv46quv+Pzzzyut2xUREcGGDRvQaDSkpqaSlJREp06drCqjtaguX35+Pk8++SQzZsyge/fuFkxYfcbU1FTDF2yXLl0iMTGRZs2aWU2+X375hejoaKKjo3n44Yd56qmnmDp1ar3nM4eafA5EREQYdoDbsmULvXv3RqFQWKR8GpPXEozJa4mya0xeS5VjYzJbU9lWCLkIgMnMmDGDQ4cOoVar8fb25vnnn2fXrl0kJiaiUCho1qwZ8+fPx9/fn5MnT/Lbb7+xaNEiANLS0njggQfYuXNnpSHeqampvPzyy+Tl5REeHs7SpUvrZW6pOc7loYceQq1WI4Sgbdu2zJ8/v16GQ9X1XHQ6HfPnzycmJgaFQkH//v2ZM2cOACdPnmTOnDmUlpYyYMAA5s2bZ/YK39TnUVxczNSpUykvL0ev19OnTx/mzJlj8eHZd7qdO3eyePFidDodEydO5JlnnmHZsmV06NCBIUOGEBsby/Tp08nPz8fe3h4fHx82bNgAYBjuCPD0008zceJES55KndT1/NetW8fcuXMrXTS+/fbbhIeHW/Bsas+Yv/81a9as4dSpU7z++usWOgvpmqrqZQ8PDxYuXEhOTg5ubm6Eh4fzzTffkJaWxmOPPYZSqcTf359FixbVS4O1qowrVqxAo9EYvk3s3LmzYej3559/zurVq1GpVMydO5eBAwdaXcaIiAgKCwspLy/H1dWVb7/91qwdSrXJ99lnn7FixQqCgoIMj//222/x9vY2W77aZly7di1fffUVNjY2KJVKnnvuOYYOHWo1+a63fPlynJyceOyxx8yarz7d7nOgrKyMmTNnEhcXh7u7Ox9++CHNmzcHLFM+jclb32XVmLyWKrt1zWuJcmxs5utZumzLThBJkiRJkiRJkiRJkhoFOR1GkiRJkiRJkiRJkqRGQXaCSJIkSZIkSZIkSZLUKMhOEEmSJEmSJEmSJEmSGgXZCSJJkiRJkiRJkiRJUqMgO0EkSZIkSZIkSZIkSWoUZCeIJEmSJEmSJEmSJEmNguwEaeDS0tIYPXo0AHFxcezcudPCiW42e/ZsNm/eDMC0adM4efIkAE888QT5+fmWjGY2Op2OcePG8dRTT1k6iiSZ1cGDBzl69KhJjrVmzRoWLFgAVOwf/8033wCwbNky9u3bZ5LnsEYLFy6ka9eulo4hNXK//vora9eurfZ2U5Z1czt48KDh8/f6euV259jQffPNN4SFhZGTk2PpKFIjJ69Pbi0/P5+ff/65RtluRbYf6s7G0gEk04mLi+PUqVMMHDiw3p9bp9OhUqlq9ZivvvrKTGks78cffyQ4OJjCwkJLR5GkKt1YZoUQCCFQKmvXN37o0CGcnJzo1q1bje6v1WqxsandR8+LL75Yq/s3JCdPnrxjO4Mly6ptmX7ggQdueXtty7q51aUuud05NmTp6ens27ePpk2bWjqKJFUir09ulp+fz6+//sqDDz5Y52PI9oNxZCeIFXrvvfdo2rSpoWAsX74cZ2dnrly5wu7du1EoFDzzzDPcc889hsdoNBo+/vhjSktLOXLkCE899RSBgYEsXryY0tJSHBwcWLx4Ma1bt6akpITZs2dz8eJFgoODuXTpEq+//jodO3Zkz549LF++HI1GQ/PmzVmyZAnOzs5V5oyIiGDChAns3buXqVOn0rp1a9544w1KSkpo0aIFixcvxt3dvdrzjIiIYNWqVRQXF/PEE0/QvXt3jh07hr+/P5999hkODg7Exsby2muvGRpeu3fv5s8//6zyeGvWrGHbtm3o9Xri4+P5xz/+QXl5OevWrcPOzo4VK1bg4eFBSkoK8+fPR61W4+DgwMKFCwkODiY6OprPP/+c8vJyPDw8WLp0KT4+PixfvpzLly+TlpbG5cuXefjhh3nooYeqPa+MjAx27NjB008/zffff1+Dv7gkGWft2rV88803KBQKwsLCUKlUDBo0iJEjRwLQtWtXjh07xsGDB/nkk0/w8/MjLi6OFStW8MQTT9CrVy+OHz/Op59+SmJiYpV1QEREBOPGjePvv/9Gq9Xy0UcfYW9vz2+//YZSqeQ///kP8+bNo0ePHjflmz17Nu7u7pw5c4b27dvz9NNPM3fuXFJTU3F0dGTBggW0bdu22vObPXu24XyqyhEcHExOTg6vvPIKubm5dOzYkd27d7N69Wq8vLxuOl5aWhqPP/443bt358SJE4SFhTFx4kQ+/vhjcnJyWLp0KZ06daK4uJiFCxcSHx+PTqdj+vTpDB06lLS0NGbNmkVJSQkA8+bNo1u3bobX19PTk/j4eNq3b8/SpUtRKBRVnpdOp+Pdd9/l/fffZ9u2bXX500tSJWlpaZXK9MMPP8xvv/12U3leunQp0dHRqFQq+vXrx6uvvsry5ctxcnLiscce48cff+S3335DpVIREhLCK6+8clNZz8/Pr/Vn5o111XvvvUdOTg5vvPEGly9fBmDu3Ll07969yvNbvnw5WVlZXLp0CU9PTxYvXsybb77JqVOnUKlUzJ49m969e1f7+lx/jtOmTaNTp04cPHiQgoICFi1aRI8ePW7ZRqpK165dmTJlCvv378fNzY0ZM2bw3nvvcfnyZebOncuQIUPQ6XQsXbqUQ4cOodFoePDBB7n//vspKiri2WefJT8/H61Wy4svvmioY6prF1VnyZIlzJw5k2effbambxdJqhV5fVK365Pz588zZ84cysvL0ev1LF++nGXLlpGSksLYsWO5++67mTVrFgsXLuTAgQMEBgYihLjl30K2H0xASFbn9OnT4sEHHzT8PGrUKLFmzRrxyCOPCK1WK65cuSIGDhwoMjMzRWpqqoiMjBRCCLF69Woxf/58w+MKCgpEeXm5EEKIvXv3iunTpwshhPj666/FvHnzhBBCnDt3ToSHh4vY2FiRnZ0tpkyZIoqKioQQQnz55Zdi+fLl1eYcPHiwWLFiheHn0aNHi4MHDwohhPjoo4/EW2+9JYQQ4tVXXxWbNm0SQggxdepUERsba3h8dna2SE1NFeHh4eLMmTNCCCFeeOEFsXbtWiGEEJGRkeLIkSNCCCHee+89w7lWZfXq1WLo0KGioKBAZGdni27duolffvlFCCHEokWLxHfffSeEEOKhhx4SiYmJQgghjh8/LqZNmyaEECI3N1fo9XohhBD/93//J5YsWSKEEOLjjz8W9913nygrKxPZ2dnirrvuEhqNptoczz//vDh58qQ4cOCAePLJJ6u9nySZQnx8vBg+fLjIzs4WQgihVqsrlTkhhOjSpYsQQogDBw6Izp07i5SUFCGEEKmpqSIsLEwcO3ZMCCFuWQcMHjxY/Pjjj0IIIVauXCnmzp0rhKgoH19//fUtM7766qviySefFFqtVgghxIIFCwzH3bdvnxgzZowQonIddv1xrz+f6nLMnz9ffPHFF0IIIXbu3CnatGljeE1udK3OOXv2rNDpdGL8+PFi9uzZQq/Xi61bt4pnnnlGCCHE+++/b6iL8vLyxPDhw0VRUZEoLi4WpaWlQgghEhMTxfjx4w2vb7du3UR6errQ6XRi8uTJIiYmptrX5fvvvzfUS9f+RpJkjOvLdHXlWa1Wi+HDhxs+7/Ly8oQQlctc3759RVlZWbW3C1H7z8yq6iohhJgxY4ahnFy6dEmMHDmy2vP7+OOPxfjx40VJSYkQQohvvvlGzJ49WwghREJCghg4cKAoLS2t9PlbXb0ydepUQ+YdO3aIhx9+WAhRfRupOm3atBE7duwQQgjx7LPPikcffVRoNBoRFxdnqNt+++038emnnwohhCgrKxPjx48XKSkpory8XBQUFAghKurfoUOHCr1ef8t2UVW2bdsmFi5cKIT4X9tKkkxNXp/U7fpkwYIFYt26dUKIivJfUlJS6fURQogtW7YYXseMjAzRvXv3Su24G8n2g/HkSBAr1K5dO7Kzs8nMzEStVuPm5kZcXByRkZGoVCp8fHzo2bMnJ0+eJCwsrNrjFBQU8Oqrr5KcnIxCoaC8vByAI0eOGL6VadOmjeEYJ06cICEhwTBctLy8nC5dutwy67Xe3oKCAgoKCrjrrrsAGD9+fK2GsAcGBhIeHg5A+/btuXTpEvn5+RQVFRmG3o4ePZodO3bc8ji9evXCxcUFAFdXVyIiIgznee7cOYqKijh27FilbBqNBqgYwfHyyy9z5coVNBoNgYGBhvsMHDgQOzs7vLy88PLyIjs7m4CAgJue/++//8bLy4sOHTpw8ODBGp+/JNXVgQMHGDlypGHEg4eHxy3v37FjR5o3b274uWnTpoZyfrs6YPjw4QB06NCBrVu31irnyJEjDUNSjxw5wvLlywHo06cPubm5FBQU1PhYVeU4cuQIn3zyCQADBgy45bc8UFHnXKv7QkJC6NOnj+Hb6UuXLgGwZ88eoqOj+fbbbwEoKysjPT0dPz8/FixYwNmzZ1EqlSQlJRmO26lTJ0Pd0LZtWy5dulTl6JjMzEw2b97MTz/9VOPzlqSauFam//777yrLs4uLC/b29rz22msMGjSIQYMG3XSMsLAw/vnPfzJkyBCGDh1a5fPU9jOzurpq3759JCQkGB5bWFhIYWGh4bP8RhEREYYREUeOHGHq1KkABAcH07RpUxITE2v8Wg0bNgz4X7vj2jGraiNVx9bWlgEDBhjub2dnh62tLW3atDEcc+/evZw7d44tW7YAFW2m5ORkAgIC+OCDD4iJiUGpVJKZmcnVq1eBqttFVSkpKeGLL74w1FOSZC7y+qRu1yddunThiy++ICMjg+HDh9OyZcub7hMTE2N4Hf39/W85ok22H0xDdoJYqREjRrBlyxauXr1KZGQkKSkptT7GsmXL6NWrF59++ilpaWmGikVUM8RKCEHfvn354IMPavwcjo6Otc5VFTs7O8O/VSoVZWVltx0KdrvjKJVKbG1tDf/W6XQIIXBzc2PdunU3Pfatt97ikUceYciQIYZh7dXl02q1VT7/0aNHiY6OZteuXZSVlVFYWMg///lPli5dWutzkaSaqKqcqFQq9Hq94fZrDQwAJyenSve9/ufb1QE3lqfauL6uqCpzdVNGapqjtvXFjXXFtZ8VCkWlc/v4449p3bp1pccuX74cHx8f1q1bh16vp1OnTlUeV6VSVfs6xcXFkZKSYujQKSkpYdiwYbXuXJKkG10r07cqz6tWrWL//v1s2LCBlStX8uOPP1a6fcWKFcTExBAdHc1nn33Ghg0bbjpGbT8zqyujer2ef//737ec6nG929UltXEtpzF1ia2traH+ur4uufGY//rXv+jfv3+lx65Zs4acnBzWrFmDra0tERERlJWVVcoG/2sXVSUlJYW0tDTGjh0LVHROTZgwgd9//x1fX99anYsk3Y68Pqn99UlUVBSdO3dmx44dPPbYY7z11luVvoy6pqbtINl+MA25O4yVioyMZOPGjWzZsoURI0bQs2dPNm3ahE6nIycnh8OHD1dqeAM4OztTVFRk+LmgoAB/f38A/vjjD8Pvu3fvzqZNmwBISEggPj4eqOipPHr0KMnJyUBFoarpNyqurq64ublx+PBhANatW0fPnj3rePYV3N3dcXZ25vjx4wBs3LjRqOMBuLi4EBgYaDh/IQRnz54FKr9edV09/pVXXmHXrl1ER0fzwQcf0Lt3b9kBIplVnz592Lx5M2q1GoDc3FyaNWvG6dOnAdi+fXulTpBbqUsdcGO9UxM9e/bkP//5D1Cxi4Onp2e13/rW1PX12p49e8jLyzPqeAD9+vVj5cqVhgbPmTNngIq6wtfXF6VSybp162rdIQQwaNAg9u7dS3R0NNHR0Tg6OsoGTC3NmTOHPn36GHYguJEQgrfeeothw4YRFRVlKBONRXXluaioiIKCAgYOHMjcuXMNn4HX6PV60tPT6d27NzNnzqSgoIDi4uJbtjFq8plZVV0F/ytn18TFxdX4HHv27Mn69esBSExMJD09/aZOy9qqro1kjH79+vHrr78a6uLExESKi4spKCjA29sbW1tbDhw4UO1oj1sJCwtj//79hrokICCANWvWyA6Q68i6wnTk9Untr09SU1Np3rw5Dz30EBEREZw7d+6m16Rnz55s3LgRnU5HVlbWLUeTy/aDachOECsVGhpKUVERfn5++Pn5MWzYMNq0acPYsWN5+OGHmTlz5k0fcL169SIhIYGxY8eyceNGHn/8cT744APuv//+So30KVOmoFariYqK4quvviIsLAxXV1e8vLxYsmQJM2bMICoqismTJ3Px4sUaZ37nnXd49913iYqKIi4ujueee87o12HRokXMmzeP++67DyGE0RdKULGw06pVqxgzZgyRkZGGBYWmT5/Oiy++yJQpU247pUCSrEVoaChPP/0006ZNY8yYMbz99ttMnjyZmJgYJk2axIkTJ24a/VGdutQBgwcPZuvWrYwdO9bQyLid6dOnc+rUKaKionj//fd5++23a/S42x1z7969jB8/nl27duHr62t0ffHss8+i1WoZM2YMo0ePZtmyZUBFHfrHH38wefJkkpKSavz6SqY1YcIEvv7662pv37VrF0lJSfz1118sXLiQN998s/7CWYHqynNRURFPPfUUUVFRTJs2jTlz5lR6nE6nY+bMmURFRTF+/HgeeeQR3Nzcbirrtf3MrKquAnjttdcM9cE999zDr7/+WuNznDJlCnq9nqioKF5++WWWLFlS6ZvbuqiujWSMe++9l5CQECZMmMDo0aN5/fXX0el0REVFcerUKSZMmMD69euN7sCRqibrCtOR1ycVanN9snHjRkaPHs3YsWO5ePEi48aNw9PTk27dujF69Gjeeecdhg0bRlBQEFFRUbz55ptGd9RIt6cQxo4llBocnU6HVqvF3t6elJQUHnnkETZv3mx0w8EcioqKDKs/r1ixgqysLP71r39ZOJUkSdZGo9GgVCqxsbHh2LFjvPnmm1VOe5PuLGlpaTz99NNVrsr/+uuvc9dddxm+/R0xYgQ//fQTfn5+9R1TakAaUhtJqjlZV1i/hlT25PXPk0q3AAAgAElEQVRJw9eg1wTR6/XodPXbh6NSKer9OY1VVWal0obych1NmjRjy5aKIVTl5bUf0m1OKpUCOzsHQ65HH30MsL6c12uI7w8wLretbe32X7cUc9YXDeXv3lByQu2zKhQqhKioHzp06MSqVWvqra64k19XU6rvuiIzM7PSAtYBAQFkZmbe9sJGCEFD+3pIoUBmNhGFQomtrR16vSAwsDnbtm0HQK8XVpv5VhpiZqWy5mtEmYKsK6xDdWXPGl9nR0cn9PqKUI8//gSA4edrrPm1rk5DzFzX+qJBd4LodILc3OJ6fU4PD6d6f05jNcTM0DBzN8TMYFxuX1/jhgnXF3PWFw3l795QcoLMai6WzFrfdUVdF+AVArKzC80RyWwa0nvwGpm5fjTEzLKuMJ+G+H5oiJmhYeZuiJnrWl/INUEkSZIkSbrjBAQEkJGRYfg5IyNDDm+XJOkmsq6QpMZHdoJIkiRJknTHiYiIYO3atQghOH78OK6urvLCRpKkm8i6QpIanwY9HUaSJEmSpMZpxowZHDp0CLVazYABA3j++efRarUAPPDAAwwcOJCdO3cybNgwHB0dWbx4sYUTS5JkCbKukCTpRrITRJIkSZKkBueDDz645e0KhYI33nijntJIkmStZF0hSdKN5HQYSZIkSZIkSZIkSZIaBdkJIkmSJEmSJEmSJElSoyA7QSRJsiq7du1ixIgRDBs2jBUrVtx0++XLl5k2bRrjxo0jKiqKnTt3WiClJEmSJEmSJEkNkVwTRJIkq6HT6ViwYAHfffcd/v7+TJo0iYiICEJCQgz3+fzzzxk1ahRTpkwhISGBJ598kujoaAumliRJkiRJkiSpoZAjQSRJshqxsbEEBQXRvHlz7OzsiIyMZPv27ZXuo1AoKCwsBKCgoEBuYydJkiRJkiRJUo3JkSCSJFmNzMxMAgICDD/7+/sTGxtb6T7Tp0/nscceY+XKlZSUlPDdd9/V6NgqlQIPDyeT5v3fsZVmO7YpNZScILOaS0PKKkmSJEmSZA6yE6QRKxNQXK4z6hhOtirsFSYKJDV6QoibfqdQVH6DbdiwgfHjx/OPf/yDY8eOMWvWLP7880+UylsPbNPpBLm5xSbNe42Hh5PZjm1KpspZ27qjLvVEQ3lNQWatKV9fV4s8ryRJkiRJ0vVkJ0gjVlyu4++zWUYdY3BbP+ztVCZKJDV2AQEBZGRkGH7OzMy8abrLqlWr+PrrrwHo2rUrZWVlqNVqvL296zVrY1bbukPWE5IkSZIkSZK1+H/27jy6qfPcF/93a7IlD5InSWALA7aZCWQqQ07wwcQh4FDSAj1NaHNDw+U0HcJZSZuGNnUT2oScdHT7W7+0XG4JJUNPkzbQ4JyGxqQ4JyFkKjiBMCOwwZKNLXnSvLXvH8YGYxsPaGtr29/PWlnL2nr3ux+E2ZEeve/zsCYIESWMmTNnwul0ora2FqFQCJWVlSgpKekxZsyYMdi3bx8A4OTJkwgGg8jMzFQiXCIiIiIiUhmuBCGihKHT6VBeXo61a9dCFEWsWLECRUVFqKiowIwZM7Bo0SI8+uijeOyxx/Dcc89BEAQ8/fTTvbbMEBERERER9UW2JEgwGMTq1asRCoUgiiIWL16MBx98EI8++ijef/99pKV17g1++umnMXXqVEiShCeffBJ79+5FcnIynn76aUyfPl2u8IgoQRUXF6O4uLjHsfXr13f/XFhYiD/+8Y/xDouIiIiIiEYA2ZIgBoMB27ZtQ0pKCsLhMO655x4sWLAAAPDII4/gjjvu6DG+uroaTqcTu3fvxsGDB/H444/j5Zdflis8IiIiIiIiIhplZKsJIggCUlJSAACRSASRSOSqS9arqqpw1113QRAEzJ49G62trWhouLainUREREREREREXWQtjCqKIpYvX4758+dj/vz5mDVrFgDgl7/8JZYtW4annnoKoVAIQGcXCLvd3n2u3W6H2+2WMzwiIiIiIiIiGkVkLYyq1Wqxc+dOtLa24pvf/CaOHTuGhx56CDk5OQiHw/jhD3+IzZs341vf+hYkSep1/kDFDrVaARaLSa7w+7mmJmbXbA2E0REUh31+SpIW6cn6Acf1F7O/JQCT0TDs6wNAcpIeFnPyNc3Rn1i+1vGixpgB9cZNREREREQ0FHHpDpOeno45c+bg7bffxv333w+gs2bIF7/4Rfz+978H0Lnyw+VydZ/jcrlgtVqvOq8oSvB6ffIF3geLxRSza3pCIt46MvwtPwunWBENhAcc11/MgZAInz807OsDQCAYhtcbvaY5+hPL1zpe1BgzcG1x5+SkxTgaIiIiIiIieci2Haa5uRmtra0AgEAggHfffRcTJ07srvMhSRLefPNNFBUVAQBKSkqwY8cOSJKEAwcOIC0tbcAkCBER9RaUOpOsV/5X3xLo83jw4kK8sx4/qo41IizKk9gkIiIiIlKabCtBGhoa8Oijj0IURUiShDvuuAMLFy7EvffeC4/HA0mSMGXKFDzxxBMAOtti7t27F6WlpTAajXjqqafkCo2IaETzhfteZWYyGvpc/XVrUTae2X0M/zjRBACYmGXCxiVTMNmWKnusRERERETxJFsSZMqUKdixY0ev43/4wx/6HC8IAn70ox/JFQ4REfXjzwfO4x8nmnDf5xwoyknBr/aewoN/+QQvr7lpUHWHiIiIiIjUQtbuMERElNg8vhC276/FvxZm4Zu3TsDtU6z4xV3T0eIP4/97+7TS4RERERERxRSTIEREo9jbJ5uh0wj4bklh97EptjTcfWMeXq1xoeZ8q4LRERERERHFFpMgRESjVCgSxbGGdiycnA1rWlKP59bNz4c5WYcXPqxTKDoiIiIiothjEoSIaJQ61tiOcFTCwkk5vZ4z6rVYPtOOvScuwNUaUCA6IiIiIqLYYxKEiGiUOlTfhvRkHWaMTe/z+RWzxiIqAa/W1Mc5MiIiIiIieTAJQkQ0CvlCEZxu9mGaPQ0aQehzzFhzMm4tyMKrNS5ExGicIyQiIiIiij0mQYiIRqHTTX5IEjDZmnrVcXdOt8HjD+OjupY4RUZEREREJB8mQYiIRqFajw9JOg3s6UlXHTdvfAaMeg32HLsQp8iIiIiIiOTDJAgR0Sh01utHniW5360wXZL1WtwyIQtvHb8AMSrFKToiIiIiInkwCUJENMp0BCNo6ghjXIZxUOMXTcqGxx/GgXPcEkNERERE6sYkCBHRKHPW6wcAODJMgxp/y8RMJOk0eOs4t8QQERERkbrplA6AiOhy1dXVePLJJxGNRrFq1SqsW7eux/NPPfUU9u/fDwAIBAJoamrChx9+qESoqnXW44deK8CedvV6IF2Mei1udJixz+mROTIiIiIiInkxCUJECUMURWzcuBFbt26FzWbDypUrUVJSgsLCwu4x3//+97t/3r59Ow4fPqxEqKpW5/Ej12yEVnP1eiCXm5OfgXdPn8L5lgCMRr2M0RERERERyYfbYYgoYdTU1CA/Px8OhwMGgwFlZWWoqqrqd3xlZSXuvPPOOEaofhExisaOEMaaB7cKpMu88ZkAgP1nuBqEiIiIiNSLK0GIKGG43W7Y7fbuxzabDTU1NX2OPXfuHOrq6jB37txBza3VCrBYBlcDY6i0Wo1scw+HvyUAk9HQ67hGI6AtIkGSgHFZqd1jkpP0sJiTrzrnbLMR9vRkfHy+FXfMyu1z/v4MZv4rJdprejWMlYiIiEg9mAQhooQhSb1bsAr9tHCtrKzE4sWLodVqBzW3KErwen3XFF9/LBaTbHMPRyAkwucP9TpuMhpwprEdAGBJ0naPCQTD8HqjA877uXFmvHW8CR3+UJ/z9xvPIOe/XKK9plfDWAcnJydNkesSERERXY7bYYgoYdjtdrhcru7HbrcbVqu1z7Gvv/46ysrK4hXaiOFqCyJJp4HFOPQc+Jz8DLQFIzje0C5DZERERERE8mMShIgSxsyZM+F0OlFbW4tQKITKykqUlJT0Gnfq1Cm0trbi+uuvVyBKdXO3BWFNTeqxwkYQBHhC4oD/Fdg6v8k/eK5VqfCJiIiIiK4Jt8MQUcLQ6XQoLy/H2rVrIYoiVqxYgaKiIlRUVGDGjBlYtGgRgM6tMEuXLu13qwz1LSpJaGwLYlaeucdxfySKfccbBzVHhlGPT+tbUVKYJUeIRERERESyYhKEiBJKcXExiouLexxbv359j8ff/va34xnSiNHUHkI4KsGWNrTOMJdzZBhxuL4VCwsymYQixVVXV+PJJ59ENBrFqlWrsG7duh7Pnz9/Ht/73vfQ1tYGURTxne98p9f9hYhGPt4riOhy3A5DRDRK1LcEAAD2a0iC5FmS0RaIoKlj8IVRieQgiiI2btyILVu2oLKyErt27cKJEyd6jHn22WexZMkS7NixA7/85S/xxBNPKBQtESmF9woiuhKTIKOQJEn44KwHfzvsxqH6NgQjotIhEVEcuNsC0AhAVsrg29teyWExAgBqvYFYhUU0LDU1NcjPz4fD4YDBYEBZWRmqqqp6jBEEAe3tnYV829ra+i20TEQjF+8VRHQl2bbDBINBrF69GqFQCKIoYvHixXjwwQdRW1uLhx56CC0tLZg2bRqeeeYZGAwGhEIhPPLIIzh06BAsFgt++ctfIi8vT67wRq0Pznrw06qTON18qUVisk6DeRMyMSffwuXtRCNYY1sQGSY9tJrh/zvPMOlhMepR6/Hj+itqixDFk9vtht1u735ss9lQU1PTY8y3vvUt3H///Xj++efh9/uxdevWAecVhM5Wwmqi1WoYcxwwZnXiveISNf4+qDFmQJ1xqzHm4ZItCWIwGLBt2zakpKQgHA7jnnvuwYIFC7B161bcd999KCsrQ3l5OV555RXcc889ePnll5Geno6///3vqKysxM9+9jP86le/kiu8UekvB8/jmaoTyLUY8cSSyZhoTcXuw268e7oZbx2/gPZgBIsmZTMRQjRCNbYHr2kVCND5bdm0MWk4dJ4dYkhZkiT1Onbl/78qKyvxhS98AV/72tfwz3/+E4888gh27doFjab/hbCSBHi9vn6fT0QWi4kxxwFjjo+cnLSYzsd7xSVq/H1QY8yAOuNWY8zDvV/Ith1GEASkpKQAACKRCCKRCARBwHvvvYfFixcDAL7whS90L0fbs2cPvvCFLwAAFi9ejH379vV506LhqTzkxqY3T2Du+ExsW309lk6zwZaejDyLEatmj8VN4yz44KwX7572KB0qEclAjEpo7ggh+xqTIAAwyZaGlkAEvlAkBpERDY/dbofL5ep+7Ha7ey1hf+WVV7BkyRIAwPXXX49gMAiPh/+fIxpNeK8goivJWhNEFEUsX74c8+fPx/z58+FwOJCeng6drnMBit1uh9vtBtB5QxozZgyAzjaZaWlpvPnEyIdnPPjJ7mO4aZwFP1s+DalJPRcACYKA2yZlY5o9Ff9zqgmuVu71JxppPL4QotK11QPpMsmaCgA43xK85rmIhmvmzJlwOp2ora1FKBRCZWUlSkpKeowZM2YM9u3bBwA4efIkgsEgMjMzlQiXiBTCewURXUnWFrlarRY7d+5Ea2srvvnNb+LUqVO9xnQtRxvMUrXe8wtx37cUy71S/pYATMbhfyBJTtLDYk6+6phWfxgPvfw+ci1GPLv6BlhMl6535fXvmp2H37x1ApWHG/BA8UTorrIEcCgxDJca96WpMWZAvXHT4F242M0lFkmQAmsqBAD1rQEU5qRc83xEw6HT6VBeXo61a9dCFEWsWLECRUVFqKiowIwZM7Bo0SI8+uijeOyxx/Dcc89BEAQ8/fTT3PJJNMrwXkFEV5I1CdIlPT0dc+bMwYEDB9Da2opIJAKdTgeXy9W9HM1ut6O+vh52ux2RSARtbW2wWCxXnVcUpbjvW4rlXqlASITPP/w2k4FgGF5v9KpjNv7tKNytAfz+7tlAKALvZcvX+7r+4ik5eOVgPfafbBpU0cPBxDBcatyXpsaYgWuLO9Z7d0keTR1hALFJghj1WmSnGnC+havGSFnFxcUoLi7ucWz9+vXdPxcWFuKPf/xjvMMiogTDewURXU627TDNzc1obe0snBcIBPDuu++ioKAAc+bMwRtvvAEAePXVV7uXo5WUlODVV18FALzxxhuYO3cuM7DX6D1nM1475Ma/3zoR08ekD+qcwpwU5JqT8c6pZkREeZIbRBR/FzpCMBv1MGhjc9sfk56M+tYgazcRERERkarIlgRpaGjAvffei2XLlmHlypWYP38+Fi5ciO9+97vYunUrSktL4fV6sWrVKgDAypUr4fV6UVpaiq1bt+I73/mOXKGNChExil+8dQoOSzK+ubBw0OcJgoAFBVloC0Zw4By7PxCNFE0dIeSkJsVsvrHmZPjDIloCLI5KREREROoh23aYKVOmYMeOHb2OOxwOvPLKK72OJyUl4de//rVc4Yw6rxysx+lmH362fDqSdBr4h3BufqYRDksy9p/x4AaHGRquyCFSNUmS0NQRwsQY1u8Yk96ZUDnfEoDFqI/ZvEREREREcpK1Owwpoz0Ywf/ZdwZz8i1YUDD0ytaCIOCmcRa0BiI42dghQ4REFE9twQgiUSmmK0FyUpOg1QhwtbJDDBERERGpB5MgI9ALH9ahNRDBt2+dOOy6KpNyUpGapMVHdS0xjo6I4q3ZF7uiqF20GgE5KQa421gclYiIiIjUg0mQEcbrC+Olj89h0aRsTLalDnsejUbA9blmnG7yoalj+B1siEh5nq4kSAxXggCALS0J7rYQi6MSERERkWowCTLCPP9RHXwhEf97Xv41zzU7zwxBAD45zwKpRGrm8YWg0whIS45tGShbehL8YRFtQRZHJSIiIiJ1YBJkBGkPRvDKgfNYNCkbBdnXXgAxNUmH8ZkmHHa18ZteIhXz+MKwGPUxL3JsS+tcWeJuY10QIiIiIlIHJkFGkJcPnEdHSMR9nxsXszlnjElDSyCCOi/3/ROpVbMvjAxT7Du4dBVaZRKEiIiIiNSCSZARIhAW8cePz2He+IxrqgVypUk5qdBrBByq55YYIjWSJAlevzxJkCSdBhkmPZMgRERERKQaTIKMELuPNqLZF8a9NztiOq9Bp0GRNRWfudshRrklhkhtutrjZppi1xnmcva0JDQwCUJEREREKsEkyAggSRL+9M/zKMg24UaHOebzT7OlIhCJ4qzHF/O5ia5UXV2NxYsXo7S0FJs3b+5zzOuvv46lS5eirKwMDz/8cJwjVJeuzjAZxtivBAEAa1oSvP4IAmFRlvmJiIiIiGIptq0CSBE151txtKEdG24rhBDjwocAMD7LBL1WwNGGDkzIuvaCq0T9EUURGzduxNatW2Gz2bBy5UqUlJSgsLCwe4zT6cTmzZvx0ksvwWw2o6mpScGIE19zVxJEhu0wAGC9WBfkQkcIeRajLNcgIiIiIooVrgQZAV4+cB6pSVrcMdUmy/x6rQYF2Sk41tCOKLvEkIxqamqQn58Ph8MBg8GAsrIyVFVV9Rjzpz/9CatXr4bZ3LnqKSsrS4lQVcPjC0OrEZAe4/a4XXJSO7fZNLaHZJmfiIiIiCiWuBJE5S60B/HmsQv4t+vHwmTQynadydZUHHG343xLgN/2kmzcbjfsdnv3Y5vNhpqamh5jnE4nAODLX/4yotEovvWtb2HBggUDzq3VCrBYTDGN99LcGtnmHg5/SwAmY2dyojUYQabJgBRTEjQaofv45XRaTZ/H+3P5eGOyHgatBp5ApN85kpP0sJiTh/RnSLTX9GoYKxEREZF6MAmicq/WuBCNSlg5a6ys1ynINkErCDjqbmcShGQj9bHS6MotXqIo4syZM9i+fTtcLhdWr16NXbt2IT09/apzi6IEr1eeujYWi0m2uYcjEBLh83euzGhqD8KcrIfPH4LJaOg+frmIGO3zeH+uHJ+dakC919/vHIFgGF5vdEh/hkR7Ta+GsQ5OTk6aItclIiIiuhy3w6hYWIzizzX1mD8hE44MeRMTSTotxmUacbKpQ9br0Ohmt9vhcrm6H7vdblit1h5jbDYbFi1aBL1eD4fDgQkTJnSvDqGeOtvjRmCRqShqF2uqAY3twT6TWEREREREiYRJEBV791QzmjpCWDVb3lUgXQqyTWjqCMPrD8flejT6zJw5E06nE7W1tQiFQqisrERJSUmPMbfddhv2798PAGhubobT6YTDEdvW0COFPxxFSIzCbJR30V92ahL84Sg6QuwQQ0RERESJjdthVOzvnzXAlpaEeRMy4nK9iVkpAC7g5IUO3OiwxOWaNLrodDqUl5dj7dq1EEURK1asQFFRESoqKjBjxgwsWrQIt956K9555x0sXboUWq0WjzzyCDIy4vNvQG26EpZytcftcnlx1NQk/m+FiIiIiBIX362qVHswgg/PenDvzQ5oZGiL25dMkx4Wo55JEJJVcXExiouLexxbv35998+CIGDDhg3YsGFDvENTna4kiEWm9rhdLiVBgpiQxaKbRERERJS4uB1GpQ672hCVgKXT5GmL2xdBEFCQbcKZZj8i4tCKHBJR/HUlQczJ8iZBUgw6mPRatsklIiIiooTHJIhKfVrfhsnW1Lh/61qQnYJIVMJZjz+u1yWioWvxh2EyaGHQyX+rz041oKmDSRAiIiIiSmxMgqhQQ1sQ7rYgbptiHXhwjI3LMEKnEXDygjraQRKNZl5/WPbOMF2yTHo0+ZgEISIiIqLExiSICn1a3wqNAPzrpOy4X1uv1WBcBlvlEqlBZxIkPqWfMlMMCISj8LFDDBERERElMCZBVCYalfBpfRsKslNgjtM3vFcqyE6BxxdGM5e+EyWsaFRCSyASv5UgKZ3FUbklhoiIiIgSmWxJkPr6enz1q1/FkiVLUFZWhm3btgEAfvOb3+DWW2/F8uXLsXz5cuzdu7f7nN/97ncoLS3F4sWL8fbbb8sVmqo5m33oCImYMSZNsRgKslMAACebuCWGKFG1BiOQJMQtCZJp6kyCNHNLDBERERElMNnWSWu1Wjz66KOYPn062tvbsWLFCtxyyy0AgPvuuw/3339/j/EnTpxAZWUlKisr4Xa7sWbNGrzxxhvQarVyhahKh1xtSNZpUJiTolgMGSY9Mk2drXKJKDF5fRfb48YpCWI26qDVCFwJQkREREQJTbaVIFarFdOnTwcApKamYuLEiXC73f2Or6qqQllZGQwGAxwOB/Lz81FTUyNXeKokRiUcb+xAkTUFOo2yO5kmZqeg1uNHKMJWuUSJqKs9brySIBpBQKZJj6aOcFyuR0REREQ0HHH5JF1XV4fPPvsMs2bNAgC88MILWLZsGTZs2ICWlhYAgNvtht1u7z7HZrNdNWkyGjmbfQhGophiVW4rTJcJmSZEohI+Pd+qdChE1AevPwyNAKQlx6cwKgBkmQzsEENERERECU32d8cdHR148MEH8f3vfx+pqam4++678Y1vfAOCIKCiogJPP/00Nm3aBEmSep0rCMJV59ZqBVgsJrlC7+eamphd098SgMloGPT4E02NSNJpMC3XDJ1Wg+QkPSzm5AHP6y/moV7/clPG6qA9WI8D51qx4ibHsOYYSCxf63hRY8yAeuOm/nn9YaQn66EZ4D4aS5kpehxtbIcYlaDVxO+6RERERESDJWsSJBwO48EHH8SyZctw++23AwCysy+1dV21ahW+/vWvAwDsdjtcLlf3c263G1ar9arzi6IErze+xTktFlPMrhkIifD5B/etqRiVcLi+FYU5KQiFIggBCATD8HoH3o7SX8xDuX5f8izJeP90k2x/B7F8reNFjTED1xZ3To7yK5Oot872uPHtIJVpMkCSAI8vjOzU4SVYiYiIiIjkJNt2GEmS8IMf/AATJ07EmjVruo83NDR0//zmm2+iqKgIAFBSUoLKykqEQiHU1tbC6XTiuuuukys81an1+hEIRzHZmqp0KN0mZJlwqsmHC+1BpUMhoit4/RFkGOO3FQa41CaXHWKIiIiIKFHJ9g75o48+ws6dOzFp0iQsX74cAPDQQw9h165dOHLkCAAgNzcXGzduBAAUFRVhyZIlWLp0KbRaLcrLy9kZ5jLHGzug1QiYkJU4WxYmZJnwjxNNeP+sF0un2ZQOh4gu6ghF4A+LMMd5JUhWSuf12CGGiIiIiBKVbEmQm266CUePHu11vLi4uN9zHnjgATzwwANyhaRakiThRGMHxmcaYdAq2xXmcra0JJiNerzn9DAJQpRAXC2dq7MspvgmQZJ0WqQatCyOSkREREQJK3E+UVO/mjpC8PrDKMxOUTqUHgRBwA0OM/af8SDaR2FbIlKGqzUAIH7tcS+XmWJAM9vkEhEREVGCYhJEBY43dgAACnMSKwkCADeOy0CzL4wTF2MkIuXVK5gEyUoxoKkj1GfHLyIiIiIipTEJogInLnTAlpaE9OT4f6AZyI0OMwBg/xmPwpEQURdXSwBJOg2SdfG/xWea9AhEovCHxbhfm4iIiIhoIEyCJLhAWMS5lgAKshOnIOrlslKTUJBtwj4nkyBEiaK+NQiLUQ9BEOJ+7a4OMU3cEkNERERECYhJkAR3ptkPSQImZiXeVpguc/IzcOBcCwL85pcoIbhaA7DEuT1ul0tJEBZHJflVV1dj8eLFKC0txebNm/sc8/rrr2Pp0qUoKyvDww8/HOcIiSgR8F5BRJdT5l0yDdrppg4YtBqMNScrHUq/5o7PwIsfncPHdS2YPyFT6XBI5aqrq/Hkk08iGo1i1apVWLduXY/n//KXv+CZZ56BzdbZkegrX/kKVq1apUSoCSkqSXC1BnBDnlmR66cn66DTCOwQQ7ITRREbN27E1q1bYbPZsHLlSpSUlKCwsLB7jNPpxObNm/HSSy/BbDajqalJwYiJSAm8VxDRlZgESWCSJOFUkw/5mUZoNfFf1j5Y1+eaYdAK2H/GwyQIXZPBvFEBgKVLl6K8vFyhKBPbhfYQwqKkSFFUANAIAjJMenaIIXjKckoAACAASURBVNnV1NQgPz8fDocDAFBWVoaqqqoe94s//elPWL16NczmzqRgVlaWIrESkXJ4ryCiK3E7TAJr9oXREohgQlZi1gPpkqzX4vo8M95jXRC6Rpe/UTEYDN1vVGjwzrd0doYxK5QEAS51iCGSk9vtht1u735ss9ngdrt7jHE6nTh9+jS+/OUv40tf+hKqq6vjHSYRKYz3CiK6EleCJLDTTT4AwMQET4IAnXVBfl19Gg1tQVjTkpQOh1SqrzcqNTU1vcbt3r0bH3zwASZMmIANGzZgzJgxA86t1QqwWOT5t6TVamSbe6g8pzuTkWMyTDAZDT2e02iEXscAQKfV9Hm8PwONt6Yn41hDO5KS9NBqBCQn6WEZ4pa+RHpNB8JYldFXG+YriwGLoogzZ85g+/btcLlcWL16NXbt2oX09PR+5xUEqO41UuPfK2OODzXGHGu8V1yixt8HNcYMqDNuNcY8XEyCJLAzHh/MyTpkmAb/4UQpc8d3JkH2n/Fg2Qz7wCcQ9WEwb1QWLlyIO++8EwaDAS+99BK+973v4Q9/+MOAc4uiBK/XF7NYL2exmGSbe6iO17dAAGAQJPj8PVdjmIyGXscAICJG+zzen4HGpxm0iEpAvacDmSYDAsEwvN7ooOcHEus1HQhjHZycnLSYzme32+Fyubofu91uWK3WHmNsNhtmz54NvV4Ph8OBCRMmwOl04rrrrut3XkmCav4+u6jpd7ALY44PNcbMe4V81Pj7oMaYAXXGrcaYh3u/4HaYBCVJEs56/BiXaVQ6lEEpzE5BpkmP/We4JYaGbzBvVDIyMmAwdCYGv/SlL+HQoUNxjTHRnW8JICvVAJ1Gudt7xsWtOB4f64KQfGbOnAmn04na2lqEQiFUVlaipKSkx5jbbrsN+/fvBwA0NzfD6XR21wUgotGB9woiuhJXgiSohvYQAuEo8jP6X5IkCAI8oYHb0vpbAgj0MU7s/aX7sAmCgLnjM/DuaQ+ikgSNkLiFXClxXf5GxWazobKyEj//+c97jGloaOhOjOzZswcFBQVKhJqwzrUEMCZd2W5SmSYmQUh+Op0O5eXlWLt2LURRxIoVK1BUVISKigrMmDEDixYtwq233op33nkHS5cuhVarxSOPPIKMjAylQyeiOOK9goiuxCRIgjrT3LkUKf8qK0H8kSj2HW8ccK7+lsDPK8oZfoB9mJOfgdcPN+BoQzum2mK7lJFGh8G8Udm+fTv27NkDrVYLs9mMTZs2KR12QjnXEsD1DouiMZgMWhi0AprZJpdkVlxcjOLi4h7H1q9f3/2zIAjYsGEDNmzYEO/QiCiB8F5BRJdjEiRBnfX4YTHqkZ6sXIeHoZqT35kxf8/pYRKEhm2gNyoPP/wwHn744XiHpQrBSBSN7SHY05UtTiwIAjJMBq4EISIiIqKEw5ogCSgqSaj1+K+6CiQRZaUYMCknhXVBiBRSf7E9rl3h7TAAkGHSMwlCRERERAmHSZAEdKE9hEAkinEZ6kqCAJ1dYg6ea4VvELVKiCi2zl1MgowZYjtaOWSa9GgJhCFGY1h8iIiIiIjoGjEJkoDqvH4AQJ5FfUmQOfkZiEQlfFznVToUolHnXEvnvSMhVoIY9YhKQEuAq0GIiIiIKHEwCZKAzrUEkGLQwpysvpIts3LNSNJp8J6TW2KI4u1cSwBJOk13dxYlZZg62xhzSwwRERERJRImQRJQnTeAPEsyBBW2mU3SaXBDnpl1QYgUUOvxJ8y9I4NtcomIiIgoATEJkmA6ghF4/WHkmtW3FabL3PEZcDb74WoNKB0K0ahS5w3AkSDb6FIutsllEoSIiIiIEgmTIAmmq7BhrkX5Pf3DdXmrXCKKDzEqoa7FnzBJkK42uc2+kNKhEBERERF1YxIkwdR5A9AKAuzpSUqHMmwTs0ywphq4JYYojhragwiLEvISqKtUhkkPj58rQYiIiIgocciWBKmvr8dXv/pVLFmyBGVlZdi2bRsAwOv1Ys2aNbj99tuxZs0atLS0AAAkScJPfvITlJaWYtmyZTh06JBcoSW0cy1+2NOToNOoNz8lCALm5Gfg/bNetsckipNaT2dnGEcCrSLLMOrR4mebXCIiIiJKHLJ90tZqtXj00Ufx3//93/iv//ovvPjiizhx4gQ2b96MefPmYffu3Zg3bx42b94MAKiurobT6cTu3bvx4x//GI8//rhcoSWsSDSK+tagqrfCdJk7PgOtgQiOuNuUDoVoVOhqrZ0o22EAINPU2SbX3cb6QERERESUGGRLglitVkyfPh0AkJqaiokTJ8LtdqOqqgp33XUXAOCuu+7Cm2++CQDdxwVBwOzZs9Ha2oqGhga5wktI7tYgxKiEPBUXRe3yuXEZEAC8xy0xRHFR6w3AoBVgTUucrXRdbXLPeZkEISIiIqLEoIvHRerq6vDZZ59h1qxZaGpqgtVqBdCZKGlubgYAuN1u2O327nPsdjvcbnf32L5otQIsFpO8wfe6piZm1/S3BGAyGrofN5xvBQAU2tNgStYPeL5Oq+lxfn80GqHPcYM9/2qSk/SwmHuvXLFYgOlj0/FhXSseHubrFcvXOl7UGDOg3rjpkjqvH7kWIzQJ0B63S1eb3PNMghARERFRgpA9CdLR0YEHH3wQ3//+95GamtrvOEnqvWdcGODNvChK8Hp91xzjUFgspphdMxAS4fNf6pxwurEDFqMOWknqcbw/ETE6qHEmo6HPcYM9/2oCwTC83mifz92UZ8b2D+tQ525FatLQf9Vi+VrHixpjBq4t7pyctBhHQ8Nx1pM4nWG6dLXJPdfiVzoUIiIiIiIAMneHCYfDePDBB7Fs2TLcfvvtAICsrKzubS4NDQ3IzMwE0Lnyw+VydZ/rcrmuugpkpJEkqfOb3BGwFabL3PEZEKMSPqr1Kh0K0YgWlSScawkgL8HqCXW1yeVKECIiIiJKFLIlQSRJwg9+8ANMnDgRa9as6T5eUlKCHTt2AAB27NiBRYsW9TguSRIOHDiAtLS0UZUEaQlE0BESR0RR1C7XjU2HSa/Fu6dZF4RITo3tIQQjUYxLoPa4XTKMeq4EISIiIqKEIdt2mI8++gg7d+7EpEmTsHz5cgDAQw89hHXr1uE//uM/8Morr2DMmDGoqKgAABQXF2Pv3r0oLS2F0WjEU089JVdoCel8S+c3pbl91NdQK71Wg7njM1B9sgnfu60woWoVEI0kXZ1h8hJsOwzQWRfk+IUORKISdBreA4iIiIhIWYNKggSDQbz44ov46KOPIAgCbrzxRtx9991ISuq/C8FNN92Eo0eP9vnctm3beh0TBAE/+tGPBhn2yFPfGoBWIyAnNXE6O8RCcWEW9hy/gM9cbZg+Jl3pcCiOhnPfoOE560m89rhdMkx6iFEJrtZAQiZpiIiIiGh0GdR2mEceeQTHjx/HV77yFaxevRonT57Ed7/7XbljG1VcrUFYUw3QjrBvSm+ZkAmtAOw92aR0KBRnvG/ET53XD71WgC2B2uN26WqTW+vllhgiIiIiUt6gVoKcPn0af/3rX7sfz507F5///OdlC2q0kSQJ7rYgptlHXpcNs1GP2XlmVJ9swjf+ZYLS4VAc8b4RP7XeAHLNyQmZRM282Ca31hPAvPHKxkJERERENKiVINOmTcOBAwe6Hx88eBA33HCDbEGNNs2+MIKRKMakJ963uLGwoCALJy/4uusW0Ogw3PtGdXU1Fi9ejNLSUmzevLnfcX/7298wefJkfPLJJzGJV83qvP6E3WqSYtAiWa/hShAiIiIiSgiDWgly8OBB7NixA2PHjgUAnD9/HgUFBVi2bBkA4LXXXpMvwlHA1RoEANjTR05R1MstKMjCL/9xCtUnm3DPjXlKh0NxMpz7hiiK2LhxI7Zu3QqbzYaVK1eipKQEhYWFPca1t7dj+/btmDVrlvx/kAQnSRJqPX7c5LAoHUqfBEHAWLORSVAiIiIiSgiDSoJs2bJF7jhGNVdbZ1HU7BSD0qHIIs9iREG2CXtPMAkymgznvlFTU4P8/Hw4HA4AQFlZGaqqqnolQSoqKrB27Vr8/ve/j0msanahI4RAJJqwK0EAYKw5GWebfUqHQUREREQ0uCRIbm6u3HGMaiO1KOrliguy8Nz7tfD6w7AY9UqHQ3EwnPuG2+2G3W7vfmyz2VBTU9NjzOHDh+FyubBw4UImQXCp4KgjI3FXkuVakvHe6Wa2ySUiIiIixQ0qCULykSQJrtYgpo9RZ1FUQRDgCYkDjrs+PwO/31+L3ccuoHSqtfu4Sa9FEj8T0UWSJPU6JgiXfkGi0Sg2bdqETZs2DXlurVaAxWK6pvj6n1sj29wDaTrZDACYPi6zOwZ/SwAmY++VZRqN0OdxnVbT5/H+DHV8frYGkagEHwSMG+TrpORrOlSMlYiIiEg9mARRWLMvjJCo3qKo/kgU+443DjhOkiSkJmmxs+Y8dJclPRZOsSLJoJUxQlITu90Ol8vV/djtdsNqvZQ06+jowLFjx3DvvfcCABobG/HAAw/g2WefxcyZM686tyhK8Hrl2ZJhsZhkm3sgx863QKsRYMKlP18gJMLnD/UaazIa+jweEaN9Hu/PUMdbL7buPXy2GemDKset7Gs6VIx1cHJy1JnsJyIiopFlkG9HSS6u1gCAkVsUtYsgCJhsTcWpCz4EI1Glw6EENXPmTDidTtTW1iIUCqGyshIlJSXdz6elpWH//v3Ys2cP9uzZg9mzZw8qATKS1Xn9yDUnJ/Q2k1xz5/3trCegcCRERERENNoxCaIwV2sQuhFcFPVy0+xpiEQlHG9sVzoUSlA6nQ7l5eVYu3Ytli5diiVLlqCoqAgVFRWoqqpSOryEdMbjR54lsZOomSkGJOs07BBDRERERIrjdhiFudqCsKYljeiiqF1yzclIS9LhM1c7ZoxJVzocSlDFxcUoLi7ucWz9+vV9jt2+fXs8QkpYYlTCWY8fN49LzPa4XQRBgCPD2F3ElYiIiIhIKVwJoqDoxaKo9jR11gMZKkEQMNWeilNNHfCHBy6mSkRX52oLIBiJYkJm4he6dFiMqPUwCUJEREREymISREHnvH5VF0Udjmm2NEQl4FgDt8QQXStnU2dSYbwKkiB5FiPOtQQQifbuAEREREREFC9MgijoeEMHgJFfFPVy9vQkWIx6HHYxCUJ0rU43d3b5GJ+V+EmQcRnJiEQluNtYHJWIiIiIlMMkiIKON7SPmqKoXQRBwDR7Ks40+9ARiigdDpGqOZt9yDDqYTHqlQ5lQHkWIwBwSwwRERERKYpJEAWdutCBnFQDNKOgKOrlptrSIAE44uZqEKJr4WzyYXymUekwBmVcxsUkiJcrQYiIiIhIOUyCKESSJJy80AHrKCmKermcVAOyUwz4jFtiiK6Js9mniq0wAJB9sU0uV4IQERERkZKYBFFIQ3sIrYEIbKMwCdK5JSYNtV4/6lv4rTDRcHh8IbQEIqooigqwTS4RERERJQYmQRTS1R1lNCZBAGDGmDQAwO7P3ApHQqROzmb1dIbpksc2uURERESkMCZBFHKssTMJkpM6OpMgZqMeE7NMeOOzBohsmUk0ZN2dYVSUBHFcbJPLf/NEREREpBQmQRRyvLEDY83JSNKN3r+CWbnpuNAewntnPEqHQqQ6Jxs7YNJrYU9XTyLVYelsk+tim1yKkerqaixevBilpaXYvHlzv+P+9re/YfLkyfjkk0/iGB0RJQreK4jocqP3E7jCjjW0Y2J2itJhKKooJxVmox47P3EpHQqR6pxs6kBBtgkaQT3dpRwXO8TUeZgEoWsniiI2btyILVu2oLKyErt27cKJEyd6jWtvb8f27dsxa9YsBaIkIqXxXkFEV5ItCbJhwwbMmzcPd955Z/ex3/zmN7j11luxfPlyLF++HHv37u1+7ne/+x1KS0uxePFivP3223KFlRA6QhHUegMoyBndSRCtRkDplBxUn2xCU0dI6XCIVEOSJJxo7FBdIrWrTe4Zj0/hSGgkqKmpQX5+PhwOBwwGA8rKylBVVdVrXEVFBdauXYukJPWsmiKi2OG9goiuJFsS5Itf/CK2bNnS6/h9992HnTt3YufOnSguLgYAnDhxApWVlaisrMSWLVvwxBNPQBRFuUJT3InGDgBAgco+wMjhjmk2iFEJrx9mgVSiwWryhdESiKjuHpKdYkCKQYszzSyOStfO7XbDbrd3P7bZbHC7e/6/5PDhw3C5XFi4cGG8wyOiBMF7BRFdSSfXxDfffDPq6uoGNbaqqgplZWUwGAxwOBzIz89HTU0Nrr/+ernCU9TRhotJkJwUfFrXonA0yhqXacJ1Y9Ox8xMXvnJTHgQVLe0nUsrJC533kMJs9RRFBTrb5OZnmrqLuhJdC0nqXWD38v+HRKNRbNq0CZs2bRrSvIIAWCzq+rel1WoYcxwwZnXiveISNf4+qDFmQJ1xqzHm4ZItCdKfF154ATt27MCMGTPw6KOPwmw2w+1299h/11eGti9arRD3v6hY/HKcbQ0gw6RHXmYKTjUN/xtRnVYDk9Ew4DiNRuhz3GDPj0UM/UlO0uPuOeOw4dVPccwbwJwJWd3PqfEfohpjBtQb92jVlQRR20oQAJiQacQHZ71Kh0EjgN1uh8t1qaaU2+2G1WrtftzR0YFjx47h3nvvBQA0NjbigQcewLPPPouZM2f2O68kAV6vuhJ1FouJMccBY46PnJy0mM7He8Ulavx9UGPMgDrjVmPMw71fxDUJcvfdd+Mb3/gGBEFARUUFnn76aWzatGnADG1/RFGK+19ULH45PqlrQWF2CoKhCHz+4dfCiIjRQZ1vMhr6HDfY82MRQ38CwTD+xWGGOVmH3/3jJCZfrBkAqPMfohpjBq4t7li/WaG+BSXAF+7cJvhZQzvMRj0EnRaeUO+tg2ICd6DNzzSh8nADOkIRpBjinoenEWTmzJlwOp2ora2FzWZDZWUlfv7zn3c/n5aWhv3793c//upXv4pHHnnkqh9qiGjk4b2CiK4U13eg2dnZ3T+vWrUKX//61wEMnKEdSSJRCScvdGDFrDFKh5IwkvVarJw9Fv/3vbNwNvswPpMrEoiu5AuLeOtIAwDgYF0LLEZd9+MrzSvKiWdoQ9L17/tMsx/T7Eyg0fDpdDqUl5dj7dq1EEURK1asQFFRESoqKjBjxgwsWrRI6RCJKAHwXkFEV4prEqShoaE7ufHmm2+iqKgIAFBSUoKHH34Ya9asgdvthtPpxHXXXRfP0OLmrMeHYCSKydZUpUNJKKtmj8X2D2rx0kfnsKG0SOlwiBKWJEm40BHCdWPTlQ5lWLqSIM5mH5MgdM2Ki4u7i6x3Wb9+fZ9jt2/fHo+QiCgB8V5BRJeTLQny0EMP4f3334fH48GCBQvw7W9/G++//z6OHDkCAMjNzcXGjRsBAEVFRViyZAmWLl0KrVaL8vJyaLVauUJT1LGLRVEn5TAJcrmsFAOWTLWh8rAbX78lHxmma6tVQjRSeXxhhEUJtjR1tvBzWJKh1QhwsjgqERERESlAtiTIL37xi17HVq1a1e/4Bx54AA888IBc4SSM443t0GsFjM80oi2RN+4r4J6bcrHzUxdeOViP/z0vX+lwSCHV1dV48sknEY1GsWrVKqxbt67H8y+99BJefPFFaDQamEwm/PjHP0ZhYaFC0cafuy0IAKpNgui0GuSZk+Fkm1wiIiIiUoBG6QBGm2MNHSjISoFOy5f+ShOzUjB/QgZeOXAewUhU6XBIAaIoYuPGjdiyZQsqKyuxa9cunDhxoseYZcuW4bXXXsPOnTuxdu3aIbe0Uzt3WxAaAchOVe9qqfGZJq4EISIiIiJF8JN4HEmShKMN7SjKUV9by3hZfWMemn1hVB4euEUyjTw1NTXIz8+Hw+GAwWBAWVkZqqqqeoxJTb20lczv9w+qk9RI4m4LIjvFAJ1Gvbfv8Vkm1Hr8iIhMdhIRERFRfLE/YRw1dYTg8YcxiUVR+3XzOAum2dPw3P6z+Mr8CUqHQ3Hmdrtht9u7H9tsNtTU1PQa98ILL2Dr1q0Ih8PYtm1bPENUnLstiIlZ6u6gVJBtQiQqwenxozCbSWEiIiIiih8mQeLoaOPFoqhWvunvjyAI+Pf5+Vj/l0/xl3+ewx1FWUqHRHEkSb3r5PS10mP16tVYvXo1XnvtNTz77LP4z//8zwHn1moFWCzyJA+0Wo1sc3fxtwQgCgI6QiLyMlNgMva/HUan1fT5vEYj9Hm8v/FDnb8/yUl6WMzJ3Y+vn5AN4CjqfWHc1M/rFo/XNFYYKxEREZF6MAkSR8cb2gGwM8xA5o3PwMwxafj/957EwgkZSNKpd9k/DY3dbofL5ep+7Ha7u9tq96WsrAyPP/74oOYWRQlerzx1KCwWk2xzdwmERDgbO+8hmcla+PyhfsdGxGifz5uMhj6P9zd+qPP3JxAMw+u9tPUlSy9AqxFQc8aDW8dZ+jwnHq9prDDWwcnJYUtkIiIiUh4/XcbRscYOjDUnIzWJuaerEQQBD/zLeNS3BPDHj88pHQ7F0cyZM+F0OlFbW4tQKITKykqUlJT0GON0Ort//sc//oH8/NHTSairM4xVpZ1huui1GuRnGHHiQofSoRARERHRKMNP43F0rKEdk1gUdVBuHpeB26ZYsXX/WZRNtyE7Rb2dMGjwdDodysvLsXbtWoiiiBUrVqCoqAgVFRWYMWMGFi1ahOeffx779u2DTqdDenr6oLbCjBTu1iAsRh2S9VqlQ7lmhdkp+KS+VekwiIiIiGiUYRIkTvxhEWc9fiye0v/Sfurpe3dMxpJf/w9++44Tj90+SelwKE6Ki4tRXFzc49j69eu7f37sscfiHVLCqG8NYOxltTXUrDAnBbuPNqI9GOHqOCIiIiKKG26HiZMTjR2QwKKoQzE+KwX/dn0u/vqJC0cv1lMhGq28/jBaAhGMSR8ZSZCCi11hTnJLDBERERHFEZMgcXLsYkHDIhZFHZL7546D2ajHL9462WfnkKAEeELiNf0X7D0tUcI55m4DAIxJV3c9kC6FTIIQERERkQK4BjlOjjV0ID1ZN2I+wMRLWrIOX78lH0+/eQJ/P9qI26/YTuQLi3jrSMM1XWPhFCuSDOqvsUAj21F3ZyLVNkJWgoxJT0KKQYvjjUyCEBEREVH8cCVInBy9WBRVEASlQ1Gdu2aOwTR7Gn625yS8vrDS4RAp4lhDO7JSDCOmZbQgCJhsTcVnbm51IyIiIqL4GRnvphNcJCrhxIUOTLJyK8xwaDUCfrh4EtqCEfzsrRNKh0MUd5Ik4ai7fcStJJtmT8OxxnaExajSoRARERHRKMEkSByc9fgQjEQxmUmQYSvMTsHX5o7DG0caUX2ySelwiOLK3RaE1x8eMUVRu0yzpyEsdiaJiYiIiIjigUmQOOjqbMKVINfmvs85UJidgqffPI62QETpcIji5tP6zqKoI6U9bpdp9s574mFXm8KREBEREdFowSRIHBx1d8CgFTA+w6h0KKqm12pQfsckNHeE8PN/nFQ6HKK4+aS+FQatBra0kbUdZmx6MszJOiZBiIiIiChumASJg6ON7SjIToFOy5f7Wk21peF/fc6BykNu/OP4BaXDIYqLmvOtmGRNhVYzsgorC4KAqfY0HHaxOCoRERERxQc/lctMkiQcb2hnPZAYWjsvH5OtqXjq78fh8YWUDodIVsFIFEfc7Zg2Jk3pUGQxzZ6GU00d8IdFpUMhIiIiolGASRCZuduCaAlEWA8khvRaDZ5YMhkdoQh+teckJElSOiQi2RxxtyESlTDVPjKTINPtaYhKrAtCRERERPHBJIjMuoqiciVIbBVkp+Ab/zIB+04345PzrUqHQySbmou/3yN1Jcjs3HQIAD6ubVE6FCIiIiIaBZgEkdmxhg4IAIpyUpQOZcS5+8ZcXJebjr8fvQCvP6x0OESy+KS+DbnmZGSYDEqHIov0ZD0mW1PxYa1X6VCIiIiIaBRgEkRmRxvaMS7DCKNeq3QoI45GEPDd24oAALs+dSPKbTE0wkiShIPnWjBzbLrSocjqRocFn9S3IsC6IEREREQkM9mSIBs2bMC8efNw5513dh/zer1Ys2YNbr/9dqxZswYtLZ3LnyVJwk9+8hOUlpZi2bJlOHTokFxhxd1RFkWVlS09GaVTclDr9eODM/wmmUaWM81+NPvCuDHPrHQosrppnBlhUcIn9dzaRkRERETyki0J8sUvfhFbtmzpcWzz5s2YN28edu/ejXnz5mHz5s0AgOrqajidTuzevRs//vGP8fjjj8sVVly1+MNwtQWZBJHZzDFpmJSTgr0nmtDYHlQ6HKKY+biuM7F3g8OicCTymp1rhlYAPmRdECIiIiKSmWxJkJtvvhlmc89vL6uqqnDXXXcBAO666y68+eabPY4LgoDZs2ejtbUVDQ0NcoUWN8caO4uiTrKyHoicBEHAHdOsSNJr8NqnbohRbouhkeGj2hbkpBrgsCQrHYqsUpN0mGpP42ouIiIiIpKdLp4Xa2pqgtVqBQBYrVY0NzcDANxuN+x2e/c4u90Ot9vdPbY/Wq0Ai8UkX8B9XlMz6GuePeQGANxcmANLalKv5/0tAZiMwy92qNNqBnW+RiP0OW6w58cihv4kJ+lhMff9AW8wr3XXa2gyGnDXrLF48YNavHfWi9KptpjEMFRD+f1IJGqNeySTJAkf17XgRocZgiAoHY7sbpmQic3vnkFjexA5fdwviYiIiIhiIa5JkP5IfRS0HMybflGU4PX65AipXxaLadDX/KezGTmpBmgjYp/nBEIifP7QsGOJiNFBnW8yGvocN9jzYxFDfwLBMLzeaJ/PDea1vvw1zLck47qx6Xj7+AXkW5KRZzFecwxDNZTfj0RyLXHn5IzM1q1KO+vx40JHaMRvhely26Qc/O7dM9hz7AL+7YbcQZ8XlADfEAqqmvRaJI38nBIRERER9SOuSZCsrCw0NDTAarWioaEBmZmZADpXfrhcYL7cFAAAIABJREFUru5xLpdrwFUgavCZux3T7fyAeDWCIMAT6vsDjL8lgEA/z3URr8if3TY5G2eaffjvww342txx0Gr4aUdtqqur8eSTTyIajWLVqlVYt25dj+e3bt2Kl19+GVqtFpmZmXjqqaeQmzv4D81q8XFdZ32MG0Z4UdQu47NMKMg2oepY45CSIL6wiLeODH775MIpViQZ2K2LiIiIaLSKaxKkpKQEO3bswLp167Bjxw4sWrSo+/jzzz+PsrIyHDx4EGlpaapPgrQGwjjr8ePO6YPfljEa+SNR7Dve2Odz/a1gudy8opwej5N0WpROzsErB+vxUa0Xn8vPiFmsJD9RFLFx40Zs3boVNpsNK1euRElJCQoLC7vHTJ06FX/+859hNBrx4osv4qc//Sl+9atfKRi1PD6q9SLTpEd+xuBWNI0Et03K6d4Sw+1ZRERERCQH2QqjPvTQQ/jyl7+M06dPY8GCBXj55Zexbt06vPPOO7j99tvxzjvvdH/DW1xcDIfDgdLSUvzwhz/Ej370I7nCipvPXJ1FUafZuBIk3gpzUlCQbcLbJ5vRFogoHQ4NQU1NDfLz8+FwOGAwGFBWVoaqqqoeY+bOnQujsTMxMHv27B6ryEYKSZLwz7oW3OiwjIp6IF1um5QDCcDfPlN/YWwiIiIiSkyyrQT5xS9+0efxbdu29TomCMKISHxc7rC7DQAw1c72uPEmCAJKJ+fg/+w7iz3HL2D5TPvAJ1FCuLJIss1mQ01NTb/jX3nlFSxYsCAeocXVuZYAGtpDo2YrTJfxWSbc5DDjpY/PYd3CIqXDISIiIqIRKCEKo45Eh11tGJdhRHqyXulQRqUMkwFzx2fgnVPNmJ2bjvxMLq1Xg6EUSd65cyc+/fRTPP/884OaW85uUrHurvP3k52ds/51mr173qF0k+qva1OsOkUNdfxQOjB9s6QIa7Z9iL/WnMeqG/IGHD/ULlux7AbVRU3dldQUKxEREZEcmASRySFXG24cJV0dEtW88Rn49Hwr/n60EV+bOw6aUbStQK2uLJLcX6vsd999F7/97W/x/PPPw2AY3AdgObtJxbor0P8ca0CmSY8svdA971C6SfXXtSlWnaKGOn4oHZimZxkx1ZaK3+49heJxFhh0V9+1OdQuW7HsBtVFTV2hlIyVnaSIiIgoEchWE2Q0a2wPorE9hGnsDKMovVaDhZOy0dgewqfnW5UOhwZh5syZcDqdqK2tRSgUQmVlJUpKSnqMOXz4MMrLy/Hss88iKytLoUjlI0kSPqptwQ155lFVD6SLIAj4+i3jcbbZh4q9pwZ1TkiM4oi7DW8dv4C/H2nEu6ebcaqpA9Fo75VFRERERDS6cSWIDA67OuuBTLOxHojSplhTMSY9CdUnmzHVnga9lnm/RKbT6VBeXo61a9dCFEWsWLECRUVFqKiowIwZM7Bo0SI888wz8Pl8WL9+PQBgzJgx+O1vf6tw5LFT5w3A3RbE//qcQ+lQFDN/QibWzM/H1nfPYLI1FZ/vo65PRyiCd04147+PNOK9082IRCVohM7kZzDSudIjLUmHOeMzcKPDzJVgRERERASASRBZHHK1QSsAk61MgihNEASUTMrBCx/W4cOzXsybkKl0SDSA4uJiFBcX9zjWlfAAgOeeey7OEcXXPmdnPZB540d3e+fvlE7GwbNe/Hj3Mbx/1oPbp1iRnqTD6WYf/udUM95zNiMkSsg06XHd2HRMtqVinMUIjUZAICzirMePD8968ebRRhxxt+HzM+wwG1mjiYiIiGi0YxJEBoddbSjITkGyXqt0KARgXIYRhdkp2Of0YFauGSYD/14oce1zeuCwJCPPYlQ6FEUEJcAXFuHvCOEnn5+GP35Uhxc/qMMbRxq7x+SkGlA2045bC7IxyZaGd4439pgjWa/FJGsqinJScMjVht1HGrH9gzp8+Yax8f7jkMyqq6vx5JNPIhqNYtWqVVi3bl2P57du3YqXX34ZWq0WmZmZeOqpp5Cbm6tQtESkFN4riOhy3BsQY5Ik4bCrnfVAEsy/FmUhFIni3dPNSodC1K9QJIoPz3oxd/zoXbHkC4t460gD9h5rxNvHLyA3PRkPFk/EV2/Ow5euH4t/vyUf988dhyk5qWhsDeBqJU4FQcCMMen4yk15iEoSnv+wDnUef9z+LCQvURSxceNGbNmyBZWVldi1axdOnDjRY8zUqVPx5z//Ga+99hoWL16Mn/70pwpFS0RK4b2CiK7EJEiM1XoDaAtGMJ1JkISSk5qEmWPT8XFtC1r8YaXDIerTgXMtCESio34rzJWSdBrkWYwoyE5Bpskw5IKx1rQkfOXmPAgQ8Nhrh+H18R4wEtTU1CA/Px8OhwMGgwFlZWWoqqrqMeb/tXfnYVHWe//A37Ow74PAgKKCaypKqQXugjuidNJsc+lYlh2PW1baov7spD0d6+SxsoenUnOpTE1Ty06CW4lLbkiYiIJsMsi+MzDz/f3hcRIBGXCYe0ber+vqugLuuec9I/dnmM98l5CQEDg43BxVFRwcXGv3KSJqHVgriOhObIKYmGFRVDZBLM7gTipABvxylaNByDIdTy2AjULG7bVbgMrRFpOCfZFbqsWSvYnQcecYq6fRaKBW/7loro+PDzQaTYPHb9++HUOGDDFHNCKyIKwVRHQnrgliYonZJbBTyhHYxknqKHQHV3sbPNTO7b/TDTzg6WQrdSSiWrhuTctq6+6AucMDsfpAMjacTMPMkA5SR6J7IETdRlZDo4R2796NhIQEbN68udHzymSAu7vjPeczJ4VCzsxmwMzWibXiT9b4+2CNmQHrzG2NmZuLTRAT+z27BN29naGUcztGSxQa4IFzmUU4eiUPUb19pY5DZJBTUoXk3DLMHRIgdZT72sju3riQUYToY9fwcHsPBPm5Sh2JmkmtVtcasq7RaODt7V3nuGPHjuHTTz/F5s2bYWvbePNbCKCwsNykWVuau7sjM5sBM5uHl5dpR1OzVvzJGn8frDEzYJ25rTFzc+sFp8OYUFWNHhc1Jejlyz+qLZWTrRL923vgoqYUmpIqqeMQGRxPLQAAhLbiRVHNQSaTYfGILvBytsPb/0mCtuZuS6uSJQsKCkJqairS09Oh1Wqxb98+hIWF1TomMTERS5cuxbp16+Dp6SlRUiKSEmsFEd2JTRAT+kNTgmqdQHBbNkEs2SMd3GGvlONwcq7UUYgM4lIL4OVsi05tWscwRCk52ymxZEQXpOSVY/2JNKnjUDMplUosXboUzz33HMaNG4exY8eiS5cuWLNmjWHRw/feew/l5eWYN28eJk6ciBdffFHi1ERkbqwVRHQnTocxoXOZxQCAPmyCWDR7GwVCOnrgUHIeMgq5XSZJr0YvcDKtAEM7eTZ55xNqnoGBKox5wBsbT6VjXA8f+Hs4SB2JmmHo0KEYOnRore/NmzfP8P8bNmwwcyIiskSsFUR0O44EMaHzmUXo4OEAD0cuuGnp+rZ3h5OtAoeT8+pdMIvInH6/XoziyhqEBnAqjDnNGxIAG7kcaw5flToKEREREZkJmyAmohcC8VnFHAViJWwVcgwIUCGtoAJn0oukjkOtUJUACrQ6FGh1+E9SLhRyGbr5uhq+d+d/OvbqTEImkxmeU4WtEk/0a4fDV/IQk5xX7/NexeediIiI6L7C6TAmkppfjqLKGvRp6yZ1FDJScDtXnLxWgPVx1xDeScVpCGRW5dU6HPwjB0II/PxHDvzdHfBban6Dx4d28TJjuvtXRY0ecZdvGL72dFDC3UGJ1QcuY2ZIe8jv2NlreHdv2HHLYiIiIqL7BkeCmIhhPRBut2g1lHI5BgWqkJRTikPJeVLHoVYqt0yLgvJqdPN2kjpKq6RUyBHW1Qu5ZVqczeSoMCIiIqL7HZsgJnI6rRBtnGzRnovrWZVevq5o5+6Adb+mQqfnuHcyv6ScMgBAFy9niZO0Xl29nNBB5YAjV/JQUa2TOg4RERERtSA2QUxACIHf0gvRr707p1RYGblchhkh7ZGSV479F3OkjkOtUFJOKfzc7OFiz9mJUpHJZBjR1QtV1Xr8erXhKUlEREREZP3YBDGBlPxy5JdXo7+/u9RRqBkGdfbEAz7O+PiXFJRr+SkwmU9RRTWyS6o4FcYCeLvYoU9bV5xOL0R+mVbqOERERETUQtgEMYHf0goBAP3aswlijeQyGRaFdcaNUi3Wn0iTOg61Ikk3SgEAXTkVxiIM7uQJpVyGg8m5UkchIiIiohYiyfjrsLAwODk5QS6XQ6FQYOfOnSgsLMSCBQuQmZmJtm3b4sMPP4Sbm3XstHIqrRB+rnbwc7OXOgo1U28/V4zr4Y0tpzMwoZca/lzbhcwgKacMbZxsoXKylToKAXC2UyI0QIXDyXm4ll+ODipHqSMRERERkYlJNhJk48aN2L17N3bu3AkAiI6ORmhoKP7zn/8gNDQU0dHRUkVrEr0QOJNRxFEg94E5gwNgI5fjX4euSB2FWoHCimqkF1SgqzdHgViS/u3d4WqvRExSLoTgYslERERE9xuLmQ4TExODqKgoAEBUVBQOHDggcSLjXMwuQXFlDR5u7yF1FLpHXs52mBnSHkev5uNYChdHpJZ1PCUfAuB6IBbGRiHHsM6e0JRU4cL1EqnjEBEREZGJSbYdwcyZMyGTyTBlyhRMmTIFeXl58Pb2BgB4e3sjP7/xN6EKhQzu7uYdrqxQyGvd5+kzmZDLgFF9/ODu2LQh7RVFlXB0aP4weKVCbtTt5XJZvccZe3tTZGjO7RvKbcr7BwB7Oxu4/3cq0wthXbAnUYP3D13FsJ5qONo27RK58/fDWlhS7iNHjuCdd96BXq/H5MmTMWvWrFo/P3XqFFauXIlLly7hgw8+wJgxYyRKem+OXM6Fm70SPi52UkdpcTKZDAVGLjqss4DBFz3ULjiVVojDybmYNTgAHrYKqSMRERERkYlI0gT56quv4OPjg7y8PDz77LMIDAxs1nl0OoHCwnITp7s7d3fHWvcZczEHPdWukGlrUKitadK5KrU6lFc0fxeCGp3eqNs7OtjWe5yxtzdFhubcvqHcprx/AKisqkZhod7w9eLwznhxWzxW7k3EorDOTTrXnb8f1uJecnt5uZgsh06nw4oVK7B+/Xr4+Phg0qRJCAsLQ+fOf/47+Pr6YtWqVfjiiy9Mdr/mllemxZn0QoR09GgV22pX1OgRd/mGUceGdvFq4TSNk8lkGNHNC5tOZWD7mUzMHRwgdSQiIiIiMhFJpsP4+PgAADw9PTFy5EjEx8fD09MTOTk5AICcnByoVCopojVJXpkWidklGBjIqTD3k77+7pjyoB++OZtl2PmHzCM+Ph4dOnSAv78/bG1tERERgZiYmFrHtGvXDt27d4dcbjGz+ZosJukG9OLmiAOyTO3cHdDdxxnbzmQio7BC6jhEREREZCJmHwlSXl4OvV4PZ2dnlJeX49dff8VLL72EsLAw7Nq1C7NmzcKuXbsQHh5u7mhNdjy1AAAwMMDyGzbUNH8bHIDjqQV484c/sGXqQ/Dk7h1modFooFarDV/7+PggPj7eJOduyelzTZ1OdOByHjp5OaFDE0bRNGXqV0PHmmpqXEsef+tYY6bDtXSW8b398PGhK1h96CrWT+/X4KgdS5pO1hhrykpERETUEszeBMnLy8Pf/vY3ADeHvo8fPx5DhgxBUFAQ5s+fj+3bt8PX1xdr1qwxd7Qm++VqPlSONtzd4T7kYKPAqsgH8OzWc3jrhz/w78eCoJTf/9MWpFbfbhymmi7SktPnmjKdKKOwAmfTC/HX0A5NmsrVlKlfDR1rqqlxLXn8rWONmQ7X0llsAMwc0AEfHb6Kzb+mILKXut7jrGkanJRZTTl1joiIiKi5zN4E8ff3x/fff1/n+x4eHti4caO54zRbZbUOv6bkYewDPpC3gjn9rVEXL2e8Gt4Zb/+UhNWxyXgtvHO9b8irBFBefXPRx4qiSlQauQDkLY42CtjxVwgAoFarkZ2dbfhao9EYFky+X+z5XQMZgPDuXkjIKJI6DjVifJAavybnYnXsFQS3dYO/h4PUkYiIiIjoHki2O4y1O55agIpqPcK6tpE6CrWgCb3UuJZfgS9PpcPHxQ7PPtK+zjHl1Toc/OPmejbGfnp9u+HdvWHH3ScAAEFBQUhNTUV6ejp8fHywb98+vP/++1LHMhmdXmBvQjZCOnrAy/n+3xXmfiCXybBiXHc8vekMXt97EZ89GQw7pfWuR0NERETU2vEvuWaK+e/2ln3buUkdhVrY3wZ3xOjuXvjkl1RsOJEmdZz7mlKpxNKlS/Hcc89h3LhxGDt2LLp06YI1a9YYFkiNj4/HkCFDsH//fixbtgwRERESpzbeqbQC5JRqMaGBaRVkmdSu9lg6uiv+yCnF8h8vQV/PtC0iIiIisg4cCdIMVTV6HL2ShxFdvaBUsI90v5PLZFg+tjsA4ONfUlFQUY25QwKh4BohLWLo0KEYOnRore/NmzfP8P+9e/fGkSNHzB3LJHZf0MDNXokhnTxRpucbaWsytHMbzB0SgH8fSYF7jBKLwjqzBhARERFZITZBmiEuJR9lWh2nwrQiSrkM/29sd7g72GDr6UxczS3HsrHd0Ia7xpCRckurcDA5F48H+8FWKUdZE9eOIek9068dCsqrsem3DNwo1WL52G5wtrv7y2hVjR5nMwpxIasEV/LKUFalg0IuQweVA/r6u2NARw8204mIiIjMiE2QZtjzuwaeTrZ4uIOH1FHIjBRyGRaFdUZgGyd8cPAKntx4GguGBSKkk6fU0cgKfHchGzq9wKRgP6mjUDPJZDLMHRoIHxc7fHDoCh774hRmDeiAv/Rvj9vHhKQVVCAuJR9xqQX4Lb0QVTV6yAC0c7eHm4MNqmr0+C29EFtPZ8LDwQbTH/bH5P82x4iIiIioZbEJ0kQ3Sqrw69U8PN2vHbdMbaX+0tsXD7Z1w/L9l7Dsx0t4QO2CIF8XBHo6Sh2NLFSNTo/v4q8jpKMH2nN3Eas35aG26OXrgg8OXcW7B5LxXkwy1C52sLNR4EZpFUqrbo7y8XOzx5gePujfwQNBfq5wuG0B5BqdHuczi7H9bCY+PHwV357PwpJRXdHVp+FtZG2VCmhrjB9BxJ2niIiIiOpiE6SJdp/Pgk4AkT25sGFrFuDpiPVPBWNPQjY+PXYN286WwNvZFkO7eiPAw55rBVAtB5PzcKNUi8UjukgdhUykp68rPnuiDxI1pTidVYwrmhKUa3UI8nNFZbUOAZ6OUDnenC5XVlmN41fz6pwjtIsXisu16OzpiB8SczD323gM6eSJkI4e9W7HHdrFC3GXbxidkTtPEREREdXFJkgTCCHw7ekMBPm6oiM/9W/15DIZJgb5IrRzG3xy+CqOpxbg2zMZcLZVILidG4LbusHFnpdYayeEwKZT6Wjv4YCBASqp45AJyWQy9FS7YGB3HxQWlgMACrR/bpltrMA2TpgZ2h77E3NwKDkPKXnlGN/LB672Ni0Rm4iIiKhV4wTkJjiWWoCruWWYFOwrdRSyIDYKOXr7ueL50PZ45uH28HG1wy9X8/HxLynYeT4LqXnlENxSs9U6mVaIi5pSTO3XjiOEqEEONgpE9VZjXA9vZBVX4vO4NFzSlEodi4iIiOi+w4+pm2DLbxnwcbXDyG5eUkchCySTydBN7QJ/NzsUlFfjXGYRzmcW4VJOGVSONnjI3w1Bvq6wt+Hw9NZk48l0tHGyxbgePlJHIQsnk8nQp60b/N0dsDshGzvjryO4rSuGd2nDukFERERkImyCGOlSTilOpRXilVFdYcPtDKkRHo42GN6lDQYHqnBRU4qzGUU4cCkXhy7n4cF2bgjp6NHo1ppk/U6nF+JUWiHmDQ3kzh9kNJWTLab198fRK3mISy3ApZwyDAz0QB/uSEZERER0z/guzEifH0+Dk60CT/Tzh76qWuo4ZCWUCjmC/FwR5OeK7OJK/JZWiN/SC3E2owh9/d0Q0pFrRNyvhBD4+GgKvJ1tMakPp9BR0yjkMgzr0gbdfJwRm5SLA5dy8cuVfHRUOcLfwwHuDjZwtVfC1V4JO6W83oVUiYiIiKguNkGMEJ9VjIOXc/HCgA5wdbBBIZsg1AxqV3uM76XGgAAVfk3Jx8lrhTiXWYwqvcD0vm2h5Aij+8rh5DxcuF6CN0d14VQGajZfV3s83a8dsooqcb1Ui7grefgjp/ZaIUq5DM52SjjbKdDGyRZt3R3QxctJosRERERElo1NkEYIIbD2yFWoHG3wVN92Useh+4DKyRaRvdQI7eiBA0m5+PRoCn76XYOFwwM5MuQ+UVmtw78OX0WAyhER3E6bTMDPzR6P9fPHQ34uKK3SoaiyGiWVNSiurEGptgalVTqUVtXgD00pzmUWQy4DTmcUYVZIe3T3cZE6PhEREZHFYBOkET9ezMG5zGIsHtEZjrb8NJdMp42zHaY86AcHOyX+79dU/H1HAgYHqrBgWCf4ezhIHY/uwefH05BVVIlPH+8NJXeEIROSyWRwsVc2uP22EALZJVVIvF6CM2mFmJqch5HdvLBgWCC8nO3MnJaIiIjI8rAJche5pVV4/+AV9PZzRVQQ5/ST6clkMoQGemJE5zb4+kwmPj+ehikbf8NTfdvhr4+0Z+PNCl3KKcWm3zIQ0dMHff3dpY5D90gmk6FAq7vrMRVFlaj87zE6iXfDlslk8HW1h6+rPZaM6Ya98dex6VQ6jqXk49XwznhqQIC0AYmIiIgkxiZIA3R6gbf/k4SqGj3eGt0VCn6ae98y5k3O3ZjiTY+tUo5pD/tjXA9vfHQ0BRtPpuOHRA3+PiQAY7p7c9FDK1Gu1eH1vRehcrTB/CGBUschE6io0SPu8o27HuPoYIvyCi0AILSL5Wyh7mSnxIsDO2J8Tx8s//ESlv14Caczi7FgSAB3pyIiIqJWi38FNWDdr6k4llKAV8M7o6PKUeo41IKMeZNzN6Z809PG2Q7Lx3bHX/r4YXVsMpb+cAk7zl3HorBOnNdv4YQQWPlzEjIKK/DJ5N5wd7SROhIRAKCduwM+ndIH60+k4fPjafgtNR9vRzyA3n6uUkcjIiIiMjtuR1GPHeezsPFkOv7S25dbW5Ikevu5YsPTD+LNUV2QVlCBaZvP4h8/JeF6caXU0agBH/+Sip/+uIEXB3bkNBiyOEq5DM+HdsBXMx8GAMz6+hw+P34NOr3E83eIiIiIzIxNkNsIIbD5twy8eyAZgwJVWBTWidMQSDJymQwTg3yx46/98WTftvjhogZ/+fwUVv18mc0QCyKEwNqDyYbG6YyH/aWORNSgB9t7YMu0vhjRzQuf/noNs7edR1YR6wkRERG1HpwO819l2hqs+vkyfvrjBsK7tsHb47rDRsEeEUnPxV6JBcM64cmH2mLDyXTsvpCN3QnZGNbZE4/18UU/f3c26yRSWa3DP2OT8X2CBhE9vPFqeGf+W5DFc7ZT4u1x3TEgQIX/OZCMKRt+w4sDO2LKg35Q8nWPiIiI7nOtvglSoxfYf1GDj4+mIr9ci9kDO2LGI/6Q840MWRi1qz0Wj+iCGQ/746szmdj7uwYxSbno4OGA0d29MbSzJ7p4OfFNuJmcySjEyv9cxrWCCrw0tBNm9PXjc09WQyaTYVwPHzzYzg3vHriMDw9fxY7zWZg1oCNGdG3DZggRERHdtyzur5wjR45g9OjRGDlyJKKjo1vkPoQQSM4tw//FXUPUZyfx//YnwcfFDp89EYy/hrRnA4QsmtrVHguGdcK+WY9g2Ziu8HC0wf/FXcPTm84g6rOTWPlzEvYkZCM1vxxCWN98/8ZqgFarxfz58zFy5EhMnjwZGRkZZstWrdPj0OVczNkejxe+iUdljR4fTQrCghFd2AAhq+Trao8PH+2Ffz3aE7ZKOd764Q9EfX4K635NRXJumcXXEEuuF0RkOVgriOh2FjUSRKfTYcWKFVi/fj18fHwwadIkhIWFoXPnzvd03tPphbiSW4bMokqkFVQgMbsE+eXVkAHo194dr4R1wuBOnmx+kFWxt1FgfE81xvdUI69Mi6NX8nD4Sh5+vnQD38VnAwAcbRTw93BAew8HtHO3h6ejLTwcbaBytIWDjRy2SjlsFHJ4QYaK0irU6AW0OgGlXAY/N3uzPyZjasC3334LV1dX/Pzzz9i3bx9Wr16NDz/80CT3L4RAVY0eFdU6lGl1yC3VIr2wAhmFFbiUU4ZzmUUo0+qgcrTB3CEBmBTsBwcbhUnum0gqMpkMgwI9MSBAhV+v5uObs5nYcCINXxxPg5ezLXqqXRDo6YiOno5o6+YAV3slXO2VcLZVwkYhk6wBKHW9ICLrwFpBRHeyqCZIfHw8OnToAH//mwsLRkREICYm5p6aIFfzyvDitngAgL1Sjrbu9ggNUCHYzxWDOnmijZOtSbITScnTyRZRvX0R1dsXeiGQml+OC1nFuHyjzND4i0m6gaZsBPHp473NvsuJMTUgNjYWc+bMAQCMHj0aK1asgBDCJG/EZn51HheuF9f5vkIG+Hs4YMwD3hgc6IlHOnpAKWfTlO4vcpkMgzt5YnAnT+SWVuHo1XycSivE5RulOHolD7oG6sfcIQGY2t/8CwJLXS+IyDqwVhDRnSyqCaLRaKBWqw1f+/j4ID4+vsHjbWwU8PJyues5vbxckPpuhMky3jqnSc4DoGvbe3uT2bu9h6S3t4QM98NjMDUfb1c80l3d+IEWxpgaoNFo4Ot7c+tqpVIJFxcXFBQUQKVS3fXcxtSLPfMGNzN50+tCc67/pvyeNfV30pKOt6QsLX18S2epjzG/q15eLnggoA1m3fO9tZyWqhdyucxkr/PmxMzmwczWh7WiNmY2H2vMbY2Zm8Oi1gSpb+4xO7BErYcxNYB1gogA1gsiMg5rBRHdyaKaIGq1GtnZ2YavNRoNvL29JUxEROZkTA1Qq9W4fv06AKCmpgYlJSVwdzfvtB0ikh6QQpvuAAAV7klEQVTrBREZg7WCiO5kUU2QoKAgpKamIj09HVqtFvv27UNYWJjUsYjITIypAWFhYfjuu+8AAD/99BNCQkL4aQ1RK8R6QUTGYK0gojvJhIXtf3f48GGsXLkSOp0Ojz32GGbPni11JCIyo/pqwJo1a9CrVy+Eh4ejqqoKr7zyCi5evAg3Nzf861//Mix2RkStC+sFERmDtYKIbmdxTRAiIiIiIiIiopZgUdNhiIiIiIiIiIhaCpsgRERERERERNQqtOomyJEjRzB69GiMHDkS0dHRdX6u1Woxf/58jBw5EpMnT0ZGRobhZ//7v/+LkSNHYvTo0Th69KjR57TE3NevX8fUqVMxduxYREREYOPGjRaf+RadToeoqCi88MILJs/cUrmLi4sxd+5cjBkzBmPHjsXZs2ctPvOGDRsQERGB8ePHY+HChaiqqjJpZmtljuvdFJYsWYLQ0FCMHz9e6iiNMkc9MoWqqipMmjQJEyZMQEREBP79739LHalRLV0vrc291EqpNJZ5/fr1GDduHCIjIzF9+nRkZmZKkLI2Y+vk/v370a1bN1y4cMGM6epnTOYffvgB48aNQ0REBF5++WUzJ6yrscxZWVmYOnUqoqKiEBkZicOHD0uQsrbGXpuEEPjHP/6BkSNHIjIyEr///ruZE97EWmEerBXmwVrx541apZqaGhEeHi7S0tJEVVWViIyMFJcvX651zObNm8Vbb70lhBBi7969Yt68eUIIIS5fviwiIyNFVVWVSEtLE+Hh4aKmpsaoc1pibo1GIxISEoQQQpSUlIhRo0aZNHdLZL7liy++EAsXLhSzZs0yWd6Wzv3qq6+Kbdu2CSGEqKqqEkVFRRadOTs7WwwfPlxUVFQIIYSYO3eu2LFjh8kyWytzXO+mcvLkSZGQkCAiIiKkjtKolq5HpqLX60VpaakQQgitVismTZokzp49K3Gqu2vJemlt7qVWSsWYzHFxcaK8vFwIIcSWLVusIrMQN6/1p556SkyePFnEx8dLkPRPxmROSUkREydOFIWFhUIIIXJzc6WIamBM5jfffFNs2bJFCHHz9X748OFSRK2lsdemQ4cOiZkzZwq9Xi/Onj0rJk2aZOaErBXmwlphHqwVf2q1I0Hi4+PRoUMH+Pv7w9bWFhEREYiJial1TGxsLB599FEAwOjRoxEXFwchBGJiYhAREQFbW1v4+/ujQ4cOiI+PN+qclpjb29sbPXv2BAA4OzsjMDAQGo3GojMDQHZ2Ng4dOoRJkyaZLGtL5y4tLcWpU6cMmW1tbeHq6mrRmYGbnyBXVlaipqYGlZWV8Pb2Nllma2WO691U+vfvDzc3N6ljGKWl65GpyGQyODk5AQBqampQU1Nj0dsptnS9tDb3UiulYkzmkJAQODg4AACCg4ORnZ0tRVQDY+vkmjVr8Nxzz8HOzk6ClLUZk3nbtm14+umnDXXV09NTiqgGxmSWyWQoLS0FAJSUlFjE63hjr00xMTGIioqCTCZDcHAwiouLkZOTY8aErBXmwlphHqwVf2q1TRCNRgO1Wm342sfHp84f2hqNBr6+vgAApVIJFxcXFBQUNHhbY85piblvl5GRgYsXL6JPnz4Wn3nlypV45ZVXIJe3zK9xS+ROT0+HSqXCkiVLEBUVhTfeeAPl5eUWndnHxwd//etfMXz4cAwaNAjOzs4YNGiQyTJbK3Nc761dS9QjU9LpdJg4cSIGDBiAAQMGWGxOoOXrpbW5l1oplabWnO3bt2PIkCHmiNYgYzInJiYiOzsbw4cPN3e8ehmTOTU1FSkpKXjiiSfw+OOP48iRI+aOWYsxmefMmYM9e/ZgyJAhmDVrFt58801zx2yyOx+XWq02++ssa4V5sFaYB2vFn1rtX0P1dWjv/BSvoWOa+n1Taonct5SVlWHu3Ll4/fXX4ezsbIK0d89jzDENff/gwYNQqVTo1auXyXLeqSVy19TUIDExEU8++SR27doFBwcHk64l0RKZi4qKEBMTg5iYGBw9ehQVFRXYvXu3yTJbK3Nc761ZS9UjU1IoFNi9ezcOHz6M+Ph4JCUlSR2pXuaol9bmXmqlVJqSZ/fu3UhISMBzzz3X0rHuqrHMer0eq1atwmuvvWbOWHdlzPOs0+lw7do1bNq0Ce+//z7efPNNFBcXmytiHcZk3rdvHx599FEcOXIE0dHRePXVV6HX680VsVks4RpkrTAP1grzYK34U6ttgqjV6lpDvzQaTZ3hPmq1GtevXwdwc7hzSUkJ3N3dG7ytMee0xNwAUF1djblz5yIyMhKjRo2y+MxnzpxBbGwswsLCsHDhQhw/fhyLFi2y+NxqtRpqtdrwifGYMWOQmJho0ZmPHTuGdu3aQaVSwcbGBqNGjTL5Yq7WyBzXe2vVkvWoJbi6uuKRRx6ps3CzpTBHvbQ291IrpWJszTl27Bg+/fRTrFu3Dra2tuaMWEdjmcvKypCUlIRp06YhLCwM586dw+zZsyVd8NCY59nHxwfh4eGwsbGBv78/AgICkJqaauakfzIm8/bt2zF27FgAwIMPPoiqqipJRysY487HlZ2dbfbXWdYK82CtMA/Wij+12iZIUFAQUlNTkZ6eDq1Wi3379iEsLKzWMWFhYfjuu+8AAD/99BNCQkIgk8kQFhaGffv2QavVIj09Hampqejdu7dR57TE3EIIvPHGGwgMDMSzzz5r0rwtlfnll1/GkSNHEBsbiw8++AAhISFYvXq1xef28vKCWq3G1atXAQBxcXHo1KmTRWf28/PD+fPnUVFRASGEyTNbK3Nc761RS9cjU8nPzzd8mlNZWYljx44hMDBQ4lT1M0e9tDb3UiulYkzmxMRELF26FOvWrZN87jnQeGYXFxecOHECsbGxiI2NRXBwMNatW4egoCCLzQwAI0aMwIkTJwDcrAWpqanw9/eXIi4A4zL7+voiLi4OAHDlyhVUVVVBpVJJEddoYWFh2LVrF4QQOHfuHFxcXMzeBGGtMA/WCvNgrbiNUUuy3qcOHTokRo0aJcLDw8Unn3wihBDiww8/FAcOHBBCCFFZWSn+/ve/ixEjRojHHntMpKWlGW77ySefiPDwcDFq1Chx6NChu57T0nOfOnVKdO3aVYwfP15MmDBBTJgwodZjssTMtzt+/HiL7XbQErkTExPFo48+KsaPHy9mz55tWDHakjOvWbNGjB49WkRERIhFixaJqqoqk2a2Vua43k1hwYIFYuDAgaJHjx5i8ODBht2JLJE56pEpXLx4UUycOFGMHz9eREREiLVr10odySgtWS+tzb3USqk0lnn69OkiNDTUcO288MILUsYVQjSe+XbPPPOM5Ds+CNF4Zr1eL1auXCnGjh0rxo8fL/bu3StlXCFE45kvX74spkyZIiIjI8WECRPE0aNHpYwrhKj/tWnr1q1i69atQoibz/Py5ctFeHi4GD9+vGS/G6wV5sFaYR6sFTfJhJBw+WIiIiIiIiIiIjNptdNhiIiIiIiIiKh1YROEiIiIiIiIiFoFNkGIiIiIiIiIqFVgE4SIiIiIiIiIWgU2QYiIiIiIiIioVWAThIiIiIiIiIhaBTZBqElOnDiBM2fOmORcO3fuxIoVKwAAa9euxeeffw4AWLNmDY4dO2aS+7ibDRs2oKKiotFsd7N//35069YNFy5cMHU8ohb11VdfYdeuXQ3+3JTXeks7ceIEXnjhBQC1r93GHqOp7Ny5ExqNptFsdxMfH48HHngA+/fvN3U8IiIiIrqNUuoAZB46nQ4KhcLwtRACQgjI5U3rg508eRKOjo546KGHjDq+pqYGSmXTfs3mzZvXpOOb68svv8SECRPg4ODQrNuXlpZi06ZN6NOnj4mTETVdU6/pJ5988q4/b+q13tKaU0sae4ym8t1336FLly7w8fFp1u11Oh1Wr16NQYMGmTgZEREREd2JTRArtGvXLnz++eeQyWTo1q0bFAoFhg0bhjFjxgAAHnzwQZw9exYnTpzARx99BG9vb1y8eBHR0dF4/vnn8cgjj+DcuXP4+OOPkZKSgrVr10Kr1cLf3x+rVq2Ck5MTwsLCEBUVhYMHD6KmpgYffvgh7Ozs8PXXX0Mul+P777/HW2+9hX79+tXJt3jxYri5uSExMRE9e/bEiy++iNdffx3p6elwcHDAihUr0L179wYf3+LFiw2Pp74cnTp1Qn5+Pl5++WUUFhYiKCgIR48exY4dO6BSqeqcr7y8HPPnz0d2djb0ej1eeukl5ObmIicnB9OnT4e7uzs2bdqEHTt2IDo6Gl5eXujYsSNsbW3v+u+wZs0aPPfcc/jiiy+a+C9IZBoZGRm1runp06fj66+/rnM9r169GrGxsVAoFBg0aBBee+01rF27Fo6Ojpg5cya+/PJLfP3111AoFOjcuTNefvnlOtd6cXEx1q1bh+rqari7u2P16tVo06YN1q5di6ysLGRkZCArKwvTp0/HtGnTANStVf/85z+Rn5+PZcuWISsrCwDw+uuvo2/fvvU+vrVr1yInJweZmZnw8PDAypUrsXz5ciQkJEChUGDx4sUICQlp8Pm5/TFOnToVvXv3xokTJ1BSUoJ33nkH/fr1Q0VFBRYvXoyrV6+iU6dOyMzMxNKlSxEUFFTnfDqdDm+88QYSEhIgk8nw2GOPQa1WIyEhAYsWLYK9vT2++eYbnDx5EitXroSHhwd69uzZ6L/jpk2bMHr0aI4oIyIiIjIDNkGszOXLl7Fu3Tp89dVXUKlUKCwsxLvvvtvg8RcuXMCePXvg7++PjIwMpKSkYNWqVVi+fDny8/Oxbt06rF+/Ho6OjoiOjsb69esxZ84cAICHhwe+++47bNmyBV988QXeeecdPPHEE4Y3FXeTmpqKDRs2QKFQ4O2330aPHj3wySefIC4uDq+99hp2795t9GOuL8dHH32EkJAQvPDCCzhy5Ai++eabBm9/9OhReHt7Izo6GgBQUlICFxcXbNiwARs3boRKpUJOTg7Wrl2LnTt3wtnZGdOmTUOPHj0aPGdiYiKys7MxfPhwNkFIUreu6blz5+Lvf/97nev5mWeewc8//4z9+/dDJpOhuLi4zjmio6MRGxsLW1tbFBcXw9XVtc61XlRUhG3btkEmk+Hbb7/FZ599hsWLFxsyfPnllygtLcXYsWPx5JNPIjU1tU6tAoB33nkH06dPR79+/ZCVlYWZM2fixx9/bPDx/f7779i6dSvs7e0N19qePXtw5coVzJw5Ez/99JPRz5VOp8P27dtx+PBhfPTRR9iwYQO2bt0KNzc37NmzB0lJSYiKimrw9hcvXoRGo8HevXsBwPBcbdmyBa+++iqCgoJQVVWFt956Cxs3bkSHDh0wf/78u2bSaDQ4cOAANm7cyCYIERERkRmwCWJljh8/jjFjxhhGPLi7u9/1+KCgIPj7+xu+9vPzQ3BwMADg/PnzSE5ONgwZr66uNvwMAEaNGgUA6NWrF37++ecm5RwzZoxh+s3p06exdu1aAEBoaCgKCwtRUlJi9Lnqy3H69Gl89NFHAIAhQ4bAzc2twdt37doV//M//4N//vOfGD58eL2jV+Lj4/Hwww8bntdx48YhNTW13vPp9XqsWrUKq1atMvoxELWUW9f0wYMH672enZ2dYWdnhzfeeAPDhg3DsGHD6pyjW7duWLRoEcLDwzFixIh67yc7OxsLFizAjRs3oNVq0a5dO8PPhg4dCltbW6hUKqhUKuTl5TVYq44dO4bk5GTDbUtLS1FaWgpnZ+d67zcsLAz29vYAbl73zzzzDACgU6dO8PPzQ0pKitHP1ciRIwEAPXv2RGZmpuGct0audO3aFd26dWvw9v7+/khPT8fbb7+NoUOH1jt95erVq2jXrh06duwIAJgwYQK2bdvW4DnfeecdLFq0qNZ0RSIiIiJqOWyCWBkhRJ3vKRQK6PV6w8+rq6sNP3N0dKx17O1fCyEwcOBAfPDBB/Xel42NDQBALpdDp9M1Keft62zUl1kmkxl9rvpy1HfOhgQEBGDnzp04fPgw3n//fQwcONAw2qU5mcrKypCUlGR443Tjxg3Mnj0b69atq3cIPVFLunVN3+163r59O+Li4rBv3z5s3rwZX375Za2fR0dH49SpU4iNjcUnn3yCffv21TnHP/7xD8yYMQPh4eGGqXa33D51TKFQoKampsFrVK/X45tvvjE0NhrTWC1pils5m1tL3NzcsHv3bvzyyy/YunUrfvzxx3qboU2pbwkJCVi4cCEAoKCgAIcPH4ZSqWywGUVERERE94a7w1iZ0NBQ7N+/HwUFBQCAwsJCtG3bFr///jsAICYmplYT5G6Cg4Nx5swZXLt2DQBQUVHR6KeqTk5OKCsra1Lm/v374/vvvwdwc6cEDw+PBj/1NVbfvn0NQ+h/+eUXFBUVNXisRqOBg4MDJk6ciJkzZyIxMRFA7cfSu3dvnDx5EgUFBaiurr7rDg0uLi44ceIEYmNjERsbi+DgYDZASHINXc9lZWUoKSnB0KFD8frrr+OPP/6odTu9Xo/r168jJCQEr7zyCkpKSlBeXl7nWi8pKTEs/GnMjiv11SoAGDRoEDZv3mw47uLFi0Y/xv79+2PPnj0Abk7BuX79OgIDA42+fX1uryXJyclISkpq8Nj8/HwIITB69GjMmzev3loSGBiIjIwMpKWlAUC9DaXb3aojsbGxGD16NJYtW8YGCBEREVEL4kgQK9OlSxe8+OKLmDp1KuRyOXr06IFFixbhpZdewqRJkxAaGlpn9EdDVCoVVq1ahYULF0Kr1QIA5s+fj4CAgAZvM3z4cMydOxcxMTENLox6pzlz5mDJkiWIjIyEg4PDXdcwMdacOXOwcOFC/Pjjj+jfvz+8vLwabKwkJSXhvffeg1wuh1KpxPLlywEAjz/+OJ5//nl4eXlh06ZNmDNnDp544gl4eXmhR48ehtE1RNagoevZyckJL730EqqqqgAAS5YsqXU7nU6HV155BaWlpRBCYMaMGXB1da1zrc+ZMwfz5s2Dj48P+vTpg4yMjLvmqa9Wvfvuu3jjjTewYsUKREZGQqfToV+/fkZtRw0ATz31FJYtW4bIyEgoFAqsWrWq0QWMjTnn4sWLERkZiR49eqBbt25wcXGp99icnBwsWbLEUBtujeB49NFHsWzZMsPCqCtWrMCsWbPg4eGBvn374vLly/eUkYiIiIhMRybudXwxkQS0Wq2hqXH27FksX768SYutEhEBN5tANTU1sLOzQ1paGmbMmIH9+/ffc3OFiIiIiCwTR4KQVcrKysL8+fOh1+thY2ODt99+W+pIRGSFKioqMG3aNMM6JsuWLWMDhIiIiOg+xpEg1Gzr1q2rs3bGmDFjMHv2bEnyFBQUYMaMGXW+v2HDBnh4eDTrnJb2GInuRzt27KizWOtDDz2EZcuWSZQImDx5smFa0S3vvffeXXePuRtLfIxERERErRGbIERERERERETUKnB3GCIiIiIiIiJqFdgEISIiIiIiIqJWgU0QIiIiIiIiImoV2AQhIiIiIiIiolbh/wOM7ZWg8+tJ9wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# plot a single engine's histograms\n", "# we will lood at vehicle_id 2 as it has 1+ failures\n", @@ -1674,17 +355,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Stored 'features_created_prm' (bool)\n" - ] - } - ], + "outputs": [], "source": [ "# remove features used for one-hot encoding the categorical features including make, model, engine_type and vehicle_class\n", "features = fleet_lagged.drop(columns=[\"make\", \"model\", \"year\", \"vehicle_class\", \"engine_type\"])\n", @@ -1695,7 +368,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1758,7 +431,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1773,20 +446,9 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Total Observations: 9000\n", - "Number of observations in the training data: 7200\n", - "Number of observations in the test data: 900\n", - "Number of observations in the validation data: 900\n" - ] - } - ], + "outputs": [], "source": [ "print(\"Total Observations: \", len(ordered))\n", "print(\"Number of observations in the training data:\", len(train))\n", @@ -1800,12 +462,12 @@ "source": [ "#### Converting data to the appropriate format for Estimator\n", "\n", - "Amazon SageMaker implementation of Linear Learner takes either csv format or recordIO-wrapped protobuf. We will start by scaling the features and saving the data files to csv format. Then, we will upload the data to S3. If you are using your own data, and it is too large to fit in memory, protobuf might be a better option than csv. Refer to the SageMaker's Developer's Guide for [more information on data formats for training](https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html)." + "Amazon SageMaker implementation of Linear Learner takes either csv format or recordIO-wrapped protobuf. We will start by scaling the features and saving the data files to csv format. Then, we will save the data to file. If you are using your own data, and it is too large to fit in memory, protobuf might be a better option than csv. Refer to the SageMaker's Developer's Guide for [more information on data formats for training](https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html)." ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1815,86 +477,12 @@ "scaler = preprocessing.MinMaxScaler(feature_range=(0.0, 1.0))\n", "train = pd.DataFrame(scaler.fit_transform(train))\n", "test = pd.DataFrame(scaler.transform(test))\n", - "val = pd.DataFrame(scaler.transform(val))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Add in a helper function that uploads the converted data to S3. " - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "# helper function for converting data to csv(necessary for Linear Learner) and upload to S3\n", - "def upload_file_to_bucket(df, bucket, prefix, file_path):\n", - " file_dir, file_name = os.path.split(file_path)\n", - " df.to_csv(file_name, header=False, index=False)\n", - " boto3.resource(\"s3\").meta.client.upload_file(\n", - " Filename=file_path, Bucket=bucket, Key=(prefix + \"/\" + file_name)\n", - " )\n", - " print(f\"uploaded {prefix} data location: s3://{bucket}/{prefix}/{file_name}\")\n", - " path_to_data = f\"s3://{bucket}/{prefix}/{file_name}\"\n", - " return path_to_data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# convert and upload to S3\n", - "path_to_train_data_prm = upload_file_to_bucket(train, bucket, \"train\", \"train.csv\")\n", - "path_to_test_data_prm = upload_file_to_bucket(test, bucket, \"test\", \"test.csv\")\n", - "path_to_test_x_data_prm = upload_file_to_bucket(test.loc[:, 1:], bucket, \"test\", \"test_x.csv\")\n", - "path_to_valid_data_prm = upload_file_to_bucket(val, bucket, \"validation\", \"validation.csv\")\n", + "val = pd.DataFrame(scaler.transform(val))\n", "\n", - "# let's also setup an output S3 location for the model artifact that will be output as the result of training with the algorithm.\n", - "output_location = f\"s3://{bucket}/output\"\n", - "print(\"training artifacts will be uploaded to: {}\".format(output_location))\n", - "\n", - "%store path_to_train_data_prm\n", - "%store path_to_test_data_prm\n", - "%store path_to_test_x_data_prm\n", - "%store path_to_valid_data_prm" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Stored 'data_channels' (dict)\n" - ] - } - ], - "source": [ - "from sagemaker.inputs import TrainingInput\n", - "\n", - "train_channel = TrainingInput(path_to_train_data_prm, content_type=\"text/csv\")\n", - "test_channel = TrainingInput(path_to_test_data_prm, content_type=\"text/csv\")\n", - "test_x_channel = TrainingInput(path_to_test_x_data_prm, content_type=\"text/csv\")\n", - "valid_channel = TrainingInput(path_to_valid_data_prm, content_type=\"text/csv\")\n", - "\n", - "data_channels = {\"train\": train_channel, \"validation\": valid_channel}\n", - "%store data_channels" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, the data has been cleaned, preprocessed and features have been created. We have also stored the data in S3, so you are able to pick the notebook up starting from the *Train* section below without running the above again. " + "train.to_csv(\"train.csv\", header=False, index=False)\n", + "test.to_csv(\"test.csv\", header=False, index=False)\n", + "test.loc[:, 1:].to_csv(\"test_x.csv\", header=False, index=False)\n", + "val.to_csv(\"validation.csv\", header=False, index=False)" ] }, { @@ -1908,13 +496,6 @@ "\n", "Once you have selected some models that you would like to try out, SageMaker Experiments can be a great tool to track and compare all of the models before selecting the best model to deploy. We will set up an experiment using SageMaker experiments to track all the model training iterations for the Linear Learner Estimator we will try. You can read more about [SageMaker Experiments](https://docs.aws.amazon.com/sagemaker/latest/dg/experiments.html) to learn about experiment features, tracking and comparing outputs. " ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb index f76dc1e861..57374e182a 100644 --- a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb +++ b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb @@ -4,21 +4,39 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Fleet Predictive Maintenance: Part 4. Training, Hyperparameter Tuning, and Prediction\n", + "# Fleet Predictive Maintenance: Part 3. Training, Hyperparameter Tuning, and Prediction\n", "\n", - "1. [Architecure](0_usecase_and_architecture_predmaint.ipynb#0_Architecture)\n", + "*Using SageMaker Studio to Predict Fault Classification*\n", + "\n", + " \n", + "## Background\n", + "\n", + "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on training, tuning, and deploying a model. It is the third notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. \n", "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)\n", - "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)" + "1. [**Train, Tune and Predict using Batch Transform**](./3_train_tune_predict_predmaint.ipynb) (current notebook)\n", + "\n", + "## Important Notes: \n", + "\n", + "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", + "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", + "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### View stored variables from previous session\n", + "---\n", + " \n", + "## Set up\n", + "\n", + "Let's start by:\n", "\n", - "If you ran this notebook before, you may want to re-use the resources you aready created with AWS. Run the cell below to load any prevously created variables. You should see a print-out of the existing variables. If you don't see anything you may need to create them again or it may be your first time running this notebook." + "* Install and Import any dependencies\n", + "* Instatiate SageMaker session\n", + "* Specifying the S3 bucket and prefix that you want to use for your training and model data. This should be within the same region as SageMaker training\n", + "* Define the IAM role used to give training access to your data" ] }, { @@ -26,23 +44,6 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "%store -r\n", - "%store" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note : dw_output_path_prm should appear above as a stored (restored) variable, whose value was set when you ran notebook 1_datapred_predmaint.ipynb" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], "source": [ "# Install any missing dependencies\n", "!pip install -qU 'sagemaker-experiments==0.1.24' 'sagemaker>=2.16.1' 'boto3' 'awswrangler'" @@ -50,7 +51,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -85,6 +86,71 @@ "prefix_prm = \"predmaint\" # place to upload training files within the bucket" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before training, we must first upload our data in S3. To see how the existing train, test, and validation datasets were generated, take a look at [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb) followed by [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# helper function for converting data to csv(necessary for Linear Learner) and upload to S3\n", + "def upload_file_to_bucket(bucket, prefix, file_path):\n", + " file_dir, file_name = os.path.split(file_path)\n", + " df = pd.read_csv(file_path)\n", + " boto3.resource(\"s3\").meta.client.upload_file(\n", + " Filename=file_path, Bucket=bucket, Key=(prefix + \"/\" + file_name)\n", + " )\n", + " print(f\"uploaded {prefix} data location: s3://{bucket}/{prefix}/{file_name}\")\n", + " path_to_data = f\"s3://{bucket}/{prefix}/{file_name}\"\n", + " return path_to_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# convert and upload to S3\n", + "path_to_train_data_prm = upload_file_to_bucket(bucket, \"train\", \"train.csv\")\n", + "path_to_test_data_prm = upload_file_to_bucket(bucket, \"test\", \"test.csv\")\n", + "path_to_test_x_data_prm = upload_file_to_bucket(bucket, \"test\", \"test_x.csv\")\n", + "path_to_valid_data_prm = upload_file_to_bucket(bucket, \"validation\", \"validation.csv\")\n", + "\n", + "# let's also setup an output S3 location for the model artifact that will be output as the result of training with the algorithm.\n", + "output_location = f\"s3://{bucket}/output\"\n", + "print(\"training artifacts will be uploaded to: {}\".format(output_location))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sagemaker.inputs import TrainingInput\n", + "\n", + "train_channel = TrainingInput(path_to_train_data_prm, content_type=\"text/csv\")\n", + "test_channel = TrainingInput(path_to_test_data_prm, content_type=\"text/csv\")\n", + "test_x_channel = TrainingInput(path_to_test_x_data_prm, content_type=\"text/csv\")\n", + "valid_channel = TrainingInput(path_to_valid_data_prm, content_type=\"text/csv\")\n", + "\n", + "data_channels = {\"train\": train_channel, \"validation\": valid_channel}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The data is stored in S3 and is ready for use in the estimators." + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -99,7 +165,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -115,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -143,7 +209,6 @@ "source": [ "# create the experiment\n", "experiment_name = f\"ll-failure-classification-{create_date}\"\n", - "%store experiment_name\n", "\n", "try:\n", " my_experiment = Experiment.load(experiment_name=experiment_name)\n", @@ -168,7 +233,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -428,169 +493,9 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
TrialComponentNameDisplayNamepositive_example_weight_multvalidation:recall - Avgvalidation:binary_classification_accuracy - Avgvalidation:roc_auc_score - Avgtrain:objective_loss - Avgvalidation:objective_loss:final - Avgvalidation:objective_loss - Avgvalidation:binary_f_beta - Avgvalidation:precision - AvgTrialsExperiments
2linear-learner-2021-04-07-15-32-16-116-aws-tra...ll-svm-training-jobNaN0.4897960.8477780.7268230.2154800.2304290.2443500.5835870.721805[linear-learner-svm-2021-04-07-15-16-22][ll-failure-classification-2021-04-07-15-16-22]
3linear-learner-2021-04-07-15-27-01-989-aws-tra...ll-lr-training-jobNaN0.5816330.8422220.7848950.4227240.4542410.4636270.6162160.655172[linear-learner-lr-training-job-2021-04-07-15-...[ll-failure-classification-2021-04-07-15-16-22]
0linear-learner-2021-04-07-15-42-43-638-aws-tra...ll-svm-bal-training-jobbalanced0.3520410.8300000.7774520.5312801.5522680.5743140.4742270.726316[linear-learner-svm-balanced-2021-04-07-15-16-22][ll-failure-classification-2021-04-07-15-16-22]
1linear-learner-2021-04-07-15-37-30-147-aws-tra...ll-svm-thresh-training-jobNaN0.6428570.8200000.7335920.2154800.2292300.2443500.6086960.577982[linear-learner-svm-thresh-2021-04-07-15-16-22][ll-failure-classification-2021-04-07-15-16-22]
\n", - "
" - ], - "text/plain": [ - " TrialComponentName \\\n", - "2 linear-learner-2021-04-07-15-32-16-116-aws-tra... \n", - "3 linear-learner-2021-04-07-15-27-01-989-aws-tra... \n", - "0 linear-learner-2021-04-07-15-42-43-638-aws-tra... \n", - "1 linear-learner-2021-04-07-15-37-30-147-aws-tra... \n", - "\n", - " DisplayName positive_example_weight_mult \\\n", - "2 ll-svm-training-job NaN \n", - "3 ll-lr-training-job NaN \n", - "0 ll-svm-bal-training-job balanced \n", - "1 ll-svm-thresh-training-job NaN \n", - "\n", - " validation:recall - Avg validation:binary_classification_accuracy - Avg \\\n", - "2 0.489796 0.847778 \n", - "3 0.581633 0.842222 \n", - "0 0.352041 0.830000 \n", - "1 0.642857 0.820000 \n", - "\n", - " validation:roc_auc_score - Avg train:objective_loss - Avg \\\n", - "2 0.726823 0.215480 \n", - "3 0.784895 0.422724 \n", - "0 0.777452 0.531280 \n", - "1 0.733592 0.215480 \n", - "\n", - " validation:objective_loss:final - Avg validation:objective_loss - Avg \\\n", - "2 0.230429 0.244350 \n", - "3 0.454241 0.463627 \n", - "0 1.552268 0.574314 \n", - "1 0.229230 0.244350 \n", - "\n", - " validation:binary_f_beta - Avg validation:precision - Avg \\\n", - "2 0.583587 0.721805 \n", - "3 0.616216 0.655172 \n", - "0 0.474227 0.726316 \n", - "1 0.608696 0.577982 \n", - "\n", - " Trials \\\n", - "2 [linear-learner-svm-2021-04-07-15-16-22] \n", - "3 [linear-learner-lr-training-job-2021-04-07-15-... \n", - "0 [linear-learner-svm-balanced-2021-04-07-15-16-22] \n", - "1 [linear-learner-svm-thresh-2021-04-07-15-16-22] \n", - "\n", - " Experiments \n", - "2 [ll-failure-classification-2021-04-07-15-16-22] \n", - "3 [ll-failure-classification-2021-04-07-15-16-22] \n", - "0 [ll-failure-classification-2021-04-07-15-16-22] \n", - "1 [ll-failure-classification-2021-04-07-15-16-22] " - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# first we can look at all the trials together to evaluate the performance\n", "trial_component_analytics = ExperimentAnalytics(experiment_name=my_experiment.experiment_name)\n", @@ -634,7 +539,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -670,7 +575,7 @@ "In this example, we are using SageMaker Python SDK to set up and manage the hyperparameter tuning job. We first configure the training jobs the hyperparameter tuning job will launch by initiating an estimator, which includes the following configuration:\n", "\n", "* hyperparameters that SageMaker Automatic Model Tuning will tune: `learning_rate` \n", - "* the maximum number of training jobs it will run to optimize the objective metric: 20\n", + "* the maximum number of training jobs it will run to optimize the objective metric: 5\n", "* the number of parallel training jobs that will run in the tuning job: 2\n", "* the objective metric that Automatic Model Tuning will use: validation:accuracy\n", "\n", @@ -681,7 +586,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -691,7 +596,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -732,13 +637,14 @@ " estimator=svm_tune, # previously-configured Estimator object\n", " objective_metric_name=\"validation:binary_classification_accuracy\",\n", " hyperparameter_ranges=hyperparameter_ranges,\n", - " max_jobs=20,\n", + " max_jobs=5,\n", " max_parallel_jobs=2,\n", " strategy=\"Random\",\n", + " base_tuning_job_name=prm_tuning_job_name\n", " )\n", "\n", " # start hyperparameter tuning job\n", - " my_tuner.fit(inputs=data_channels, include_cls_metadata=False, job_name=prm_tuning_job_name)\n", + " my_tuner.fit(inputs=data_channels, include_cls_metadata=False)\n", " print(f\"Create tuning job {prm_tuning_job_name}: SUCCESSFUL\")\n", "except ClientError as e:\n", " if \"ResourceInUse\" in str(e):\n", @@ -748,20 +654,9 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Completed'" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# check status\n", "boto3.client(\"sagemaker\").describe_hyper_parameter_tuning_job(\n", @@ -771,7 +666,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -782,19 +677,9 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 10 tuning jobs.\n", - "Stored 'tune_trial_name' (str)\n", - "Associate all training jobs created by ll-svm-tuning-job with trial ll-svm-tuning-job-trial\n" - ] - } - ], + "outputs": [], "source": [ "# get the most recently created tuning jobs\n", "list_tuning_jobs_response = smclient.list_hyper_parameter_tuning_jobs(\n", @@ -852,17 +737,9 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 20 trial components.\n" - ] - } - ], + "outputs": [], "source": [ "import time\n", "from datetime import datetime, timezone\n", @@ -915,317 +792,9 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
learning_rateTrainingJobNameTrainingJobStatusFinalObjectiveValueTrainingStartTimeTrainingEndTimeTrainingElapsedTimeSeconds
00.094162ll-svm-tuning-job-020-de38493cCompleted0.8077782021-03-16 02:48:13+00:002021-03-16 02:49:25+00:0072.0
10.018556ll-svm-tuning-job-019-b5e9ee8dCompleted0.8177782021-03-16 02:48:17+00:002021-03-16 02:49:38+00:0081.0
20.108048ll-svm-tuning-job-018-e720402bCompleted0.8033332021-03-16 02:44:49+00:002021-03-16 02:46:02+00:0073.0
30.105569ll-svm-tuning-job-017-ee995315Completed0.7988892021-03-16 02:43:54+00:002021-03-16 02:45:16+00:0082.0
40.256796ll-svm-tuning-job-016-f023d0fbCompleted0.7922222021-03-16 02:40:53+00:002021-03-16 02:42:17+00:0084.0
50.368504ll-svm-tuning-job-015-e97dc476Completed0.8100002021-03-16 02:39:49+00:002021-03-16 02:41:15+00:0086.0
60.018072ll-svm-tuning-job-014-fcf45964Completed0.8222222021-03-16 02:36:51+00:002021-03-16 02:38:03+00:0072.0
70.234124ll-svm-tuning-job-013-a1f86f0fCompleted0.8377782021-03-16 02:35:57+00:002021-03-16 02:37:24+00:0087.0
80.027784ll-svm-tuning-job-012-e5277482Completed0.8355562021-03-16 02:33:05+00:002021-03-16 02:34:08+00:0063.0
90.187483ll-svm-tuning-job-011-cc73e5e8Completed0.8266672021-03-16 02:32:16+00:002021-03-16 02:33:26+00:0070.0
100.099079ll-svm-tuning-job-010-07005361Completed0.7977782021-03-16 02:29:00+00:002021-03-16 02:30:17+00:0077.0
110.017746ll-svm-tuning-job-009-e77521ffCompleted0.8166672021-03-16 02:28:39+00:002021-03-16 02:29:47+00:0068.0
120.020755ll-svm-tuning-job-008-6ed6082eCompleted0.8466672021-03-16 02:25:19+00:002021-03-16 02:26:12+00:0053.0
130.048608ll-svm-tuning-job-007-692a0a7dCompleted0.7977782021-03-16 02:24:51+00:002021-03-16 02:26:38+00:00107.0
140.027099ll-svm-tuning-job-006-99d391aaCompleted0.8166672021-03-16 02:20:51+00:002021-03-16 02:21:53+00:0062.0
150.282473ll-svm-tuning-job-005-06ecccfaCompleted0.7955562021-03-16 02:20:34+00:002021-03-16 02:22:21+00:00107.0
160.026969ll-svm-tuning-job-004-329ec538Completed0.8088892021-03-16 02:16:39+00:002021-03-16 02:17:53+00:0074.0
170.010212ll-svm-tuning-job-003-a889d04cCompleted0.8455562021-03-16 02:16:56+00:002021-03-16 02:17:46+00:0050.0
180.051641ll-svm-tuning-job-002-9f9f727bCompleted0.8244442021-03-16 02:12:43+00:002021-03-16 02:14:05+00:0082.0
190.022299ll-svm-tuning-job-001-1694f3c9Completed0.8277782021-03-16 02:13:00+00:002021-03-16 02:14:03+00:0063.0
\n", - "
" - ], - "text/plain": [ - " learning_rate TrainingJobName TrainingJobStatus \\\n", - "0 0.094162 ll-svm-tuning-job-020-de38493c Completed \n", - "1 0.018556 ll-svm-tuning-job-019-b5e9ee8d Completed \n", - "2 0.108048 ll-svm-tuning-job-018-e720402b Completed \n", - "3 0.105569 ll-svm-tuning-job-017-ee995315 Completed \n", - "4 0.256796 ll-svm-tuning-job-016-f023d0fb Completed \n", - "5 0.368504 ll-svm-tuning-job-015-e97dc476 Completed \n", - "6 0.018072 ll-svm-tuning-job-014-fcf45964 Completed \n", - "7 0.234124 ll-svm-tuning-job-013-a1f86f0f Completed \n", - "8 0.027784 ll-svm-tuning-job-012-e5277482 Completed \n", - "9 0.187483 ll-svm-tuning-job-011-cc73e5e8 Completed \n", - "10 0.099079 ll-svm-tuning-job-010-07005361 Completed \n", - "11 0.017746 ll-svm-tuning-job-009-e77521ff Completed \n", - "12 0.020755 ll-svm-tuning-job-008-6ed6082e Completed \n", - "13 0.048608 ll-svm-tuning-job-007-692a0a7d Completed \n", - "14 0.027099 ll-svm-tuning-job-006-99d391aa Completed \n", - "15 0.282473 ll-svm-tuning-job-005-06ecccfa Completed \n", - "16 0.026969 ll-svm-tuning-job-004-329ec538 Completed \n", - "17 0.010212 ll-svm-tuning-job-003-a889d04c Completed \n", - "18 0.051641 ll-svm-tuning-job-002-9f9f727b Completed \n", - "19 0.022299 ll-svm-tuning-job-001-1694f3c9 Completed \n", - "\n", - " FinalObjectiveValue TrainingStartTime TrainingEndTime \\\n", - "0 0.807778 2021-03-16 02:48:13+00:00 2021-03-16 02:49:25+00:00 \n", - "1 0.817778 2021-03-16 02:48:17+00:00 2021-03-16 02:49:38+00:00 \n", - "2 0.803333 2021-03-16 02:44:49+00:00 2021-03-16 02:46:02+00:00 \n", - "3 0.798889 2021-03-16 02:43:54+00:00 2021-03-16 02:45:16+00:00 \n", - "4 0.792222 2021-03-16 02:40:53+00:00 2021-03-16 02:42:17+00:00 \n", - "5 0.810000 2021-03-16 02:39:49+00:00 2021-03-16 02:41:15+00:00 \n", - "6 0.822222 2021-03-16 02:36:51+00:00 2021-03-16 02:38:03+00:00 \n", - "7 0.837778 2021-03-16 02:35:57+00:00 2021-03-16 02:37:24+00:00 \n", - "8 0.835556 2021-03-16 02:33:05+00:00 2021-03-16 02:34:08+00:00 \n", - "9 0.826667 2021-03-16 02:32:16+00:00 2021-03-16 02:33:26+00:00 \n", - "10 0.797778 2021-03-16 02:29:00+00:00 2021-03-16 02:30:17+00:00 \n", - "11 0.816667 2021-03-16 02:28:39+00:00 2021-03-16 02:29:47+00:00 \n", - "12 0.846667 2021-03-16 02:25:19+00:00 2021-03-16 02:26:12+00:00 \n", - "13 0.797778 2021-03-16 02:24:51+00:00 2021-03-16 02:26:38+00:00 \n", - "14 0.816667 2021-03-16 02:20:51+00:00 2021-03-16 02:21:53+00:00 \n", - "15 0.795556 2021-03-16 02:20:34+00:00 2021-03-16 02:22:21+00:00 \n", - "16 0.808889 2021-03-16 02:16:39+00:00 2021-03-16 02:17:53+00:00 \n", - "17 0.845556 2021-03-16 02:16:56+00:00 2021-03-16 02:17:46+00:00 \n", - "18 0.824444 2021-03-16 02:12:43+00:00 2021-03-16 02:14:05+00:00 \n", - "19 0.827778 2021-03-16 02:13:00+00:00 2021-03-16 02:14:03+00:00 \n", - "\n", - " TrainingElapsedTimeSeconds \n", - "0 72.0 \n", - "1 81.0 \n", - "2 73.0 \n", - "3 82.0 \n", - "4 84.0 \n", - "5 86.0 \n", - "6 72.0 \n", - "7 87.0 \n", - "8 63.0 \n", - "9 70.0 \n", - "10 77.0 \n", - "11 68.0 \n", - "12 53.0 \n", - "13 107.0 \n", - "14 62.0 \n", - "15 107.0 \n", - "16 74.0 \n", - "17 50.0 \n", - "18 82.0 \n", - "19 63.0 " - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# here is the output of all of the hyperparameter tuning trial runs\n", "tuning_analytics.dataframe()" @@ -1402,7 +971,8 @@ "source": [ "def delete_endpoint(predictor):\n", " try:\n", - " boto3.client(\"sagemaker\").delete_endpoint(EndpointName=predictor.endpoint)\n", + " predictor.delete_model()\n", + " predictor.delete_endpoint()\n", " print(\"Deleted {}\".format(predictor.endpoint))\n", " except:\n", " print(\"Already deleted: {}\".format(predictor.endpoint))" From 97e2ba7b2737d51ec93fe40b20da6fe2034bc54f Mon Sep 17 00:00:00 2001 From: EC2 Default User Date: Fri, 29 Apr 2022 10:23:55 +0000 Subject: [PATCH 02/16] fix AioClientCreator error --- .../predictive_maintenance/3_train_tune_predict_predmaint.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb index 57374e182a..d63c21e2af 100644 --- a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb +++ b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb @@ -949,7 +949,7 @@ "outputs": [], "source": [ "# call evaluation function and inspect results\n", - "test = pd.read_csv(path_to_test_data_prm, header=None)\n", + "test = pd.read_csv(\"test.csv\", header=None)\n", "test_y = test[0]\n", "evaluate_model(\"test_x.csv.out\", test_y, \"PrM-Classification-SVM\", metrics=True)" ] From 4fca858912d1941bcfd141ec81a676fa8cd6e59d Mon Sep 17 00:00:00 2001 From: EC2 Default User Date: Fri, 29 Apr 2022 17:19:15 +0000 Subject: [PATCH 03/16] change data wrnagler container --- .../1_dataprep_dw_job_predmaint.ipynb | 21 ++++++------------- .../predictive_maintenance/demo_helpers.py | 14 +------------ 2 files changed, 7 insertions(+), 28 deletions(-) diff --git a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb index d7c6da2f9b..dea76cce35 100644 --- a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb +++ b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb @@ -47,13 +47,8 @@ "metadata": {}, "outputs": [], "source": [ - "# SageMaker Python SDK version 2.x is required\n", - "import pkg_resources\n", - "import subprocess\n", - "import sys\n", - "\n", - "original_version = pkg_resources.get_distribution(\"sagemaker\").version\n", - "_ = subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"sagemaker==2.20.0\"])" + "# Upgrade SageMkaer to the latest version\n", + "! pip install --upgrade sagemaker" ] }, { @@ -99,10 +94,6 @@ "\n", "iam_role = sagemaker.get_execution_role()\n", "\n", - "container_uri = (\n", - " \"415577184552.dkr.ecr.us-east-2.amazonaws.com/sagemaker-data-wrangler-container:1.2.1\"\n", - ")\n", - "\n", "# Processing Job Resources Configurations\n", "# Data wrangler processing job only supports 1 instance.\n", "instance_count = 1\n", @@ -140,14 +131,14 @@ "metadata": {}, "outputs": [], "source": [ - "from demo_helpers import update_dw_s3uri, get_dw_container_for_region\n", + "from demo_helpers import update_dw_s3uri\n", "\n", "# update the flow file to change the s3 location to our bucket\n", "update_dw_s3uri(flow_file_name)\n", "\n", "# get the Data Wrangler container associated with our region\n", "region = boto3.Session().region_name\n", - "container_uri = get_dw_container_for_region(region)\n", + "container_uri = sagemaker.image_uris.retrieve(\"data-wrangler\", sagemaker.Session().boto_region_name, version=\"1.0.1\")\n", "\n", "dw_output_path_prm = output_path\n", "print(\n", @@ -355,7 +346,7 @@ "\n", "[contents](#2_Contents)\n", "\n", - "For the initial data preparation and exploration, we will utilize SageMaker's new feature, Data Wrangler, to load data and do some data transformations. In the Data Wrangler GUI, we will perform the following steps. Note that because this data is generated, the data is relatively clean and there are few data cleaning steps needed. \n", + "For the initial data preparation and exploration, we will utilize SageMaker's new feature, Data Wrangler, to load data and do some data transformations. In the Data Wrangler GUI, we will perform the following steps. Note that because this data is generated, the data is relatively clean and there are few data cleaning steps needed. After completing these steps, you can uncomment and run the code below to inspect your cleaned data.\n", "1. Load fleet sensor logs data from S3\n", "1. Load fleet details data from S3\n", "1. Change column data types \n", @@ -369,7 +360,7 @@ "\n", "\n", "\n", - "For our purposes, we will download the final clened data set from S3 into our SageMaker Studio instance, but for more information on how to load and preprocess tabular data follow this link: [Tabular Preprocessing Blog]().\n", + "For our purposes, we will download the final cleaned data set from S3 into our SageMaker Studio instance, but for more information on how to load and preprocess tabular data follow this link: [Tabular Preprocessing Blog]().\n", "For additional information on preprocessing for PrM, please refer to this blog, [On the relevance of preprocessing in predictive\n", "maintenance for dynamic systems](https://bird.bcamath.org/bitstream/handle/20.500.11824/892/CernudaPREDICT2018S16.pdf?sequence=1&isAllowed=y)." ] diff --git a/use-cases/predictive_maintenance/demo_helpers.py b/use-cases/predictive_maintenance/demo_helpers.py index 022482ba31..a5aee6dafc 100644 --- a/use-cases/predictive_maintenance/demo_helpers.py +++ b/use-cases/predictive_maintenance/demo_helpers.py @@ -55,16 +55,4 @@ def update_dw_s3uri(flow_file_name): with open(flow_file_name, "w") as f: json.dump(flow, f) - - -dw_container_dict = { - "us-east-2": "415577184552.dkr.ecr.us-east-2.amazonaws.com/sagemaker-data-wrangler-container:1.0.1" -} - - -def get_dw_container_for_region(region_in): - """ - Get the Data Wrangler container based on the given region - """ - container_uri = dw_container_dict[region_in] - return container_uri + \ No newline at end of file From 3322e7d0c54697b45d331f8d767318262d8fbf19 Mon Sep 17 00:00:00 2001 From: atqy Date: Fri, 29 Apr 2022 18:22:33 +0000 Subject: [PATCH 04/16] edit rst --- use-cases/index.rst | 1 - 1 file changed, 1 deletion(-) diff --git a/use-cases/index.rst b/use-cases/index.rst index 5f406a8668..b2493c5394 100644 --- a/use-cases/index.rst +++ b/use-cases/index.rst @@ -15,7 +15,6 @@ Fleet Predictive Maintenance .. toctree:: :maxdepth: 1 - predictive_maintenance/0_usecase_and_architecture_predmaint predictive_maintenance/1_dataprep_dw_job_predmaint predictive_maintenance/2_dataprep_predmaint predictive_maintenance/3_train_tune_predict_predmaint From c6831ac49e6aac5c23a9c6b0f7d3a32ee37e022a Mon Sep 17 00:00:00 2001 From: atqy Date: Fri, 29 Apr 2022 12:29:01 -0700 Subject: [PATCH 05/16] reformat --- .../predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb | 4 +++- use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb | 2 +- .../3_train_tune_predict_predmaint.ipynb | 4 ++-- 3 files changed, 6 insertions(+), 4 deletions(-) diff --git a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb index dea76cce35..60b491a692 100644 --- a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb +++ b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb @@ -138,7 +138,9 @@ "\n", "# get the Data Wrangler container associated with our region\n", "region = boto3.Session().region_name\n", - "container_uri = sagemaker.image_uris.retrieve(\"data-wrangler\", sagemaker.Session().boto_region_name, version=\"1.0.1\")\n", + "container_uri = sagemaker.image_uris.retrieve(\n", + " \"data-wrangler\", sagemaker.Session().boto_region_name, version=\"1.0.1\"\n", + ")\n", "\n", "dw_output_path_prm = output_path\n", "print(\n", diff --git a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb index fac26a0e4e..2ba1023b0c 100644 --- a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb +++ b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb @@ -137,7 +137,7 @@ "metadata": {}, "outputs": [], "source": [ - "fleet = pd.read_csv('fleet_data.csv')" + "fleet = pd.read_csv(\"fleet_data.csv\")" ] }, { diff --git a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb index d63c21e2af..6355c48eff 100644 --- a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb +++ b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb @@ -125,7 +125,7 @@ "\n", "# let's also setup an output S3 location for the model artifact that will be output as the result of training with the algorithm.\n", "output_location = f\"s3://{bucket}/output\"\n", - "print(\"training artifacts will be uploaded to: {}\".format(output_location))\n" + "print(\"training artifacts will be uploaded to: {}\".format(output_location))" ] }, { @@ -640,7 +640,7 @@ " max_jobs=5,\n", " max_parallel_jobs=2,\n", " strategy=\"Random\",\n", - " base_tuning_job_name=prm_tuning_job_name\n", + " base_tuning_job_name=prm_tuning_job_name,\n", " )\n", "\n", " # start hyperparameter tuning job\n", From 0e87f4ba521aaab4f731d289414734fbd3266bea Mon Sep 17 00:00:00 2001 From: atqy Date: Fri, 29 Apr 2022 20:57:31 +0000 Subject: [PATCH 06/16] fix background header rendering --- .../1_dataprep_dw_job_predmaint.ipynb | 10 +++++++--- .../2_dataprep_predmaint.ipynb | 12 ++++++++---- .../3_train_tune_predict_predmaint.ipynb | 12 ++++++++---- 3 files changed, 23 insertions(+), 11 deletions(-) diff --git a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb index dea76cce35..a1492fa0c6 100644 --- a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb +++ b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb @@ -6,9 +6,13 @@ "source": [ "# Fleet Predictive Maintenance: Part 1. Data Preparation with Data Wrangler\n", "\n", - "*Using SageMaker Studio to Predict Fault Classification*\n", - "\n", - " \n", + "*Using SageMaker Studio to Predict Fault Classification*\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## Background\n", "\n", "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on preprocessing engine sensor data. It is the first notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. \n", diff --git a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb index fac26a0e4e..8d7ed1ad6b 100644 --- a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb +++ b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb @@ -6,9 +6,13 @@ "source": [ "# Fleet Predictive Maintenance: Part 2. Feature Engineering and Exploratory Data Visualization\n", "\n", - "*Using SageMaker Studio to Predict Fault Classification*\n", - "\n", - " \n", + "*Using SageMaker Studio to Predict Fault Classification*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## Background\n", "\n", "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on feature engineering. It is the second notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. \n", @@ -20,7 +24,7 @@ "\n", "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", - "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n" + "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder" ] }, { diff --git a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb index d63c21e2af..e655f2e5bc 100644 --- a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb +++ b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb @@ -6,9 +6,13 @@ "source": [ "# Fleet Predictive Maintenance: Part 3. Training, Hyperparameter Tuning, and Prediction\n", "\n", - "*Using SageMaker Studio to Predict Fault Classification*\n", - "\n", - " \n", + "*Using SageMaker Studio to Predict Fault Classification*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## Background\n", "\n", "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on training, tuning, and deploying a model. It is the third notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. \n", @@ -20,7 +24,7 @@ "\n", "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", - "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n" + "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder" ] }, { From 201d5cf6636cc4a19b34521f99eb9c70c3292e8e Mon Sep 17 00:00:00 2001 From: atqy Date: Fri, 29 Apr 2022 21:37:57 +0000 Subject: [PATCH 07/16] fix menu display --- .../1_dataprep_dw_job_predmaint.ipynb | 21 ++++++++++++++----- .../2_dataprep_predmaint.ipynb | 19 +++++++++++++---- .../3_train_tune_predict_predmaint.ipynb | 21 ++++++++++++++----- 3 files changed, 47 insertions(+), 14 deletions(-) diff --git a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb index d5615d44ec..8847545fac 100644 --- a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb +++ b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb @@ -15,16 +15,27 @@ "source": [ "## Background\n", "\n", - "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on preprocessing engine sensor data. It is the first notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. \n", - "1. [**Data Prep: Processing Job from Data Wrangler Output**](./1_dataprep_dw_job_predmaint.ipynb) (current notebook)\n", + "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on preprocessing engine sensor data. It is the first notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb) (current notebook)\n", "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)\n", - "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)\n", - "\n", + "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## Important Notes: \n", "\n", "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", - "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n" + "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder" ] }, { diff --git a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb index a4bd7f3ad6..5c9d0439e4 100644 --- a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb +++ b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb @@ -15,11 +15,22 @@ "source": [ "## Background\n", "\n", - "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on feature engineering. It is the second notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. \n", + "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on feature engineering. It is the second notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", - "1. [**Data Prep: Featurization**](./2_dataprep_predmaint.ipynb) (current notebook)\n", - "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)\n", - "\n", + "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb) (current notebook)\n", + "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## Important Notes: \n", "\n", "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", diff --git a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb index 89c637e660..4069bdbe31 100644 --- a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb +++ b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb @@ -15,11 +15,22 @@ "source": [ "## Background\n", "\n", - "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on training, tuning, and deploying a model. It is the third notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. \n", + "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on training, tuning, and deploying a model. It is the third notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)\n", - "1. [**Train, Tune and Predict using Batch Transform**](./3_train_tune_predict_predmaint.ipynb) (current notebook)\n", - "\n", + "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb) (current notebook)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## Important Notes: \n", "\n", "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", @@ -189,12 +200,12 @@ "metadata": {}, "outputs": [], "source": [ - "if 'create_date' not in locals():\n", + "if \"create_date\" not in locals():\n", " create_date = strftime(\"%Y-%m-%d-%H-%M-%S\")\n", " %store create_date\n", "\n", " # location within S3 for outputs\n", - " exp_prefix = f'sagemaker-experiments/linear-learner-{create_date}'\n", + " exp_prefix = f\"sagemaker-experiments/linear-learner-{create_date}\"\n", " %store exp_prefix" ] }, From ec9bc2c97e137f59214c6307ebb132ac0d610108 Mon Sep 17 00:00:00 2001 From: atqy Date: Fri, 29 Apr 2022 22:15:04 +0000 Subject: [PATCH 08/16] fix header display --- .../predictive_maintenance/2_dataprep_predmaint.ipynb | 11 ++++------- .../3_train_tune_predict_predmaint.ipynb | 5 ++--- 2 files changed, 6 insertions(+), 10 deletions(-) diff --git a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb index 5c9d0439e4..07764d1e33 100644 --- a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb +++ b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb @@ -47,9 +47,9 @@ "\n", "## Contents\n", "\n", - "1. [Setup](#2_Setup)\n", - "1. [Feature Engineering](#2_Features)\n", - "1. [Data Visualization](#2_Visualization)\n" + "1. [Setup](#Setup)\n", + "1. [Feature Engineering](#Feature-Engineering)\n", + "1. [Visualization of the Data Distributions](#Visualization-of-the-Data-Distributions)\n" ] }, { @@ -57,8 +57,7 @@ "metadata": {}, "source": [ "---\n", - " \n", - "## Set up\n", + "## Setup\n", "\n", "[contents](#2_Contents)\n", "\n", @@ -123,7 +122,6 @@ "metadata": {}, "source": [ "---\n", - " \n", "## Feature Engineering \n", "\n", "\n", @@ -337,7 +335,6 @@ "metadata": {}, "source": [ "---\n", - " \n", "## Visualization of the Data Distributions\n", "\n", "[contents](#2_Contents)\n" diff --git a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb index 4069bdbe31..14e4c87319 100644 --- a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb +++ b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb @@ -35,7 +35,7 @@ "\n", "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", - "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder" + "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n" ] }, { @@ -43,8 +43,7 @@ "metadata": {}, "source": [ "---\n", - " \n", - "## Set up\n", + "## Setup\n", "\n", "Let's start by:\n", "\n", From 781b1d4d0ffae6e93d91be3d2a9f057ae2127e8a Mon Sep 17 00:00:00 2001 From: atqy Date: Mon, 2 May 2022 10:21:26 -0700 Subject: [PATCH 09/16] clean up computer_vision in user_case --- ...etastases-detection-lineage-registry.ipynb | 367 ---------------- ...-metastases-detection-deploy-predict.ipynb | 402 ------------------ use-cases/index.rst | 7 +- 3 files changed, 3 insertions(+), 773 deletions(-) delete mode 100644 use-cases/computer_vision/2-metastases-detection-lineage-registry.ipynb delete mode 100644 use-cases/computer_vision/3-metastases-detection-deploy-predict.ipynb diff --git a/use-cases/computer_vision/2-metastases-detection-lineage-registry.ipynb b/use-cases/computer_vision/2-metastases-detection-lineage-registry.ipynb deleted file mode 100644 index 1da3ebd915..0000000000 --- a/use-cases/computer_vision/2-metastases-detection-lineage-registry.ipynb +++ /dev/null @@ -1,367 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Computer Vision for Medical Imaging: Part 2. Model Lineage and Model Registry\n", - "This notebook is part 2 of a 4-part series of techniques and services offer by SageMaker to build a model which predicts if an image of cells contains cancer. This notebook gives an overview of how to track model lineage, how to create a model registry, and how to store models into the registry." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Dataset\n", - "The dataset for this demo comes from the [Camelyon16 Challenge](https://camelyon16.grand-challenge.org/) made available under the CC0 licencse. The raw data provided by the challenge has been processed into 96x96 pixel tiles by [Bas Veeling](https://github.com/basveeling/pcam) and also made available under the CC0 license. For detailed information on each dataset please see the papers below:\n", - "* Ehteshami Bejnordi et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA: The Journal of the American Medical Association, 318(22), 2199–2210. [doi:jama.2017.14585](https://doi.org/10.1001/jama.2017.14585)\n", - "* B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling. \"Rotation Equivariant CNNs for Digital Pathology\". [arXiv:1806.03962](http://arxiv.org/abs/1806.03962)\n", - "\n", - "The tiled dataset from Bas Veeling is over 6GB of data. In order to easily run this demo, the dataset has been pruned to the first 14,000 images of the tiled dataset and comes included in the repo with this notebook for convenience." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Update Sagemaker SDK and Boto3\n", - "\n", - "
\n", - "NOTE You may get an error from pip's dependency resolver; you can ignore this error.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store -r\n", - "%store" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import Libraries" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import boto3\n", - "import sagemaker\n", - "import numpy as np\n", - "import cv2\n", - "\n", - "from inference_specification import InferenceSpecification" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Configure Boto3 Clients and Sessions" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "region = \"us-west-2\" # Change region as needed\n", - "boto3.setup_default_session(region_name=region)\n", - "boto_session = boto3.Session(region_name=region)\n", - "\n", - "s3_client = boto3.client(\"s3\", region_name=region)\n", - "\n", - "sagemaker_boto_client = boto_session.client(\"sagemaker\")\n", - "sagemaker_session = sagemaker.session.Session(\n", - " boto_session=boto_session, sagemaker_client=sagemaker_boto_client\n", - ")\n", - "sagemaker_role = sagemaker.get_execution_role()\n", - "\n", - "bucket = sagemaker.Session().default_bucket()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Examine Lineage\n", - "Though you already know the training job details from the previous notebook, if we were just given the model uri, we could use SageMaker Lineage to retrieve the training job details which produced the model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Data Lineage and Metrics for Best Model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from sagemaker.lineage import context, artifact, association, action" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Training data artifact" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "results = sagemaker.analytics.HyperparameterTuningJobAnalytics(tuning_job_name)\n", - "results_df = results.dataframe()\n", - "best_training_job_summary = results.description()[\"BestTrainingJob\"]\n", - "best_training_job_details = sagemaker_boto_client.describe_training_job(\n", - " TrainingJobName=best_training_job_name\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "data_artifact_list = []\n", - "for data_input in best_training_job_details[\"InputDataConfig\"]:\n", - " channel = data_input[\"ChannelName\"]\n", - " data_s3_uri = data_input[\"DataSource\"][\"S3DataSource\"][\"S3Uri\"]\n", - "\n", - " matching_artifacts = list(\n", - " artifact.Artifact.list(source_uri=data_s3_uri, sagemaker_session=sagemaker_session)\n", - " )\n", - "\n", - " if matching_artifacts:\n", - " data_artifact = matching_artifacts[0]\n", - " print(f\"Using existing artifact: {data_artifact.artifact_arn}\")\n", - " else:\n", - " data_artifact = artifact.Artifact.create(\n", - " artifact_name=channel,\n", - " source_uri=data_s3_uri,\n", - " artifact_type=\"DataSet\",\n", - " sagemaker_session=sagemaker_session,\n", - " )\n", - " print(f\"Create artifact {data_artifact.artifact_arn}: SUCCESSFUL\")\n", - " data_artifact_list.append(data_artifact)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Model artifact" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "trained_model_s3_uri = best_training_job_details[\"ModelArtifacts\"][\"S3ModelArtifacts\"]\n", - "\n", - "matching_artifacts = list(\n", - " artifact.Artifact.list(source_uri=trained_model_s3_uri, sagemaker_session=sagemaker_session)\n", - ")\n", - "\n", - "if matching_artifacts:\n", - " model_artifact = matching_artifacts[0]\n", - " print(f\"Using existing artifact: {model_artifact.artifact_arn}\")\n", - "else:\n", - " model_artifact = artifact.Artifact.create(\n", - " artifact_name=\"TrainedModel\",\n", - " source_uri=trained_model_s3_uri,\n", - " artifact_type=\"Model\",\n", - " sagemaker_session=sagemaker_session,\n", - " )\n", - " print(f\"Create artifact {model_artifact.artifact_arn}: SUCCESSFUL\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Set artifact associations" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "trial_component = sagemaker_boto_client.describe_trial_component(\n", - " TrialComponentName=best_training_job_summary[\"TrainingJobName\"] + \"-aws-training-job\"\n", - ")\n", - "trial_component_arn = trial_component[\"TrialComponentArn\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Store artifacts" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "artifact_list = data_artifact_list + [model_artifact]\n", - "\n", - "for artif in artifact_list:\n", - " if artif.artifact_type == \"DataSet\":\n", - " assoc = \"ContributedTo\"\n", - " else:\n", - " assoc = \"Produced\"\n", - " try:\n", - " association.Association.create(\n", - " source_arn=artif.artifact_arn,\n", - " destination_arn=trial_component_arn,\n", - " association_type=assoc,\n", - " sagemaker_session=sagemaker_session,\n", - " )\n", - " print(f\"Association with {artif.artifact_type}: SUCCESSFUL\")\n", - " except:\n", - " print(f\"Association already exists with {artif.artifact_type}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model Registry" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "mpg_name = prefix\n", - "\n", - "model_packages = sagemaker_boto_client.list_model_packages(ModelPackageGroupName=mpg_name)[\n", - " \"ModelPackageSummaryList\"\n", - "]\n", - "\n", - "if model_packages:\n", - " print(f\"Using existing Model Package Group: {mpg_name}\")\n", - "else:\n", - " mpg_input_dict = {\n", - " \"ModelPackageGroupName\": mpg_name,\n", - " \"ModelPackageGroupDescription\": \"Cancer metastasis detection\",\n", - " }\n", - "\n", - " mpg_response = sagemaker_boto_client.create_model_package_group(**mpg_input_dict)\n", - " print(f\"Create Model Package Group {mpg_name}: SUCCESSFUL\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store mpg_name" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "training_jobs = results_df[\"TrainingJobName\"]\n", - "\n", - "for job_name in training_jobs:\n", - " job_data = sagemaker_boto_client.describe_training_job(TrainingJobName=job_name)\n", - " model_uri = job_data.get(\"ModelArtifacts\", {}).get(\"S3ModelArtifacts\")\n", - " training_image = job_data[\"AlgorithmSpecification\"][\"TrainingImage\"]\n", - "\n", - " mp_inference_spec = InferenceSpecification().get_inference_specification_dict(\n", - " ecr_image=training_image,\n", - " supports_gpu=False,\n", - " supported_content_types=[\"text/csv\"],\n", - " supported_mime_types=[\"text/csv\"],\n", - " )\n", - "\n", - " mp_inference_spec[\"InferenceSpecification\"][\"Containers\"][0][\"ModelDataUrl\"] = model_uri\n", - " mp_input_dict = {\n", - " \"ModelPackageGroupName\": mpg_name,\n", - " \"ModelPackageDescription\": \"SageMaker Image Classifier\",\n", - " \"ModelApprovalStatus\": \"PendingManualApproval\",\n", - " }\n", - "\n", - " mp_input_dict.update(mp_inference_spec)\n", - " mp_response = sagemaker_boto_client.create_model_package(**mp_input_dict)\n", - "\n", - "model_packages = sagemaker_boto_client.list_model_packages(\n", - " ModelPackageGroupName=mpg_name, MaxResults=6\n", - ")[\"ModelPackageSummaryList\"]\n", - "model_packages" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store model_packages" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "instance_type": "ml.t3.medium", - "kernelspec": { - "display_name": "conda_mxnet_p36", - "language": "python", - "name": "conda_mxnet_p36" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/use-cases/computer_vision/3-metastases-detection-deploy-predict.ipynb b/use-cases/computer_vision/3-metastases-detection-deploy-predict.ipynb deleted file mode 100644 index d51ffb0892..0000000000 --- a/use-cases/computer_vision/3-metastases-detection-deploy-predict.ipynb +++ /dev/null @@ -1,402 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Computer Vision for Medical Imaging: Part 3. Deploy Model & Make Predictions\n", - "This notebook is part 3 of a 4-part series of techniques and services offer by SageMaker to build a model which predicts if an image of cells contains cancer. This notebook demonstrates how to use SageMaker to deploy a model and how to make predictions using the deployed model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Dataset\n", - "The dataset for this demo comes from the [Camelyon16 Challenge](https://camelyon16.grand-challenge.org/) made available under the CC0 licencse. The raw data provided by the challenge has been processed into 96x96 pixel tiles by [Bas Veeling](https://github.com/basveeling/pcam) and also made available under the CC0 license. For detailed information on each dataset please see the papers below:\n", - "* Ehteshami Bejnordi et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA: The Journal of the American Medical Association, 318(22), 2199–2210. [doi:jama.2017.14585](https://doi.org/10.1001/jama.2017.14585)\n", - "* B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling. \"Rotation Equivariant CNNs for Digital Pathology\". [arXiv:1806.03962](http://arxiv.org/abs/1806.03962)\n", - "\n", - "The tiled dataset from Bas Veeling is over 6GB of data. In order to easily run this demo, the dataset has been pruned to the first 14,000 images of the tiled dataset and comes included in the repo with this notebook for convenience." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Update Sagemaker SDK and Boto3\n", - "\n", - "
\n", - "NOTE You may get an error from pip's dependency resolver; you can ignore this error.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store -r\n", - "%store" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import Libraries" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import boto3\n", - "import sagemaker\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import zipfile\n", - "import h5py\n", - "import cv2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Configure Boto3 Clients and Sessions" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "region = \"us-west-2\" # Change region as needed\n", - "boto3.setup_default_session(region_name=region)\n", - "boto_session = boto3.Session(region_name=region)\n", - "\n", - "s3_client = boto3.client(\"s3\", region_name=region)\n", - "\n", - "sagemaker_boto_client = boto_session.client(\"sagemaker\")\n", - "sagemaker_session = sagemaker.session.Session(\n", - " boto_session=boto_session, sagemaker_client=sagemaker_boto_client\n", - ")\n", - "sagemaker_role = sagemaker.get_execution_role()\n", - "\n", - "bucket = sagemaker.Session().default_bucket()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create Model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "results = sagemaker.analytics.HyperparameterTuningJobAnalytics(tuning_job_name)\n", - "results_df = results.dataframe()\n", - "best_training_job_summary = results.description()[\"BestTrainingJob\"]\n", - "best_training_job_details = sagemaker_boto_client.describe_training_job(\n", - " TrainingJobName=best_training_job_name\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model_name = \"metastasis-detection\"\n", - "model_matches = sagemaker_boto_client.list_models(NameContains=model_name)[\"Models\"]\n", - "training_image = sagemaker.image_uris.retrieve(\"image-classification\", region)\n", - "\n", - "if not model_matches:\n", - " print(f\"Creating model {model_name}\")\n", - " sagemaker_session.create_model_from_job(\n", - " name=model_name,\n", - " training_job_name=best_training_job_summary[\"TrainingJobName\"],\n", - " role=sagemaker_role,\n", - " image_uri=training_image,\n", - " )\n", - "else:\n", - " print(f\"Model {model_name} already exists.\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Deploy Model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "training_jobs = results_df[\"TrainingJobName\"]\n", - "best_model_index = np.where(training_jobs.values == best_training_job_summary[\"TrainingJobName\"])[\n", - " 0\n", - "][0]\n", - "best_model_info = sagemaker_boto_client.describe_model_package(\n", - " ModelPackageName=model_packages[best_model_index][\"ModelPackageArn\"]\n", - ")\n", - "best_model_container = best_model_info.get(\"InferenceSpecification\").get(\"Containers\")[0]\n", - "deploy_instance_type = best_model_info.get(\"InferenceSpecification\").get(\n", - " \"SupportedRealtimeInferenceInstanceTypes\"\n", - ")[0]\n", - "\n", - "best_model = sagemaker.Model(\n", - " image_uri=best_model_container.get(\"Image\"),\n", - " model_data=best_model_container.get(\"ModelDataUrl\"),\n", - " role=sagemaker.get_execution_role(),\n", - " name=mpg_name,\n", - ")\n", - "\n", - "best_model.deploy(\n", - " initial_instance_count=1, instance_type=deploy_instance_type, endpoint_name=mpg_name\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store deploy_instance_type" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Inference\n", - "Finally, the we can now validate the model for use. You can obtain the endpoint from the client library using the result from previous operations, and generate classifications from the trained model using that endpoint." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "\n", - "with h5py.File(\"data/camelyon16_tiles.h5\", \"r\") as hf:\n", - " X = hf[\"x\"][()]\n", - " y = hf[\"y\"][()]\n", - "\n", - "X_numpy = X[:]\n", - "y_numpy = y[:]\n", - "\n", - "X_train, X_test, y_train, y_test = train_test_split(\n", - " X_numpy, y_numpy, test_size=1000, random_state=0\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9SaxtaZbnCf2+djenud3rrHH3cPeIyMioTCqigCJVEqIGUJSQSoxgVKoBzZQJMAEhEIIxCCFmCKRkhKgBEqRANYCalBBUZqpU4UREhrdhbmavu/eee5rdfR2D9Z3zzKMiPTMtyApHvG129OzZvffcffbe37fW+q///79UKYWPx8fj4/Gbd+i/7hP4eHw8Ph5/+fFxcX48Ph6/ocfHxfnx+Hj8hh4fF+fH4+PxG3p8XJwfj4/Hb+jxcXF+PD4ev6HHx8X5/0OHUur/rpT6b/zH/bMfj7+e4+Pi/Gs4lFI/V0r95/+6z+Mfdyil/pZS6v+qlHqvlPrYCP9rOj4uzo/HX3YE4H8P/Nf/uk/k/5+Pj4vzN+hQSt0opf5PSql3SqnH+t+f/4Vv+6FS6v+plHpSSv0flVK33/j5v6OU+veUUjul1H+glPpXv815lFL+tJTyvwZ+9O0/zcfjr3p8XJy/WYcG/jfA94DvAiPwv/wL3/NvAf814FMgAv8LAKXUZ8D/GfifALfAfwf4t5VSz//iL1FKfbcu4O/+c/ocH4//LxwfF+dv0FFKuS+l/NullKGUcgD+p8B/7i98298tpfxRKeUE/A+A/6pSygD/JvD3Sil/r5SSSyn/DvDvA/+lv+T3/Hkp5bqU8uf/nD/Sx+OvcNi/7hP4eHw4lFI98D8D/nXgpv7vjVLKlFJS/fsX3/iRXwAOeIZE2/+KUurf+MbXHfB/++d71h+Pf17Hx8X5m3X8t4G/AfxnSimvlVJ/APxDQH3je77zjf/+LgLevEcW7d8tpfw3/2M614/HP+fjY1r713c4pVT7jZcFNkiduatAz//wL/m5f1Mp9fs1yv6Pgf9Djar/O+DfUEr9F5VSpr7nv/qXAEr/xEPJ0QK+/r1VSjXf9oN+PL7d8XFx/vUdfw9ZiOfX/wj4nwMdEgn/H8D/5S/5ub8L/G+B10AL/LcASilfAP9l4L8HvEMi6X+Xv+QeV0Do+GsAoe/VczqjtSPwp/9sH+/j8Vc91Eex9cfj4/GbeXyMnB+Pj8dv6PFxcX48Ph6/ocfHxfnx+Hj8hh4fF+fH4+PxG3r82j7nv/WDf70opdj0PW3jeX53x6sXL+i7lme315RS2D8+EsPCZrOm6xpSSYQc2Vxt+OHf+G2sdzwdj8xh4fW7t9w/PPCd3/99/vBf+y8wHY786b/77/H07j0//Uc/4eH9PZ+8+IRPX3zKNIw8vXtgWRYOT0+kENm0LZ1zbDYbbm9vKQVSysQYeff+nmmaaNsVvmk5TRMPxwPzsvBwPBBSImpN1ops5M9xmdkdD2QK2lmUqntVKSzTzDyONM5xs9ngrGXTrXDG8Hj/wHF/AGegdThjWDmPt5YX2ytWbctm1bHpW47DgTf3X7ParPmDf+U/xdXdNapzqMbQbdb0VxuOhyNf/uKXTKeR3RdvWYaJrWrocJQpUk6Btul48eITcoEf/eTPeLfbEa0hWk0ymmQNVmu2xuK0RimFUgptHcY59ocDf/7FF4QQCCmRcyGlQk6ZnDMxZhQKa4xcg5wB2G63rNdrNpsNL168YL/f8/f/wT/gNAy8+vQVm82aw3DicDqijMZ6D0AqiVIyYwosOdbrCm3T8uLuDkrh3es3TKcRg8IAjWtYdR1GKbzWaKVovcdoA7lAKZRcKDnTdR2//Ts/ZLXqGaeJEAJd37ParJnmifuHB0KMhLAQU+Lt27fsdjturq/59JOX9F3HqxcvcNZRYqTkxO7xkf3uiZQSKSVQoI0FBUMILDEyx8gYAkU+DtpottstzvpLM9pbS+s8TdNwd3uLNZp5nkkpcv/wwO5pR8qJlAIA//1/53/1zT72P93ivCC5lx9VlFL4VXz3w9+UUpzPuhT5+ZILhUIpBYVC14tOLpAzKSVyfRCUUmglX9dao7SWP9WH/9b1wcs5UwrknMn1PJVSKK1QWtfnK9fvq79fgVaKzOU0P5x9gaIK6hv/4/xz8vrwWc/nV9SHa6q/cX5aKb7xJbTSKK0wRqO1QVuDMgZdX8ZarPfYENHWyGes/xQgl0yhoLRG1etfcqag5YzqOeacKTqTc70XcmKobC7X+C/c4PpzhVIy1M1JKUVRCsWvsh/Oz4PWGmP0r1yjX3lMvnFlSynk8qvX9XKvzvergCq/es0u51Eud0MeKgrnEzt/5pQSMcb/yCvFSDo/A/UEC+Xy9RCi3PcUoX5f/pXuharP7ofnTP7MHz5hUaSU0TrJaRVIShF1wsRICIGcNSGGy6I/n9PlvP4xx69dnHOIaKUpGLRtSAWmKeCcR3rmmRASyxLYKoVznhwgx0CKiXGYsS4RZvl73/UYY9n4FvW4Jzw+8v7r1+zuHygZVv2a9XrNdruldQ06FpZ5QWWIIfL85opt3zPPM4+7XX0wZMMw1tCZnrbr8W3H03Di/v6eJUZOYaEoxbq/xncdh3limidSjOSU6oWOshhkVyHOC3Fe0Kmw2AlcgqbDGMVmtabzDVMODGGmsZabqyta77nbbul9g1GZkhPWaDarFdvtFS9fvODm+R32eoXuG0zfYdc92xC5evUp0+HIz/J/wPHdI3ZKmDkznEaeDgeUNmy2G1CKnCLDcILSonRDiInTsKBRFG0xSpHPG1LdAEIIaK0w1hJSpJTEvMws83LJPrxzNJsrjDGoomUd1N93fhmteP7slmnuSTmx3+8IMaJKRhWFrizDUjIpF+Zx5DSNWGOwxoJxNNahlWbTr/HakpdAChFjDFrXDdwYFIqQIjFFWZgZjDW0bYN2jtM0MafIu3fv2B8O+Lah7VqWsLA77Mk5y4YGxJRwXcdxmjj84hd4a/nq7RucMXgj14wCqhTZfKyllMK8LMSc2Q8npmUm5MySZLOMpaCU4jRPcr7nfaOALmCMoW0atK7PFYVlWQhhoVDI5S/ZMP9pF2dKmaIBpdHGUooixERKpe6yhZQzMSZAYS83HnIuhBAoFFLM5Fxw1mOdp9EWTiPpMHDcHzgejig03je0vqVrWkxRhL7DGMM4jBgTZeFu1jw+PjI8jpRcANmBnfNoY3CNx3lPAU7DQIiRhYyqEappGoaw/EeiKnUnlGifSTGRYyKjiCFikB1eo2iahtY3sAxMccEaQ9919E0jf3pPijMpzJKaNQ1d17LdbLjabnE3V5h1B20DfUsBNncw7Y88/PgXMM7kPEMK5FKY5okYI03boLQml8yyzBhvMdmRYmCZRhQKowwaRayfT2mJ2ufrpGtWUUohxsASFlJMpBjRClnA9YFWINGsXpOSM1or1use5wy7/RPzPFPq9ylKjfXykKuSSUtgmWaKtWgnEd8ojTWWxntUKSwZSso1I/kL2U9M5JQlKhfQGLS1KKOZa4r+uN/z8PiA9x7fepYYOJxOZArOOYzWeO+xzjGeTux3O7RWHE5HuXe+wVlLW+/r+WdyziwpEWJkmCfGeSKWQiqQSibUbGSOQbKA80OUMznKOZua6UlWpQDJ4M6R/Fsvzn61RmuNb1us86QCwzRhrOFpf4BSmKdADLI4tbJ417BW4JsGUiGrgtUGrTT705HjMHDYn3jz+i3jMDINI0opbrbXtE2L947D4cA8zux2T8QQSTEBkh5lCjFnUl1Ykqso4rLIBXINpmlRRtP2HTZnfL3Z1loKha7r0I1nmCZyKcQkUSTnLGl4KVilMU0rN803eGup1/ayQ3auQV9pGudwSmEKOK1xRnN6OrHb3dOvem6eX3N1dYXVWiKAtdB4eZN5lpu5RPQ48fzmlo1yPKl3nOIT/brn2bNb2rbl7dvXNbVKdG3DHAOnQ6jRZUGjCdahUYRzSldkY2zalqura5TWrFYdOWdWq55pmgnzwjROOOdom/pgxkTJBWcU3hn6rmG76QkhcDo2aFVIqcc7yxICS1zQWuGNlmu6SFay6Tv6rr1kuq21lJrihWkizHN9LRgFhQaF1HIKJWWP4hJ5tTUkBZTMaZ4AGMPCnCIpKmJAng0jG0yuufKcMyEGAgXlpI4MOQneEDUxF7R1OECXQgIykOoLY1DW4rTBGU0qBRMTuRQ5x5I/PD8pU2JCq3Mpo+kaj3O2vpyk4znxzbLwn2lxrjZbtNI0bY91DSlHTtMESvH4dEAD07RQcqIUjdaWxhh84yQtqDuidRaUYh5mHt7dMwwDj09PAHjX4pzj5uaG2+sbhsOJ/f7AOIw8Pu4oSXZareWmp/qKuVxSBYAQA6WA63qanNHW0K1XpJJR1oLW4CwF6PuebdNwPJ0IITDPM8s0kUOsaS1YpXGNw1lL1zQ4Y9BIzafPi9M3bPuNPJRKY0rBaoUzhuF04s3Xr3n12St+cPN9rq6vsFpSH5yFpoGwwDxRQiSfRnTMvLp7Rt7c8OdDYD4MrDcreu1IIfP1668IMVJypO9axuOB4+lIohBVQStNqKnosiyyAEJgCYErpVj1Hd57TL0fp9OJeZ4ZTyPHwxGtNW0FdEJd2M5qGm/pO8/V1ZplmdnvG7TKaFUI0XM8nShDqIvTkHJiCIGcItfbK5quZ1kW5nkWAGYJxFII48g8TSzzQgwBa+rmpVRNa6EoLoCdb1tQikQR4HEaKKVwCjNTjuhYsOea1BhJyet7xJQoWRaR8g5KEZAwZwoKqzMuNTSloACnlNSOdXEqbQRc8x7TeFIu6BhJKTEMJ0IokoGkREkZUkYpsEVjjGHlLL5r6fuerutIScCqX8fQ+7WLUykNShFjYiZQUiDHgAYO+wNGK8iSjpwBIK01zhn5uSWQS+YwDoIS5sRmtUahmKYZkHTUWkdJmXmamcaJYRhYpoWcJDoaLSnZ4XhknkdOxxNLCBLVm6aiklBQuKbBNg7jLNpoUpS6IQM5LBSlscuCmWfGaSKGKOnfOeXLArgYbepuLSioMQZvLc5avLGCahqNMgpVCikEVE5Sw+aM0QrvLI1zkioZyzxNqKPG756wJTMNR8bjgRITeVrQBTo8KsMyz4QlUJZIiZGUBMZSCvquw1jHQiaSWVJkWBZQXD6LtRbrHNY5fEqs1yu6rsM5hzKSMi7GELXGGo2z9gJkSTqm0MpgzQfwJywzodZMKUacNVhrCGFhniRt0/Lg0LcNKTta7/HWoXKBlC8blCpIeqsNWIsGnHNYYzA1wygX0EjL52gaSTHHsQJ86pL5FJRkCmFBG4M1DurPA1LrxQglo7KknLa+tzEGY6yk0vVZjhWolNeH0ifnDDHVZ0TXfeAciAqFTEaR6x5xAUhTJsVIWBa0UqQYWf4qixMlaOAwTagykWMgx4XxZJmPI85Zbq83dE0jFylmOufou44YA/vjnmEc+NEf/zEPj4/8/t/+W/zwd3+Hw+GAVoZSZBEopQlzYBeeOOz2HHZ7SpK8XcABi0Lx1ddfczzsBd20lrbt2LQt1jm0dWit6Tcb2n5FM5ww3jOnkd1hzxIjIWdSBUmUsTUSCwpnlEZbd4HsBShwOGtorMNZR9+0NL5hvVrRtS0xBeYwEsPCcRwIQLraUrzHG8emW7Ht11yt1njXcLjfcdzv6acRt2p58+4tX77+GkpBlYKzjk9uX9G5hv3jjtPhQAmZMglYpdE4a3j2/A6lNe2uY7XvOAwDbx8eiDkTUgSl2Ww2NE1TkVXDarXi9vYGYwy5PnhhmojLQnEOugYqskoB7y0K8I2j8ZaSE8fDnmWZGY5HYgxcX9/QdS2kSBgHiXjI9V1tt/Lg2wZtLIsyNErqL5Mhl4LXBqzDW3kMfdPQeC+gl6wEVN0c275jc7Vl97TnYbcTnENLhZtyBq0lC1oWvPes62dXWp7h07hnv99jlcJpjbWGVdfLBuQbGictp/Min+aFXARPkbRVUNsUIiVmjDUSyQ1kn4k6oTKEVEhEck4UBWgFGeISBMldIpMZiDFKvf5tF2dMgrypMxT+DTheQACFNbJQtPrAZzijnmEJxBCxxtK2Ur8ZJbVESZK+eN9cFmdagkTPaZaemzIUqIATzIukoK3WWO+wztYIaQR4Kpk5BMo0MS2L1BhRbtgSApFCrp9DpSxASW192IrOcYnWsoObeoOl4FeXGl7aPtIXLMlgKiBQssDtuoIQSinmaZZ0qkgbRTtLSpH5eGIZRgE6lEbZwjJO6FivXYwQBfXVSmONbEDWWpQxNN7Tti0hJdqmIaREWuKHiHN5yTnnnC7nrbSWrMBaua/ZSx0UJbXP6dxXrK2KsDCOAzEElJIMyZoP7+FqPV/q8+KsxRhDUYL6Wq3BOkBaMTkryU50ffCRZ+wCYtVzbJx85qaRTdgYc8nSciqUc4+mRrxztKO2nHS9b9Ki0x/QYGUuv4dzyyolopKNUKJyvmRv5/eQVFm2ynO5aLQBo3DGgs2oAsXUDOb8DNXnrlQQNackgeDb1pz7/ZPkzbX32HlP33a03nO1WUnr4PaGvhWU0mgDBcISGceZ3eMTpRT+8A//kH7VE1NmnhYOT0fevn1H13V8+uozvG/4yY9/wv39A8fDkcP+QNd23F3fUUrhfrcjLoFpOBFS4mbV89nnn0sEdY6UM+8fdozzRIiJmDJPhwNv398zLTPvd4/ElDC+QVuLzhZtMs57+raV6FI3F2mvZIxSAgppXQEtRUiBskg6FWOUWqxtScaiU6ooXWI8DnjreH73nBIzf/xHP8I6y9XdNa5xdNsVrm0YlxmzZLQ2eOfQSXF4/8SxwP5hx3AaUAlUQiL2Zo2xlpglwq3WK2zjWK1X9H3HuCx89f6ROUqqviyL3PySiTFIqu09t9fXNM6x6Xu8td9YgIHj8Vj/PFS0PRKWkX3t8VlnBXF2jq5rcd6y7jtIV8zzwuF4QGvNqmlxzjOOCyEEWu/wfX/Z2FNKlJiYjZGaPyzEsjCkhHWW1XqNbxo++fRTNpuNZDm5MM+BppYyS4qXds8ZAo0hoVUiLQllFcZ4jDFs11sa6wWRVlKynckaOSaWmFnyJPXiZQOWIKCNlE9dY6WU0YYYI8MogFTfdOjGEKwnxUhcFpZpltrVnDeALP/WMkobzdo1/DrI9tdHzhgETjcG6q7hnMN7R9u2tN7RNg1N02DPBXwul6bwPM9orbm5vub27o6H3Y7d/kCKiXkScMA5j/deUolpYppm5nnBGic7ai7M88KyzLXuktpktVqhtBY0LUbmuDBOE8M0M80zp3FknCWCTouwRBojEa7Uly2l9tY0TguAEAskEkYpjNKYc6RRSqKiysQUUUFhjUIrD1rjjKVo2WVTSjhjcM4xTgP7pz3GGVzj8LGhKHAhEEuuAFPB2Io6h4WSMmEJpJBqz0w2Dm2lNspIXWuNoShfo0bGTBbnjwJg1HBZciZnaZXM8wRINARpm9hKprDGoBFUVL5e6s8pqJ9pWRbatsXc3Ei7wZyzDoniJWc00m461+tGQaztE+8kcub6fc5YsslEHWvmpSoD6BypFG3bslqtmJdwwRnO6SqJS+15ecTPNd433kchUU01bW0PVTJF/X5pqcnGmoOwmUopghgbDeqcJRrQQiDJKVNiBnXGJyzaFZLWmAIqCbDkjUGpQkrx0tdMuWCMllr8LzIv/mkXZ9d4lILGCgByc7Xh7uaadd/z8u5O6rHzA18ScZmYp0RKkXEaOR0OGGsYDie6pqVxnud3zwS2txYKHA575rnBO8/NzQ0xJA77E8fjwPH4C4HV0SgFq76jcWuurm9Yb7bElNifTszzwvF4Yn88cBwnxnkm5oxqHEYVtLeoqAhZIohV4LQi5VSb85qsEwpVWwgZbQRQMsbI7qk0aE1W0tcKKTLNI/unHVqB1bKYbW/kwrctq64FrTmeTgKwZIWOkMZICbVHnBPFOTzyO0oCshISAJIad74D4P5xJxtk0wixIEZCiljreP7sOVOILNoxLsvlAcvnFKpkSIUwzbx/905aW/s94zBIC8VLa0dSPQE5nMuVpSMLwHlB4UGRM1J+KAHurPV0ncZoSTvJirhEGtfQODlfU1sjyzyRc6FtPU3rubm9llq4RseYIsdhYDid+PlPf4bzDqUlDT0eT4RFAKm8CPpaVAYUThuu1huMMbLZFsUyTIASQM84WZFGNq0YwqXOVgUBkqzhQ6asLp9/mmeWEITYBpX+mNBagpJWCpRBa7Be47WsmVXXCgkh1Q2ggoZt27JZr2sP+lsszsbLl1svLYX1uuP6asN2veb58zus1oRxouRUU6ck0Pw4Ms8z0zRirWWeBDLv1xvavueh6wSlK4VxGIkxYa1ltVrx5PcATNPE09MepTTXV1c03uObhs26Z7US5HGaF3I6EGJknEdO48BxGBnmGW0tpmlQxaKsFUQ1Z0rKKKMxxUjBnxK6PsQKQdxUKWBKBaOELaLPkQiIWRrjOQTiPGGNYdN3OGvJpZVI5Dxt1xNCxGr5eV00KkOe5cFKJcsmkhT4DLpGgIr/KzTWeLp+xbIsPD4+kkthAzjvCTFKRtBID7OLiVMuTEu40CLPizPMM8PhQIyZ/TiRc+bh4YHj8UjXNmxWK5xz9Ju1gDZGk7P5BvVRakRdubelFEJIUp+ruokZQ+NbcsqMo9zXrvV452WjoLbBlkAphabvMFZS2K7vZGHGxDCOFZmfORwOpJzxTYtvhP0TK7MrpVSJKFwQ6rZ1FxpoKRCWhZylt22tA6MoTtLqHAKl5NoaUxW1/UDAOB+5ovG5PkMxZUl5jZMUuf5jtPxObaUn6q1lu90I+pyzdAKKLNKu67i5vvr2kfP2aiMfvAjzo3WWvvG03uKMMD9LjsQaSUpOLPPMOIyCGtafk17iRFGwhIVxGITelSLH4xFrnaQJuVxqCOscq9Ua7z2ff/YZq1XPtm/pGoc2hnfv33MaRr5684Zxnng6HBmm+QKrZ5BooRWr9UoQWevQ2ly4jc4KqKSUQlNrlrgQo6Tl4zgKGGGdpICV92pqil/ODwlgYySWgp1mQpJ0J6ZICoG2X1XmjauYq6RwlEwpCRVhPgrTZgmBmBLTNLMskZROjLOk5cMwAArbtGSthTxdMlNYeDrsiUV4skK5yxd+aYyBuASWJcj5RkETc5S0OafMsgSoQJ0ykk5631y4pDlnIcyXwuPTXrKMCrw46/DO4b1nu1qDFa5QzqUi3XVB19TwzFM1VsqlcRgYhqE29MtlAaZzLZwShZmYPpBPlFJ45y7cW4Cmaei6vgJgEvHOm8SZGZUpJK2IqTBGYUeVCs7Yc5oviJM8+9TFV+vTlIWWaI30zkuG0zhgFiPRMWfJpJRisfbCqSZLCXNOwZVWDFNTWUPfYnG+fH5HKZlpGAhLYNV6Nn1L33q8URUxW4hhZh4nlmWWZvM4cqbHK2BZZsZhkN6m0RwPeyiZFEQJoLWlaztBDpHF6b2naVpW/Yrf+d3f5frqCqcLRhXe39/zxZdfsT8c+PmXXzAvC1O9maX2ZosSipUymu31FdoYVustvmnY7/ccDgdBmp2Ti1/RtLkIk0R6rqP0sSrK1/Ut1loa30j9VAoqF0wpsAiNLyMkhGmZOZ5OdE3DzWYryC/UmuxMbM8oNDlkhnEgpsTT8UAIEWVNpagNjNN8oRZqY7BdR9LSe0QV0jwxx0BRmqwdIL3psATpSy7SM53GSRDJyoZKQeD9HGUzKHWhGm3ou5WATzUCL2GhjCMhBN69f0+s6T9FlCZt03J9dcXdzTOJQLapTCswNV3WWkumUhfo+b0fn3YcjkdKXQopZ0JcqlpGsoMlRAqTvI8RMYT39pJ2llJYrVZsNleX5zelhNyaRYQKlfkTNCwqcQwzMQTCPJNjQiswSMqaU7rc+zPW8gEpBu882ltSyiynM4FeMiprtGAOxhAqEHemNjpjscaSKZgaGL7V4lz3Hblk0jKTwoIxGufspSmtKML+KZmwzFKraEkvzvWLdZZcwYRYd8GpEqGxmqZtMcZe0g7v3CWFlKNUNkUgCKue/eHA09MTx7ppxIpOniH5rCr5WAmB2rdtRXZlJ3POCeJXo2WuYIDUIUK0PisGzpC+pLfu0tw3ztV+YRSgUGuyUswpEnPCWI0vDrTGOC+Ls/ZQU5L2iFJIv1cpUJmClAZLiAJEac0SE6dplnqlLk5/EtRadpRyaY+gDcp3oLSQIUqpEd9CLkTrSCgiy6VdhP2wcIwx8tmslYhVgaOilNy3eZZFWSPJuUEfYkKpwDBO7I9HnPM0vhGQpAhF7QyUfTPdTknIFedSSCiWTlogWogsZ2RXVcCOuknV/pMwhkIi58Q0L2g7XAglJUsqrYwmU2r0z0xLuZBiUslkBcXUdkp9f+ENKVlYWgsYd2a9lYKyWthLqtL1CpwVM0XJNUsUpsqvVqWWTY1c78wHpcy3WpyfvXouF3MeSfNI6wyrVYszRpgWSrFZ9ZSuJadADDPGeNrWo5TG1DQwxIX9PvLw+MjT0x7XNKz6Nc57rq5vcM7TdSucdRz3B15//ZqcJKVJIbB/2hGXmdPxwDyNvHv/ni+/+ko4sUn4kVFBVlIf5IL04KzBtS3XtzdY54iVRN12HU3TsMwLp8OJGCLD6SS7dJB6jYrWWWMEobSW1WYjC7uSqKdx5BiPWKVonSUrxX4cyDXytasV+IZmLXWHCkLtOj49MQ0jbdvR9S1KZVLRxKwY58hpnPBonLbsx5k3j9IKCjGilGI3DtKsr7FGtvOMtY719hZr6zkag7cO4xuiizgljfowL+SYaZr2opgopdA2LauN8Knv7+8Zpwnfdfim4ThMvHn/gFaK1XqNVZphGAgpEuaF01Rf40zf9/z2D3+Hvl+R5pESpNwINWWfq/BAUvjI09OOd+/vabuW9WZblScdBTiejoQQcF4CQ6oRV2lJQ9GaaVyYp5nDOKB29xhjabte2mCNRLgQZBMf4szTMAkYGBdBuZ30Pc/Kl6ITmUrEbxqsNrRdh6+c2JwFjyhGovGSQwXFLNYZMPIKKXI6nGqGkVEUrrdXKKuxZLJR3z6t9c6RlMbWRr2pD+s5f6fm0Ch1ae6e/7+xhr7vpT2REylLH22eZ7SR6OusKBOc89iLEkKh684jaFmh5HThic5LYKrUu1wKpVKulJbocSbHl3PEq/IfYwzLEiqFi0t7IIQgqU29eWf2jD7XGfqDltRaIS2f308bQRDR+qIRjUkiQkjpV14VY6qAUrnUT7n2LOspVXlHVZWEwBIlgsVa8ylFpSMWOUclFMqSIzYX+pTA2F9R25wBHuedwPs1JTeVmndW5xj7Aew5t8fPmUOpNbRW8v0Yoaid210lF1CRcZ5R2jAvi6iDYoSz3vKckZRf1cpqbWraaD/Ui1QdZUVTv/l5zp/pjNzkUlHvet62FHRYMMaA+9DOiVmympDCB+J53YSLvFWNenzjuknENNbI9YmQS7q0Vwrnc6y1OYqMvkh6hND3Qa0j0O75uar3+9ssToMGVfDO0zYtXdPRt319sOVBHqvCG6VZrVaM48jxeOT6+prf/u3fxlrLF1/+kv3hgLVO+qRO+KltbYRba3l42DEMI6fjHqXAWakpGu9x1uKsxjl3AXzGeUEZTdM2GGtwXY82hv14Ik4jxhqatsU30n8LIXB/f8/xeLpIpGIITMNY6y9B/oyW1pCpEfIs7j5T4Lquu9wM6z3takXJhSmESzRIMbI7nYgpczgNDEN1VFhvsNowLDNLisRpYo7pQxpUMt32CtOv+Or9W+7fPILRmL4VgsMs6GkohRSitKeahrDMzMOMsXC12dK2Lcss9VSJiawUzonmlFJY971sIJW4LQ9/JgP7pyeKUvi2pVmt8G2LbxqmENBWaqzd8SjpZsw1KtQeZcqMSyTkgT/58U9w1nLVe/paG57F1dpaDAarQGfDb/3g+/y2/V1Ow4nHpx0hBPb7p5rii1tASJE0Z7kvraiOdOUIx5yYY0AbKWMCmTBLemuj1KnndHopkUIg50ScF9nYKnfbVcIJKaNKxirDdr2qWYjFaM0pDEzDiK+EHAosFFJOLHNkzoWubWmcRFF/vZWFmWWBbjdbNqs1bSvStG9dc36AiM8kcClmS84ivoV6gyO6Fs3TNNX+j+b6+hrrHG/ev0OfTh+oUxfql77QvGJYGIcTMSy1lBB0VBDSsxZRmvBU1MzUWlBbi/ce7SxmqfrCGjFVVbOUnBnHqTJgKooZIss8c2legWgOa31jqrLh/HIVkRRlCNXFwEkEXiQqpCL83TmES5TRQOs9jfV45y7RsMRIzlI7KSNUReM8zhrmGNgdDrR9R99u0Dmjz60RpE+HquoNpeV9AO9lU5EWwjmeg7OVhaTVhWgwTBPLslxod0sIjEdB1dddJwuzbXFNg28aqUVLRX3L+ZpVsEMpEpIVpBAJu51QGtMaVq3Us9aiMfgaHVXNyLbbLdurK+4fHjiNgwBCVU2T6+csRRaALvaDW4RSUksWoW5Ss66MZEWAED20ukTsRJK+aL3+pfY4JQpaUPrsL4HRqgoXpEw7t1hSjBRrK6GFS2mRLzW1qwFSVQwFQWuRFpgQ/O3luf5Wi3O/PwriZhzr9RVaW6ZpwTnLenN1sQoJYeHMUFyhUMbSr9ecxgkbAt43bDZbHh53TNPEdrPhxfPnWOuIy0IANus1fdtdiABSs8qOOxwPDMcDynps49lcXfHqk08pqlBqKrbESI6RJcqDsywLp8MBZTSn44lcCsPpKD22nAVlVYKsKiMNbK00m/WGrlLPmkb4piEEaZLHRFgWQAgHCSXvg6pSq0KpciRTGS4F9WERRNlQwjSTQqTxApxoK+TrVDKPhz3TMvPwtGdcFkzboq3DakXb93KdawsjLYH97glnNFfrDd55joc90zhKXy5lEgJCxbiwzLLjv3rxAu8805uJYTxJRuM93js2V1thdT17Rtv3bK6uWG83XN9c4xrP8TTw1ddfC5NrkpaH8w1N08oDGgV4OY5DlRIunEYB4Lq+k43upOrmKyyjTSXLr7cbPtOfM44jxlnmeWEOgZjleTin/KUu1iUI6uycZbNe1VVSU8ma4l5Ao1R5u0WI90kU01JzIgHgultztdlgtMFb2Uy2my1GG07HI/M04zNsXYNGk8ZJypWY8UWDNSinJKOpQcfXHnmpOEZeFsaUic6RlvnbL87TcZAdxDhWfXNZnMZY+n5NKYV5nuXC1SpFW4urlL5pntFB45xntZLG8DLPGG24u72jFNjtdqSU2Ww2EpWWhWkY6uJ0xBjFbiQE1je3NG3Lar3h2fPn0vsLCzEnpklcD0LdDUMIlGG4oH25FKZJ0MazWFpXWpdWitZJ6nKzvWK9Wl/qyxilF3v2LYohYiuBX0vBIRQ252tmIETzXPtnOUameUKBtGaK8CtLyrSt6PusczRaE2Pk7eM9p2GopmiRrtRr6gTRNlpBFB7v4/t7TocDm9WK9dU1WimG00lurNa1ES9N73nOHGKk73u+953vsN1seP32DdM00rZIqqg1vpOW1s3tLf1qxbMXL7i5u2W92aCtZbd74jSMaHMkJqmFXePp1ytSTNKuWRLDJG2XlCaGSfCHrfqA2mqtWa9WeO8viGq/WtGvVozTyJIi0zwzL3MFwjQoTUyRaZoE+a/gnbMG588C5vyhZlYfamfpKUvdLwR7aZmUfG73aK7anpfXtzTes+q7ukiFQBFPI3OI+CLZTS6FPImqRCdBdp0VPKJxjSzOSus8eyGVnMkhMs0LwRhSNQj41pETpGEqD9fM6TTS9y3TsmC0JqVIyZklzMQY5ELV4t55j1aKw0HE0yUXGudFVaEkHdJKYOXT8cgJoUG9eP6cGBPjNF94oWGZeXh4hP2RcZo4ngYRGZd8aVZfGCMVXclJivRzepQq6dgZqXlLERj8vFBV4XJBz+2WWCVWkv4USWmqoqWkjD+DYClRMmDqDl8ROqM1rhVOp6mYQKytDm0NRauqppnF3S0E5hhIOV2AEBDi+6efvMJZSxwnUgjYDA2aVd9zs9miKmhTitislMqM6bqW0+nE2zdvyCnx8PhACEKKX6/XbLZbbu+eYb2nv9pKLVfztV9BE4voSa2zeO9wXkQHWqtKoyuCVlLwrUcbBSaz5ITNibkCQvMs7QXrHUUrdoc9RSlubm749NNPCSGgtGacJt6/fy8EhQqcGaUwndSQqoiWk8r9HsaReRo+gFla4SvV8ayIMSXja1tDyAVK2j7WcLXZsl1vhDhwTr0rgHi73rBtWqZpZhyljjVVvB9TbXPZChIqdUlZhfGVa+kkQSMtC865Cuj949ffr12cb9/dAyKlyaVIa8JZmsZzdSV6wRcvntP4hqenPafhyPXVFc/vepxv6LoVlMIwTOwed+SUWfUrWt9Ivo7sWKnA48MDwzjw6uUnfP79H3A4Hvjyq6+FfRSExHB/vOcwLZLa1P6T8XKBzjD9mdRdUiEVATzmcbw0pEtBeKBNBVlSlRfVReqM1GZtI1FNSOzSjB8n0W6eF403hs76CgTNgsvVB6V2zEQH2rZyo2o6ulhJB7XRFA2hJIZJBOSnaWCYJ2Fcnf8phb7v+b3f/Rv0Xcfh/pFlHLlu1+xXW9rGc71aUSiMy0jKEu2XeeHm5opPXr3iq6+/5ic//jNKKfzyyxXr9Zq27bi7u+P5y5d8/t3vsNpsePG975JL4Wd/9uPqtfNBCnhm5rRtQy7SEkGJpUjKsfJ+Hdpp+twRo2OaTsxxQaWAiaJQOe6FlmkaT6KwvH/Lu4d7/tb6b/FbP/wBFHjx4gXjOPInf/zHvHv7jiUIoUJXAXlOidZJP7ZU0nyeZh6OJ9nQFBhr2Xa9kEZq+6tTipXWNN5zfX2N946+X+G9k821FJZl5ng8EFNkHiZUgc9unwm99GnPw8Mj1nvW2y1Kq8umk5F6d55nTpUFl88ocqV8zuPENA5451GVzfWtFqf3DQWp36h+KTEmShF9YtM09KsVKWVJQeYgO8skfjTAhZNpjK03WuqFGM5GYKk2pDM5FUIQNcs0z0yzsI5ydSc4w9OX7UaJrEdsE/nQ6I4RtHBZS67qu9qULnAmzwmEb53o72r7xNY093yO6RvuBmchtlEKlETYs+Sq5EiplhQCQgkp++yiIJjAOeUqFyheaVG+GKPFKa8yf1wlOlhr5fOUQt91rPsV8TSgajqnlRLgpRIR2qYhFSs1bs5S1zYNXU2hz04JUqs5SautSKDmZeZ0OJJy4vHhgd3jAyElxnni4eHx0vssJQt63ffCmz3fjHq/VaykiMqCwQBGsyS5nqpGlyUIQd9UYGi32/H27VsRReSC0Zq+69luNgLkVRcBWwXUjXMkbapIwTCteq7X6wswZ4xl1bQ0rSxO5xydNmyqiuZqs7lkceVCHxUe7TLPH+57EWcKo8TBwFpbN/BGatqgibWdo2qmI8GgLk6+0Z6qj642Glf1vt9qcb785DNKzjw9PTFOU2V0RI6HE+9//g7nHEsQV7wQZrFeWALjMPPs2cLnn30H7xz9SurT0/EE5YkwRw41ZZ4GcZaTXVmze3riOA6Shr17d7GXUNrQdCtKI6oF+X9Sz5ZSmJghFeZx4jQOUjN6qQPPvjgpxlpjKEiZpm25ubquPrGS5rS+xSjNMoniX6Jt9citCGDXtzRNS2MMvXHkkpmtCL6t99WKcmGJUp97a8k5M9QaKeVEqXWW8Za267i5u2OaZ97ev2eYBq6vb+jXK5awMBwPpHDH85s7rrZb1LxwRHPQ95SwkJUi+4jzjrvbG1RFwYdh4OrqiqurLTknfvd3f7dqPEXwfHN7w/Pnz5mWma+//pKC4mc/+xnTPPPHf/zHPDzci6tE13M4Hnj77h3WeV68ekXXNLx8/py2bTkNI8M4kFKlPs4z+6cHcgqsNmtc2zAMA0/Hg7jdbTdQCg9PT8QQhDiPYholjb27ueEP/va/yGrV88nLl7y8u+MXv/gF4+GIQ9EaA8biKtaxXm9o25YX2y3fefacEILwkJViXYkj58jZO8umFceF65sbSin84he/4OnpSbAEI+DP+/v3KBR9L2SGr774gmUObLZbrq6vaduGzWYtPfZpFKwjLBdQ8jCc5Lmp25Zogrmkw92q5/b5MyHFf5vF2TRNFdg6bF1AQkTODMOItYHj6SQnyJnkHhmn6UL1Ep2ntEHOLxC7yW+mozmdkd/AkuQ95nkmBKF45VLV99WaIuYspsyVM2lqhDLfoKK5WpTb2k+KtbVxjmRGS+9UV6X6WQFfam0ZlvAr1+Nifo26iLCtEfJz0rI4XSUnlKTJZ+U9XHbPb5o7n9s11lp8tXrRInMQwoezxBjqppKlrKhSuw+7+jeNoQvGWKEOOkd0TiRQSoQEsomGamcp0dk3nmmZpQWWMyGmqgjasd+LvYtfFk7DwDSONDVzOBufiVlVIsRQjZUlhXPOkpJQJq13qFlfEFRthI2Tal/YKkNWitMw8P7dO8iZYThhrcFrg/ONiBTq/T0L46kPtreWxjpK26Lqe6p6nTvvLowp7z1NbSmdPZNybYHEWOVj+YNg4GxwfhbXz9NEv+oR4LjWi4oLQeJscJ1Sqhax0t5R6iwp09W6RPqxzjuhUH6bxXl+gLqK4IkYWpzdfNOQc+KXX36Js5bvfOdznt09I8XANE0c9ge++uprvPcc93uWZcHZhmfPXuK9Z5wDYQm8v39PiPGD07bWFK2YlsCSC0tKPFYyuO03mKa9pAffNPjy3pNL5sWLFxQlZOzVeiWtmSIpyzRNxBg4HQeG0yAE5JjICPJXSqnaUX25yLouYOpGUirqCwplLa2XmjMv4tFbdHWQS0mMpFJ9iFKSV5b3PBMo1us12hjGcRAFRQW1do+PPO2eLhtNjolpGDkozU9/+lPefP01eQlgLBlY4kJW8lCbCsptt1uWZeGXv/wl1lo++fRTSsmSIqaE9U7YVuMkOskYRVEUA43zXF9dc3t3y/bquj4N+uIKoCqJfTwemE8Dy3DCWnFFWPcdV+s1KSfePO3YDSd803B3d/fBCiV/oFH2vqFxHmcMRmnG08CP/sM/om0ant3csup6SIlXL15ICXF2vatE/hlFqdY2vXXomBhqMDExYpVm7RzrVc80Tdw/3AuV78eDlAt9z/X1FeMk3rTaaZ6/eI4xlvV6jdGGrhMzc2OFQjhMI/Pbt+RSeBrk2p151cfhxGEU1FzXTSApebZSydIP1uIGifmWi/OMFJ7z8lR3GFt7QMuS2T8Jo+eTTz6haVumMTOPiXle2B8OOOeYh/Hi6L1areuDHpmXhcNpYFkW7NkLSAlfMsRULTAz47IwLwvrthfLFF0wmA+Nba0v1hW+qYV/17HdbqFINE85MY4jYQlo7glzwGhTDa0K8dzwLrIdXihtRn4PfPCnOVv5RyDXhv455SVJ01xlQXdVHTtBbWmcEc8zycJXA+xz073U3ys613hxAjiznOZp4v7+ntevX9M3LZ1vKmIolLJlWbBFSBnGGIYqx1pvNjx78eJCtwwxVt5zFN/ZJbAsC8MwkFK6GGVvNxtub67xvqHvVtI+q/NHng77amsp6RzG0HhXdZUNBcV+nng8HS9uCSEEsc0sRYzZlKLvevoK0FF7yW9ev5bolgtpE2i8Z7Nak0JgGgf53tqqivOCSrlmAg1RKdSZmpczOicao+mcY55GToNshO/evQHgBz/4AZtuwxQWYooC4vUt1ops8ey80NYSK0T5vUMMxJTZn04sMRDIxCLkjilIm8TWVFZlITcItbSSqoyW17dZnPMkFoTTPNWZDwmlRMH+4sVzYgjsD0+UnNls1qxXPVebNfbVK7x3rPoVUDjFI/MsqhZx25OHc14Cp2FkCYFtc41tW97e3/P2/fvKl5W+1pwLARFYAfRdT9t3wjaysjhO1YM2xojSimkYGY6nqqeT9He72eJvPcu88Hi/40LP1JputRJuZRE6+bIszNNEKplhni6AEwi1r+17eu9Ydy0pZZQV8bZ1slkUVS59tjOJ/3x+xNqEd56mnSvq7KrxlLyaCmA0Z5FxTPzkZz/FWcuXr7/m7cMDVgvvufGedd/TNg22tTTlg8nYXBX8wzhy//BIKUX6xstCW60yzyQL58R+JucsvGjESiRMM61r2PS9IMwVxPj8s09RWomzYdW/PjzeE0Lg8LSTTTEEvJEF660lOY9TmhQCx/2BJUSS9eCrpYgW/va66/HW0TQeYySTmdJYrVjBWsN2uxHrj9o6c42laRyFxGrVXxhSMQZ2u0fGcZAFmCO+cXznt74n/kJXV7jGo83ZG1nS0lQy+Vhqa0UcMTAGbRNLTDJAKcrgrpCTuMFToNI/xbJVNqBSuxPn57ooRcq16frtFudALpnj6SRE5upY3XYNq3Vfb6oixsBmvWK96utOe1sZLEttRKeLn9CZEmeMYQ6B0ygLf3NrsG3P4+EX/OlPf0rTdlzf3lKAqUCujBxQ9P2K58+fC+kZiWTDMIh9RU1HLx/QWvq+p21bPvvkU25vb3m8f7y4soGkx10nox8qmg6nE3OQ95snYYJY46ptiadb9fRNw6oXg+BipA48jxE4t0GkjgsXVUaoKV0BWZxdh/NO1BNngYHWF6tP5xt80xJi5Cc//SkAv/z6a3FFSCKVWvU9t9c3rPue66uVmJGFcEFEQ4zkcSQ/PBCjTNya5/lyXXxFdL8pXGjqdK8QAmGc0avCtroluEaMqe+eP6Nf9bL7a83XX3/FP/z7f5/9fs+bpx2nYSBmhTeOxnm6VjCM1ljCsnB8eCKME7nytc+1vHeOTRXan3uQoksNaCWu8s5Z+l4YZXMNHs47fGNBedbrFTHGSjwRsX/OubJ4DF01ifPeX3i3uoJ6KYsXMAnGeUKh2G6vaJtOInnMZOaKv4jRgMjPzg00hXH+AwWU82WtrZPaC485/8owrH+mxem9rTswgEhetFaXmRrWGvq+IyWhrE3TRNe2FaQQaU+sbnY5CyOm67pLSpuSuBOkAk+HI4dpZn88yXySnMUoGVgqCeD8fvM8czqd6oWsrgXDKEOPlKpmUbVIT4mx6j7fv39PCIFxHHHeQRGn+JRFAGyMJlVP1SWEqnoX5Z2AUCJPG6YRe3QQF3wddbecHeer/b5RFmUUhFC/9mGHPDeq2058ZDKSji7zTKoTxc691MbIg+S8Z1oWMUKLgTlFWcTOk41myhEbRbVjlMxTOaflTdNUjWeVhrUd1jm2my19jYbWiKwqhApkVPbT2QC6JPHcKSkzTSNKK4mKrb/gBA8P99JTjoG2kZF4eU4QxQF9Oo1iNFb7zo3z2JWujvoWZyytr7zT+lDHFFmCaFKbphGFUoxIg1X+wChU1mJBohW29Vy7G3IuzLOwiZZ5Fsyg9sidsR/aJUIhwjvH9dWVsHx8Q0qR/e6JnDPeOvq2Yxxnqe9TRivJBJ2xUBSh8qqzNljKhdyCElBQKapxXGWmFVC/ZpbRr12cm3VHypnTcGAioZXF6jrsxkhP8O7mWnaFnNk9PNA6R7lLl4izVP/YnDPr9YZnz56ze3pi99XXzDHhuhXZLPziy6942u8Zw0JShpQK01HaLbmmwf0SsGq60AbPCv2c8qVW6nthxJxnisQQeXrckYukvk0rEaJfdWIMdjiKfUoMNY0WG4pvCoNTXZwhBUiK97tH9sOJTdswrfoqQpeoaqrbvFNONrVxZJhGWeB1gTovLKnr6xteffIJx9OJL776UiJNjJVyKCDWtmm4ff6MnDNP48C8LDyNA4dlZr1Zs1qvSBR2YSZoOJxOMjyoitvv7u64ubkjxMhpHCnAzc0txlqePXvGdruVGnoR+5hpGImpiHu5kppZFyghMh0Hck7snh6rjUiSKqqmbSEGxmkEVbjZbgCFeTxhTgun45GnvZhSH572aK149UrmZFpja9+0E+UMVPMtmOaZEBZePH/Oi+fPGIeRh4d7yUtM7Xk7ofYVp8lO0XU9z54/x2jNPC+yyPZ7huFICpm4CKB02O2hFGwj9fl6tebZ3bNK3+sZhpE/Of4x0ziy7nrurq55F+55HCZSLngtNM7kIOrElGSwklbCDJM1XwkRFfltvKtkehnW9a0X57n+WK06EfPWISzUlgOqmgUrETcLa01cD3KNcmfEU0AlfWnHLDXFA9lSYsosMZJKEXSz+oOiFNbqi6uBWFRKKntOhVSF9s+/x2jzQXluyoeRdpy9V6XvVQpY5yiUSrLXxBwqBM5FJ6owAu7oOi+yNvFTFgCgZCGjn2dyiKK/GhdXgEspUZDIDvpBi0j9+9mwOKbEEoO43GtbIXdJvcpUxw8UoS3Gkgk1Quac8VnkdLr2f42Vdok2BpVkOpxSYKp0DyrIF2IdTRclZUtZ1CVQW2RUO1NBR5d5/rA4i4Ac55coND6wys4cY3KpxndKen5a1VaUGFKLMbVETVGPSAQXRZHcB+c98yLC7Vwyuj4XSitMTUnnEDDOEnP6EFWVwbeerHpySCQr6HwMQZ63XCgqXzbPfLEmDZeRETGIzUuYF5EXUirRQup+AJMzSRWxOjm3V0qpAu6awlYaX0mJMP8VuLWff+cTSik8f3F7SSfnmh6cxqEKdkXNcebTphR5/forWcCVDrFer9EbWcSPux0Pj8I2SbI6pFFrDMo5VDGYnDHe4fsVxln61Urs78eADVEWR0yX1EzXDUIubKqsjMoaqvxRAOt9Vdm3tF3HNM00XSfpqJfZGo+7J4Yz3S8nlPowKVrr8wZTU8bGQZ16lWJAJWT6VLVE7JqWBHVwEHS5v5AQJLOYOdS2xmqzIanC03jg3e6em6tb1m1L07WsNxtCDByXEZUCQWXGHEnTyKnEC9NIGYNvWtarNdvrq+omUBdOUUyz8KFvbkVF8vS0592798LIGgZZlJVZtNSFuK6Dd06HI8s01Q1OHnzn5Z4vKYhptbV0fU8IC199/RXDODJOiiXIBnTVrShtz/VqgwKpa4FNv2K9XkkfvPYey/kBPy8EY+jWPcfxyMP+kVIyG7W9gFitszzt9zzcP9A0DacovshdJ75P/WbF9sUdJhbcAsMw8MUvf8l8lszlzHQ6MZ3EGWOehLbXWEe7ctx//Zavfv4FKYkszlgrz45WFCfgTqmk3rM3Ukri11RK/mC36QN4x1IGBna/bvn9E2rOpgHEJyhXRPQyZXmqkbMiobbufmQx9FJKY2rYP6d8YZHhLcsSLjWaMfaCYlEjiNHiJdM0jbA6Viuctah8QtVJ2TkXdH1ArPlgrS+bR7kw/QB8LcDFuUDRNF6oV0AfWomgtaXh3ICuTXrRKX6wWzF1HMI5Izi7IEAdX1OkLi1UnyCBfj/Q9KpBMbHOaDy3cBDgyhor6HSo4xv0BweDM9ekcAYdioywC1VXqkUqJedppc/b98xhuTyA8MF2TSmY54nD8cQ8TYzDAEXKuJLF4DvHKEL3GrlDmCsdU1V2lvtA7i7SaPfO1bZPRbuDpUSNcQ5vXb0p9f5oIXSc+cxnwvhZl4kWjSgFYVM5W/2A8gfngVLtZOoGuFTq5jCchHyiwRXPSq/xjcdZRWO0TL+z9uLQIBiJ0O3meeF0OGKM4fZKPHXHcZThXdZjrEdX61SUqoKGOg1PaekrnIHYnKuxd6X16STmbDkT4l9heO6f/vItl3UDPD4+8Hj/XkSlYcEZw8tnd3StldF3WrFad1ytV9KHjwkZLiXOAaEExjCTLaxurqvGWUOM5AJxiXSrTlDEpmGz3eC94/pqK2qMriEvM2N1dNdWU3QikMWrtdagIQasMTgrIE/fNGgKcTmR50Q2Ce1gZRTr6618QG1JuRCOA2VaZIKxkmE52orAW1e2zRIDS4ysvKczrSC/Vh7O1vvKeQUVMyyRMi7kFEnzDMCrl8/ZbDdkICYhNIjcTKiFDi0Pp8pYb+hXHSlH9jvxmTU5s6q8TFWg9w3XNzdsmhaVF6Zpz9dfHi/MoLMZ9Gcvn5Fy5uHhDfO88O7xgf3xyLQsjHXW5WVobQXhVvFEOzQ01tE3jQwVqtPAitM0WrKe3vX0fc/ds1uW2os8Hk/ECdlAaqov2cx5ZoiQ+z0LaXqi36y4ur2iAEtyZPLZrpDtqwa9TtzaDX+w+n2WJbDf7Ukx0rQF7wqfvLjh1bMbpmlid//AMgy8vX8Q4O/lkXBzizee3kjWRDEoDIfjQXjcMRKSqGy0a0jA14cjJRee5pmpZDZtw9XVNc572jomYtjtmOckg6wQVwtV2UxtdRocxpGYoqT0Voj7IUfOYvh/5sX55f2T3OBqu39//8TbN+/RpWDJtN7z7OaG805nVGHVep7dXpGzMGlSShynCueXyJICRSua1YqcC0vMJCV+NCllGmO57nu6tuFmvaJxjtvVGucss9eE4DicFDEvMmVKJTIwxnpxYyDGhMNQnMNpi7ZSH+RxlnEH0aKTx7uGVdcJIwgBg3bOMdZUHfTlQqNUteavdV9OUBRe+zqsRmq9vpVZnikukurGTAmRkiIlBJRW3Gw3vHj1kqfjgYenndQixqGU+AIZxDtJaRnT0DSOYVAMpyOn4wFdMm0lhwP01nG33tA7ByUSliRMnyWwWq9Ybzas1xturrcsIfDFV1+we3rizeMDT8cjU1gYwlzhxOrjWzORQ5rwk2XVdlyzwRlLUgVXDE1uMMXitdTwXddxtb0ixsju6gZvPWlI5CVfxgtSE+1cMiEqUkkUIjksWN2w2XjQigURNCgvbKru2qPazKpvuX72OdM48fOfzIxDwjoh26y6NdvVlt3jjqe3b4njyH53EDKHtrisaH2P6hQhVMQXzTTNkkHExJISvmlYbQVUPJxOxBQZQiAU8W42mzXWe9xmLWXUYU+kXAbtZqXELRBkIeZMObtPVtpnLDDrM1L8LRbn619+iVLQNg3OGuI8s247vD2Thx3b9YbWO6bhwH4aySFgAO89m/WGVDL3j08cTgNzzJf0R07wQ2HeeFdH63U4J7YQy7yQY+IR4c6SFkqK5BDwStQI1nfCuCiKYCL7eCQsswjCbYsGlmGqbB1wyorreki4xnJ7c4NSmmGOoqoZBu7fvReXeOtE6HwGG05ioaEodN7ROIMzkmyWFCkYVt2WvutYlomwzGhVmGZD03m+9/3v4huP8VZYKtNEiJFpWdgdDhyGE6f5SFSR5y+f873v/RYvX33CZrWGUvj+b/0W4zAyVlRX106tMZbGejpr2fRrOmvom46cEqv1hs1mIwixMmSVxfi5wGmU2TSFmt1QamNc7pFWGm8crfMYtAy4RdH5Bm8dyxyI03KZMrZUnaZSopE02rAPB5ZlwlYTr7Odp6HgtaiejsNBNvKQ0Gene8ShYrPZ4tuGru/pbFtVOAbbWr7z3d8ixoRXFqMMXlsa7dBF88mrzxiGAcVbplHQ1eNpYJoiw0kWigxPjjIIt05by1FIN+O9SAOXs7l1zvU9juTXr/HO8bR/IufCfvfEssisnnkJ1VTug1naeayi+N6WixdvqtnJt1qcv/jJT1BKsd2saJuGdd+zXa1Z9x2v7m7xzrHuG4wqPLx5zbs3r5lPAzkErq+uePHsOQDDaeDh/h7jO3S1eHBWlOhhWYSt0rSorUxfFsuLXDmshdPpgKLQUHClgLG01mKNp217UBqrnPAbjyOnKWK9Ym07cooc9wd5UGs/TWdFmiP+yvHy2QuU0jw8HTipkdPhyJuvvqZdreg3G3wFj0oujIcj8zKz2W7oVx29d2KunTNLWtDKsFl3XF9fM40D8zSiVeE4GNabDX/4L/0B682GP/mzf8TrN28Yl5k5LOyenvizn/2M0zjwNOwJOvLZ55/yh3/wh3Rdz2azpWtb9O8Jc2k8CmhxHrI0nAZ2j490znKzuWLV+Ms9XK83bDbbmqVEMJmbrYy3OByP8gArXZlziamKsK0RK5bGODrXirB5WsjK0Lc9jfPs7u8Zhw/eUF3bMo1T1fm+YL32nI4Ty+kk4wlaV0ngtQRoPUYrxmUUskCI6Cx9YrSQwl9cP2d7tf0GqilAo/aW56++K7NbYkVAp4UyLvS+R2XN6TSQAuwPB0KK7PZ7yIqStfjl1uHOWUmEU1HS7HGc2O335Br5BA0W5Hz39MT7+4cP/eMq4si5MAwD8zTRdC39alXBIWmNnWfKliISTLH4jL9u+f36xekq5N3YDxOKvZF0ajgNRGdprAJjcM7Tr1aiPFealDOHw/Hi55OSTBTWhcpPFdBgHEe5SDl/Y7LwmeVf+ZGqXGZSnJk9CtlBfZ1gPJWFmKHzLVfrLZ1vpIeUoCQRX8cQBVCy/kKTM9qA1pc5o5v1htvbWzG16mSWh67tgtY7jJahRaREDgthlpENbeMr8CVO7sYoaT15aZ47Zy8sIe89682afIIxLvi24ebmhnbVER3EHHn+/AXPnz2n5EKYhaCwTDJZOi+BEiO+7cTvCDGsboyuNa+9lDKqSM/w7CwRYiRHaW0YpUWPiigmMoW+9PIwnV3VrbtMDfPO0zUdvipEziBgrpYh0VhSTEQjVL4QItpZ+u1aJspVa06N9MrbrpNhP6s14zRhjWUaBtBKjLmM5n3znvE01lksdQZoBm0s3bgIiaUOtE3zQh5lsz8cxPNHRkicaZm1k5HzBRE+A4VohYlBQMNzGYOAbWftpUwkkGc55cw4yZAkkaZwaa2ZlCrIxIWtpq2os86R9DwS5FtHzpuuR2vN3faa1arHOYu1jjBPfPnFFyLJ+s5nrPqe7eaKzXqNtRrvLCEmfvKzn5NSYn84yrwKW2duhMgwCqjz/v175mWhacVLp6jzoKBYzbSKADtKdq9GS8OZYmiUZet7ilIMh4EQEs83N7y6fSF6ymkiLZkyi2XJNM8sqtDaFrducNZjjBPvHN+Qi+L7v/V9VusNMYlP7BIDp+GIKoVn2y1aK8ZpYB5HeQjmSXSHz79D27W0zkAOOKuxtgGViTlgrWV/eGJaJtbbNZubLV++ecMpzNy2Dc9eviTmzP1uR8qZf+lv/yF/+1/4F/jqy6/4yT/6McNp4PHNWzEoCwFy5u7TFa+ubwTNfP4SXQpNjmiKgHG5kJfIad4zTTO7/V56k0pGBjbasm561p0GI4OIm1UHSsnIxeoJNM8Tq6bj7vqa1jesq2Fz6HpMUZxOR8ZxwChz0ea+fv0GpTU3n7zks89fyXyWIACIzgWrDTdXV+JOVwkA8zzx9qu30mYKgUzhi5/8OVprVmshXOSqGdXasOpFMTKOE8si5dGyLOL94xsykrqHLK2kgiYh1qKFQrESDHwrViZJQVSKWIpMOVfIBuJsdUtoOByPpLxnnmU+DSCaT2MuHFtigJr1pVzNqZ04QcbaRku1V/+tF6e5pCDn0lm4j0mpy858HmArk36lHsu1Kb6cua5VW5eqlOo8bVpes1DOnEdbc3H0zrUfeLalPJtDOyM7fa7qkVDHsi3zwjIHGm2xTs6vpLNpsYYiw5e0RkysnaMo8alBaU7DcElztBHSQanTncU9QOwtrRUbz4VZQLA6/MY5QYdLTsTIxXjaVb+d8/TtXGSWxtnlQBuDaxo2NzfVh0a8edtKg4whMJxODKdB1D0x4ioFzKBqagtaWXTJqCzkjJLFeuU8CCgsC3GROgotYItRStzhrEU7j2t8HRevhKscwqVh7iq5Q38js9HqQwvtLFSW9FNxbvoZa7CNw1hDtkYogVkcIuxZa9k0QnhJiVOqw5hQ6IJMPM8ZpQwKfVEFKaXJQc5hmuYLb1n43hb/jWnoH8y7MylDPE/tRtpcMj9U/Wo0rVnc2cr1rEy5jAVUddx9bQGe+8y6Rt1U0kUskb9xzc6OCGcd7q87fv3w3Cp7Oez3zOPE1c0VXd/hNmvWGzHG/d4Pv1+9VR4YTkfG04nD/qn2seqsC60p1jLMM2EYOY4TD7sDwzTzsH8SZj/QVDmaM2ISJeoDy6braJuG7XrNddMSYmJeZLLwn/z4x8xLYH88scR0MZK2pi4Kpdhc3WCt4eVz8YHRVR0zhcA/+KMfMc8zb969E2uUJV5G64nrGxijaLzn9vaK9XqFeV0oaeF2veLT2xsZ/+4MuiQOexmdcPvsjuvNDdpCVsLdXW/WYvmY0mXqWrfqefbpJ/zt/+zfQWvNu5/8kvFwYh4n/sG///f5+ssv+cmf/pm4Eh4HrDb84PPvcL3d0ClNeDqcreRkcywRSpaHupYOy7Jw9j2DcmG4dNZhV2t819Kt1/TrFZ9853OU1rx7945hGBlOJwGgQmQZB9KsUTFehOZd19B1Dc+e3VUWlPRZ15u1pPXrHrREl3Xfy4Yxi5VqazwGxapfYZWMn4izjIO8vrkGpfj69RsOxyM5wv5pkEFOzlNS4f1xL+WSQjYEBWjHuETe794L6yxVjnTKsmCUkYV+XoCAOsgCuwA/dWSHtLhkeNE8L4SYhC5K+WAeVhVNzjuMd7QhEsLCNIu+VMTuYtESq5bXKDFrF/+Nbxk5z0ruM88xp3yZH+Kco+s7+vWaft0zjEcYxUtlqrQk521Vjgi8HFJkXALjJFYi47yINjAmXAyg61g7ozlPXT6bRhvnxIW862CJJBbyNLHbPzFOM6dBRu81S8CdSQZ6jbOG9jye7vqGqyuB+kOMnOaFt/f3DMPAV69fM89z7YyLkDjmiDWGrm3w1dis7zqaRsbatY1ns+orZVAudFgWliB8TnOe1+IkOp37jXNF6s5G1d16xbPPXmGNQ50CQ3Pgz3/xC969ecv7d+/ZPT6SQiRNC41zeGtYt50Moz27lidJGZWMe5ZIWWl58yyyNOs9UhFLreOtxVbG1GrVs16vubu5RmnNPE5oFDoXTIGxDEwxCodWGyF316lrl9qzih2MNbSdqF2yNRdXvq7vKCmxVBqbLuJAIa4VDmf9ZdL5dnON1oqHxz3DOIteMkSsUxgrz8kwCo3wnIFIdiUtseMwiZ1NEkpoTIK6Km2klDmTUvjgZPBNzEOGBFNJE+qSAabL0KIPUkTrbKWBSo2aS6ZME2cmzMXU+pIFChdZIK5vSd/b1OGe2+2Wpm3ZXl2xurpiHEe+fPcWrTX78UTTOMbxxDIL0V2miGla1QJwPA0sIcpg22lmmgP7qvo3zqGMFZf0GMgYCoKoZlMgaqZlQWnNISwob0klE6wieIverNHVgHgKkeMQKEOh8Q2rWYCE/tjQNB6/WTErhFY2juz3e75880Yc/pSieMcwjJeRcTJZTNO0HusMu6cH5ukEJXNzfcV63eOaOnmskRu+NVtSTkzzxM9/8TPhsTYNjdb4xouLet+TAdc2IiwfRv5f/86/K7VSNhAzf/6zn/OLn/+cEhPrtifqhWFasMD1esPzuzuG/YHheBSZVR1P0HR1Cvb9PWFeiHkhlUjrWq5vhO62WktUK0r6uLkUIgLIPbx7Q6oihnEc2T08sq/+OqteJoet+v6DLpfCEibGKV/0tSojLCcymAhFM1IwOZFCZDicIBda22CUTD6fTiNTJZdMy0IorynA28dHDqdT1VkWIXbMoou9f3gghFBlZSJndFXQPVaxhfCaRf9pSiHGzDhX4oeRZtQ5HW+82MWc09FSysUHudRKTiSAYp0DXCYLOOcukrB0Lkvgkgafl6CMk9QfIve3rTn79QptDNd3t6xWK9q+p1uvGZaZdw8PhBh5t3uoCGVBfUM46pylOHn7p3Gojd6B0zixxMS0CIysrUUj9Wi6QMt1d0GjdGYJEW0CQwzoCk0XA9EbzEqMloPZMRbxv1mWBe89pyhc0tZLXbN9fkfxjsPhwOFwYH848PrhnrP1pHaOMe45jQPeWdrGk5XDeRlkczjsGU6Kq82GzWYlvE0v48WtF+K9b6WN8ebdW96+f0e/WnP37DmuaYRV0rYY39QaFJYQedrv+X//yd9Hac3nn3+Hpmn5+suv+PlPfsr1ZsvLu+dEFDNiZLddrbi9uiIOA4ewSN3vW5yzrNa9cJifHgh5IZZIJmGcZrMRFs/LV68kbavg2mkU861pnnnYPVS088A8L+we3/Nw/8DV9orrzStBmtcCgJwJ8KFa01hraU1HLkrma5JRJqIxTDlDFGua4+MecmHVrrDGctgdZNpbEhFzAfbjTCqFh/1BFlONahIFBc94W/uLfdWkeu9p20RKUeaVAs5KvX/xAsqCcRS4LJKza4Q2Vtp49UhJCC4pSRlwRlpjdaI8Ox6e3TLO82XPhmKX4UvlPHlUXTS7Sutfa1HyT1ycCWm8Pu6fOAwnrPfYpuHp6Yn3j4+klPCNk9RTIQwXrS81mqv9trEa8U5hqeMSzjM8FSgx/FIVXXTO0nqxHDGKOkclMJXMl8sE76mpiZWf8xajWnCGYjWmbfB1JzPeoxQsRSZ2Pe4PFK3Y7w8cjgfGcWSsrtu+omqlNuLOxX/J1a/WGFTr0dbStS23N9ekZeHdwwN91/Hp9TXOWo7HI/OygNas1iKbur9/4HgacG1H1/W0K/H1PR1PxCWgsrg7gBI0NmZ0KXIdSuF0POKN4bNPPxHry5zY7R5JKcq4RSDGINOvxnKhvDV9w8ZtaHwjfertSto63mKMEqvKlFG6sFp1WGeIWUAVbURuFZeZkhPbzZbtViw7hHaXuXt+R9/1HE8nToN45nCea1OtbbRS6CLC+2Gaxf2wChViWEhLAAq+8aiUKSayhMi+Ot4/Hg9C2Pce4x3LEjhWeeBSMtloFgo5RWKAkHOtPaWiC7WFdxEcxHxpk4i/7Qew8ZwahxiZRhlwdY6croJXoxrFDAxQSv9K37ZiQ7Te01Y+8jRNAgJW1dE5gors0v6apPafsDiXIlaSD++fai+yXPo7D487SinYikSeRaTWGXxj6bsO14mZ8tPpxHA6MVf/FWMd3rdCcTLV33aSEeCtbySKFepAmcIyTYw588XjW+6P+7pDtlxdXfPbv/07+NKgWk+ZzCWFPA9fylnE1ipFvnr/jsfDgcNRJlvn2gg21uJTwirErNpKb0trRcqJ42Ev0VFtMAq2mzWffvIJX335S37y5Zfc3tzww9/7Pbq25f1ux26/xzcNN8+e8fjwyBd//gXaWIZJrEGu66iDUAflqgw3m2tBuKtVqM6w6VakZWH3cM+z21t+7/f+E/Rdx3Q88fXrr1m1Dev1irDMjMcTRRWGcpLw6qB3PS+ev+DVy5cVvU41usuMkjgPDNNE27VcX28ISew7Yoxs1j1LCDijaBvLerXm7u72Mh5DKc13v/ddPv/8c572e3ZPT8x1mndMMnIg5yT6X2AcBk77E74qiRSK4ShAk/Ot2IDGhAqB5XTi7cMDp3FkN47MIdCs17SsOJ5OvH0nnO+u6zDWkMioVCAskEU0vVlXR4hFzmMYTkzThHMNbVMn5WXZBM9p6bl2jdPE7unp4pR49qjq25bDQTSpWmsZnqVFCGC0PK+KIq3F7ZawLKK+SknmpGotovol4Iyhaf4KvrVnCHoJ0vqISQr+85SpXAolJlSqvRwFrhgKYj85z8sFEdPGYDJkIx6eUnALiFJK1fhZ0WV661ClyOKssywv8LrRlZwtRfZUXdcA0fQVcUcw1YsmK3lPUZnUJnAu1YqzqgKKOCZkJbMrrVZ03rNqG0GMlVheXl9d0bUNbdOKmr16CdmmZQ4RdKAgUaNpW/pVT4yZm5tBKHFaWgHDaRBupxK1pDGWVdcLWyXly8hzitRxjfd1QtiHOakUsVZsWrHxMLqughZZnLLlsVqvaLtWWjLzJBnJPKG14TScqpWIKDlSzpf+5lItZrQSaVfXtWw2axnLVx0qoDAvs7S8tAAfKKmzjDXoovGmunK0HTpLG2uz2Yrv0+Ek9b3xnAUrZwWPtkIGSEUsQ3SKmBSll1jNzFzJlKJQWV2ul8qFVMxlgJHSWkquM4ZQwScAXVt1Z2DnbIt61seeDbjP7TghQpwn3+lq1VnbRrmO9ShFzNGahllJBhljFGaaVsSoP7Qmz6H22yzOqTJ3TuMkjd4QWYLUBGiHKplpWi5DSKFURznLNEes9VUE7eh7hwtRooK1OCdC7nGUVKd1AjaItWIvY+OLDAQaQmTJSjihXWX3aLGGeP311zWfF0f04+HIeBqx6zX9ZgtAYw0UaLwM7bUgXFtAIQOJwjRRjOH53S2b1Yqr7Ya7myv5XDHirOHTFy9YdZ0MqSlwdXXDb/3u74FWvNntRC5kLevrW+7u7ri9veGTzxI/+OHvMk0TX375FeM48vbr14zjQL/asN5sub6+5jvf+5RS4Msvv+R45JIKrvqeq+0d61WdqRkW+lWPM4b1qmfV9zhn6BqPthq7cijDxcXBVd7r09Oeh/0jKSacewIU7+/fs9/v6bqe9WbNRZKW88Uq01nH1XbL8+fP+f73v08uhWcvnotv0zTys5//7NLfW4I4AQB0fYc2hpU3NLZmMtrifMN6c8U0Tbz9+i2Hp71oZn0jpgFVLrjabMBa3h6fGJaJvBiyN4xhZsmCO6gQMLnOx8lFes5KYbD1nDROA9lWxNjR+o5Vt6lhQTbnc8QEqsNkvFy/s/Pi2SZF7semLq4K7qREDgGVEgZYNQ3Pb2/Fdb8OZi7VVzjHSFq49Ke/dVp79pOVtkK178gZlEYbK6JjwgfA6UyTKpU3W71emmoDcf6a0dWhrnBpxhotLuXWWGxl9JsMSRd0URgk4jrthLxXjYWXaUYpcEbGrC/WEoyo089jCowXXaqpOb9SZ0+X2qrRGm+krdA3LevViu1axsF9WJyW7WZD37Z1rmYCpbBNQ0qZcRI2U9dIJJMwIOSExonNYtu24qmUM8u04N1CqnaYtpoLa7gMVBLKnL0MWi01FZNSXaKLcWLc7JoG6wzNqkEbfTFWO+sUBbSRQcepzuhY5uWCTFtranQxlCyRo+TMeeq0PxMFcmH0Qls7DgPTNGGszC8JUVo3YlHayAg872m9wRpplVjrsM5igrl8nnNWoRBrUqUFk7iQxzkTCNKHlseZ3lmzK6F5mkv0PqubtdIULdpNSvnglCGNePme+n4fTL+r6vUviWq6PqdnFw6tVJ25I5PfVJFN4jymwzsrvOQo/NuzE4ZSdTH8mtX56wcZ7R4rPzCTtUY3RtQG1tE0QgY37kAMEe9sjZJgTZUcIWBP263EWXycUHquY9wNOZ/9YgvN1rHqe1rrsCjpsdUFZJWmoHEJXCVlaFU5ukFGHrz65Jq+XxFuA6kOxR2HgcY3vHz5EmMNu8cd0zTSKU204m17eysj325urkX2VAGlzWbNzdVWrCedw2hF62Vg6n4YGE4nnqaJt8OxDs8NKKQebRrP4+4J89Ofs91sefXyJVZrPv/sM4HZreOhEZQ4zTPj/sDbr76ilMLj+/eMw8DVek3/g+8LqdyI03vMiRIhHsWFrmjQ3nJaRt7vH2jahk8asSUVEfXM027H48Mj4yDiA600z58/Fx/afoW1rvKMhbvar1YYrbm9VlUeJ89Q23SkVBiniV9+IX5HD487xmlkXmQ62rmn13YdP/jhD9laT7/dcnO9IoZEXCKnYeDnf/7nTOPEkiLdumd7teX29prTNBEPRyklAKfEa3blvShwlkBrDC9ubogxXhzpz1Onu7at8zW1jFlUCWdkk3Zti+p6yJCjKEd844WXPUlbTzYES8mF9brnPKkcCvM8cjxAjAu+Ls7zax5kVObZbkWnBCliKazblkUb9od9dZlIotUthZjCt4+cx3HkPIhIaWFWaCUk97brLvWo1pG+bWl81SRW3R4lUYqqBbcnxjPrpnoQUS7OfEaL6bBVwqBQBbQqUBepNMQVOokDoFJFDJxDQqFZNx1X682F4fy02zEfj1gF1+u1mFsfT4RxxCmN14beN9xur+i6lpcvX9K2TaUgwrrvWbUdzlpWnUiVSo6VnifjIk7DILzhujg1UlvHnAnjRJhmlmeB6+1WNoJrmaH5dP/IMsq4iXEcicvMcb+nlMJ0OrHMM23j2a5X4j4XhdCQz/THnKBkVmEltoxhYZwGuhR4Vs275ykwjhOPj0+8fv3momax1l56dN6J/WXJsgEbbWldi3HCTdVGi+F0nUkqKqLA/mnP/nDg4XHHMI4ch4HjID1lX13sQxABvW087XrFPE7EKOPh379/L3M8S8Z5T9M2tF1LOPNQzy0KVV0SKmWTnHFGCA5hWdhnQeGpz5MzRqbHVfT2vIsrpcWfyFrSUmtmJdnJmRl0dvM/Tyjz3ouzY50gJvaaMvDImhpp65iQFCM5JeyZ2FCEoqiRURGqiMF4qeXf2c9C2H/fsubcn04oJT6xThsBUDIkAnkcq6pdAJBu1bNarUhxISyCOI7jSCmZ0zyIke65sZuieMLGxDzIMN3n+QUY8WltnSeHyDKMhBQ4DidRqleKmnjLygPmULRK01lLb90lgjcKdAwoFOPhiRFYhgFiYNU09N6zWq+4Wq/pupartRCbU6qTr4FpmjilxJu3r8UHBrH8/Prrr3n//j1jzhxjHS1YwYN5nvHOYZC68Xg8st/vZZRFHWx72MsAn9Wq5/mzZxVcsHX3NqSoLyCFRprnzok/j3g2ic1JLIX3O5kWfjjsMVrxcP94GSufS+F4ODAcJ7x3vHr1mfQifY/GiKPDHGudlcgx0zUrTCqMwyLypigAzH4/8O7dI+M08ebdPcMw8vb9A8fhJKhzjBLhYyYm+OWXr3k6nJjyyJvdmjAtzOPEeBp597QjLuILqxFzt5QyjWt48ew5IUTWqw3TPGOt5WG3Y1hmxmWp2VZCFcXzzRV5lVmvVzJY6jwpXAtwmHNmv98zLiOrVQ9tg3eebbup1iaujqiPWKMrA0hMybWR4BGjEB5Kpd598uoV3/n0U+Z5Znf/QFgWDkqyx77taBtPY20dKVnbRka6F1prsW+ZZ6wT0PDbL87hJHWZb8QfNUuer1IhxFINkKUB2/YrNldXTOOJmCMpBo7TSAgLw3CS+Ru1WTzOI7vTXgSoWBrnCTmhrME2nq5fsYwj43BiSYHDcJRR6sqANrVYl2jSNJ5GG3pjWTnHqu8EUdVKBrbOM7vdTojR0wJJTJj7vqfre67WK9q2ZdNLD3BeptozLMJYOZ14/eYrUqrzNJGpVK9fvwbnwbe1JytI6ukgyOmqbeibhtPpxH4vrZjHJMOH4ryQYmTV3/LZZ58RY+R0OKKWgjOaVO1VtNYYoFQXPZmCbStaqNjtnzjs9pxOJx4fH0khkEYRlm82Mj81p0SOidZ3vHr5KdaKobNYzRTCLH3NZVkosRBWkRxLXXRi2xFrejdOE0sI7PZPzMvC2/cPHI7H2hKTek8vkWmJfPnVa7rdE/tlz+qhIy2BMC6kEBkPA+RCZ5s6+7QuTt9wXfu9z59LV6DkwrbreXh64nG/Z14WTsOIBVabLcYYbm5uJDBUkr8xhqZrCSHI9O/jEVuplL5Z8ezm9lfI6zEsVW00EcKCptbeRbjJMgZjoJTC7/zg+/zN3/s9jocDP0cxDQMlRBa9sGpb2kaE6KSKSdQuRN+2GGt42j8xzxNKtRdM5FstzrZrAen1jdNIKYqcVe0hnh26E0ZpDsdDjWZSfHvvabtWuI45okLdzQC0WDeCwhuxC8ka5hhoSyKRmeLC4+GJZZrJGpSzkn5lMb5y1eL/7FPbdkLRKyUxzSMgdYO1mtPpQM6RUhIxLXh/xfX1lrbt2Gw3OGtJOUlbIAkaHWJgDgvH8cj97lEc1I0kJIdxZM4Zr6TlYp1j1XVixlW9Yxpr8EZGBtze3qCVYplEVTLmRCkJlOzasjsHYt21jRHTsFQtIEvVCk7ThA51HinU+Zbq0p7IMZKMh5wFhNKWXDRJS01ZMuQEKRZSKmhtsa6RckVXOWBIRFVAG+GwElEktClCOFeapluhrGe9XVDWyTTuikjGaSKkxOF0EsmdWfAnK9zgJUhGdKou6u2Kxnm2qy3rbsUyL4zDVLMrKYHmcaKkzKrr8a5hCQvHYeA8MlJpRd+0eG2JBVQFs4bjSXi3xtC1rTCFqjXrEpbKMRa7mdNwYhhHMZ8LAeeFCnieZyNT5yQwjdPI/cM9Gvj0k1cs8wIpczqehAwSAt5ant3dXebJhFgqXRL6vmO9Xl9m/HzrVsp1lTHtn44cDscLo99qmXuvlL6gn+M0CpBwe82rl8+rG5qghMroi99ozBntHJ2W6Vp9t8JZT9SKwzLhkqcjsRuP/OzrL8gxsW47bN+yDEIXa7yja4T1cnt7Jd4111s2m57jfs/hcGTV97x4fsc4DhyPT1Ai+7ywLCPrdcvnn39G07ast1sxbH7aE2LEOmkLjMvE03HP/f09P/7Fz5mWWWwQgaWOLfTGcLVes1r1fPpKqG3OCnkhx0hJiZcvXvCD738PSuHx4T3zNKPIDCQKiXkRN/pxHmubSeGUzC+JYalMJU0Mkd3uiVyEBBJTYrVe0fU9/WrD9c0tJWbyYaTEdPGVzTqRdMLqhhyFcL7MQrw3xtN1Tb3bMmZgGMWErF2tcK2lVHE3NqNcg82Z0nQSofpVjaDvGd+/Z54n9vuDkL+VwXvH9GYkMMtw2iTO72WKWGV4cXvHqutpbIO3nrgE5lFIAyHUEfUhkHLh+e0dt3d3lSF0Es3nstR+pPTcg9KEohimkYf796Sc67PSYqvoQObqHOXzZimx3r17x/54qD1W6EpP13cXtFlrzUyihMxu98iPf/yP+OyTT/lX/uW/Q8kZpxTv373n4f6ew35P37X8zm//kGEc+dOf/BllyrS6wRfHTbrBei8bT1i+vZ7zzA/0zpKj42wwf7alEMqSLNDzdOJLMxhR05ciQI+qqhSdUrWPlMnS5zmHqiJ9AraMLDFIMV8tEY0x2JjJiA7QNR7bOLnozkirYJ4IaSEXmWExL9NFIVIotJ2AHG3X4ryVhah1VVNIPyoVITkMw8DhcJB6t+6oQgORGtufdYje03mxcPGNR5U6LaNyhlvv6xzNM1Fa0bQNSiGjzi9xkMvQJZmMXS59P6U/tB1yLhVYk8lgxkodprURd3YlZIRipF0Si7rYMsaU0PVhUFpffu+H6Wmp8k4L2RhMNHVQT74Qz2POzKHKp+pme5bXnVNgo5SMujtrF1GkJOm8ygWdoejayqoKoHGa6uKcf4UEMC/LhfiwLHV0RqX/uWwryytR52hcwJlyaa9IeVDq11JRUh7VyHkeSZhirEOoqib1G+CQUohjhpFa/9zCcZWieHV7IwKCLPNJhfQud/aDHllB0XVCn/CqU/krGHw9u7oWUrhtWRaR7Cwhigu29WLUVcfJt15kVNZolnEAChaFtY7u5haUcDlDigzDyOPTk/RQq6D37MlyPJ24fy8DVG/u7lBAU1MMv1KkpPBORs15Z+nWPVrDV2+/hpLo24a2cewOj7x++xUhRI7HAwDf/a3vsNlesV5tcK1MlUolEOLC4XS41FQxRd7dv+frN6+Z5lnGKZSCcy3GWq5vb9lsN1z5hudtz2a94TsvX+C9Z7d7YJ4mbm6uubm+JufEu7dfV9K0MFI++fQlXdcxjhPDaUBZhW0tOhu8kvmjYYnEKN+PEtBkHEZKiXWBZp52ex4f9zhradsWpw03vsNpjXcyQ3Oe57qoCvvT6TKo12gt80Oi3I/D4Vid+MXf5ixSblf9B/NkrRjnmV9+/RXTvIiqv2R2O6kHU84Eigw4thblPdd9j/eG3f0D73Zvccaw6de0vuH2RiLnsiTevHlLirJBaK3pu46iFPePjxyOJx6PB9bv39G0LVdXV5WxI71egkIpGbi1q6M3vBPKkZAIlIyamBf6tkOva6vPmku/NKeI7ztWG+EPn1HaUqrQvmlQTUNftcXWaJYw0fUr/va//J8GrXn7i1+we/MWozXv78Xh4ywLVFnI8tZKX9o4cxFJfKvF2TWN7B4JrLEsZpE2h9K4s71HXZxdKx46lETJ8dJY1kps9LXRuJQIdVc7u6qHlCtTR17nkeFWiw5TJm7J+6AtuhisFSmXskaK+lKYl4kUA85pWu2IOTJOw0VRYIyhX/Vstxucby7N6pzThXmzLPNlgR6PR/aHw2Xupej2pNne1bqhr850XU2znXM4Y4ha0ThH3zbi5DaI6/dZhuYbT7/qK8mj+tkI5USI2FQKmz5bQQtJO6Vv6gkhBolY2WUhZRhLNg1F6Wpi/cFsO1PlT4BrGooSOw5x/5s51bHxsZLhj3U+aKoLDa0oRuR7h0o+OJtbT8vCkuIlumq4CAi8a1i1ntGdZFOvhtdt09D4VuxElsA4zdWCRPqNTSub1FKRfTWOpAKrnOlX/YdhR2cKnOIyKgKtxID6G/S4XAcxJferapFSxO1dCBfqMii5VMabqp/jbBh97qkqVTWaFLpVj/GecbMhDQPzPDMMJxmGVRf5B9+iOp+VSnf8tovz9777W6SceX//wOk0XPquZ+hfa30h9HaNCJKH04nDfncpprWWCc7GiJmuNpYlRsbnn7AsC/ePO0KKxOPA/WmSCVIpMoWR/SS9s9vrK5x3FNeTrZVIN86iRJgGrNF89vIZq3XPer1ive5pvKNtHN55nt3dYYzlsD/x9Lhjs9niNo4UI0vKolu8vxfUcyej607jwHI6sVqv+eEPfiBeppsNttp5WOfoSmGTM52zlGWilMRV37HpGsiJ+/dvZee0mlIkrU8x8v7+Hbv9jsP+yP5pXxegrnRG6QcucySGKFOnD0cRHSRZ4Nc3NzJxK0FOhcY1bDdbLIqYq1ePlXkzSRXSeROaRuldVq7p/f09h/2B/WHP/YOMRfReFu4cqjPd5IjOECvHdRhH3u93zGGhaUVsXbzB9g0hRMI4UuLCcTqRSHx6d8snV7dsdcuzVvSk19utLEAnZnC76ZHjMInG9niUiWpFZto0V1vuNmIAtp9GFlXIT1Ymgm22deK6ePQ+HQ/sDnuatuHZ9rnUinWMo3OOHui6Ft+2Img4nVgqWX8YBjZXW2H0VE7uuaSj9ikBydisyASVguF44B/8w3/I7umJ427HeDhd+MUpZYZpviziAoJqm2+wo77t4vzk2XNBDOeAyTUS6l+dKP3Nxdk4x45COB2lprKifmidOJf5tsP5trZgYZxnVIJxmnjaPzHMc6WtaeI0s9/t6iDVRkgArlC0Yqmo2TKN7B/e463l1Ytbmrahab3Q3axQ31b9ih/+4AcYY/jRj/6E3eOOtk5RznVeyTSOjKcTp8OB3YO0B8SqRNQDn718Rb9asb66xjpXDcgyLga6ZcYbTUmBoiXbMEZcxI/HI77xrDer2jMU6dLxeJAe5PHEYS+tCOs8KWV2u311LwjEkNg/7bl/d183RVP1lBtW/QqjI1olrLF0TYeikE5HobqVjC75Mkk550yoovWsJaI+7vc8PDzwtBfgyxjLps6eCXXshgkzKjiWGKXXOE0cp4ElBJSzYIXZbhpHLGIFUnJhOis3jOWqW9Mbz7bpcc6x3dbfUad9lSKDlI/jyMPTE75p8OueprT0m7Us1vt7puOBrBVqONF48bI9byTzLCPjh2lEW6EcGmtEGI1M6tZKkG3nLXkR0v40TZcZQKVyac+eQRJBdY2yQiCwVbtp6tfneeJP/+g/5Je//KXcsxjr0OPmQtIpwqUBpehXa9q+/1Arf9vF2VpLNpqXd7dcbdaX0eRN01zsPr768kuWZeZv/s7v8vlnn/F0s+Vm3cuO9LQX8nXK6JIoeSJMZ+aGoSwLNmR8go1taZWtdhkrpnlkt16jteL25grrPXsMY4EpLOyPJ9IiNRMl8/btG5bxxO3v/01evXjJYb/n/du3HJ+e+OMf/QiFYpoCfdOiUYRJGtw32ysa61i10ou73myEZ1vHGFxdX/N8e0Xb9Ww3W5zzHE4nxjDSKEPrPN5ZvJYJYsf9XprWSkQAIHNLC0JUADGdiilJLbXbyZ3TllK4oJSNb+g7h68Sp0JBI4Zad3fPZDiUPpDzAV2lSEaBcU5GT+REmmeZp1JT/7NB8nyUdP3+/p79XkYRpJoazknE0bZOel5KJp5OjMvM/iT96kQBI5Y0pMAwj2KVGgNLWmhMw83tDdv1hs41qJCwWWFcQ9t2PLuWEYRni8mUM0UrsIb9NIrrxTQyxMBhmdBGFpnyTjbmxwdBxp2j9U1lVYl52Wq9ksU8TRdTtXMwOetMl+oFdBbmbzYbVquezWaDt040xbWkm6dJUl7j0RpWXUfbtEzjyB/96I9YZvEebroO37aVO27qUK8E0ySKqpoKGyN1rtEyH+Zb25R0TgTR275HacXuac/jbsdms+Gzz8RR+8d/+iMeHx/5O//JP+T3/8Zvc9jteLy75mn3xE//0Z8xT7MgaamQxoUUC8pYtHMQIm5JEKFxLXjFs+fPef7yuSzOp0fZJDoZ0DofR47TzDgHdvs9JUVUDKRY+OrLr9h5x7/4N/8m3/n0M74u8O6LLzkcj3z55VfkXPjB93/Izc0dqsAyTvj1hrvrG7qmYdOvSEvAFNi2PdurK25vbun6jtubOxrvub66xf1/SPvPH1mTLM0P/Jl6lcuIuCplVXX3TItRnAHJmQV3sfyw/ECA//KCwAI7HC4Bssnp7uoukZWV6opQLl9laj8cc79ZBFiDzqlEVBaybmSEu79mduyc5/k9VYWZI+k80mhDV4sQui7A4MPzM6fzmdVmxXKzEv9r30tzwklo0zTPjNPM/nDk4emp+GSle1lVUiouFxtWyzVpk7h7UTq9pXH24sUr2rblAijWSjGNE9ZoVm2D1opxnghhujZyfE4MhXj4/vGeYZQQo34YC1lOhvJDDBgyq3qBq2vORQxyHnoe9zsyYCqLsoY5B4JPnIeew3FfkrU8Ve24e3HHi5tbFqqGKZQNr2bZrXh990rCkVQhNSqZYyeruT/JSGvfX9AkoghbLpcsFgv685mHx/trt7yrG6Z+JJT3YbUWJ9JQpKdV81GA75zDRwkfHudZ+h4hsN1uaJpG+FDOFY3uUhRGpctbN0JeXHYLurZlv9/zt3/7NzJLLXJWV36GGAcom7Qq15HLZELGWdZpurb76SKEpAQ9oopDYHWzolkJ1OvmzUvqvueTLz+jXXVMceKbH76RB6iydMuON5+8ZhonDs8Hme8ZgwGMq6jqltkEhmHCKC90shjpz2ceHzWZjw0UV0l+RkgnhnG6IjdVTjgjIUpNXdHUMrYY+wHrKl5/8QXt846H+0fmeRbHiykEhrJj+dmToyhqtNb0pxPzNHF3e8vrV6+pqorFYonSmuF04pwyYZqptaWpNIvGkkmczxIsq7WRhQP0/SCZIBeYVxbnPVncEq4YCEDKJ6U0tuhdQTHPvvx/yAceIzEmjqcjUykx8+WUjJFojAi9tSYEAVJllCSFx8hYFuc4+zIyUXLSFneOKm4jbQ3GOox1KC1xDRcBvNyn5BSIIRKQ0YVSkjBWdR3bzYZPP/mE13cveEXFOgtb9nQ6M00jp9NRStdiK3POUTcivxPvLdeFawtqUistmZkhoksQRfSRoIP4iIvbxBZlTwzxo7ulqJcE3GVYlIQ5ozVJ62s2aE6JaRzp6pr1ci2jmCyBXFXtsE68oMH762u+MIT0j0ZgspNydSYplfFeRl5t01I5WcS2dJJ/0uKctbgfbFOjK8vnrz7l1SevsU1Lc7NlnkaqTcX+6Ynf/sM/8Hf/49/ypz/7Of/yL/6KF5s7/uQXX+LHmb/+//2vfHj3Ae0sGkPTdKw2N0yzhygYk/vdI/M48cPxwPD1xGa75suffykkvUULWjF8/46HpyeG45FpmqitdGAba3m5XbFsatIceP/DW+7efMK//Vf/mod37/jw/XtOux1t1dJWjfjVizPgeDigteZnX3xJzpn97pn+fOaLzz7nT3/xJ6JW8Z6h7/nr//3/4Pn5mZcvX7Hd3LBatby4W3E8Hvnl3/+Syc+8+eQTbu9uuX965P37D9duqzaGpmsFTaENzlYsF2vAlTg9yYe5fLb9eWR/OJYHzn1EXqTEw/MTIBAzVwm5YJ7m4vyXe/sl7jApSQbvp4nnglA5nM9MhVLYNjWSi2muAnJjDHXXSc7lPJGGS/f1UppJrMJwPjH7SbJSlWG9FELE65ev+G/+63/HZ598wm0yLLPi7//+H/jf/te/ZpgG5ihSzs++/JLFcknbtWzZchp62q7DBjFWo6BdSGjQYbfnsN+TYqQyDqsNfpxRMbNomkJElPlziGJMUErRFii0Dx4fA8vlhpu7F+z3B969e0caR5paTs3+dOJ4OnOzWPOzT7/AGM3pdCTGUKImNbv9jqenZ/w0S5WTM3XbXP2scwzX+W3WkkwXc2Z/ODKNE59/+hnb1UYWtdZ/bG3+8cVpm0qkcm0t+I9VS7tZYpqGatWiasP61S260thvf4dXgaASSWeUM7SLVnaluhLFUNKQkNPQVeQsYxZf+C7TPDH6iWEecWPFeewJRGxrr9jMDNduGOqjP7Mu6BIhDZxZzVMRR4h8KzbSjNDaSNZlOQliaXFf0qZNaeM3bUPXtYQQCUEcCylGYghXYbzisjuq67Bdl4VB2XHLBPtqvcs5oo0qSdtCQdBlAaLUtSMOSgbp+jKrk/cNSjhrjqCR7NTSAEpZJH1aGWwFRhnBkkLRRRchQ+YqArFFRqnQ5aUU0kQudrHyfZffCcqYQdKj5PNUWqohV9NWjYjPlcQTphTxUYJwlZH3OMSA8jN931/L/FhGVpf5ZConT+UqKRcvJ6PSqOL5rayMrpyxVOYj9FpGNqacnHKaxhQFul1OO1WENKY0f7Qq8YRFzGCKbtxqjcrCUrZW0udSStfqR4I4P66wzEVQYyTGwrrrPVQrVaqlC+HvP6Nb+/LPv0RpzWq9loTlzQq9XaIrB8sKi+P18s+4mSb2ekTfNmyaBQczkozhplFkY2lfrFjHkePzmfNhoNILqq5BVY5uXBGt5unrE999eIdpHLZ23J/2/PA3j1hnefXJS6qmZoia9c0GozPJT+iUmKYZA2w2G15ut8zTxDe//4bT4cjwvCfFzGdvPiW9eoOr25LEXKxrudDU5pmH777FB8/dzQ3Lhfx+tq0Yjyc+3H9gGAbaruGFvsM5wzQPqHMELVK527uXpJTQxjJNF4hZVXi1dZH9BVIKhDgRs1DMUZqcwM/SuVNKFqIp1ryu6+QeVWaSKSWGsSfEwHq9YrlcsD8c6GdR2DzvxC20XK+o2kaiF7TGJ0AbtHG4ugXj6BZiZZtnzzTOci8u6d3D4BmnyPk0MfQe7yM6ywjAD9KB1FFTa2H5LtqGrmnZNEtsUPzmb/6et199gxkH9CzRh5tXN2VmK2X2f/zl30gUR9vi6prJe2624tU89QOZzLLphKy3VixNQ1NVrBfCB9JllzFFu+aDx08CJ1svlzJTLqow40wJDsoyGeh7EQcAzkhoktMlUSBEjs97jJFrTkoJVgtUXQt8rSh+jDWowqEiChkQbTBODgqFYrkQuoLTlmmc+PTNJ3z65lOGc8/z09O1SfiPXpztjWSDdJu1vIFdg2pLGGItJU7TrHEhsH59x/b4jMswp4hXkWQLDaCpqLoGTgMhR7IS3k9ScucxzjIFz2nsaWyHahzDPPN0esY6i2qlJKTe4KqutMkthFAyQZKE7LQt/nziXDybO+NwrmLRrVDGEBJX5H68euwSc/AcTkfmeWa9XonqRF+E0YHzIOlRxliaRhWqg9iLpmkiZ0kBv6D2Y5SdVSmD0eJlTSkzzbF4B2Oxh4FxphgKBOCtr3jRkvJd7mQgp3pMkZiCLIympukahnGQIXzOVydHHSImJnIpnTJIWVoQkDojVAJbEUIm4+U0VHKihyDaX+8jwV+8h1okchciASIOqV3Fol3QVrWIUzLsnp45H46k/gTzxOZmy4sXLwQs4YWC9/QsY6vVZiOkQq2FlaQ0zogzyBlLpS3ZVegWuqbhbrNBoyTAqHg6cxL3zZxSGfHJPdAUXIktUryQs6Sfh0tUn2xG4h+WwCYyEmeoNX6SOWVsaqKxP1pM4jlNSiqcpHIRZahiObMiWkBS6Hzb4YwVN1TTEuYSdZF+orb27hefSN2+kPa0cgacJWtNsHIs+yDQ4vWnd/ys1Zwen9m/vaeuFWYjQTfL13dEo5miYo4Ku2yJVuNTYogzfZillW8tYwyM/ZGkoV4vUUZx8COns6dVDZWumUNx3oeA8R6r9TV7xVlHs7Lc3Nzy+pNPRdR+OOFDZJw9vjywSWum2XMezgJyaiqapmLOkd35yPl3A7//7hvC7OkPJ8iZpq4xzrLeblktV/h5YhwHpnni6emJmBLLtczlfIiidnFVafpkspLouVZiUBinWZisWZKzUs74stmILS5yOB55++49KUn7P5fyUBvFFEZC8uyOe879iRQyrqrFIxkS/XmkakWF02iLqRrGaeZ5d2IcPZWbUdoRSjcRwHuZ54WimplHaZhVtmK5WBao2lDgV3JiLeoFi6qTuXbWxMnzw++/J6VI12gqp5l3ib7E1qssGurD+Ug/9EQk+VmQOHJ9GEdxjuRpFtZv1lRo9ByZD2fBxiyWGK15fHjgfDpKzk2WrNSh72WRBLnTm8qirWbuJ56OPaGYqxVKDO/TRG0sdze3tHVNfzyjVGYqnuQUI9Y5+nlgmkaxIHov+uHCIO6HgXGeaNuO6xoOCY1ivVpTlUyhp/sHUaDtDlfC3z96ca7e3H1sR1t7vb+IiEC4LmOeiDnQvVizuFmSNdzffyA4hVnWOGVob9bEBKfzRDPM2LYhGU3UmSkGphBISoExzElCbG1T0S2WZJU5h4EUQNczxsUrfFiVOLtgYoGPBZpa5HSr9Yq7uxeM48jD47M49odJTMFVja5qzn3P+8cHjNHcvbihrit8ToShl+bAbofVWk4E67hzt9i6YrFecnf3guPhIGII73na7cTpUVUoYwlRbFkZQSiipGsqFEEDaGI8cDyei4RM7r/9OFzTp3LODMPA8XwqTQ45IRerjqoI/m1lORczusqaxrUYZSSl2c+YqsZoUbRIENNASjDPgckHjJfgI6W1eE2DiAguHXExGkvpt1qsZFFm5PRG7ldt1dC4RrhNWeHnyMP7e6Zx4vbVktW6ZYpSGRkt0s8YI/3YM85iMbNmFO32LNrh6KOcoEqTfaR1jeiFfcSHAV3XdNuayjkeQ2Q69ygrWttUMlLQoGNAGU1jWkxVMwfPbn8QQQFyXZynCZ8y3XbLerWito5xGJDMman4OsVd5VMQtm8xYV8skFkpxmnieD4RU5a7ZoI4eZyxvHnxms1qQ78/ctjvOZ/OnMtn/5MWp6tkSHrBA147S0Vdk3OiwpJQPD88cX7ec3j/SDrNZOVhCCijqLKmMZbWVbR1BTmyPzwx+0BInqwzVeNYLDpMCugUBI0YDaiMiRLQ21rLqjaMKpJ8j875SpeLKTPNgXMWYl+1P9Ddvy/U7ohxijqJJrdZVNRdR1tDSkuMMbx+eUdVVfSns9AMrMQOXBanUhL7PvRnnFL44cwwThzPvRDmm7owZybiKaI0bNaSKJ2L7nQepzLzko7tPI2Mxf84Fi7wHEVMPpXUrBACc8qgDKZbAplhDoxTYLUeWfUzcc5UqpJ7bZjQaOqmFahYW9NYI8L5o4j7Uw6gMlOYiSMCC9PiE03EUhFJF9YpYShVWmNDICtYd628Hi/id+MsppI4iggkLUQLlKZpFtSNxApmhVRI2uBT5hADp3km51k2/SQJ25cWt84Kfz5SzSNtVdNWokJbti3OB6bHt2ileDg/cwqDZL778u1KGmjLWgwSGAvasO1WLF/XMloq7KBxHAV8RuLkR8boGYOELeUgo5rNYkvbdoxhIvuJsU88HY74FMnWkrUSUUMI1EmaSlZpuqbGaQN+wp+PpDCgCTibaFrFHzk4/xOWsTIPkg7f5R6lyDESJzHMtqYCDL/75gPf/Oo35DGQzxM5zeRjQDlNmw3aVAx1Q1h0HM89948P+JiYYybrSLtoWfs1VYiMQfgzIcgH5ZJ03ta24q4znEwgTAecdjSLDXVdMYfIeZQYwLOGMchczzlD1zhspVhYDdmx3rastyv63tG6hHUVn33+GVVd883vv+NhmsQvah1WSyBtDJ53P3wvcOTdI4u2JRtLNA5jDO1iAWSOpyPzPPHyxQvubu+K08MTfGA8nwkhYmyFNoZ+6EVtNM88nSRoGFuRtWJ/7jkXvqwxYrvbrteonHl8+wNjf6br1izrEVKiNeKxPI8Cl97ebtmsN9hyap58z/HpkX6aiNGDzpx9TwgDpnYCwOIShBQJ8wBzYNEtWbWt7MuzxzhLu1mDUTwWyaWtHbZryDFJyrNW1N0CFyOL1YblesEcAqP3JK3wRjGlxL337MaRfp4Y/VyUNa50NS0KBbteXl9d09YVy8WC1+4FKmT6RyFU5IKxTBfMCBJVWVUV1XYj1kfryMryerPhy1cbpnni+8cP9PPEh5NgUGYVGcdT6V0LCbFCusEvuo7t3QvO40Aee3bjxA8PTwzzSLQyNnGFa9uGgMri970rCWpq7BnHM5AxKlO5yGL50Tj/j16csnUUZ1pJHBO/Zr5+Kc01fXk492ifpRGRLi1msTt5H65Aq4ueMaSMT9K500Uob3LGJBkyq/JLZKQ7drmsV7ZitVhJR7OI6VGalCHK5U3QFymhoyg0MoKMMBfPJJdYv1usq1hut9IgKUlcubTVY8rMTKQYBUbctJKwfHE0IAP6mGS7D+W0m6a57MhSEoUQCEW2BxIedPkdfCzJ0Bc/ZtIf2+w/suxcfIF106DJ1HUtDvsQiKGAsaw0gC6Oh0wiJQnXCd4Tg5ASk0KMA6WR4ucZDVgBNJFiIEWJZFy0rTh3ghflZRmuW2upUizwsyTPg/pISFdZZIjOuhJCJAkCMSdiEPP1ZSyli9vpkmlCcXCQU7kb/sgzXJ5LuasXYkRMxWEk4oCcMkrJM2eK/M8YQ1Mn+uREhlg+v0u2ZkwCU9NKfQTNWRmNpXJI9cPAc2lkXebXtq7Ed6zle1LOnE891AnVrXDW0VYOZzTTNDL5SUZ2bVteyE9YnBK2LrOqlGJ5AyU/JBerVw6RHCKn/YGHD/e0pmJhakJK4BzJWM7DwPFw4P39Az98/45pnjkNozzUSheOKtR1RUIRU5ZOm6tE7F03kqBVKWJIbNZb/umf/gVh9gync4mONyTEhUAIYkVShpAVwzhjjGK7XdM2NdZWpJhZrbf86etPMXWNvbkjAd//8B7De0KIjBfnyyyBSC9u72iqinka8fNMNIZsRBM7FC5PP0zM80jOz/T9cHkjpbkyyQjCuCgBr87y8uVL1OMT07ffCSIjJemoAk2RTypNgXoJH+fN61dYpbjbbtisV0zDyNmLCKGr2kJfhxA9KSp5X8aB8/lIzIntckU2mg+HHaHv8dPEcD5jjWXVtKiU8eNIGCe6Txs++eQN5/OJp+enohGVfbdrSu6K1oR5ElqeEpZueytXgm7VUjcO1Sumcb7auqZ5JvuAjonGFMp/UQJR5qPkMkYEOufYtB1t3dAW83nSlqAzZz/i55GcuN7hIhDnwMOHe5HtlQ3yabFh3LyUu2ktm1R2kh0zHUd2pyOVsSzqhuqqXKoLzqTn999+w9/+/S9JCuEEtzWbl3e4uib4QIyBfnfg67e/53az5bMXr6i7jp998QXr1ZLvv/uOt+/eUjWGTVP/dPne1fd2Gdr/6BC+aASDFy7MhT5njKWqG6xzAk+iuOR9kI7qJE2ZGFNZnJlYDllxA0j2hC7uFIH4lpZ4yZU0Svi5KisGNZQBv8CvZYh8ASmLoFrpBGgZbRgZCocg5U/btpi6JpThcoySnCyO+uLDK3ET1hTEp/8oq4uF5H1J4w4xlhQsf70G6CIukBFLRmk5PY0x1M6VEq68r1AG6WIjk8WpJA27ZKM2rpLhu3NXp77SCo0GKwN26RMksaJlOaFSFMOvK2ofozQaIGVSEHcI5Xe8xA3UztHUNcHPIuTXQiqnnKBGX/ySsnlTZICXEGRd5IpX21VJ3M4pXZPSjZHNVZXqIOdM9ECJJVRZ4jDq4pdVUEYfQu+7nKCq/JW5CCXy9SQNXk7+aZrpx1HUagayVnLfVUWskfMfND4v/64YL/QJqYi0s1RdLRZC54qXubzGnJmnmeCF/miMpe0WLFcbmk5E+5IIX/10hVAIM5e1CaWEyAJWapqOeZz49qvfcT4cqV3Nn/+TP+dmc8ur21eokNh9eCBOnuPh9CNd5yQlppMmzsWFcekmXt5UygMKGfxECoqkpMs5TZ7+3DOPM8f9IA90eqIpDYPKWvJ+IMzvqSvH7XpZ0rgc1racjnuOxwMhKF6/+pTUD3z/97/mdDrz27/7JT98971Ykmohta9vBVQcYubcj/TngWkcmRUMZVHPhWcT5pEUIuMki9NZS1cG0hpRyOQQICYWVUVb1yy7ltvtmjkEqq5DWSP3sOCxzlJVAi+7u7kRxZUSKp+fJu4fjsJrXbagIKpUyi0llU/OpCTVji4lYH84ykgzeFpt0Fo2MZ0TcRyw2vDFmzd0Vc2nb16zWS+wVpEpQbSmID5myTIVs7LMJF3dkI2Fguc8z4PMdqMQGXPOWDS1tmy6JXXJLzWVK9W74D7mQSxcqpS9t5sNt5ut/KzJCxIkyGtySpO1OImEN5uEI6w1q26BczXVjdDmTUj0PpH9TDh5koLgFEkDzrFYrzFK4iNShsfdDlvK9rDwuKriiy++QFmDW3YkMudJUvRyuVLlnGmalrpu0NZhXMXq5StuX7/GK03Vdpz7M4+7Z1L8iaOUj99YdqRS/2slA2yvCmD46ZnO1NzdveDF7Us+ef0Zw/7I9z88MPUD0zgVGZy05pU2KOsoH7FQAsoAWL5kEH6BU6sk0q4cxY0fQ2SePPMkeY85Q29Ggo/krhOVzeTJwdPUlZDxbCaV03OaA8fjieVyJQnQIfL09i37/YHnhwcO+wOr5YqmEpxH27ZopZnn6YpqmWfPpGBE7iJTGVYTw/WUiiHKnevinje2PHwfkf8X3+klxsE2NcoaxIUYqarSca1riekrOS0qwzwODOOAahpc1ZU7fpATW3+sdH58KpMTYY7lwiLc36gUrgTy5CjQ7/VyyXaxZLVcUFeOGEXkEVJkyMJxzVnueSlI1aBzJttig0qieJqnGR88V7txzleJXeMEdVO1jdDXS58hhciU5H2SxZlZNi3LpsXPM8Msad66lHEitRNvcVM3IgVMcog4W1FXFYtuSdO0zP3IMB8ltCkkKWuVIRupJmxdy/uLAKRlRJVZjYurd3m9XgvGtWvwKXIceqYiF72cJ5Ja5q5yzqrtaJZrVpszYZ5IShGfn0uv4icszktY1eWH5uKWEKUIOG355OVr7roVrmoxtmLen/nqb/+euR85PT7jx4n9446xH3l6euJwPOLqhm5R8CZ1TcqZyQdCTKicMDlfkRDaaNmBjGaMgTnLB5d9xKBZLdeAKilOhpyNIENTZoyZlAO7/Ym+H5nHkdpZQpgJfiaEjPeyOTw9PTMXEcPLly9FhVQyPqtG7FnH552waAYRHsxKMeiPJyc5lYAaJSjFkNAmEVEoZaiaVgjr+eNDOk/CSs1ZcClzLxmitqnYdEs22y2vXr8urgpRv2wWKyrnuH25FdymD3JHjJHzOJBSZlE14lPtlmw6YdieTycRZyeBb+2Hnn4a2bQdb14K3LrSoltdNx21dQznM++GgZgF3hVSoJ96QoFZ1ZUjG02KBoMieo9KiVw0u664QkonCR8Dx2FEpSyZM3NAuYS2WdCi1pK1oSqlqil3zpvFktvVihACYyXsHVvCmfthZCqxHMY5hnHg4f6x4ERlQ81JhBnnk9AwIpmopaxlNmBFcVXXYk8UG11GNw0qybWl73vGYtC2dYVtawxyqDhjBP8ZI23TcLfaslmtWKzWuKrm8f6BeZo5HQ705xP705nTMEoI2E9ZnJrLmVk6aMrIl6gQsMrw5u4VbCKqXUBV883/8Xf87pe/IvmAmhPRBx7vH+nPPc/POw7HE13KtN1CwGB1RVYKpWZ8CJKXmKUzVxeCwnot8ODH04njOGAyJB/R2rJadiilCeHC1tGkBD5n+QBiYEePVpn3b9+Swsyia1l2LYf9kbdv3119dlprAYCt1nL3SMJqdU1LCIFj37Pf7UX+5T2z1owlJiEGDznL76xFCZRiwqRMzCKidrXEO3ABR2nF7GdZnCmQkmeYZyKZ2+VLVuslb9685E/+yS/w3vPw+Egmc/daksZzIc3tn5/5/pvvCMmLxjZGga0pMR+8fPkSay27pyeh2RUB/DiNDCGybls+/fQznJHgYo0Mz1OM8jCdTthK4g4F0HbGp0jd1tTOkpOWKisk4uQlBLeOIt20TkTgxhRE6kw/TIScyT6RffhYnhpFV+5uqdxVDQqD4mZZFmeMTJWMopYrmVGf+oFpmkVHrOBwPLJ7PpDmWWh+AFkTY2Z3PPJhtxNXkhOaIpVFGc1Ga6qmkfu4tbI4U4OKIs4YgiiAxmmiVtCV3B6nDdFYec98oFmsePPqE/F+LgRt8/TwyP55xxykY78/95yKy+gnLU5/HgBF1TSieplmwiSeurmfUFmxrDqMcfTPB+bJs397z/F5j07Q2aZkJ8p9yxp7vct1TYN1lUTbKyVJxtPEpEfGnMRZoBXOaLoCbp6imFenfqS2Tlrv5VSX5CdFiklmZkrhjCLHzCnMKDKGgCZjjKVuWtHHpuJrLNgVHxN5nos7wzCFwNP+gPczT/sD++Ox8JCsGGlVGaWU+6RPiZgpOZsJU+atohDi466sLkLtETTc3N4I5mSzklPzk1csbrfc3N7w6vVr+vOJ09xLmvWqpVt2EmXvKtrtCoxmGAfcYyun+CykwzFMnEeRyK02a5rZczidyd6LSbzQBLq6QSH3WNKPmjc/UrDkS2lamneb7ZbFcsk0jEzjSJg8c+jF5V9JOWlcjbaWlEVVpoIvDaqMtZqMmJsXraie2kY0yrEwfEzK4m4JgaGkZ2uklHXFZ6zIV8eSICo/0g+C9LdEbDAJO1kZI420AojzUeh70yypaxEIgMlQpRJFGTM6C0rTGE2KkcN+T1aSKq5S8Z5a4VZVTnCwp/OJvtcfPchF69uPA8M4i37gpyzO/nEnFLhb6UxNxz2nD4+Mp56n94+4quEX/+xf0C0WPH3zNU9ff8cP33zH+2++p6kampdvkLQPLbt41RC6yGq55ma9pW1bXn3yBmMMHz6853Q6cj6eOClK+ItgMW+X4i3UxtDUM2nynJsjsXTWUGCd+BIPuwOn01nucVVFToHxfIScWC8amsph65bN9obJT5xOB4GR1Q1aa8bgCfNEXTc0zYJxmnn/vGccR756+47T6cSLFy/YFuxliJGkEqHQxKU0j9LBDpHIjNIDPsEd4tKxVqxI43HicD7imoovf/EFi9WKf/Zv/iXbF7d0X76heXUjHXBlePjwnufzI9M4sn61YbNZc/vmUzYvX3F+fub1528Y+p7vf3hLfz7z7W9/x+7hkcN4xh6fqbTjk88+wc+e8O135FOkq2pSG9ksFtytNkzTxPvHd4QYhIWkhTwvHTfIKpO1NOusNXz2+ee8+eQTnh8feX58Yjyd2U2idV4sOyGt1x2mqqUZOF44wjKPvOBNN+sVm82GysniTDEyDwM5RggBUiL6iefHkbqqhJhuFHXlCl0i4/0k8sgMMUVcmT2qkIuVzjNMEz5GTCU0QeWssJz6I1OYMVZL9zlE8DNWadaVyBKVFzZuVQKLx3ni/ocHsoJ2tcI4R1VGQl3Tsug6Ukx8uL9nnia+/f57jscT6+2W5Xoljrs/Mkb5Ty5OXRKD8xyIesKfR6ZTT384cXzeY93A4f4JP3jOz3v6w5E0eyrjcNqisty/mqpGZ8XsAzFK6QdcPZIKacVf/rcrIgGjxF1vjTzM8qWonaVtamLKhCwiBemop+vufpUbKvGOapVZrlZibeoWWFcRkpReCblTqCycnRAjIcNUOKr9KHO5mDNZa1GJpSTlYc7lVCht9/RxcH4ZtcwhYAvpIcZIKF2DkASwXWlF08lpePmqKnshZYLKWGdYbtfUc023WdKsFlSLBts66rmlu1lhGsfWz9TLlqHvJcELi1IizPYpEHOiaVuUUviUJRrDSH6KL7v7ZYSky1gjK7FD+YtogYK/zDJ6CEFOpflC7EsK7700wWyNSqVxVHhBIlYQ2JbSXJO7L7RGVe7juXgvgXJnRYQq5uKrjOQgOuBpnq+fw/V1FCGMgqtfVxuNU+6jefxC3FAiUnFW5tYpCCw9pShNmxAgRMnmqUQq2dQ1KEXXtNgiXwTxpF7USpeZrgQLC4ZUj8W7W36nn7Q4V1rShuf7PXN8ZP/hgcd39+yednzz299DVjz/7h2Na5iOPWEYccrys08+R2UpZrXSfPbmM4w1PD0/S+xBDIwlzIcs4anPz0/0fS+a1ralKiMICbSVO0ZtwBu4WXVY/ZqYMmMQC9b9007KhOQxBrRVKKupbMX29R1tXfNnv/iSu9st0U8EP5O0Ip9PEiR0PpcOnti6juee3fEISguuQ2l04cwEY9iNIwGY+RhlT0oSw5Ay6lKO+UiIg0CdBwlhMNIboR97pjizcCtefvqK1WZFvaxRleL4/MC8+4CtHVVbg4K//C/+CmUUi/W2jB8qqKByHXfrL0gpcfdPvyTFxD87/BvCOPPDr7/m23/4iuFw4rsf3mG14fMvv6CtG54enzkeT5zPPT98/8NVaqhA3DE5E8hkoxiDhPkkICgxI++PR7Rz/PD9D3z3zbdiQyubavzwAWss27uJxXLF7H1xDk1klTFOC4qyqlgtlyy6Tu7ipQusy0ZrncEoAW7Vpbq5gLuOpwM+Ru4f73na7T8uzhA5j3LXrKu2ZMI40Wtrg7JyYs5RCPKL0OCM5na94eXdC8I8MR1PpBAI/SBl7zSTQ2S7WfP6xUtSztdGXbtcXPlQGUHf9P2JeZrZHw7XtICqbZlCYNg/y0gqXnrmP2Fxmiwysjx54jzjzyPjqWc69YzHnpwyx2iYrCPNIsdy7YKua0kxiyJECW6wchW1K7vOVFKJcypJyIgmM0aUlR3UOUtdV4UPqopcMEGWZsdy0RITuJCYfOBxt4cSDqT0x1GCNpqu61i0LevNms1mw+kod8gMYnZW6npi+iidzH4a5eEzhqpu0cbSddLBTeXuEZA7J/8nKV8uJbmGciqnIk4QqHYskQ0xxdJ8EPq3qysSki8zxYkpeapcoyuFdY7VdoVxFtct0NZxyS3XlUE76a3XCxmzsFyTfaLfnbj//h3TNDGGGaeF+N4tF4zjfA1IGsfxo+hElXFPEU+ISkwqgAxgxd48z55hGOj7nnPf40rmKRnGeUarQDvPuBLSFFMkZhmLKYQS4KpK7o2qiAeKVe0ifrnEKVjnpJNaTqeYkiRpe1+aal4kdpmSWhav8lGlJERLoTFGhv8pJwiZEEUTm5MpVAVZwNEYIQPCNTI+55JMUNXiSc4JVZ4v62ypogQIJmQ/f83Vkddgmbz8s5gyPqWfrq31e8FIqDlho2beDzy/fSDOkRfrW1QCi0ElJMdi9mAbLJphHrl/9x7vPT/o71GK6y9GUWNUlahPLrF2MUYRHCtp8LhawmwPpwM+eJ5Oe07jwM3tHV98/pnEnTcdwzQzEVD3j+TjiaBmUvZMPlDVmvXNiuViwTCNfHi45/7+PQ/3H0pUXI0mMxYFk3JOQGR1TbNcQMFioBSDn1Eh0DTikYwhSGw8cLUXKH11yVutJYo8eDF7l7iDaewJfmJzu+HTTz5jvV1jassUJ375m18ScqK9WVAtW+66V7y4XWOcwy4agUipRGRGFyhYThLKo4p+WGkFtQanefWnn9MsF3z32695+8MPBB/ZDQfm5NmfD/R9zxQDtpJSLHiZSc7BQyljY86EAirTxoi/0hqeDwcO/Znn/Z7Je3RtqNoWDczDBCkyzhNm6K8lnCrQtozIC5nATyM7cgmdlZLWKTmBky4xiOXBJwuHN8TAMI0lFcyx2qyIWRan90FGJCiatsYae0WTtHXDarEQnew0il44evoUGfYH3p57jAKrpEu86haiZMrSENpuREg/+5n+dEIbTds2KGeZhoFxmnj3/gNff/012hgWy5VMHDZrjLW8f3xk358w1tK0NX+srv3jCqFhluctiX0nDJ5+f8Yqw6pZiK9v9GX4nsg+QszorEg+ctzvGYbxmr8heitpU1e1oAZtOSHF7S+jjxS83DOdlWCjaWCcRo7nI6ex5/blHbcvtlRNy2K9pR8nfv31Vxz7I8Os0bPcYYNPZALtoqVdtLIwpoHHpyfevX/PcrnkdfcGpSVybg4BV7q2ylpsXZd9TXZ17yW6T7S+RhoVhScDH6V3SskObYyRYXxOUMhsEtozME0D25dbtnc3tIsWXaIS3354x3nseclrNvaWLYF60YiCppGTQ1RV8fozU5bRiFIKq0wZE8goYvliy3K9ZZhGdF0R4sAwT9eHc/QzMUe0NeQIhKKGKTEWIhORu3NKSQDSTuLZL97T8zBIOJVCjAM5kwrpfI4B62cBMVsrVU1Jho4FquzniRiknDZIb2HZNIVl9KNucf4YTxGLx9J7L4L2timLU6HNLJGEGZyTaENdQNCLrmW7WkqeymCZ/cxh5whKMQ0DvfdXW9plATlrcUUM37Ud1sr3zZNgRUmSYh28ZxxG9vsdb9+9FV1uuZq1XUNVNzzud5ImV57vn6yt/eH3PwAyFsgJ+kNP51pJt55EiZKjtNx1uV/GIMPa0+nI49Mj0zyzWCyo2/p6CW7ahtVmTbdY8Onnn1HXNf0gvsj7+/d8+PCeqqpYr1Yyg6wqamd4tWm504lPP/ucu09fUtUN3XrDKkT+zb/71/z8+U/41T/8mq9//3v6U8/u8ZlsIq5SVLVBuRpSplt2LJYLjHOcywN2QUmmWeZ0xhi2hWczDIP4MEsRolOWP5OhLgCni3NCKxkbXXymxEhW0sS6NDNyKWk32y1/+md/iraK7EBHz3q7ogo1rz95w90nr1htN/jkSRFslhM867IstZL6XYYUoBTByO+RvGiDLRZbGbavb/nX/7f/kv3jjl//x19y2h+529yxubth/7TjcDgyz57z6SQuHiXaorpt5H6bMyaJJvQCJZOvTNN22ELE66dJ7tpKk43Au3KKwoW1orWtyv3MlQZQNgaVBTWzqBussSzbRhpKJar90hewzlF3LRauyFSVMialEumXIJcSGCXdeetKapsouFIJGOqcozaaV9sty6pmf9hzOB5pnKOr6oLMFMudsxarLw6VjHUCHNdaUuuqqmK72bJcLpnnmefdTjJnCjZnSglXV5x6iWuIOTL7CfVTT85vvvo9ZMTekzIaxaJaCLpjkDunQZVuu0JrQwiR8/nMfr/n/uEeHwKL1YK2a6V9DKzWK168fslqveKLn31J3dQ8Pj1yOp/59u13fPP2e7quwyNpUd1iQe0sL18saVYNL1694vWnb7B1TbtaobTm9vNXzD7gOscUR+4/3PO0uyfriK01dWMxhXi6XC5ZrlbEKLxZX8gKIWXSLHfR5XrNentznd+pGK5aVZ0SKkYsitpW5U4mZa0tgobKiqAdm8AK08aWeAop6SK3tzf85V/9BaMfef/8Ae01G7VlkQOffv4pn3z5GdEo5ujROqOoUOiiDrksTqlGULJxBCOln48zcQ40VY2tDLef3PFv/9v/O++++4F////993z9m6/4r/71f8nPXt1JpzUGhmlidzgSQrgK7rfO0SwdVoHNqZyARZamA0olum6BWVrmaeZ8OhZbn5AOp3liHuX3XywajJG8EUCse0qBNaicWbQdt9stlXUsOymP+/MJP00lAnCmXXR06yWqBEIpo9EZXBbEiy6WrxAbAHEhGcM0eQnR8oE0TaJ57lpQFfb2jnk5Y3MmjBONq1k0JZ+zUP9cJZWedkZ4us5x09yijbniN5fL5dXwsT8dORyPfPPdd8whcBx7jLPi1lKQcmSaxusd+h+9OHdPe0DwhNZYQvAFqvQRlah0cQloQSr6GJjPc0HUN7iyYxgryb4oaJcdd69e0nUdxsnMyTU1LbDcrNne3lI3De1qSd00vHj5krqpqZYW22iqRQvOiMLDadFE2hqS4/XPPuXPpoHqdy1Pz480bYMPM+M80LoGo+0VZJwJ4ANAyVrUorWEApDyWG14cXtHSolpGEkxCsyqrhlj4hRkPOLn+dq1VcjJgdbSfSwYFkW5TzkneS5NhakrKqdZsqWKM7lXhByo6uqaH+mDdHi9DyW2UH5HW6RjyLlZNr9UZmjICXtRaRiFchpbOzY3W25e3KKMlsCm0hzTRlE1FToYiQ78UQ5oSCXz0nBVjGl0YQ+pjw6ci52L4ubwM4SJFBe40kgSQFouEXtZsKZVLbPs0gCqXIVWcDoIYTHlhNKGlATdQnFAKWOwZZxV15dRSpATOYsYXylFMhqVNc4UcYs1tLXkpA79mRwjlbUsu+6KWTXaUNdVQWBCSIk5BEw5eS/Q6m65wFh7zSmNMVJVokVebzaCNCkjPm0MlZP3zZZN6ictzt/86vcYo/ns08/YrNccdmeen56p64rNeiUE9cqVAFQJiD0fT+x2z6ScuX35UrqlBXp12elfvHnFX/2rf4Ex8hCknFhsNnQb+Gwa8EoaKnXX0C2X/OW/+Ocs1yvO047J99iqIjWWVBly8/F+aI3hX/23/46/+n/8V/z1v/+fOR4eyT5xHA7MfuTVzSuqVjJQmqYDNYnXUxm6ZilvX/kdY4wMxzOb9Zo/+4t/itWG026Hn2fJy6hqns493+/3TNPMYfbF0CzCd50SLpdYeT/JvZOMNorloqNpLIvNGrtc4CpD07wg5sBwfCKECd1V+OjxOTHmgA6eWCx0qXQ2m1rMvrksDABJMskkl+X9NkpE0hZypXCrhl/8xZ/RrZakMfD2/h2n84mkMqZybG63BB/48OGecZyx54Gs9PWEThqZX6OLTrjMO0X+hHU1ORciQoqE85k4nNiu1iya5iMZPSUOxyN+Dqw3K5bLVRmlJJy1LBcrFPB2+oHdbk/btTSt0B4eHx4xznL74k4wMEhnvm5a2m7BNE48Pz8RfGAaZJNxQNCK1lkaZ2jrihdbiW7YPz4RhoFFXdO+eo0pzUhjjIgZUByOJwlnTpnBexH9h0jdNNy9fEnTdCV75sA4TiwWC6qmoV0tmL3n+/fvOfVnmqamahucq2ia9qffOaXxoBmHCWeHaxSC8GbKxTymq+NAaXVt+igyxopelZLD4ZzDOiskPzHvlbJESZCpkjtOt1yIb9DZP/xKFoUlaZiKkbgmgZKHXluxnTVas7nd8vLlC/w4Y4IqQ297xeDrQi+/Eg1yOX+KjSPnLAqVwoJxRj7QylwS1SrsOBaZXuTirdNa5DRaKX7kCLyOW8gi2Db24wmilMLUNSrJg4uSUQEhyKimbBg5SW4Il3IQCnDrwo24PKa5dEaLOAPpcCqr0c7QLju61YLjuGMYBulYFl+m4ePvBAiw+gLH1jKwLwMKLj81laiIK5wbffVhXsYjinwd9kPRpBqLquT0N2XxZy6G6/K9P2oCUTalC2XvMia5+FfruqLrWozWTGOLNx5iwitB62QNphA1lKLM2fPVhFBVFbYSI0a4jMuCjH58GbMlPDGLUMPPMz5GjqcTKDifzwyDpLKn8nlfg5quXUP1B5/dH/vPHye+m5pM5ttvfyDEIMZYbUBbYtGx7g9HUow0bU1VORabFdWyxXvP/ijoP58jKcHd7UtevnpF3TZ8+/03NG3LqzevZbEaQ9aK9XjLTZiYg+c8Dkwp8Pb+A83pQK4TOEntGsaBbtFB56h1ptU12mQRQqrMFz/7nP/+f/jvOT3v+d0vvyJMntcvX7Lu1sz9xO5hh8oQSoL0XB4ueZBzUZWAH3qePrynqSpulkuqtsUW3H4cR+7fvZVOaXlQVosOZx2psG1MKSmNhhg80WoWy5amqai1ZtrtsOsF1c2CQOT+6YnzcY9d1pjG0a6XrO5urmG3OWW6tsE5RwwJP/pyN6pIKlEYf3KfE8c2Pge0UZhFRR1abl/fkVLk4e17vn/3PbWpaKtaAFtzod6VGDsF+CK5m0OgaVpuNlsReqSMjpmhH+iHUU6apr5mspIzenD4STJcrFJCixgFkXmz3QpGdPKMQy/Jak0nWuvDQSByiHfYGCvvs9aCaTEGHwPZS+amc471aikb8jzTVRV+njns9kzjxH634+xnKmtoWxmDffv7r0vzS7FaLXj58jV3L17x/uGBX/7mN0yzZ7gstPJApKLymqeR436PVor3Hz7Q1FW5l1q5Uyrox4Ef3r9j9oFsTUktEGRP349M08MfaJf/UYtTZmiJc98L8bxpaJtWTssEqCwuh+CxlcWpCu0sdWXlgRwNRFV0meBqR7fsyAppKJVTwVgjOY9KYytH1TbEEeLQQ6GjZZXR1qCdZgqB09CTjZZmSTTUOZGVcI5AsVgu+Pzzz9g1HR++ecfIWFQmFc6VcQkFCJzSVe51qQOMFo9gCpGx71ExYlYrGudQhRCXQmQaxxJJX2SG1lJVjjDnIg9UBfmvrrLCyjma0o0M04TyVXHhS3dzGEcqp3AGmpxlsSMdS6BkmFpSFJgy6uNpJpe/wvLJPzpdKTycylJ3De2iJeZIP/ToRrGoJFApKXHLGGOvsXnkdD1BLxJLJV2NK0XBzzPZOVyWMvOSXylhQSLjvBRwqQzlm6ahbTuO8cA0jldzes5CEohBvKXG2auMT12qLaOv99ZLvstFqKAVtI1oYud6lMaSMVLla4UxmhgyQ98TQqBbLq90/fV6ze54lJJ4njiPIyEnCXwyhlDGN9M4yImJOJJccU91XSe/n5Ur2/F4Yg6eermQWXLOV65U3/c/fXEej30pkQx1LahFpTWz9zw8PUkJl0VJch4HBj8KyjHMVHXF3esXgnCoKozRaGd52D3StC3r7QaM4uHpUWRVRnaWUy+Ldn868ne/+nuapuXlZ5+wurkh1YDN7A4nHp52HPuBQKJpGz7xE4tuQV3V0kwgUW9WVNNEUhkfZp6enjgfzsQQubu9xRrH+TzgfcBdsiv9hQYuMK3Zz9x/eE/bNHxyd4ezBj9OhHkm54B1piQUXyBoCVRC6YTSWUqtZoWzYm+r64pXr19xc7el6xqOpyM2eyqbiES0gmbRsn35guV2Q7VoqNtOHvgy29TaiKtDG0wlFr4wCWLU1GJkloUgSqzkI1k7MWpbw83tDSZlnLNM08i6XbBaLCWhTZXckjskpr7oZ3VJ8LLW0tU1CkWYZsZ+IM4TKiXiPHOMQYKZqgqtFZXWLLqOrmulO5opcXwVP//Zz1itVnz/3fe8T4Ue0DSE4DmdTsQQaLqGZtFeS/UQA1OYBbna1VRVRbda0rYt4zTy1de/EzrkLFzd5aLFLBfMQ880FFC0Fwnh9u5GZqFVjdGG4+nE6auveNrvrxmkpq7IOTFMM34cGIdRdMvGsNxs5X0OnhAT4zTJBmIN2llm7+XZzonn0w6fA7frOzarLcZYum5xnZH/oxfnMMoPs9bgKjE+oxQ+RA6HI8Zo2q7GGC15kFF2m348s73Z8vObn9N1HVXbYIxhv9+zPx3Bam6cBQ37o8SuX+6cEVHrn4eBb779juVqCcbQrpYEE4lKBOf7wwk7DPgcaNuGrmsgRVTbYVNEa4dbdNi24SJuOBwPmGywOFbLFTEk2qbFGKHHxyTJzCmn65QihsDufGJuW3KShOQ5R0KYSSliLsP7lPlInyn3YC0qqPV6jbOGpqmoKsf2ZsurVy/RlaYfekya8cqTxMlEVdes1htuXrwQyn4lH5O53o9LnJ2Wu3MMkclPoMFUwMelSU5i4tZZgZWTbLVeooKUvr5wbrq2kXm2z2KctvbKVIopSxRityj2rVJpzJ5pEAyJLgKLcZTTLrZRUs21omkamrqmqaXXIKbmhjevX7Hd3ogBen+Qqqb+WCWEEApB34mgPpc06jQLirKqqJqapjSLdrtnHu/vxTyBRDvcbjZ0TcPzYyP8WgVzkDjIxXqJ0eIYBcXz/sjucBR8KGIK0JVFp8Tc95yHgf585nQ8sew67m5u0ErRHw7EcqIqQEWDzgkfokwzdOB4OnGee5qmY503Uk3VzU9fnFVVQSnFUumiVaWZo7UgCnNKRERapbSiW3asblbc3N3y6c++oG1b8e/ljHbSga2bmkCSe8KLO7Q1DAeZZ53PZw7nHm01f/5Xf8FiuWR7s6VpGnKlyBZevXoj6pDoGef+qpk01soMzjqST8zjEWLki8+/pF/f8uGb95z3J7TT6GIxM6UVXxuZX/kUygA+o8ikHAvKArAarCEpcaX4shllVBHpW+kq1jVjf2b0UvKPQ090FmsV1mnatma9XjEnz5wm+vPEcfeAqS2vf/EZ3WpB0y1QzhWEpczGctGKei8A6tpVsjMXC1dWoj3OMV8fZoW+zuoUQnZvl0tyhHbR0VQVzhpZdFHyKUMoI4GUpWRWimxtaZo4ti82aKWpreV0PPL4/Mzj87NwXq0tZbEAwpaLhk0tkr8QJB5PFe7SMIw4d5bOc9tKQ6bMCY0zojOOgeQ/NhtNZVnYJdZZ2tWCuq5olh1N27LRIpRXRYBvtaZuK5TWNF3LaiOcpnGePj6zOVM5c53JPj0/MYbAaZoJOTNmeb6zuoz7BH9SWVvSxDVd22K67mqB085i6orT+cz7hwem2bNslrRth0qK/W6PsY66+s+Q7zVNQ84S/BJCuPJIdblH5ZzwcZKHR66MrDYbXr55yYtXL/izv/oL6qbmsN8xTxOLzfIqVh7GEVsbXv6Tn+Gahve/+YrjwxPnp5739+9Zbtb81//u39EtOl68ekm36DBdhaosbdvx8sULdvtnfvXbf5A7onFYVwtO09X44cT56RmdFH/x53+OH2b+pw8HHn74gFvW6FoWpjGWjMY5sVWFEq2XciSlgMoih0sKGZY7Q1QKn0Rw348j1lmabktT16xWK5q6JgXP0J8JfuZ0joJZrDVVbVgsF7x4ccfTccdpf+b5sONX3/6OZtny5V/+E1598ilq0QhaNEWm6OVeZcW7OM3CTtKdwVkxPjtnyUR8msjEq+Kpdi1t3cjQMxcK+naDqxpW6zWLTtKcFZkUgoDT5plpFlmmq2pJSXOCYFm0LX/6i59TVzU3K8km/fWvf8PT46PchZ0I8nVRQ223G15vlqJHLZ1+6wTCdT6drneuC9WgqioyCVNZIhKrkMOMqx3OCFd40a2wlWO9XePqisVqRdu0LNYLXry6Q2cwknsodIIQWa6XgFyXTk8C4wpZqIzGOZx19MPAu3fv8DkzIGFXI0UH3rXUjaRXt11HDoGhH3HacPfyBYtGVELOGkzlSmPskXGcGKeR21cvqLuW56cdHz48yAx0LQqj/6zFGWMkp6IOKRrFa4JwFjxH1dS4Wkq2F69esbndYhuhqlVNI+jGusLGyLzf8XzYManEcD5f28zWWZabNS+AbrFgvVlR1bU8oNNE8KNEfCZxrmtj2N7egIKmayV/0wi+UVmLbVt0zOjZgvKM08TpfKapFrD46DS4gKdyGTuksqteUoqNc2gr6o7JB8ZZYstjSnKP06Zoeb2oPnK6VhrWaGpnCj7RCj7EStl46Yhe5r3ZKIZxZBgmpnnE6yw61loUORcWlCRguzK2KeOGJJK7CyJTK3k90ogpu3PKqAKNVhlyGQOlQs+T5piMCWKUxa2K4TkWl0pKWVRVk2ccBuZR0riW3UIi7q2MznQl7qKqZKLmjNDujcI6BTkzjBJeNBbsy2W0EEIQ40C2qFRwnqVR6CpLs+iwlaVdduJZbWpsbQs4THJBTcykmBj8gZgT2hqquqIONW3XohD4l/nRWM1YaSpRFmS4uEwU5b3OV6gZOclYxkoiQFM3gnRVUkVt7m5JIKl1vRwCJITCUQgWIn/8iSfn3d1d6fTBoBAkftMIxrIWFwNnAem+Kgvyk59/wS/+6p9K13XZohR0Trq+WEu2hse//Rv+469/yWK5ZHW7Zb3dSHmwWXLz+af81WoNKZKDIFFO5zPzYcf9wwP744H1ZiWC8WXLX/0X/1IeeqPKPVEkMW61xHYr8jAT3+6Yvef9h3t+/823GFVzs767GmLFuiUPs09SLkvUnkSXN6sldVVzmmb04cjT4cBhf2CMkeVySc6ZfhgYhoFpkLCeZdeyXi+prGFROsSrpcgYm0byKBdqhao0x7HndD6j54n37++JRvP94z2Pxx2vPnnDz/7sF5iyoLU2rNqFJFblfDWppxBQWtAfSos9KuWM1ZaLgoeQhLY8RRhnwjgx9iO+nolBgoHD7AnFhhVSwqeE9l6UQ0bSm7/67W8hZYbTGT/PWK34+ZdfEHJijF6i/FpxriwqGTulmBn9RFULPyoD9x/ufzS/VNfNH7IowppKytqcWG5WLNZLqrqiWy1wlWNze4OrXAnCVYIQbVvZgCKEaeJ8OjFFj60dS2sxbY1bdLKZeTEtWCVggK7tuLm5ISrFrBSRTB8jISeGWSSO8zwyDz2VNmyahrauudtuWHWdfP7zzMsXL/jn//pf8f7+ng/PjzztdjwdjozTTNt2LJYrxOts/q+W3n96cV5OFV0iDC4JwJfdWJedORvZldqupW2l46aMLmGloFSJrastqqrQlZNdtjRqUgy4psU6JwPy7ZowTYyHA5nE7GfGaWIYe4ahp+lEN6mNES9dZSGFizVfpglao7QlB4ilE+xLTMIFNPyHr1Ug1+LWj+XOluT1Gos2Fh8i0+yvX5eT84LBFLKDbGamkAVd0Wdao6/jhFxGNxcpX13VdF0nZfOPUrB9obmJAicX8rwhNW35pblK4Ip2QuatucQ68FFMcGk8iLhC1C3RB6KP1w34D9+Riwghl6ZSJEQR0ysfyFE+l1hOOWMtOYkHmHLnNFr/4e9YRBhGC6LUx+k6Z7yosowRy5urRE6JFll/VVc0bSPlbS0TgEtierp8XpcaTAnx/kJwiMU1oo14Kutcy/gnztK7K8+zc5a2aZhSYvaeH8kfigf14k/imuci0O1KrjJFpF+VMrmqRKbZNDX6VPhH2pRUdwo14ycuzt989WuUUiy7jqYV4S85EXzEzwMg5lNnJCFstV6Rc+Tp/gM+BXbDgaxgdbOhahrW9QsWyxUvf/4Z//b/+d/gnOPuk9c0bUu7XuOa4u53cD6d+fqbr5gnQVDElEgqsli1bG83vPrkFa6pUCqTc5SBO4owSx6IUQ6rLcpa3M0NNmty5QgklFG4yuEqi6sM2QsULCRJnhrH8VraVgWNaaxjdzxz7id2z0fOp56koCrpVRjBiizLHe7Nyxe8fnFH8DPT+UTOifl8Jk0Tz+/f09WOdrOiu1nzs5/9nP/h1R04w83P3uAWLZtP3zDME9Wiodss6fueH77/TpQpL2fRgBpXmj26JMIlchjJJHSxSZEUySfICo0l58hwHOj3J86HE+fjibC6xZmKaDNV1YDSxNIomwte5XA+8fW331I7x81yTWVEDF67iuPxyOHhkaQgFkuYm2eMNQQyDVm00l2HtTXL5RqjjVRE3nPqT/RDL15PLYL2uxd30unuGmxlWd5sWG3XcvUwWaoIp8HAbr8Xx0ph+BhtaF1D9IHD6cDY97iC/FRGmpZ+mhmOMlYTzbXhZrPBaMO3b9/y97/+lbz2Smj03WpBU9c4ahqtWVQVr1Yblm3LJy9esF4uf7SqDF//5tfsjkdyTMXV4nAuXkFywUfmaf5ja/OPL87n/ZO80LrCmEY6tIh8ynsR/17wlVVVUdcVCpgGmXk+75+ky1lbWp1pcqA10Kw6Pvnyc7TWdEXJX606XNtcf7ZPojCap6nInyhNlYqmq+mWHcaZq9ROqUuCs3QqFfkqxlZ1jW4aKBhLlDjjJflYo6NQxmOQEj3G8BHJn0FbEVhPs2cmMEwz4ywxhWLkLdI0relqgYitFwu26zVjfyYNPTGmqyt+PJ/pj0dcK/O11WrN+rM3qMrApiE7Q7NaEXMiachWsh/7fiB4z7Bcin2pElyISNjKKRVyaZCJrzRTxPgltTpnoaH7cRLgc4ke1MrIaMYYdLJYpcQoXoJjJ+8J4UBT1yybttANnWAhY6Q/n0WX7OT0T0ZhoixwkMWEUldRuzEGW0Dcl/wUfjQFUErSz5tWuvuLrqNbdOLjzGJev8gTp3nidD6V6HhJBaMR2PU0z2Icl2pZfmdnpYwvn3m2CTA0TY1Smvf395yPB8bgyU2FKn5MUwQzGWiqikXTsGhblouW9UJ8nsYYducz97sdp74v0kCJ0rhUBSDPaYj/18za/+TivOg0YwqE6FmvFtze3KKkmwCICkYZdUU4qtqgW4edavZJYMTZabxK/N0//JLd//a/sF2v+eT1a2xV4VYLKU2UZFtqJeVQt+j4xZ//KSEEobonIZ9ZY1hsVthWuqhTmiErnBX3gHJykpgLEjtkMTxHITCoMqsV5ITQ3JXWYjpOsUgUxVqWFNdGTCxRBtLxdLTtEmM1rpI/31YV1mi5XxqDjpl+f2AeR+Z+BDJdJcbbfnfgXUrcPzxgf/971i/v+Pm/+EsqGrkPJjBOGEhJQVICkfryC+EEbZdL6qrCKZHEBe95OuzJOZJTkHv+SpppZIPQX6UrmHJi7EfOpx5nKjbrG5qquZbRwzAyB4+qa6HUxUjCy6lW0sLuH58wSrGuW2rrmPyMqyoiwhzSWrNcyP1wkTN1lqxXgybHzPl4Rhe8pFIFrGVsCWBSJWOFYsj2eA/TNGB6UxpBEtYUkif6yG6/4+HxgdvtDTcvXmKNpbUNoTiOQoolF0YRxsB5POMnL+qukDBJEfVM03RslmsxPcwT53Hg/XHPHC95sRFnNJWzdK6itprWGl5sNtxttgwlPa91lrvtRswbT4/MQT6TnBPzFIpJ5Efwsp+2OIGcrovT1Y7t7RajhQmbUuLYn0hkNtstty/uwGlSrVCjpZ465hTIVuNV5tdf/Ya/+fu/4y/+8i/55PNPMV2DW0rEgJ9nkp9L6WFouoYv/uTn5JSYBok5d07ubjJvVIQU8d6LqDtbLOJQMbZI1y6auBQgho/WtnIPMwW5gVKY/oQOoq4x6iLWLyMjyuIMYjq3WvCIzioqJ+bh9XIpjTKtBeCVMuPxLET3YcQaQ7focJVlOJzoTyfGHBlz4LNf/IzP/+wXMiSfxcSurYg+kpIeTtu0fPrppwBUl3t/iqgYmYee3dNDkbLJXVwbh1amKJ3s1TeYc9Em9yPWOFbLNVXVSEK4D0JILygWYx0YiQ4wSqOtnDiPu2cRlC+WdCXD1TgrV54Y0EqzWCxo2oZFhjp9vPvmkOhPMse2zpbgKl3YPR9Dm8qNlxg9KmbmeUQPis4uaFshVByHM+M8cTgdeHp+ZrVc0i06rLbUpkLrWQJ7UyKQ0CTmeWIslPx5kliHKSSiMqyXa+62W6kCu5ZDf+aXX/+WY3/m2J+Z5pnKGZZNRWMdtVY0znC7WvFiu+Xh4YGp76U7v2hIKsuBMovQPpOYZnFCWVucUT91cXaLjgsN/aLYCCGA0VhtRG8ZQxnoiiomkUhZOobtosORaW9W6MrSLBfYuiIpOE0DqrJsNJJM5QwqIu16MpoMl42llALKgLJCAhCGKmDE8RKyDM2tNtdT02T592ENOLG3VXVd7puOnBOr1YqqqhimAWMNUwyiUMnCzck5M/QjoEgeyNDWsqGQQSVIPpUoQk12UlppJ42g2jhM25YsD4tRckr7FOTPOgsp059OYBT1SqInUsoiuzOSDwPS7Lm4MsiiGFJaY6uK5XotjamSgKYQwrk0hYTbOvdnpvPA/YcHDg/i1O+6DmusKIFKrqroPzPEJL9H5kqLI0uJqkymqmuqqha/ovcyqHeOpmnYbDdiak9QZ64dYH3x/4oa75o0ZosI5AL4uuSxVs5hnZjULw0uYyUoqXEGHQKrzZahH6iqSp5PndFREUKkaVpyzBJVGYtTJIYSaSmbdVUoDtM48fT4wGkYOR4OnAeJR4zBUxWSRfae437PbCymmsB77t+/I5fZsEFkj1MKnE8nHh8e2J9PJav1Ir+Uz9N7/9MtY7d3NwJKnkp031yyJ53FmopY7iIpS4ZGLk2UEDPKGDa3N2AN6zd3mKZi+7vfUC0XRANPpz3RZF7q11SVweiMylrSkWMSG6Ipi+vyd6vAKbKSqIWkspiuyYzZk6OnoabSZXFSvq92qLaiWnS0l6+uoa4r2roVY3GODIM0ebQ1jH4WCLGPnA57EfpnGVHYdUVd3Ps6ZaL37A57yJlVU1NbS7VeU61qTG1wrZh6hXCeOY4T/dBTr5e0XYtOmd39A5OfuXt1I3ku0Yu5urLo5rJLyQwvlvGCKh30thPodgyB82FPChGFJvgLIzYxnAcevr/nvDvx1W9+x/5hxzwHNpsbKmWlyedjYQUJVSBqjU+ZCAVUJnrVqq6wStN2C7q64Xg8MM1nXF3RdB3L1YpPP/2Mm+2WVVa0SXE8HXneP19NBiqBySUJoJS1orgKYiLQkpvSNg2uqcuHKXNc2zSSYbPoiGReHw8YlWlcLVEZaEIJdFqv1yy7Bcfdgf50JqZI8LNYActMuK1rKu04HQ98ePuWwXv2Q8/oZ/rTkTkGlpslddvw8PYdH96+pVKG0dUc247fNC1P2y03t3esVmuGeeYw9jze3/P7333F/nwmVzXZGHIWg3ZKIu75ycL3nAtgKWvICT9H+n4U0rbWxFQQ9ykw+ZkpellRlUNpcE7cJrqyaGvolh23dzds1ivauqJ2TnavXPg7meKilx0/JRlPXAzQV6RDzlwxzteNpwyJuToa5Z8pVf4mA2qr9ZWsprLgQlRKOKUJxlFZR+0qYkyMzFepIkgwUSIR00yIk5AHrZHGS5bBesxyzR1jpPdenBAIwr81BVplHNrVZGXwITGOntPhTNKG7ShRChJ5K/KyC7tIXaHZwnaNfFTRSiWhJBhYRZQWk4JKwBRRU0CPHsaJaX9k2O9RIVBbg8UUAoG65lSGGFFeHCRXQHa+iNprnDag5BTKhT2stSqAaEsuocNRG5LWZJUkBFgLClRpGV0orWjqBqUUPnqReDY1ykp+iTIGbQ2Ycn1WihQDKpnrKK+yTu78yqBiKs+OiCrCNMvYZJrx00yaAzrIOCmX5lk0kWDF7TQEz+jn65ePseTeyJhMmoz6OpuNOXOeZtww0qXEwhiCgikGphCYotgRVRZn0AX/ApTK8CeenOOIXFyTRWXNfndmGr9jseh49eqOmALff3jPHGY+2T2wOr+ka9csb9c4Z3BdJSWrFZzjz/7kC7qlY9UteLm9xbmKWhl0SKgQr7FxIEj9qZRK1D8KUIpZXmgOaA3GFvNqMeqiNOEy3/s/xaTVRtNZTaugzZJANT/u8DHSItrX0CypsOgIfd+LG2MlNrn+fJZAm2lHjCfUYsNm8YpkBBuZcmI2lqA10zjyME2E4Jknsav9/MsvadsGvX7FAjgPZ54fjxzHzJwMq5s1d69e00WNXVhMbVApiSBDJVSWKmVMYvgN2aGx0sEMAYNm2a0waOnOZkU+9nA4Up8GVoeR+HTk9Jvf8fz2PZv1Det2KdGEtsLjyVa4r344XzvWILPCECOmrtm+uKN2jul0Yt8fZWaroakrXt3e4JzjcP9A/7xjWrcsOxETRBupq4qbzY3Mawu5cHN7I26nJNkuGIWuHcka6FpU14ARjEoymvPxgJkrulrmz2tb4bo1cQ5XuZ4fPSFEDs8H5mmmP/WM44jzmXaW07ufR3yG2GWUs+zHnkOY6P3I83jGe8+5EC7UaWCaAiloFt1W0uSMIVrLu35gnzLuzRvaruHgR+7nmafgOZMYVMYo2WS1lb6IQMn+M0QIUa6RQipACxoySXMjBokSmOeZ0U/CpI2emoSy5Q5ZMimyklq/6xpub2/oamlBG2OlYs0fE4Evi+mSMiyStNKCDlyd6/I9H934ih+drJfz8zL4juLOUGSskr6lSuVOdcGK/Ki8qqwr7nxN1lztY9K6T6TshYie4vVOLhQ8ad5cSvtcoNl939PmzFCIfc4YrNJywk4etGE4D+K+uJycjaTMyEuRakJ2X1kyIjOU/51IRMTwrY2VO3e5X2WfiP1EGiZyP5L6kXgeCOcBvdhQWUPW0nhSRVwvYiIpcdWlaslChsg5YY2kjg+lAUS+CFXk7mi0ZhokXLipMsaKFzTGQIXMl62xJZpP8CjGOnSOqGxJZKIWV0jWStLJjQKjxP7nZ2mUzR5sxgCVNsxZjPPJy6ktmJKBaZyZpwk/zeioUB7Z9II8JyFG0Io5ReYUmWJkCr6I/8WVE0JCIYIQeW6l25pL6a9TwudMUIo5Z8YQSv9Cuu1azrli5M8icfwj983/5OK84i3KvyQmiWxLKVE7h02SUJy0xLjFcSZPAR2EFzsjaAhdFmlV16y3W0kzrpor0qLUbOU30mAMWmVq5IOaUiDFjI0aUjHb2lpKI10WcookIqp0S/McmIZAHD3j+wP97kgcRozShHnmdDzipyCvT5c3D7kPuJxYLJfcGSVzSe8JITBVMx+DzSGkwDCPcn8obN40SZaIcxbrDJOfOJZczIenRzGZB2l6jONAP55ZxRXbl9tSsol5WWUNWgKG8RF5lbLBtK4i60tpBSgJbdJZY5KGmJl2J0I/cfrwwOndPafnHe9++3v645mcE+vVkvVqxXq5Znc6cf/4wHmcpFJwjhQkpUwlmU1qKNI6xbnv8VbIBNrKhuasRB6czmdyzhzPZ2KMHM9LlsumSAMDm/WGrltSOSdz2xjEkVI36MpSNQI2m7K4gyY/EftAVeR88zjTH49oremPZ6EZ9jN59pxLhk/wgakXs8bpcCLMQcpcxMw+H0eJ91h2KGOIzhK1JpxPnPuB4/nM09OuaH2LKycludaU9DgZg0hy3s12y2KxgJTZPT3z9PjAh3fvOByP1NaSS8K10pppCgxhpK5rum750xtCqXT6RLQk965LarDVpoS/yB2OmOUUilGCUaMkKGetBGmhRPBtbSvfayXlmfgjBZOiNID0tf8TcyYVqZw0hDWZC4Vd+FUiOAil+SE8mBQTcZrx/Uj/9Ey/k5AlCbaNTONEDKnIsi6nr4whTBZx8kLD7AMJiUK01pWOZizidgn3kb/HQsqbr51rZaRjOM0TOQtRIqYkHUAfCMHjvRjTM7KzylC+IEdLchkxIm+U3NusElHEJUNUl7hCVS6MOWVCPzIfes7PB54fn9jdP/L9d98LiT0jKWq1+Czz4cTpdGYqlq4rQa9QBgAu+aVKCd0/R0myVsWJUlUVWmumWVLM9/s9PgSUDsy+uep2QQnLFhimEe9Fi5uVorKKyjbytBWodQieRMQ4g6IiFueMAsIom61FOFTjOHE6ncviHIkhCnM4RKEuaoMPgTCOuKpm4SpM5Zh16YKnfM106fsBQFAtykgSCOkPohkoc/CubVkuFiLm73vOpzPHw4FxHLDaULssKjIUU4yEaZZEMmN/uitliuI4SdNMjoFlU7NqGqrKXacctbXkaOl3e95/8x2mq3llaoxV1KacnGXAnItMQ6sLr/Hj31IZx6QQiWFGGY2pHBmwxmJMxgRFThRMRI+2lnrRopWSEzxnjBI+rQ+JMEz0zwe+/s1vOT3uOe33EKP4/OqKaOTOE2Nimj0hJ5qmobYd6XjkOEl+yEVWprWoPBKUD0vyQ1KMjLO0ykOSyiJpiDoLiEwJ/+fQnxlnX9rz0kjJKWHPPR/uHxnnmd999TX7w4FX8TNu9EtC9vg8kXLE57kI8VMxIBe4lhIolp8Dh/cnpvPE+999y/HxmdgPxPPAcDiBz1gMzWItI4xSWs7zzDhOTCEUDGbCGgdKnEcZ0Ysu25bKip7ZGYPTWu5eWpXUryQVRJQMEYNh9pHzIAgSjSp5p3u6ruXFyxfUdc394z1v79/hakd1bIgpcZrOKKP5/GdfsF5uWG7WrLYbhvMZP0/kKGCznOV5oFQcxljmyXM4yF24sjW2qXBOINFDgPEgc9ZcOVRdyamvNJubW6KxuHpPP5XX8SMETM5ZtLlFMim62lpS0I3hcDhI5MfjA48f7iW+ImUqZaiqulw5FE4ZFt2Sm+WyrIWfsjjDTE6J/nTAjyPVixe0N9srp0UBrbWo6Dg/7ZingeXrl2AbtNPURlQ5mAsIuVSwP/4hJQIyIhSCOQR88BhnpQ9UWuoKVYhriXn0HI57mbO1tdhwtCvVsTRDYsjEfuT0vOO3f/8rDvdPhOczRHHo100tVLkEcwjEEtu+2KyoFx2D96Rn6VJq9dExYYyMUC7RfyLJC4zTSIiBUEzOQWeCLmZhpfA5czid0Xq4npy23NHyWWHe3XM8nqgXNZvHe1zr2C46fJzo/UDMgSlNUrZHhW4b4pUfLPea8TTyw99/y3F34jd/+3fcv3vP0tWsq5o0e7LPWGVZL9c46wgp40tGzDCO0ln0Qdws1mGUJkZ5fXXxqlbWsijOpNY5nDFSAQRP8p5pmCU+sJTdcwjMhbFTV44pRB6en1nHyF/8s7/kxYsX3O8e+P7d9xhnsLXDx8DutMc6y6tPX9F1LavthpvXr7DPz5x3O5IPRf2V8ZPwlGNIha2U2O/2pJR59aqjbTvquuTbTBFvnkV3XFeoMqtVxrC1FrdYYuuaY9+LzHGWzTZH6U04V9HVzXVuXVdSNRhj2O12fLi/52n3zMP7D2XWv8RYy6JuRKyv5Cq4XCy5W65/+skZSpv82io30ga/AHsV0DUdzhpCzsz9wHw843d7bFNhlk4u8kkaDal0NGMUWLFS6kpWEIOuxSiEoVqwJXKvKiOSEFA+MvQDx8OJtossV2twRf+qNKrYos7Pe7773TfsPjwyHs/E2Uu0YLOkbSTFOUaJXheP5iTz1WkiG804TYzjiA+BYb48cLIDBqWBgNLmSrG/ZG2mUh+HGEnTKKyfyqGknSAfdGkmSKNLQMl9PxBT5MP7D/RDz6eff8Ldi1sikajk/mW1MOt11qikMBiSUsR5ZuzPDKcRfx4J/UQYZ+kBYFBGxgxV22EoaEgU4zAwTDN9PxaUI1zHT9fKRpxISv04OECaGsZoCaBK4WOpB6KRtVbi62Mg5UiIiTROoLS4erwM7X3wbG62/PxPfs7pfOJx90iIAecM1hmGoWe3e8I2FXXbEKeZtm5INsJcRBOTJyTPJaPGWodzddFkK4lFOJ3JWcr3OWfCPPHd+/eCeeHi35SG3ul8JvhIymCdk9ly0FeYmg+BbC11KcfHSex15/OZ0+nENE5cPbMpFY2yVA6Nq7Ba4i0b54rF8ScsznEey8Ioig1nxbbjbDFfa17e3AKJtw/veHre0f/wnv6rb6g2S7ovP0E1Ti6GKMIc8H6mH3t2hx3GWm5ubyQesK5xlYiuTbLXuyfIqUrK+GEgnmeeHne8e/ee5WrJsllRNw3NYoG2GsYZRs/7337Lf/h//38Yj2fG+x06wevPfsbd+obWloj1eeZxL17PwzAJ0dso3DzxtHvmeb9jmmeOpx6tNS9eSBk2DCOTntDKXG1JUzlBTWVRRjH5kbn3opbZbCDDWIjxkrkhJm1rDTEEHh6fQGWedg9UjWO1XtLUDVXraJcN1lm6RYNRhio5bLBgHBjLsR95+vod43lkeNgznwb8viccB8BiHNSuZrNalNctSq/np2c+PD7JuCAkcpnhXbq2gJRd2qKV+bhAc7oO06u6klMzpbLxyP3U1SIiH6eJOHsJTRoGFnOg7TqUNezPR5q+5ed/8nP+8l/8BX/zd/+Rb/7Hr8k5sdyucZXj6emefjgyTSPZe2pXcbPeorIizUHGJv3MmCa0EhVY20QWq7UwZ9HMPvLhwween59R2qJMxXA+8/2vfsU4jewPB6Z5Zrlal1QwR1M3WCu4TWOM5LnGyDyOnIaRtqlZLBdkrXna78k58e79Bz58eC+jpaxkbj8HUhI5p82K5WJZCJA1XdP+aMLwj1ycubSBbCEBiCL/I+xXIZwhraByFZW1JB84Pe1ocsTebTCpxqgKlQ0qJFSRheWYivbtQq2THVepPxyL5PJfl5/5UeKVr18XDydZAnzyODGezuwfngjjhMuKykj7Xlg60jBK5VIv2tl0zXykwJrmWVwbF0TLBbYsX5c7qGAalVao9FHwkFIW/2PO5Xvl9eUydlHXqqAMRwog7BI9cD6d2e/2LGJ35eKotoy1rv2hCAFpeu1PjJf81H4i+SABvkkVQvvHEzNqafRcUs9iSoXZyx9ocC+NuotbP6UkJ3WIciqUz03xsWF0AY5fnh9KlaC1vTpTZu+ZpvmaC7raLmkXHcvlgvV6RVZZSBrOSUqXs+QoiNLsIg6hD46ngTB7hn7Azx6jZB4uAgRhIvX9QM75infFOLCZfhw59jL7PJckPGXlni1+S0XlEqHr+HFqXApRYNXldaZieI8xEkoUA4orVvRKoijhyhrpodii8f7J3VpJgVLcbTYsmpbGGObZUxmBLykjrM66cqATq1VHHCb++n/6X1jebvj5+Uy7WnLz2SvqZSs2Jg0pWYIVMLCNCh0Ql74S03KIQRoKzhbl0KVkkgfbuoqu6cSHlxU6gvLyBgyPR4aHJ97/9ht+9zf/QOMq/tU//StW3RKHlS6ejsxaZljL9RozTTyde6bgSQVkfTwe2e12pJJ9ibV4HzEmwGXk4hx13WCc4TzU+KCvZW7MYhGrU5TuM0qG/UgcIAj+ORTtqjYWSCUjM/Hd778jes/r1y/5+S++pFt0rKsGHQ3KBPCKcB7ww8jT99/z1f/+S8Zh5rAf8XNkPo64bLGIAsgqiymnnzGWlCSuz9UVKglPJ/GxWvGz2Nuaui4NwMzcjwQFgSxCfuewSsjudTElaCOGhH4UI7XSDle1NG2Hs3eEMPO023Eeznzz3XeM80S9rLl5dcNnX3zOf/ff/b8kkHa7lkQvP5ND4Ol5x/vvfyg62cxwHvjNP/yWoR/47M2nbLdbKiv+0tPpzPF4pu973r59K3zYstEPMXH0kuC9Pxwkia0Wfm5Mmf1Ryt+cH6mrmhAibdvx+tVLVuslw/lcfMQKj6RjT0MR0qcI1tJUFV3bivTVi7AmhcA8jrR1LTY/MjkFfrJC6OIYaJqGxaJDxzLryel6v5AUalcoe5Hd6cDz/pmQIuenHcTIcrPEaU2ujPj9Ui6SMYNGyWmQKXEichqKLe1Hv3t5dy9uenH8K5GnJQE8kyS0dTz2DMczw/GEbRe0VcOiaVFRErTRF/G8JEbbJOE/l5NEByUt9xDK6SpKjlzYQPLeSOfWFSe+wJDTVSzP5ZQvv76CElHAxxOzCAyuJ1YRVeQM51PP88MzXdMw9SPOGJKPJB1Jc0QlJeOS44lxd+T0tGccPf3JE6JIDfXlLyWbA/njyCDlj6ca5RS9hDjJn7m8VvGGUjS9UmzIPSqGKJEVSNPsAgjPUT6nmJLoV7UI2Nu2YhjB7wOQr6nY3ntyzjRNw+vXr9DW0m4lPc73A9HPnI5npmEk+ogfZX75w3ffcz71LOqOpmpITvoNIjqYmaaZ/f7A8XgUF1FVMc6eQ9FMT17uyq6usc4xj/M1iMj7WWbc0ySBSQXF6Wcv1IcsMY6pVFshSIiyLib0tmvJKTMbL51qrf9gGeZy4v6RtfnHF+eqbYXsprTAoQBlxDUyzjOZzOPhQF05Uo6YqsK6ispYso88/PCew9Oe0+lM1TXYrsG20tquFi260bh1IwAtrUtHNmJzUSbFUkYaQ9KJ5+OZ48Oep8cnPrx7x3a14bZdEe3E4/GdRBPePzM8H8hD5GeffMmi6dguNzR1w/P9I8O5v2JHmrZjc3NLpTRN15G0YvCeuZ9BwWq1KjNM6T6mJDxV8Zwqmqpis1oy1xXTPIrptz8z+1ki5poaa3RxH+iCejH48hBcsCoy4J4xRnN3s6GuHdMw8cN332O15m57w3ga0D5RVRXL5RLnHLv7R/aPzzw+PDHszoQElWuonCIZKQW7tqNbLMgx8rzf4/3M/cMjwzRyGEf6eRaRRQqELJ3rhJz8SmUuGUYXFZdWivqioCJDDOQkpMKUpXRTZJyT3Bet5L7qrKOp26K8AmM1ddHUno5H7t+9I6VAjF7KWBLGWWzTUjUty/WJl9serQyVrjkdT+w+7Njv9xBhV1w2IQgM7nkn/YKUMtZVLFcbFssFqe953u9R2pNnLwdBwalqE1FKrjAXcFssG/Z5GDBHy9PzEw8P92glB5O+KM4UrDZr1us1tze3fPrmDc5Zmkogec+756vfcypAs2Ec+Lh9/yMXZ1vVRTCur+J0VQa2Uwhk4Nj3TN7S1OIwN8ZidGlnP+5KyTdgK0ezXlAvWxabNbemQpmM0Q5jqrKDSAivKfo9leThEKKaZh5GDrsD+6dnnu4fUT4xvxnBBHbfv2M4nZn2Z+bzCHPk9c1L2qZh0YotahonDoejuOiNYaM1N9bhlKAxfIqcZkEZgqLrOhGAl+H5hUSorcgZnbUs2hZnjMgRtWaYBpknGk1dVWIQCEEYubaGDHNKzLO/Vgk5RVKYqSqpQLq25fnxPcfDM+vlktP+SJxmbBJ/YBpm6qri8e0HHj48cDqcmM8TWWnqtWhlsxKHT1031HXNNI7XoJ0f3r/j3Pdka0nGys6fEiFnpihNnQuR7tK3lY8nFweeoTJGbH1JNNE5XaopeU4kezMjRm+DNY7KVYV9bDHm0qmHaRzZPT+XPy8L2xpBr9jFEtN1tIsF68WS2tWsuy3H7siruxdYZZhHz+lwYhhGIQOGQD8O5WRDGjxtx3K15gSoQQgF2egiFjHX9LPLPfAC7M5ZgALTPNEPlv3hwP3jgwCza9l8L8ziRbegrRvevH7Dz3/+c9q25XYrzq6vv/k9+/2e9+/fcz6f6Yczj8/PfzTM6I8uzpK8SPSeKSUqK8oeHwPnaWD0mjlOQgJoKionHslusbw2RnKA89NB1EZPzyinWW7W9Icz3WoJSlMvOqr1AtM4FBqtKwBUaRxN80hKia5d8PqNiAxiP7FZrVlUQls7707sH5+Yjj3zaWQ8DUKeS/D8tEMrLRf/C9gqZ3yCqCRleZznK2nce4+1lk1dM4wTQ/9EBqqFLQ2woo4q6VjirBGkhy4JWFZrFLJRXdKuL67MazZlSiU1XH6nizjDlNgD5yqMMqSQ8JPneDjKw40lN4kcwZmKuqpZdAvmEHl63hGSyD20AldZFouyyTiLToKYDGSSsSStSc6QaplBhkHoFVbbaypYjqLbdUbjtKEp802Nkuy/XPSixd+LEvi0UhqjWoyq0FrwNTlHQpylS+0DOTpRS82+6HPlumKVwWoR9pM1fgr0xzMjI+dnUeGcDyemEqcRCsF+vd6ICaDAqesg9jprHSHIOKxrFxhtmYe5iF4CcxHhV86VxSl5NK4IDqbC+5n9LJpaEDF/VjAWaFnK+NlTVxVd07BYLK4Nob5sjONUdOgh4EtZ/JMWpy0nWJhmfM5QAkVjEkVMzjKcVTnTNk1xHGx49fIFOSX8NBK8Z//4RD8MjPPI5CdWNxteffbAerulQhbr+otPMds1qjIYV4kcL0hTYexFp7lebXl5t6A1FWYMLJqOVbPEjxPHhx3vv30rY4R+kuh37cgx8/7Dg4gphhEfoiy4aUIfz3zYHbDOstpuJLkqiGJmtW65ubllvz/w4f293IkqCbuR5zGLSkZJhITOCZUCOsnilKQukdnpos80FM5RWZyXYKAUI2HyH/+cMbhKIguMsaSSgjafeowx1DhSG8khU7saGsirxP585v23P3AaRrq6pnISqrRaLqUqqRxWZZrlguwMUWmSEi2yA4ZpYsyRECOVETmeSWJU1sX4XBlDV9c4UzTMUS79mkIuDII06RYd1lXUdokzLf35yPG0F25PnIXj47ekWBFmL1GNJWiJBJV2VLqSxYllGjzH5yN+8gznkbEfOTztpFMbRaS/XK5Zb27wIVD1ojTypRMdisBCKctqtca5URY2s/z8mGichOY6a2krERoYJ13XYRzox55xmgohMQmbCJgniY+fp4naOmFRzZ7VanUVrhyOR07nM8M4MM4To5+vUYE/aXHmIKld1pWcFJCST8GlgyPZlAnlZ2JO1GPNue/lZCkt6K5uS+A7kITZEvqZQZ/58N1bDs97jn6mXq9o1gvazRKtxUedUkL5JPedkFEmocvJEOeZpw/3zMPE6XBk6sdiNFbkKJ20lLIAi2NiKKKCrDRV05KUiAdykAfTGFPwGq3M6MaBUNQtF3DzZawiKVpCSY8h4KcSblT8oVmLk0NDaZvrMh8s9+kyVrmUkJfs0nT5GUqVdGfJQollcG60pu+H8hpl1/XeSwjPuacfR8ZpEoJAWXBP+/31VEpJksYxmt6H6/uhtADPbIFA166SsVOMEGNx61jBiYA05WQSJeW7s0xhJvS5oDGlLKysyN1i5ZidwwcIPhVqQyDOAT955nGW50wpNJ7zsWfoJw4Pz0wp8fjtdzx9uCdHgZj52WONoa5qLDKpsCVdOpY4x1SuITFLGp73nlmrEgAMbd1If8RFSImuEg6t0Vr+OVxjLcI8E5LA37TS1448pUEJkqLd1CITBBEg+HkmlkyaGD52+q0VwsNPXpy+n9FGs1mv6ZYLHp+fpN62lrqT+2gKkvI7+BmNYpxnhnFg0XZ89uo1TdWybJaQM8/PT+wPe3mzns+cn45889XXJAXNzQrX1nz5p7/gyz/7hRizSzS6pnBV8wQzqGHGhszpsOOrb37JcB54+/W39Mczi6ajrVqGeeCwOxb/5ST+vSLRe/HqFS9evWQYx2vj4Pz0jLWGf/bP/zmfffYZv/3tb/nbv/1bUsqslh2gCGEmngOLxQLXOFROTH3P2PecnndXCZ9MnTOUU7CthFM6Tp4YE4YSHJskg8NYS7NY4KzoQk/5TGUtq+UaaxzDMArl4HiQ0VJCGj1NS1O37A9HfvPV7zgOAx+e9swpUXcdjXN82O14e/+BunasVyvqquL25QtcVfH9+/fsnwdwVhK1rGG5lOSrtmlx1pLGiTR7GmtYVbW4U9LFBC6l83a9Znt3y3kcMI8PkkFSNvRFU7GoGiqTqYyi788Mpz0xBsZzL80hrUkhUdeO2DYMauT4dGQaJ/7Df/if+fbbb+VUc4626bjZ3l030tVSY1yNNo7j6czucChkfgGD95MI8U99L4R5Z0mNyO1e3d4Kv6j0OVbdgmXbSbe2LOan3RPjPHE+CrakbgRcnVKUOTOiBDIoVoslt9utiNqtqMLORaQ/9IJc1UbTrZZoZwl8nHr8oxfnj0HAsjdcwl9S+Uf5wiOQXTxn5uCZvKdy4SoHs9aKdKlu8PVMyFKmETxxCoQcJYMkBPr9gdPznjjPUlYYU3JYFGlMWCMCg3mYmPqB0+HIeB4k7j1LcM8lDt2Xk+Ei5vZRSrZQPHoJZOaYRTCQyRJx13UFFi2yxdrVoBQxxdJdK57K/LEJcvGCaiPoRFViDSWHw17BzRQhg/7R0P7HX5fBtnQMPzYlri4RJNYgBHltRovvUNr5sSSlpevr9cGLUFxlGu9ldpg/Ci9CETLI68tXAcgfulFUUQ6p4uzLZTwgjZPLHdnoS+J2vopJjFJYowpc2+CN3Ncv0fTzNDMNoziJglyRAGIQhvD+6Zn94zN5tcItVzIH94GcxOmEVgVHU5Ct5eSMKZZSVry33ov5Gi3pA6pwi6wxVGVxOmsk6+TSgSVfcbC5IDwv4htVBDOgZFxU0s+dsZKcXhxFc4kFjJfv1RqrZUO2pSL7SYvTldyIw/HIsT+TVGa92YoapvBwVJnvzX2Pn2fqoq6IMdOPMzFmlJMPZ7O+4WZzK8zYSrqEz6cDIQVULYG7wzDxq7/+W0KMTGGS4J31SuaRWi7ncY4SGzB5+v1JgmqajmXdUbuGylYcTz2HfsCHwFjmaFkbsJbHw4Gn84mmadluN8SUGJ+fSmLxzDxOGBTLxQJrLcsCDO6HoVjEREdpmhZb1awWC/70T/4ElMT3GSuZL8v1iqfdjt9/+53odEcPKpKMRuFkgRYjc/AelRPOCMKlbWuaylHXroCIFcvVSjqhTnyuu+OREJ4Zh5H1ZotuJpwPBO85DGf6eaRxlqZyKGuJSjMGSQpHKZ72e05Dj4+RKUTQBmMrlNJMwyS8IKVxSqF0YogJqy66YE3bLiRzE83hcOTU9xyOJzLQrpc4bdEqY0lUGrIzpNqyaGpCCBye9xx2ex6swdjLuKUixcgw9sQYqW3Ln/zsT7m5uWG73eJnz/l8ZhoGPtzfy59pO2xVMfnAMIdC0ZAN62m3Y5w91jq0+4husTGjfYAQGWdPjonY98xVTds2bDdbZqPYG0PUmrZ25Cz3UIKQHCtl5PlsOyrr6Oq2nMKy2MPoebd7W2apVdlsFamkHUy++ekNIdnJpV6POVG1NXXTFM6MXDo0ipxFghZTKjI0GbCHIBHmySSyNlROMhptSWEKMaKdxcdItoBWDPfv2N0/MUwjz4dntNbc3N1IGCu63Ek0VpkiehY2aeVqjDI4U2G0JSOOCO+D/PuzgLu0MZJ7cZ5ZA3fuhXgHL02aGMrdQDp3zjm6VuIPQgzguc6pUvEwCvZyISVsJ0lU27tbtrc3VFXF+w8fyjjlEmOhMToLb+nyc70nZ32tFlxRIInkUATWqv4oZrh0DodhJMWEq2tcltAlkgQuzd5jdEura1Ba+AkpMfY9KWeGaRQpnf//k/anPbYlV3om+Ni0pzP5cKcIRpDMZFZJLUFdDVSrUR/6W9evb6DQpVaVkMqBySQZEXfw6Ux7sqk/LNvbLwUo1BnyhCOYwUu/fs7ZZrZsrfd9XhH3a2OpGzG6xyRGW2VlPJYyRCQ7ZtHdLjDxkEV2OM3yjVLU6TUgSpHXVOkF3CUNuqHQ8mRYY60p/KbA9Xohk7m/uWW32XHY33BzuC3qnws+iIrLe08TAq6qiRnBjiRp1njvGaZRMko6Ta2kE6tzFodTjGSlCLN0bU1K6BipyglKFpmd1Wrt3C5UCIXojq02NFVNXSokXfi4IhGN9JcrKWd2ZQPSWov6rTSKfrErRVeVzPbGQUYQ48ScRF43zCNKK7bbjWRlaEtdtWhtCUHkcdM0kxPMtgYdOT48MI2jkNKdBKKOfiKTqTdFQ+kTu2bLttnwZn8LqszMKJdzROFPKsqTbVfgVDKGCSERQiIrja0akvaoWUoM42pxSyRBboScJUk7yfA658TQD5xOJ8leLKZv72dgKd2X3I+SL3rYU7mKzXaDUop+HBjHgYcitP788MDD5y/4EErqmBWvaRmYhxBKMFRVFnlL5Sy73Y79bkNlhbhvrWHTdkDm+HxkHEfQ4krxUTrRl2min2cG73FaSsoiw2WcPdM0oZRaXTLDdeQ6DFRNw93tvZTWVj7zoRdJWoyZQKIqjhxnFoC2+Fon7/ExMIfAME7MPkpZfx2ws6cJijyM65XIl0xLW9w4ISTx+xpNzpqYFBlLVXUlD7TDVQ0vxwsPj8+M08T5fMIHz6WY15O1VEBSmqw04zzzcjwxB08/jvgYMcGLfNLLyCsYjW7k8DAgc8vK0ZWpg1YiX727vRF1nDNcerdeMbQxq8G8cfJ+NK6mrqoyv5ZR2fKfr6VTa+qq+JSz5OP8zNfPL85FpoQ4/X2OqBAY55HT+SjEc2sl/kyJxUdrIw9eaV2DEtOpMTw8P/Pw8LCqfhZnktKK/c2eppWowE3VFSVMJw/KtS+zqJmQfAmHle7Ytt2KN0/JVPZyFaVOVhpTVQKIjlLXa1cJczV4CKL+GIZB7j8FOj2OI5fLBe/lzqugGKOFBigXNnnTrbNstzuapuHmdg/A+NPIPE+czmemeebp+ZnnpydQiv3Nrdw1/Ovi9N7Q1DV3tzelAxzRWrHZdBwOeyorZWnbNDKiypl5DkyFIIDS+JToJxkPDd4zhoByFqWllZayzKrH/opSiu12i9a6wKUH6rbj5nBTTlc5eaZhErtkSgQU2alVRFCX4XtGMXv5XSY/M04z3ke5kQ8jZjacY0a5cS2FY0zSANJCF4gxSyJ3lsWZCq+qcqJOq6oW62qenj/x+fMnQgzMfhKYWpA+AZUjGSXPgLZM8yxRHiEwB+nc+hAwNkAIECQQymTpFdi6lvlxMU/XVblyWMNhfxCfbuFFpWKQkN5EmWOWrnXlhN4ooU9+vU/mJJt+IlPHFpeSuGe69pcvzjH41Qki+stECgJlskba3n6cIWa6qi75k5KaZa0lAT5GXs5nlFI8n8+cegmsUUYaMTHLi/Y50Qwisq6rCpVAtZ1MbOZA8oGmceimJkU5HVW5dMuoIS1qOLRzuLqm2WxJ48B8ueBjAGtwqrhtSmkWYkTl5fVACJ5h6JmnScZECJ8IiovNGmpVwNTOSfjRLHKxlBLH06nskiP9ONIPPSAdyaqusNbRDyeGYcQYyX4xVgtwWQE5opSQ/ypn6NqGyurV0J2L22Vx0MxFA5qREYarKqoy6tFKyX16FPKC92H9985amqoWsHTT0jateBLLPT0VwHTMWTIyS2dZ3oSS2hajaFnnmXGexXhebGPJB3RM9CkVH7DFumrVESuj1wVrjAgultRrWBxIcuLHDH2ZTS+jjYwqXB7QTgKrtHEYWzHHIGMqJR5kjVrN38ZZnJWysqlrlNYyfgmBunLEVDPOI5wpLiJpnjVtg62WhRex1tI0rSi+RrlaSAuJNRfHF212gvVzSkYRFTRG064NtF+wOC/jWHqTGYwmeilVFdLBVGTGS8+sFO3dHXXT0lY1m3aD1lJShRD48vTMNM+czmeu16s0lIxgLZZu1vZ8pnKOw3bLYbuFXeJ+d4CUideZEAI3u1u2N1spm2d5k/pBTNJjASKbqsY1DU1K7GIinQzXH39gHEey1VSkNQgYZEZoiqJFlCATxxdJ4o5+ll03Cq+17WS80HSNfLhtwxw84zzx5VHuT8fjs5y+155L368RCdaJvMs6x6dPX3h6euT29o6bmwMpCdA65wRZcjVqp4lhJh32dHWFVorz5SIokHkiRGEF9+NI8ELdR2upPqIIIVRGaOzDSI6R5Au5XMndbtt1OOvY7/bstnuGceTpUUZLUubLHDhlZJivNNkYlLWgNdMowUrjPL3mVwbZKFIogngiE5GqbmhKWlvVthhVQpOKULyuW4o0VzbcLHfe6zChxonj5crx2gtUukQluqaSgKC6QVVOhBtNy5xjMTaIdG+hxCutqJ1jUz7rulzbTi8vTOMkkX1tw+gnjucTSkuSu7GWm7s72s1mtYbJbLoihsjzw1MJYtLrgTQMk0wGsoTw9qNUdHWOVDEKGM26X37n9OXkWMS5mUV3KFIuchZFSBaXt1aqDGKbkkQmzo5+Et/eHAJRLRqGQocvd7i5dFRDOZlzcVaQsjx83hcJmVvj06bZczpfJDczJGLOmMqjnYi5U349TVLOmAJUiimWMYgqF3uFsw5bMiWXf6d1cb/LfKMMnHMpY9TqvIgxrkPuy1UyRJf8TqUkbtDaV4GB0uKGWWIhYlAy7shpNSmEKEolEUqPKwpkyTrxhQi4jIby+jmpMqoRYp4wb5fBd6HkGVOICJbsWMcYsTgyJE9Tfo/lBBNubUAHIRIurz2lBdlSSAoKWRXla/G+Lv5Vlv9fS6yDiUk+F2NISc4eiYSQz0jGPsV3Wt57SkPHKiUUQi0dZGNtWeg13WaD86GMd7TEcLiKymih9ZMlxa34eiU4WaqgWNLJTMHruPJnQfofpnyW8zzjfWCcJLFtkWbORau8VJyL8yer8t7Nk+TNDsN6SPyLF+dlGsQ4WjqGSmvJq7SWfdtCzgzXCylGamNxWLbdlrdv3zIMA3/64Qf6YeDz4yPXocfWFbYpYCoyKSq8KkbjccKomU3TodDkCNPgSQve0HtU+oau7jg+n/nxh584Xy78+adP0plDk5RC2QqMlVN8vycrxZu3b6R8LSVEfxV0onHiZ6yc5bDfCbDJOfGxFq1oKPNDkNkbGZSS1C4fIkPpCr5cL4zDwD//8GdOL0c22y2brqNqarb7PaC49Fdiyriq4u7NPTeHG3aHHdM4MowXyEjHTyvmeSLMEynM5Cikgb50WRfi+Pna04+TlJ8p/cUiqSonsRTakLVhU9e8vbktgbayuHRlSJVsPOfnF8Z5ZipCjZxZu/I5RYZ55ni5UjuHKeL3FETwHkpkQ1YSmpRYxPKKqlJ0TmGswzrhPemC/mg2HaaqsVWDLZT9EEp0XxGOhOBJKXL1AU8xLXuPyaawYMVIj7VUXcf+9oa6a1FO5tSig9bFl1oRg8fPM+M48PnTp8LAzVBZLvPI8CTGh/P5jHOOD+8/0HYt9bBBO8d2s2G333M6nvjjn/7EMI6cXqRrvGk3cjCVmShKSdpB1uiqwpDLpODCWDr+v/jkjAjhTIQHeT1N1njwnKUtrtQ6g7TGUFnHpOdyJ/KyeEJAlYu2xAqWVrsSWHMuGR2LtlRr/Uo3WEJ2iiBC4uoEYXi9XgURorUoPK1HGUdSChs6Yf+YEm1UOm2vzv1XELKzMkhf8I9ff8lYnVc/afnf5yx3Vh9C4eL4dZzQLB+OFr9ryiI3DDHJ4LzMyNb0rSzvx1KjLIP0aTaM4ygM1sulzMykrF4G2+mrb/KrM0SV95YiD9xupLM9jb3E75URTchZhBr+FTey4EoWkUlMcY2yW+1u+b94l5ZTUWoslOI1A9WYv6A/CC9Yo01enU7L/S6RV4FEiLEkVyMbTU4kwuqXTVlONdmYhBSotDheUkpl4ijNrNo5fHkt6JJSF8Jr/yFJB3/yXowQRVRjgpOTMKX1JccUGcZxFbP7EKSEXhZbXgoFaZyJ88UCU/GLSvf8Fy/OupULbwpB4L/WCW0vZfqSqnWzP1A5iVho6oa6pE4NQ8/D8xPDOKCtpdtt8Vn0rQvky2jDdrvFKEWeA8TEze0dH779lsZV7JsNfp55eXom55HLpefz5y94H7i5vScpg6m+lHCfSCSVUFnLHAJPT08y7D4fSSmW1GNpme/u7mjrmsNuizGaSmsUsYw3Mv31yul8BmSBLc0LbSxN3dK0LXOMPJ8kQerL4yPzPFM1LbdvK5qmxtZ1oZlbsdxpA0ni7GbvCcFzuZ7FsDsL6XAaAxR3i8qJaRwY+mtRqeTSTJOPzRhD3TSiGR3HYpGS5s08jkQUtYJKQVs53txKjMDpuYyHrAjzXy5XruejXDvmWTawAp9SCrIGHz2n64naucKXdXRtR+UqCBoVjLB7F8FH2Riq2lFVMvJJKGJOjMMgc9ZZJHZhmoWQjzTCl41IYh4Kw7iu2FU3zH7mOlzwCq7zjA6ByzSilBJawpcvstGX61H0AZIYBJx1ZA3JCCplCIJDjYU8Xzknd/K6jMa0ZpwnqR6ygNrOlwtPT8+czme+PD7hvZcOdc5c54k5C/hMPnOFLiKDqmslHNqU96XgNH9xQ8g6tzq2U5GdWWNJWe5DlbW0dUNXPIhNVeOs7Oiz9/RDzzCOVJsWZx1+GksnsDgfnDCInLVEJnKIdF3Hbn+gMpbaCg7C2gpjRIZ3uVxJKJqmpa7H1YeXy++43D9iivhZYucu5zMxRXFqWMumlmZI29Tstp3MUIME9KZCO5jniWHohQxehPvLyWCdDN/nYRSHyzBy7XtC8CWmXlrzS8NDaSNPXfkcZMcWINgwDoLe1KYohaYCbJbFGYOgJwXFKFHyi3dSmhJmZQClUhnkcuqkUtkIlV08p1oppssVlRKqsKE0V4kriJEUg5y7a4Ug3ylFxmKsnmZJIO+0CDsMS4AUmBDlyqnV2ojR1pQ7qtxPZ+/Fsle6zuPkmeblBNOEEBimsWSylofYWqqSV5om6dL7EEFFYpQ8k94OXC4XeT/La/DjRIqJ2lY460RH3EjXdXGs+OIMMla60NpYMQcgG4Uq1Z7WAiw7vghAoO/70pcpGNAUSdFjlcXlIkVI8j5UzqG1wvuZGMSSqL+SSf6LF+dSuuqqIhUo0aKkWaLcvPeEAmI67Pec+ys/ffzI+XoBpJU9TxN5nrGV49DsmGfP0PeSY0kRDe/24nxwFcMwcp49P1wuJUvDsqn28oYpiQHwUS7d2jq0lXGISkkYrCXReNGI3t/douAVgpwil5cXzGFHdXcQLWRdyayquAoeHx/Xtr/WrihDygn9VW5lVpKEVTUdap4Zp5EYi+DAWoZZ0qpiiDy9HAkhUDUNrq4K5GqQAXZVAZl5lhGO0wqrFE3b8ObuHufsmqW52e1xrmKYZsZJBu2ubrhOE0f/UJpJIzl4qqZFmRZiIEyCO6mtwVCtSV5tZelqx+RhDJTyMBUJrRS2WYlwI6HXxbdgWkBmwAKXLhVvEgXZ0I+EibXPIIvytRmYihCkH0YotPmYIsNcgN7WoJTAyFPBwCybkSoWvBBS+UzEfeSs9ByM1myqRgDapWHptWJSikwiRrlK1U27amh9jPKsVDVGG+kbOIdWmnGcGPqB66VnmiaROyrJR1WluhIplBEje06EJS/VKCxGnq+ikqqLGOQXL06Ri0k5pldzcFpJbL6Yk5um5nB7w/F65qePP4mMC5EADuOIj4G75p7Dbs8wDKTZl0GwkBYO+71oFKtKLtnHIz/88U84a/mbv/5rtptNuQtmUpxFOxkFMqatQycJmhmnidH78uA4mqrmzd0dzhpyEMdIfzpxOZ9onaE2RlCFVnbow81hFb6P01S6kWpF9Usgz7I4y+zPWKq6BWU4ns70/VVmvsWZcblKVsqXh0dijHz73Xd02w3DNHLpr1LiWOl+z15mkspadJmlffjwnrquORwOOOfY7W9xVc3xfOF0udL3A9bVuOuFH1+eUFPETz1+Gum0QtW1GLrnCWMtlRUR+iJiaJ2jqxyQMWMJQs6xzBPT6kHNOZKyIasiHLAizk9JQN0piSoplQ5vTpl+nskprHfKlLPkUVGagmRJjr5c1mtDymLzUyhc24hvtEgBfRIBR/rqzutDKtcaYfyqGtxWLG67psMVZEuOkT4lpiRz0FCg3Jumpa4rxmFgGoeycESSd3t7VxRDhmkYy+K8yiJWQl+s2g5jLbHcf5UxZGuIMTOEWXozlTwLAkIXYr4szv/61883hIrG1C5awZREYQHrMT1NYroexkHmY7GEAxkZIagow2qlFdF7rucLCjhsdkIb2O4EXhWivGgnLoW+78UxERWXYZCZlZEEK59SudMYrKuwOUMQ8bJz5URQ4mbXGvw0kYOWUi5LMG9TVzRVJcRuK7s/OWGtoaorKU+rilByHCEVF4QYqcV1IFkq8ywNhDB7UJKpYu2inVSv1rGuLaDjLLmmSwe5PLQKaaAoEBZv5djspDvois5XW6kc8J5xmuiHgX4Y5P2fJoKfidEL6kPVbDct+92WbddSlTFKWrhFMZJIaAVN05C0wo7yIAdSacSUJlrOa9qaLT8nF/JBKB3QWLy95LymSPuSCSMvTrqrWb/yiJckOTRl/q0wWUHRwVpnMU58mivGkxJNmEr7TEqcVedsrcNoU2a4O9qqFoTNMCBkEoMxWVKvs/SWQ/EBW2slmKmgMEmSy6lc0dIW03nKWZRjSqG9l6qg/F5Za5xW5KSK2TGXfBkh/enSkV/IGL9ocY79ICdnVa3w4zDPVEaz2bSQUkl0Tty/uaPbbRnmCYpqo3PyICmt8N7T9wPHx2fe3t/zm1//lqau2W/E8fHjDz/weDytHeFU5mohJz49P1JdHNu2o6kqeXFOWvLNZkO2ltM0kUKUqPtKnA3LPbI/nyBnqlIq1s6y3W+52W3Yd5siZeuFuVM5ttsNm+2GbrNh9oE8SIKYKVwjY52E1KaBaz8wjRPH03llBQkGUnZVlNzHtLHcv6nJwORn8bXGtN6ZU84FK1KhgcPNnt2m493793zz7bcopWSskGGaJ2IaeXl54eFJwFEvx5PoeocrYZ7YNQ2N2/L+/p7v3rxj2zRs21rySmIosXaeOUasVtwe9rhp4Dj1KD8zT4PAvspd0RlNbR2mMtRNRVVXxBQYp4FpGJn6sTw1CpUyyYt3tR8HxtmvC08bSfpGSQkZcxKEjRX+ryvBurpgUpq2xtoKX6L8fAxEVOEXx9JFVyjEKNAum66r6eqW7z58y2G75eOff+Bp8sw5YbJGG8Ga5iy5q9M44YyhqyXBoKkqrNYkH4kJdN1RG0tb1cybDSlnCcNKiaAU2llJrtYaZxRaV0StpBGW4NIP6JypbzS2beR6tcyFf8niTKX+Dt4XCJU0c3K57GelSncwMUwCkIop0nQtIUTGr0pbY+R+KSZdtWZUkv6SDrCOFlhKH75qqwdCeBUJpCSDbBvjOt6xRj6kpKV5kMtQnSSdXFPSlzdNJZHmxoCiuOfT6kzXWhdxvkKb5SEo6pUoAgsBT8ucc4mYo4wQ+IvXkksitFjwfHwt8xag1HoqGbkXd50AlrtNh3HlYyp5HcMwMPtAP8jdZxqF6DbPc1HXifqlrWvpoNfCd5LMGYhG8l5C0qIvVWJjsqGMKspnuuhIU05kLVI5pZVI4rRUUiHJvSoUwqAufYpF+J3KvW4ZvRiQDmYZyYQUvvLJUiYyqtirTPG5FpD30jEvJ29YR2NlbKP0V+Bw1kZMXUk/wXsvkRjLotBqmTyJa0kLUFrEKGa18y1VRgwRhaZ2FWPp/Ke8JMMV+oJSYBQmWLkCLSOYstEtESRWaxrtfvninEfJrL96wW9U1lIbi1GZmBy5DL5Divz06SOn65k3b9/wu9/9jvPlwj/8/h/xfpJSQxtoBHvZuQqbFWn2PJ2l6VMZy/3N7dptHaaRl/OJrCAaeXCHeSZMnqw12ciMrm1bbFVxmSe0taIEKc0dA7L45wmVM05JrOD97Q33NwfpMjcNvnR0Jz/z5t075v2+wKJ2TJMnZYWfPf11Yp4Dp+OJ/jrwcDzx9PhMyqIE0saQo+hStVlSPOXLGM3hcEBbU4KBgQKf0lZGItYaWid3pd/9ze/49XffyvinzDSXLvI//eEPPD0942MiRMlZeX45ERF0ZtPWvHvzhpvNlrvtjv1uS1fVbDvpTFukJHOpJuSMJzMpmKNkrlzHgSnFtaMaYpQ+h20Kp1hiJKbrIIL668DUD2Kv6zYiw4uhAMLld0xZgqq01VRK7prH60mAWUqVhqfCKYe2IkOUa4GMdKqqQvJTHWAIMUikYlwaUYqqSEetUqQgh0lTVWzalnEYePj0kcE6+rqWclRJyRmDRMJ3Tcdht5M57YIgCVHI8ecrcz/RtC33N/dY42SMNs9cgyf4iT5KJeKaimZoZVsufQ4mj0qJuq55+/ZtGRV2Pxug+/MnZ2nZSySBlwe8lJzpq6F5RrIWY07c3N3Sdh1zuZvmIl5QBVAtuZ6C2swpM08SErSAlfJyRwv2K+GxfJghRrnSKEWOGmUNxkk69iJPWwb7RimcLidzuWtKBxTapmG72Ug6lNZ4pGUeilg5FBeKuPyTJHmbWB66xJy/km2Vh0toc3ICywuHRQgNuYxgXOExiYNGPpdycpbdunJyD97uttzc3pJDXHdgETvMnM4nnl9eJPNRaQmE9b6YvY3oeJuWTdfRlIg7Vzyiiow3prw++QwiSygEpTpZBNt5zaMEVlykAKqlslokmqGAvWIqsYol2EkEAqICC0nu+8uYZxl1GWtYBzLl5FyFLuVoWViyOYOz0lJarj+mUBDllKyLV7N0Scv/xSjvXcgQS7br4kuVO3UR2Fgri6nkPC7CDp8lxayqm9LsK8aHnFBFVpmj3MF1EBzqIlOFVzmos466rmldTdu0v3xxLkduUlI7R60JpawYsyKj8dYRtWZWjpQND6ce+4cfSoxfS41jLAyc0QuexPmZ5+Eq2lUrZ9xElJNglkRlWSCigLleTsWtILumrRxVXZPmwHQdCmYSKlPRXy4M40DlHF3byFyu2MI2bUPtHLsYmZTYl9Ig6pum7jDacXo4Ml8mZu8ZZ3ngnTaUuGxiGjhfRRUSUGw3dhWPK6W4HE/FNykSP63VykX1PosP8dxzPp4xRhAXJmTMGHBOc7Pv2HQd26qjNjUvlyOfv3zh0l/4448ih/z46TPXa7/md2ht2NxuaYzhw7ahc443Nzdsuo2MEOaAMa74c2E2M1OEl/7CZZo49T3PlwvXYWCMkLCE4IlRUuTqqmLXddzvRP7XP/cM60NiyKYi1ZlLijy8PP3FmMSX01MrjbaKZITSnzNYLaAxrSQDps4VnW6wylIloRbG0jeolKYuoxBjFBGNrQzJad7c37PbbLk57Lm/vWUaR54+f0Ep+OnhM8/nI0NObN/dMyeNiYaYZRyXc5LnLidO5yuzj8JK1hoQuiQ5YZDfc9KBMc/M80xTGwkkap1sZEXhVNU1bdfK8smCSX1zc0tbS7KYjZE59Dxdrz+7/P4bi7PsLGWXWReo0sxl9UZjSUoTlAE0l37m08NzybSssMqS+pHZy+LzOTPFwNUL7W7hhMq9UEYJ0yzWqFwASPMoIvaoG5KuaLSGCnyIXM4Sc941Nc4Y5nHi/PJC09Socn+6XkX2prQiKZiKRzElSc3OKWGtkGSGS8/l5cxiDjbO0my3ZZcN5OTphzPn6wXXtDTbPXXtOOw38jBNEuyaSvSBUlYWhtaEUMKKRiEYNJUTN0zMqDliVKKzNbu6o7U1Vln8HHh6OfJ0fOYf/vmP9EPPdRxW87azjq5p2Wx2bJ3j2+2GrXMcug1N0zLPnmn2qJRlTAEEZZiJnHzgue95Op74+PAoY7GkSMqQYiCFRKUr9s2WXbvhpt2TYuT8cpRg2raRaAJtyS4zjQNfrlcRiduSGxPlc7XGUhkHWom9NoPWFqdVKSPBYaiUwyqLzQadIHlZIEtlZORySUShrIjG398cuL+/5+bmwJs3bzifTkzXC957ns9H1EUxk6h3W/QMeciFuhgIJfAopcQwlDGcNbhKOviSZ/LKAY5DccwAzhU4WLmDL79jVRCqy5norOWvvv81+92e56cnTi9H/DxzLSFLv2hxuiI6CMYIZj8l4jxDFPyjgpWBYowRvkwW6VQCwiyLw88zIQg0uC6KoOWivYxr4qockrvK6jhXiqZpUEpzmeXkmUYZiMcY8PMkCpZs0MhssWmk9EBJA6OuG3mDS5l0vfZ8/vyZyjo2TY0q5WpOmWmSXZGi/6yUotUajaWuGkJMHA6Zqmloug2bm1tJvBoGgo/0V0muUtpK2ZkEmaG0xke/6lSXkcmi1zRWRgamlOYvxyMxJ/7804/80z/9Xk61EqFeuUpCXJuWtrCEVXk/5xQZk8LMI54sd76U0Dniiwb1PA5ch4Hn84mn05HLMOJzIlBOvCKXszXYpkI5Q9biuU1Z5ttZ61IIy4M+Fymc0oKRwZriyCkBSsVNojKvGmAFGLUmxYUYmUsWauUcSpsS+16vGmLjLJt6S06Zum2KUAJRaMXI9dpzvV746eNHYoziwzRWGjYpgTI0TUUC6rYi5kQ/jcxRKjYfA8SM8nlt0CnFGkcRvOcSJODp9uaGqqrY7bY4Z5kmcSbp4lWVICNRQX16fOR0kbyXeZwY+p6X52d57b9kcVblbhJLlyynhB9HglIEPQmbtojFjatwSqFzIvq53FVl9jWNYnmqK0kRrqx0LXMZKOeciy0qrLKx5UsZTddtsM4yO2KgvAAAcXVJREFUPl/op5HgZ8ZrWukEWity6wC5+202G8q1aPVhKpZSBU6nE/35TNe2vL25k5xMJSKAvrxxC8cVI5YjY43MxZSiamVeudnvuXn7lsv5wt//7d/RX3suF0lEtiU3JqRUZGYKPcnbHVMSqVj5z0ucufvqTvr4+MjnL5/54w9/5j/93d+W00iIft1mg3UVh/2B3XaLn2ehRcTImDwqZuLYY/yMuJE1KgUmpOt97C8czxe+PD/y8PKMz8i9m4RHQp2aTh5qW9fghAzvU+lom1JFKcG1zDEwehlzqFKmKiskhm23o60b5mliHqeVV7sEMqOXRq40n+RKIhuP0YambakqxzCOjNOIqyo22w6l1Nok895zupwJz88EP9P3PV8+fybnzM3NDXVVr1Y55wxNIwl3xgmb9tRfGP3M6XJmuo5F4RQlUsO1MhIrnfIVAHd3y+3tHdvthm+//Zamafjy8MDxdFzJiDEIviWlxPDTx7KmHM5YjscTP/708ZcDvpbFqZuG6Nzq6liaGYrSVlcaZwryT5U2SM4YrSCp1aZjlZYPeRbo05LDQmmMiFwQcRyUOefSHLBGMjbq0qIOvgy8EV9miAEV1No5TYiaSWtN5UoTilKpl907hsQ4z9JJtkWtoVQJOpJ7oikaWZSibuo1gVsbg67ca5u9fK8R9YU4oIvIQF6WDLyXMY3JSaxpSnx+cxA9cs5iqPbBS3xdWnIwVRltBWnhxygwqSwjo6yMyN0qi2vFv1gOJZTRqztomEeGWfhBl74nG0PSIjej+FkpjbnFDL1ktAoUSxbTq6Y3rSOcSlWrTC+nhPczKsvvHEKQkj8Wr2YUUbqod1KJxlvGJuVbqVVGqbQUiqE03ZbQ3mmaXn92SqAUVV3LA+4cpsxOl5HZOA5yoESHNM19GRvK/TCXzJYFBqC1KnEb0gBdqJTLZ/X58xeqquJ4Pol4pjiVUpG3LqOWnDJGaYwSRIwyFq1/4eLclftgtdu9hoEuAoHS0ZTu3OtppxSogvWorMGT8f3A9XqBTRDkRc6cYhQ3el1jjLhTqmLSzikzzRNTfyUlyblompZ9yjhn6fuBS5JskyWWbhoHvJfkM7R4L6dpku7nfoc1sqiXGHByZg6R4+ksetWmkx3SOFxnZWRgHXXb4CrBWdzc3JFy4nBzy3a35el45McvnxjHAT9PxCDKnMpZlLIllj6u70csp4WtHE5VqBRRKYDSUlp5kXpZI3Hr0zTSTyMKMbhrI1TB6+Uq2aJ1i9odyEGcHRaH6WqqTcv+7o6u2zCNnmmcUUpzGq6M08zT8ZmX05lPj5/5+PhA1XY0271UC5UVm1M5GV1b0+131MZSVTVx9tBfhbruxSAei3qoMo66kqri5XwizIHz5MlZrjuUpLqFwxRmSYtWZQcxSqNbvRqarbXiIiGDUWjniGSu47DO1kOI5bP3VE4ECKZy3L998yo4V3rNphnGkf78shreJQ6yIE1ItLWgZ2Yv+aTD9UwuIgyrNV3bsdtuUSh++vGnMvf+e+lpGLmSLMINMYoIx3gojcc4e6IPNE3Dbrf75cL3qizItq7FHVBKvaWUSOXOuGDvxQf4l61vrRR1XRF8tQrnSWltMcupaNbQHNAklVZBwtIsSikVYoEp6EJLJBCjDJJleM6647/uFqzgYwpIOqUlSChCzESTqGxF5hXyG4XtiYkFf6JlXJNRazp2DIGhH1bUity3FIsDNJdZmSpqcKVehQfLH5M9Wt4/lQVElcv7O8/yHmstpekSAyD0wSL3KycnBQjt6pqqbei2W7bbLUoPAtBOucCnxRGyDsLy4j4pJ/qC9Vhi5tUr8UGSm0MRXLz+b6WiWu6b5U4ZU3EKCTpVevLl2VDS6V/+TnmPslRhy7Ow0APyaw6mnNSlL7FQC2Jk8jPBe4muKM/cogunvL9rVVQ8vCssu3Bky8VShBZpeZ6UJKWTVumoLb7fZZSUykGSYiocI1MWZ4mNdHI6zyUhPcwSyyAbg371f/5LF+f9bofWWjD+JeZswW3EUkuPkwi1z1fxNa4Lu6q4ublBa827u3t8CDx8+cLT8zOuqaibRv7MrRDpxlFCj5ZG0ZIYpVCcjmcu556uq+kqR73VbNqG2c8cz2exqIVQ7p9mVSQt+tiq0NWStqSYuc4X+l6aK2EW+85CKFi+hEzXs9vvwFiatlmF5w8PT1z+6Z/5/PiFf/rhjyigqcTLOvaym/swy13TGGxlRfStZJoYouBAcvAk7wtuw5AKkdBYi7EO5xLaWWwlpeIitLGtfKC7pqOtKtLs0VnRuIpvv/sVb97c8v2vf8PtzS0//fCRH/70A9fLlefnBzGCVxXsdtzf3JGzwtYNrtuIKL5ppZQtChg/Tbw8P0uTb/JolADElJI8FaO5XK/M/VVKfmfFEne5CufX1qiS57n4aStbmmGhkxl0koZLU9dsu806r0aJBjnmJOE/s8yVr4XNFJLcXZeKSBRHgruUv0MYtUop2qYtP3/L5puulM2y2Y3zJDF/BQywzFr5evPLC39XnChl1fNq+k68nM5crv06k15PZ2AuURzWCu1Pu0ro8+oXLs62cDm7pqFdFqcryqBSR1st/rt5mgh6fl2cVrIrrbVsNzvRIg4Dp+OxzCBbqroWs7UR3W4sDaFcdh3j5CSbZ0/OnqZ2RYInUjhjREnkg+A317uZ+ktigykQX5XU67C9MGOnacLGuKIml5NzGEdOlwsYwzBNqNLp1dow9AOPj088PT3z8vQkTYp3G6yxzOMMeUlH9oL0UHalDmgoaM+03kWUkvGCUeWeV04OXZpRCimVFuiW0bLzO2sF7VjEHZVzbLdb9ocDt3d33N3dcz5dxemjpewPxbFTOZEvbpoOXVfYwvStqnrd2IwxhBL2GqYZfx0Eet11cu9WSu7rOQvjSUu4U05JIGNLJ1LJ+yaRDbrE2EM2qQgARLNcl81Ua43ScuKFolCaC2FimiZZnKVzTBFKkDNaG4wR76vEKVDCfCW0SGst7qnDvtxBRaOrB70uJvRXclMlTCyl1Bo3svCt1LI4SyMj58z5ci2qqCjNMbU8bSJVTEl4t1aLI2hhcv2ixXm/F/y/1Qq1uA/6vgiTpZHTGE3SltFZYjHVppyprKZr5M2um65oLiObrkUbaYhkisokSmy7aTuufc80zmSV1vJUShSFn0YufqLbbtnd7KkqR0hhbV/7IFQzpZeSbNH06pKtIQ2OJc/SWuHBolTpmqY1dtzUNTdv3uCs5fHlmZfTkS8PX9BK8fL8wvl8JubIzc0Nbdvy/t07lFKcjieu10vJZUnS0bTi80tlpwbxuSqsBPkgjSPrKnb7PZu2o26kwylKmyBDc7/wc2V+4LSMKO5v7/jNt9+zP2z41TffcDhsqQv5Pc4T4+XC1A/EyUOUuyq1It5EWtsQlSIqkRVGH8khFSyIxiRotSM5ReqkmbFxoqzSMZGTx6RMowxd1/Hm3VuBl9VyMjz0PedCecixXE3064O/5H8SZaG9anoL8G3RrJYrkyo+Up01yhSVVVExLT9PMjELdK4o0jabDbeHG3HlRE8Or2bvYRhKs0yaetlotHUiEy0LyJWf40pIEUpGRnJ4ymYrCeaKEIWpKyeoXE2UK2L9HBnHfgWW/8za/PnFeShE6hiF6xm8LwuhzJ+MLnYrTWMNc7kMp5yoCkG7aWp2hx2upBh3bVsE7Zl5nnl4fBbquXVoJ4bWGFOR7Mkp2DQyxPfTgI+etm3WNGEfZubgCGRMCOI9VXqNWSsBCIgyTD7Myjly07HZbHj77h0xRj4/PsgJkTw+RpoSfhq85+V8IobA1Pdr+E7wnm7Xcbi/YbvZcH93x0KC78eeJSxIB1C+7JRWTk+00PGkA6klHgDJQOm2W3bbLdZaJlc2nyA4j9mWzl8Qs4AtAvab/YH/8a//hs2u5d2bW9pOiA/kTJg9cz/gh5E0B8jQdTXGOlIUfMccE0OQDuN1GMtnKI0SkxFSugBiMUBjrNwtYyClgEmZShl2Tcd37wSI9fbtW0zl+IdPH/mpoEaHYVgTubTWdHUji8WLDtZ7XxAmohQTXtDrw79suLqc0LaSU20pL4uwsHy/UgiNFt3sfrcXzW+5qy531nHomX1YfagkI8ngZTKB1hjjcNbR1g2bEhGp1TIOi4XoMK1mgLmEJ50vF4mxKKf0NAlFpC7m+p/7+vmGUCkrBa+4jEgk5VirjC6tZ7U2aqzgQaJ4BHNh2vh5FLNvkLAelFpLs+CLLhQwRfNorYwu1FeMlVzKkyVrRCuD0YJVNFkIgSkhoKdy71AluHGaJzG8lpTpUHbIa98TPn4UiWCJKbe1o+qkBIpIxuf5chE7mEh+1vKsrmVua6xdu9eVc2zalnazpd10pAxzGTtcprE4MMrzlCI5RBFvGEPKiYeHL5yPR2on97S2bjgc9szzzNPzk4QYlzJK2LMbNk1TbFKO2lVYY5n6QZjCV7HCWaXZleBfYiJE8Z/G2csJH6IwaEvEwYJzrEqXUspmuW+11mGUWiMkUhJxeLfp5HSyYkzO4yihwKVhRTFJp3KCjjFLDkwx8C99jEU3C+UawOIuCms2CYCtinOkLEpTRnPWGNqqln+7iGS0oGwoJ7DWqui8FV3bUTep9CvMumQkAHompIxOgE1s6oa2FkyLKiqzGAPEKFGPu50ITRCQdGWF7EAZCfW9iFTu7+/56998/8vRmE1VQmOjJ6csOZk5orPCkDEKKis7We0svrL4AOSILtKnGGbGXnbKMI2Qgiwoa/AzTNPIOE4iaHYyL6tqhzG2jFYyfd8L+uOrD8BoibJzriIrjXOeXORz3ge0Kh3VFCRMJiaaqpZ7YWHMnq8XTj9c5CFsG4yzvD28Z3fYM5WdvvczD09PpBg5bLfUrqKuZXG2XUfbdZKrWTqrTd1wsz/wq++/55tffct1HHk4vtBPI9PnT8RJIgRyRozK3ktYUFURY+QPf/hncgh8/92vePfmDdvthg/ffMP1euF6uYi4uggFuqbhdn/gsN2zacRh09YtzmkeHr9wPZ25vhwhBGpjuD/cEmLk5XiRYXo/Mo8jPiV8kHnh5eUopX1RLt3sd+y2W5wzHLZbefCdNNjev3nDdiPa26aq/qIi+unTR4ZxZI5+vVPmkuTt5xkSeCXRf7kohpbusDTFTOlul80ZSDmuAb7LJq7LFUtpjdMap0XMses2KGAeFuyLxNwrJfN3pQQVAkisgtE0TUPTNMyzpx/Ep/vleGaeZ3IdiM6h93t23YaFrRVjZBp6cgjs2pbDdiNcJSexEA9dS4xRwANacz6dOF8ufP/dr/i//U//dm0Y/YsXZy4RB8tYJJV72SK4XjSFywDaWWG95CxzwkX4m2IgZxkyGCO07mWaIDaTVOrvV2+jUqwfmjghBPDkELeIyKIiKZaGQDlXX8c6MtjOMa/+RFhsfKpAtUqjSCuquiqKkVywm8Ivnf0szQcyCz8Jq9duny73kqmUNF+Pk+TlJUIQv+MCbV6iCHS5E+csyWUymhDvJ0VSGINnnkdSimw2Hc5ZQtkIFhmkeA09MZSPU6kibZylxb+UeFb+rlCQpaH8PjG93vWkH6ZW4QXqNR9EhOJZaIk5rZAy5VnVWnOBYfeDRLTPxVYY/SJAkG+SBCQtZSi8NmJEeKJXAYI4aOT0XkQpSimcs6vbSWmFQWPLlcYVNm4ygVj+jgV+lpDZ+PK8OSuHhcgixaJGFtzrtN8TvF8rkqZuVqVZQuSlu81GKsYgz6TWUm0kramMJpAlw1Mr9tsNm7bm7uZA17ymYP+LF2coZumqsmgtmZEpbZbPH6VEPgqZtrFo3a7qCCn9FColfJSUKVvVbNuWlJBSQb8uTms0VWXLHEseonmWAXxT1zLSqWpaa0kKzsezJGSnUNQo8maHEER9kaHS1SoXI2UsitracsfLIjSoK7Q1dDd7jDVchp4vT1/oh4HL9SoSRCWzypAiKkoJr43CWIN1NSF4vjw+ErxnGkcJAppGLuczx8uZhy9fSjryWe6zZZEppcE6pnHk85cvaBTvbm7X6PMwz0UkPdG0Db8tZdBw7SX3JGv8ODK6C8fnZ1L2xPwWW2BUEsjky8Ns0KYiqYnL0HO6XBhnL3ejlJlTxqcoNjyjabq2zPMSUwE7xyDRFa7MptGZy7CR/650p6/9RRZymYNPGJF7+kD0MzEucYdlkX51YlZ1havt2i1eZ9xZFoEtvKfddidY0EqeC1O8oEK/EHFL5ZygRGMqhAopn2c/MY3i6NmWu33XtjgnTqeqqtGtxt5I1fjd+29khlvutXUROpAzychG8evvfoVzlh9+/IHHhy9oBVZl0JnWKMkmFn4Df/WbX/Hhmw9i+N90v7xbK1IosOoV9Lw0PVJeZM953fWctavsShtTYhfLbpWXmxZljvTV/bEM6Zfde9UbZko2hgjCq3KvGv0snUwWbsvrIH353+XyZpJZJXQLQDrFSFSiCjG6BLcWTWuIkbHoOKdZZrhLS00O8iV1WppUKYu4fJomucPFKKOF0hDw80zw83onLS9/PS2W0VEIUdAV+jVx2ZS5Z4oRlaEtO230xSsYZWC+FH6LWSCnvGZ6LAN7KRHjKhNcQodkflqiCcp9Vjqi8p6n0m2MWeSUCVV6CYbZz0zeFT9nYJ4nztdLGRPJkxGVLS6XuMLhlpHEqxx0eSvyX3yv/648D7o8LwvDaBEGmKLnjShBipSGW1ayqJP66vkqHlTRwryCyhdxpPrq7xAZoyyRhezgyogl87phtE1NXVfUpRdhjAjmczLUzmLKWEgpxbZrubs5vKa2/8zXzy7OKYjsy9X1KksiyYM3DAOZvJYY1jmqpl4X37o2FjVK6Ypdr1ecq2jajsoZbm72DGPF6XxheH5knqXkatuWu9t7XFWxL8P/GoPLmtOl5+PHzyhjcJsWZbS4KIymrWdikPtlU9cCFFbypt8dbmibhpfjsZSKCZ88MVvsPKGM5vH5kYeXpzW+XSPlk3DMZSO4ub3l/du3nIeBh8cnpnHk5fGZFCNtJQ9OfxUr2+hnFIrKSuRDIkt8QQgMl6vAuZVi123X2HKjNPf3d3zz7h3OWbGVWVMiEALHl2eulwvfvPvAu/dv2W12vH/zlqqpyJNY7q6nE6fTiaenFx4fnhA7tWGaPV9enhiGEddusLWIOeYxEDXoRoQYUZdrjbS5RUCxOC3CjI6aMQYsEhqUnMaHzDWI2SGUjJm22dFYxxgTc3yNbTemDOO1LgogMWMfTycZU6xXHP16BdHC7DV5oRjIxtQ2NZWzi9xKytxKFnhYlDnlMBjHoXhhBXRmrQDIF5tX20pZOo1yzZgnGQMtV6G2rtm07aoWMkbh/UjOAWNg29XS6d9KRfHmdi+oz6EnxMCbmx23u5/P5fz/a3GGGNE6r4NWBeSCmFhCdRZ5WdVUuEpOk0Xy5YOUnCoGdFZMc1iRmU3bYrSiaQR69fgkD5wPsrMt3Ne6qui6lspVmAA6KmJMXC5XGT04i6ksTkmUnC3fzsgiUVos2lqpVUzRX6/ltBFLW04ltTorrkPP+XKWcUcZGNfOiSyvHOhN07DfHxh9WLtv/TCQY6IyHdYYvPfk61VsVEhl0TgpyftxInjPPM9cLxeaqmZ/6KhKJo1Wik3XcXNzWF33ID7CkIQC3/dXJIp+w26zkRLNabIPxCyikGma6Iee8/VCTBCS0AL7cWD0Ht0KzCpH6UxnxeqRXNPLl822HPerNE2JvSySyRJaQlRIuHIS4QAZWopmFkpvIP/FXU8bA1GVFDShS3x9mrpyGjnrqBwyGtITCgrTR3jFuXKli6/ASFR8Lv2HlU4Bhf0UBK6mJ4wJJZgol16KuKySlj7FWBLaFlGC1YpUy1hQlzuwiGdkQlG5Mj7cSLZsbBtSCpyMAKW7uqKp3Gv/4pcuzjlEtE6vQa2lyyjRZkXdUcC+sXxouTyIWmu6Yt1q2oaYEvUwSuMDSdXyIaJVpnKG73/1Dd9+80HMwd7TdTKDtNatqpE0FthUlkFvUkJOT2S0m9GplKRDj4qJqgy6N02z5qFoBW/f3PPm7T3nvuenpy+M88yXL18kUm/oYTXOSvju0tl7f/uGrmlAG748PPJ0PHK+DvhZQmM10vnbbTdM48g0jihrqKuKSKKfZ0F3zHN5sETm2LUtN/sDTVXz/lZO9023IcXEy/WFy/mENpq2a1Bac3d3y/39He/ev2O/25FT5sePPxZ6XyKlwOPnB84vJ7bdlpv/8Z7LpeeHT58JKRderThhJj8Xf6lGlTHFsrnKyTMRvUC8LuNIXVW8ffuGuqrZ7bfUhTM8TKP4Vq0pP750pNf7pwTVLmBoGTdIA2r0E9MspoVcmoULEmVJEVjcHAIeLzBmnYpmVwuKU8lGEdIramb2c0GZyF22advSIX0VNvgy43wlS2iCsaQQZWNbwHYpc7m2XK6X0vSRsna/3eCcHAZ1U4BqVdEo60aaRX5CkRn6K59++vEv1tnNL1mcPkZUklwJZQplU4lULhSnRdlnX+VUpbSwxkpcd5kX5pyp64FxGBmnmcv1KjmHZCpr+PDuHW23ESj0NFE3LYeb2/LmCcl7DF7uC1A4o6xvrJpndDKyKIYBHROT1ui6pq0lz8UZib67fXPP3Zt7vjw9MqXA8+mFh3/6wvF8JjnpJhvjpDkA6Cw2oQ8fPnDY73n8/MCXh0eOlyuX6yACjSD+v67bcDjc8Bi+MJ1GKlXTVh0hRc59L4T88np0Rih5TcNht2fbdfzq228kN9OIf/b08sI///EPuMrx5s09Tdvw/fe/5rDfS0rZdsfx5cjHTx9JMeB0JOfI0+Mj12vPd7/5Lb/5q9/x6csXvjy/FPSKDNmXbJO43KOdo9tsCrWhaKfLn/EhMPY9WivevH3Ltvw5paCfJCg4xICyGiVQWbkCpSRp5KmwmJJsrJnXe+7kJ66TxOFZJ9WXLfLBtu2orBPnSkxUVlIBNOU6uFydYiapBFkXtc68PpMZVhP7EscYYxRaZGlgLkFEr5JPubNfrlfmeWYuYVJd23DpO5kiZHlNN/s9TV3x7s0bDodDaSyJvLSpJVBp6CWNr79euZxPr6J/4G9+yeK8DuJ7q9sGm3P5pS2VgsRGLpVlBBKj5BU2TUNdXCzWyk5Ul7nUIn9S6ko/SN3fNA0grXlJkw4oMjkG5nEgZ1aPXJoVOQqs+u7NnZxwdUl2MppMlk7aZkNbN2y7rrTAXxsHRosd6/PnyMv5JHYv71fwkleZoKQcmqaJuqo4bPc0VVOkXuP6vYgnlgxOZ6xAkI2hazvyQczHRimyEqSiUoqpJHrl4iQxJYnMWivNnCDXAMrdqmvF8LtAnIfhitaCLL2eZWaJAucsm6pGkegvPdFHnLaQ5CRqm5aUFXd3kXGSk3CcJiJS+eQMMXiS0kzTKE2taSLOHqsNh+2O3WZD4yqcNlyul7V0jt6vcC+VCw1BZXlfTc2Ctkw5S7gtuVi15P/3CMPXlcUp5aVaE8cMxSy/nOplzKL4SqReKjayZLioMr4DMM5JbMIiZdFinl+kgYsschwnga0V9xVKQN8iUodhnpmDL/JDqajatkFpxel6FW6S71CKNTeIonbT1pKCNMJClPf250RCP7s4H19eZAFtOlwrcrmqaVG0dNut7Kxjv0r7pilS1w37gpZcvJrdZoOzdmWrPj49cT6fyUbi7ACu/cBlGESlYTRhnjiVWdzj0xN+9jTNnsp1tNuWv/6b34pdJ4q07TIMhBjY7bbcHvY0VcW26aStXsTyVSWqm8enR55enhm95zQOTMFLIrQ1nMeR5Gf87Ln6nvvbOz58+IbaVUxTYOyPPD8fOb+8MJeOpLF2ZcMum1Pt7ri/OTDOE+f+jFKw33T4GLlcrkzjiFEGqwyVEQ5QU9UiExwhWdE0O2u4v7uVjm4O+Gni6fGR0+koBmYf2e/2fHj3gbaueXfYY5UijBGTDY2tISQq7bi9uaPbeDY3d8w+8J//8fc8PD2LpjZDVfmV6XQ+HoWDG+VOt9/t+PD2LZuuY99uMFrzx88PfHl4kJLYqCJNlAVjlWzIm65l22wEetV20jxSYorvg9ATsjNkZ9aTU6niBEEYwSnM1LZwd5UuFdpX3dVyT1/mzjrnYlRAaI5alfBcJ3PWEDBGs9lsQSnmQuzo+57L8SQbqtWF9OGwtUH5mRw1x8uFy/mEs3YVYFRNjc+ZfpowCg77PcM0UVXyZ4wRW6O4i+S9nqaZ5+eXlZP8L16cS4kRk2TcW2NxNhTNopQTy46YkdZ0LA6CpU28dHP9KmJ4NaEuEQTA2v1Sy6VeS26GUhKdYMo4xMcZYy1dLaZeHcyrC8BTGLnFS6oX/GQRNJTBjw+iABFxuugic8k+WUQKX3/pcu8kB1L8qvUuHTIR2JcqQaqAQnooP2sx3ObinJE5XFWaVoJzXBpBS6PAaEddGbSS21mIkeyXkZGcFmKJk/vxNE8YZOyCXryHMqtbUrBzGZUYY7DwereEdbQQCtJRUKEBU7Swtpy8EkArg/0UihxO61cROAu5IK8igvW5KHasWJpNi8Ur5lctdSpzsGWuSIwyo1aaqKTvoVVeg3phES/IZ6S0Kn5SmRKkMrbxQa5D5PU3XE/e/NUYKqaEKtc0pdUaBBxzOf3Ma8ktwUWamEvPpZAdmnmWPo0SQ0URA8iX0qv+W/S7v5CE8OHbb+VSPU08PDzRNg1tKwoJ56SrVVXiPWSeiTlzPJ0YSjm8XIqXRXl7e8t+vyeGyHa7JYRQ7D+Z7VZCjOZZTMZVXbEruMlvv3lHCJHf//OPfP7yxN39PW/e3MndMydCjLQvtWho0/LhZlLy5HV3VcxeY1Lmcr3y9PIsbn9rmEPg2l8Z55lsBImSpV2JwRCmgE5yl9JKU7ua2HQMMTAVimDTNFTWinJmKonUIaCMYtd1jPMsp/U8s+vETd/UHW27obZ2pbGnIEGxh/09b+5umOZB8ij9zOlyIuVMVyInvvvu13zz4Vt++PMP/H//9/9IYy2bDJu6RmVFV3f4OfDlywN9IfKHnMlWsj5W5VdZCDlnLuczOWemfpDFaUVK2TUt7968gZx4+PRZutExikzOSLUjp0IqnV3Z4Pw08zJ6aQQluQPOOUrj2xmyUgzTyORniY73C/WufI5RSmVvLN5I17xSMlbadRuxubU1dVUgYBRQ2Cgd2aF4NRfDdte03Oz2MqsdBzKsJ+fsZ7kH+1QWc14ZT6bERWxuDtx/eF/wNEEoC9owxoQfJ+I8o4yl2Qx0wM4c0MYWtExCaYepK2wC1/lfzhBq27bMtQKpYBvm2QvOQ5XwVlWhjUjYZG6Y8OXPhFDiB4papGka2lbSpq15zZlcThNbanQZ4hrx/WlNoyRQyDkBD2sjCz+DoD60zCJXyV5avkt3SomIOmUp0UJRs2AM2eh1Z48xrk58ozOpCKNTTCQdRfy8EAjKCb/s1l+LKXIuf3+WZGVrNNboVXBQNRZXSVRC0zRitv5ahKFeB+ExiRQy5SJKIJV8UMdut+XNmzc8PT0zTiM5GOZpptKisFJai+timiT9OwrFPRvRJa9UBnJprCRCSOsIIv8XlU5T1+X6MjGN4+ucW5fTYJlpq4X3Ix3hFIvjpDz8UxQ6o64dymimwjbSWpeTk1WsoJKcoj6DTsXzSlo9xSYLsHuZwwsOJa0z6fjVqR1CkADdUkrG5bRcGFDl9cbyjKQs4pBMptKulLuWumlWvtByquaYislejP+TD9gQiVmYvD4tgdEabRa9UIlT/CWL88379yjg17/5DdZanp+eeHx4KOWKeOV2uz2Vc5yOR47Hk9h2ygyLbbcyh3Kps6/XK9LGlnKqKoLvp+enEiUoD6z3M6fTC6DEyZEz92/uOLx5I8P9WVK1no8vq2k6xigt9ZjK6ES8d7vdHqONRPjFCKUbGBEcSUIcMdaJkN5Yi6rF+eKso79cmZRCRxFhXI5nhmtPrhxNV4vAep7IwaC2W6zWtPs9beXwYaYfe6zWfPvhQymPNAnFMIw8fvkszQUlesybzYbKWv7pn37Pjz/8kZQjieLON1LC3t7esdls0EoXgDXs9jssCp8yw+S5TNKwOvUDx+sVrEHXNVllLoOEFA3zRCAzBUksU0qLqBzWuad2FtdU2KbC1kITvBRKxBJxGGcJRpK5hl6biEYbrJXFdr5emPsrc/Cch17m386AVvhiuUKp4nNdrhLyvmgUMXsmRECvCwc3xEhdEr+60K6ImpTEaoZWIs/MFuUNOgaMk6g+oxSueIpj8YyGGOlHyQVNWSSbTSdY1ix9Jq7DyHUYy4ZW9NplA6ldRWUNwxz48vzCMHu67Q5rDF8eH0pFKVXGOIma6hejMXf7PVpr3t7fs9ls+IMWnupiw1FKS8J0VZGSQIxEYqVIlUSvZ1PMwbAuokWoQBaYFcD1euVyuQjKsK6JMdAPYT25QXH3/hs2h1uOxyMPDw8MY89LWdSr7CvKd13VYkYuv6N8mBdxvCu15kDmMv5R2mB0XlEszgobVmWJEPQ5o4OMB4Zrz3DtcaqjsdK1juOM0rLbGyX0iMNuw7W/0g+iArq9OUgOzByZQ2Toe87nEwpwlEBVLdyZ/vJCih5tZGRgnWWz26yZKsJzlTETKJq2RadMzDKfHmfPOE+crheeXo5UbcOubcgoxnlmmEtiV5HljfNcDAbV611UIelfzmCcEfqeVhJQPE/SLVcycpu9kARMthgri8sUBhWAHnTR3wr+MqQEszz0skG+il1EwmiLoEAUUyGmdZxCiEW+Z/EFQ6PKprAwefL6s6xQ8xQQhS6x3LN1efaUlg1hmckuv4dBgo200esGMs+zaLcVpRqC6D2kzM1+L1ezGEmXnoymH+R5f3h64Xy5rL/j7L1c6X6mXfvzfs7C1LkWFUwG7u/vRUc5jiileHk5orV4JJumLc0i+ZbdeJFZKYZxXBtMyxxt9r7U4prtbsfd/R1v371jnCZeXl5IOUljygi2RBvFNI88Pz9xuV54epJA2rokEZNEiRK1NIpsIRJkoszjhoHrOApnNSWmomKqrFt34ymMqBqq4nrfbTeQYTxfCLPHWUXxT6+gsLhgLnJpKMRA8BPWaN7c36KNpbs5gNL84c8/crpcGPqBvu9FbmZrcsqcTmec1dTO4KwWUfks5baUwa2c7sby5csDP/30mfPpTH/tsdowV4FsLFiD0Q3Oe2rvicCX52cm7/njw09cx4Fh8MyzvH5XF6G5lju6bWrxvubEeej5+PCA/Ye/k0j44IkKrvOE8lBVNc22ozh+UUpCp5T367OQcqZpW1wtp3BKCZ/jGkM/x4KogVf1DYhFLqdXLaqSzqeMN9QayLsklemlTFRSVmuFlNmLplQexjIrF6D5cu+zRgQjGaQjrJRUREWwsSSuSQqapS1y1eQDKsN+f8N+t2McBq7nCznDw9MzWmv6cSr84gRlvUS17CK/YHHWtVyyz+cz0zhKQtK7d0zTxPHlBV/GIr7YodpuswraYwgMQ7/CutYULuQCvgyAh3EEBe8/vGe72/Pm3Tu+/e47np+feXx6IqVE3YiqwziLMopxGvjy8Inr5crDly+klLg93FJX9TpnC9oQQyIYAVdHFNdh5Hy9chkH+lkAXP08o7Si7aQEfzmdGMYBgwZXUzct7+7vUMBD8Iw5MVmNt6qI+sWjGMJcGEQJpTIpevwk6qg3N2+pmobDu3dkpfjp8xeGvufaX0VrbCy2MUSleBlHFJk3twcq1xFjYPYz1jmatmWz6cTgrS1/+umP/PnPP5bnrUTTtUHCaZ0Yol2MNClx6ns+ffnCabjwn/74d5z6M5v6QF11OFdRtc16/1JK4ZoGZyzD5SKx8NPA48uTjMYKj2csg/n7+1p0wynhvdzf+nEkxlhYxtLR32w2KKW4tdKp7yeJlejHgaFY7mIRtyheG0qpYGOss+UevHg4VYl3KFR7CuGv2LMWySnw1SEhCzeXbvEiiM85y8yyaVZAV0xJyByl6ZiSwMBNsaR1m61sPEEIEze3t9ze3PLl82c+f/zMNHuMldS0aZpL8G9ezQZptZL/gsX58PggnbtRoL193xeSgJyc8stK19Yjl/aURFKXi8gZpdYxQwZm78lZkptjjPjyYbi6pm7qckqKlWt32MviLEh9UV1I/FxVVUx2Wp0yMQQkqFxL1qcWfasud02dBJhsXSUdSGtFGCBzibXUrpwlpSXPUiR/TS1dwm3XYhWEaSSFmWiNkAnKaUlOzNNIfzVUuoPaFpyndGIvp5Oc1pPwXpcur7OOrpOZrFVyH9rutmw3HcN4xYeJyjnubu/Y7rYcDjc0Tct2u2Oz2WCKwdhZR9t1GG04Xq+M88RlGNbKZ9G7bpoNKE1TbXBWkCULuG1pAIGMGLQ12CKfXEpFVUZeyhiJ6EiJafblQZclYEuX18roc/UY6pW/m6mjwxQciFF69eIuJ9OiW81J/JxGiWoq2WILq2vBqi4zzVxi3+PrabicdsuMPVhHmD3G2BX6tUDAc0pEbVh8xCyjNZT4M9Vr+pkpzT+gWN/kJPaFS5tiJCACGm3MekCGoq7TZabLf/3g/PnF+R/+w38ApWhrESAcX154fnqico7ddkdT1/zq229omobT8Uh/FdfJ+XyRH16UFk23wVUV4zQwXnvaTcf93VuRex1l/LA77Nnt99Rdi3aGzX7H93/92/KwyE6atcjOuq7jcDhAhrp6lCi5ccIzrzNJiXlQ+JCo2gvGOUxV09U17TxTjSMOaEtZtJTZm66jaxtaJ+Gzu67hZrvBGk2jMmGeaQwcLVxi5sULNFoXRu3x6ZHpfKRS77ndNjgjToY5eH7/j//Ipe95fn4mpUjb1Nzf39NUNTf7W5y17OoKZw2bVgTST88PjOOV7XbHv/5X/5qbu1s2m10Ra0sYUF037LZ7+ZxDxM+eP/zwAz/+9JHRewYvOSZzjGhl+P7d9zJTVEvEojT4QgigBumUKkgkXFNTtXXJM5ENxdWyWENKZKUFzn0+Y9SC1DRsO6Eqqix9SemIJ7RWmOL+lzjJzK6RDr6MLsRnu9ls14WglKLvr0K/L3PLZQEvc2TKfDMthoxQhOvldB8GSYYT47mmbVu+/eYbmrph27UCK1d6jTxcusXCWkZm7osVsvB1BZAOYZrJKTNcehya4dqLIT7PjIOQG3eHPa6qmKaZYRzotlv2BR37ixbnte9lF00Z5xzDMDAMQxmLtKtrXE4zu0qvJE695FGWnW21/xgr9wmtUYiXMme9xh8o/Yrflx3x1ZaWUKQsCIvXxo0TVGFamoXidLALlIqivwWykfzPEEt+iVZlDCSQplweDKOFxdPUNXXlyijE0LUNyRn6tmEeavwcMdFDFvmgzFYjMVAesE0JuBGZ3OV85tL3wuf96jUuXlVX0KPLpqa1xjmh3Vd1XYQQsvvKfF527BwL+S1DmoWA4GdP8GHVOauchCankHh0VAk2SmuYr4K/PCF0oddpLeV7MTIv0jljLBSFTk6ZrISwt0hLFKzz0yWGgayxtogojCOb17IuRikfjREe1deL01u3jkGWUcjyYL9SHPJ6+i/JYUuA0ZJunorsIBaRhdeeGIUmqJDxoCufRyojlcU2h/rKi5vzGri1iOJzisVexkoOCSmvAPVl5h/CK4B9eUb/xYvzcrmggOHaswTHSACsiHrVWu9nNtsd292OlBOPT09UVcX7b77FWsPQ9/gYaDdbbu5rYpLmTMpCR1Bao6wlacQSVaBfp8sFYzR393cCfM7SDOjajrZpiV3gZr8n+IDTYhlqmo66EsKfpG5nzldp3Qclio8fP37izx9/wlpL0zXlwZjRCr59/4Hb/Z5t13LYiECgtgpnNbe373DW0lhNW2vq68T00guGxRlIEZs8WmV+/d2v+H/8+/+ZP/3pT/y//7f/jUvf8/l4ZI4RVbUo49aGWF03tJsWqy1hXkzbntFo2nbDv/k3/4aqqvjhhx/5+OnTCiJ+fHjm+fkoqdu9kO1cknJrnGc6W7M97NkdbvApcp1HYsrMSdAkS2MsIaOTEDy2zCrbwhxenBrLfDPFSJhnIor9dk9T1/hxZh7l9IjjTFKKKYLXmuBHYvTCSwqBqqq5vbmlqhz73Y7KVetG2/c9p5MILfI444GpCAsAmjL6WFRHYxmfTQVIrkrjx5Rur2zWUg6bBmLJjolIN/nl+CJa6+tVEue6lt1mK6WuNcQQeTm/FMLDVZwzWpOSzL4XCLoq2FWVDjij2W+3NM4RQmQYJzISwaG0WOPmacLPNcEHfnFWytLNCln+uYKOiwAZSsZlSqLEd1YWURELLx/wNI3kIElaTdsyTiPDJNmEaj0x5Wcug+MQBQmZsqhIZP4lbJeFXyRChQqjDJWpMNqy6bY0TVe6roHsPZMPItVDLJnXYeTaD7jKQWGf5hRYUP1NU9O1regileRHajJt29DWFZuu4dLUNCFTuVlw/jlBiqiQ0Dmx2XS8ub/n06dPPD09lkbUSMhQa4czrlxr5MFbFsE8yk6sgxSb1jkOh1tAlE1yLxM3x+l45nK5MvQDL89HkY4VInlVl7tsLXY0HwN2tISYpMwtZWYqY4xIRudMtdwHXVXYOmKFmpUSfa9S+HGCLAyjtm5QAZKKRMq8EkXy0pn0fiYsBuwgihpSkrBcW9HWzZoSTUyMpl8J/nk52XMuFcar1xT+Ui7qZ0kYN0qTTKGyFzGHUgh1XhvZpJH33c8ej0cD0Qbacod1RSMdYmCaBUI2jiPLTZxU3otZSminNBixIxqt0ZU4oEKIZY0kMWaUk3cpzb+uAv7FixPkKG7bpjQMXmns8ywxf8fjkWmaeF8sX7vdnvu7e4nkLnrOttvQtB2JzLV0KZ+en2RHcVbsUB/esdnt0dYy+omQEraSB/jzwxeUUhx2B7qmYxxHzucL0zCwuDrqQtbLGcZxYpwF2z/6wMv5jE8JXTkwmrppePvuLSlLd9BoRbfrcMZIB/rhgTD25HkUlKefxZQcRtq65vPnn3h8+MJFNk6qynF3f4vTmioHjBIu0u9//3t+/PEHrlcJZPrw4QPaWp6vgwgTXMN9t6Wu6rXjjRJHxc3tDYfdBqUSl/5SSixfToxZLFzDzDR6coJNt8Wg2CiLVUZyKZ1DZ8Xl6Zk5SLUSYmQsmtZpFv5uTKnM8SK5jLZOo/grnZPm2cL8VTnTLPPffuQ0epxx7NpOgGRWOuamjEKcyYTsVj1rUwsx0DmhvofZi6LHB7KP1MaBdex3rmzW0pg6Xc4cL5eibXVfoVJZqQkiPHGrmkkruWqQIWtRjAXE6gVAxZozM88zT09PXE5HucPvdsXyVdOWzTom0TiHUgUsFeWu21A5x7cfvuH+7o6hHzifz4UCKY6tgIDO9rsdtpLG3ab774mdL4uzqgW9EEMs3bOSMpaS6DVD4N27d1R1Tddt2O8PgCgvZHF2GGu59BdBlfQ9x+NJwmlrsWppY2i6TuDJRaRsrMXHyPPLMzFErHZUthJsZd/jp5nFlSAfipOw2OAZh5Hz5co4C3c2pEy1aUXxUjluqlumaeR8PaONNCAqZwlDz2noUdFjcyTHgB96nDHURtE2Nc/PjxxfnplUBaajco77uzvauqLRCVdMAT/++AOPj4+M44Bxjvu7W6q25fzHH5jOF3bNhsPhgKZEGKKE2mAkde3+/o5rf+b48iTg4rI4z9cr8+yJIRODLISmaXFKs1MVTkvDwzonmtqTiC+GSYzVY/B/MWuWKiUU76Pcm67F5WOL/7FyjqZ0N+sSlziPE1NIHLZ72t1WgqJ0LJ1OgIxVmcAr76euarabjaBNy50wJDHO5xjFc2sNm+0Obc06kxzHkXmaSsCwYcGdfB14tUQ+uELQUEpJDZuKEVtJVz1TIgtLZ1Z0xMLsTQWRE0OgaWreb9+J4KNECM5+ZiwndVXu4/c3d7RNw4f377m7veV0PBF9wBvZeEKZp4eUxMbYNri6oimz5V+0OGe/YCorrG1ReEB2I+Wk1Xy9XmVmdzkzHfYiJdtsSlNH3thp8uRxpr8O9OPIPEZQlpwifT/hfeT55YW6bdjtNux2G+ncZXl4nLsRPa42DBfP9TxyOl6le6gFmdhsKipXF7CYpu0rdC1IkD6N+BAwFpSBFOQyb1C0tkYpmK8zUXtUTKisGHvPc7xIpIGfsdbQnEbaOdN7RTANPiTm6UytM4ZUnPFCHQyFp9MPnnnO6Bi5nHqqObGpW+wbh3M1lcqF1iZl4tvbO5q6Zt81VEkcJnazYRxHHk4XfPDgi85XGbQT2FhVNxgUIchp48OMSqL8GaNnCp7LfBUaeYl36MMssQFZQGnynkcSmUmL2iimJI0lpamcLAajhK1uSmMoRM8w93LN6CrWUGWlcVbQHk2hOyhVktgyhWqRV2zoFIQB6yqH2W9xRmGLvvqw7Rj6LdZZ6raR37FyhBiojF4JG7JgIeaIZkGYKmmQRU8ujUVd7qIoiNqATlgnEwGrjeRyFl11ToIrXZRl1uXSyClZJ4XMeC0e5WsxaEOm61rpAXxVoYQYcVVFW1WrQeBfvDj7AYxRoFqqakfQM0pNGA1VYaJ8/OHPzPPEh3dvuN3v0Epzd3srptPiMH94eGYYRvphZBhHQUziSClzOp9Aw6ePn0k58bvf/Zb7+ztSDsyhF9OqOwCKL3/uOT4NvDxeePzyQuUs93d7qtqxPbS0XcOm62jaltPlQv3oOF+uXPyZcRKlSFZZsBsh4FBUVUeKketR7jptJfrIyzBx9JdXKZc1BHWhrmdi0iS7ZZqOjMdHGgJOJWpDSd4y9Jeevh84nyfGURiBj59lA3r74R27/Y5pmiTIVUFlNF1r+De//Zabw4H+eGa89mycxdQ3HPOJj8c/SZKbc3JK1BZVVbi6ptlsyAnGq8RZTPMoXNkkadbjPPE8niQBTEmJdZl6UfJYI9kgitUwnbW0YVQIqJDJaLpa/JFGyQgjKl1QMRPn3tNtOrb7DuvcCtt+U+/Y2Yab21vevn3LNI48PDysV56cE6fzkev1wjR4rpcX2rbFqTvaStNtGlzlSH6PiR5TFmcGpnkixMipbUry9cwwiKgl5kBSsnGhRNfd+wGjxKYnPCBZcMkYdMoYJ9zbEANTP6CSBCxLXpL0PKwROj81tJ0QEbz3TCmIgKUfCCVwqXaO20LamwqaJiQRNyx8rF+8OF9HI3LpDkEwj1pBMhD8vCr5p0nivk3xKAq/RRanPISTBJcO4mZISvI0jRFJngiQC1KxiBesK80lLZfq8+nMw6cjw6Vfhe2utNgFvb/gD0NJhZIyRshtilD+e4WEvRptqVwtzYpZUs4WFozMVstlfUFFGrOKGmbvIUv2S9e1bNqWrm3XfM5MaZRVFW/fvCUDdSelpi7NFbJkpDgjeMW2rkujYV5PE20Lec9KWZlL/SIZIiXdugi3Y0qMfiYUiNeSsRJSXIHQAK+TAbWeDnOcRGBQTkW5E2qUjlA0x6oobhaiokC9g5QjSvyMi4wx50jOS95IwaNGgX0vnFs5OYsczrk1ZtE6KwtkEjteLCMKV0pao4R6scxU20aiH03xTabC4CUvriRpKDpr0dpitdxLF+2vq6q1q2u1RntFSgL/XmDakYyKiog0qRZlj3CWZlLKqJhJNpBCEKJEGQVZo/FBkbSY0MXVpVY11C9anPv9DljqfWmJp+jljS9cmBQjSmuej0dQirqq6dpOBvte+CwPj89yivRXrv0glqemxhjNbneDdQZna1JSeC8ND1tXNLsbIOOHK9Pk+Yf//Pf8p//P3wm3ZbOjaSputjvB8sdMGD1jzPhhkvJ5GImzx2lD0k5a2CGilKVxjrbdcHt7T0qJl7om+HktuyRhO64KDq3NCiE+nk48Pj1yt+/47rtfcX97y/ff/4q2aTi9nBmnCZD4uvu39/z2r39LjJHn41EwlMFzPZ+l1a80bdPyzfv3OGO4XC705wtxDiQf2XSaTVvRthLLMM4zD8cTwzQxhMg0zVQpQ1Ux+8Dn5yeZqV4uhUIvjR5XWbqulRlzFuFFq0Wkfrn2XM4nMbFvNlhXcX/YybhqkkaNVkqkcSqTknCb5nFkmkbZ0CqH0Yr+chVOj9YkF5iyYwhgzFk8tfPM5XIRNU3wRTstf+/usOf7X3/POI78+OOPvBxfpNFnBf/SlWAtmTdqqlqaRptuQ0JiG/u+px9HvjwK3lRlafq0dUNdVWhtMUoqj7qSErypRWRhtcIqaXbqXjbjKcyEIeHzcj+XjQ7k0Ms5k0rXtnVO5rMFRmaMxlVWZt3zBEqydGyJajhfL7+8W/s65A3FF+eJYRa/YvZy9yxyrxhT8eQZpsLHmX0Z9BZAlC/Zha+wMCk7XFG7+DkIfW/ya35hTplhnBj6gcv5wuV0Zrvt6Lo9VTk1RTigyokk6P+viWlWa6IpGVQJMKXLV3ygOaWSGSknAuUDzTqvQgCtXyHPwvIRvmnXigG9rkTyh4Kc5GF2TrSah/0eHwPXoV87xDkXFqrWpVlSqG/TTI4RJZdAJChHLHfGWmxKBcmogVj0sElM6t4zzAJIG6aJeZ7KcD6C2ElfQ4WyhBthLJUxuHLXqq2jco66PGgpie9QIX7KtQEDJQqh3N8WkkNK66adtZZkuqwZJ4Mb7FcREMXcXPy4SyOn23ZFiaPBS57MMiFgVbvJ72C0KbQCVYzzkeCc9BcWEkexaCWtSFmjlFQ/iyUNpUo8SC79lSVaUOqmOQR0TswFhxPKSAi16HUzqSQKGKSbnY3BWCfVU8lhXV7T8rOB/75Ryjj2oJawVpj8xNhfZRdrpZESvScpqLoN28MNIQTOw0AIketV0qNHL1gLax1No2jahv1hXzS08o4/Ph4Jnx9kQWbFZrfh7SzRCv/Hf/wPvDw98/HHT2igcTV3uwN1XXHYbAvPRaxUp/NJYhR6z3SWh3PbbGhcJgaFZmIOkXmcJI1ruEppYzS6ltM1RL/mj9ze3vKv/vW/RinFH//4J86XM1pptt2Gw27H/e2B/W6DKWL3y+mF0+nEzc0t3377ocwlBdHYXy+M48Td/R3bwmBaErqeHh5QiBPGas223dLVLdM888PHj8w+cO4HEWArja1byYkMgdF7nj9+YfQzn84vktA8jFKmG4MrSJi5nOi+sGH3NwfazQZu35CLBrrpOlDiNQ0hoowFLZF/GiGZb5pGMkK20tVcsKPyABZsSBKsyvPlgRefcJV05au65nBzQAHH8wv9MLDZdDRdw62+5bY+YK3hr373W/zseX54ZOgH/DwyjQNVJYRAozTVIu0bBqZyACQfcNrw5uZGpgElqft8uUg0I7oooiS7dDHAC2xNrhnTPHPtxXeshrPcxbPgVFLR6molNBBpjIl+2BhQOuMqS7vt0Ebz5fEBZy23tzfs6p2c7H1PJosA5pcuTh+K6sLJTiMoB18+BOH7LHQxCUxtCGlgDkNJaholG6PE3iljsChcJW4PbUSJkXJiGCau/ZXD84nnw5EQE91G/JB//tOPPHx5IJxldOKsBMrUlcjsKmfZNJI/0l8HwSSGkvFICSkyyCmrIz7Hr8J/JJFZG4VSBq9K3ES5G1lreXN/D0rxpz//eQ1IrSpphXdNQ1M5udfnhPfS5HHuLbe3N0zTzOl8EUPA7PF+pqlrDvu9lHYlX+VyOopPtm7J1qI3GleYsKfzmRAjw1RyYQrm0QJJadLsuV6uDGHmMg5CGijmA60VThkWUzFZKOgUwcGu7UrAcUm2bhpiynz2XxjmUCgHai1rl7wSozW5VB22xARKTEchEmbxXo5DTxjnVeK52W7Z3+xBSTRjP1zRkiBMiJL9aq3l1t3ivae/XJjGET9L36OET5eucRHCRGEBLwFJBhl5Ka2puw6lTQmmKtVYls50XuR36TUmgiyezanwbqPYzuV9LydhLn2MmOuSHSNVQ0yRlM1K5lCI8N1ay33Bmg6jjKhUIX/83Nd/WyEkk2eWGPjtfi8X2vKhbQ8HiWurHFMM+JxJShMy9NNUZmmCXXSuoqlqtDYMxYRqa/kVXFWz1Zpp8vz4wyfMp0f++KcfmP3Ml88vDP1MrQx146jbhrpt0ArOl8t6sleVuOLrumEYRSQRYuQ6TCtKoiplj1alEdM2aG1EF5kzzmmxv7UiiDbW8unjj8yz5/j0xHC90rYdN/sdm7YWKVuJgqirir/+q78ifOcZxokffvgzp9OZj58+kVKWXb9IxLqm5Xg8cnk5SkRcgbBK4E/kpM94H7lcr1yGoRAUjNjBtCnmYoPNGTWM0nyLkWRkHOCMQWeotCwcU8YMzlreffMtjau4vbtlu9uVEYFwbJeZaBxGuUvxVX5JlPlgfz6hlaIyBaZmNNZKXokuoUIU7Mima7DbrZDtLhcSkYdHGXnVbYWtb+k2G9quwVaW8/VE3TS8ubtf7Vi73Y7r5UJ/ueCsoykzzBwk88SgpIoglEQ4oCzCqfiQx35gGkaSNiRbdLNeohZWNGZBs4QQmMu9OqviMS00PiU7zzpCQUvoU2UldUAVd83sPbqcqovt0peexuHmRuIW/3vunCGWbpLKcrl1lrZrAbl3KWPY7vdUdYV2jilGfEplcWb6ecLPYT25Xd1QN60AogfxUVZZmEDOScLTNM2cz1+Y/VzkasJkU1AwhBVVI4sz+JnzWfS/xoqaA8T8K+Q5Eb2fTxdCSlRtVzp8UxEnG9qmEUZpLoKJJOqTt2/f8M2H9xyPR/7uP/8Dfd9zfHlhmiZuDwfu7+6ojXRWUwiCJmka3r97T1VV/Mf/4//kH3//ex4eH/n97/9A0zT823/7b9nvD+wKV/clPnM5SZlcVxUY5AGKEbJiLDmR575HaYOtxcyOEae31lqg3tpIjEWMRCOMXGuc3CNzxsRyH0rS4fzV+2/Yb7dsN5vVvxhiFOXWWRpJYZrICx2vPLALcYIoQO9dKxQMZzXOmUIVLASDklbW3e3YbraE6Okfenz0KCtVweHuhrppaNuWummAzHm4gIHdYSf0+Qz9vufl6ZljcaE4bcglFDmmJCdoIQ3GGIq0nTJFkNS3cRiYxhFsBUpCnifvWeIhc5ECplLphVLtyfMvyWq6dFkXAbzIT0XwUVcVhMKwyuDnWe7hTiYX58uZYei5vbvjcNhzPB4ZH8dfDvhatIwypZBI7q+zxRRIOI33QhLPJd3KRwmAyfLCFqVQisUvqDVNI21sXUJSl9a6VpqmbqXEDIuR+TWCPCi4TCNfnp+IwdOfL7KBWcM4zasXrx8nGRjbjK0qiAJfylFShuumAQWn00mMuUU1smlbmroiBs/L87OMhxTUzvH2/o6UEvvNhsoYmsqybRsqV63mcW0MTWi4XK+cz2estfzud39dHBwwjiLtWoDNzrqi6RVAlkC8VKHAyZwya7kn+eLKj34mo9GuQheSnnUWozIqzSLGtlKKRh8Is6cuUQt1VbHdboWrhMjnltjGFCKVsagaiaVftK3ptbGRYhQKRs4i8K4qXKE21FXFbrsp8XyujC/E13l7dyNNKUAZabLd3N3Qdd2rrjrGNU2g76/SDFK53FcFe6OVzCKFPxvRQQJ10ZphHF/T0rLYzwS8FVb6HilJwvYyslvUMkqjNALEVmCW8WMxbZuy2SxlrYgdJGPVB1F3VUrLCV5Gi9ZIMBVWqsaqWOXmaWaaZsZRjAS/aHFWTcXC8IlJBN0ryEnJLG+YRVh+Op8ZhmGVbhUgpXTs4rRi72OM1HXNZiM5n0tJcb3OzH6m22zYbLfCvtUWHwLXi3xQQSkGEtPphcfTi1zkCwqjnyax+UTZvcTMWoO2NElM3i8nGUF02w37w4F5nvjp44/knLG6+Ah//Wt2m5ZhGPjzwxcpdTU0m4bffPsNlasZpwk/ew6bhnd3WyQu/kG6rTHRdh1fvnzh46dPfPf99/zf/+d/j/ee//y3fyun7zBRWYfRmq5tyztV2vKVdF8n75mnWVCWxgiMehDy/eAlKn6zP9BtdsSchAgXNPT9q+60DL+H44l91/FmJ6fYu7fvuD0ceHl85HI6r6FKicymkcrIVO4vTMKLKTl4z/HlmZwSt4c9bdNQOUNlZdT0zQepHDZl0X15/MLpcuLm/sBvf/cbhnHk08MXjDF8/5vv2N8cOJ3Oq6pmHiYmP/Pw/EBVVWzrjqatSX6DyqLeMlk2fGIm2iiihbrmdLnICC8l1PK8eYkmjF5GITlGsi9XrQR5gVOLhQV0RmFL26iQ41UxiWslQcjRo0p6gVaKaZgJaqbe7mirmrnAu2onKiBlLW3T0rYtKSWul57L+cL5dPmLkKV/0eIUA6wsxMVnGYumsYy8VtnUNEkYTaknMFqSgpc/Kz9PKAlaa7wXYzRKohhyEi9gDBJLPpedJRbvW84SuJu0uD8EgRlJ8yy1vdVU87wya2z5p8i18rpjC7nBlDGRsFzICVVCgAUbouXvLW+cXrca2VVVaRzIOMaQYmYu97Pnl5eiS41sdlu6jdDOldYrl3ehNyxeWFJe/y5rHcZCQBofKiVSls1xmEZ8iAx+FlRo01K1cQUgy4xWxiVq8WcWLk5TN2y3O7quEzyln4WnVLTR3vvVEYRWVICxguUQf6xAxaIxzE1DinEdHzlrsFYCa+uqkgZTAZDpEpNhy5VIG8NuGiW2sUjzYpZApRC9xC6mAqBGMWsRe6xNRfIaRb9+qcII4qvxxHKXKs/B0pBKyhCW8+W/uO7JmaOKB7X8i/Wfy2LOr95VJWZzU+7eCrUmide2kg3YWBnnFHGH/I5iYopRnEG/aHH2Qw9KdJHO1VK7z9PaHEopcjqdxFGxKD5KKbF8SIu1S+XMPA+coscaw/UslqTtTgh/0Uvn9PzywsuT5Ec+Pj+hlGK722OdY1LCAU0xyJ/3nvEs+lf7KN27u9sbDrsdjQajajyZYZ4JMdJ0He224DWKhWeZORqtiTHwd3/7t0zjwLcfPvCb739dfHqgYmS8XPDGlFDaSPJSpsQQOZ1FfPCf//4fGaaJX//mt/z7/+V/EVWPBozi7bv3HG5m/DQTfSjDanHC9GOP1prbN/dUdc15EM7Rub9yOZ24zCM/fvnEOM/MBTydrEE3FT56sgZlFBVFZpYyJkS6bkuzv+H+9pZ/9bu/wRrNy+nIw8MXPv30kefnp3VDjVFS2lCK/X5PXdfsdoJCqXZbbrqNYGPKRtvUlQhAysmyQLgWo7jSihgD0zSy2W24u78jkbn75q1UCQoGP/J0fObTp0+SZWOshD5drzgzMQ6DpJPNRQyBxipDiqJTTUlKYRUDk/dyD80Zj3hUbeXIRqGcowkd4xy5DqXZU5pGqXRiZWOHkAXatSxK8S2L2mhJz85kZuWprOPw9h1d3RCmif7Ss9tsuX//VkzjlXTWNVKKgypKJlUW5y88OX0hWmekRFoSqnPOIgiPUR6W5cQklx3mlfupyoAaLTCjGEuWYS5Y/JJ7kfNyvxTM4jSJC0EpTeoSySRCgqBzKZE9wc+MfiJHgQtroNt0dClik+hHY17+mVfJ1hJeswivv/4ehp7r+cx8e7u646EQ5GNctz2jlmGy4DGmSU6i0/lMP4worbm5vVvJczlDVUunWqUCSc5q5fwCIlksNAQTPCbFNeoikphjkFTqEIt22eOLQITSq7Bak5PkYaqccdasJVXXdSgyLw+P9Ncr56vAu5ZqIwTJC1lGRcBaiqlMwYFognOkpL96f5YTq5TmeZFJqtc7Wrm3WaMFT5ITl6FfE8BnP2OSoVIKnfTajFRZvKIq5hUWjVKr8kmgYGl90EN5RpfPXP74ksxuZFyD+Cy1eg1mSLnIXLUulrLyvy2/A2UBq8zatVWliqyMjPTyHIjZl+gKmQIY+5omlgurWZQsy/v2X19/P39y9oMsMGskA9MYXF0zzzPHl5eClUhQwmVyzjRVTdc01M5JOpbWZOtEEZPlxRkt9bqzjv2mBaU4H58Z+gvWVjSN5Bu2nbBlhnFkHALJNmRbcblceXp4ENNuDGgUm1oE5yEnGeGkjC/lcFJS0vrisDhfLlyvwjlalCLeexTw/v0Hql99x4e3b7m/uyX4wPV0hpyxJU78cLhlu9kKy9U5xtOZ3//hnxnGke9/+1v++uaWD9/+ClfVRa52JhcgtVoizbPCz2I/ssbw/sMHUKL/na49z5cT56FnCoFkFK5tePPNeyFEnM8CSjMwjH158BW1ctxvdtK0mSbCHLC1oraWGAIfP3/Ez55/+Pu/53I+yynnJFNys9kwTzOzknlfvWlfF3XTSMBRIVFYbYgJrpeeEOZCMihJ0U4M2q4ShI1Pkc1+S8iRz49fhFq33ZKBYegZ5xmlZBNYkt1yyqhO1D1VXYuCbI6k0mg8nY6Srn69EmOimWecq7j08vPGaeb5fBbYV4GR2brCOEtVWXZtSScIJS80FvdT7bCuYvYz19ILXbTQFK21sxLMTM7o4pTa1jWVsXT7A2Z/oKlrqkJ3aNsWFELdn0cxuZdZal1VJRj5FyzOucxlvPfyhhc2T8oz134QbEkRDy+qMGMMXXEkCKVAoaxFEojFba8LWdxZR1NXZVeJ+HnCGLsmHm+sw3vPMAwyk0KCa8cQOZ4vohayMsdDS+c3IpKrVHZwiUuwoLTMOlOkHwaeX47UVWHSgkCLgf3uwM1hx93Nge1GQnDHi5C5jRInw3675c39HXOSaAEfIl8eRdP6f/l3/xO/+u57dgcxjqd5FlRFytTalhLQgAGPQLWcc+z2ezLwdDwyzhP9OHDpryStxAlSOXaHPT4E5hxhHEFlZj8JTsRWWKWo6oYcE6fJk2LGZAGt5ShXkGEc+fHTR06nE/f395II19S0+x1qGDCXkzTB6gpXQmBdJUzfRdaoMWSVSl9gEP2o+Mk4ny+vACytqbeSwhVT5Hw5SzxkU4NSojOeJ1CCYR3HUYiJxcqltAjiK1fhsydnRZpm+vLnxnGQri1gQ2AsgczjPHM8nYgpUbUNxlpaZzBK6I1tJYJ2XbjDqpgw6iK+N0YRoogpFvPHMr9tqpqmlhGPihGjFLUVLXFXN8I/LtXiYvoGGAf5nX0MzCGIV9a5Xz5KWejUi7okDAPXfviLXEpf/vPSzVOl2WGNYb8XFH3ys9xDraFaeDTDiFKpBDApmrZmM3foEgYkphJFzKLFVcYwzwHPQJgjRjvxCdayaXTtRhZb17Fp21d9LJRRgDRtQoxUVcW7d+/LmyfiZ53jev8/ny40rmLeeqx1fPurb0VZM82Q8nqPGPorHx8eeXx+wdUNpqo53N5yc3cnFrOUyErh6loaWFGkfNe+ZxpGDGqNf8iIXetUSs1Lf2WYJslysYJqqdoaEy1VLz5GFITSYLNGo7PChohShnp/IAM3d7fcvrljmEaeji+M84Rra1q21NsO2zVQWYLKmKbizYf3KBTbtqO2jrrrqOoGbc0KpXJ1hYmS1YqSGXXXdWvUQQiJ6D0Z8NpTJYmBvL+5EfdJI4zcpm7+oolChmmcCkVBo7Xl9u6e3W7Pxx9+4vHhiXmahdpQutgZxfF6FUhzFmbUHAPKGkw2uKpGW8MwTlz6nsZUbG1TGkuZrCU3M5PYbTs2ux3jNLJMEVeIXVFJbbqO3aZk0wbRUNfFgjZc5Kqw3WzZ3d6sjU+JehBt7jAOpbEnPOLMf72u/fk5Z9EuyswoFU/mIHK30mJemkFd15XYvcIhtZabww2Vs8z9hRQD27Zl0zScz2cexqGIjUWA3nUSDuPLrIucSFEeWGUM2oq4u59m/BywxlFZTVtLK7/rNjR1xX63Y7/ZyHhglCH1XCxH0zgyzTOHm1v2h5vVOKy1oq3ldH/49JGXlxe6umG69Rx2W3793bdo4PHLF6Zxoqodxir6oedPf/6B69BT1S2uctze3XP/9i39MEi4EJQxR2TuZ2LynC5XLscT++2Om90ea51YwULkeD7xcj7T+4kxeLAWlR2m7Oo5Z6pzVe7csZy8YnMzGWoyRis2uxvqpub27Rvu3r/l8+MDP375JLmRbYuqHPVui9t0aOvwKlM1Fe/v7zHaYFKW5O1GFqdRknkjTY56/YxV4RVttntJ+Cp3QQG4RTyWKhh2+z3v3r0T/2R5ntpZ8lSW3J0UM1fTY7QtnWzL3bv3vH33noeHJ55eXkQkEOXuuSzOl8szp9MZW1XYSvJctCD+cI2okU5PjxxPJ+42Ww43tkwgSl6PNaAsN9sNt3c3DONIZXVRjElSni2hVof9jtvDQe6gJV3dKplR//F05Pj0SOOEBp/J4l+OER+kGz2MvSSo51dw2S9anK68QMhrtqS0mRM5STNgSa82hUAgrgUgpzKbFBlgDJ7ZGDRSSjRtI4u7QMQyeQ2xkfGLLhh9jasrMIbKB3xM4GpUHTC6LC6kU2uUojKWuhLaOamIIqI0K9q2paqbspAb4cD0A4qMHwXk5Wdp4Z8uZ/70458I79/zP/zNX0sz5OGh6CeXxgSwNL2sVA39OHA8nZhnSfbyXpApMpNNJB8ZBolhcMZSu+VhcpIxqgU2nL0YiVVRAcUUmYrLZBF1xCgQ41RVaC3Tuaa22KyoK3H7kEXwHmNYrwzGGiJZButOPmNJZA6cLheR5lFcJlFUUE4bGiM+yMVvixJId0iZ6zDIKCYLtnMZ1fsQyVMouZ+Lo0XcLJtuQx2lOUOCUAfapvQpkhASTscjWhtOp5N4gVMiRVlUuTxLvjT/FpfUcqUBqZrQMjuWsVnGFnKkK0m/qlR8m03LZtNSVRbrTDH6V+uISgHbbsN20wn6pGA3/TiJAcAauq7FOvM6+tGS8q2tQZd4xJhLt/2/Z3F2xXEuu/REil66q0mRiStiX5eunTR7RE9IToz9QDCaaeiJwYsiRgvd7vbulhDE4xh8IOSErgw2anKyawKwBjZ2J7vtZUZPgWRqctWSUyDOPSbJG11j6Oqa3WZDDIG5clLKhkjUmsPhDlfVwoh1Nc8vzzw8PBL8TPIzkGgLOe1PP/7A//5/fuT/+u/+Hf/r//r/omsa/vTnPzL6STAfJCmJnMVEh6sqGbo/fFmlX1nJXeP0ImFFnRMXwtPTEy9Pz2JgT1JmTws3qapoleJl6BmmWe6R2ZFD5PoylIgAASVP48jUD7RVhTOyeO6alkoZTFVJKRo8L89PjNMo8ehGcZkHspZTpW4bYkiizfUj16M0vzZ1TWUMlbZUSqIetk1L5apy2luwjnZr6aeR5wdJB1gah9v9FmMt43gl9RPjG3HCqFwMzVpze3OHMZaHh0de9Au1qdC5hCHPgT4M/PM//hM/uj/zxz/+iYfn59IVLpYxK/2KMUbmRZReTmVflGC+3AtnH1YoXVPLJmUri9IaV9cYa7l/+4bb+zvZQJa0tAIKi7M4lSordjqK4m2eJn78058Z+ytd21B/eIt1jnGWXCDtLAqDU0nySE+KKfr1+Vjb3f/SxSmJzBkfWAW6qweuzITk56tFNCSnZ8E/xFKeSrKyF3F5gTCB7BzzLIzaENN6ZwiJdXHmrNZ5FEu3F0VWhqyypDiXy6KImf2am7joa52rMKUkW6DXKU3SnZxnEfjHSInhkTucc9RN/RfdNFPClESQkVfzrcjnpPwJQWaFysh9ffEvqgxznlZaw1+mPi9hrXKVWSIWF32oND3yCiOmvOcyAtGrzvPrjTimKIgNDCi5L4rvsvgZtehI59nLzy8CkNW5EoKILVReObnSpc1UbhRYePmcZ+8leBipgEwSaLdktkZp9nnPNM7SLCoJZJutyPvquhG4W4ZumsWbOnliTMJOVppr36+JapQO+wJrlgdPFweNRpW7PrxqbKUnUsp/o9dID2OMdHKtLdcDvTpj9GKMUJoJCLM0LscxlPEK4lctdjU5aR2qrJtXvLb82rlUWpTEdaV/ZmX+txZn29YlZ2IkBo9WUDtbLFbSxAizx+eZuiAUnbNsNhusMQLhzYnjywvzNNLWFXVV4VMgG8U0zXx6fFzNwT5EQkYka5RwUYTyDgqbazQOciTngNECmNZkop/p/cSPY8/njz9xf3/P999/T9so6qYjhMTL6cL5dOLl5cTL8UQI4hfVWrMvHea2sVTW8KvvvuH9+/8n97e39JeeaZxE5N/UWKsJSVAgT8/PZaZ5U2aoiXN/lTZ5yRhpu4Ywe16eXgheunT3b+4LkMyRsir4FphzIpSEK2McKWb6fkG7yONWmYpKO1zWNLqitjW+n1AmcrEZqxTXoWfynu3tDfu7WzJZfJ3W0lTSQXx5eqb/6SNNVbNpRVTfNI0YhmPG+ygiU6OIs2eaJT7x8eXlq9nh6yYi9zgJsp2T6ITbOuFs5vhy4g9/+OfSw1DUdU1Tb6irlt39W9q3H5hOZ26+PHA6nTg+SQbq08uRflz4U5PQ8ZfTrMjPTN3QaInrq8uobwqxWNgkMHm72VLXLTf7DW3bSH/i5kYWoZOytnJWhPMKtBHl06YEXPXnC5fLhYfPn/n000ecdWw3G5Gens8EH9judhI4jYzvKCVsBqYsVkVVWerdZo12+Lnl+d9gCNnXXT6/JgjLP+Xu4QuuBCf+TkmolpFBKIyZuQCPVtd8KGoOPzNME+M4chnGQoKjkOAUqfgQl25zZzSV1kjOX6EUGItSmTjP5Q4m7KDtdrsOnlF2PSnEqnPl5eUIyCm1NB+ck5GBsZrD4YZff/drmrpI7oLHlgjCxesZymuzVUXdCBw5IJWCtRZHEQYYQ1KB2Xv8NLNpWwGBabMKEJbAVxFup/UEjTkRfZSTwEipsoCSs3EoJydajolEJGrxsA6TwNSqTbeKIFSpapbveZq5ni+oLlFbGTO4SgzEMXnRn5Z+Ykyiq16sVZSG0EpBKKeWNkbm2bPHmCgEvbIRn08XlJLPs2lauS/HjKkqTN2Aj8SmZRpEWOJn0VWfr1d8FMQkBTwmo7tcDlI5LEyBYOtS0q74B6R6ck6QJNbKvb6ua5yzoqktEtVY7vmLSGWpPCVbduZ8PvPl4UF6BUFm7DKbLRuBLoFMJTsnKXkHQ4yEnMhaoYsf1xRP9C9anO/e3Bc0YKKyVmxJIawfcgaoK3KG7XZTUqlrjLFCtOuvUiplJH5AGQKKKURUL/kh12lmmr3Q2LXGGFe6lxD+f+2d2ZIkx3Kev1hyq7V7NgDnkBRNEt//bagbEgIpnMFM79NVlVtsunDP7MaRCIrQBXHRaQaD2QBd05WZEeH++78UcZSf1EApl0TJEe8tVSUayrpxUDJxloe1321FM3kQQvgwTnz+csswjHy5ued86XG2YquLt6lrvHN0tXxe5dDYOkm2nsaZn7/9LEjd1U4E3f3ANI1MIdB0Ddvdjr/9u7+lrip+/uWzlGI6uA+laLJaFkS6riWCwHkBPbKYgO32B2LKfLm/pR8Gzid5KRfNoHWW2kkkhRhKJbyxNHVL17ZcHY6iKdXMFp9mvAW8EAGKeclbLTGRppnWeei2tHVDbT3OGGzWDcXX4NUFwwq4JinMBeMXeYkhGwVd1KLGG/Hh8V78bmMc6WPA4ECfZ5iCfOfNjvube4wXI+nhfOZ0/8jl0nPz9Y5hHMmpUPuaTCCqLjimTImZ4XxZ1SWlqHOgsVJSF9YNyRgZ6202W/a1o9tUYktTVSoqECL8dOmZorjkzWEW36j15OyZp4nz6QzKz+1HaZ+C2vK4YSQYy2XoeTqd1mqnAJElk0aS1L0TMO13+9ZeHSSCbxgkeWqVZCmXEsBor7XphE2y+O2kmBg1OpACxknkXipAKuRpZpoC0xyYourNrcVUFVXdiiZAycElRnJZUNKENVKCeGfFib0I1auQaTctV9dH2q6TxTlNfL294XS+8PXmnstl4P37j7x/91HUE10nPSayDhwZZ8qKAo9z4O72Dmuh7cSvaJpmLpdeMlrqim7T8enTR6qq4uvtjeR2IGLubEQKRS40TQ21hi0ZSwxSWRjn2Ox2hBiJXyXbchhGxmGSHq3y+OKx9dLjJWIM1K0MvbumZb/d4azBWHG081ONLxIDkHJW5b0Xt8SUSCFSGYdrOmG9KDHbymEkSv5XPVE2gnqufR4v/ZwgqBlXxBA72yL9nffESWiGMAjZOybGfqTynsN2z+X5LDNNY7lcep6+PUtw8qO0HTjJPXEpY8wS4CQo/PncE1N8xeVV9DglPTDl9LTGst1sub6+pvPQeJFDmiXYKkiP/ayUxmEYeHp6AtTq1FhMMTI3L0UZcUjsIaw2n3aaSdby8O2ZX27F6nVlznqhsDZLKJW34Cp+6+j8d0cpOUvuBwbsWYa95RVv0S+JYfp3TFqmBlU9CBAhgNEyB1se7zzP9JOo+Itq+rAJ54taP5r1LRC7RkmathZiniWURiMi5jSTi0TW7a6OzCHw9e6W8/nC/eMjwzhRty1V23G4OrLb7yjaTxugMgLvv786sN10OO8UxocPHz7gvWO33VHXFdM4cX//wHmQkJqYEo+Pj3jvlc0UVFkzCcNoGKBo2pcxxCAlo/MV3WZLt9nQbjp8SmwPe5KSr21Vy7A6zipQH6GI03pKEaqGynkByGIiWUN2soklHbBnI+MNowwnWZiJHLKU8XYJg62VhCGRi8LNZTVBXozJjDEra0a0qI4c5SQTvEPgwajBtAtlsW06rq6uSTFx8RcMhtP5wjTOAtClImZm6hXrNcFsikGsPaO0JSUVQpQh/ukkJtutthTOeuZKwnaLgodJf49pmhiGgWQLycobWJ4kNGkYR0IShtGkLdjlMko/aSTBvTJeaKdeeLTST0q7NycB+Zgj0cxcxpnzID9f1MwuR3mXQ4Y6ZfwsGujffXJWqi6/OhzEk9WY1V4yTjNg8Ip4We1Lx3HkfD6vaoRSxA7QOgcpilg4CXoXQuC574kxYV2FsQ5cwqW0IoSvbRyqxrNpG2KcmcNIyZJ4RckUI345zbbj6uN7fvnlCz/95WdOpzOfb76SUuZPf/479ocjh92B/W4vgMPNrZTt1ogm8W9+4IfvPhGmgbu7G66ujvzDf/9v4pvjrUZQDHz+/IVsHTgJ6f3y9SvWGM6nk/TY48jYD+KGfzoL6LQ/4KylnwfGceLq+h2745Fus2GzP5By4urdO3zd4OqWbitE+vuHe2JMTL2E7qYgNv9ms6NxYsWYY6LYwqRjnmgyeEM2YtFprYRApZjEdnOONE2ngIdTr+FMylH7TEHIY5CXNuXEnALOO3Y60627lqZu1sWZUyJPEmEcpkAyicqLfHC73fHp4/fEEGhruUdPD09M48Q4CHK+2Ww4Xl2Dop7WOc7jyDBNq4AhpsgUItM88/j4yBwCh8OBTnWxzgohACUqhFlOs/7SiwqIwsUILvDtfCLGyGWUhO1FqJHUcnRB/wG6Wviyh/2BuhWLTqFLZ6YgHPNgZlzKfLv0PJ17QHSxGAhJMq2rOVLXkyDO/Nvxf//u4lxge2sdVSX2H03TYG0Sel0pLFHlIUQ96mU0knNaB8FLniNmsXlQkFl5ps6xHu9lGTVYMFZ2q1pzGZ06FuQipAYoOG8wxksUu3dY7wj68C59zzTPyvN0VKozxKAzr0zbNlAKldHhtCnkJAPlerdnu9mspbokfEsyd103Yo2hiOzQy8MwoH6odqWl1XWNQW07S1KghfV3KgZOl7MIqUchL6AnVNM0bDcbucfLC4OYSS/lnFWiCIUVjBhG2QDqeaauZ5yRBRiDIK5rcnRKMgizeR1VwfK8xFa0qWs5NbNmrGolhJa01oBRimHRKscZt+oonY6vBnUEXGbPVgkXPr6AKUF9qxYHBuc8dV2U0KHYQ17MqAWMqlRHWvlKebkyEkPfz5ylQpIUMENlreTpaCDUFKIeEGL0los8G4PF2KKKFEPKQqoYp7CODXPO4i6ZEtGAK5qLkvJqjLZollMBq2SIUhIrsvV7FufCm62qmtq2HGKhFMscZioV6Z4vvTBt5pmCYZonhmEUBsZC57NqSuU1iNUasb83hqbrVvZGUgF1DLPEzDeye25qKbmciWRGQugZhhNVXXE87tVV/YMka/mK+6cnbh8e+Hp3R86FbrelqmqO10f2+4OcmA93bNqW73/4JCZMcVbVTORyfuL7T5/4mz//ibqu6boNKUZub+44nc+UbPjw/jtc21DtNlwuF3768X8SQuDTh/ccj2LGvRhav79+rz2SmClHBS6qtmFz3HPpe/71px+Z5sD5IraibdvSdh1VU3M47CVLpJd7fTk9E8PMppV+0VthXiXKesJ9/vKFh4cHdcSvcc7TVEKX65qO/X5PUf1mXVXSaxqdVy9nZynsuhZXiWVJ1IRqYXVJinSk0FRCBreA095M48GwNmFMZhxnfv7LZ2X+yAax3WzZ7j3zLFXUPAcuw6gMH0Gm2m7D1nsenh45qzVo1Cj6tq7JdcXV4cj+cFiZYssmmZWymWLi4f6enBN13dB1O1JOIt5Qv6BcCr5Y6ZttRdV20kdWAvZQCrHAaQgM8zecsxqwWzidL8Jxriqsd5z7gTGKUL12AvrkkBCjykQKgnjHxZPp9yzOnPNK7ZLDTXfCrInShdUYScOcZJFlEcUufPvF08VlgZalt9DdUofpL9SuF52cM+pqoGbOTl1HF+lW5cWrpmnkRGyaRk/NgXmayUnAq6qu9WQVqqFYrwQKDXVd4QwkEiZnPcDl5F4TtXXzGKeZaRTnh6ZpMK/GITEmSUJzXhwDNJENpTQmxGwsxCC9CuLSsMzC+lHR60FeJpVBaBiQ0BGLxgbEpsYZFBTza6q4IWNzwL4Kd806r/TOk2JW97pWyzc1eLaW7ARok++sJwaIcXddk0rG6Yuc0mLzoWnVLqu5+K81niw0P15U/zKKkTFY0bno8k8xRsQC5WWAL9RIIdi/uBzIxy/MNKdODbwmYhh+1c9JdTdjjKOq0/r+5cJKFcivTrLl3S26Va3/TavJjJyCwgcXZZL06VkT28oqvNAPevn9DOup+dduDP/PizMmQUCH8SIE8iByl2Kg7TqwlnGWjBR5mWTGY5XSH9QZewqzAEpWDZFUBrYsQFl4MsZrnaXxnqpybLw6zHkppfZdTdtYYjwQoswSN5utzowcJUTub265e3hkDpGr4zXeV+yvjngvZU8IgZyj0A9Nlgj0UtYetm33HA875nngp3/5Z7yr5ORMMkgfp4nNdseu6zgNF27uHiS0puno2g0f3n/i+uqK8/OJ8+lECIGnZ3G0+3p7S4iBbn+gaVv6ceDx9MzpfOa5l+Cjz798oe9F/e+s5frqyPefvtOdusLUnrb2UDLbbiOBvm3L8epATJGb50f53KtrSoz0/cj5MjDbwOSicmtrauU7L95OIUQ2bcun62tZ9LXOMLXamYO4NcxBJXkxEedENAZTR5iDkNgrKem9lXnpHAMxR7UJkXRnQfoNl3HkMk5M0yQeRrmsBAzvBXTKVhD+vCweRV+xInIuSH8Zp5mkwVnOGiWsSxlrK0dKjpyd+C27CmsLVQuuFLKOOWLU9ztG8ig83jCLEqmp61WD7LynGKMJ4YkpBuYYyFEANWntZilxp1GIGjlhSqHxjqaqMQ2Yl23sP744l6HzpLV5UqGo8Bo9Tl3N5hh02G9XehKoB1FejHhZ6WbzPAszxxjaSt3nlBLojaFWtXyt/EanD3TT1Gw7YSZlhIHSNGJItfQNQz/w7ekJ72u6tqOqazbdVnZfjLqsS88ilpuyN+YsFD7nDI06v1/OJ7yvBE3OklQlvYmjaVqex4G+lzLUO5nrte2GrtswDZO4SOSy+iH1/cAcA1W3oSpFMzMF8JjmwDhNPJ9OnM5njGzpWAPvr68xVLhaTMFcJfmYXSfl5GYrc90QA+dZTNY2bcu23TBPcTVblo8s4s9jzBpZgfZVTS0MrqZtaNsGvwzn9ZGGeSQbg8kFk+QelgLJWKIx4DzZqOuFkYriNc9VtmyznqaTlqejLk6MeK5bIxpWFrmizjGXI8coZVEcBoryXKXcDfNMdrKZvwgxll5ZZ7bWiMue8ytF0VDU+U/ejyW7NEyTludCaHFynCuBXVPYc14tRHN5McQzWlWK04eGahlDre2ed/8fptJ9P5BLXv1x4iIS9Z622yjzZyaEiHFSquTESjNbqhqroMDLjTJYoz2nEs1bJQPsN1t2m60AEdXi0SNweGsKDVnDfDt8VbPd7Uk58/nLLXGeudru8d87qqaj2exIOXPuB3F1Wwjj0yDBTPNEGi/U3nO929A0nmG4cH+f2G42vFNy/lmH3a6u8E1LTJlvpzP9MJGyDLqbrsMZx+PTN/pLz3DpGS+9xhYc2G53bHZCjChe7D7OQ8/Xf/onhnHk7uGRaZ4Z40RWKZ0pUNUV250E9HZa1ra1AGXTOPJ8euLSn3j8di+gEwZXCn/+9AMfrz5w9/TIzcOjbASzaAtDTszjsKZ+VdYxW0+33XB8f8V+u+O439PUFf35zDD0osmdAyZGOuvItZXA3qoS9k0tTo05yoYeZiG6J81z6ceR5/P5FQbyYsoVlNO72I2wLCYjZBNnHTEGUSdpeSges1KWT+NIDFGsS5a5p1ZqlW7+lWpw0ZS4mBL9KD1nUsJ8SGlFthdqokvSBllvNEC3UFhIDnLm+sqCrfSzJEqwauUZda0AhiZLD79tO7qmXd1Afjd9bxjF9Pbb84l+6JnnmRACddNwSEL6nkOQeruAderZ8wqCkiRkj3NKVjasaJ+1RgJzqop919HWNcfdnuNuv6JqOWeGS09OidZATWFfVVwdDtRNw/54TYiJ+6/3XGLiuNmx3xxoui2bw1Ec5n76F8I4c35+FsPkOJNiYDwnTg+Rbdfx7h/+K03dMI0989jTtQ1XV0fO556b2wdSLlxdf6SqG4ZhYhp6xmkiZ9mU6qbFAt++PZNjEhVDiGw2He8OB5z3fGwlj/Hb0NPPM3e//IUf/9e/MoWg4EReBbhF75WvPZvthtp7SbCylt22pfaem6nndH5WGqHYbX64+kBTN/zw/hNV07B/fKDb7enHkfvnZ6Yw8/D4JLxn7e+CsVQmEpH8lOvjFZ/evWNTN9ze3EBKTOZCCQGTEo322df7PW3XiY6yqgkhcDkPsgEGzXXxEiK0VAWi5Vwodeq+l5VFExflyMq6W2mFbdtKn69LOqXIOFhSiYoDTCyNXNbDQEppIf77yuMrCAlGjXA89ef1lFv63KK/l9fqxHonp56GEGEKC7UgK9XSVhbv1BMqZ4yRZSUm25oFirg4bpqWrm4kaNj9drD8b9uUzGEdh9i/cgxLevwvTJDFfLfksrI2uq5TcW693ijvHXNVIcwyK6MK72mbhsZ7msrTrM7emtJs5DQ+bDYc9w1109I4S1vVHHY75hDF9zUE6q6hajuMq2TgPkfGQWaOUb1LUcCp8o62qtjtxBnu6rAX7xdVb9zd3zFNYbXmPJ3PGDswTZE5RIYw00+T9IfG4YwRraEyYcI0K5dTeq1LPxBz4tsgobXP5zPni6RNZwpFq4xipapwWOpGXAasMaR5IsfCOYsI4enpkcenh9WNHyPUvGykJyxe8sEq9bOxzuCL53h9TcqZy+UiJIyM+r0mESGMA48PD1yc53I+kXSW3HhPQstao2BGXkyv1ELUoG1C1rTqQqQwDCJ0B9aRmtjGLFaX0io1qgv2lWZvNq30yXZpcYQxJPrQohiClO2SvWNX4FKkX/o7adUWs8wbMbJ4inrz5lIoSVwVrZXcEwOs0QtaDQparcogs7IYRakUy1rqL6LynDW5zLrV5qZyVp6vfake/sOLc1FKlGLwrgIm5iCC4DkIZamqJBE5Zq3Xo9ww5xz7/Z6qrleHhE0raoB5muhVVLtrWylhnaOykmC1bWuB5YFkDMEYsrV8d33Fn767JqUiQUddx3fvP4pJVoE0TmyO7zhev5exxDAzDyPnp29c+p68SIAVfW7qiuvjjuurI3//9/+F9++uOe53dE3Lj//8I//4j/8DsNT1llzg4fZWqHNiGs6cEoMaXJksm43XUcI8BYZ+oNtsaJqWmBIPDzdcxpHn8cIQZm5ub7l7uMd6T9NtpOSvNDvGOryxbHdCO0shcHc5EeaZp1H0sV9vvnB3d8vhsOO77z5hjWRFpgS5mcnW4TC0TUvIYrRde8/7d++w3vPL5194eHgghUAcJ+YUOfVnSsk83dxiUqYy4A2YlNg1LclFhqwYQi4QE6bK+qxQ5FvsU+Z55jSN9OquN06TVhmNzBFzIdvFpdFQ+Zq6aiSq4XikrioO+wNtXTOPE/MkfkmbtiPGyHbTyewzihFA0za0m3YNexZzOKH4LcitSVCQHthXlcRRJnEJDCkQ4izz3ehfZJH6TzEQciDPEeuMbohmbaNLSaQU1o2AIp7Jxhqc64QL7uRdd9aq1+2/ff3m4ly4k//nn5eXPzermvNXPyNDdrv+osYYRepUFeEWv1NVM6z/n3zSOlbRj14AAGclzcpks/78aj1I0Ru63JzyMoguS9HyAmcv45slDmHJiKwqpdnFiLV+Zcws2kvFV1S58Npa8wUpZ7l3r26fDNDTWn0sto4spATzso+u/9bvmBVkW4bqKWk6dH6t8eTlO796duvLsnzfVa9o13u7PlcdkZSUIGWcGowJhfLls/5v78WvXrTyohwREK6s74Xco+Wuvv4AlZzZF/9b74VeaF38lQLGqS4zJYtxcvouP7NqiSkKaJnXf8Wv5v7LO/DXZABRYf310lnubeHl65d1NFJe/exyQ16+ZVnf5df367foe+a3hqBv19v1dv3nXb9N7nu73q636z/telucb9fb9Qe93hbn2/V2/UGvt8X5dr1df9DrbXG+XW/XH/R6W5xv19v1B73+NxVs9mZXYy+aAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# view test image\n", - "image = X_test[0]\n", - "label = y_test[0]\n", - "plt.imshow(image)\n", - "plt.axis(\"off\")\n", - "plt.title(f\"Label: {label}\");" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "from PIL import Image\n", - "\n", - "img = Image.fromarray(X_test[0])\n", - "file_name = \"data/test_image.jpg\"\n", - "img.save(file_name)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.010918906889855862, 0.9890810251235962]\n" - ] - } - ], - "source": [ - "import json\n", - "\n", - "runtime = boto3.Session().client(service_name=\"runtime.sagemaker\")\n", - "with open(file_name, \"rb\") as f:\n", - " payload = f.read()\n", - " payload = bytearray(payload)\n", - "\n", - "response = runtime.invoke_endpoint(\n", - " EndpointName=mpg_name, ContentType=\"application/x-image\", Body=payload\n", - ")\n", - "\n", - "result = response[\"Body\"].read()\n", - "\n", - "# result will be in json format and convert it to ndarray\n", - "result = json.loads(result)\n", - "print(result)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# the result will output the probabilities for all classes\n", - "# find the class with maximum probability and print the class index\n", - "index = np.argmax(result)\n", - "index" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "predictions = []\n", - "for i in range(len(X_test)):\n", - " img = Image.fromarray(X_test[i])\n", - " file_name = f\"/tmp/test_image.jpg\"\n", - " img.save(file_name)\n", - "\n", - " with open(file_name, \"rb\") as f:\n", - " payload = f.read()\n", - " payload = bytearray(payload)\n", - "\n", - " response = runtime.invoke_endpoint(\n", - " EndpointName=mpg_name, ContentType=\"application/x-image\", Body=payload\n", - " )\n", - "\n", - " result = response[\"Body\"].read()\n", - " result = json.loads(result)\n", - " index = np.argmax(result)\n", - " predictions.append(index)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Precision = 0.8927835051546392\n", - "Recall = 0.8523622047244095\n", - "F1-Score = 0.8721047331319234\n" - ] - } - ], - "source": [ - "from sklearn.metrics import precision_recall_fscore_support\n", - "\n", - "precision, recall, f1, _ = precision_recall_fscore_support(y_test, predictions)\n", - "print(f\"Precision = {precision[1]}\")\n", - "print(f\"Recall = {recall[1]}\")\n", - "print(f\"F1-Score = {f1[1]}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Clean up resources" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "best_model.sagemaker_session.delete_endpoint(mpg_name)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "instance_type": "ml.t3.medium", - "kernelspec": { - "display_name": "conda_mxnet_p36", - "language": "python", - "name": "conda_mxnet_p36" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/use-cases/index.rst b/use-cases/index.rst index b2493c5394..83f8da4199 100644 --- a/use-cases/index.rst +++ b/use-cases/index.rst @@ -36,10 +36,9 @@ Computer Vision for Medical Imaging .. toctree:: :maxdepth: 1 - computer_vision/1-metastases-detection-train-model - computer_vision/2-metastases-detection-lineage-registry - computer_vision/3-metastases-detection-deploy-predict - computer_vision/4-metastases-detection-pipeline + computer_vision/metastases-detection-pipeline.ipynb + use-cases/computer_vision/metastases-detection.ipynb + Pipelines with NLP for Product Rating Prediction From e84ce60799be694db49a375744aea12d2b4dcf89 Mon Sep 17 00:00:00 2001 From: atqy Date: Tue, 3 May 2022 12:09:05 -0700 Subject: [PATCH 10/16] revision round 1 --- .../1_dataprep_dw_job_predmaint.ipynb | 12 +++++------ .../2_dataprep_predmaint.ipynb | 21 +++++++------------ .../3_train_tune_predict_predmaint.ipynb | 19 +++++++++-------- 3 files changed, 23 insertions(+), 29 deletions(-) diff --git a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb index 8847545fac..3ea4987017 100644 --- a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb +++ b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Fleet Predictive Maintenance: Part 1. Data Preparation with Data Wrangler\n", + "# Fleet Predictive Maintenance: Part 1. Data Preparation with SageMaker Data Wrangler\n", "\n", "*Using SageMaker Studio to Predict Fault Classification*\n" ] @@ -62,7 +62,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Upgrade SageMkaer to the latest version\n", + "# Upgrade SageMaker to the latest version\n", "! pip install --upgrade sagemaker" ] }, @@ -114,9 +114,10 @@ "instance_count = 1\n", "instance_type = \"ml.m5.4xlarge\"\n", "\n", - "# Processing Job Path URI Information\n", + "# Processing Job Path URI Information. This is the where the output data from SageMaker Data Wrangler will be stored.\n", "output_prefix = f\"export-{flow_name}/output\"\n", "output_path = f\"s3://{bucket}/{output_prefix}\"\n", + "# Output name is auto-generated from the select node's ID + output name from the flow file, which specifies how the data will be transformed.\n", "output_name = \"ff586e7b-a02d-472b-91d4-da3dd05d7a30.default\"\n", "\n", "processing_job_name = f\"data-wrangler-flow-processing-{flow_id}\"\n", @@ -500,8 +501,7 @@ "It is important to note that the following XGBoost objective ['binary', 'regression',\n", "'multiclass'], hyperparameters, or content_type may not be suitable for the output data, and will\n", "require changes to train a proper model. Furthermore, for CSV training, the algorithm assumes that\n", - "the target variable is in the first column. For more information on SageMaker XGBoost, please see\n", - "https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html.\n", + "the target variable is in the first column. For more information on SageMaker XGBoost, please see [XGBoost Algorithm](https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html).\n", "\n", "### Find Training Data path\n", "\n", @@ -531,7 +531,7 @@ "metadata": {}, "source": [ "Next, the Training Job hyperparameters are set. For more information on XGBoost Hyperparameters,\n", - "see https://xgboost.readthedocs.io/en/latest/parameter.html." + "see [XGBoost Parameters](https://xgboost.readthedocs.io/en/latest/parameter.html)." ] }, { diff --git a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb index 07764d1e33..8c3c045d6a 100644 --- a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb +++ b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb @@ -22,7 +22,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", + "1. [Data Prep: Processing Job from SageMaker Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb) (current notebook)\n", "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)" ] @@ -59,14 +59,12 @@ "---\n", "## Setup\n", "\n", - "[contents](#2_Contents)\n", - "\n", "Let's start by:\n", "\n", - "* Install and Import any dependencies\n", - "* Instatiate SageMaker session\n", + "* Installing and importing any dependencies\n", + "* Instantiating SageMaker session\n", "* Specifying the S3 bucket and prefix that you want to use for your training and model data. This should be within the same region as SageMaker training\n", - "* Define the IAM role used to give training access to your data\n", + "* Defining the IAM role used to give training access to your data\n", " " ] }, @@ -124,9 +122,6 @@ "---\n", "## Feature Engineering \n", "\n", - "\n", - "[contents](#2_Contents)\n", - "\n", "For PrM, feature selection, generation and engineering is extremely important and very depended on domain expertise and understanding of the systems involved. For our solution, we will focus on the some simple features such as:\n", "* lag features \n", "* rolling average\n", @@ -141,7 +136,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "First, we load up our cleaned dataset, which can be produced by following the steps in the notebook [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)" + "First, we load up our cleaned dataset, which can be produced by following the steps in the notebook [Data Prep: Processing Job from SageMaker Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb) (the first section in this notebook series). See the [Background](#Background) section at the beginning of the notebook for more information." ] }, { @@ -335,9 +330,7 @@ "metadata": {}, "source": [ "---\n", - "## Visualization of the Data Distributions\n", - "\n", - "[contents](#2_Contents)\n" + "## Visualization of the Data Distributions" ] }, { @@ -474,7 +467,7 @@ "source": [ "#### Converting data to the appropriate format for Estimator\n", "\n", - "Amazon SageMaker implementation of Linear Learner takes either csv format or recordIO-wrapped protobuf. We will start by scaling the features and saving the data files to csv format. Then, we will save the data to file. If you are using your own data, and it is too large to fit in memory, protobuf might be a better option than csv. Refer to the SageMaker's Developer's Guide for [more information on data formats for training](https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html)." + "Amazon SageMaker implementation of Linear Learner takes either csv format or recordIO-wrapped protobuf. We will start by scaling the features and saving the data files to csv format. Then, we will save the data to file. If you are using your own data, and it is too large to fit in memory, protobuf might be a better option than csv. For more information on data formats for training, please refer to [Common Data Formats for Training](https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html)." ] }, { diff --git a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb index 14e4c87319..b0d8f6e533 100644 --- a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb +++ b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb @@ -22,7 +22,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", + "1. [Data Prep: Processing Job from SageMaker Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)\n", "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb) (current notebook)\n" ] @@ -47,10 +47,11 @@ "\n", "Let's start by:\n", "\n", - "* Install and Import any dependencies\n", - "* Instatiate SageMaker session\n", + "* Installing and importing any dependencies\n", + "* Instantiating SageMaker session\n", "* Specifying the S3 bucket and prefix that you want to use for your training and model data. This should be within the same region as SageMaker training\n", - "* Define the IAM role used to give training access to your data" + "* Defining the IAM role used to give training access to your data\n", + " " ] }, { @@ -104,7 +105,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Before training, we must first upload our data in S3. To see how the existing train, test, and validation datasets were generated, take a look at [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb) followed by [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)" + "Before training, we must first upload our data in S3. To see how the existing train, test, and validation datasets were generated, take a look at [Data Prep: Processing Job from SageMaker Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb) (which is the first part of this notebook series) followed by [Data Prep: Featurization](./2_dataprep_predmaint.ipynb) (which is the second part of this notebook series). See the [Background](#Background) section at the beginning of the notebook for more information." ] }, { @@ -259,7 +260,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now we can begin to specify our linear model from the Amazon SageMaker Linear Learner Estimator. For this binary classification problem, we have the option of selecting between logistic regression or hinge loss (Support Vector Machines). Here are additional resources to [learn more about Linear Learner](https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-input_output) and the [loss functions available](https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html). One piece to note is that Amazon SageMaker's Linear Learner actually fits many models in parallel, each with slightly different hyperparameters, and then returns the one with the best fit. This functionality is automatically enabled. There are a number of additional parameters available for the Linear Learner Estimator, so we will start be using the default features as well as:\n", + "Now we can begin to specify our linear model from the Amazon SageMaker Linear Learner Estimator. For this binary classification problem, we have the option of selecting between logistic regression or hinge loss (Support Vector Machines). Here are additional resources to learn more about the [Input/Output Interface for the Linear Learner Algorithm](https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-input_output) and the [Linear Learner Hyperparameters](https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html). One piece to note is that Amazon SageMaker's Linear Learner actually fits many models in parallel, each with slightly different hyperparameters, and then returns the one with the best fit. This functionality is automatically enabled. There are a number of additional parameters available for the Linear Learner Estimator, so we will start be using the default features as well as:\n", "\n", "- `loss` which controls how we penalize mistakes in our model estimates. For this case, we will start with logistic and move to using hinge loss if necessary for model improvement.\n", "- `predictor_type` is set to 'binary_classifier' since we are trying to predict whether a failure occurs or it doesn't.\n", @@ -449,7 +450,7 @@ "source": [ "### Let's try dealing with class imbalances to try to improve precision and recall\n", "\n", - "We will set the hyperparameter `positive_example_weight_mult` to *balanced* in order to use weighting by class to address the class imbalance issue. Since we have only 19% failures compared to non-failures, we can leverage this built-in hyperparameter to try to improve model performnce. Read about [linear learner hyperparameters here](https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html)." + "We will set the hyperparameter `positive_example_weight_mult` to *balanced* in order to use weighting by class to address the class imbalance issue. Since we have only 19% failures compared to non-failures, we can leverage this built-in hyperparameter to try to improve model performance. Here is more documentation about [Linear Learner Hyperparameters](https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html)." ] }, { @@ -595,7 +596,7 @@ "\n", "We will also demonstrates how to associate trial components created by a hyperparameter tuning job with an experiment management trial.\n", "\n", - "Read the following link more information on [tuning linear learner hyperparameters](https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner-tuning.html) and [automatic tuning with SageMaker](https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html)" + "Read the following link more information on how to [Tune a Linear Learner Model](https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner-tuning.html) and about [How Hyperparameter Tuning Works](https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html)" ] }, { @@ -830,7 +831,7 @@ "- Don't need a persistent endpoint that applications (for example, web or mobile apps) can call to get inferences\n", "- Don't need the subsecond latency that SageMaker hosted endpoints provide\n", "\n", - "Read more about [Batch Transform](https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-batch.html) here. " + "Here is additional information about how to [Use Batch Transform](https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html). " ] }, { From 8f8bc22ea707067e567e891a7bcd3f14197f7cdb Mon Sep 17 00:00:00 2001 From: atqy Date: Tue, 3 May 2022 12:16:51 -0700 Subject: [PATCH 11/16] add image --- .../predictive_maintenance/2_dataprep_predmaint.ipynb | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb index 8c3c045d6a..1dca5c3a41 100644 --- a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb +++ b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb @@ -358,6 +358,15 @@ "plot_engine_hists(fleet_lagged[fleet_lagged[\"vehicle_id\"] == 2].loc[:, \"voltage\":])" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You should get a diagram that looks like the diagram below.\n", + "\n", + "![](engine_histogram_output.png)" + ] + }, { "cell_type": "code", "execution_count": null, From 9108dab15edd76f8767e7fd21dc3d4b6dc0ee77c Mon Sep 17 00:00:00 2001 From: atqy Date: Tue, 3 May 2022 12:20:18 -0700 Subject: [PATCH 12/16] add picture --- .../engine_histogram_output.png | Bin 0 -> 578813 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 use-cases/predictive_maintenance/engine_histogram_output.png diff --git a/use-cases/predictive_maintenance/engine_histogram_output.png b/use-cases/predictive_maintenance/engine_histogram_output.png new file mode 100644 index 0000000000000000000000000000000000000000..2017d1d3264fe9ca00700d306bdd346f251e8413 GIT binary patch literal 578813 zcmeFZbySq^zBWEXH%R9I(jX<$Ln}xt-5~G!|2KS^loDhLNHk-U=#U4Rp(of@fgHLP|r>boIJ_C*Z1)7rudTawU zC4z#E4l|43I5_D<6!dAWT!Op)TKwAlQ565%J&-KBY+7H^o;$NM8mJtpoa+lBq40~b z^CiX1z^*7G$HLh&!tB#oFvUwN`}PK11lP^+6+e2G;Z| zy;QHk1N2}wkY?AiLdmPZht50Xn0znCDJNB#BKJVMhr41zH$O6^zx6NM5LsHAp?{*h z`(D|-Ug)}i=+dS8*E{0#FOhG!6BNI3?MDeWB}%brg%*%Opn>@v37s50d*ACgt@UA{hnDoO=I!P3WA?>xNj4Rl9x~y- z(VuX9r}0|*Ox{5#*YSf&a2yWsurnkTZmlff&7ocikV%15JJT_s{h}GXaRM`((Oz?1vX64Yc zhNt4Yw^R6eyqd8-+be2-X+ccVRDz%i@2OI=V#)Zs7UJS`e}tD~JPjd~2a$DIs$y%) zQj*kok9f67EKpFsPA+*KsiCd@~oiBY~MEY9JIH@N9K{$J;f|t z)YQKiliv|$$fx1ol_P3OBJL$6_EkmG%u+lg-ZdGA3Cz-ulP}(w$rN1WS<0y=sIV{| zcKxQWW{o6Ocy;HSz$XUhSJ=oP7TO2 z?gTHQE-j0Ua)ZtBr)k~&kZtuc&!c+9&_yxg>Lm|5+R?LZi3_ZY7xZ*qo}r)2-9O#2 zE7h7dQ01=L(QPnM*=x!$)k^eItG8eVK_?zG3UW z(Qi64?xrwPSmPZe-#hgp5fFctF^rQ}Tvf~iigtOke{}Rg5Jf0QP1Uka*)Fxizq7mR za+w!%iGg4is=u0QU3V-)j9~<5W*UEwS3O9SFmYo>)J3pQ+hHLv3_!-oa2^y!5ED*B z*dP-YYY4djt|EWLrU_nNsG)^4C&qURHUsP)gv}SiEj0f&@Dps>He6RM6O5!bFITFv z3?dY%XZT4Lu^b7hyu#Wm@Uv(GW};U-3vV!(vLBO^M&&ZuJ!ZeFxYTv;IkQ%5iDJ*& z(#I70Jnk6cp=nB!Z>PExa>;zd1LOr0qBlPMC=iw)JyJA$!TK>od6MM49)Yh+WS(OYc*y@pkegMUAa};B($eiisq8 zg_U^QxB74E;_14Qx)_$EqeZ?)E@&!eJ%75Qt->XoFr46@P`9zMv9ck(VKwq-^?a=tkvOrX9-R zIc;Of#ZSwg7P~!KOk_74R*C;Cu3RNs_3$8Th3yv~Z{>#?O5>PfVWnb|%~zx9r4Xma z+8FOx@3Q0j+cT4^HJO`lJxjdgy-p=!JZsm}e*3C*u2Fi5q$`;}p3{&~-yLAvm|S!B ztn!TUI@ze*@ZMZsYuIF4S0CdUlPntRLr{+r5V1s6gt>*dh40xV?+J_ww0-&9VIOHq zb1WBJAN00Gw)Jsv=C#+ACYDq^UlJZL>6ZWEe6B5v$&Bs;&f__ zryBTa8);^5s_9cC+(){qSXw3g#a6{!d|Ea?E#9BB4pj~RNvH3xpW)E3DJ=TYIC;vX z&aZB4hiC`wM17|Yx(2a=Qu;se57;~0Pw*RsdHWgqefHIb%^Z#%#T}Wg1olNC$+m>X z@&{LQ%JW?^cENM4m-JVaSKb#=jMhRb0`?aLo!2YZCO4(m+u+`i>JVP=cBoD0G@=Kg zBu6QCnZ+R2Z{S^WZxk|GY_V!#hnhzcJDMLmdTZlQl0vk|hiHq)K2jS|o-_4A?+KMi zlt@mq1lYi|F_`b(f2R9QJx(yHvv9!^eoQOne^~g~{&~Q2!=)U~3r;(o4r1=Fe0(@E9_Yz>Pg)f>9mF0SvzFZy)0YT{@ZymJ*D z6nUC4o|c>PfVq%+UBUhF{>IX=8%yUeh>zfRfkz2inJOykDl_jUg`_<%8}}H)a5Ud-PVHPNU2R^%-W%JO z#Jmn03A3fSrYRQ6usyde>)s;A!c&bfy<1zLb|}Gf*TG{nYAbmwed0>ITl~U(#C_Nu z{>tmy#DccATAo_w5WCx3a+S&aa}86`8e>|n8D@p&WY$N%ji~&VN6tJq%GUxiOs&vX zAETk_@Zp;LnEbllFPRmdKdQpMgqhnc2>A-7+NS*aD6={5IJ#Bp@m74@YN@7lvhztaglx9;10#ei<+iJkNya$q?5?4(sH+wiAH!uIZS4pf9_^stlHd#{uOi} zVBo^y7jv-!Mbvs!jQzVwnwlA}_QvD$g!5XK9QXs#Q(^k+U+Z=0Z*1NyD;>p^i7ATL zt{L3yg)K^{zt1ZpOW}ZsYC5<0yH9sJ-+i%nfo>+BPm@25X(nl*#tEY88>J{#*i5bf&ubX+? zNah=}s^UXdJ9x|C#8Kv4V9D}l&Z&|Q z;{l{K;I99EgVmt+v*8u zDec*jS+H|(YXr|S(IuY6muwmuP}2l1h!+zi0j+!bgQq_XJ&d!z93AJ9qXf!N^oj!{ z{6+inM^!3loH+Fe+C`YUKqbwLljZEJpw3oFAga$sMUfGK(|mR1@&?Q#3_?AcoSUnw zXubLAO}*s=`k2SvpM}TVF4XaX1hcW(W&w%{=j_j)TRycSCcjf3&Ug_FesA(t#k{IV z1gJiutqqiI)YU=Uz&Z{H1569T1lGX7R~k(B_jN@uCkXw|b~F$u$_|9_w_`MbZ#VPbW%_f7r-Rg81NA3N3NG%}Od@;&d;)i+@tByHpzhCY zB(xqX{_S+&m(<-Co}R7}{QN#XK72kxd@k;`{DR`*;`{>l`S0K71&-kL@OAdIgz-9i zu>5tA|G3UWYY!`TJ6BIT7iXs1>smf@@$!_qd-wK6fB*dToYpYA|Gbm4$KRR-G?4#x z55FLv0RP{w4V((S-74|K4rc9W_|VP?uo-X!fayyZWfYVePzivQE8 z|FG--f2yvBwY!3g6L3>c>HqAozuosAcmC}}DF1ES|G^f28T!vwz|zuqQ2xL7nlv8K z5iJbpNP4@6nmWJ|7-qL0bQ<6f=U+=;9V6g_L>1K`2qX(qeki8{18+6s2CypmUf-1M zTu6J@BpnZA9G@FaZPH~@TRHby((jOvs>$OppJB*%$-UPM0R`i{MvstX`t}wivxtuh zEE}sE^S9SGDy=q}sZ-1uthhNTbW>(g?^n~*{PjZRfU@N4$gt_~m8ZH-^HJ$ZpnlrC zyw*eTQ(1Bn%>Qxm#UPXd4SEmocpINWIGONXq5ThwEOHVgGojr7=Gr8fCHk@m(Hzeds|^+^GB z0un|U|6B@NMT>Tl$Rf10wcX3ovymevcrl;3?h~=y8hU0+%N6L@n&ByV;~V(vSbb<) zB55PwA>d9IXR_v;Y#cOpC*NDjJ0sD$qt`9YiFkATG{@l}_#=tMmk)$IBH20e zU)bCG4d&0@^!D}Tg@u{mVdT9T-MotZu+o*5mPHgFpHikkR2N0Rf01wJH)$ei{PF9? zwlO~5{_oJBV1zN|Pb4P-4N3*lcN%8q;faZk-sj@rs3M@E<`ELA3TVxPiB}OAWv8gh z`pX(;WMnL#OedtMeEuMgnM*9l@kmP#XksNL<%)JtP~3#daFd8s*30YCU;T)*wBGg1 zmDSbz$v?HO_@`T!jqcB1m0S!%ZQnVaE<5SJFrHMTyU)*`4Rc8|HqA`Z~)zaSn zhlFwex{+3m`nh$twuJU+3W}Q{TVJt2_bsc7Z@-;e6t}Xy*%t zq21J{9N$aOhLnVgZIzY56qGijS(N8O)W7%7(DZH;g$jf51fpzt&KG{t!AhR&!k4du zYHMT|c8AAojA_wJt*u|~nN=QLU~{ObA6&G#T-D@mpyke`LO%;F&m=)HbH)h#sYxJ# z_*{EjAt&{AoO}qYK`9bs#bc6=;K^xaA+AU4GzsrKf0B2w4jpZ7*KRN&I?9ptE%1~U za^$;dN~TD2_ah3VrJgw$D1ExsHZpB`vWU+e)*SFq0vBnGy<}^Y|I4D$E4v2VnvO!uaB+8)>y8Xg~BLtfW?S{i%H6)ueieLwd>>x@uj zY6uOA0js|%ecU=$sgux!3zRO*=!L?fsu)=_eZ9cOvrVh$W@GMgbiK^l=tHVP96S!tOcfVeZ=I{>k zU5{Sk3>a+eX-JgMwh1E_qN7G9!@Ig6 zeq}w3g`O3m5EA7~iw3PG^}dG*6Px1zL;4z%C%Gdtx!BS-?;z((V#Z2u8v=8ZEQIoD zV+CTsaw~P&ZodApDh|r^0{>l5x$)c<$`fNDy&p1cNGYrxWGd_T<$@&)cdfuln6Kb-}Cn)}Cfl8r<-o337~J zNTH){_YGgFlN}g>2A#f^&z;-UD?B~XJc6KG-I(K|G#iR!YQQmUj~ z2A^2F-0gF(9f-mt)T|UZBt=0+_xqetBvnjyl*|A6r#j! zth?X()5h2c=yBq@R+9CTMqTdftNY6{RIT@I;sC>&DgiC5@d(TX5szv4P7bbUe9Xs> zbA5aJ+>LfPr~#Gn3ZVS~ng6fr{$JPq-#+WsVWFK%ORR6+yct9ynSS;5K5=&DOH4?3 zVrWQ1K~5g=`i&d?mW+UaY^bbkU`A4slCZF_{Y^>9y^rbXx<`bBgoS~4`1rbky1Kg6 z&%Q@DNVr{gb-kLTI$HP&1m1$m%J)xfq1HAwA1<%$_Rj!^Iimi5$a^hfLO3)ta;eN< zp*sz$5L!k?edM!~of*&X6#4^^gmmrSfY_h6n&BU}({kawv9+b+nv!ec?x9@369VMLa6c%z76&L4J^-HHZ zH?FfAHMm=k`zTE@Ay__2^kpiyju}#s83VDPRgwPa?miMuK>gPe|1%b18y&1 z@h@kz=`MJQV*e*k?#3)2^Z{W#HKIq5BNO56(y@9U_y_jpr>|vhh9RxO1 z$}<%Ev4@9H^Wl)HCkiPyS!sNqv0;BTBAA2*eWpTQ8@_X*p{6ky z5geU&mce>WPIU3HUgY_n5WSh~7tFoZ&)gf()1S>PN&5%xII|i-qr!umI2rg3?lyM2 zn#a-iym;AX%U{oqEwn>>ECbQ6vyu!y9a#_Up+U7=>o8%g`pS$5M`@-W?sp=NQm$nV@#6Diuz54k8g^;DRIXON$8eCf|kZ2wn z(kdz_V2WTiG!Y1=npcU8iozB05R`qFo?d$V{TfF-%n2tj41Awls)|aLAkI?H6^eO` zj#U%zVv6!cQF~D4jndfjolPuQ7NZm-Ir|PeIu+aHv^w0`k2Gvcm=|3NWOC zymHe6h^Tc4^!@;7XYgST$J@YPuG=b!woX~$a=3aO$l8DD*2 zqa7YO&CRC1?oE4dTy!9i@}_;ftK+)X&&6ep(a7(iS0wuzhwHoP>4Iv};aoxdXQw_M33IAf zR;FMfRAWMBDp2YE;PQ@ytUAr!<;#3)^Yl}a*;5qNaaC#gy3XBv1k z(vwUi)n?ThH@FCw(ddUB#D1K?9}lhH9Y1N@EYlVo2a6o<&S_>|ZP|{fDajI%-{Wsw zyL&zmB~5N*-RlL02(qbsWtaxR-Ga=#h|bnd*WX3-2QL=6k9Zq@B`tS2D7tT7fFq4= zm7WZO8{kbGHT39Ai;V~1T6O+yZT2SCzOCX*f!dSr{#^iz%awgicN4Wfb zuTV2krJ2RZ$Y||sHIpM^0u3b_=o|y2Wh%dR^Dml{>n8?f@_q>AX$ypUTobg9ZJebT z8$W%_dnt{g`8W<@3Ox?(E^Gm<`pvsB-~4`nc{&rmy(Zd^a?G|fTR6}6Z5EJ8ons^D z=Lmz)8YoG<7&A~BM6jNYwcjk9blm8N$R1@YNDLhmw+U}i8M&53ueD9>IdgG!eGY(( z4f%oWkq1rmSo;9Pf0?B45~_?#mKgSht@_8eF*iu+>6JwHWcn7aMznI1-mb8tsj;#H zcMKO*go=s@9uDf2DxZtwqFkulJw}`F*m=#m3$6*&!*Wj@cXGw2_4-q_FrkVxFnaq{ z!?@{;c+*jxq=6sjq>zvvO5~lWaWv=x2@jz+1u^kz>faqtok>V%b{z8t;}H>5V7xA` z$RH%D5X+_>5|2Q?awibDLPg2wpqmxzm1;3&` z9IKb|hng8V%o*gzMBW2<0JY%D&fpT8YcuZ&>kSXqoJS?z5%*r_BcXy~%n-<4L2dO# zBPJvtEAaQUcp9qP*&c*qg4|PWDq}ChAE-;lPI&gu4hIrg-f~`qMu4MwluaD?3ON$> zRtqlFyR*K|9MRynX*?(4b3jtG!DD_F?Z@AAkiMIHe(slOLJy%gKW(R48&c)}JmvgV zU5CtzE7gpvQJBj*PfOhP^7l$MUmFBx9f7ji4P8)lsczSl9!$@7r*qpOGHi z7*?xat)DVB!5{P+6qH=62GhEW^~K!ixV}tk=rNAyu-a>|pu?kt?J~vY7`e+3kg!JC zenX2OU$W+Utkpg!r-COgkE0O35SEsOjl)Rh(#D($yG!orxJwsv;<|X@VrZ)2P^?0Z ze0^gdn;EA|u^SHdA*E?=9q`dxAnNKzOKU zo1>-p^2V0ld{|W=zAyYXThDCx-cLLe*j!}1smHSnd%}@74J4BjLCC8hQFl%A)Iw|F?%At{26-y+%E-lVsbm> zt((5j!8l7{em<0>Q_ykJdUJ&r!4kl{?}_MGY{%!%J!x8%DuVo`!G$rA-`!~4Ec;5% zbkn6I{iy|gE^uvtIdO{~0&(%5np$a*9K{QX`dHeJUa2+B6%x7+3?OXO+H<7aE2;3L z>5iPHxAr~w1&N_i{g^1(YYv#b#T;%%ghWpWIhh#=x|>4Najx)!!f7YAy)k0He;JS$`s3cu84<3iQGHO&u9O%biahZ7e6en@{e( zgCTgC|114Lyp}9B7=pRMhT~GC##c-GV$J07kh`GCp^JVb3(KyCWqZW8D)!lk4}7C zRJ{6DuXB8{zw<;$kLE~Id$$WCeTy+aBO8}?wbg3}4s{+w*>f(2UTYn@b1tM2Q?Dtl zaV+6=_y5wG&-8p%aJIY97I^HAg)cTMet$Jv@Wyvb7^+~=sfjkp`SH$0@^}BWj!_gM zhz6Y+Ca2-nhX*1Cy#sN?6Qbro(m}^V`|9p|BBPG6!XZS9DChZL)C z3Wuh+oX7+rjBcO#wpR!3HI6prO0a=yFaE&C#oL?Q6CLQxrPV4iBk`>)0H_7KbHlC% zm?`Er`9H#1+yp91C=z1gcpqMIuL=7sT+~~7NOmg#pJdx7n~z0iMpWb3^B_6`=!6V& zl#yUru)y9{RsRs(ED9^J4t+J+umyFww!N*(gkc7Ghi8K?b2y;DT|yymZaIL@tVS}l z0l!{@>y-FJd_jXwGkw^TSFg7DMN83w$9zZT z=B&SX;3eZJ0vl!_tki~j41t_F!#o0Z{pYmJ!ZI(HI7akA9~aX@gFz6Kh^H~i8Fj!^ z-p_&PD79&vOVvY!d%%9{D`G?9p$KCBI1Qqg<1&<4Pt8t*47#k|KJA4NSQChXBtWA3 z6X9%BH{+?ysTYhPbYIGAIIzpPv$8o{UTnW5=Ei|Gy;LGVgWn^X>lc?LrH?n))|USa zl?^QMconMTdY5Sf;}9VO^S7Ysl?#Ki8myw6Pu0JS;WObt%@Z_wrZB}-+zTpMGdCtu zZFGI#;mu<@-30>JyMzjtuOK-2v=A85O)+unS*-!MZr`RBaW*5iX zQw;oI<`MzqOB5@$faJ-vhi?19r%!h=Wm|v%SRl6h*k1bkJR9iYTLLOG7K6^MXQD5^ z3elG_i^ceC)YMNp$Enr@x;A6dYfiyalF}}oizh*e@K5nMwThDs!kQ9q(~=X=g0LH2GFZ zFW;)!oDv*=J&_Cd}ce+0>q?BHiNME*d3fVd%{#m`_I$jcRg>s2bL6Z!|qipqZa zj>4W}1BTtgdTZuwm$KY;sbPrH697R*gC6q#8l|!O109OQe*O#Zb?DFpb{m5sD^tnc zwA#2(kkIU2oR1h9@!>k0K{AhY`0n7AuDd->&jL=Q7=Zd~hTN)z`IKup+=g_Zt$HIcRRB|sGOvq zG$ahM$5U1>FXs^;YQfip?j=nEy9B4LF1tBLjAaCyUv22?UURT=M0GN{%Q9ClY?_@& zVE&?`qq8#oF};cgUCDKA{&dkS0wRV9Fa?a@2G!Pi!Uqs*xhmt$jX()h7|fQ?+1=cX z7We%VFBP)lw2|c6K4Ko*a|?OG=V{V5j4?Wr=pGkGYSgg{h4~>x8I3RiWZm+l@wRtl znk?AteD@=Oy!UoOfrzho$dK8IU#xHyXoWUNqNsN9xa0sbjkS*L#h-4n1-jG8<@KmD zDGc<2DR+bg4wa{dwOf$k*-S#D0}R@5BN`{0e5)qQZo zl`iG|;is1a|GlLM1XHUzCIs^R`&pR=O>1}H#c^TqV`yCKdK25;GsP4O3q(1~Hlxr=3JRWN(SN~s zi`m`3R}#{R?XJvhs{<7<35hB;Zn5B)*;ThihWdOX;8=CuJsIql?i&__W`iE=yO-Dw zfSF9&=ZoJaDX=k`yS|*gF(^YQylhzrN`Oo8+@UN;h>V^+s^@a$yNUnmICB{83Sn0u*qAxB0JdnzpxBNgfd`=+@m84^E>_IgcZKf zpKoaLVU(I`7%9H8d>L92^0737!uB!9@}!FZQokt0_mky0~-8^AsYQ%N6%+Q>SAjP z5xZ8?GM&4g4Cur#zu#`jJeR+2^l4Rx_MaSWnNlI&h52&;D8t<;fKMw_0}>BqBj^1% zwsJmW!Uvwno}OsfsP@*x%WiF#78~eS%eNL;_&@Nk6_p-$T69XpvTcQjwOUSFj8cxy z0BKC03NFfZ^!sl;r&C-M4mUTVL+7W8h7@}!cE;+f^lSLdDZED&-EI75PY-#rtXR=) z7H^NhuW|zO37}JF7rs3}M}4ZOc=}SL&C%jY8bP{?7g5&!6-_8_Pik>-@i3h6Qr78a zO-ZJx{WH^aVk&6>z#F;d=r(S#AXrRyB2o^%-13VfQ$VVT4_z2xH$9<3-nmI1yqfjI zfc#4DcpxBB$kZ9baW1}#v3m2&ABMlGXJl-umiTCI;=^81JT5}P0j-=EW>|X|t8IM3 zNwH)*Y(IM1&ofK2T(9SVWe z1@KL&Q)GC=!-x<%>fiDU6M1>;!X)0i%_l`PZKnk2HaKo!5mA_!m}S|3*P3ys;=_d9 z``vM9{wF!m0esmyrA@8$pW+-u(A)LhaVjGNas*XEbMM^`JV>2W<8L|rq@ojJ*phq| z!&)PAG0~r3i(_+m_gVreg2c30yUU8(uFpJr(LpRzGE4OYG;b+jOntO41Lh>6UdRKu zxg0IOZNO;FJ4&BytsH_SW;bhZNy2&fiMQ?6HIQ{VBXY_r-xAdk54FWH_iaB=x!Rg| zs@-=LJNfK*gH!8ujmJb4OA1?j2)1V$a^QV<+5o+;)LU(b$PU%=BF;~xgx1{IzC@e6 z5J77+vK=|H0on?fzw^ zFa<6tKjZ@jN5)SX%#4X{8F4=vpHbN0o=LndW|?3c4#7T5TY^G5wv;_$NdsZ)TYgf0v*njpQBfT0CJfI3 zSaAfiaT?%70n6#!S`HV6Yv&x4u9IN@lS2nK;%^B%D!~JZf!30EDDZAc2_tAQj|V-3D=5b zDCADTfmYX=b_CgP(|l&hk1S|Pj_>f$fSWq-*wHCqv5HawvAWXZ&umf;QF4D&+YoP~ zMRS{IdHPq5$f{ByL(}M!(=U$7gH6G4Q!cIPDk>^Er=-ySz1^0Jot(^@%T>=Qr@Fxj z+ssm=qOC2*3_v{m9vqYlKF<#>YES-qbN^zl{}xj)VafJ}-GxdaojUFj>T;!pYnge- z`zC=eLB#s^4XffyuhwChe-HM z)*CV?r&A-Mic<+|l(1-2KGn@$D9t>WjtA0^BsV4EEN_v&$Q%r39R|H9M!M|AWn+ zn)PZGWeCBRX}1e-|0n?qxq7%OcE*m*9Wky7y zmO}=n(A!$UAJy`G3ORDGFaFF&I@EK)aLbkdOA!Du@yvtUv5g6fee>qd!k3%VP8q#f z+S_;zdhYH0ft#EAmi5tLF5PL|Qv(lhLKTf*Yr$sR~tB$xJmnkF3aYEhwT+`f7Q!*Zx_<$kvPQQR6`ZV$38~}3x#E^e0hhMQl zP-Y$(DtV#B!M_zA=MjVhqbRZJk5fPTOdu8g;o+$oHiU#Bune7{<9GXfDb~d1O5?%k z5N!sAYvlILXFfD&(;WC;l7W8{8;k?N2p>hwz@V$_*m_jzQuwWw@fsDSTSgR7dh=<^tJ(NQoA7O0n--+eA$irXu>S@(N=IOfiFk5 zNj{G)5S1=fKDku5^0t)qcx~`fIz_JG&-P)kEP%@zZAj3_lb7IxA3`4h#$KAvp6j zRV!^n{rnl;BGeP}L#Mg03>yN;xtw~62)BLi%Zp=&NetI=_F%_5d~`whB^CPM!~0}3 z)Q+tGuiQ^_gwp0A^Ix0IoNry0>Q{m7dBN^}qHmPD^dGa#G)g3XxKi~~!aOVvF)f6n z<`Pl+FG_gw&MW1)7hO5cqCs%i5yx%KD0AgQ-al@<>BRq2UG(ya9Z*cozvhw<7SO<+ z5?2=C;FWQ3!UP+v?s-f{L{%h70tsRPZ4=j5rAyBU4pxFM>Y=&&Q+i3-Ubq%ITdr`k zY9EhS5V0t?_%6#W)0tz838PLFD!C8jMwV3Zh)5mkg!dgRp>zrD3Qm8fwwk*7-d3;M z`47>SY^<5v?4>ATd1hv&I`}3CQ)+T@^0#b9Y2B>KSMO~t<)51A5|04fgV^#cr9VLN z{RfWm70YC%*kA7OI~iGO8N>h{wuHh_;S`5LML#Fd14}@Nl$*_V$_6B!7M%!#kT|!l zcnB5*wZX~T^Lb+kjhn0MDZ14wNofJvEXXmnp{cgo=GmOlvChxM&=gpQF_65rp4A@b zca*c9Q~pg}^r>#=Ow+5?hsy(IA={j8*~xsY66w=9L07c?k)c@Uv7Q>rs0fhYnfW&9 zzk7V0SPTAW!@sRdKWfht1usE%W2j>0V!(RmGGSvtXfIBVx&o9*B)oA70Il=gEk)3W z;!hI!?yq@^5Td(jIs4_pjdBAb9GA2!?0cHHwqaJgEh_pg zy;H(r%B`Dk#s8ReJ#+L1wK?((QVTwE!<*Lx~6nNK+PqAk9zFvuUhSW z8)-?M6bi*=0l0U(n3BlSD=bv$4tg9`+;)q#wK&C!8%z`ibG5T5f3W3q6SKW_CHP2} zK*1a3`1?Fso;y~kDG>xmQ9k<@6IJKLKM4=U^kR>5)l1UPFM_C=(7h{HzR}ZI%Cxa2 z&d7HPWA(T3U-p8aF~Q)B(o$+17eDOM=1P+s3v+Y>S_M)pxS|0?ToL}iQN#gqD)kOM zbY4@y4eeEQLRgkIKuAtbPNvp5O&lvs#8X|}N79+_4F4T*Or>Z*QBqzG7jcIpItmUk}x1~JS%HJh#+E64e02( zPn({cmk;-L!->1I?*VI#UI>uzH)Zn=Tf$Z_Z)kc5!~pq;$xNcw_iM&~i>I$<8&_pU zu4X@@LAquJdqH1o{9~Js1FDNFqWSELmftEgohqI=a+H9{0ajpFpCJeks{!gX-P?gjhXNsBMcp`bC)lq@U;DBPuT0g<}RlNLM%g@|Hq461YnG zlTIcA>15-}lv2%GcUr~EEndTh2Mz0Xv|WSsbJiTi6@tGgY9vR0EA%1|pgiFbaZ4to z_ej9D77z%xQl$Qn_BA_N!8q{=W)#BR_%<9^|C><;5D5t*tWhO?WuM^(g6dC*qPCk| zJ$Sc`^dAw9JOUsn7qU`Igt<{d=SPCU-=r_k+P`{J_&?d%rOq{%nbTl8Ak7KeUtMpyyqOZ+RA?1M{L zGEzJAAgkB5k^pliQd9 zjIg?vN`NNDYkP2?=XZ-AoI0qJ1OBK4ZWXobw6omOd2a;eID{`cT9C#d5v#jq2!^?y zgvT9hS+KTC^)QPOr7b<-3YfNmBu~^9-Sa#t*aV{Cas^P=1hEa)0Tc~B0La{F_UaD? zR2iyZs7?!8-^AWMfBY{KkLfm5eL>9$AH~!x1Ff?`@Uy7|N(8zUY3eD%WIIIsr1iJl z484RquRkoU(@gxkuegULn}UX9VKI=a{7fB0EF#;&xxu{h2~2l*+u;E_9+^4O(RlLi zlg<7o`yr~ew1{@niyWrs-7l%k3Z6B7eP|IsX2co) zRX65t%;KS3^=Kns0~7dP*a}E@_l=SoK9YeUAgXkQMbEU3^y;d7MW;u1h$9n+>@|{U zxt!~d-mRx+Dft{8h5dt7?>%_J>xLy%$eLBm8V;UAw zO(){$`nl=0T=AXl2Ka{67;mvBAyF{cnhh}0*bxfvKWzRRfEp8qgA$m?c(0qJj|7hk z3JT{yAAA(|b)xi-T}Y{ZiLH+(b_UDk?8!!;k3INi2FZuX5}HB2V>VPLVms=2RC&v2Il7J$;TJbD|USc)66fr6<&KPq7!#Ty0U^8 zeP(?*ygWU7ePKu;hEEuqoczs)@6X4kr_~rQk=TWRg6>o<_6862iup+xBYFg9J8|dKxLQ=`a2j@w#kAAoif~iz z8zm=S=JeL=k3INStNXw_ndSbcgbD-p&}HTzb0f&5D72GgRaatE_)`;x$o;O_Z}TOi z71$7!W?0%EU-ddP1`o(AVp4l=`5 zwX?&6?LVT1BIQJSclNva9PFbL+w}F`Dv3|eT2Wj=1XP{<{Mbj!ex7?6dm$d;QuDp| znWA%eVHsc&qO=wWU}i;;XI_6myuZ_ox4q0hrCqtP4}i5k0EUKD;LxSC2Hu|4QK+%T z6qFL8L?<=~2k)S_whL)ViZ@Y^wwV3a`57+sQV`n~@ZfcLKpgv+I|bl`fIzNR8GxCE zQ7>%92Zw|d^CvExPgZD+;JMRVp;15%f4Kw1q8FCsKW7J(Avd&I^Xzq{g- zV)>|#I&55O=@Ofn(O$kHk^_CX$G|@EiWZ>#lNnDtT4aY@_GmM%LTH?=U-~9&KO=yO ziYlcKlZU6M@wR=N0Lj>r6VxbUr}=|@K$x&`&$0JDWdJmi&uc&W2ZQPZeoW1hmIB!b zAcvfK!X0;l2EBA-JT87-8~C7uY@B3aDb1^Gny%um%{?qgz2fh|Zd^V1J`>@>_uZvN z0fe3@X`riOh!PARP;-?jH#*(&h8<3+zprL>z;MIb?|aao+RvF9#BoBsW^JIxNWBUl z*<*+J3&6H>&7SBGjz&dXD~l*`?4N+thsYsONqwuZDn-gmi(*s-xUA%D&7(ws6qJ-y z<>lo)+%&)WC?P3n*BQs)xmjArjhfec4!l;N$K`SX_9myG82I*$HH!1+bg1)M2;&2r z*XU(zIgf|-pBLD-XaL}FNL*#*T}**r#qV2$qobk@n*Y2JP+0mGgsB7Qi#{Z#0lIx0 z)MJgG_l=9Gkb|8#Ds@EsS1(G0a&XCm(1a-qwz zFLQ7}$FlvT`5WL$%W45c2F3Hb<@;aCd-z(Z|Ft$SdMHq`J4AC!1X6CfsXwl?xqUh* ziS!M+(N`L8h4#Jt!-TMEFL+VB!#2aBa%)Fg*R-awe$udbS`-_6Zn%P-z1KYDMEJIb z2JV6mV>0gq@O(|U)G_s~#=-OYY<2kjXme2um=h-M-8Qp8#D zK`lF?Bh^_97!?>u;B`&lAL=L^uI0eB0M0qekSlAf_4u76pLtNp zOUk%`IYE5ru6l{_0~`Xz1(vFCRVG>`KwqgNT_T`fHWhJF%R(v?cqy! zZIEAeXI|nmbDec{;cU+V)NJ#K8TY+=x$xl2MYX7C@oZ=5&ZK@V)jH(uYcbBV#Pt^nVC`zp!5nFtP0#G-&gT>O>Q?`dI0(=><0G{TYU zIFB*ieFBR*Hd+))T|;{eg|RI;s`Qyag2aQq0lM#t_*IC5!qNZ!k2n%wl*3V}n?k@S zKoabuMCb1Vbt_2iIZK)C5?6kgYUc(>fDG<@^2CIQ4L>DP$3hDB&O$!Zf82V{Tf+?w zWbN-p0b>CGLPTd=brjLz0KLdX97o2XQ2=EiBO|N!+SF@2U5H6k!fuj$TLR_aucb%X;6c3>kfZUWKzDD^>4Qg-^nW_unG%>A3-h;}2%!~#@BUZW!|fna ztIdBtvP=o{6hMlNOF!9=aGg%i=D2xQxSi5jqdjYj)TdMAh>|? z5G_p2HDfwwOV~H;z*)Vbvy;tuqad%EY2jhmKO3bZikOE#uBAnKc|8$ zi8y-k_U_F51SKUiGuK-6r%&JQgXH+&fD&E52Os6i7QdPf)b+kCFQU+I^NfLC?Rx0y ze}JV(;02)nF1)(qLp5B3-mDs*!}4A*o}mxxbk1vdb``? zi%E{9{~u>>9Ts)hbpa3EEhR9ZpdcMmGJuE*3Id9Rba#U=G)PJ#(g-3cEsfMr(xK8h zbjwiE@SX9wpLoCLey{6$zrP3On&0{Dv(MgZueFXUf%At}Er3^O%>J*TQCaRL$HiVR z^&WWnKTV@IXd3@0x2E_LFkufy_?t`q3~p@!$Zl_Z z+xi;%2s80~s;+D2-#I^E=&^;g^mw~iPfNS>BT9I=vfz`2jG(sYDjgA=W#yOv3YT#8 zc>mZdt}?_ttMzAADAgJ-Kssr--if;g{Z(nsH|wnOfJ)N_>9|7tUBMQshseOl>9POH zA&di>QZJj42{dHw=Yk((wdQAAjrUBOn)}my3xntKro`M&JV@n|`)(rI>c4`f#Cr7< zq_dKoy~-@m3Mu%GP8b71WRA#XK(hHXZrv}J;w?WpJ@D|)k4ZX7;a&XezKwwRQt7UX>ob> zi9(a96vFsxjk$NFi?lGHhVSxK=*kwoiNh0||H3)jw(V7qJmUypW+(0xNm8=PqDLx& zL)aq;v_k_`@h|n&k#NurwwgWxGy00B=o{)e_W~q|9qUtLKv@K2X{7c)+fv=}BIi&O3=?m%stBx@0YxWC2H4#`9 z&-36S8(e98*~xh31y6}At!3{BJMHatJo4)_dL-CcQuY^!d!D%2@aWIuA=O0rX^<*! zF7675Kav<#AG#hqsWe~Y0OF{1N9`*XS=#QMfyUQqvI$j==?S^Pgp=KRDP7UaOC41I zPUV0Rr}dT%Oi$UK>y%9XMZGeKGNde=0X*s)6%TJ-MB9lEn0Nm7R2tnIu;rO17Yoy% z3@-08!8VUF19V-+glsF*sV3}Jr1D%}9*ItmaYPK2@?YqzXBa!1GF$TM%E*(Am8-*DP z!YqiIRVfk#L)Zn_vd|q+0cZ>VTY4)0Cxf8pBcK9VLJir{0m$VqN+1}6Rs*F@jX<0* znp9y}E_ti41iYFRhM&s+^a7YyN|%~djxG=BB}#zFgO=~~e1;b=AkZnzVQK)(gOU+hzBVu1 z-H0Rc^1oL4@y=<<)lF%)h#O)+Zx}UHTVbL6R!s&&Gt$L|pW&QL3~Oo^v}!Gz zN(2<63M1^nIvyVo&Vc!F{`DtXfRMmus9!kx*Q*4XbG!ThYvv5YfyJmU<_)H2uWFs< zyTRYYg^m@x%GASqGL0FH0risTE;II>Vlm_=m=`Tj*i)0|DF!n?kSl(SULKrN*J@Y% zC6m?VBAcW>e#TA&N1ph2bjc|*t!JK3+i11DEgG~h3d5Ihm_-L^Itc=6{wAI`#-v+O z^fz&rSJchQe6ud9kGE`S)mZf^#MLbI78Gx(u)-3#{+D@s~AwAYOR z%?dmn)tA4i5f|qF&3*h=5kO4>KgJXq2J=;4&$48XU~gik9t&0g(a&csmwH{ z5eAhWegq>(R#&6>?hf0p^)tV*c@yY&1)3|Xq$PcEevSTfP&w8Uw=@4;cq=dA7sb6{ zfrk=fYTrlIOkciAqdhzT%~G#15$gV%Q>EW);==-p##9*he2qzpx%rmTcxLC;=dG}7 zK<>y^+}Z|$GVAv!@GO)G{8l&s()*;Rna2EwvXmN8jGOZ32>e%tlMI0&oupcXej#0@ zdI)e8#Fc#94b!s(KotDp>He#M4#S0g6`wrOA4#oaVDs zdMml7>Lr6u0lVAC$C3yTE4|VhVR~W$_w(?+#fuK+o(dN5^ky{E0m=)kfe7#d>Rn5s z0UoZ!sVo7i+kKZ73Q}|s%8HVJe(%paW%%~u9|P>F`5GNb7$$6=Fj$_COwe_|sNQgn zE#8?U@vGB0SGFJ&6+rYA9Nm?a>viZNfK^g^rL_V)dDLFtoTvW1M{@TR@xL-PFP28 zP{1Ae`$FLFHz0s|E2>FAtG~OaW^doy)V<|AQBD(d zw7e0|5Lo8Eq3i;Ti{03)j3RsJgdZ>Ism{h9dqaofCI(cgpmqwhf*+I!wr?R=Z=4uG zfq0E)rK96Zz@ONz`Ut@WNkJ%*;<`^(g>Rb3zTfn>Ny>uxRaW#QGY4=J{yoY37w}eUiKIwM z&dJ=pf5`*XQ)7xCpUHB?wu2UfEv#4V4>JzTH$lcjGra!aBE-8)IEm7>LtqJ&QOKQ`?9e?!L6&c6Z&D9)boIXw zD$(Dj`y_i#hUHs7s`0r@5dIqg)Bgb-TvOJC;7A2iZEsOysE`*geP%;)agb}S%{!*G zZ88~;Pqqx^%+;9@6&rUA35!9CIW;mmuwX7ha9kq;yI|R}w4a*Ko)PptyB`Rehv_*<1hZCbb9WmtdVME4~Nm*5Y7RqZw8LC6Mw)ZH5bbxR?UOC8|f zfN=TzU)!gN(Z6&326JTjeBBN_qi5>5u9m#H^IAdA!nAl>mb1l!<=+;|EuF6!2TY0T z)5jd;6N?LbM-*3YD&4ecC6Nr-Y^i|1F%L9GsXjFVN_B+phbjKs}m~V$v?Gq0@`F&oyU2vOPsq{nJuUlFTkZAQ_UX;rw^x%65iCSeq zhJW3}D@+)pU2yS*Wr)JtuibwEZTXQBOR_UN!X&U$@raQ)Igj^la=MRh=vICS-m4{B z12jT>jc%|;gL}~5+`gw4qElpC7HVn~+bh|J6R_l-mjDvf1^Ti7-4Wxz7N~@zd3kBx zzk%rkEVQQCHirDEL1zk~R>zIPu)UQw!ib77JVY1KmWN)Kfa{ne=KeOZL>b=$5P|%2 zql&|S(1*9KOF2;w{X)tyCQ`RPXEhG@W*+o}@2`JIwE5Wc4t9^CO}o9n&I1FAzdbf7 z^f*MU^Lup_HREVOS`Xo#1reXd{(kv*$9*QWPs~l1#5rckzQoi``7v*RHFOr{{S`uX zQ}w@&Qm~<_u=?ikjBRDcjocrfU{*yuD~zPnoEmAV`;-8>d}oWm(%|nhEJo@|@o(gn zfAae3rOmXwUqAdl5j0mQ*9F%Eem1+FUpYU9kXd~NYSWDvj}@4}X)Rx3IW_A3>Gp7*;_4TcRW0JLtVf&w0~ zYf?a?q&3?|MehWEfQX;cc=1Fgs$Ay(cc#UJk?z?nuZq*}?DKeAJyv67=aP2w&Uwnx zF#ee_xchmOVKj`n>Qzc!1G-y2PirUIsVTTmtSXivG+mW7b%Z)Nl|qt&4g!Zp>F%u-Ei8%Jd(Hz z_7ID}M%ciz*l!Ix{hSBdPvi?bta3W%&{YVxngZa?BT~24)(tn-7&PXUN(^ehR(yH7 ze56?rqh6cd^gK%3w>EVEb)~N6(BK#)-uwYggwY)D0dddQ5H{{R@z->?J_zq<=t2*$ zlQUn&Qhg5DZ`)olmvFkd?4ZO}^9TlOjW4Hw_c^RRWnSH!>U5Q74vCyb{O&~8n=7dJ z+h|S)=l|w%^cSb&zo0T84%r>gsB zeB0^@M?Pji$mF^cynufbAnuOfgZXdL1yN}Q!S927b8;f&_x3u$T(bf0@JX&z%k!Q&+*QpDeH zaQk+a9I6dpGyL={+ZnV%B@vNeyZZ~w<&BfBuQ6nWy~CvDtnqJzDS}gZRt=Qaf6sYD z8z24M;mM0wypnW#XUuW*d<-e3TV9nO7fY*pgPqrnlMeB4ZtE7Q(9a){@cLH=QIe4^ z9n~ISe8Z-B-3E=!8-Gs8)Ij>vXLQA9%E}e5#<;KYzqDA;p~vT{0tO936ppJD*5}wE zMlCi=W80eD>2_!kn)%6(y^{p=lV1`}7ytFb=S$-8wh7O30S~5u*6f5nTBV><{Grt| z_ZyxBi4;yP9jc%@C^Y3lA>tdnoKzY$E>wkFzOP)jD!TJL^L1OPU=zBm`pM-2&dN+H zHcMSJ71q003rrMl$D@Z_vNi1g)nFtNq3{urX(ZvyQmzq;OJwA@^n4R9It{f5)%wmY zdW40x#Ab!R{aU3u7!7AwpZrjmpJF`8H*i8x93`KzyktU=-a$o$L0Fbr|Gph<8Hiy0 zLbG&XQHp326_;g)=dS)_yl2I<+CBbK{{e%0U7g`N;EGBMDU+S9K?apb%W9@No>f(b zG%AbipAevu?79A{gs6Lk^l!TDbhi<1dhW9AA|#f#LSQ&?}&xGMGkEgE`p;EH>S>(8N@=fAN+J_i{uYa~(^yc!<4 z^(9g%-sasRAG00vr%kbJYQN6g>5=iKe&~!hW%eiWO?{dkTcL)tC_g6hRB7nT%p&Kt z+V2r8;ObQ-0u@eN>|0CHnh|B$MW2DW=iP(NxPZP4hFr?WE+`*y;`~7$xq^FftX1xurzh2h`-jJm<^0DK=P-DBT6g`k&gM^F|J?6mS}u- z689e#JVdh{2>-8pe**f$D#CpHwbL8Kj`R=3nY6o<0bvYc>~gORZLo~fWS)3l(QQjk zDy-TSKXDf_b^o!gFIWNh!0-gGjY@h$K-Y0}SfbB z9F(7J80==3r;8Or&RPr`*}qzvvoE$@0*Ck2kO1UlUju2^|Bnfc8$azpyYa^9S710pK2bX!>t#PoEc&6>UDcEiL@; zYNyUMp6YD3x1z;%qITqLc)KA9anyp$7`_B80{CRmbDC0|jJdNZS@h`-(}aJP3hXN$x|=jJ{2gjVgQe?bA-(xRVui zfT}Jpgk}c)Z3OuH+Xhx_nDRxpHZXoob4J83tvWQ})|gXG1KmKao(NDIDZ8TBFvqD! zOmT+0b}pC-d)xQ~2hgeD8n+2xMc*)DvsUwyD}PTiYW>GD1^uqpew+MZuz(rce~eXa zj!+hhVs+8b^~}6uedu6O{d@BlZO1M|JRag(eLv;u-B|=vU5iVz$#lOw8HvjWXgH;s z!#ptU0SBKA#pg3FALN%ew(=60p5R+H1=G&*Hpf=6G{d~PXo=>n=A2}Bv)yy&;v zxoeH*TlMeowx2pz9ClJ9qN(uW9d-B5FYmWs*jyn1_|otd$cxZ4srl;0O&|MD2&|pJ z8~T3fOXrGo$dY-Lg8B)C+M$jL=iNF&lx7kBmrg^1c$($!Uj}ZZEDRYcJV!-MO{*xy zokv+Ox|zUooV%2jnb+0l9W^v)e?CgJS`eRh1cH;O^4dvIA;c@b-3FsgfeRxh^yp=@ zs$;+IPjk`uH?_0$lz*ooDeeCLs!~DnaD2y!%gLygh+w(SU^#StyENy$?_dM%$^=%q zpR9OFsxm&+Pt}{^@jCY<+46v7)91(r4{E`{S3~jxk+1LWuG5&6K6l~x^^*G?m>S%a zSvXeplVdb;p8F(hX{7u|(?SQi1T}TWYGe+%o1WZjscdyx!Ukx9T(<7cTkPm z-$8U^d|iL@I?zA)8LVDJ9SoQiZq!TFOeBDRCMG5x>W*VykJr%4yw7s~)~#EWJ{KNV zR#u-rCMVa9cNYVf0TWYA zL*r+OZhd}Jx-8SK8&b?`7C0$wZ*N;cD$B}Lw%q_%LDkgsmZ_;}ot>D_G+=IP-pT;X zOYQG2&7#i%&g-*iIY1wBZZEuyQ(2W6p{_yWd>M6&R|SUmbCMux_&pV&n+xZ>lB_S& zG88oIO7pyaUpj8OLrX%z1nfuqwg}*i#y>Rxs!W2=)ddxBcJuNM9s-09?AdQ<95!}* zZ}_w7T|q%Xb3X%D+=$rVU|dd)`y3&6Hnz7-joak-LxKHSenCN4PjByp#0^(@d~a7Y zKu83PyJ$8HPx)+*Cx~H~HmDuRQH8n7ehO0;yL_%p+d?pb-poi@PWJE-W+2)h*(X;l6@pCI4RqMXp~Gm{Ukfh+++3^a_<#z52(&7 z0jXKUo}VQHyT;tuv~1$u$3C?w^&fUhI?zJ&v?xY511%iHg7M$p2VOGYo4n7~0A&%@ zZIJ?Dg50xf*nK=%=ghvmvNA9O+maR&lLtmh#F8ikmX$Ap7!qM!QWrdMZ<8DNxaE}N zp%tf-Kx%e)bX0f&c?1ltWD<2<>5H{%l(wCZX54-jmNq?wuwS>kMoas1YWBAXj*dzx zdTLkvV*hL%omaAax$m=!>)dDv7;|oRUQHoX(oC0|fbKPedIXKmyCVGqf9tkMc?31W z{1CiL)0$t&K9&m1=D-2JeEj?pa9^wB(c|vyCxx813D?==ej2`q4ylFZ3I@TB!7Diq;HKWK3#8m$@=d@}Y zG(&zLB0y6%lpJf|?IaVj!aR8HY^`rt$t0jPFTz+N8G~=f z0)7|8VQVxXydzi})UwSK8W6@dPQiNOE!_xDIq?h?Ufqf~bGH?feF*z0#X9v5!gR;& zG`#g#jd}|S&rdo{RZ)7rqXkK=fcJMNR!suXR?%-wd>v2v7^4v|7XI*=G%z9n?M6vU4y9#r+5@JW>wSZmwwK6ZarU0zwswAM47)!()xM`54FW(=b}S!D&wl zj{&X}($7WO9?|M%-&R3uE?@p`0Xkzt9QAbX->*D?9m@K&^WZJGyUom3HQ(2L04+?S z4BGy9*7z1PS~Wn*YK8vXRx+y+C^3po^#o+gG@`GXis{O4#O;s8DaK#^! zDK|a#PpmE3vEDxf0PMqIBI(h)DAd`-@W{xcv!fl28}dUMV}{RA#QMZV0v}&5bx{a+ z2}?-LQYbu!Q5gpe`k{>)P@B$@#3fAjjr#>U4%k0#zYw|-2B z-tR-YSy?}Mbagj*vYiNq>#bUuNR>but^7jG5<|Cz9Ai+MI2bLn-7k%6v%hg-C(J(E z7!z06w7PI8fcFce|B8;BCc8ftcCwzPS9^)g*-=rXI5&|K{;P++S4X~ut3nS{GOtQ{ z0gpXp{4NZpm?~oX32nV0xhn8|UHWoSdKf!Tv|*m);Cz3OE1Cix0?9TYV3^mQJEZ|$ zggY-@FI=Do!6xBk9L0&}$#)h|bZjzuQ4xp(fB1s^_0%E; zRD4>0+jy`dL{I!tsND}lorLRt#X~Z5i1>v`5_@D=ud8N?53VHlFgJg-{N=^^nH$0S zPSDj39MY~tFw`_|J{;IQj0l|{`Rp8xuW+aiZs9R|#eDnr?b<=pdT#29-A%+X+I3EN zVm;E{D{EtOamJ641+6|^FDNXzX>$bxs>Lwr(V|yb4|ENg;X%`molJ!9(tu`wGqJPz z>a5v$mZbR}DWajS?v+0!lM>O1)HF>41Ex*f*#$;Th{?In+7ZpQrOyHpQI`T>V%dH& zhYEDl9~h$di0_mkttKnS(--lCzkERzB6FyWWEPQc>zRsZK$;q3LIjU(C{y z3+va0Ry#a_X?XA%Z+bzJgoUuD?0cH!7epBf25+6T1v9ey8E=jajyb>E*XhuBg9&^; zUS5f5z=>G}Bs z)7~-P`|zg)lJ5`Y;q1})U@owhCj8W7(+L7~1L^@lb@{B>leouiRU6?cjN|c`eI2{A zTzXjQezV(*$X6?C$s2hgW8jD^bQ_y*c) z$YP{GjnHqcLIz(pP^!g`rr|VZiw4Pnr4FGJ16PYdS<&Vt>;3jV71xhjcjrz9++Lpl z9`srf;?(ovfQ=nW@EA%1mcxtNRZ|ATQTrbi@W^x+&H1kvo9y~&jg@8iT(mw}p2^%J z{8FQN4=dV#7s9kfms^tQXtjWmF5PGu^0eeSNgn|!bd+%Gtj|n)k_QFxdwfZ{G<1LJ zTRU6e=b$5KtNM)zu|3CWr(PasQSy1K-SqoXq+8ML3y>*%-9ruELybTcwbDiYYEUm^ zcwA!nwP|CWA({5Gm@nj?MPQ=7N&8Ws2bkl{VnGu863le9MCYBTvBo z^4c&7K@O_u7gzkLo1M~^0vCt+S5<=Q{MNKs2BBEQqQ8BQLwr9@PHJhelW*N0Eb#Y6 zkO3bUgQTV1tvhtiKVh4CVXtub4dPQ%vno427DO&fLoLnPDl|y+(xx<@9WEzHE*Bfn zXmE8J`?&bBdm~eLT()14yzHH~XrQ4Rf%9c;PZpGpSu1~Ybaxkjs!a8om4FAg@p7~I zGTg4|#0;&M8i7zh_yDnDDZ+0MxqkinN)u^?6GaapmI<60=}s0cMXY0p*ownnV)*D+IeQ(k>q$Pd zc6Trq8cgXZ>O&f+oCa0CvEpe3iZ_vbSAYq-dB=FwHPv<< z?$=4g*YFX>iSqH8JDU~7gT=gO9Q0vF?&k1$KfxfoPXMdmJ;y^GFVHsU`{6af(B8*5 zt@AhV@iCDY_LQ(QLs1rYajAOX&pM?d>xZ{Gg`;Z%5t@l_G3BQrnom zeSQ2hW3kCN_lTVAe#XM|BN;NXqYM2&&g;oZxrtM_`SJ5d1Fz#N{qZ`ipYBU$a6Zr) z+3WL#3muE?w7rNY*~)n%g!PQK87D}> z-pqd8olP~KejFvxWn~`f(lHQU89Vh9>e&jvqdgI4!KA#wsc3LBA#q2Sv=b>BeH8eQ zTM|IWL11*Oj7A`H(BL3IApcQMg|3IU2ht%QEIe>|FHk`npq@nX8=YYe;!C|AbvTU8 z9cg|km>EkPi8pd99VQrvL$0t8|4idsehhCePe&XS3T;0XTyage%Y}VU( zvgYWQflq7liG`7XvPY^FO^w#;6moeE;e*ssoMIb3`_!S@*{473pIs5UbNMCOTX7j1 z1BGCrnWef%1A}1-BvpGHTA^*TvqUgU)z3$@etO_qsogjH zAx&r2Fo54OF9wh9;?i={C(GTvE)5^%q&;#(d7}{NAM)ghkdV+p3z?6~;d*Q@fniBm zyU=N|y?3EhAS&%D&-aww6pw{gPFMHC8+!a#$3c8v{=AI`FAj@BLh$b6?|HGj6>n9W z*WJ6=@y&>##U8>Ezx27>&)~AyOFwFm8wr?ZMjiX*;my+G$8J`C)Q>n@-anavzS}*s z95gExhaqi;gkdrvN|7pje0)pOjwHm~$VgrEIcdPuH@5mOil3sY#h%5l9LuL~d7u-s&486kmqF1zIt8zDHWC%U!eJfJqa(DU4`vU1&7IK6p6LKo$RjjL$iTXa7MSyQ_6+|bC`>2~kMuUZ|Z4NNOkUw0P z-hHc_&j|ISZ3Yr)I!@*9z>|GgLZ-$X{`&&BV}$ptVuwZ!5&?60(&*;n@Me`k=Rm%5 zuyYGH9&$WvP>pHBa=_`-1HN;dI@B}E`;*Q_m#NdGfPp<`RR@WFp1$OdeKaU? z^rN~ezVfZV9M-D!F2Jhb&w1d0L-HS-PGASfp?wd7tkw%RcW_8-@F}A?E8!CZ0c&Ec z7mrSUnacooPGxBVs0o(}E=TLy#7l$9Y}Fr5bkZD2RY9*l(-GGn&3eXv!DPh=?#;M5 z$ta9br|Wu98;3S|utIFvU#{2#7XnbZPd^2>ccAYH5jnTPhQdoBO6Ox##c5tnVRrX? zh5Ppuk00XBUY{UeUwkz%=ex!c^65^FB+PjylF@n0I<_oJFWy;-_k$mv87Auu9^7v7 zii;HMlIKDJ0?u?SI6L9M9?l2@CFZ)7l=3~?TL8J7`%#iLI|B}Muw3qE24cPuaab8k zY&D^sOvQ}zWo(`B4F6by$(ff5+Tv`%19Se1>L3l?9*FZ#ZnYIaKB?UKo{@|~skm}x z492Ayymm1PyYURCaei93GPy-D`yBxk>IXrg?largc>>W;Swc++Uc=723sk2P6bhThfbSfLLtLae$?g8T->d_M+ROLzB^ z@6kRl8;Ou7AwwFdn|qGXK&T!XL?6zI>@m;a{aO)@03DwLLPnrglW|7&#OHK>an zn45}ny3YY48I^h$^hA^Y8*jCw&6XhxVZ}ET0&guJ>A!hcVd0y7&;tdG8GhM(X z&P|o#6zjUyNAJH10~Z-RrR#h1rQB}j-k~0X+aOTZzy6-ih~eE9qHG|KzeJH;sWhs( zeE1G%*l8mm{Qse30mJ+Q=kX*B@w($uJy_1E(N4V=>tXb1_h7&~JtCvSnp=6m!yhCrH0+C!FZpF~yq_(Rqs|iTYuUlnC-#?i_BL?IuyckZ zCwGajMoN7i;orh3^XIQZjkZ-Vr(XxIGa7M;Vd3HNM|ck=jhv{`H~ahhHZz`-*0W9CmY;HbOvKXC>MxJ$WPr?Jg_m}6xKr27LpYqJoq!Ox1|nP5u=|Z+B*M_< z3Y2@&)R;I}Hlg36UUk?JHmL?NfHeBJBzrqR&xRZ6@9oh18@j1lC%z$W(;XUc~^0A^@qVm4OfgN7pR<%e}%Xc%x^ro%e*atv)3#YR6E1CFdXajU)lB9KV&p zdjkU^p(+#$;17Nq0#^u>tid>>^CgS~ZpPlAR4^3LgyEt`yODQCV*yRtNLL${!6yvN zjmn6yjN@F=bdQuAb&T3Ef?G5+)IToJ9_^ar(+b|DQ6W2jtRz^US^bbi@Znb_w3qJN zCO{8x@iy`fbHg;VZsC`qqwJf;!S=s_*@nxz4MB#Ug_{J7(_)#3kycdl)-6$**474r zd0*O2=)XYCNJLh=x#GoMT^#JbsFJmH*gC6*eI~FVJ7HRqbZ7U&!)?rvp3O5u&Ck3( zJJkN1)JWwlo}t(Pa)(Hoz@fOZnj+C-*JEUDzE&+9ZUJ- zIh)MQcMy!5r2Ilj5MqAuRfx*Y)m1Rg-Fxb88iOu_)6sZa=^F(b1={)=-g6f-XU)mU z$+tD%8bi#C$c^@;`d2Y`+KQTGOv$76PecPga6Eg&OwoB|Gi~nc+gvwBW#`~IyF<^` zyJN7}RLA$!dbeIo8R^l{(P5UMV^(tqRc8G;b@SEYtcqVJ@tZ{YVRxigA{(aD@U>h9 z>BpazvU$qm`R+j`(#WZD%&ypU%{oQ-I!$Qaix z&-TY-R`gmMiaiAAQy;908!1D+hi=`#&E<-BY1oAo&9k!!q_ci66sQ&2OeB*%#(`EV zQvZ1R1tw3l9_VdT8G{JGF}Y(r68ipBN%0^zc0nmjH{}C&o#oqd#(_^a9&+pn(byXS zdHZM5@Aj5Y9Hof*IZ-IbFIe2_ND9P#3@I}cnh)B*Jw)(%oz90i+Md{#FJC5E@F=}G zCZ4~ShAps{7)N8~$)6HV8S2W;O9*SwC&z)#ZZ8bKuwI}IM=Zk9g|AK@SD+>;a__22 zxoQNZ$;BG@H3Zv$Cm+k9jYv4kEx6#w9&F)7q@{8mp-vZ`sqRBj@`$ztnRlto~@h zj2>@%S_1`crP|wut9;he41_4UfHbwSp=?H38hsJM_)?z!7%#E1MOpk%M@e-YXvt`j zXLFKYC;5ia^U;F&p0ez$+1@BM_bx)MDDhzL+9!n^DAX3aYa+KLQik>Wmq*vH+L$kg z6wSc9x9#NfJ?X`@DMPSidE9Y41b)X!_+?kW=Ppw*ZnzTn6T}G{Cd(W|t47AHFD*UH z`mnL&^Wk38$>iWP3y;k0%)ES8dHx@k!^4peQ-ho>vB|vdB?M#euS_y-tvw)wu^LZ= z#jMoPPj*B^yyh7di?ALJTl*5uu@S2KI~M&{JNoH~Mu^a2wK}J(QzJP)JZr_s2Q-`YXWELpvz;o$-fdwv z-EB)E{}~=}1|a1du3jf&07%gP443VAh;&DKXqkXtvvd@K<;BEpOz9$Oj7glsXY-tMw% z@>8sM^$>HXh=>1hgOcCpwe5Fem>>(8{HsFq=*q4$(b5=C>-`)WoY6*M@LWZd^}W~N z?Xy*?NQ!geif@g;TgHdu<&fhuX8eGA>#GL*#94=JmV_`^aSeF?*h@2KkJ+F7X3v=x z)i6^aedF(Ks_da(x?rY=%r;qGVB&W$XB0Sf> zI@C{npyvM!Mw{93gs1{mBKy1Z^S74U?89D2@jCsyDEp@0#uNU(a~2&wSBpz<%SzWn z1tb*v^{8?i^lLq+;AQrrH*O{fOW-=lmO>EuT>THs>CsHcI1xeSyNyqK6mx^=;ki!uC0;!mXn^8quZ8*g<8A4me)_fUi{vbGopT zIx0dKOBHYTxq+{mjT)^Ly@qVjB96o#&$e+Bwra3_L^J0UfdyA4%e#X@Rn8h=LMu?- zjL*%wVX)4y08 zXHNTNUgDbc?P2<7_tn^h&QHrr3T+UU)l$-wqDbQGjbdIUyli>Vl+{^WjAQZpqgD@j zT_byLb!poc48&XAC&8pV`i2J;g8g`g9mG!Vs4sol*lH*QFXLW*EHN|?+jH>tz3qfP zCDmd?10 z@b@M;@|5X0bJJs?tCOLzrsrM11z){2e+j(z}B0FfrF(8v1{ zN#U8O$`pwj0sD+P$#?UJRUA8dQ)nwdeVPgzlFKGpXVBUx-#g{P5^_^|D@hDO4++*oK8x*X}sl@UfT3l46aCR9)21^nq zIY1{Ev7tZL#<(5Ee@NbLi@}%(Js6;T*!tpAkACWXHpcK&<`7adyT_j}*sADYwY}<= zBxJto2N(2b7)-am+}`dWaPjaE{A8l`qX)$2y$lXi=vGzrZJ#f=Fy4g;$NVoE=@PE5 zq+HDFwt|fXgoM9SAfJb=Y6uGA_&Q`io3&&>ur2GJ+^yUa{iq~g_N>#QMXT@Xlo0mv zM~^Sr+vz-4L6~OWZwJ|$GPt{***lxUu2{IJI2Y9LE*2S$7IVA%`BJe6Yi|{S@#);e zt6Q^}N!0L%CCxnT>BjE7#lo-$rMlJR-nKWIe_lVrC4wCjTioBS{b?JJYjDCj&1H=d z`oRL7^lFp*@CKtURt;pM4~U=1zj%;lBUff$_M#4ac=mP%*s6I!qHE@SriM|+0n*1< zbyt^X&r&2*XMMq?D&1~P`%EVQ6zlzH1?NDOP2CF6=S#q|Y{@9z;aOpT6Jr*Yshp(x z(F8Kx3GJKH`(PX@tO~mj{_%_S8o#u&d)Lsf2Ww@{Q`p0H4kN8Ek@JILP135!`6-d_ z$8XI*!s7hTgw;vl7m5`*Q+}nB2&*%{@B^fbUiL?as61g)_#p?$6^@MGkOUAG+5 z$N125-PjMr-fn}_p%%cbtVuOy#e-?}#rtFq-&(hL6UaiXIjE&V74^0A8^8T)MH#?~ z5~Em#pdo@CuOQL5=i0jO2r}dfu06O)|EOD@lK<4-q z=LxSQfTU-djOb0gi!%837&HV22M74p&Mt0lz2;K;^mjNpDQOsBE^9G&UL++Zns2;j zl=OJ%;pzG8dkY>EejnIAV`|e`gXlHQjnN2OmeJ~B-!^SK!G<1g2MmdJ1~5|?=ynZr zbU%wFfzViX?V&_k_MK{-NN{@DRmOtv_zbsYUmLyN6>L)1WeAQMvpNJQIIydq-!0BW zw4IHpAm?Xzm3XTDWQKI#)i6e@4dLXVj7c@tsRAbxOj0>^e>vl^(5>bn9=^2No6X+J z)Ej|IPXri~Tke9e)#O5bC4_-*{Bp? z5g?2VkZZa(CBc~u>#RT&U`BTxR0U01a}VZFqc`bU{g-czEfBJT7Y9*_ zy+KiimI2ut2?aW@{JEp=@6EVIKLL$U4h;heNng#{m3U~ay}M&4znjqJmJl&n@0toW zK*FAm{S&Ncz;@~a_R!qG@X6_LW3(`o`JY|@YRT#83DjKbUBJ55bbqCPJMUlMdN?0zxa>f)yJjTSY^HkQBJRjRDRt>tp&jP86eO>MvH_aTTU5_1=)-jn2X;b5EPeW z)%UG>qG`V~PtsA2b0|N3_zk4w+)|!lJ#tX!dr4W}k3?Ga;`T}+?S=+c~ zL$<%1wsz`WVc~8h@*{A(O;(IJK8D}n;u0zgP+2@b*~bk=Ib%kFi#=KGA04+mSaD6k zB$H4l^!{MMnB5ruvt^$GM_K&YLUWf0&6(1h>Bo~WNVK7%UsAPlh^mm?^oaaS>6EHFFk%I31fTT&ST_qtCqZ&Wv!C&P(#8qNc;ASvJMpv7YMGT?6s%GRb=Waw;o? zwdLsb#*latsE*|DVSHtx5!3NKVvFy{HMzH5E{AEz7?1?8q0LPL$$sYHuE^*3mJ_D6 zgO{a=d@OX9FREXf^nr>z_gWa;?1(o4tMAf(EB~5g?~b@R!U_e zSnt;J46B3FPh0Qbxtb7cehk*A439*~|1at~ItEjo1yUDJx9td_pYd^1SiR zLt_a+WgvFQBWT)he;1QaeQ*~6xh)mx(9;L;diYh1Hdo=5UBQwmo7~GER@YZYqW4c} zZa*llwWM;It`cM>y9{IyeA$xDW$k{~m4sp8ga1WQdz}h299_YVrfKW@%UQT;=NE%g zw59=M0ar(>&%(Rm)JTE1MMN~Xmo2d(>-U#-<*JKgUUQYRF$|J`t|rGqiFNxtxvf|* z-29j(JHyvW&Qv8=14;3|4zr{PY+pHq5@jYeCI*>mAI;*0DJs~uWFTIx%PU>xu6Yq= z^!w$SUb0ymp=6ghp|RzPqtf?PUHQ(ogfN|AinE<8bQ~7^k2s7JK(++iVY?5=KXz)c zc|<~%x8a7WrG~@x8bJiY6L|75oVScJ*w}eRH#pueRZW2yu6n=f0ZKF5g=5gQM5P`i zFg;#mu_gQt@$S+wpcpxUK)EpRljtcdkplbzTqHwf=ku{N^m4g!?s}XXZrKV}_!CT{ zkCp;sg3<;aoWY6d1(wC4d8j8ie0=JQAnk@d`g?n(N%C6S$3Bs2a?LwJgxhhNRaopp z>+9Y5iIv=yRMFqj%i8Sl@6t@&ud{2oD6RP(_h6=lxR9jJ&a9QHVxm)2ECd=EqkWFk z6#lh8?Y)=T&Qp21X*-5rTquWvyn$^wbS#;BzQ1TZ!GbcjrCV&u`TY!C%4YAu9Y!I? z;bvwcx&EDegFr-)t7jSXa%>f<#hS{cnYfhuz5{R0o) z89W5fG}*oj>Rm?BbsmX`Z!(icIM8B_$=4tMAHKdiuF7ren(h!#BsX2sDY0n;krb5f zPHEUQ2#88I2oi!IQUcQ5ogy6@NkLk=zO_B)-gDph-v9Xl&x$$69COUE$_WLbqECzc z>Kr;dxhOUC4qjv6797V6k!|^xyXhRpNsMe_%iJY(*MJi>THb@9IaP+u%Ya+E&Hhg{ zh7932^ExvtYYe8)7+8i~{*Wz-GfaK$V^{MC4d!g-ibc@!kZ0^8>QUus3E%O@9|jo# zH>F`Hgn^UTH~i=jU~ar8IP9>D3%lc~zPl>Cx~CU=Y|w{i**ZqwE7K*qFZ{~Q2leSt z;?h|NruM*lvJ`8^t_7Y?C^3}zI(MD^#K15AK6_JK`>9>m{%FXVW#&}1ROUlTkI45` zXz%bZ*0n;>A(`4vPcUc!kr5XV+JfrrD>nYrHO2f1m zTx7hJnP~wEOxuWiFe=QX8{RE1cLL>9)^IT%WWI-XVqSKVQ?4juBuxwnu6Jz%-jK;n zn6~RgVz2bKmW79YxkDsC79pm34k`XaX$oEJ$~pkGf= z8YN-snhUB;vhpHjPM3;V3Q$k2QUMZxq3jV>^#^#IP043TO@LsWlwlt(8yIL_b9I@c zrKs{YJXGuRgqfN33S{THy^h0@ca~R~g3xGFh}fiShD}~3)He6s^0FCgy3;+_w7|2( zVi0UE!~O$dqCmMia?WHo`@KE{D3H_V-jrQxn~v8hTj>r`Q4A!;{-VM6|6z>k-K_!j zjpvP9n+O?c9A3uuwp)7Crrpbs{=@>+{uOP}n5rh+wCBmm)SsmcaB}ffF>VbRYgs@l z-zdc!Xx;qkP}Y~kXTe-RM?ycz55-`yii{lK$JDdfyO5cws+SV_abx}87E@t!1=1j7 z!~uAC#3em#J85a<(=y&L?n-RaFQZbO^t%}LRs`N8L5v=ga8vq znxx@i5e;q>f`kPq*1nJj8CG%!r%HDMe4&M~6QTi!iWY z_IK5`YhK}qaB)0siU-U1l~5vsUMa1LJq*p(0^~;uhhS|05wB7HgE~Qm484BqV`rQY zOz07`+~V&Q7N;3`cR!myVRVHiz*`!F2q1(F@v3u;)HsW6Vnpe{Jjebg1~pU)H-6wo zP?e6op*An6wmW}&%v9y8<5b2+uG$x)5-#4J$c}G`)ozrs4aNIvZLHjAJ9kvzKwqSq zJ#Bo02xc7*{v(*>T3bA!5K}-B@1~VbeBh}uvT9@d*Elq zRPso?mro6CUnSCxzMa_$euokxMS6G*O5dewmtR069-TJ69sR*2wt5q&Equ!+z50=D z&L?XK`&E^Fv}miu$GY)nw;vrz|=O63xX4ZQl-HVVRLmqi#nq-47dZ zYPmj19of%bTYMQga7rk^P~=;O+)OiD@#B^BJ=i=?*9RC$l$&kCtLKPo|H2p)H=e;g z_bf=W9(nd)@rmnLyfarT09A`x1c?4^=QoVq_+=S8vG)7E0A(nuNZ0pK9DZ#tQ36Di zU5v>Mh~kk|G6veg3a?*P*6D&<$^mb?`#8UWUoX<-&4c$;hTt2ej52_9gd@42Kgwu2B`2{vd!Pv2H?NXb*&0C zsD8HA8~yyeqL5ynANsN}6~uReX_T^3u&U_)ah;K%WQzWz@y~BBKl&8Pn8FQVLccIz z1;tW~!95Kyq#JfdL!E(;u<<~UaCO7_-n<9*Cpzg@SuUd1xL*A6>m7)IJ;yAxDr1;Y zr=6i|6}YE)#S@{AP@$?TnU~*cxMe#6o>a^BuW5cV?-W4-t7LsSEwjf-u`%xH_~B2* z(rgyxyMsdbSwF+(=lvHw+4uY3i7tR-spk%;glMLG>!qZJ!(QZUr+yZZ-wKkEvrMu9 zM-Ut47YM$l#*yk0lq}}?zw2{B;Su$6v6|rl{0<*|X{)yyoENo^`6R4%Z6If_VIC=D zenPHKHR>VBYv&1C25cyET0r=Zk|m!e#S3}s*x5`jbk=E0mh0hd^rP}v6H5o5NvR|Z z<%-YQ1p(Zv$e#3366B&g0}f=YTGZDP%EX61{smjwmws#5fy83$_)mR;+iGrOrnM+t zepp~+AG+=s{i}pMaVV9MBOMcda3!X_%1ZytufS1yl z*;K|NUJvQ^sVWJm)1vy!M=*7)(DRiV7ww@;{Cwzf9N^>?g+1}(S}i!-?V6q9wja3)tgECs_arXz@#086Jml?r$O16X`$KGZ%FxP=Uzuw4f|B-18cO;3P;<>w zj#7cIBV^=PNR+tzz|G)C>GL0#+ZOzGN;Ake|07>h?L?c;4Bn- zKqqFh7PJ?#&ELg`^}O@>NSxO69lcN^`ZD_)C};{E-RIx0#kieOM00*RWP!2r)_40Y zqojD-H>?*R64a72zLo?~&a_xv`#Eq_UHj!|?G@XNjk|idO2N#Ab|=neU2jE+phH@Q zrO#4M!ICZ_mxo``b^OPWcC?CN$l&+H-!fZor9YtS_Eprgc8o5l=O{1&p6B#6H1Nk; z0k4=J!CA~SO_fwWUFLkzN3Z3~O=l}pFjeFS7mt|^mmMwRQOJ434t2}7Hoaz}%k40S z_EY2S$*yeDD}w-`bAkrixVWIk&goF`Km75=)7!#6t&xTndVievnf4oj{ZBoiUNqw) zrwrrg2@RiB#`;knDzdzd9|vbV7o-m?%09@% zv3=Wx0>yF{W)8eCi5Mdbq!Ns@<26=PGAJd7411J)nod}#bALuvJSWWxQq}S#6R_Nm z@T6dO_cTiZ^%U{WNvn!Lndf`rsWLHT)H0MhcJahH&OJ z9k(ojWxBNZJ1lG7Y#JF!FW*rQgwd06XiZ2;IKFWA2ZvpX&+eX`bK+VaMOu-1G`mJ? z$i|V7#!QyP>knaX4q}P>0M)}0cNCjphFtdeE5USGxtpA*RI^txTWpL2cY?tL^i3rl z9dS`~K*0`Kk*7K$wH(&~cIi9Ca7zuK@{pj5$Y_$zIr`DGv2b&*=e-@2Phwqa2cen_ zI8c)lE;N=#*HR_W0Z^0(`p_h%y*BfC1%XN>iV#7yQoR3Wu@O1uO`839*uhqM?ALx| zq!LcWlpli@imC?CR&yM^m5hR`Z|wNYV%J8IeO?o*iqVCduIbLjeeZ%bHRI9QmQT9_Gy{Rq}cUy?xsPl1P@vRbcl9%=OR!UUw_F6X-)p zbwx#K=R1Oe1Ert4_lsaWb%GZeGeCbS)j*~*{##U2fQ6lwYBm02LMp}qb$2s{JZ>EI z$IyFY#=B9vkjM->H0a~-#(NQ_ywsVGbV@!1?arNDh=F}^)w-mtU$ec-(SpfG?^QCW zfFGkQLReS2{KnQeoMiG4c>mirBV#jyW^Bv#MtNyWHD}cKR8sw|!woa34HOWYuRUOF} z^QkSAy4(jWaP+5eqER{Nl59kcuTI_FmLyW>k@A&7Zj`X+a{=#qft%I!Tjjpa(05$} z_my5@ZU{EsUN1x(e=-$7$6i$ScGqNURgJfT2~W3tFxB=1G03@iw+Hdt!hN&$k81>X zt5Bh{7xHUnQ)GGJ-EdU4AWhM(37*5MJ@pg-X}`{!VM2;`^kdGIaZP41&`2~NaH>-S z9xU^^a~G8Po}Bl(LDApNlNqJ5LoiN{5A7}>+Cd+6K@nX^dmZpOs2S!WKOTh=xLY8z z&3U=;=6H!)JMEc&AKTk8XxAnE`w~D5T6i$dMJzP@t@Z5#$9vfBrBhDnXaMo9Fe;ZD?X>+A>0rM>N_KRtBE zKkb;DgJk0PnX;<3$_3ifUaX(H2y= zL2$W9k3E&W-7AGNL?$)y;-bdy*$Tk>a{x}UjRW;p7NuH4Byw@7Wovt42H?|)zk+|= z;Xi{dxz!_jz?)_m5GpnGoi!?y%#jbtJ^k@`4B>rJD1jg!NN%4YkZ9ng@L?eep~B#% z8;d8VE%+2|OqRjWZ0ci9p=WDmhY9%NH{1E@b!8!0t@ve5?i#}ekmSNNUCmFvj<(4; zjRSFXW;G)CP#C{ei~q^Ar3l6*FB*2~QiIpW;z#aNcoLBouQ03d!*kNTk>34Oj76Kn z5(}_#vz0nj(eL`4yR_?3-C$HaD~%{Urz8M?`X}CG`ZpM!po*%C-INcpt1GNny?O+6 zNStbCx4AX5gKh^eEJP)c3%mX&PFYW#7VpUQH!*luFCTSf$H|xVFvU9k$67`L2Q!>E zM2|_b?K)*<8}HY}ylfHO&lKi?lm+mY>$s}nz7=9AM*FD8u1JVQhW#Wpx(`%Tt*tAd zq(6l|Au#L^ceZxSxod@1y0Ct%gvtS0c(&Ofu)wN+dwe&hj!!5-)p)JfEEs01f!!zY ze=IZ#Bm?Wf6b31@z3+TvM)Vz1sGUwTft{1}E5#?QgDS73Bp?S`BbMqTqq?5Uj%lE0 z>C%!9vAkOl+#^V4kHfQ`en}BGEP_&3;(k6_eUEwV#oYmbAz`X$(i3(C@`pHb@z({u z_Mu_zD0JC69>4Xc#tNr&szMNKb7>3mKheVz-i8+uC^pX=9_y$R(%!l!+jfZW%%kTh z5!9m#oii5p{x0Y4q|m**xBHndUhgJT5eHh#zB*Wh_)WvV^WdjHfC(gR!^+inB65Xm zoF`4C#&MROjnhFrRogAeQ*>O=9-h%Vo)2Tku3~qZ?m*PTlNZVwhrc z`0nX1JJO%<8;VQJsvz$bdnq4%WSopLw4Wv20l$R63S+h6Zbw{gZZe@tKxUrNQw~%x zp;pPSqr#M>C$~5pT<#IMD;~HU_7F}zA^*ysg8rBZK^-n^J9styYl;1VaHdEwBhX3Z z>H|3-vG%?9f9H^TZ=2EJyxJHjoxRe3`)UMp-{vQ^Ac3Sziifkq&2FikVz5?Ai*-Dr zDk=W6z9+1gzDF3)VcGuAkdcm$X`yKd25!hPlT+On#6d&9C~LT z{$_|?c9n0OdBj|!?H7g>>`Rb0ZTQx0RFJ{6@{wcG%O7kczKV8>TYQRb8b5~S5l$?GI7T1INy-(D0u|N3hf)b!BJN%6$eUg?i zG{}^Tp8F>v2bg{3Yc2>?R{ZVJB-4t4-%_^*!+qU%@BPd@is|{!me8S+nAufSc13Oc zuO6`_q%7^msq|hL6!7q#&m4HNbpfH}-h&i+<(Jpr=Ri%om9*dd9K}%?NY#qj5O$r|;_Z*?D%12*$RE3mrbj zE5L@oPvW_JuJ`7q3janHO2)1x-(Q|(~;^DI0g-UsgCS7$>) zGr@QbhP_|s^wM%$I}8rG4kR1ge%e6w(IGi8z8?;Jgdcnp;x3?g}&u=2gc}n)vCJj5hPl(yXk-?0{oP&4M8%)XmynAGnhNP9 z*O&9bte=ZlVMndU*4Qk;J)0B7RI*k*nq@-tDv~6`^xlW?S^A@6erUJ%r{%WIIyMW> zFV%{a0wG?mF9H2H`2)-jfGB?{R-i5s@vpsE`e$!)f-tFV6MAERNu6|l+v+8IM{w<0!%Dlam>pI1=c zx?b6cvhRN>jpYX_rMocUZwW7#BG~tBWTZv`^CyBo-NqZhnPHmbZM)vw3AEVoHa9cp zDfZW%H>a{C8U#IqyR#^DfsQ#SgcR0s0)KYG5JC6HW$;2Uq`5M9deAVQHn_V93?zsof;^f(^hQa3&-fD}{ko)Z8x4~wSt0g%rG4|pgA zE9k7_)|P`5z!;=(JB^o@(oOqFko7#a#$>GBK`xU|kW&ZVhW#CHt(+&V9?zRY)Jy2O zg%Wn2*!Y!P+_;n~N(}C6Be75!LvE@Tj=d!fX5YzGCHxFUha+_8nIQ*RcRlNna3*nY zB(%0!#}f(Z+#b}er(UW#e*eaeE&s-iOEM@i*wCX=TDKMYRoo`QCr}|&pBkjsJV#E1 zaIug0h3QUJgA;N`c#(|zaN!qsM^*!`zN4Eyo3yh?gEo7F-8GH>0S*?>e2gZugZh(5 zZv;D#T^l}z)jLLb=1oBCqfOgXkNz}muzMJ$=IX(VLa4XTW5;^EI?ZG%HU0vP&Yx^t z3joQn!~IKbfnRNiq#OPHn(Qtpi=FpKns2JRn{I+Iw?9|65q9ueGQZT*5sQ`=FAH%f`w^`d4L0-tfeJ#}WqweU<+RKX>M?LQ-bB#87{W^-&-@WIDAHhD2u zbgCN(zWK5|i9X^+{w}`%ju_1A4+T zcD`}Ft3mw;kRNK?u&s6f1tbH2G2!1p5@=;v$-PNusHubK2R}3twla{994s8!@32Wm^rUoG=RFHLdEdiTRZ{kS z;jqZ$6jkFSt@&F|+J+r3Pc20~y?BF=Z&r48%zg|CKOtrwQ0iilo#Brm3wwUWWq&xv z0IMk9YvdRsv?_xjxd%P((VeCCP~aa2W4CL+?Vir)0`{yRDH&xyyJBF!lf$md{T*%T zR=Yr9zgi1#vUAN_6hg0v>0ABaaDV-<#(b2RSQTq~*#@8`3C7G-**=hhMkOk=M}3bi z*L$953VH4Ja0|{@Qk>9qv)eF^HSI!>fJ+K33yUNs%}AjW;~90kIk8vDy>Qy#;jEbcvm z)78+9Uq&`5X8#DNkkJ1cx<7>{ekVs;Hh9ECfSR>i!p>Jer)4qNDrQEn)~d=xDX!M1OzJqW?n#O-jIxAE{+Z{B^&9^ z2UVyl3SoXuxu*h2kQ_Ho=?lzj>-TRaPV=(b(IKIP{-ejf4Rs?r*~09)lgU=W7hFdV zey)OK%Y2Z2);u-h6=C9e+UNV=BmKkUS6sY=7R^BDpww+$+IK55j?tr$4@FZfsvlP- z3{T-DzPS$=ukEw{9a`F;L)`f))X%mzVt1qH0}^2d;Tzcv%{zX`gc7GC?K9^%(Ho2v zssX29-q#>=r_veJ`TvRA-OwS{%fAB~KGL{qCB&1p80^0KWxwuwELPjog#%4>oWe7_ zblS6z=h&Q;tSEf8Yotkw-7BFDH*Mj5wEYgjs=%%gId*y{1u(n!_f4eiar3?s(j`P8 z7bF2@7xy^&u@K-)CJi3|{_Liiq?dV1x|MfBM9dzSkzHi*8?6qA%0;>koX_B<1Io)K zd94i4OZ3^B58Q6fJz z$DB9xN6Bl;X!|y@;_-u81;cHZgoVoJ}KOpwz`b|CBUZ z>k)`Ce19K)z|();^^LlMu;=&mBwrm#8^Lq$LL=^I6v8qqY;S-a&>?hQnLH1{TWr=m zCk4gdgjZEv$B8YK9!2Ld4S%m&nF8uhY4{v&?@^NR1ZCQsq4OZLzR5si1td_c%D_h* z>;D^Rb&L+RDm6@rSjcrflZkmomrz2{noHG|73Y8u4mUgt>JjjJo!HkHYVy*yHRf{a zzLF3M&I_N#7qjxgJu3QWmq7geg%sD+AN+e{oUc^?YY4L0zIX3k$m?+0N?xc0!%y1s zxoqq7B-e!ASGZ8vMd$PZKkR#Ta>TIkw7I@FsHb4~zkvV6iI$QOLtvguR~!T%1_Sd2aNTen+q93!evK!l|OWH@=9iYu|g6 zv(ttG*}=jST@Yd|%iNY4YA{y9-c_*Yr8*>l0E%OVi)$!$gYmXymxL+RK;8>?6Z#F;qK1hsbl zP@mgQQvZbIdobr8-j*f?ssg8!B1MAE9P7wu`dz`C5rbgKPsjSsi7Uhct|plZTPtCN z%q$Ja;*Ebz?_BU97F=deeA&?!IYvm%v>8>T!T%Gx!a4S2MYb%5NWe@Kw+>iu7U8$> zPkS^DLh;;bScexs7`F3}#y)|@y1`AVzd0ZaqgX!u1vWsh!XFu-ZxPN?$U~OSp0hiQ z9AR2`R57}HidLBks!n^(d+@fwKCWKf_bsCI3$P|P%S`p|MZwqY72whh5Vy5F07EBM z(oR6AXOn5yaLZ7wUMoTRfn40^ ztmn>W#rnMWRn~DBz*1ihd-XM6aM_~hoDWea9n#uaGRme;H*uov_dbbAdFbqrVKGj3 zQxH>{V4(bE{-xhg4kC;!3@_hM|BI5{`!}>U{)!UQJZ5Vf7E%s*cP==pZWLo}{GhdE zyD~;AO%2|*Hy873IIDRfdLypa2n`cjQ63s04$5r8gwQImStv1IMAgYC^;<*YS`@fX z=(md%G}Lw6RTS$Bmo`Lij0b_XN-Hqn@NJ=KJ6_}MskwgM-LVnBR~(b1MJqo|%EG~! z{&M*~28beoCSq;`)R906!E4R`VQ0=q-g0VIrZBYPRgH~r!;-Z%NN|~2dJjO{%SezV zsdU}#&o+?B@9~*H=LjkGtB$aXw4_GJab5<323+IN%SD-Bg;8c)J5&U&3sN}krMhtG)W~=Wxuhs?u> z;EMbLGH38WpS{9Kgl5~96a@x^hP@&-%q_uYTOBY~;7*z(KRZBqZS;VIWZUNq!L-N$ zJ#^D05Y`?7V@Aa%I5^B@`YgUDzvANJh(tWL5*yFg(^EIql|I2O4T#g?l_md`QDde(9=K%;yI^OzRFb)M>s1Ezc*|Ww>^75EV#WI8 zucMFID`@#C1Cjh<1wA-8IFHl;l&^Y6)U`kV##58$ zr}SN=`dm@%{)3>?Nw9x+ty$84C1L~Qxe4a#DsQEJDXR}7MRXY% z8XZrGRUWozf0=)7<;06hxD|DDb2`BP-U{+NYuA`_JI*^3 z{pU>AETXLXbqr7_foIE6dGlX9XWE}#jIKEzNNRRTlji+NU3Byj?NBD}1<2r>jnBa7 zPX_S`8e}7O$SCxtn)nz8dv^ZsT#`QGf(|*^xi|g}gkQe&ohU^5MuIf52}+&()X~gZ zZCy4pOl7XB<*j?j5{!AO!sAlz+nJ|3{1VLxHIY?H9G8874$S0X8*o=VHxm9%$Fd(} z-M?-fEB-V-%{2m2zFh}`9P5ZuaOGzG)nr)JVynOyGqxbp2Zx+|%3^!6q{92i3RRMTN|+WM z9o>rB>LuDY(6y)mx8`30U;u-9^kjR!DF3)=fy_|bt9SJ4yWzo1Zo^=ud`Dx(xp`~k z7SuO@yj-q49phw2f|J}?i&9o=jSj7yW7=)fUIc=xv&#JI5d>NAWl2B7@EZ!GC(ib| z=o>XzM9gCmJ1-uo*E5r)w4PwI7AY@@f{vjmu_y1h6ML#t2B?!}G=6r8to*vCQ`^+F z1rybYn0c>+*|2o3^QSUvxCXOw7bp-+N?&Epu+>oE8I3dsbfcH-I{_&R2#Knm9UC%X z=Cz20m-H#T+_wKKTQ4tPn zT3g-}&*ZJ78!>!n>YB7|(YIQ1&)+dhTp4^G69gF8&G`H!>OtX23kPMF=_&`udcXF} zy%Lo~UsRWl*_Ec4(gk5gwD-{IohYyp56B!;_3pw<9OE29GaG#ML8LrA^1KxT*Nn5( z+|yGFSX?SwDX6K%6zf*Xt7Zt(0Y{3%xEMdVn?vqf4IEtDH8A;`I5?;bJl;|gSkx$l z+c{z{cN<2oF(#w*k3o~imlM-Nj^U4t2Udt2!;JPcBRqp5% zF2V+OF8sx>^0X+Bx<1F_O`JSV05Y^Wiay6{bJt=^sepj1ikYcQ!7%yEfvU3)mydL? z;7^~&KIn6Xi30&jqt=pR#^V^e51uR)(D^xywA9+Hn#-kfyKoz1NK;dj>(!Y{o$K1$ z&Ym91(Suq0GDStjH_(%5^TRdnz!{E9VB%-9y_1v6TFuEr}pZVe#*Ab%grz8EHRRLEahJ79h}N5AUi5ij(C~3(1cBBiqT3ihFdKI%FeNP3x&ufM95>(UHC zrG&lR0gb7Gomr!IrWH#Ma%N{+^T7SV=H_Tgt&}69J2Wk@k8X{I_fI;uV~O6SroQ>v zK1x;KW0@WD0HRlqz4MsEda|?gYp&?9-W|8y zmq7L+f()gAW0?{?UyKD!y2se`NCpw%`i7mhaMPU{FL%99_C_(vF*0(A#IRB9uNVT; zT>D?(eaJSkB(w&*)JcTd>gSga6I*pF=T|W7{T~|NCxCGzT;H!>^|;HmN0u7PqRx0i z_gKHKA8Y>%C@DfWw#vFbQ-45)sek_5+-%egoKE`|n|wbuHqKl4HePHM$yaPGhtnjt zT+g*6JulMg+mJXFaU)N~AD^CPHNKpkQl^eUJZ65w71LwwC(knw63r>;Op^14p_s=Dw*rU0aVg57*#*8#Fcj7N$^9x+%7hc8D1tC>6{|(jx!lRuadOKR+n704M za3X3T{>R`d<@mDaDNR3+X+TS=CxCW+G*7^Mw=HPvIhKvpI&6NYrXL}p{h#V(yFZsc z8+FxDF2nP;TB<_?brEj%>3b8#kMo55Kq2$!tB*Xh%Idbj+k8z`b1|G$r}n70pT}T6 z*b4s4GQU4!lqQfeY?S@Z_a|>y^VjtsjV_GzT=>!jW8!x0VdjavdNUbL+jQL9O-%B1 zfWBM{5vsTS{F}P}Y`8(ayCN9UV{vLe&-dF8p%Kufc64+!!-V-=ZyP^sT`{M*Of6Gd z@u))=WA%5VCV1xPMp{c9(v+76BcYSzCuwly8uJm~_?2#g!ppiMv=pUmiZ{cgjnTbE zZ)dI>HL|5>5kTcc9V;|ZYUWded|`_{`JkqeuOk=ZUCn(lc?;G^JVLv}9tPrT`mI;a z^Xp|#i4U>9W`=hcFyXhZmA->2Dl8kxM1w&k&CZADlSL!wpZfkD{3 zIQ{npq4Kl8Hn{44ZgBL^`ejNH^gh?&M>XckDPhVBa*^2o1oWHoI(S(n*5MBW3sgSn zI8T9zp%mcBzi<#;0U-dT5G6Tz+&~KV!1p3;l|1hEXl!h3%!euOcCXUo;+sLiWt{9{ zRR{Vp!mT0AF}gu7L-57t5V<4u+|=i8=sZM4Z?QK6|kp| z+nK8wxZk{w?siKJ8rOu#!C$%ieT zaH*&aebS|>4gx}~Y6?iPu3%_;t@Z5FN*r>3O7@D6cV`mQQvH1FRlo1ED#S@W5fz$2 zf@p3g7`V?p_lB{Yb?z6!6|zPH6!vdnv{&NpGd)=b^=lPcwm zGOON+L?zITfCmNZ5(OpfW@Si-?NQt=1rlNZY<&&rjB%|rp9-zt8KH4{=oSMs=fO6c zjBoTq$#u#_Gd=fGf^Vt;RQ{S3b_RqA05e?=Q=HaM?VG%x7>LzwLP}K<88@st52_tN z#dtY;Z4|hT;KYYDP$9YdJ096W({uZ7_u#ty^nYd@oNk$}khxN_z zbqHq=H9xc6iPvsnyr0F}vj@+1eFAW?p%~ryYpZL>=Zlp0E&1WY*S$}4!!cjlYxN`2 zy%7mQ+(j^k1SNn#S%GJMvSxuQxdJm&DKj&(g^f+`V?Cmmjlhhz!fiwK{1*U8Si6ir zH#cMXt%tE{7J%_<-{HQep&ut`MK19DGqy7ugb5z!y<@8#XsLrCU$7dTgA^dWCX9fazXi z;0~w}Ku46={*$Z`4OM>7@gRU=+_CufTG_nckN?wgzy$M;j0t0@%7s0=uL#};ms1el zCh~~;t^t8my*TQ%)AOhAysPW`*Z-b7*%tvcTujxcAyr$FCrN&X30a9A+mqylAsbnN zi$O8q`HlYWC`u*y*Feo7q#Xtj+c^E1bi_8ZO6N!G!Z0F}Bl_L{BrH^sSWle&h zoqa?f&k>n^p9~3%z0x5>`f{HjMWH6SO+?I*{sZt8ZnTty`deao@YJuO4Vw!JpzM{g zcQP^!$WrwC>u>J?y~m(cp~C9Utxvg8|I?aP(3W=P#$l?Lzyo=`vmVlH^w%!SD=4Ti zFM&r1c)6u9nM$ImMCjSIienXM{GSDYu%Aul^77Ygl@h|iYKTyV7&p{uv2kYV<3T;R zAKH~+ z&QC9c5;SA1*7MJBIQ z>TnyjTpK~(q2)jxj=&k+T?n@z zNrY*!F#Q?ot3|NcHGO4kW+SOr{JHk1`n4+#V9IrtK}$Q+IWLqR!HpoMKCTjqcXH$c`c65!TdEXRY| z(Z&sk%3WjaA5I0}`{HE>jH$&`;fBQZ-wFMSOVIx8@r5oYp| z|Bu@F>egsug`%_H3k-gG!N)`dm;h~wMLp6LtKL*8>b0n<2#Bh}6pH<9^jCC6)ilz5 zQ$*^IblETJ;#Zs|V?pfsOF~4{sxi24VzD>Xd?IK{H(O;t_3n4I@zsy}@^kMGnUa!{ z^7F&X42fU{JweXI)H8kUNy+>+cKtKg7ossXhRuHGe41nevD9aGC_|1y<8o8rkFoO) zq+!+mt#Yo1(!IY>@ zWsZaO5clCz<0D_pcf923^6rLjua^Cb_IYYW+RUD61~chgd9ytfee+W;rm7wj4dQNh z@Q|7_iYFv&a0yUhY#bbk3J~wkUVYx9J@A@Ta8$uyWzcbk&T0lyXhk@}gJQA7QhWuZ zVz0~42H+X;2#DHYgGGcz+**OpkK7P(iPm7VAPjysm5MZ&zfV0S~^qC@-AGY(u z4>rI3KyM;5+30O+hzB%U=v3M@KyN(Z#~N4fc|NVw3>dTEP(r)?+{zF%R7?SBxmx31 z18;4OPfb}vOx*2u78L@tYvRnwQ%_p(=(qdv+9bfn0=E^{+q<;<<; zGN6_}IPyk1lqVCyN}%@Pr>PdV%)q?Lmix0F;?}7FMgn!atzzG z!zVli>RJ$;{uWo^hWH!3n&`~whS=^WUL97gsV%CQRn@=g))FS(NXEUE0z5Du!uH<$m|+LL9kFD_gzhpURq zUZ=l*&ttv&Ao)fR<>=^W$j9>rOjtxGy)f(nm=Yz19IcFp?8IY!1-BCJ#rjy#Ri@?z zc^xntgUx!fp%6~uNO*V;8`n@BRf@+Rc?{7byiop3Sc9nKXYyXmOEutXg+}Sci&7WQ zxbcUAg5=^}RxtG`agmvtbvA0VZr&)xE5Z3^@9i3GS%R*HXeq|~u0=ikj;gXm#5&su zZgvLnVxAhHlI}Ez7GpI;Wv|k2Sx|l6i}yo9C1p1bxwwC$$E&$O6gP{a8?B4z-T{h;ISU55Z*%D1tU=$mL?R(r@zv<0Z{r)IVxPN%d z8y&mQ6pja7|DMk~LH#@Z%s!+D?jie-v8j{M>JOzPHwIQYFW$Jif^!1&P+(pvG{2bf zxxO8;SanV&;CKH%BW7L(vepmw1Xo5Cth);i)GNcIu_h0WCc#0W zMca}(X}}Ib$yf{?JT*v}eFe_warCBPHDJUyFL!G24YF@vwJCvzDDvgOD<|aB z7J?YUhK;Z>skfEZBTqa$1pTg- z4y2~pKd=&+DY9g#kDP$4J~|HQPzX428Z`P+1$0tXC%vZyW2B^ z_w%zvuLQ4IX1tpBPi*JTRhbtIDu+2mN0~8Yd{}dAM_@JppPYS!Ia*}TC zJ8|x!PL%1#c|=5)T%L1-8n=t_93{JFfBI{2o6D{gj;Jv|T|{g=&&I0Zmbt(ws2P`3 zQ3*vWSUKBWB-ZR_SZ!sniJeqgFr-|rZ*BsP`pYqLT{!!Qw;MO1_O`aXD;!E&p}`vN zAD)u(rgraTYuckAGnZ5KwpokzFqH#&%EHyPEN8wIVQ#Qj@q;@~=mXx4-lc;V8EI)< zu!$o(x3i%-w91w__&iq4bMvc_JzMEk&00<}#iH%A@iDgk3;f>aXz`B4z49i{-}W8C zUBCq1somh-2@qZ!`93>o9xBbdM~Akze0$<_%e*m?l>!WtjxhKH9zGn9ygiZ}XgXbF z_ge5sIoQ!z8oZRK{cClqWZ2gis;^>*-k|EmHX(XOW4aW033E_p_Bf z*(W3yUpdhAI0^12-91B^eR#S$F9vd6wE@U^!S}Rj7Xot3<+}5&Rx@W&fO5U@X%VnX zu$C-u2whRbm=K+L(SfuuaA%~iEVacyZv7~yJ1`573M%-75{U#f5)L>shi!ec5b$cH z1mW9tAYcCmH4QWY@cF_1CV84r=P}fRU5H`)D=|6d%$~@!KlPOiQp{naK%b1juTiY8 z(oZe?sS-+r<@USHk&=*vlY`JZVfNaSjXT--E~0S) z33~fnA@I{w$CT$E{f*|j?(%j$SJfIAX!Gp?(@dbnWMxL6GT6^q)1yW8HxfyNridUB*{oF0hXU1?gSxcD%%ApcC>{ ztMa(tTmvYRo)H7($Qs}ji1y7|B0LRne5-uV@`^khGOiQVq_#GqV=Js5TSU;)rN4^j- z0&VUMUVB1mWW_^clatK1*DbeRm0a7WO((PV7_T%BuTW{ug5o44-PR+KA%x<;W5FYY z-_d$*hL*1IQ5weAfFb6GV9L(;rDaVbS$EL4S~9>C7o_an^1)A z!rP8#{kQf*u2yZdYcMRXmcWS!WLOyNS&lR^%s=xSf&(L}+BtOD|E5oX@e{|RpPvCY z^$weeCUOGCI1>oo%UIp|UbLRmg{dzs9Xuiqh!|T61&J?Wk8y$b0V|BZ0%unG7BRVr zb9eki>(l751!xH0>0Gts5%hYJAB*jR&!SxIBF4qu#7a;r zN;xzkK`)#+ne`kHv$j>`BnVmr0XJ$-0{S2c*wQE^OS2uEveyYZAutMrMmtTeyE>e`Dn5jHdL6aAYmI}m#j-YIAPK@ zeR1KF@aEtkCU9Q3-2ivGqW4!4yEfi$lRI~pzVTN3UwY=qH+)xpFUk~n)f4DI?}M#2 zT}v}e0&4T(?+#555KeWkOFOY7tnS}}DMVNFmgB2IMqS)M$X1YXFGRa=zHP9fw3G``?*2YGd17l@ zSU6($egkj?S365Loa-rU^6%cBx-5=(-`oyx;+w%b@JcV&wqhgv%()X6FARut;F&2g(bS)(%v5Mj*{Gl-GUY;fJN(>M7GlK zC;TXEdq##Pd{AO%r}Q#}JaSwKm`BNEnMZleV(?6oC5T#3y4;vsCj6T{$1-8FSLSky9FP=MaDB`pn`60 zdn|A@y{)`jrn$+vlMxCU+M(v+*438#cY1D(y>k}j4Ebtb6SWq8;@l|VWP%gLIHXke z21w3La-+%GFK6ps8zF)DDW@g|pA^t(R#+jQMu#*8R%Q$5U@mvENE~3hEfth)l+-N7 z3t2d-d&c%tYccGf(cG>Ck|Es`s`>X%>|_hv3o$}eF_dr>U3O9d7HDBfNz(tL>#M`6 z-nwq-4iRbCv@{3^5}Qr|Nd;-?5|G|BNO!1o3W#)rbV(>3A|bHp64 zV#{g_^CAy-K6C^f`F^*wt+7Im^(H1>aZ<|;^%+emdiq`DHQwu8YVu@5J6w9hEbfM- z_H$b_$a!i6#upVydEZ<;=KL0NCS~1Yb;^QM;W(>oS(T?R%Yy6PywkuX>*EWO{2XEp zB@^#sweb`VpKZ^j-Kn5=JGT>_8fO`buVeS;>2Af6B7I%Q!DoT)6CV+6IYs&&J@H;} z5>}B3%iPDr+GX>go`RIF;m2;DYLBE8C`T}VnZ=2@Gcu1Q6Ml>eyPJ6HN=4PX##V@4N~KU%*evHirvIQ~`uT6)T`s!CwAnFJB)6|XDN zbEjtr;sR>KDNo@O%716cpZqgR9w!f%5-#C@Eo4at6YqGGT8ZH)_NmAIy-+5aqX}yV z7c<;XmG!vOkrruZnxqeN$Vw<6ZRIbm2QtwhnVFgL#YtwDcb!-3N`BMKY9?1r-tDBO z-{qPwpti9aGl1N+KAzpG1&Kvv`ON=s?=wmO`p~jmd1Ex#XZM5rWNAu*z~|J?DjVmP zGc5RByV4z>vD;qJix;vOaJh&fWbsEIV6!t8A~)JuaE0arR|4K5Ls(QZ9(4qzKDblL z<6i`^MyvsIs_^9GBz#c(V|)}hYqzSmq&|Vt*NAE zY#}G<2qVcuO1bE7zy51ZKzw5b#1x$W#4J`+T?zhQT(gf3;Rd2mj_~9dr}W0512;7 zQ4wkA2uwojW5^r!sRLx6_E5qTy3QUM1AME^zWws|DCUKC(WFOO|1O$nI9ZxL3c3W_ z$lC9?$@LuawSmF7wl?uxZcz)xmO9|h`3DX1zV;$d;)1b;i@8)t;bo0w%$Q$c5JyVy zHy#?jpX#jXbx3A)2S(jhB8(CgAE=e>U-{@!(zzYZ`#zKY7BTdBF@bR7!OpU$9d+O6 z(*8cQB!OOa7Ut4>HZS^%G4}Yhf&Q~osuNs}-9>!d>XpZBi`s#K*})Sfn>sXF3Z3$e zk){$dZi9G6g;;Wbf*J%CTgs0H$3<}p3JTtPZ$rM7$+wRz-d->R4*5!wRTS}Np>L1>M>$D`VO+cCTPF~UP$5f{3V{k=NRQin z!K^L|C#!IN*~AKR6ADbDA`I0}Ts0DanRI0d>CoCI&NMe;wlJIMXuyGWk-#rgX3E3q0m z%ZG*u1SS+qtL-4hG3B?T$OK^1p2a`N^GOwuw)bcj*?j_JdoVNH2VZ7mM%-~>Ed!f* z|h+4ysANk!XPbA z&QLWQT;uw&(HLHInA8JnV`nX5b7nYCCjVA^+)`83?6l*#Xg;wcZ^O%*m}=TtWXStC z)7DtfmN80MJ3AloHv;S72d}fn*YL~@o88NhA57I{Wn~FgKL_if*ZE0l3&%0D>5ah# zFZ^GxxOBRl+21~*OGQen& z<;^4|Bx^nWD6eNguH$$H9p@A-R)sNAWrJpG@OE{^rw(H_-+2-&x$(fH>2Rn%`oVPle$rZ_o?^$Eq z%h+YNS@(<-raV#R9CGqIutXd-?#=KQ+h&RhnQu;~4zr6y*9gu37NeB0XAHnGBIjpI($_O)M&goI>X z2p^#2_Klji6b$VLRP82oASdOXmm4;lk7S8q z!Em>N7rWnVo)v-_D6%$&t-1hP!T+^bi2ooLnlukkae0A5xmAoeHgwi$Q6$Rx0{r?< zpIqU5KpNw4BCL&+UHrvfy?;k3da$9!X`}fV{!S}lt0`hvm@?!3x>5H38!f_PPe)>Q z*r9r-ET}mV%3@VOvLirW$3xOnrOU!VwAFS~`?ak51>8iJp+yJGsS$i?ptm|XF*b~k zLDB%i+wb$Nq{?Af{*Gx&MCtCMc!1(B_W-tz|5~v;gpa+o;>J}}rH8)~sAm7kILoaL zDs*0Ky1puuC?idR^$FnRh~wp8+XC$B$aum>0H{Hud|&Hzee!c{Oo3K_fCGYK=c0ZX z9LpuYTRmOcAdfj+Qqjh~U<)`Vc@~PDfH#Rs3RC>)`9!4%1Nx%DYSfkq_CHfCla7G0$dGty4V%=o%l|2E}iz9uNGw(R{AYtAq^>EId4n`sGklK1M1UYEw4V<%UUj-`A zZo6m5O&Q9)-=~6h13)cQT-Xc^C?fr6aa#zZPx5it>3i9#R?{K4;qPyM-`qV zu_It3pIfT>82e8_&S_PQcBn$9ZL30&PEQp zSfEO5+=4DW)za_04BY)5a6vY4W-os|h4TstS!d{}NnF<=Lk16Xj<^g<@UydTY+=1dfGAn`RCp84#xWYK%pt08`)-8JXIwVOU;hb z8h}_gT`f8fK^ceiGAZ_93H#Omc-r4%X;lsNQ?7 z?iDX-dVO(%p~>$Oq@Gs!77XmTfn`%(m02A7JD_I-#;uX%G&K`>arxy~-znN~ICSF? zh%2PXNmFnLI;edfZldwgR-cMotTXEaI>c<5{}`h;HD(FyF(a(^D3gK$X!_{-`n-RV z%1)5wh-+2Hcs+V@Mt*b0qX`;(@5rOQ=~KoU7I(23RlJ;{*H66Xz_og3t$Ru$3M|N` zt29$~082O#fGpSm$PQANE8epu`f0Ps2jfMiy6tn7*?s<~?5BgwQH+q_U$sup&Cr5FFhNALt9C z#K}*F!Pbsn2&4D$ndy2+e`CatwNN4*wz?al-z~s{%4;NV;A9o_-IJ|k;CZ2K#w~TP zf#81oozY%oCNKp4{gQ3a4b9Z2bOH2L5nZOXR)l6ZKz)67g<{eZ;NraoVwROX*B z33A%F`AC~DMUQ=-ldtAl6yXmg5vH=~=i`78>e}%QqC8JK@ zba&2*!Q=AsGNu$88Ph^e{7)w#rLQ|_vBi4_3yXq4^7ma{OCe;@)TGSCe0+RNJUk=j z_CCwR*^dJ9fIPsun%J*WqdItpC>Ht$9`x|zPror|V2kRS5MJtqbRyc;-u~2?KT&0h zl)vGst^f-vuWt5fXfrl01*JyR_Q=BfMOGuIWe`90KW^{?`+`m3<#YvL92u3g_#6Lb z5qQ0##2x8ita<(+qSUBiMNX7DGx;Sy-6frY{5&iz@R)hH`QI??|MLHTV!iB~}TPJDt@u`#p{wraG@-6_ofvjRg771%Z8 zI!|@IdXGRi_biph@nFts4WV$kH@7Iv^B7SXyZhkPGvzZZ94eOn75#zLwk8yy_i&|&rvl$7H=C2e z8cjj9w~IV_fP4=bxRg&=3-qR|5fkj>t?_=AJBfS)sIfW2kLxnv1AG>Km5ll~UKfb| z@wK~y48Wr*o|e|;9S7E%XKJy1DP>rJgl#+g=kreFwBY}Iyr78zImSMQdtQjxh7~;I zPLA|3_mo`lK((E+4Gpt0uBrhRo-`aGjX-1h2%r3w%Ux0l=o|fN(CJKCqle11m-g0` zt#S!gMF1E+iwJ}fnB@;Vpb!q}{Eo{aN+(Qzn0l$L^n&Q2&cT2{w~QSu_~*g8ClJjn z-~&C?KU>Fu`1ny*?8v;!=zwF0!4ihh;LEF|N22Ocr0}ue6^HGM+q+eSjl~>`-i&U; z!VMzDKj!a$$7V*ux`%})_$`{kjEc(J^7R$<)DycQAAY;_vec7xZ+M=VsJQYHs8Y3vVR-xw)(@ZZ0lq+F2;pf7&{tr#au`wlmp!nbCHZaWr??erb&q z<*!ygk{_m>FJr0U44bx-D9fh8ht}Sdv&0d@m!9r0>cNhilwRIYu4?VGDn9REM9b=^ z`OpYnNnfuGd90~b@oZ6>Z$LG1_g0%lQSE))$0$(C9j=9=)TzeWvy6jDAZxh?=lwxt zxyTpeO#w3~-OE{|F3yL%?vvuPp7@BCR>-We^IIbKQVSU}^)P*)BdBa_OhPFP{<^bM z{u?iSE%p6`0W{c4j|VZ{XfW%?@A<>95pR0EPTNb|;y+=+9=j82Fhd2D6M|g@oISuS z^7mq}I(XE!XeKTlABHE%-&$@LzW~)PBmE9Bey3V;bf1lMq3-??JrShljC23uc|h3i z={>l~9Jl3~*J=7(nB=^+N#PEYEHm^xI6M2CK)7SUQ8R%%RXkjZ!LcjFBE$9+8Ik`N+gT<$M3vU&ded9mC zFomJ@Txyx|(=wAouPwMy;;IgI`W=so5>HBcf3ZQC;>Bx3G6mO}u@EU`HLx)&y^V1r z*YEEN89HPF`pm5=YfLE506Hq1GT!5Ok&xQ*xrGwM*AGy@%r_8f zc&_n`Y`*4ks(YzQ;Z-d;WlykNK-f{Mc0d>s;f8lY8|8OivS~t_xmGgD&9M{R_xDMH z(Zgq!3R>l8-RXv(MKD0Rr|8%RXA*;gKMlSrPNUY(=exZw&BrP*HqJHa+z~WTL}Dn` zb+)JO2paeh>QHRGT|gvRHqvS2!K3=|Q3v-K`*ON*!qHrdde_k({rLo?9fMiVC`#iX zBtm3}p7#fvUvo1O(dcV}UY=^$A!x%o!uLsK-m2aG`?QSH!Vr-LP~&q??YVKQ+1;d{ z3%R_XQ(TMA)ve7s{F15;I-*_~hiMJVHmqW0$LQ`o8$8Qn*#xn@b~MEp!Oc(@h5aPZUiD3e&HRSH*G$8X{1~o-3nsk zXfV8Pt;60y|9dXKiIE}Y_HQP>j!*^kymGo=a*!q>Mm$^NuuZTD|5d_240vUn=#oLrmD}f)ZbtYPhpiDb8)Ahv%vE%^fRl9uChx=Fup6W&D413+}3&o6B5L*%u)2G@xAJm}^bEpg*6 zYcTSl<^k_JY|77)@=UwoWQ=H4@y~oNj#3}Y-bC|Dq6YXtM37HytKYB)hiTpMcj61e ze^IyJurWXr-=n$}YZQoH6#N?=4ZyZ~tsjAiT`Ba6C)`T;*7(>1Gwcf}P#8g1Q*+_cBO>^d zxFpN3<2w7gvZFpka1+V1zn3h)A-@sl#`^|gDprO19880>H*sZul)fsOjjio5z<^}v z?^C{Z!*Th%ChSy8!biQ66Ey-UZqxH|gO>eV0Kw2}$F1)G1q!mjt`)dp8e$*MBGa~l zChBS*2_%v-gMBE~V;A~*aqqAQ?UaX3u;Pe>{OTCejt}b`wrL@Gb^RJMKa!5p%wt7$)`or?`}dLBB18Ie zIz7MC$~~)WyWHfP%^*{I;={_eKB%+*=f4Nm@)H;Fs3G)V?o&ke6Qno>7+QK(a|Xiw znJTB8G>)9|0V%w5qqu97e(1-7D9W=<^$Q4H3#}Fr{PM2;_~F#hAwNj&S?vQQNJ~8R+skH_NF+kLk`Xs}rv^(_5jH<`zCl8U49~r(r>rFyuLZl5IN!T0 zkKvB)uI;|i<$aGdWYkJ1g$${wOF10@|Jl@<8WKvdG32ac*@YJphv@+Py>f zBbJe_36kI~V%iy}*L1N^@i#}0Fzy|`STZ0SKeNYxR8X@P@-Z#N224!k+3~a98!tkE zKKyOXVI!;}Zy(TF8bcdk@OpsHbaUp}%mbw6bK3(j8*b!nm#Mr{_LHU$7yPK)y6n{6 z*6arY<5|l1u5BMPr#PdvY#~{Zvczzcc`p|l*sl&GbJr^^5#+)JdD&;{DE(qz*n_k! z<#EBS;&wj+x5|!TgAn|qTJWt(r2gKjM*;S8rhOL0voyui_brPo1bea*ES%H+<)grg(F zZJir-Kk3L59En3~BLNh~eZWS_ttP2?q-RIV%#e(*`e`wyC)*yC|Ka};?d4J8_Bwgl z<-SVN+(!?=IG-?#dY9Ydo4yy=gcPSssnVyQ2YLtYA_OQmM`FyiPEPmjzboepP>hNA ztxbte>abYf1&Nef0i6FnLoiy(5(m|vk-|*)Jx4e)2knSek&JrM$zJ2JJs$Flau2t9f&D(^K??|J1UZe z{dygo8lWIS`ii4UQfp>h`5-+0cB<9$0TrpN6y^TLo~>C~`%1}*P1#Q?5mkUSTw9*B zDg^^HQFcA{c<=i9fPK~_H|ru)-bT)n)52tMs|bLG*+X#AQaHO3wKJY@k~`a}IShV^ z@x%sobnn;!dxuO|6}1>Zu6aolr($J6j{(5rv~nZJ`qYY0iNq)TG!#zyhUu$DKv;c! zjmLWsZipxNe`Fp{%=f&H38_9oOis5k%^3Y?INtbgkSF|~AP>cdzT{gs_vE1Aam;%p zMET&8oTl@0EOguGNCZ%c947z%aW!0|$L_G1%N6pimS`mZ_ZRgQsyDGeSno1fa}%^X z)?pCUuch#T=XLo+{oFfiC$HMsB&@gy?G$VnUfetq6Q%UtJBP!djKv8Lb7WHm_0l+L z6x+ERii-YoE}&qUG9|DjvelqdS<0Xl5jnibRC z1{q?oYXQAyB>Md65!|qudW^=uN_-;FxY@038N5@gfWEK3?iuXt?4R4(vViL0c~EFr zn3kz2!`k|~rmQU5Q2K`NIA3CS_vvER{{S}|xD(0QemC=wD>7U}1gbdSomV9Uh6K;% z(*qP(4`Vr%Vm`(V%TQ5f=@wPxD$b@$D^GlkwyhV|S5s6(iisuA@bna}tF0aF=m@Bm zGcceAqN@^5q!DBo{i!w^u}d~pJSPS7jp)gbt`%2EG9Dh@1o`2Lr}vgj^{8ED(6L=K z$IRANP02VLKBU7}#_ax*Q_X=Ta4Y`e^Ts?wRVva9OE|Tj^x+syc>K4H)={#kirB)F zS-l+tJ;zpg8vm7E{Ozr+-0f|pQsla&ETLd;F%1>GmZKWJtU34`4-dph5fpGRINCUqs{9&6s>}%e*)FK3AxYW&lMR(X!Q7Fy&ZOR1^^!8v1?+1r?Qzk1r7i2WRr_ zOTeFU>o={u0%@#_v!lD-FnV@}t7GN<{UjHZZzXQ??+0TsW~xSg&L*f0x1NDrQXPyE zTxqdMwV%-?k_>#D4KeH`--j`pVdu?WXn!tjXn03SwKFN!R#8ESFnivKpM}cA!cyYx zBQGC{GS|>`awvd>K&U7?*PfBA9$rpti9||w9a;%mm>AuYZ82tmKAbgw2oEf3{NCf* zR4gOsRS8|{=9sYIUDs-R`4>n{{RL72+ke*AAC}%e*V5Hx>#&jN*g`{Ezm!1TUmI{_ zX}hg?H(|hr0zGaxE__M;g&_R;dtZU;1HNL6`c|$|P2UJwb96IGpv3sw0 z7I4Y9S=B18u6#hdsBP74!4L&%Fy>acJ^A;`g)X^ihfxiTEt4w6;O70xfAjro31iec z3iQ)#Un*BwM;;_+`%&Uo2)9kaWXh|H)9dq5+*3vgJll2CgCE#w{D1p!+Z3Jmd^+Ev z*ScTM9Z>mTaKPu3MeqUMv z?Q*ALFvk)6!h-ooaoFjVhbjUYUQtW;PWvx7o5&8+p7s+9J<(|>y^NR=6Gw%<{Jz~o zX8b&XI{k^G_Gpj{nS#9h=bD;#3;wshrfLiOerL@n(AxSNF6WFXsWdV882Yz>*?K>b zILuev(1e#Rg7ggix#<99nu#Q9!$A>V>heb-{17W7^r9xch7H}MxJ3*^l)o>nP&M-- z?e(U@@yv){QWBTG{MZ(9fR+MLUXiTH$TnI#gsh>$nzdUX0Gymm|fmUwxw zx81Z0`QN`gd%*+4Sn25l-v-G%|1m#r=z4xAC*r({Z%1_DqCg)D-jq3~{O6mYjg+yg zPmW(e^wLOV&J_cO4j;rmK!(J=9J&zI3+zKWemlds|6-FXj(%pfn`1mam~++ZLAEL%_7&+&aP=N8)vNLv73c#7=Ny0VFu z^t3e;-CNcA5?Wh>*(XtOq1vwuubIIac?$CriR{Nn@<=lx_geoXJ2rhn6I%kxx@z87M@r`}e!cd$w!W9(Z?)A;cpCKve z5TE5;70@3aZXYzcYe3h`?st09QG-xVU6pp?Q498DBnqKa#N7UJBQfgguC>uXnNQ8m z`3NnwYdtypvyC=H0oQo`Jip@%OomPdhgp<;scmTJ<|x(V3MU~Y9j~{adng*v0A)mj zsR%~&fCPc-LVnY$AJB)qI&?8{V0$Q&cu39pg=;JoJ_lYX)~aK9m*;X{bGbUC_kQ|; zis>eZ#|I8A{9To6hf^4uQI*NR z*cu(a^d$BL2WA=xQl;^9yd3JAPeoQ@_M-990e!)1#Ed~jRaW6fi^i%Y3AGuFP@&|6 z3X;DewdUWDdbSrg=`}K2x06u9=)xD-T)s#7AvxJJ!?<|wwz08so5eBYvR!Nr`;IZ# z84*+nTKx{I08C}QYdEHadR9|sXD55c*vN<)^C#d+Q9$*?LH*@R@`8ebq7tjF z+kVD4>xN+5IKb*iuY9xxP~W>_#a4#!g_MjB(y>1?lYldQ+0y2&Y(N;VeK}Bzd(63A zogMiWJRciZqi~`>-YiCcA5+=h2$KKXbv(o?;L9LpUL>QcM@~yyk=EAGptI(+{3PS{ zTdhCGp(mm%^$B?R_4-o(FuLH&^~pUuo*Gj!ebaf!8-*lx{J;?nk`S*|D*JVlr*fJM zEpFc;Jd z)Y|%Nm&tkpklJpK{BF+vti-9Ud-82lx0FGUAs71jjUFjC8wNBl9-pv9jEU0OkYHhwsF8xo zVu}pTYeH$4gQK^^NgxBOD&@S% zeg&^`T9L2V1Z2_cCxE^F%LD_y$*7-bFK}agPN9TVfcw4keXxs@<@2dLoQPyq?OD98 z50$3j&}h_fG+_v*Dg>P_vZu2{BQI^{@|Gkm^ANH?Ib_ERM$)Hwmu$@&4}aK%in}jlbJ|h$PqRCqxlUx8It5_RL_=K27nvwL*{* z6N`D?K0zjYM_d}E`fcS0;4~M}+z?6ryNV=ksJ-&i-?!ZrNxd|OBP%5TNrTl-IkK|* z2K4Sltf~!Eil6ty=xz&(xCOtSsR&j_3KacNb0YJ@ULf1!w2QiJVW|H-JO4=D7vWs5JU5-RMYQF7N1Kt zHtKiqBc+(E{`R~Rkya9zD`E6#=b@ko#(8l6J^zav)TkGxDhGq(v(-s`hV9~!)_WQQ znfxtgNcV|}`LX3Jg$8##a1n3(iDM+2wiR_buFW@I%py^I;);)dRiPAtsC>zO(bi|&bZ9QruBr<&Bxf7hxb?g3l!ArB`hkTb0P&V z1qFr6t84$mx0chOPZwljIb%4#pe8Y+g@gTLj+JCbEY-;bVhkk(b@eNNykC!F3we|` zp%S32yw9eT^LJ6p>Z6~ZoH_4J0;df*j*D?Z5gLpac#!q`&*i0^(D+Fh7UE4=3}`li znzA(RNpQYoA^TjytqGRb91)@yuW-6DBG@`MqZNrzq15u4rnO_m)t-!o+dlW*%U2h@ ztx?wY?$jaDdgkRM|G^qBr{c4T^l+6K4)gn|0I-}Zqx+}svVnKTVhAYOHk0Le?Vn@l z;YntOSUEyTdqK=XhjjOIyue|>QSBEG-L3eQs%#S=Y$D~dpPFANW+fts<&GOLRX^3` zf|P~($C(IR@~NFo+7~PR#O)AuQdY$V3?@JS4OcFw@>Z5d zNp9xIl2_$Wi2ZLFIWva@)87o#j{|A|q*5nd~yb*_{@Y01fvBD&dFRhN`25=+5Nf?QtM2<_nYWQs-`0B zv8So=kykfCArH_f1lvZQj#(mSBSU7n`$XgJ!3&=}{~~WOkxO9&duR z&3iO8pJRoHRxEQ%^!IhOyPw@+gXAV3_%{(;+S zsD#7K&x3#IW=p1@lHZhly%s@TaOdRDDTD#LNW0BY^Pm3yn)1(Jg1(k7D7lp5J_Uyt zg;0q76#f~9FB6*#f3>K~D)6xt4MuJv=j%54D)8ow4afDCxqw)kIPO#F6?!MChaF~V z6m>|1Z9ik+kU!hGN}N-8V;3P#ICKRvQNMH|{}K>7e+h^^A&_Ml7}ggIK!>hv;YS>G z8K8uYkK&YBsValkO5YEDZnMRc0Kl{EDLOd0;7hIzw9;TN?6VL1lAXbMy}oRk&fB)o z8fMU`b0>o@=`q^TO5J~_=sEcd-kisNN@IWR? zqBT#Pfi+QcF0%r&)Fh0ec7QJfKRdB0iJQ|42OM7T>7 zy)Z=x%NSls3=A|O*c{S}{~q?dMY*4i*CF_NVQvIJkQ2 zCYruTL=cJdobV~Su~kcJo<-z}rABQ4S03JxiRX*ONQ5qSC;XMEV@pk=}$C z6|JAlq=mzjEmTyNwG1|PGQAOJxR0{6*2?T!-SXih{k!w8vv_(ap44m?Ty%Fo=*B4T zmWm}FbMIb2pVQUl)Twk6s@XTXXfAZv%UMn3Uz~D7ir7# zW#WHtZ_>&`;zIhlNOt(6d@uC6>J;v}AxpCmL5<4=j%SM1^GeJoV#i&mA;kU_FU^5s z!p2vuBgh1EAUHGFu-)gU^ej^NDu*W&9F+Zx-sz%Ert)0Hw`+yF{!DJc&(x1+fb|;p ziU8scL}|AgUO& zg_wy0W;dF~s#p$WZa_kxi^hJayJu(eP?E|~z!`?t!T2o|@a7ad&wO=w5OAtl;f@lW zvkzm_f86wfFuOK>S|tvj)D#gT#<)Nl@dRCxOLq^CC;0gIMMfR_!q}$j>i0-_WnS>f zswOVX&6Ok;9BpJUB}?F9V~>4MQ30*08yV05x>JdqJVucB@ShD4*SWTR3c4fiwfycg zZ>oTmpa^$(71_AZWhCV$HR*L*y*-hA=%i`oJ5>_-6J($~y%Q059RKtfo*dgMcHjO@ zCI7gKK@WL`*oXl9@Vf)e`_xL?kr%TdrYl2OVHB{rgQk~4?x35S+;((VV!HgN#QdjK zRgmp;ybzdZshHw15&MH8o+75eRF=#*>?npM3UG5ffK9E&RxY3abBytEY3?&sW2g=z zpUvDdQ~%0EFTd-y613qi?A8Ap_GVBZKEyV=G@norn>eA-FEDEBaJ3k}`L`hv>X!-P zFrG>&SCZ?sh<({=Y7#<$Dy21T#q|{zJ>at#;QP4cX-zZSY@g*&VWMN4&ara_E@T5z z94Kh$l6!?(fqAs+&6Ou!Xa(`UvZ7*6SC{l`wFPbnV8~@;P+Ng5s_X8oz>kcGhzM7p z6`ue~CF`53^R!%WWOM%b|AVctCT@BlA$xRNxuGc2t=bAf%roLPR(je+i2 z6@@H&{U1e%4bN1|8h9?|Eo=(G7~DNKS~rueOluFc`UydZGy31OFv~!y>e(;4w^#15qk5-y==b_KrhWR#I|~%!6v0C*Ub9!sW}}!zJ|s7S}1ep zf4|BMeHm*QXw|j`IuC#X^BJ-1cUu064XS3XG3u+f*49itJ-y8Y1&GF_l9JM-ckBfg z0l}xVG)lc%Yoaov)->Sx{Nig^666j&eE@`7eUyf`7(P_~UdUPZJoEFJU&;x&fjH`- z3@*!tU|lNCcpls1S8b6G@No_cF-{%09SWYrJs-{N*Q&-Qf<#Tc-Z=Pze-K_eHejQY z;nMu5I2ooUcGrjdlJ}&ow&Hyxm6wf_0hU;kZD6DpmH3Pbz!nM^^3Q@vku}j|lEuKf#uC9YyvIrDt>7a7Yn^pU5%3hZvtqYV4UTx0s zdU3_m>DmA!!gNbs_d-BU?h3aG{{0|%9@f#@m6Cp>n#8#GyR3<o}vq7(g471sUy&DyAIx;A zkI!#OyYziXNH3?>dgoeHLTO9_n54q_PSWl4q6NA5>Oh|lDXwVY)m2hjiOEMq_k7Ru z`PsPk385y;DAQDO36PuX8^DKYsMZYFmB=p9spnFR$=Qe>VZEpE*k|NueHk<}TLnQ0 z_un>Mw~@pO@5a8`)Hw307DuqwcN$z`R$+FcRa5as!;f7-2BuAEFQ z+0HQN`6934P$uf}kLE*bv5(7{2Ia@c%#FKe=-`1&{?7ve5U%)96in;WlTaye*5iZdtpx$SxL{(^0Fxj$@t=;+K9w0R8DT@ zbXogD+BHi@_aM1tI>@TgOK+d4p%4x)jtM+c;@M;Wbhb%)G`!0Ex|2FnfGc9_TEY4l9zDGYBYR#!?n-0diJGw)cK>GibMK7X1FV)N=z-E;X zLKwSEdpy$hnGaRrO10tNO7Gs^O0Q`J_E$r)V}&Ogn!9<>dtfVKG^M1UaGdJGFW1!> z>H<>??h8J-<4GADQ6cj(E6?Yr6v&qHuXWDWCX%jX3rTD^EB;LRvUJGE%vHa~_P(fo z!edwGlBfsSv@kax9WPL36C{0FzJv_bB7*b2vxuIlaErIZg&D}WD#*Fe{*ZAtwXuv& zOhp7)71Rvi-F+~9@WIF*mJK1u*F$RkWD%u9F$K-I@7RbEL|qE*$VI>i0@E2MbIipv z;bJp$^I(YACVi9F3H$C$P1w!Z?aku*?CgpxA~4}_+=)rcN>RG+e|xz-lT$Eqz`rbV zvC9fwpzu>ntwi!JM|;H^Y|kI-L#P>DhjiPD{t7wEe#hbRlzuxfkHdIYOWL>FtoFfq zl4hO^+jO8}3v0iL1&f?I2{gPJlX`@!4hb6x749^6U;p8B(a&Z2H!1z0k1aV!Rp#L8 zOJNs6^p?cXnqiZw3e0;{I#cODU+o?(%6}_X{Liv*X4eqy4>$rmtV-AQ4i90$6;J&=<6O zSrYW&airDoe8^LFM=dBrRcqs4#_QQ%#%m{b1#~ijR5bgb328$dcKMvkuw_avZa(2@ z6y4%#9B(DSRRh=n0-!s3QX$Cu4khuYI0%g#@_Fc`4~O5%qVIB!=q=1tgD|MComwA9 z)cez&CNfnepXLl3`6)rk00Aw zw+?3|H@E-i%fB}<$!jT!yLgmp4%a{$QG$FG)klK~*>y(ji=sgP?3a~z#QQ~u)B+{q zsyTK+-<0|2+Z1&()$f=UZYA<$>Gw(RrX`>n2P-$`a$ zy`KP|muup+wY4RPgevGI9-q!RY5~8h$gA+En%y3;R$QlS0Xa`NOTn*Nq{YZ<_`&dQ zM^x|K4VX*L&c=KH%YM26WTIDfs8*JHUl8{Yyb&}K{kMyCU2#0<{43;FS zH@+fGf`EG=Shmzn6cav>%a?^CtixIub|_qKcRS3RYpe7--?K)~?KO(&errT*tcO%c z&_M}#X-FBE%6|X)v(dxx!!Uui#+smcM&Ww z`$bL=A>2lzNI*CsIEo7`H@h$Rwh=LMPs*jtS2AWuqS*`Cf_{1ETsL{Gk>Y&#uBT+5 z^MA<(`(9taCQp?8fQa_bW;W0zQYCe%o|5CpSfu z7r&ZRn)oH8Vl@8u*SAo*+Zv&ys;ZsUGLXd8jkenK7UJjUr&O3}Yz4%ometX`mw?52 zjU1;;cWt4F^3^C)IcKXMyEK{=Jnl*cU>K8E=os$jQkqt7Dm6q{O=mpc6z`00t8Z35 zSXX!VzUKlk8}6g-<>u0VNMD&O(y9f*oYhoHMQ+2_`EQPE9Os+E$v-(~VFUhnH-`-N246|xR<KC`kg-gX8TKLN z5P!$m;00dH%$*#lRj1;=-?96^DNb~@Z=#(yfOoHPmU~uzQZe&7@3?h@Q^Sli77Hk6 zil#u6wZL6C6oeCzQJ^R+AbYL65}t47eDPF|tJg;+(iaHfD$N*;elN?F-x(1d5Au(U z0-r}Vumi;NchygbnmoDtASnred$C|c93Vi4s9}?mYUyMYx@z?(5W|SEPAtdhoX0^Q zk-)2+`TV4Pj}@^Qa)wXR8UD3`u2VMqTEhkayWs+ddRHjgUV8!m$U;u{3@?hr zT|2VgiFLUMSImr_{OJY|Y()jPcXqTiwIwdb;x-#Mva~>db_qgFT}oOr9hA(B{TrE( z;3=&_X5@FNElK z)%JEGMnnSVW^tI=tFCvd-pp9IRt6VKZ2lixXx{yNs8TGlm5v1ApwsOgM{~)oq?wlT zH2->HZ=Nr9F8-a6S#2OmMRME8&3MCQ*&7daFN%zZJtrY0MG;7@z9vxfv>;HpbgN}) z1|(MjU|>f<%vfa?^eftDk%4;djNxBO5hboV$>>ANsk0%={b`IbdAtQHDup5Up*AFF zZ*N6O#HkeLXZOyMMw zZ7%*dt71S)URQSRC-%W?z-u_cdm@4pjc(58c$jjv<1U$m9b3r~8<+2VyeE`;)s6(AHqa;Rqly3tH5uGpeMC|Na-5va z*kok?LH2HobYs8%7v!T)myT*xP#aIH2^8=vrdilpnVB)tNcd$e_#8bem>M1JdxS#^cTv~Jt4E9al6RrU+BiPmP1Qq*7Bs^Nz#{2gIbtCjB0R=4DE1#<9xK%Z)e;llKgJ{ckv8RbhD4~s`RB^4 z>+P$cncbXg_R=_W#mR`Cw8T({!rJjNyZTlZd`RX0Ve75qs?eVGVY(#+0bzr5H&Ppr zZjcU1{UTfgN9 zfd}5(hhh$j65ip|aa{hQS63zb?pCHjK^-mCm}qD$o!_p29E)Pd)zAIST)(}Ll1o}3 zEj#`}x7>DpFcl}*y^0`Eer;`SY^L(rqrUqVAKYg2ff0P8|F?s$wCqYTcKx&7v)_{! z&3Vhr2%C1-_5gjkOP$*|F74w7UIoIUD!mtdn#9n7Z=l8D?qJ}AXj7Tb)5iqpV<@~A zir3d3?Ib_klpQ-tkQO9GhA^q9wu$0E=UnX({aUY@SBJ|Lo;HC6%4QO}_1=!yaCp^e zjpt)Tr8>9upd^4p|2(Tuck0baE&zotPeWA*)$o>)&)GVAtQdj8YBw%(f`l0zw_t@w zP`(-r;?!la^IQHI_=wA)0kWxoiptCdLsL@?Ffv^V1QR16emlJD14F@~B=dDC(?EpY z?qqBFJ~g%YNwM9tR-|6s_zEcrd~V4?9ECLSJTXfP)tMBIj6Oe6m4%)EjPb~vZ)fYa zTobMJ)}#<<*>+0031kRZ(n$#0d_%iwx2=(3zb&ebOw%2D^FE0l%G2cSxq=n1Dl7d( z4vjv^R@Eot^DiOYFw8CPs(oZQx$9RAgQ*@@vUTXU07IEr5-{M_x6{fX#2j? zQag2SEV7QFVHuq$P~o2Ti^H-)sx$Aw0G$V|Q7q0`05tqhj{%J9(FXNp_1Ax4WMs-X z%z?vC7?)j%e0uB?q4hL}dRaKcy4_M3Z6&}bt+2O&fq)|3@3pI6m6-`VT4PYxBA$sb>(N~98nLnYAohovA;QM-=A`-H*k|tT5iDZ~mpQ1v=OGFd`U8nF z&;(KX&bKJ>Q#qI{=*x#1pjwEGSO3T<&7K66kdaz&M6o#FpSaKjZX1xESaLe?(n;io zaunUa0@P{qK6y}gGyt8J%PxYzCqY-Af>aQj1d>?iKYLeCxNOMPfbvpH&VN{EIt)5^ z4~7=cBFsDK>U&ntEFiQ@NVY@aJ3L*W>zxv6hJj2&4&xc;MvYm19kG3Gw*8AC3hy@y zN_{FOGaehDHSpxl>r;PQ=?ZedvpFRb9N#}MYYLExQQi~KZ@>@meAOEojn!Xwu++c| zu8+sl%Zp7!Cavn%dseROR@mYX7|W*w|vA--#&NQt{Ge9Ke_P zuJvz6Ef)x4zDvH_3gL@VAZ|aNBOH7pkXQIMJy?N}L4f_)Wf{aWKGvn7KkPmuv)tpq z4rKslO~9}C$sRM`6Agcms0|1l(X7;3AGY0o+4UVx{pYoi>MTn%(bVbLuze>~Bas_@ z*)Jc~CJ6wg`4@-3h94uE#a`HNAA^cUQ1|!m(7)lgZ0Mk^4PRv1M0PQhw&S7!KME3G zIr{3$<~*+NWP_kU8`;gCMkO<`apb`ReN z(H1f8g_XXrefQ$vBsKL}TdqOk~m zjLGmQHkauMZohbqgk-U9*d-?cH&epBS%KY?dqV7>5{M$+^wJ(h%t21#HXl&lT0yVl z^94AI#-@K8J*8lc@RN(h>!Y?}oi~JzCdcsvxE|+q{@5@9nV?T7NpBfp;Z?(+H*T4c z^itq?E8rP0R+u8nz?wbM-klX=KPpdnC_$91pG|Hr-uJ0veaDdZCLVvfs16GZ6oBm;Pxi^J+_4ZuGGUXSAM=>ng|K)2 zr+ob@O7=e;g<*|X7?+CGu{dSZ>=K}mgPOskx`V^OTX^dortVCX3#f%mVqlHI`F^)Q} zLO_-1a8hTjblJ+d2a8DP&+CVt;w8Rw;XUNglqv6KMmrx-vTlP9(fg}LPV0EpO))=W zU>5H`;@0Wy2J|!pnxlwgRLbNQsc{>3&=f_He^9+xP?sF^UcA~uQw#3nv8p%b4%uKA zHw=z&cs2-DToR6D3;r;D?LRCUys4`AAYAm|8pNkAVy>M`&ys@J^X8mna`m$Qix;3M zQcbG~{5#v!qEB95YU2{4uGcupKGthp*321A%z20d2t$qa{6HEGx$%r(a#WHlVt81% z63wb*|I|u3tfA)9KRl$uzdWR$uHZreVt7)|#lX>l)7-63kfP0Xm?KdGjh$I%{BQz> zWzzHzKmh^h`f;=cp*v*IJW_BZFFNW7Jd=)+yInLRV7D|d8o64;hL4RgWoMiMRm|eB zFf>LxVk#pK z@dICeeSf*!O$feB1sQKzxz}YGvi@z(@(1bb2bQmpNtF{DTD@JSNF~iRZP@6bT8}&@ zqHT%OAoco9+%CLwO)eAX{EDihBF{kUc(aStE-FkT0)m`yUy}f@_0sT&&`)yPGw<&$ zfENFeB-6k1E!yC;*m>dSs7Z>8vG2vw>fL@fZmV=!QjOLsGbl(P?^mD&CM}(V{nB*Wsunr5QhILKE zb@CZ*>10q5V?e=6`SvD{PuO#p4iNy$5P+@zdlm@zfy0x6LwA?J>&Y@BbUhlww&24_ z%LGYVRXS)11>(Js0`G+^8m3l&1NY6X@LJ;mZGf)~*^3?#VLljLMCCeZzgRLrurfG! zha7@}Bn1To#-2I16&HxA8trm8Ba}5r54s}j|FgnY1uKZ%h)da@{TZ7kQ=~@MLZAXG z)?Lwy@}%CV@f;i(Xkb5~(N!=Cq$&#jMo#M(k7G;+iM9z9#?Tk0#Q|++qx@_~ZqjwC z-1!ZQKwCYF3%2X(cF8^~nomj-)1{6lN2?#b)G*fJva>2{o%kjJJL5F7ZRxmo6ud0| zqOQsRqOPpVn$t5Hn1o3;EAyh4!!39Wd-(Z}U>BlBASl5FXMSaRd}ximey2a`X2Q;A z$;ACUxUYz{;xQtS*KFO#*ky6}Qw&P1SO2_F&sdn>rqw#MAX7T^4z@|pe7Xzty{Al(BpW!5L4xD7B zP(4r&=nrBi`VaRwSm~OY6q2o`m2L+ueXmX_OOeB=-Uu-++?PJnpMHxWLns$gNs`@( zzo(^5F5k)lO%@w=|4~q1EuVVYEV6i? zS@FZHH?RFAIhE)HOkN=o#D>?oXViCw7Hb=fY@spfme-1P6Z|3y_J%9 zM40B;xBoA6Hn^|&(n<6UR(z=b+dtfZ_l4t;D&~^s)o@M;x80&Bp?h-9wK-RcwB_6% zt#7Fq2S_Qr?%W6<#Pavz$`9rpWPdciPncB#L0vz+>jAgte=avMrW#hktrlP6vbkK_nyLv#b$Qb~$Y3$_L@x-i&dp&Y?gP?( z++R8p?69}cVdRr0BcKKYIK2-Im_2v8xB5vO9U9mDeb2=XHz(Bk*8Tfo3bQ9_0fdUP z9Rn(w&-xtQuv}R-%MESy^7VmokhequE;?-Z2kzetqS;&cY`|P`m>L7#ga$vj7Wc77 z?t&5{@a`7CriB3zq#ZbYE66ZQoTs_6~C z+Ojilk=BNUc`f{{2sst}6jUcg0rY*OF|;f8j|F-Bj|DkFgW@e*YwMaL+FebNzgmvx zJ-DMr9FVZ9kIE>aTcoEJp%uCQ6MNpr98cvSfHmIy0D;Hzy6?N}CFdlFiG=$Rb4Q7L z1N1)Op|d8K7R7acF9d9;Dr}<S`)N<3e$f3M& zJev?ht|vp~3EnS}ks(f-n19ipw$9L=(lg_i?N;0X^uum-qiTKzONTi)I*QECew{tqqd z#$crQOh?N(W-!6aU;Hf!XfuQyY&Ve9SU!LRX7dQpM1FYih-!Efd<=OsB{CG|`iG54 zCwnY_yd~lpPLhrr^U(lcl2|Sb%^M*Mm}ehMmHa~l3GQ=H_^`>I3 zvdL>3EAs}kuHLtKzj;j8tj(7+jd`J=RsslT|7Va1JasK=p(&Ncob=*wLcjc$1rm^F zN%?)XhmY-dAt-C`!jH|aIA2u4`i5_e5d~zXUxZ~IykO3A)4Zd#Bb#g5Yl2TPcM+G{ zY~;lHuRU5?d}mqaMN=rc96`RkXm?XIBm#_4BD>H%Cn2s}vSw$YiYN5nx8D^uYMx!Xa;_WcpvjP_(j_7EGRO zKkA`)*;w_$hw%`!`5#__&f+YkA>iP>-q%yKy{70~MLPDq=*`U`R3GTyHv8`b;-Huq zmz4f`Ph2Oum2)VOke52Ya{Q5YogM6(pVTcv z*G~fUMsh!Di`I;RtZ>@e!1)WsCY~6Y;MQp}+u2gt*R-X5{%lXy>^Q6*gc81Hdoc*Q zU;s8h!LV$EnRH(KG!c2KzMe3>N=5AbM2{8KQuYX#^AAdr@AAk5?GM}z4^647idy2N z&;vW%Y~osIjP5>Mfr)CDj&CQo1&HK$@@km8Kx_+1OY(_F-~1rHum5w5$}pW36yfH> zr3MDhJSSeQZ3`%*T6QX!{`KtY?{8TOg@u;n+hSThQ{GH7<0$V7YO{K2)%GHPed}Ds zS=i(`G~JcDyZtp|yzs_V#lPubJ2SWDGkYMw$=NGJE7ieg;#t6-Rd!mU5p>{iaP4$| zTM>Y=r+>iATkrm)SqjuW$W?$pp63rm4n@;C=*9$zyxB4zOMS&c@VER5v-w-0@$85E z>yMxR60@e;&cFWrIyEjNokisM2?gm=R5Gh}ZqxSQW6`>Q&b9Fe`|ZNPGzoj@g0*{N zsp>s+4)>pc`rx}b;N~O#(R0v7^?dBrwNr<VGH)g=lu)?+1d2Pq`Z6q)uug6>xc z7j5YHF9VGH_Ge4|a?PG3wdZ?~c#=MISK$PyC{UjPm_2#E+Z~e(Qr5G z&`uY?Br;Cj8UgnnoX{0uJ^Us7IW6;IDGi+7n)_ZPy9LK@H(2_xajHf>{qBwrdnfYU zH=^u5$pH?`o-?A#gXwrX8R-`&rT4b~cJlTp;`VoCJai4+t0#Q+`wFh=v+7uJ@p(17 zZpl&s!+|Hl*AmE!eH}Z=LvS)8-$cV7DgY;uy*?CuOCG>M5sl;q^^ z_V%1wTvstJE-uW8peb~8bSykPV_TR$)DiLfTU)QrF5h25X=#HkEG?%Gjy5zD8IAzb z5wK-&i$4oQGv&aL$Cl7AdwU>t&BtQ7>5ct;4WPUF#dC{whl4N1Z*KV=Qv4sU)q~&T zhkBwq6Cd6I3E`{cXg@zJTDChi5PCeKl@LEb6fkRUlz9U`CoRz4H%d~?dcZhwh@RBs z@B8rWB2b+$?0#Jho>N<6ok}naf;pbc{!Q^PG{SV2*755-IxdbeMx{VRAp8ydO(IK6 z)jqn)Q=0z#u~7bGbmr?kCD=kSRC3 z$!nJ~M=~f^;&PK7o%z?VU$)a9bQ|m@nFa?3>n^*%qI6NP#zC~bwpLRrDJA7Tf@Q

GebOk0?@Lj z0Pg-ns0Pl@`Y{RWPCS?N$cL8D@II$8Z%BVBI&c2kzL05fAD%VP7x^2I$rZj_uhfzG z+IeGF_D2@0`CvDokI6(iB9J)82Qp_seqbtFFVzkm($-^nJX7Z2abfh}o{Xsr;0wyh zFh6vs>H$4$OI3RY_dZUi?t|_985+B`u5#7!23hA#EfPxkE8|fDNhxMtu_oL-zvWr|=sNF@!WG3rEc!N@u}6(T_CGf02->ua=?(Xr7dC+ZhAHthSx zlZFKN_#fmdCMLA(?d`Qb`*g7j3F&hNXU0t)4jy5eOi@x%6(FL zGu3}N^KkU%0iX@}^{S_Y&FEux;MFm%?vp@-`E>nirJY@^VOy&(>H4#?9nMdJzJ@=J z<^fDqKLH5v@l>$D3$RM}%RYPUY9Y~swaU`c()W+SwyKf{nm_~4az5rEjr;Qc{rjiE zYlErm4K6Fv=={Q>45Fe&)TRaoieR(%2a~GOckiA^CFbTrPGSJ|*=IXn_ab>TrLpnx zuT_cLbIX&MWyM5i|J8>nnVEK%hW}o<*hH&O!CSVsS1b(u@$L9Z>?6rQk_RN9A9q1_ zc;QP{2&R*z2QhI%wZE1;s|(dnevxQ*>j|Am7A$bfza%QpvBaEY0m08DvpzezPKm-~Qh~ z==k>hK>C9infAjL%s&P`V$@$yEZsbK0*)5_yYFSZ&Ci#7Ko4z_D^JwlfkFwJtz_y0 z9o4BwQG69A++Gkz-^E~nwP2gkm;@hQm(I-SafA))Cout}t|S8D+b{hgOrxlWbw{ zkiaxnSo~=BmG$fJuEM9>4^UR$3;LNCf6)~NjlHM_Cj6=QOJibZkIogka1n2C3*N;% z5RCwHX&%Fq*H9dBkiQ%C`I!R6$nXa;GX3*M-5ixvoWx+D9XKr2iyXwWgG*zH<&yu$-S57e;E0SIp}6Ks4_{&U8i3o z@Q~#4a<)Sq(Cu_5^r$XePquUyJ~`(l)myN1pMV_4@JEKe$@$H3q7w96%e6u`H|0ieH z`8P)Zie6mHnz1aO+vLk_Jnw~QTb%VuwcI@rU0VgBIIKlM8$8?>REpm!J<(O#aWmrWA2itm> zYfK7HDH*J!%`}E!6y-9^-U295d41$J8m0EE1bji?iPjVIsLHaZmhezqgDXqOAQa0*w&Wx80rqYcjTZR%M6_Uk+P8X?k?+p}`v4`I(NH7bOzA zr@{ja@B^j8UV{k`4FiIczd+a>b%W_?2HYksWOP$Nr2jt(xPOcR3H*WI9}E>I0tS5QLmz@UlvtB84a65p3Pgkt zUy<~-1FE(CqiDuTy=oIR4j&7)oy;LVgKJ+P0{_wWqtyU0X>%7JvoYW(km4bbEh7Ln zbgv_(t6lF80Iq5|*^~hgvHI5lwB!6HM$b~UkP7?^)b|EFar>7rY(c-m(NbR)=2Ebt zyykPce(Q#Vp=y{)t@7PjBV;(^@e|vCw2^&KBDUUp{yY@O0w{eoOpBuDK9{&%=MKv3 z?&(S0nOfIZ(F!@!+#PjcO^brH5jAmxz-y@ zL6yB>ylr7Z|X;8U4#&Y6p> z>21+O%&HzyexH1yX~a<67pBQl@YK-tBgzNH&ySFON(%02H6N35F63+dP>gZ?SLfKc%MlNrx$c6IIda~J44;QTvEVlSIqnH zIhO%{G=q}wPA7{la}8TOk2TOcL%@7RgzROAsp^NyW|zwP__%5F&EhTmN(t4 zhamU4_EEDb?SA`U9gv9x$zvO6uH_x&3>)@MqLf&B-D!5bZ@xBBPkQfNK28t83hxRK zbiC|}&}TufalPq=`65xyJr2RN{up2oQ@ypG1fAJqMSwVjw$$-?3EOv-8d)$pH_vZ~9tA`Giro0%w zC520sd<%4k1U>JSd0havMn=@_T&hsG~we&Oj% z$KkeqO~*E2va$(P*BcoNEfi^ozvg})wu)CsVZrZjb|ICw5=Bt33pgI`FXkUclWVeZtMou6<~DO|^29O?U&AACgcB-u&77 zyswuO0XB%Z;K1NZi{xZh#j1wyylqnkYss%CbH1jKld2L_tCp?TWNtv1f%O)gR&{SOV+#MtJZa-qpVFlZ`{2Yh0*cLvNg&n zcQ-|rU9*zjzF5|buzjkL-a5t7U*E-rMA}>)cxKF?VGy|;(LzjSZ9>)uhl9ptNPPLF1F~Y6mdKS`!>frI?O%nhj z!xSe3@smWdFnBN>hLXi>ryqyF7?|ke{kHA_Bt}7!;0?$ZfA!CPcCJE?t?#y1wHP+> zzqARd|EWjl*O54?R}J{6!3vsTQUbf3Yfx(3n*XxX2L-BiI#fTq2wx2~yKm^MVGiX& zZ_iiRE-KayRa?P;B-k%#G%Y47`e99j{Edq_cIx4w+xqkn?(@vdO#6<+gVdbo zPsR?Pl~~5ya#nDDK<|xo;Jt~mF^xb@7@77M1DGm$3$^2As~A3ql4B;RYA;0pMUdDef+!<_l(tlbq5C(gle$w(Gs@`HukuIdf3527DE)2qmhjB8|M+fyFOxL zE3B+>_Wp9%MnZ$ce{M^$tNnrAn9 zzxgb8RSu38Yp3o`Vc4;U@0-dyB|~8ffavfdPly<%qpQox(`B^RYVh^#wz0uX*n=`* z5fN@DS1y8QFG{coOoo5;6RE2XMVkN$wzla~vpe&Fa~%f`bNdSdQ_j~L1g-A{-)y4% zE9RE#QpbGwQcGj6wcSWoKN~G9V8iO(&(O8GGcF~q#l)kR93w}E-AK3U+XvKsouSpK z>u&N2j@*|nC(W#y%JRj%_|S2Scq)#59)q$8B-WkjbaZE142d1Pm(_5p!Of!e>nskz z8C;%IuB6&JV+CX@=w1lMottcjPr>;I)I^hKc9{SxpM2iu0GLXN-gx8&7ByvMN{pN~ zgk4&C&TS`YQQZcuuv(P+CGH!oYR;_(7_J_Q=H~f>yI&G1scO%T^6rd(Zipy}NQ#l$ zV`5@XB6NbR$_=WvN+oYt1Hgh;Z8trR;{HDPQ3!6wV?TIzGab2 z)EsGj(4*`%n6(8eh>t4L13%`cFC4Vs`2MN*Ief>^4W{Yc(U?n;{!0s>A7JfPlg7a#NIvFDSqinbeGk zA8i6xtAxW0(W|UdN#|mvAXa}m6s=}FHB=5`qrqorU7&{I+aQ+{K3~alZ;=r0T= zqVibxTaV&U*p{vq&!*(uzbvV6x5*-QE9zR&Nb0M;rvG^^vQkk5_$e72q9?v&>Q$e) zYLmB-z*xMh#;;o^wi4HBK6E^@pp40l)BfZjpGno-Smkf|vn5Crs>kkZGXS;C>x zdH)&!Thp|ImPAQuHoXzr_^o!}%TMcs`-7GMXvW3;+l&XQ3~z6tlDHe#4r~+qZ!vbup+f0 zDVaYT>)yTMS<|2#gT*jpECuhHv+7Dd68PrMjt&vTn85Gk?UTVF?v9F9ACW(t+$9Ij zc3>#H!C;`)QXOFTpb06ey{N9?JXo@e1VQG1A`dM7F?cMs3S?5J!cRW!?l%X^4HX8j z=~sEODF#XwxcrhveVTWV?nQ@a1Q@PdsrmEcRIai!RO8Kl86Mp^&C+&rP4)w3;tj>v z^K%$_&qeBbxq)v~@>}=7l2A+nwlcPGQhz8j#|Dc;+??efc8uTtKj!AbJZKdBT=wwO zc!viDGQ(J|vrwROI903>yfgm$JAyia4}%rxb`8=*FJurG7_XG9>ICT40m*Z9dFZB%gp zfT6Z(yfc)!k_yG2Xuw_Np)ZRBU&f(U_lg}A=q_e3xqtY_BgOv382<4{;}D^fl?k#1 z&-UC~w;?c=%o6fz8AjWQDniNgbY(5{>%E_f1tL!f=(>LU%F_JqFZx0lj>>dOr@3&@82tSCEMf$=y7Hopk)1*r&7QLsin3kFCT$ zfWLAt0B9mO#6ll}5q>GoL$4iqgX2e=A`%V0Ax2g!gm(WOf6Yb9%Y&&~o4y2EL{Apl zdU_$akgia`(?)Pe&OkIna7ffhB)!4XhQW=mUo8{TugkBF?D&(?FuM+(1Y<(g#~ZTm zAGkdidg3os`7IigP`N;tB6qw(sJ)azyAYJOqi@!gqN1bifM}$0ZrFo&Y22n&WVOP4 zmivosZ0VRXxF%Su=qBORRBc^#`Wz13MtfA1UE{P%ceiKLC=?1nO=}Jm$0>L?cVt7k zaLH4wnZG*XY3-KtL{a-ng&73UcBatBzxJIFRObagpe2YwSBmNy&)o;hx~g65&MoJV z@;kT3{o3R1$>}B$VC_Ts8qGHJwQrDf2^jtZ+`awz>IX2`Xr`Dq6Tnk;h44#z30$1- zdJgQ3?)4>#Aw%_S)aC5o_O^jPbp+=-!31V1=FGQ%uCWItQTcA045IH~gm*%G)+=SS z@a^Fe5buyF|4ZkwL4{N}dRLW1pFR-MBx=39I|L0r0-SeMx8~`&2&TdCHrui$5DR({ z+s3A}L#!C_vh&yXU+BE|N!JvR$6g+vAXIVxVtRL{|B*R$u965-QH4MUbUC(yj&4yH zW}>xm`+@rOLMk)oR|E1^tywv{19K1V*355h#Ieo+OXcI>!G$!TqN3v1yGR>B%IizH znaOPS7vtja8P$mI-xpw&5)>AG-|Bkdho?CAFyoH*xPN$9mUsi{BxiBa!~)*c=e{B; zqHNWYUfre#xXYu`aY45c$sav{a0D0h4a6u>zWiN~I0CPAq|iqtux5Dv24Cc!fduri zdUFE9?d1$K3hT5!0i#ZW-x3Jn0ZkuL>nxD{4E+SE;V!#x!#{tY9A8>>)tOx;-<7@1 zBN&}#Wrac<$QTsV_3RKSNru3{S~!S#+VAg~B113f;RbP@m6>ZIoYgLS ztw0tmyb(xj8PShER(u$;F$2`sJPPV!-+qqRWcOZYt)A!|LH?i9AD<9Y)lJ|v8|7D5 z{F)n3?)HmSbPfna@~Uk-{kLqU`nPNrIB>^=pYs=0sOvPa_g`O&N876D#YDXXWT5G) zR2UO4JVVl1;wNU?r9utXwsrGmS@J&NZrjkZ-%!AK# zQ}!DfSsTbLyD~xbz4xbf`#3Z8PXm-bT#MFqy$VEz=V@No-UxVLd9jBNmhMu0jwS-- z((xX1_vS2m@znVZ_PvZ9W1)34(XM5`L#2cJouFE|w066H83Il^@L5s!9=gJ5NtD>dIjwd8&=0)*46s-J)vE`F2U~w4 z@;to4iVf+gu$=5^pj#MHyq($tAfgDut+?dYR(v@+B^s@fzsflEEqzn+EzL=rZT)98 z$w+_nCMWsb4YHEsP?qmz;`E;eY0iSt)+c~9uy6>{FAmL~UC;KCWTV7UOQHgoM*2%f zKveoaEYAIkzPPgg+m!M&XWMZH#8~xplMNam{OmaX@3X^R4&is)f0!R%Eif+T0$+@S z>OVZ>c=3ay+TN)h;iLa3MUA3CGmgFQ#Z1JXrHs*b7x-xUSq7psR)dI8qvS-oobMqq zE`%?0mM|pE0K3G6Q8R~u@LJG;lOANp>!sY)O~ zjaUSeju7n$1F;zsBa>1Qic)0KOO?j#WR7{rcgyPCc}qVValetvot?exda>ME?`+Q4 zLMuC~XN?uvby2SaCTkQS7fGp6we!d!rj;Gx6BUC&jEzVp`7kc|4m-8e+*9yl=k$ z$$MOvaB=Uo0%NEB^wA$_+_=bQ3i8PDw-9tlAtzl)oILED%6w(b+{!e@iG`g$g}8@#lDm$nET>R7FkS z>;aC(5fg_Wi1lavvEaWGdfDaOg#?9V4;wJTVJL>>4$%`<^ttgVZj)X;C^%53Ig5!! zRuFF|-%@`@g=9}nHJ%J=m`FNDoxL=C`{--Jxa~d#Sodw29)<&79^K!0nADTN5B?pY zb&|iid!iNX+sAZh1$LpHuSz;)Li+ljB?BJF4E)Z|;g?WmrzJT>s(5J6p(Rp$G-q2K z#UbxDt~Mj?AAtE9U!^o!BrZO;*=FQ?G$?!m%2Js`lj&c@#fU?5X|wQu#%C!h{AH7N zbFYKWw9PLuF^C+OgAHEu-It9ITH(Cg32Q4UR*2ITK!tH6RI2bZ63x%=*FMhpGHXVy z;paf??QZ9M#!vm79sYE=>!^yxEmC8zJgNR^eg^-x_@R(Dsgj93$DK!;;i?HbWLC}X zCKe@ryM)L26*_Eew3YfO+;o>CT^h~#<(Jl#ktDoX8vdU2`!Llm?021(Zm~N~2{U2$ ztNB0fmV_%{9GghKX*g+)98cie(*Jv0#Bei#T@k#f4_TiXx!8=`8$KG;B^NMY7)^F9 zzWT4za?l9rQ*=1LYZE-kQeE!q484pqx%if=Y_|}Lj=JkO&ll zTyHAp+v9IqWv^p=m|oc%U^;qmqW(3jz+yHyKuT(We&LCURk-BGYOMl#>p~{Ox2*&d zdJ9elPk{c)Gt~vK)-u`JsNT{$wBbXV(|l0AVPheT)YDWlz#+utyGsA%7$v0rM2Q9X zKz_N_>9^5Yk$Zj7mAV)}}JU{e4?0hxbif1Y>-Xz8S zeQM86S@n`O9rn1nrHLh2>6n(Myqp+f_HpD^>f$CBM@f!TYS6PaX!@G>QR>Z`fM+BX zt9H&om7kj%K3!$T?UDiuU52)Q4l=l1U+13~7qf~=UHWX1Thyn}lAScuq#qIyZ8-c2 zg+Mzb~eibuyreH zCc#}d_rMSSUX~%pGAgYt%?cqA@z05sJ3|FcgjqyQen!nA&$sxuS8yvPqPz5>`{B-D zzeNF?cIm6d!H>$7yR(@u&U_)5xUMv1PKo-9?Hoi{!slCQuanT;Q@uU|Up7D#&9Gel zzK%ptvkC^1WP5F;fg4=)EnA!K6%qOfB_g<7yFNB?+D~5Et9(MV6F8t8mo~a&!r+?d z-unZP4?g>p5X07_BJwOxCFyz!?~SIQa0IQy(M95A3H~vJbcyCRp3TiU{P=e{Eawq=azpg4KV@us20RVQUA1hejbS|FsVMj2M`PyM8gl`Fr6)ljO3me(P(j?ow; z(~I|@L4M*utDcR17RpD1ve5APpM0R=a85L`MXl~vdEC-DR7c##uZ-kGT|pv%_@eSA z>WGi;x!bRdT(UxmA7bflJ9-(~>e;TTMQeGodzG&ICEJjR58P;*h8>CMY1|{Da{STa z(XKKDyK-6CccaIMxECQ=6%t)3ez+<$QaE=i_Iu%Sv&A?v#A?C-nD9?g?R!wV9-ATa zey^R^_bEay(jRk&30M@x==yyPoLa2Lo;hgv)G_tbc;WkvYTqdiuvU*pp9?7mA@Ppf z{AWj3`Y#5whBp*upZq0l&_ zSN3uzX>Cq%b7-TVljZ%x9ZmygTg2Zdru7v3Xb8VsdPdSQfCdqC;gSg2A>Ly2RQ6JC zxc=Gr)f#E!Jv}<)RAOD6hnJ}vsX)75!v9WfzW=FOV)okdD74|uXn%$U#Nw5o6qZYG z-9w{FoGxb5M<^BMD6N8=pGi0ymo@|A;w+_v)ud_CBVE!YtdFA@)?Mk3rt7-wJUw*g zdsY)y+V(MW5}Z_k>g?Z>s*%_(Q`tSl>@OXW5g&=K8cpRm50XdK{3lv{{2Q%!kmG%! z594PW2J#4I759D^Xm>F2KU%PoYPtQ8*<93ViF5fpq;HLK-Y#J#qFc8*ubrdg`*SXb zcP~EKX}0{xPA}-ReD$2jzBBYUOXYsb;U(7}IjOPum;I>ZLs-5S31&I(Siu+LJtQmc zv@8<5zFT~IuEqpsao&=C)W){@j%_d|nfqt6Vuffu!v844chb@AYWt(?Qa(L3xcL1_ zr@2k|dD=IE+hLij>Jz6}gg-Cl@Sav0(r-X}{g*J|{pzv2vooA>cB`W3U>UHZ$aH7u z$WVFz;4LT0{77f5VFHBvta3Q%HO0Yf9_wjgLv?;X=Juo?+X)c}U02*RezB9rzB?Ld zBc_Pp^k;w#%6A;RDg3Nm-{NP8xA1fun0vX}D{NSUOhFq;*XNE` zOZ>9DFs>o4hsc6; z3G2NV$43g>1Nnzce`H-}G@dku3Q}V8Kpox3W>?OUZrpd;)1eQm6>QgkfhGSFe}o1aD28&a8GyHyrYg3*0jKo5!{D#|K;13%Y-&xeD{j8 z{+##bJ-^lm3hn2bZo4z<|5_Ya7O+O?b4(k{Cs(??@IuUE$4f@+nm-H2iWB2Y*_f}c zQhDTw91BXkmuj$K|E+;s^p9}NFKLVvTG^R|Q!No)qEfi`5j$Qu#KpzkmOGKlDk@TL zZyk~&0dA`dkc0aV9;kSDGyu{0AuvYA=;`UnCoIfTTU%S_wytd0;!zeBLGm^hVlQSI zq@O=83H3)`Dg);G`ac{U1>!-hWwDIOotJw2g#{X+P3V~d$lWnj3~-hZ`qTT_bz(#f zowBbOVI&z{FTz1c-{*P{kvhe7zLB zAO(s(#6`E13zx%fi4+h#t%U{wnY1URl3aryd1`NLohvdQ(mb*|&?LtGwK9Ok32s6t zu-0Z@ezaKpO2_PFG2&xtz1RI0c&v@$3%=1T)pQbQBgN%FT0zqA1Q`N4Eg06Vrwa~RdV1CcIIP7y zey1-ZV^br%i9TG~(y_4xcD0-Uq&#yz0f88l0e$g>9CWBX z(h7mGZHi@TrQ2u}hY#ULsKNVLneeS~Z}ji-2-{XY&KAdHzL4n8ZFQ|vZ$$BGC8#5a z95?SLtl3i@S$fym82AOwX4Lj3Y%*x82HjNbJ=wp9djMSxsPT|TY$+{32>@>4h z@^#?VltE-~TOifQi&H`ng@h!RcDKge?LIxkSf&99nZzD;=ic$3gwr&^p=4)W#g{r6 z18)NM2QT8TYX4s1Z_VWu`(!f|2=vgT|Ke^fR;x_L>oWK7K%2e&a_59}Lwv5By zm#!4?(j9I}QL=8-D{u`ylHK{#b#XBLS;dN#fo>6b8{BhkJBUM4(G4C1gCTWH`Sp>9 z7<$EKjCxeAULxA{a_U;YyMgq7)c2>AcV|2%i5qKqmPSA}E)7wkt>eNA_ zBE2P(><}ZPf!V@65WxK=P#`%0p@&|&<*is3Y4?!iJcg}lRjgYTJ+2@!Hh*6L67j6~ z<+lqV3&MQ~>j%qkjZulkn@hm|%qjUCj9z;h*c-LH5aL@Vw(QY7Vo^`CVV)-#`v&s2 zk#Gv}bgxA=o>?|{#(ZaJV53m}*1`EHpJ9y1b+4RViA3_`ynU=6DQvE?u(M~HsS5*o z34iHtAC#J1xf`6F)&F4Mh{Y%PYC#q(<#r*1%MS*Pil2eva7s~H`qj(%I=M}>qas!~ z{EKqCGrw`yI%W>nGC z_LgGu*SXg54^M=69n=>~NnxtPjl;jmDJl8xtj(vMTzmj4kNT^ge_k74&J&=303ivt z<4sK;fPXO$rE?1<6c!Y8TlvGCO|KSaheb8wz&h&s)cY{u?_W(F5Lp~@{AHZPylLF~ z&p%1sHtJN9e`?}!dX=-nYdBn2r%@pLQg3?Et=g`AZJO^}_YTbzXZDso7^c1Ltv=q( zLA)UCIU+(5ACHVfU1J1)Egs)yxm$go@PWKgV}&=F%WVJjK#n)JLVrvnKz(g{@FtDRk`Z1S!`ggM8A-1U) zcl*DU!cU;MV(dr^_OeDXa_7BIMa}U3=yk7ucAqoxb-!`mt`b|}wgy2nBRT})!TRyX z_V)JrS;t*lqR=DwIoJfnz{to5@i)TbSV5}%^9)IEzGrTBh^TRd#qq|mgO4To)1GhV6+v9?{9F+LTGo$w?@#fi7VUP&k5Q~PT zbRq7Pm@t+|{5)~jLbVjC`4JGlkK$fCbC2#$I&Sq10dhTn_GfoD z)%5OiwtF}}=(;cH{>(MJhzR!du!M%_0F8YCj0M(!Wne$1gebx+WwL@epF}qH_k)S3 zD)Od{rMBo4L65<`38sso5Vi}Xy5E}(d6@5@b)GAqnK|sx9le#aQcS~(bVob;fBJ!? zGl|`3I4QFh@1nRlnJnVgP@f7koT%{QV2xz*e>eWVsAR;bNHub0q!@71kv^hqp-LV_ zP?8V3XnhyJbYU?xo);Mvm4G$p%_Nu`0rmFPbciwIGkDndhbp~BeVVX}n6-%O_)tVhroBcAdu_N&>m&pXhM8L@gS_VzvEqJETF1 z!rg4WW-L1AkAnlX=7KM`HIsEkIn%9fS4Wg1*SW8gDQZ73gKkU#n>Act5Cw%#Blcsk zc-Uq&@O>&zP3TcZ_0tvWK$PG2_#J-iEJV+y3E#%Vowm-TPfExGU000F_WzHouMCL7 zUB0HfJC`m&K{^%?L_$(fq!H;(=@bO%lukiH2?6N_C8S##qY7c6o~3fC3wRl#_lr?=OByPuo+*#}?t@;HaM0NjTv*u4{bV8h>s0 z>FzxGE@t0*UCaqIE%UhCELhFDyU5aCJOjIHtg&+qT1?(?T3T8%xhFU7q}y$$pbB3wIpjv(%tgHv>`ilc)a;ZeD-j)V<`ZKYM)yK5abYTI zU0_w=_jZH#?IjA%+asR35}O^~K|e#cgvh_Yj1VBR(Pe9kKi^8}aBaCAr}?Gx=!^M@ zi+#mFhkc?^QY5vg~;_NB>cOR zb3dBm#7UlkUb(SlO@yCm{};eXd3ki(#H5uc+^29 z_iA~kH$IT_$ql2gDysj!j4p&1MuDpntV6k6wTS{r*t6K&N@9v(U9Js9)k(=vUW6KG zEH2qFfH&9`bEV2#@R+F~r^d|;IeN5ew}LiKGojAwJW5(SE$e~va(dTuEa+_3F#P%x zgX`bc@Pz`sG1z0$$i&0j$~d67v+@OY(zm=%+bO%>f9^y9%UL(yAk;WrC*rWlVF}O+ z=(@_2Ut&dB0^G^ zmSznnd7~v;~dS?^5Z{`l0pL^Vf6YYS2Zx$vj@}Nr;ZQI^Ekt7)>8ca_UmRPz_ zOo6IW@hLq=n9+Fgu?c&sL3OVr0V~2%oyX&DYwlNE#KKmnO*q>Esm%;ve9YX>JqIeP z=_*^YWUHrCggYm4^M~^Px@hBQEh@lCuMrodXwKvzTm(-T<>UWs(d9RiT&M!OhvQGy#%kqFqJi(en9Jsp2RKEXA?^Wbp7;Vc^M$b<*)TPU1^Z6 ziM@+c7x0FCtrf36-ePyUtAoTwaviu8k+ln$9 zeH4Z77S0iwJDg+H!&HEK@fI%#iA5a>itv|&ls=A)K4Y4(QI-nhl0PWUF1XJTh}~fp z?$Huz^Ndy9^*M3lR3=A9x55wt%|)Yq#ZpQUFePuvCijW%x7KAU*!lK>q7y-YKoa5c zr2s;-Y4TuYezXQ)OmsRr>}c=VCBeluOGR#^KkRcCNlyhTjE425Fs24by9u&30Z)_0 zx2QvPLApEy<^z5L6%*(jflX+>G*I^;>&3PZA_4ask&kb1@kIj*ul5FS>K`k#mR4J( ze3$(VxT?eUaz%Enc?Ly?fViu@4 zd8(1!la&tuVLaB#iZ2swTBNMn(2equ)wT% z9hjG&?|IDk=QT*8^3}l|3YDDHx(Bm<5>78p4J_LEV6+#1E>SD+@H%6a;q-EbN>s zk&~+a3t`j%n04BV)Yl|yMyQiTckvZYyx29qUUcjrYdcg42%%UQuwVGfZ_IK!v(8{y zg|W=+)=zZ?gpqz$7T~|YcNiG^f3JMzqLK4?2(CqMfO$E4R$bKHnK58>XXQ+6hjVFyi zy`<)m3q9@hxUM+s7R@WxIGTQYozS%(gj|a?u(Orlg9=GukAs91BbueF6}VOCK4L{K ze)?i=%=k@6*>KS^tvN5F<@(e0bRz0G4FboED2tN3KNuRxL&S@1&H??piycVieXuu( zKW|JU4_P^ z>d~!^wemG9w)-`nlM;H2V+s`=1Ag&9;wO>P7a(oi5f>qH?|UCW6~l6flSig%X!8^| z!A3hii%W#UuB{8Ad+7xzhidsZ2+_R= zZKeoXUl2Mt4;khHB$Q=cXW{@Y{iLIvC$AfrGy+IpkhEDU_kSqd^SU5ELx*4NCWgex_h&- ztYRoKto6xfB;tsoZdf-x%-_|6rMZl5{leY$)W!@=kMmGuzMAQ7z$TrDB#h;!QBDDy zYhsV4JjAB+>08UhZ}E03>qsZ!``C^9uz3QdNXqWmT03F-jDgNn+8~-}$=h1EJwGl! z-V_x6%6<-8*Yfq1s4&0GtEf;1HNeb*f|_x0aeb8m+O!~Va2iz>TB?x&_Z_TnTIhPf za~+YHPCAf9WwivLXGuT{=oVhF%019A!F+Q#VVa^IxA`?`aQEfN?MiR&2^SsO}$`~Hn+vndkN1K8zkRAnnH>WOm=IEpn{z2-Z-JJ;n2y78w+9C zmr4o;0fbz;ISag@J>SZjt$zH$l%x=uUs&Lto12rJ4jW;OIG?MwO-mC8r>=`h3Y{hC znnT=FLF7esXVz7d<4W7X09BqqwQKJ-+xAMi&|q)puT9w+JLP#?Ok7?B(bxG%?gUsr zrCi^uD`_A?57n3jXr?3*^TtgOzpIrj8Tq59gId&#ua@z2O`e)$Nd7#y4!v=Gi?sx@ zG%WTzU`sQJl_CSf&(Ak3lYYDnrfWL|BXJcu9zGQK@VjIu=i^6=srq-{Vrv zpDf8qx$OPr<=pGK-t0e*Cq{KHj?D;WJZQ23&d6e8lX~yf)7TmtYcj3(KfdbAbt{B59zdO5L%5(!vmiI;Drm>YGuMB zUg9-bg*G<j`izUpQf5mJUSotk&;`vK%F1a#tPYAyJ#y?B}@dJ2l ztpGWe_Xv3OX(zA74z(g%_oGXDKQWKFp77_6k7MPOgU}G}3-!Bgq!D%LE}(+v2_JHr zX2+=VcA@%g_UT{ao6M|USK>cDdLT{q_BXrj zJMc(kx*$R1zUi2rU7(2sd9vfrrZdeX4#sQA{HS-{m^!1P`e!LumDc{WK;DVnE__=L zB4SsJ?e9&M4((1p`~kQj-3My^a$fr}FPA+u!U`wcyGQ3EbRY*CGY&!{h2XgR^axDo z0rjBL2gz|49AI38KV4sSS3ek6@sd~lg-pHl--(hB#mQ}~a{fo9JN<{fM1|n&2#3~d zs_uW2SvqtFdCUbXf_L$D`$h|XST&s z({%VRyTKH`?`r3M^#w9^XyY`Sc>we_M3$%ypnzglJ`CP@l%{o0CLh?Be(ZjP-=lvM z6HD@sUIlcy=qz0A!vQiM`~f|f)Up1%Zok-8*sz=&)Eu$F_+0k@l8V}No%~VcQAlZP z$1fVQHcafmIp(A8gGe9MoEllUj%zruB{h~@`)7pd?r=mq z^y$hzAQYXv97VHpwr?zoeK^5NvVoPP%X}OJLFeX|{{712h35N}?5MvR>yaneB<@;? z4n9@z1F5%5)U60!^_NS{&BRirR}Q=6*{<8KtGVJ1kVr}#%aHJ|QcCXWNzftSD&z}N zimIf~awB3uf~Rgq+Rkap#^txC&fuz%-#oYE{GF!uEhCO~%<1gk#H2Cqi0|p8h)7Tf zWX4?Tg7TLDFRNid$i85;gb1-edN}t4@VeNazI-mW*md)*g1#$`Yx5wJG`reHAOq+; z`J3RKH) z(RM8Htxv@lksc>0N+k>G0 zz?Z-Yqi8uyQ^{A`7{pn=iSxmqoalRBo`TrEKBX1!=az;4^8_wloI4rt z`hTc!7=(OHTt)bRKbv67J20yN5%B>hx8W5MOGlubE9%fP4}b6W&}84CRtt|ZFA?L1 zv$kQ7$ykKz>B8?z(h~!*(SWWQ@)@<3T%yTqF(=}e;t~N==F0;2!O4!}KA8li*yi-x zi8p{vZMTUAWa?pCnsd`v-8HLFIQjwFXd!&{yh$7A+Otm$GbLH7`o*2r<8Y?blC3yn zz|#J`;UV^yJ8!5G%@kE*3Hhy?XAcX5I(adSAjZF!m6idqY4D_I77#S%)*v4KqbtDA zV0dBR@k;XpOPR-0>0=bc@776_!2y_$M}hq6R>95U(+!TXwWtD)tHZH*EaHAW4CVPN z#3iN|d84!gi@ty9r-)A<9e+P1?z@*W&z)|0vCd15lw%}{k|JX&E@9JpOy;YR%<1qX z92wJnsLi>#`RN0y`h(fcc-`T_qj=-_Cb@b@12{-tT8dauE=82VZ6!3waS3g)MQm2n ziw8#zCHCy;oM&ZyR5eG%@Vnel^skVD?uTj$@vCaUamsAkpQz!$dGLj3GBf!+4$zY` z4zuFm{7=ddPiLd!ZBCc^Ui1&}Zqn5<(&^W51sJCYHZHDMVM!v#lzru+0ZY4il6LTp~xM|)trx_7R(5(k#e)B(BL_uU82LNzA) zVnB!W77fqP^7R)y?P_}M!;!Zv0uztK;X9Y42XvSzaDiP}0bnzm4)nN;HW1+yLUgs! zOL#<0K0sU3@ZYPL93aQWD|YL>@;SZGQouOF-iA}w%sOHlKV1rJM}BrC5LHTJ(_*UM z?YwPh#KDZL{Wx{_r6G)&gB2-Oyi&he3pkWSymgWlS_4(Yq@yKw%i_+M7#)bQ^wGkL zKOx~~sq9-`!3C|+|2lX`_*+Fu6K*~D1`^03-!Qtlzx=-8te{y1sQQmrTng<6_WGG& zarUZ*bCW_F5Q@aZ;72k%ZdhzaX<>ZKf<%-wF~=@el%d1w36$K!-AEuln&d2MbzLB5 z=rk27w{G)mQD+p9aM}2JdML4(75i4tEs*bn*dOZDDffoAI1~>>(hYu29uc z9a3^^L?&T>=o|JU$<$yV{w9p-24n-^im1q~W(U(!}R@c|GV) zH5LhRnp~DCNZn_@|LO*guYcK%vLpl0!@Dx2ckz&-kxVFT9;n36IPAMP^??w2RwTAK zjL+uy)I2Nw>!yF--2uJH`n#G-JPWq#Dh@!Re=pIC;W3tm z0f8PvwY1F+>O&s6EY3QPWx4PFm_hh-@A(o+_hX|0nCrW=#;Bc%-<^*x(i+H8bRc|H z4nWWUZ)esq7o(@|mF5?m&qK#VLpOtVTn*O` zs7r0RQVyb+Wu*1~98lzN-cXdkBN%8*9Ps6kC6mYdToq^BzAM%SVs4ZfX8kAd9_;hZ z8wQs(G7UnCV%PB|ySJ`MP)ba?tx&$Z&%kw6GK+f(V_7j7!3?}6^?H9`xc_ou7(e1-Qp|D~;Bbe_?O zI?_gLEP>?$CU9vv@GB0LfSB!-q~DgEg>YJDoMZyrHdA4jwA70Th9A5A?19;);TIAi z=&*IU%eWV9&fuI*Le9YH9M3|iChQ$_oCR`BLnn}anKz&uPN(2N=b;+h_EM$mF3M@% zt9#F2cYP=FrCs-&T-MaR1`1YdISX$L>6-Yxxa*Qmo%JS^?^Ziu>E^s^{6X74HxUHt z70Q%n9(Ye&H`dFNep8Wrn*YJ0KS7=^>YIavFIVYa<&=*YonMM5;#mGFQ%uMDctp~% z7pX@%N?^Znd^blh_)7>@8E%|5>!pK_x6@hRm4kB(+g zixk*;wmC#lw~_nmp?ate#Cfq*H&p&a&%{F*=m;vBn9c9tr>l}dMwr)Pb(Q#?6A8g- zZp}){PE=nIdzl;96T6BhKrgzr{!o1f%m*6VAKyig<#pD{-+|Nv;4`q|)r$0G89lAb z_zo+ONA_(e^W28>jq;iv$#v%UQvIOKJ?sGOP#^d5bUqpU>~Nuoaj6xdbk#r*V{2fF!`P#RP>Fphm+je~?AmQy(S_f)C4r&%okndV zh!$_7vbB=I3XzNTu8{E7X~i!tW5{y#D8UK`{|SzD_YfmFAml{R;0bI>@tizldj(=L zi>~-kXZ!r-1nh%hB8{;m&|`Q8Q0`m`E1sRE+b7fv2zD0;k+w2q7(skh8eW08M7lrG z4;Col$rkn54~=0XpF`T-0F2p4oPxoJ`zZ}G(kzi-&;dF)JWES^)-xk&iEL~S?VcbwgB z(>5}eWfngrbFakIy11-<+asrsZpf?vuIv>9K>&KR6G8Si2JaHUC;d_j_3ZlU4ECnt zA^-cL%PcyQzKoypl9Zu;`|N2ASFb{X7f6SpLQ|!=SA*~iM`24zcz>Eu7t6o>kTMW^ zr=9xZYXA1t(WoEWOY|D*ti5!WL0!Bt7;u4+&Ws8; zD^B}zs6^CKBm!=(``FoVY64}#{ zZNM=DNj%stkat>}Gs51i8OSYUU#~k?KqvK(@biFyrsk(RaX~3VP3nBYgzX_GDiL(iBa|A>>33vBE zOsTDmSl>2(0DBWepPPs;MSecq5N4u(tCy>|U$>g?s)!2Fu-*^#1#hW2Hn6Jx8{#A3 zw=dDM$0U)_S#G%%_ozC0)q+o-Pl@lYR{ABsPVV%t2S45L)(1+*p~C1-!=E+5cdKzb z!5`|)O}KR>;D*=zzV0!rm=Nt5iy^RxH;f~Zy7M44e(_Qp7?-{+Yt~3yW6ilU zW?9we0pa$)F(^{>z%4_O^iWs))mH+oqbP3|{YRZr2XQ1mPpj>UCH?_Vn)l#I4FO_W zXk3lo{O$EZX?$eN&0VXqNT;8G*TjZ);I=(}6%bN1hH`H)mX%lkj^M8UJBD63=0@%H;?d-qo1n_0nZ>A-gbjNX>ohiT>A{wxCW}w@#+-bUP zf;)=mN_%V#$>8T<4RT=Wm_b_xD53dent;YgS>NaICTWnN;ffY6)2A_%CB3)qOv(pO zcom2iJKqrfmnsn;1q5@c0Xul_m!PwpfXbub`*RBvXFi42vgFX#T+EYRcI`7>n%eSM zXSMI%In2mrI+S|L?^5qwqBRNd3_J)4X5pVOez2u^A--m&=p46VAg@Czl_>5#z%@xn z{r4Wo2a*EYP50PZNg(m1f?jL?$CV4%Ll5=$e=~}VmCXLRe&BSy+|?~4JzAN^il_3k zevvvGKK4Xt`hxN6BX@STo0r>N?M%ZA zy^uJhXuh(~SJ>|8%da;`20Yv^sOT%F#-`XnV?1Cyp_Uxs}7TBqxKx`wJCv$C&=^0jzCIaXLNtC@cu*OUH> zQ>cJTi~x^j?y~ztu{Q9rGON@OMp0usMrY&sj0;~;ZF?2BkS@-5?HAR~8kHPg2;j$# zL|k)qG`TdA6}AR;DSPSp+p13dNcA!%%)3iOz^RM^oWOb}cJe&T?xUlS0IWf$== zaUD|w^#t#m%(qO#%a%Xu@Apg+q*QRcDoyggITnE75zm`BxkfB`aa2T$jlFxgESRYiYY71q*6X zR>NK0QyF5t!i&W)A7Rl3_}v&0;e}%9kImCAyb>Vc;Vl;RxB_9@M)yBx1smpHrXRfc ziV=r(hk{0yKw3Ae(YsOe0kzmF059tAccSWypLaKQ3FlIYc}5<8ENijO2YrnERQ`I5 z{h4PAeN5=I{?|pA!@Lf`9UT2k<$x0r_!W@zk;`g~+_;sLddtoIP*Vb-XNE@URJ*q$ zNfzCc+aEo{HbH?3codW$u|-Rk%Pjfcu%hWJ%9sLj%?J~{?Y?t(Vn^=|CRF9Aexe^S> zbhocvcnTco!nGfxqXl)^_x$uXZk`2%IA{ImJqCg=J)}?{`E?#v{GdU%qPp}7BaLDg z;m4sVF?u(yln}CN3?2r~%5-0j28R1WTT(g|GsD$=yk4jg?-pr*n>8?cl-&;83%LtB?!Y#Xj=QoIO_ zDot1_P9@5X0$w+n+=Iw|@Q#hM<{&`N!#DU$t2ryhu@J8%n;BGzK108GEL+7c{$uM0 z31o|`Z1$&@Z+MT=#7SkPjUS_x8#dS%;o##)i~bFp;Rfh=f**2c1PBY!6!{*%riS)E z)*6nfHtgwMO$492WYgc{0*Dk4dvi_-p6W>ONBk?J^G1Xue75QmKbZX@xQX^XyU)bq zY0^ssz3-h9wBdZr45E5#5roo;A=)oAk>2#YDgthg`f*S%Yc|gBCY40)V2SZ!T_}eK z%4hkx!(PS)*ia{5@itunfS7iZ5_@$Rs^hGx1C{I<+s|IXT+Q>gJkMi(!dp}2h2T(a z-KTF6+$C_N*zS(xygc?B2h(qOGI&@NrbsK z4PG4;hdjJsNlFfU$gph|CPfH$)& ztEV;4GQef)X5&PCL-_2uD^>+`f;&d9oB3Qc^mO)c-WIH+n3wX|1XxusKmh++Xae1G zn4C6Ne!12~DAn?q(9V9Kg7k?}zY29 zJjNcV6m34Cs}#F+sihJKmT`)CR*exSOKj=lO_H;RR@Oj;q8ADNsb1xP3o<^=6mG-< z$b2tfsD99fd?U-tcHj(FV5zy*?v;Yj*4^>K~Ij@qdi?3PShU)VwYsUQW&*I><)6zPXltY<9?x(p(PH!*>pxG6D{Y4UL6 znL)Oq&cR2@ykpmQ--?>LaOi&Dl}JB~hNhDPGg6f*Jd`j|Bm&@EDD|X&9=rdrZ~l4R ze!fi|@^fs|?qgW~KY}*cJD`FVBH*Lt(H7anPBQciaE)`%R}l=hYIS=@(I%`}MJ^h^ zx#pYu3oC)Y8Sdl0*o4t_R1Ki~{3q=S2j7b0Gk9^5T>{yO9`6u=_)|X8W8p-J398N%lF&tZVY|yCp%M zx<~e(D1^V*hVglBsCT_CJ(D6*etN|b8wd;E&+^z>J1)l<{LjMs=cH2x-+d_JrJD-Y z1WWS|ZRI}c7h$j?LjvPu+gh1=I$nVm$JY4hEvuF_$N-w?-Xnr5AzxHcggs(5HxgC1Qz@RPTL&!2t_H|lPBDVNq@Y3PWyucqM$o2w4=cQ#G!Xse>SNaq^2`1?V&K5u zA2Ia6ci$erK0k^LcS5YXllWm5Q2Zp{7_9pRIO4Z?W%f^4O87fE(rua%qnQc&5<^OB%aA)VY8X2#@YPq`=-)fA{1}~FDR|y< zjZ&s^_)(;i;f#pY2!$^G3D6_l$7x5K%K^-I1YT$xa=(%)R$pRNNZ+1?)Yy>gEHTrf zmY)B{)LVSs1vrH|LcQo%U5YHAQU9ebSJm#J0^f^XludZv@(;Fe+!io%duc>-JzXR^ z8@;t^AcI)IbY%Hi8|0uMgT?_P8W6lW!;-R^#~vju!n7k=^OadBoiq%-!V8Fj;E*8o z{*5CbM|RDrO$IMyMf68m{VF|jY>;3S-&E2y$nO;**KM%L_oq$*of6~l`1XN_)`U%F zKn>C@c~0rLk|msA2Cn_{$?gP_>35~WB(gU{(|ROw%1M8c*-;@5pRI#K>?tATu}1ms zcE(;UKU_~DJ=)bJn@FPanMnJIq9O>$p6JEKue{2aRkz6ldXmD*jyBP0X`odf_sL;2 zTqXX)Zx1BNI^_S$7Z+p#s1WL8GTkx(-{OL2_DrcB|PUFfs|fB(b*n)}#~ zVwi~N1QN65nIoR|b%aExwnyG`JGCKp$lphyBwuH_A*Y)Xf84p-1gI zFF{sa-Bt^@Pq!x7^;7IFYw#hYVZWK&xZ3~NB#t5BsQ}IOyDm2c@FAoQEzhpviRjKe z+DG^}*YrSlPdApOoWk6b$eyGaQRWmv?bQzmO)%Nl>EQ1(5syRW1O_w~;7bA)w7l=% z)zmdKY=i5uM3#Ynw$jH-Y=9~KWoT$9+^WHcW>{9ve(&UF>!H> zpaEd~@v%##vb}v7jkxE_t*x!Tv%~OnpSrrbxU4Mh$B%_fIBe0EzQ4^!z!$Z#JTlxZ zjWK@pu=`D99C~b14GLn&yx>3D9st3h3>h?4x%s*tZ5X#}PDM~mf7rTZGgZspf2q;k z0!nJ$KLRo#9g{|26mjyx{AyYVS(Bp z(_>a7RO8LXaA~>-+F=`gOt@xN+x!5wkz_Qx{zJbK)Pwhk6BmbqV~);Z@)dYHaXwod z9Y75dGfcvkBGLWf1kfb);;@j*uZ_|Dr=8Z1u-wSdJpiTWs&glY7{-B<$>q(- z@i9dR7Oje-qhnmmBA12;s1SrZJiVH;1gsOM5(mnFT_roX|J9L@=nr?_qkS8fkHbZY z>FLl*o=!c${N;Pt_^m*fUN`ivLMt-a%g)Mm50#pJd<}jyQ$1g-2Ev;ry!`*-8Hrf4 zL!IIl%#)2#ccI0zIZrku8hiCZ8x`_H`b`anJW7`_-kQR)_{na~LLxFc9^AIfvjz#q zXV4iL8Cd~Ck7I#bnSSHJ&Shz>coyO8ExhaiOuR?tJ5T>pVH!Rq!N)g>5TW1T+SBZF zl~+{Mvm?a8(Ss1JYghMcr=_Gs`4%*+|9x?^-oH?{51Owb>w@0)tVe78e1oyuh7tp5 zDM(QEp3&%ofk8LD80RY53cRWmtrjM_4@ph7|M2uq_sp|ZtMS(v9Ywn1NLJ z1JQK4XKi1-<%Rp6F&CM^+XQ%sy`qFfFz&R9)M8g)MnH4Cv2#<68A}n94ocy50%UNb zobgHu`10?{VG{R*_Bt)J5XOu!mLYlb&Ka6+?a0@ez_;3@3hrp1rzu0b_)wKfP=XdD zyGz{!uL9h@8Q0@fFnOg86b8VH5jzn(%P+%7IZbXZPb$Cw5M(Y{-(a3xU}(LCg-CXT z!LE70yd?a4uklC)ZYmq98=stH>x!mJqPt#1M{^}``fh4!+S4zzz=aQmwRY=AU1fI3 z6lmJ-XTwBsCptGA2VQ%6UM}&_G^nJOwGieLNw@lWY)0_Ao<6nXH>l?7<&6W*P-vwU z#9v?=;S)olO(U67Yv4QRBgWo!=Cv430(Lk2f$(1#B;hc6d4ToY&D)Rf=BO9juFma! zkElglcapu2bLl=sMBv0X9h@&m_o7RlOV#aG&)}qkNumMWw>MX-eJOlst}SOx`vOCO zy?vMTeYGbOx?jL}liTZcNkv=R66obdE?PEU;L2t}R$`g=DrW`oL2vHtBm@VeAqyl^ z^78P|i@EN^z&*0w!Bh0!QSQ@bpw)@bjgwayw65m)R_u%G+qCuGupJYPtR4+r?U{RQ zmiWxB5x7x}u$!?379Ei)q8b!mprbnnqff4M-(b*~i)-WmQqYSeHo2#9I)FE!t6O;p z)9+wcM43qnece@ubu_qy~yebg6y*EHKU|{?_G2$;InCjlT{4%{^*j* zB9EVY<8^Rkej;Mp#!`>m1<#1Bm=kW+QUbrnVGkP%FYkzaw9K<-Dc!neZrQW1R*?EIgv=1U812 zxqTfzPRLl*c2WmUs_zp(c6D5wdOhfc1x?P7Qo8~38d9(BUbkGnV&Zu9>J^JB^dKnq zlTNdD9k4lHUP=)^C(z;PWumLlpcb@wLi=%QO&iv0csnwCmXgtSb-OuQfZKPz!X{~H zfZ5^)*5kLF#33Q_$OTPy5E-9*va)=#^rDKIG{wL=Y9$nE%ZKXja*W$k6ux`-TK*7+ z!T)?%42v24u*k8nWz+UwD)T>CA~Iy${}%m)-|1AKfRor3-9lsqLSq!g3c(hTv`CJD zZ8elSB{o7}2;)vbeSC(nC_amfGunnL;ZL^+g>auH+)tZsqJauMHw{cKPBf~}2`F4s zG4U$yLJ3o0{bsSFW!?n%J%HZeoe28Cml3L4KYL)?MuH9)SRtR=3SMqhF7Wk^vFZe^ z$Fjk>_UH3R(Pk*`(*u4!72kUPg>mK`Q+i{1Bd{4t9k_S<1oy{@Kw8h=uvpLoJ3r?P@(wHZxHI-O5I61Fp&GEf3Vg%szs z6*r4}ozh#EzHUDM#Z9HaVP@KRv6j|eEIBc{$k%4&t;u5?9g}u;1fs>V2#M*I%XQ7& z>B7qCjJ?pdp~osI2s&pCd-c6g?DM|!sX<>edQ86Sb0x|tj5o=12iHe~y;lo&z6>@D z6lXvBNfxEF>Oh6)PScPH{p#dCM{Ljr52hSzdCk9y3;>||rYw!?{$q*qTo7sO*5?Y9 zINg;kTaxdv!z}uY#HC7+=e`0R6pTG~WYS1FlYUxo-I6r;oVP+$kYoTgr7wZK6%Q4{ z=z#_8QxN>r8c0xDVlF>G|Li-`x*6f;okIqWxL5*_J3{+s_rIHTU?Sp= z?fwZY)SlQ+P9tE!UjNmLB!BGz+?9VyRvyAOWLB80-7=m^&0ENb%~$Z?;ss2_We|bJ zQFim&))?&UiqFK~iKbRR3C~zxrnYZ1s(^0HPB(f~a%p{EyfnuUWH5+ciKB#&@^IiZW6Anid zxl@WGpM{h4)W6&A6GZvjay7TFWJYI%mPM^;ESUXj6h3!5!QSs`rov@Y9T}89bb4iQ z0L#8R;6r2|sCm7Spg*15dvqWlHPGYx-|{|y4HQ)l&tow!o5)oaS&>{s4F6OxkFHzy zjOzq6-Lt`Rz{M4*w=m2G463V}KA$T1*|e)4^(U}=9KuANdkw$Uq8*^0j#|+h0{T4~ z2;_@Dge#^FW5}40KSm@50_Om#K>;IZ?lXw^UmA5i&|N7xiX8IZmuWi` z9vcr!Qo_&X_5-53SC%I>lzn*=bYkr2t}xOCMIJFGBHSQuFu9 zT~~(}4%K>N))mHu)pav>xX7RRr!aK(nW|D{F{CdWd|)zl=|ww_dJ?QH!kgpaO>CL4 z9WEQ$h_w@r8sTHP)9^L_5l6``zcy{wLWNowVrSf2#?D#Vb<*p|_*Y(LecV~?k}AIh zM71SD-te^tQiTDDKJ%?Boga54sN0rXZ2P>DQ0;^Sx!d-;;Z^{i?=#=|We-(z&5x+i zW}B<77sH(EK}ix_!dXpCLj^l{)1S`F3`S`Szv*JfIN=?+iM}tW{PIh#XZEN3 z>_UBn&0iPVUZe=>&E~>m*sbKHu(-!*k2? zCwX2hMA9#k?(~_n#qeP${4*`;i65FRH-zUsSn@n?cATuKgy~<461KhTG@BhXj$rp>m?=hF>M_5Jtsfdys=<*DF z1&`lwur1$LYR1(7W6+83So}0@U5Eim)c~@?1Ak-}LK<-QcTTG&h6tZ+a)>s=>r$CS z+FOPxJ2wnvFMT(j(t&aoqHU(b!(MLerOt)h-36*H(vv?^zE?8~REr1w_P(PCkzgX1 z2dG+)2=)T~P=+nd19bMne+?Dg4LC2vcTOd&j#2dn?DaI~J5x){h-elV5A=vg3>zDF z?gDoB@LPr{D}j}#rr))9+H;h6BMkNaHOI~gC ze2=}2?S<_g>RYtaaRQo(oN0DCA0nPBufdE24+_KidUoY`H;vN1Hu0&X&ZBhyh}K-Z z)@3ecDW9f-^TQjJETfp`50E}=%IAX3}@1G_Z>5T<$bLcet?!OHU_y3V=pET;?60W+?vo3shQONp^D z!c_6?yuv&poFYN@>8Ys4(|BXuxXX6w_UT8xnUr;_*o4QT$+i~sCAQSScBf$E3Mu!BdgYNA##&*{d6_@FSKV;R-i8wI(ck6Vn_D%f+v-+rMRNqU(S)l-6O9=G zYzG+l|Bcd3{#9n{e`=aqRt6ech$A0Phl&EX1f%WTO@7o1&-doi(c1$i-1B(6#i$IGE&M|*k&9aH9K9exC+d-hEmgPT^j@jsk=Pd$zrN-u`njp9!^ z4su0kseOpjb$P_TPj?lQ7u;Odm!cS7**pp3DUip)cl(`cW}jIkbeOf2yzhO~%)%<) z|Jr|JX;S6N?17~Ksy-+~cVjwAg|xr99F%)R1uAV5_MZiJUAB*Hi@jQ8NL@PEo8qBu z4LmW`0k#*qAGsn3##=Y)CLZ6LBN{+LIK}(_Lqti#06C^bBo-4DY4VKN!J4Pof-HjV z%iW-LI)mk_a4NJ2mjwj<`Ed`9{HOr3hcz?F))@Tk;#JP;DoiZx7`lRF zm8LHrVNX{$JTxsTK3z+*|Gn>b=asv!^6(U}a?3j`C`NgEcjt6>9b+ep9?EPyi0FoO zWro*($w#K9EE&Tt>XMTwtZR&$gQ;N2#Z-`_X-`Bb)e1MDPG`PeIBmDr#gHrWNU4k` z{7B8N{F}PWG~69I7D3GOO9a!@5)C~B0lG7%D5=koZPAK^FYJLq)@e-!%N`x)xMCoG z5->GDj-cueQO(nC4dh8(Shrp_f_WDPb7_nDi(}7dbfhCb- z{YJ`Z!vAljF=+0zR@cTwXm|I4+q-S{4xdhfOY(XNe|1=nPGHKXasMc#gR4C;k?css zm%I|{ZP`e6c@^Sl7yJlT_#}A#w!$nz;M=Ml!taNQd=aB=T%;e$Z7d_bfDu2hqvlg4 z$@A8Zizy+^mWW&3Y#;h^Ba2@5S~v#| z&nkbo;!-zc>`kj$3wmodvBc zXy5pHWKdJYtU(krwc$Nkc?a|&*R*pi=s;^x_cUtXVQmSs{sh?*X-nVFa5XL2T1Qtm zay0aEYu{_(Dq=a*i5cE(=%uD+D!Tz$=9m2XaXea4=0VB3#_#M81JDgOe|Vlwnd3r@ zaHD_x;9tgJ+Q}YG!>bMmK-Boz*wi$KfN%8^h)~5_S(8j3rx#GQYkUgXj(J#N)-O5& zVV|@?he&9RBRl!Sn&Q^_NAD0!&wxP0gc?WA2}F`qe8AxgN7Oh z=|r4lz!(x6UZ@t-d!gBfRU>d4qsSvV--f~3TkSH2=p&df#xv#9H*0NS!J`)FA2f(O zzo6}%J{1T^2A+iu+jH#+EF&o=vro{|KgMX)pvFG+@0#~&Wr(^?PfyR<6}0MD2>}w~ zXuqH_O^?oyahdZDTdm_==1<0%-ciRj3*CEVCifxJ-xeH@3Ak>ncq=Om{0!(q7-QBV zzW|xDI%cx_!tVJj8(uiPEMR-M)gzi)b-p=s$UvE3!OA;f z0B;2Nec;0;0_1wnSH9w9Ho;5E6Cp&&3FP197~1?;iX!*sR#4p#r&+rG0bcBJ?$rZI z8nK{Ok1c$0c#&}(AS|C@oEZ`6A3dkx2I^H#SS^OWfrOvdn435+bmD26FAM8q0O17J zs6?BRdk!S;*6&DuC-7J$J+p*Qwxj+iW$T8m1cRTh(de<7+(!NH(BCKYQW%JCTsa3&fjV`Ujwe&-mPPMi{e?@EO)2&cdUKvM)_GMHViN8?ryJ? zU3=c6V)r#eFYH0l)TD}GVn+9TLxkfRn|*)07~%QzhKuQc=l=2s^6`CZ?Y;K9-u14viTx9AUVB7qzADMza0anJjK%RFSw`fi!FPvug6JkJ zaj*K^+*TtiMYrS?=8EZrrM}TovyiB}4!ulH`(3;bbMGIw2kD8E4oJ1MXh_FBxBKF{ zQ#do1-wdixLx$Uc|7&%Q?OY4p`mFfXp9qP`6p%#z2C#rtm5BrTCYb0pF}jV}Sm)2l zZ`mS0PijRb(mnS39xFhp1$5e`((j7)?<1c3`X0OAXEyzTyK^ojCH2daa5~Y&%QTt9 z#O1a)8robaV%_5=6o0GYmLR|m40k!-d^v3OxEq4r$6on+Z_e`+o{vItl(3jv3*wz@ zK7~k0N}^F8UGlI<$4?V{xyx$5E6rytxB2oewP_9Rev$mIToMSlfK~(>dg1Q}Rd}4o zqrAyNbp4Z?kD;^qa3pXTv_CPeDolS<>+f)TJrJxDh~Mvp=Wi+TezmUpMcVmk)F;V) z&~F#W2(mA~FKn|uGCBb-ssugqU$g0Ke|`?BzGFmF%9x?@6qI0TOJ*PL@KxbsOBH}y zAMOVKxkWO4xzN||<9NDfe3!nZo%9)VQeN-wpLWvt`VTBY`ENS6?%(Ja z{tf*Q*7ueWaL8nTk~zD(mA(9#fQ&kZmv{K(XSkra{1I@oR;LDNuTfrNyzsnTk+q!t z`_&nz+_r84XxbgBW0R?KR*6qmrgwN{TbPoVXyM%&MK2S!NS^6+i+Oc411s!}4dt4) zuC5i0@2Tb6AC?J`T4#g`~e$uzPH;Xg5KFdl~&S7Z@cC96b8`(a7cN=Do}j znd~1$q?EI_>~=y}+TXBp!_~pt@Fp+(TLAugeC2#s1o?|Hto2bT513LL>m{QynvF>a zejvdyD6UP1j;qIk`WzFw3uGwbLLEAeM3)wVJ!0)1aCgLE$xi#b3WRdrb>|$eP5rOT z=Rd9k$3ZOnYd%v_5rfxmsk=qiIx!5}Mx(k#car{*{Gf(^Vq(;x8Jqrc7O5{_y2yce zF&z=~XB1zf9WXawFdV04jd$STrCQr|)lK0{5&q+We`mb%Yr&+xq~ZG`ARZ2gXFZ{H#5HJX%RDoIH@Y#Lm28PD`~bZW}#z}eo;E=+z0Gb_^#)nk1L zB!zMGI-n&8JYq%$v{+Kiit-gK3|Z~v`l{WzOU58$+n7mGBcORZ*H8nvIHaV>*A4Z1 zKd{M{^4kVQ4p7ChgW4XitzwbV>*Ky;lbMr-nnWP>NvE zKu($|P#c&mn!gMueXYOkA~wf@Gv>8}IxT}lhLX`P7FL=5&$>Q%#zky%b%G&y?UR0t zOn-x-ae`c-$xDD_TYoV!0;Y9_^$WTl&ByqQKMn5ep$vCo zQ^88z!L#_IUhu8}g6_z+364F62Xx_Ia5&GYM`0&=rBPfCJp9L^O(-6!FaX9MiTUU44 zeOpA=8qf&_nLnkcvdTIH`I?nLZe#a7FpqrK#k9x!qSXhMZ?+o6+PU1$KgpRu$yEdL zUaQC^(5p)3+LTGC`TH4rMW+nt4bndLc0W3L1*Yys|2FGc*RK}%k0hZMjC2J`m>3@k zKFp3|Fl|$xbf}HzL}N!QiLE-n^bS=y&WPtCXbY~D(;5DD@($bqoFwQrESdOi^~sVn z2Pdaoh(HBps|9GADF3`aLrQzLEO)PfW~{NEP6hgwxJXuPCd?`ChVOZwEIL38e~XW* zwh$qS)w1YF4vtuWI*!((L=gFB=vBw|2yR>t*r5tr$&3%m;5Y`HnXt z1&q@;$de|iu{WR8Kc{Iy zOYZZ#O__)RzPSVEK06bi>%&ocrocKqC6hXLYn61dfF2%E1|UZfRski!HjL3PIPFQM zB5P4vSy4FYNr3<#eKmkX}%z zN zMXlKb-w$I_{WGtQ4IP}H`u5&;(siTA#3hT<{(udr?S8bKbT)s;zJf|nE!q!{AGJ#;Q+k}97 z_9sn^CAwTT&sKy#(gVHku>SV0u#FEMsTUq-PjxuSAR;26jb_!06KUv~xT#8(0*~k& zyt!K@K+^2fO4Mw{yxiWgX=FB_z(UjS88c9RGh_f6X$s|@MvAH<9k1THf3)07TN^X%_O_s1N9 z;&`#OT674|*$Of+FuIqaIWs4xEvzLCB~|AL6!i%Lvaz5+@b>?dyXCk zhJz{6&0`|zxbOf`g5p^nO0jfZ{f9%rCbZ+>JyQG^bygSf4a;vl%+vyput6>0OZyRK zN>2}%b#-rWixCVYzo@pIhK97e4rDA9n7TihBWfPyX;vc6>89-zlj${ydFF zL=#z<^&p-F{5muRK2Vi_iR{IMKAI?FSZ=J>GUo`4r`=zFZDDtzYzS1W=Y&AUQeXwn zfsaQB47-TNFepHMQLlaUZv9!T#HiTn#$YA$(5=5%r=DTrcqEe| z{ZflH6ymTSIX4%ol04#uAtd0vQ}SW+XmNwOQYtL?d8?vN4b4`s@o~jcR;l=?Wt)TJ zmrtz?o6m5avIVKepN0lnhVli`ELV8^dENHs)57WJ<+a}~%7Lzm(>%ZOblV!%)*r?d zE}FS4M!dqxZ0UG)bR>{t;WkZJXnNs5-K^?Wa%j1_Ma}ij4%IlLKht_s(7OU-Y?@9& z9Q{(>PzM~Bw8zT*`5?Y9#cy&GOyFK%75M&i41^^v1y7NeS&By8D%K`dgmZKN=dP^u zH~{T3?RRgy_eTjeB&Vl|*-_!+MU|}5oFZ-x#2WhDyg1P9A`m8qctCVKkzubm>VE7CifP?J5%pSy}qy}-UZ##iRDZ^FdL*d#Ko zxB7Ryg8Tj2YtelniGxX zm4CfU1q$ROLya)sKZ!kVHCC_#&hnL(2UAD#vQ5uwyJR9Fvrh00Td#iZQm4%ITAMsP zcsCK*3Vle)fRi>6ukD&$+U#t)*ya)U>(mM3?1=TFb+L%(jDZX z_FV*+-8%E4sd<8k)H5Z`H$n+?ow%l~U{SZkSy^AuznpQL*VLUDrp>OP7P|KS67;-X z2FZEn5o_C%{U2m@_e|+KCadu08tN+8Q`=3=Clu*UqBeybHHQsoI$k*k({hZ$1sRTP zgggm-AF)0C+A|V&oBF9s91 zG_Qbxr*0)Xd^2>lWXWFG+yg?DF6on6FGt?&VaIm1uAaSrV7A7BIQTUHcJ!{_U{)TnFm2&WOs}CV+l$qlu%7g z&AsX#k8ZQ7yPj1Rj}$ed?|bo=ud>XBCr0}2)GcT_DjfQ-$e^7_aJX z%daZfu=sfz9vuE$Sv9OT3B2x^b`x)PgnqaxdE<>QhKq6M9psDsZ6?qws>Ii67bghq zG*l?7Ur4xiPvA4nI8GAeT=}~_Mmk;L>}-jYAX$L_u*8|@xI?d;CH5kSkLLN)+Yl+E z&wJOW^+hrn7+if*W?VHsuGuDdlMNm=Q^&*FY6?Rt(RC^aLB2Lq2MX+vL40(cn#rhH z1c9;o9kCLn>IanZnS!W}J$RQ?(I@f0FP10F!lLRdc{902k}b_Bo^zl5Jow;WUHsCf z%yTEI2NSxT^fu{1>9ncn?MTSoeRi_UH3OtT-^ac!q3KN&jwEYJI*b%&@MDHFy~H#H zeqQJO)yPq@enNxO<6|*{W5IE^b8plt!>P!W*|jp)`C|ff+OHjE{nLEph9=>X1-3t_tHL4-uZ%dnMOa6#6OwM--*d3Y_N@U&&H z?<^8L=^o;YeN&(DD#S!FymaZKubW!kiUiK2r5=xNf@rlZM&)!u9^*kxy*j_pv{F_` z{OLGpSItCB>BF78JG~;fbA6l?3wp0}jZCXt_~QbG*+55O9r4}qu;92dThGj2*1tYd3-n$T zuJiEGR?)qKyGc3w;;l)u2S*=-baPj0ZA?GkU^nQ%^Nnr9IeUj)mr4^JI`O@C>&J4F z&1-9K34@E_(#EKC+O$fD)A9!1!%1J>ZaXBZQp8hU{OyujU8}jbgi$-?EE!wkE(yW` z#`i^!Z^msQ>zD$nD=<)`eD1x6AI3k|FID1eW-@yvU0sP!xZ-ii_oKp118@TR^=;fb8gJ(n{i_zW2~W zDi8gH_TIvyCM@%)w^&ztCrTGswI!R?=62b57nzQo*B1F>b>#~NG}74ETcXOcMPQa}RC&hr zFi*g#c&Z2mb2?@#xm_TCc1}2_!SOv}Wm#_{TL8VYTX*e^d2zD7VE$1$S3cR!rr|Wl zZO)&tkH{kRjaCZc%)?fr_-g{)FnGnFKLUWPt*1h*T=5EbfJ4?m|~ITnVPU?7PaLW z_wpZu)#u&6{^b)%I|RPm_VSq`W;VG!27zDSgY1m&s5?D;E3rh<1q4c3efN$>6L=`7 zv(@tYVZ-MbO@pSR+pM9EcDYS9sQ-qcagup3&2jlCMJ4t&wv|QmOQ}--WuVn1z{)NDTioC!lO!$ zb0_DsgAb&xg}SxFHg4eB1O2T^>nZ+9yQPjVo;?s``XBB{2x%C@GRD22`u-XCF=Km1 zE$_iu2bHbK7y3Bt2dVx11>3Fl{bBR#(gPB0CfLQ z6=W0qh)lZO^SsIM+n_iB;#(^lhF@T8QJq5C;2DnbHV=LHB;7Z`sXz?qT`V-ZM)5jN z-KC9bV$A-{?i@D!59#vA|Tm4P97^M&QBD@*Uz69~L+ zJD&Q2St+NX>N+Wx(cNr_=x~QorVal787@NXel`Ylu8eZW8_!fG>}!QhF5_aJ;`R44 zh7v{hkl$guTyI;!LR}6CfP{8#-(;}`B_+jWJPG$>cVFea zbq$35A6X2nO(nhEv}1)pOgHZlq0LrdEqqRFYopLOlt?W5!JJ5{NH~QRXKN$`I<@ZO zDBpTmu|iS++ZU{S70W=c!m&`S%-Lj!u2aAUEr7>*&<7KcNAmFx-2(A#)UHKbVZ z7U5Z+uXn}gT(e1O>7R4w33n&1Pn60LcjjkZT~P1qmaca9T3zBDW1MI7|8V+(3cH$l zxX%3}SPkJP!;r^d5>6Fj+@yjH3nDpu>Ukj9Qds8xIE)WvR1nGFpw@nsGav3ptE*0} z9rR%~7o{^<>@rk*CFSMNidpGtou8}0-DF6o!NxZO{&j~yH5@n%zPxV3``;{p<0~V# zqSeCg>cnLQN9PVt&721NU@EW_;<9d*LIOTm3bG4(MFzC_k;w;t-0s&B*X*FVTL+#u z(S{VbEdQm{AG2L-Bhye;p2yPjhK^XMg0X(;bA9?$b0q>Xn)X`sp%O;7oe36SvaDxd z!C2W;29i!Q9()D$k}5JxI7dK{B?O%ob`izlLWF)Gk9vJQ1%n5~$z&-oQEc|tP3sP< z%h>NPCY2=VW=RC+#+DKwKelHR%=V3suVWCWq<;e=hwtX`kI5zT4*^B;sj0|k!`6sk zk~}am#oyoGdaTSCx(R^<8$XzR@%=jppQ89dX?iklsTMWZ$$H3K0=k75j37}p8uEzI zlz8&`=BGvusN7ro3>x3#&_!{~wF#zSs+dZVEs_wV_@UpZ7fLOhZbQ{2erfwH|I{Ht z*4)c^5XFh&v}hotN8=)-OnmIDD7MM0mOW%}jz2;AhHUsxyl8_|@b|AUNV)Wp2anFa zY1$+5Y{i9|<6egsSJZ2h&sJ|^7(-qYhg|l0p`rTobqDJ8kfunYqnn_Q-AXu1mNay< zurjqFK?Nt?YPBhLs$_%N$F3`YpFc?-^x*mDT){FAWT&-@7CE%n&QsQ@GdyE#PDpkT zxT=hf7>yrKym95OR(jmlLn)Q|6J6hOZQZ_Uz$^3jSpu!>lLrXw9mc+kL)!3d?!GpU zv*GFnSdw4OE*EgiviU2kG9XAe-m>x1R%OPqZjYk3UT6uw(mp*sg+ee+9u$A5Rs*|g z6@q^0Ueh)A`w^d8`%nSt9|G>NLSJ@ zF?@YXl$05BT1Bi>gR!`eMomFhDK(YFxLsa3i>llC8;;25=x~Z5`@CjHCw-@C*y|L6 zskAd@oP_SkGJA1M#3LnzAdNw>Ju7Yky~3!Kz(L8q7_)n}xc~KK287hCXmzRdwWjt# z#MuF>y$Abu$$bNKWY#o@95Q8A{%z9g4t*L1)VIU~ zym#*#27LiHX{dqE5#42rgyK58U>2Z$W%Kjw0GEkxS5#DNSFfbl>tC*G2xi~XtV>8pxYFigZ3GkQ;rN&* zWFOx8OVG9ZJ$h*U-8bW6Om|}5%|c|uHc|RPE@2f?^^!`b(8o#zU{yF>_`^=*|N6p6FqJFnU^10&c=jf}9b z)$_#ccM*}##$lM!i!8@I9e6}OrpW<=64+TOmYcWV_0O$+vs=2y<|T~9sH`6j0`V&mrUrMdG@pM zD->)qV53l1CrH4iP~ZGA%6SS??Ng6pY^x&pnDi{W%N_;;Qltn?uk`kP;@QS}yTOur ziA%(uP+P(nAzAG2tE;22w=ejqNGwrWGo!aecio2c)XU^u{hd?q}3*;PKXY0Lhl_OpT^=8%Zs!! zaWB*}qSKYmKbUPet;E0;(;Un9E`>x-Q5O)&HQ{+2xTF|Dv-NVJ=$VK5A+B*l6powZ zJ&i3~gbw)&x$EU%{_^zf0e$_m(8ELBh_B8r`6w;j}^Oo0gQ@3jN{nFZvZ^`4-4m5)j=prtcwcPY^#S`~W|AL2kaIL=yg+*8`h1>jX5TIyvejx`yjPkg)=i5Ar;!-|P-0B> zUeki$i^xqC3!j}jC!JvBM*9Nt%(KlLK8=N`Ic2FHke<=a)qq4!vkd}$a;iO;WIocq zA0hNGRP~cktt#;nF4vQ=?-W>YA~gQ8I0|sAj}wBq*oAXN-ez-H3uphylGX|HC-_Y7 z`d~KFEI4BODy-k!>@?z86P7@lUJRw%#>9o|NZ!a<8+idLv&J&y%w`dP6JHHU!W!P2 zi!rOj4$C*;3k*9-=`0p4K_=HOj{mkG#Tm9#s{bq2h!0tt>4ihVu(hZdThPVj7Vi~jz3IbhP*HzSuS!g&Pf8nfGf7>K? z_Y=odV)U0PZ#@2>t2b`u+8+LR7R%!<*$t-$#AF4? z*d46*e|GmRXP`tbFX1WZejHkI*(P*m`^Xo~nPD(~D_+aIfwPJB*2o{QeO}?BN14(V z+Nm8o6t^76J7nuMFNxu%)f{t~V8cI{CHot#iVJW1Y)!tpdlYQ)Y-Vbz?Bmy3d#UQg zqBNrnu+)R&R#&%g;QNw*9)#2ei&5nG;;P&_v?`c%xDxRsqXs_1ny6VA67kS|X{1*f z|JniEM#s9k(>LVyrzF=jCcER@xT8OTcGl2*x?;kzMX7o{ud6#46G>H>R$72j(Og7GG|3N=()|vZA6AH?KB- zW?SbkYsEjnZ`pq?U2sravk=_B9`p9LS;_@rUk;mwevSk-mwG|G#kF6un9kE1gZKS2 zI9*ewl%UD6S(lsZ$OnaI$9U#?B)Vo97_A>~J=;mffJ%L?0BNNEH_4lhyW8(8I7TJLt_fwrkZJ^v%6NT1Y%tS&%S-D6%h0#?j4(Jvl1NNJSwPJsDnL! z$xaofpz*^a6879cbB6{4Y9ylXxg!|ZrhnQ0I?QhWc4 ziRKsmb60Q%g4HgO+Z4gCbV7Z9>z8p6Q}5c(t%#Z1AHbTD;)oOm_Q#8Q&+4(;q&d@c z@y%6L(6jYbrL}cFGo`=zW}61hsn?4p+Eb3lYwTb*8zMJ5HGUtJN~E9Gd^`rXmH=j!x$da2KJ= z^%$YnEY+k8Ec2_r=IV0(dy6bwzsMtlo3QZar~r|tzxQ`mGk47=dD&c z&xg8T@|LmSzxaF~Sa5-3LhD}%@SjibV|c=_4X97eyLC~X@_%4fjY$FCc$yiij?@$@ z7b!J7m6vAG=iVYo@MI0mhBHe>tkjXxGrLF#QlugNur{2ccIp;RRSzn`C8vp81Zj@b zm|lr_@)osOZD3sd>S1v4>e|{q^4;Uh)LI7;)-Azp?UE2GsdpU)homkJT`V(i>*X$A z6QNhxSywnSmD2<9$f5Se3f!GOE>}~W)`=oWJdGZQhs*Ib)yAiDc*zVmj``w^*C}CP zTC!TGrPG;h9sg{qLP^jMBEV6satm;8o4h|TpidKq@O9jDhraY|^DhkttFPS0@f=p8 z$hC6R;o|%WL7HX7XibDsG-0_>ep?uE>pA(|bgrRVgQuYu(Q#?wEwRXFc|({m+?o9; zDEVocS9J=Z^8%%bx_!M`GiKcoHPO-xfblI2uzAw`!|v{P>K+Q6fBP|)F;Rv1YW

wUu<|c|vm!*o@16Q=JfXyX2YvJHOXG zd7v0bYvVZ{n24vMhecakxZ~eJt#2Yv5SpUJwRU{8P-?mQqtziU*Dc4XFGvFcNBab>0~?NpQE(LR818vkZfA~*hEt*+{g zM^3u~+ux?J83~=HZT66S*J_{}Z)sZ#Ldyv(N7=s>ll$`TZO&EBjEb`*?F#Dz@8a4x z^&p<_4rrg;pEnp*wh8O@aT23VB_kh9`|2mlTIo<(axtFM^JHRh7Ub|W(b927aZU60 z%{N@P+!}FP3ehe}QA@4P9@mh{VWyw`SPq;pM;GJj^_bKf?}(#aw9!3xS}?P9Z;XDs zJ9}WtRZT6tuZlr+t|Fy)7kd*b!FoQlQ&%;i5vRoi0aQI-gw;tqQ4C>PuW8Ht=7U` z&B(?D{0YwZ!O=wfg=}pX@Eo%nG2OsK_wjmk(1PsUKb&B9`39_X-ZD_-Ve(3mt*Xdv z`6|5ZPypQ9WyxP}yMdg1drplL`bcxKQ7TzubEBFh*=!` z%Z6GPfB`Ry*AWo-H<<{T#%rgY52=q1+P;oiCr5FhVh^~eZV;$4cnmgXWMs2O#8=7ILd4&RgZKt4wLw0mxh*~ z+WOab|A8D6Nq%tCIWy&G3`qk_!aRf{dq?B8c`OxCynMo=q>do);twKEqOOcVMiUCB z#vt8Z!&SnsFVLfgM+BFZW{5p$E~IfLyvLI9?bFw#&%+G}2`+DmZ#GRs0ff5SSxHhb z!Lk@?K?!n(;x=y7;*rdDO z5jEwW+yuXRR67AdT5xQv-ctK;W#$%cp&r$rRK~RZz7JEK>2_kmY=hf~r{m^Lrs-6M zJdSV0n#HhMXAY#AfkG&X!4`=HS&uTL;v8tE4Ms6y(N zT_?^#?)ksa(hJVzrz$Xa^yZu6#RRGXgUjWYi9B#2*Nvk zML(D7)(3bVEK51h9^mkINPdg)<&Rz#vZBuX4{s zbnm4)AYDnxJM`N^`A5MyNXH~`HF<*)zj>x8(KO58QB9W26gzg}R9We9O<5^d81naH z2Bhkq07L#-iX_>&8DOoHr=-@W?==^+p*&N)RQBSrF6Y2NA~Nm**oQ^)e=f27Cb&Lv zqN2w0s{^)A3KtE2TdAisYSjwNSJ)Tx z)c?Wv$qpFsw7_&*G~e!dV?M|9${*bt22yO%e4Rw~@Tx-FiJEzrLBtJEw#(f8E4A-hT^$O2!SvN|UY@nX4%cr^yZ( z_!JX5CT%Ro*M7i>)=fVPGYY-R)8&HZX2%}|M_Cj&+|{3EoxG zjh>5O1iZJI3TaC9s^_;uzg)Sc2CX6?dzZ{FVIcQf)cjWiVxXDz!8Y%%bkkylgG-}fOD(k zEWmuR)n=HnHoK=NRbv@iTP@w?$2p(jOt|eGskAQrE;g4vEa%(Ux}Q> z)`$?dA5LWGVKgFYr!}6~=)t=NG>u8VaR)|=7J7l$QT7|eb$}mn;AtNk=(HAY*q$Oc zU2FN%d&j$nY7LhnRet>|HwkW)IxeEg_DVp5mSoM;IrS(_A|c6=V=VOE15A8AnDl1^ zNS?r%YyWHtg4E%YtM}M(Nm+kvQ{os-Q8Uy8ZxyU@iYvIkC0V!Rdvi3?2;M*)_he;a zbQ&tNs91l5w{)Ki!ry1zSA z^Y>{as~?$%=Ha}ImwjU$68m0*zW8D(V==?U=<4N7MaN(kD@S*fk_^PKbcs+1B+ zPBo*kU9)%>f#TuNw;IFJL{^NM4W1Bhy?_nit5?1BVuNqX||K|lZkO|-ak<7g^n1a;=N{J{huCbsHLn#+)As-i>mB{ zk`w%hC3qy@lp}{x(-zL=yC5miM5{s>dVq;=>iJN4`L>+Vn18Aj2e(+sg+1wX7hsq9 z$njB+RuGh4>BHAzSHu#7I2_`P5hrk z5AcAjKNt0Hp%LK^=3K6mihzR73`mu^T*UCPr<4 znO_YSn@M;JmSL&1Y`Y3-`Spt70x55r*LaTmeeAbcPwO8m!OiMX!KSV0D~9#3n{Ww)1)#{+=8bptOTH9Y zXSbT* z`kxFzkdbm?SnyYSG8%yODz)#ppG(oS?Ct-}lE*sS&4OjF0i8n^OEtM?0K;BjK`Cm_CkNcRg9hr`x%F4~zE>)0rW+apMDiQ< z;>N{qA&7%pvyc<-*jZWazzL0sb&TXU9j=#tm_Nt~u)|Gue9|LWBU347BPBmDnCh>A z%f$%jF0)s=W|W0Tendcz|I|`cXV)O-jk$x~jNceL?tjL%&<)-0S~*H~RM^gQ+)yL; zOhkQyFbvoN0@<&CClZ5{Lp;3$;d;!}<0$XF^ptOutMRAL8VI#dIYCPC`N552kBc;p ze?enA8}nL%D&~ju8A6iI)zzzD#xGmUv8iSwKTp6u2v8!uCE}O&t3!3I732zRVu+vR zT^(aMC>_8;4{#MO#XeH&InA7u>-Re5ls#WzF6ULKw`8->Z?KblB8KFU5>V6a%MK|a zQA%|{4gOFWqL>tZsdSK9RcKnK@_clZmy}2Y^W9Z_O1gE&7cQm)-b=PL+9wh_{Wa z?dW!2y6NhuyYzE%-GRQoturwd?m@Gi>Oxoz$?*cOg&4)?lH>I{>W)SlH>92#6dq{R zg8?>+`3<=23u+YUrq2Q~#gK1F=LF@(a%?`kaXySzZ79S1+|24zx~EN{5Li})bdRrh za%g9LisV%my}Y)n1Padas7x8V^S33%=lub(x{~-m_eM44PNVz|_3Lz3cDl4x$*xwz zIqR>J!rZto%)>T8h@_3ySDi`8^TxxV`}C&PTzgWcL#HvX@QXlfsb_iEE5uI_`o*~Y z1E$)5w}bl0(fDl7e=45%q^d3xszNM=uoGZN<=7dCjJR736W0JFT=h#{jx6AyMOKb) zeKgZ}o|awEnry!2a6ZIHiH1B2+&6k2-|qKUl^i1$yRPNdZj&Dkj_Q2~!{4;hJiXWP zeFaY_&sP=SrM$!1Xvg7`i$D15D?Wdb{LT*#?(pb>>YUVvX}l4S?^R=`4VLQ(ZZJQz zQGP?f`(SHazc!*;g|s1&{Va7a!%`!AAwfHC#Ux(tmIr&wgGV~EkM_x8_gV!&NMfnZ zsI#2mN|Em4*)3}oKuzcF8VLUlM2Mq6MS%eJn2f%YSDzoIRUoUMapldZne#hR^fA(1 zd=J2s7WUbnTjJc*l#M-&ZsW!Z-46S?G9v^h&bX|S;wgR8gt%8zaxyI z#UJla+&egxKVgr>(B9@@Ww9?0vG<5lX5l%X)t9>htPGw0GVSFb2W)r{A+?}$`{lb0 zDScLt5stE!&cSQzJ;^_0LqL=j#KQ0|&*{S;&9aqrXk{-LAqiIQ930s#O)SvW^mLkZ z(ya1}J_aQZx;EDgOz0GWB6VN*UNY;mdui*A`}br|Cav~$A~_7O@LC|q-?AbgO4`Xf z1H@IPDt3u*3m0%$&ghZMRl28XSc;tm;QL>X*uwf7Uh|uGOWT3Pxbym_f)6!|Y)(Ni zsr~V0Qc)sJ5uax=dp)kKioV!-n5xk@2Xglxyr35tSYpKADB!!7wKa?-;(K^+^0)8? z&WyhS4Evp*_gze4uG@d!cHO_`nZf#9m2oG!ci|Ft+hgW&;!$qbWdlT?!NLoBa^!r&Z<(SDss>>SO}@q$X=lc})xz}~ zF(aq;*~}CLntTnI{6Z-p!`Zx1(|r3IfC(QZ=v}}nd%+e&vbW@6T1Wg^Z5?mq@14~b zf0hbXB>BN9+`ne-AHfayC(OK_Ey0B&6y;tN<(utYIeXp6rU)ao1i;F>q&x)0@`qUP zBn$Fy3NtW+>Tltb)mf8DYZ$enHxG&WSOL8jdaK7PgeR^1vHiP4l0HJ&kQ;+!$4GDTuwbVng&V+G0Y1nKvmW7a-Ew@3D#n zGz=67QMq?};}X839o4^HA-a^42_=odaQfCFd&gMKzl^n34Cs$Ur)Mxen$7g;+7hW| zp;IL?6%Kn~EEbb$OTY5@?Y_`mvJ&l+PuCtqXx*=XxPGk$b*hJb?qx;J44TuxE_pd0`OkC!BZ2nJ{$=Nz+$uQN1?hnb_zLQ5n-l?*aWY-#F<V|}}+V}V%p8IGp(EI_ds)U5oOM~_V`7xY-Z*HUu<#WSHwiKQuk_t+RA zKMp}+c=#^ULV4k5mrTz2dc-MA>Dk7Q>*r0Gja>6yR^AelP74_5Sy_C7X4CrDp`A8I zNlxS)&l}|e=C(p}-@LH`oW{j*|66xXu$2jD&+Zkv=H~pVFZ?^{+tKS!U_O0-={yoe z&^7jGq+oW445u_La_^q{rQgH#Z*!$#$JfQ8)x zhphv(>$=IyY{As!oqNWW@wKt#A-XQ2N3+Sfz2LOT>irY6r`S)7Mws+49iK%qI4cL= z_i`9{RVnWQOXpKq2BD+u`%RrB97GzI&q2!04O5rmX|4A$;wqW$|1tCzxx7gT>E@*6 zz}A&5qBVVu`#9W~c?fYt7R%h9<<2MsGW9#07~mQ0wsjC_5^=Xm*C|P=zguyU%-CM^ zRAz^J)(5+}=YzE1G0P3o!+PL#nj$3{u`GA)%-TxtJD`$WP7v+pNlaAvL}~`#nKpLQ z%*OJTgB(@Oy1t-bkt%Z3=F)(Ip&!;g5nolGBV*&aVGH}Nr^GPeFHJZ5N03}KBVv56 zvRn?N9rCp*?My0aZ(crsk=+>9vIpuV3xw!2;Q;~eB9xI}W=9j7G12{M09tE6?x)Wr z*^8h9(P}i?)VuXv!W%5aV#l;-t{#vS?UXq=i#&mbCn$9Cz~bbSpC+1FyQFBVYR9gxr_!x;_8mG=x+K>z3r=Gi9lxNHoM2#`b+mw!u0pb+8^D(a8O&E zD+7^-jx_3H>4=`-;H>BQwq~k3q89djTVHAJ+*M>KX&t-@olbf%1i^T<!cd6TLsta$d12qx48P~} z<=z&5rB*^*CHvQ9>wEQL;@`V6K2g)J0f4xRfj9_(`Z)S^M6d=voaFJb-e)G5vRYRY zZ!CjehNqPR=6>q!zSxAM$o%gy!ak2Ve(jq@{<04fYA|(xmD;F&boP^zV#=D{k4ta$ z=zFrtV6;haF**5Da%o&T+gqpt9VO?SS9Jif{u~h+5|*N9@|A9I-q2RNbm%y4uXQ_h za8@}~)rd=tbsz(0vgYD{!^}sQ+Y26YX{`~4a@Gl``;WB*UrSY;W_*=rGo$oW?Ym)+ z`T4@l3VkRRm_)Ot3BwmOpu>^P@rEljH2;^dD>-02Jf03(wtD$u_vTZVvH^=Sfa zVJ_<5)qCpQT6C2I{$drFx~O`fi2g|C0p3l+Cj2`hk`1U`)VUyD3uc+0vT}9y|5#V5 zK4}FqYJ`x&qce!#O*T0Q{=N>w&Aa+Kw`0SpjLa)UhlbGdd zOf}iZ0t3q{dW)>Dy@JWnv)ZH5sz3UXJ4Ml5)~&%NmD-nr#d*S->7EbQd(_HhRLQkx z0XcB+l+ZG_w}jzZ9{?Ek{m3f=P_a8HJr}b&Z?<}-n+ZEbQ(i4b;510gyrt6s0o!Hx zrcnjJAh286mLuDnfwVVPoM0A+`$HQP)>KIpR7h^{_N@H*~^YN4dz{y@sne~|y)OWqk6D1O-)G=0i z6K1(=l(`Yvj6~0-()94bc5|Qw-yL10!vP_UkX#?qRlhD9?iLzxDD6!CuyGL6ldHwA zYaxNm6XB@qrtkEKgBhmRf5NR%FUeeWIPet$B?i68syz1CcF zuDxc$^D*#IK7PquYIn*)nakw0LNjI|5;G~0Ugn(~F8@D!MW1SO&U2na zozO?7_gzOO)tt)uhBBL-Y`aQH=;5<#K>v~t80cn$OCi1ChzdtAXt2^z-x%MjoB#eL zlvuy!Lohb4G6#b^ zP6jzZ8UIfjod9D?3Ml-=4(DF&^tMFt_l#@$d6@zl=XF!hZqeCPv2Vr|0Yd zBq8^s7s-CeEy$a9{$s=oWtSP6Dy4Hant==yHPL7L8P~=r^z6{AP#nrXHf5Ny=bn;Eyz$n>9gW6bSw$!{PN>)HrHN+~ z_4Z{%EmYmlQGQCO*k{QOIOCl5KRQ!^_M{{78{QfN)wos493cs(`av=F4Q!w-R5fbi zDUq)In@E>W;ChLZ6-~}13O?3$a%RH|jfRDDKPC|)WZwvL67gNlnOufHHAdaLA&N@g zXa}7w*NQS*kOqGKt#TWxsqrO|ODzjKSwL9 z7Mxx6DE?mPLNsH=)Z~BPQef&QCt>uXwO<`sG|5xlne&n?{%5UZ$RPbEhqoNbcPN7b zK=mYg{6uO4U;gxrmEdR~`B6G*G|mHsN9%)v|ucHvrCgRsLN_IFe}LuMPBkPmY~H!zgK2 z=Xc{YroB{nRg=&791hfn#qm(V{Cyhxym5umcvM24>lcX&w6tRghi6Hr@1%`rNc%EE zwZx>!^(6L>W{m*P6h)%#6V?Q9be8HhzD^YSUM)QChmY@=F5?cNe&V&sA2XnT!xZ)3 zI;(BHRfLr|yPfg%&eSK95zp%{o>yHTj46|s!8h5HxvieB|0%wuHdb+uXh4(s){-}9 z6eBNReec`o9HXQdISrbZ(}}YBZ_O2D0fQ)HXEa~VQ_=1ofe+PrPK8+MbtPO28`S&* ztu?%%VnFi$pQ8B(E8O1*!r0FC>0PxR<96uJT`hIO24}R8mu9jXM!sZ44=3DDsPtvo z)BgDH+G8VFPv_4~G^QU*sbmju4 z+&{^#IDXAgjDIz{II+8(jXGprP*1NDtvjRRuE5!=mg~qO^U+P5k?pL;-<_chJjBig9wmlOAO3(IaP>B9jczi{k=v~rbK$n8Rl|@;a&xxygcq7d7 zWt?8taAa(JS0`c#Wa>uF0+#ki0@ZKg#}u z^!fnVT?~x9F)3wMX)8AQ<5$%}A!zty=ooEu3GZ%4;;9Sm>y|#S71PrKO7KwK)X~&g zh-&TL_R@$cKqFm8Zn@LYdl0Ufh zL-s>~q4b6bDfrNVWbK5s%6M|#)&bFdu}HvW=?$Ql`S5jw^?)q&U&NI@9?gEBDsTTq z(hn3^rrZBL2LLQ)>w>P;fvXS<%U=MJClEx!_=UMs z;-+5E%|PRWM|Hl_XQG_TEHaivwrK@a8+ITqzyCq#t^=(8|6IoL$SzVgJ0hO9Re$I9 zj>S_|zuMDj5TmBPP~GgX@2;=^_(MZ_x)?Bj9_;~fH7AQ^$`LgWzWjBT_9qz}T)yzk z!gHwr{i&?1`~tbUd$9td%U|>(ny@+g`oI#o)Omh0goBcg_HQf*>l6#A z>McG7V=p585pBH#D7qM#Gk^g4Co{+b?aV3qqMZrPES=s~dnfL3Se6NUl(Hm^=XPy2 zm6qfxM^kaJ>biKJbRPG%a$8co;Z|tA@geBtXUq7uP4t$-so#RQE}%DATkU1mIfIRt z*j_sbyY!{US9OT!$kNDywa|Q)psHF}y~^u%sR{8lFG0Fb&q`;2_}{aE)J#t#OV@8@ z>~E?5Ztaz7{9N?s$c|Y972> zUDMz$G*4LT&A)+ZD5P6<0(XJ`e5-$OdBR0Js=)M}MO692QY(8~HnvO3(U_P7bYlL& zfxHMcK{dEPm};uU_T73}0n|-?!c!X&Bgux_w1;1pzhTC($D5zRdHvvr`O@BRgSleT~Wb;oOOsrox`OvwtUgG2^Ys1IMIe5_vsGC2q;ZmH{ zQVEoEG6}ENRZqy1l=k0Bnxh#mkOzp{wGoGD#-G-r-b8!r?4muOc*1gan zq=}UT+9Qoq1J)cQ+yY&^AOKtp-(P4bRi6cF_MwQLC%^LXI?V}F^YcTL9_m2-bTsu!gteb&m~ z_{eSuh5aJl$PeOg#sFAVJf7vJBFr8TqFakU;{BX3QkAt9ncUhLcD>nHFDg`+_sHJk zF|#z!dl}CvIL(q#(v~}?r@68C9`j6$SM$tlHixzOcL^<7(O^V>Q*$P5sL(6`U=3eC zA!h)y1BtDn0xF79*vj@8Z^`1qMxHsa5~`ll?D9E0_2=Gd#nal0!*Q=LR4Dg~Y#nV; z_h?jf3bJ-LekOeOnIX{1u|AWR(gN11r5|W%QZ(O2aFY=(QduAOEPYc?=8btJC5r+8 zl*v`so9I65_ryn2Z)Cl7UKmgc*Kup?A7@d^`z`^xwLG5k!mt|Z5zR9qG~Ggxp~gdz z`8v~-JlJ#U5CnnbC!zMgM8fh3$qr>CPUw)nok;wA<+*&I<>c>$cN&gB>)hf;J? zX!bxgQtyHKz^(_5))#ta7gk*ubnz2{x#<4!UDu@U`R+8Q!Pjq9F|EYHcs@X$!{eFx zpJfJWUFU{_(XkTB15(5SEY{yhRLc#TgGUoo6KLG<5mS~`ws(HCTs)jyo?O60E)X^b z(PTk{ULvBkft~Vxp_a+a3jvL;zWbG91M%O}B7GIQPyK{%`u}f6_{s>!r5Jn|v-xDW zxTZht+4Wr2xIg6DtZ$%uk$leQX}$U3xFB;yG_R%~&B_f*)hy^uQzh@#w*e@zuux=P ze^5#_<(jUK42b!zM*odIt}yz)Gw<%f)1!2mO*)q(1ml|oZlARnQGDCA@^*5yvsUS@ zk9j71gA~{%DJ;tz;{CBHKPMiH>Vuzc^Hx@l_vl^h$dDI++(0m{!;6ehj&sohb?M!y zvf;^_lWa<7@GlDIsjZK1)AxX!Nw>uK1hfG@&CXrML(bUC`%NfI`R;-d<6DR5h3w{` zqE0NX(|bYnABRl4j{n3QK$8&Mz~7mu&?42gEqoh}^hvFf$9uKF`IGsFk`T)?G(%kS zUTy&H|4U0N$-p2c_;!^_yp9d=3Acp`;Z+w`)};x}Xhq{1L>nHVOkBTh&VcUn?r9KJ z{Lhv0#vAdk6XA};osYVEY*&-R>4g}Wmc_@0Vk1`IA_OKi&e7}k(Xq2b zRWoADfkbtpdSf&6=qH?A1;!?uI7s|`JDdFqQCnnUm7~3kwy5aKLco`o0*d1`>FEnd zZkEr|4L+;|j__$)$pPI-VTu8(ghw%R2e%%E!-PdSCLth9gq1;KvwWLvCuR+2#6jH# zN%@pq;&t=uSHDj?Ys7s$n(uDBw4RZDdvOo!|LKkK_cmgaesU^=N|{Vs3CdO(gy=F2 zj@!I7pNG^9J~&CE`BUmL11mqQ`QKnq*JQH4jn}hiSJ5wac|dAFivZ~|UDWEn?ieJ3r2Ijz$+F9Bce=1n8)(czz( z)rxj^qU7*cFBk;N5<$an&U05=uc*?o7vaYj>{4g9%>TLImhykI?;AuQQwkn>R_i%& zPze_KP>EqFeEEw0%VQ*$TPYppBgYNEQ!yAM?;=1jEn1+ufgWu!lP14#BVkOopzcQ{ zY$1OK3-84j*`I;!Gowa+$jxy;>%qr>4`^M=xQJt_;0ma_9CsHReAIyHOeu*YQ|wJR z>)EYzrhx8vH$qAgqZzOk5jrnh% z_F4D&BG^M$v*p=)y2XNz6RVAfmmgHqRy7N!c)kwgea%8_JNFSuX#qm;*Z5bpiooTo zl+-BmI@3_K2Q+HS^cxVxyK;hujf(^Q#DwJK)bxdFyA++`J#jZld?8?EB6IJHF;fS3ui%|HOm*r-s%5VLL%@;4@+tGHRoH zO8mMGZ>mCyHG&Vd5i3qLj^AXlC+`Bi6a`>6sK!rq#0=X*&5@#Z8;Qx{y+tfr-vRa9 zHN{Wb?zuPNgjSeFQ6tnaQ1rxRtXaefHJsjn77NJ^vIN+&b1+W;cEm6Ol>1@BY_YO25p$({2N*7UTUIQTc^$ab2-a#Yx zZ>WQ$k!0L#)PcC|xXNIK!XKui8nw~bbx$zEA-5S5e${9sno?6SJfV}=;oRv1s&{7xJ~+RQ6Eg!@yY>((j^ z0CNWbvMlYTo7Do)EnC5e3!sV_P3JUfqnUr! zRr%$n8e8=JFowtd-8+0*<8*+Q__u@SAFMvw*lwF;K|pBexvMiT!t9=Q=_k}%)A4BYN!&Os2Q-Cy;={(E)HF@>nbv2hIHlX*V8e1Y(rY+Tc`7n+0(z0j-F)$p=;nlXXjZ z1!+w(jYYDij%HueD^h?>zuupCKWhif6>z<~vR}ILygA$cJd`H%dATk4^U2y4D?|RD z26h~T`sjX#mvSafmrZ%U)|w9fY`p@(J|Q|B!D}MogWupdhO-nG%6vd^mbp`r+uC|+ z<|F)nN`F=`6$N%R{l$vWD4}YOk|y&E%rX96q)c>aP&FoXqvrZAY1~A<9j{ytI68w$ zwXvsK!Vc~y;=B_-we;J3(7|zY$Qhl8oy7FgxZl;)wIN-^^=5x=ZmucHpwX>Dr{1Zc ze{k^p0i5}pX?%RV_H=Xj_MTm*df*mgeSMuPJZvebEl&QoJ873+nZ;_mWejj%UFg`9bm`Alt5tatP@htiA za!wXO6zL$iL(XzLfBX~f&vV316cFby+Wdw%GC{Ap8Gzrh3agIr6^<$6*<~|hUS4C& zKl;(+5;Bvx4M;ad6CPQ9{Alm&?ELv~v1v!^@9xRTiI*;NlZ5lmxRk_kM!xpQruEX~ zb@wk+mf#YUH^qM81X!zr(WC@$H>HyRk7&u(MF6Pn4de*xy@5LR{`?BD2sSFaZQG+4rr2S zs0?6FU?6haDRg(xwbPfI^8?P{-{SCn0K>fmXeN3FWC9V7Jhgg%i%N&A^l8_^!9Z$3 z?uEX+zKpc(zy%%!2a3kMBQ_$`v!DYsW{XOgUZk{>3{qK>TCP6%$@KZ(-B7su4`5WI zC?MCu>?T71`!zud3YcA57GSZ~0E|ZLAS5RC6r-$XjeVqi2KPT;K4Ne_%=`d(@#Zl1 z7Si|fOhSs)ZE}~FcxysR?L*~d{#q_U`o@~>stgdYkp8(e`Y-naPy?-8uS?v#+ioh< zobo*5XQBr`{D5m!S$8r*MaC~f_m0#k9TK}I~ zbIafS93P^VK(GpRUPLx^R4iZ5?|UKH07pIbqs`k;42Z<^DNm7@{-@QP47!`{ZHSsR zWVVi7s|+^Y8xnD-rauZaIqKhw|LCrib=3P|y6EPMtww0LPC)o^d`v3)u+l^YDKgg=FfG*?qyUB5q9 z(?G26*1GHMBn275O>-0V{E zA`@76_YM#LGe^g2D3X-NEArXZ{&L1DF#2k^ET67S?X|u7hTb{lpYM8KNnanj#?Z`- zuEzbyKY(ueff=NyYTsLf`{QY3WvRuX9umoC-`jiFJ^tyOc6tI?fTFy761GWMZJhV* zhfBCUlzOFS=8Z!6;i))+)$5;<(F%-HkR&2S+6RIwoGWbFrX0qOmJlR1{d!TLIIQy! z(W-Xk&Pg9r9dhWX=9*#MkeDfD7V6jzijw-Y)ujP?$Pg=P& z*-5dJ`^G=3{p><~uJATr>A6bc9~!+F`h7M5%(e{_$B?|{(6e+7K zM`H93`e~#{QmjtW1vsuLBuW~RYz9*7l@0KdLA47k6tC|~N)dQjVHg*^e@RJ@=qb0M zZdnlpSGS42*Tjd#a27%Wf?A7A?@5c#-WR_!&y(A{_~%Jb;mcFR+fLlaC`!(sz8Ya# z?r)uv)^5hf%JSSY36&5ddf<$&%>EsC*l;)7nThq}Q%R5y1#YvqY5_IMe>lyj$r<)W z4ml<$ej~d!a}`X=!LtlFeA2s81x^aVlF_7nS3g?a3-+xz7!QyN6HSu?H)i5eL{0aBMHlgZO7^g5DBJ8KT>PrlJtT zm^0}6m(?$B+vN&FxRdlAeZ)v!-+xsg^M5hOGn67#ioMT>unv zMl|l4`*ri#%bfRtqVqePoO9hk*axHY^VUVxTRfxaz)=&KkLI^$G(E9%x9E zvgRS=m5->ps$5uCs!4Cwk$u`thsl7rB`-^Z{>d7zaKxAXlB6`Fl$Cugm&K51kft=y zXAzjlJ~iVr#;ewhYb%9904q9#g2|!v3*9gf>lU+v_VO&fqh?} zoNuVM9^xdf@mrWwa8KH)A4a@^Szs520xg3n5W|y-XzzhCp}A@s$0yel&%5L91;EPJ zD@UDovy~sX{I4ruETi(S3bpZIuWqI6_a)_-5avMvd`m^;+ccp##K$PRl*_069hh>< zx74=!uGO?NA}68OZVt%AA71{q+V42US^|rFzk>2=4QeZ26x1MVQ1c;7HT>`$dCf4P z^lF$TwnfH;X(CANy~q!f_agaJ^v_(gop2=Oi=PUGc3m-U*!!(!z)bN5G2%oPNeOqR ziRRJ^=?nEoyKECg(b_8#va^Y4Eng}8^)E!}mv=u#G8$3Cn%_b1Y?#D4-368IM=@)CO1n(15eV%dyLE;bfja(_1|crASfPcrl~XH=mFL zKP{SR=$l2;x0vVbCGUt}Lqq%)6rg+W`{+?NVkoDgE_P`wACT{U z6{lmA1L?T?`G?Am1-I3&|BR(mb63WaEsobztT*Sy|MhNIglRT(cm#3!+ryzbrJ>CT z&lFNFSWH4s>NP@~X#P$sDWetLC_t09;yuZ)|4Q}1h!m)tLMI9M+Y>>hj&8_0^O%nI z-QfFB-HMG`r5LJpwiakqdN}($AdBRT*v{J|x{DhS3?$#Y1nq`1XB;J0T`qc-O)W`0 zUJrX$QSoZ1o2sj;>xy;MEcwhqX1AQaWtKl?cX$B4cYxp3(%s;aTRlGOLlzqt+AZNH z9AQW%*|#ZvDU|sd<6eW89vI-^oTU_w!OMV@Mz`!QN$wN;aP}}ur4UeCJnYRKG>KaJ zd^gyD=ceR1xbTKOHWL&Uyrhz2!GanS~{7N{}KE~9omP8?iUi(%Cj=-q-q)TLk^5C6AiMw`* zGb^kFCJg(Crqj9?SCOp&}-n!eFM5SVi`^! zHjgTQhc%t_u^pfrTm^9GS+sg>|4eLDlexZ;#ui)a!3pE#B&oGqFn!y@5@ud5Myh37 zFxr2ys)!&F0Q$k?XD-Q!O1B@u7X~7xk@InZ7n{~O9G|x*YQlM{x-+a|vq)Me)%qyH zU9)1iH5ADEWWok~hY`f36{k?J_}S*%dF7JV(uyME#)LWi@_~CVeT6?FlQP&7f4;SI zlQSXcgFoXKaL&`2_2wJ3ynFTN{hh@##yWd!M`EUUGW$9ncN?003Q>n@n zVy`$}oiGUTk+kk^#24CsED$7>Ma65sHnLND7cG^t1NnrXmYQhbGlN_uewK}WEp6VE zrQ2Lo)Nk=c%9VQ_uASZTp587jhjb*OvHY;OY!URs7^87FSw}G4bU}lK2ch)-)46$o z2a<(3FLLW|{=p(`Gw3^U>RlGxPUG18893&_q&7)3mDzztA+<)d!ezEuxGRDDp(3$h z5Eb2Tu0{Wh4RIsAFxRZ2_uVN!cUMO>pgE&r*AAxHc|G5~{hIgUB8^GCQ}Xr;Ss7R3 zFw)(SD&e{w3H#GoF!#nl);|jSn~`f|>P4Nu%eGld%qh(zpr92}Q&H|s?VrjVmd}k8 z$$+liN0I4gJkHV8Z-^s1l%9=>DOVv{VSvspBVTAB{b2#Uiq7{yoX#FFSuj*2Rq)C` z-~KBtpqWr8oCRZ^?{Ls9w)&9r7)~;x6zd)FT)FFo6kFH#=Q{J*(xF~uSggER%os@Z z8L%lii5t~Jbi>Qsvd8==Vj?@&qh& z%I9{)>E(QK<%BtBJ>x->szRH$z)T%ES)-ntL9Y!VH_Bca)4Er-m9GpvD?&U=%>)yj z_eZEJinm*Pr4|B8jlR-12>pc%HdN{J=5xnpn9!3>)AKlU{7tI+7<7A5uW-rOYlhig z%%}pPl{?!}(GF^`4{_q0+D?;fkHvDLhBWd0#VuCdv&uI)Z1LUW^WxapRM|b{-Bx4u z`*652k=J^dz$QiiW_N=0n(BBOztzVrgZ0r`A^w4MidEV%gDc)Z%1o!3dqJqw(u<%a z7v+)QjRkT4gV=Mu+1x5;270P{>iOI&%&7>CEa}B9BGzqJ+h(ZcIv+}nb!z)!#4i?dx0xRLm26w8h{;_|eHP!=eW7U;gb^r?<6 zi9B1R?ybmrtm9bKdlRB_Yb;d#{>+K}_N&=k(QdPG4gImI@%7-YjSeGC(nC?P{MM)w zl{o(k&%*$a%jSK`|2+Fc+XI>9jc)ik6S#$%&5ocB)I$$5J*wHg2Y{|A?Wa*L+AAcd} z>||K(g7dv{dmIiC*%*Bg`3o17`-CCqnZ{B!VtaD9g~?&EFP^;FITLwthy~&n!oDKi*(9Cc_wi%yi}c7`<-;m{sKkAFL3 zzqie4=K|t?Pu_#naM*l%X9Nj267ucd_P=15#f@mJ6Q`A?fdvl<(up6M*ly_F7a}uvKme`^lVq0t#C!wFPcu0F?$1YfNNc|p5gXk6O%#RWju83)&U&XXR3{B) zrL-eI!2NGBSjchXs_b!%S>m`!YzzA(5r?9+32F8m`wcL8qAk#B#lrZ^;5;F z>kjAf1@gp)=o_jDMY4Kj=?i8T?Z$c}M*NgkTFUkt7=1PFg2ziU{tF?GOh?92X%4Kd ze8bZ$Vrt0?X7S_jA_;7q9j4tnY~%3)-F3wLQbieV`5^$$9q{WphJ5yjn8V*tz~&9TJD&REPd8jz&d*2 zmGR4@@Rc&@+C{mlEQ4CIMk)?^-eGA+e%#AB`SpOH*u(eKZ|J7J;r6fHyC`R6ymHHCKv-^DORoPN;cw^r^;)PtA(by~(+a@n5jv3X*pAZ&#( zuvpJkj!Z0`3kW+!>zI^r2k2A{C#c--XE4O$L`{NrDIo~H5>x_FK!DDr@M}FT1S%6( z{)>JlaGc+3!xecyc7rqC8}f3p6g(uSAZYu@;RwM6vM69dvE+tUEOGl=;xr3!(3}*I z!1f;|4DJ)K^_R&9l6kt3%iPTG&hjMA{g5&3fg1fzX^$HCNEqqd+3l-fJCVO@g_V`upZ#Zu6`x+}_nM}O0rbc*;VTG;c~YpNncyH8{@Y1n-`__6 zEYn+r0(x-er_qVCb-((ZNgdmBWaLa?(%LOsOSF$lR2XiPU;%Le1K*-yTNd=(C<-QFN&z zEyKreNrmb!agZSHne7#ZI>_fFF7vEKs)}|O%L*9Cv@w`k_E6pQ^m_v<<3An`t3?o% zytNPO*`q5$_mTAgoO!Y8l~<)I+l`+q1DypHa%TVj+oSTJO{m4jj78?T6ua93DG(ji zBAb(LfcoufgSs~XA>sA#{(tt0d=wPK@l?7$ zLn*kRDTVOS!aE&@#Wq((wl@88zUStIb^`~|`J5gtw+Z@)7KYvT|_BgQX&$5s~RWGTwIodmz5O@V7^F zi@_{+-qpOUD)Sz^zs`KD3rvjV?y>b+CD$*nS#U|s_2Oc&QLg{9kNltQvyBHs%{ktG zd{}y%L$2z%3uw9A&da=@5yHYE^cR%i|IbP}Gf1{;vvNH=?d;}dc5k2$N8K)FAm|}v zsPNC9vmGh?#+-`hGfgA!RGZ{}q8K8Bf4AKAx14>oC^%Z>VU@9zoEsfoZoVG0y@Aab z+;tjUy*0WpYX8r}GlL6-L5%sefuFzBVi9O=*{=xuVX80VPNBZCwJodJ{XmR{j_y6o z%z6uAEx#;SL!w{?qg`MpNj#h>KaN8f7zS48?~bV-E9L-?r!v-Mu?afgGdbV2DT-zY zCDE-BFc75uKU?=lHMENm4klA3n#NZaT~4Pa>WYlSSZar0bv-%Kux6TkG9VHW{`b(! z$3yMhw6(SGW?@#`{=GMC+pXC*<9Xui=0j=QMIik1)aw8I<|K8{kr}&R(gFziTvn6p zWi8odveCIMy-4PuAeGpsiN@QdSq!wj;cpEjZ4r!B)WIn+II_V#Pqmk_1)t}IHFE7s zyRQm%l^)&@^ZFOF|JnFI6#Qz3)Re{6@#8>M1xJ!KV}B@OQiexnINgo}V5l&A*2}ES zoO1)fl*O-qxN6&3=AUJ~CX8qN&qgp@dF}W11sP8B zQ5*U})s+4z7S<5nE&{0mw9opVQwqedo!1~kvU|+uv@}RGDDiaapL1KXOKm=XcJU)p z-;G`H1j@`y>c?a1jOv&c#6Q*85_jduO7dZ!tgX+^n4Wl>k(Cu5NweT#*p1}i83;N+lf8Z1O?^p&2t$F4 zK(%Eq23@x{r6gjqZ1Jrytgz0)?vQT5f=jjbxdx8KHDl9*sJCYS{Ma}V&@M{2)CCbb zoxIr3ZBvWbecAT5m6etErY3X$24|RHENBSL3gXYf-C<|mgJhxy^KY}S{BN{n23Ih75?AebLf-uRY_`AT>He(uj|S$KqfL>j>7&x$L)dbpQ( z-uj>I8JP|p=~p+!nUc!OZ3y30*$-`gb*Z+Eob`36tGc@@uRthVsnJ3&ix@dvu^1EM z;`KN7UC0A?DX%j6oIZ=obTC^uZOKr=y50776m%{!-E=SUKZl(RHBtmdpAuJX^Y5{K z%4+{^vZrM7zx+vJfCt>C_tH}qA^+cB@c+I2tvo6qp3`zPr2qNfKJfp0J&?;2p@8Bw zbRGmbf%!u+mTDRr=720&2QZtpfRNAth)%Vu-O&xdErvZxEleg=r6JO}+*ZPLoHK1eKetm6cVQgS_KgYaZ7F-6hF5 zcgV2iW9#{5V{O+_AQI%7Tf(ybH9miHzb&%ZM}z}aG6(MA7@j!>6PQ8Yy^4XsVRX9V znsBjh-QP!1NB$UyXpuj~#&G6g*@TJ%JYwJwn0)SDYGc}V$l0p%}FZFzuD&_GBj>Z^?)@xihDRKz_U zvJ=`RvV&o%W9G5mfk>_SlKUnl2l@r&fN!;tc;%sKA06pQ^^$xubVPZ}^9+9&dLs_JOCA$VF-Uq5>oCnTzhls0~bi8ARniEJv{ zZkB-@mBsO)T&x~+tqG89`#doItqgj(D7Or&Gvr;w6SK@CJ>~dTQR(KM0B1-#Ne}U@ zF+7Ww{}k`KQfwFdBzTy7=+GacH&{K*SgcljK2HurBNImO9;O%ChSHi$t%Q!aa?!9ZPkkC-t0& zrwF}=EqcOiY7eGoDX6_s%KJz4tR==JnR-aB?S}SJTZO-3_dN(@#71TBeT<@h3~9A@ zOc%tC%G~WfH+{$%bB}Int7tx-)Onb{igdL2?6@Gbn2mJ1dI=b$@0C5fUG}IfT?w=w z+GAD?+zmQ})j^wixe!Ysm+V$(yErc5Q{g63Lp_0Yo&2q0vrD#Xjt3tPREJ#iJqf7s zgdCzB79oeDhRqB+x;7F_{%(vgv0kwNAM{CrGpq;4s=XP*gRX|h@C&iM0M{k&sa=IL zg(JysTIDlj;TUJS5&s@C$}~&Lq@haeyCTEqbPpj5t-^seI9qlrhQ-NSwq7V}16GrG zP8=Q?&X^(*b&n{rn)+_bh&5JI zFKlJ9B$Eb6nxEv6`?XF>s!woT6V6lbcnkrg)nBQf9jI@oyS;vQP>Q(JK8XYRGmg?w zqyYdtF6`GV9Z30`E|9SFX95z*15;;D&h^yN!~Rk|z$J{5uW>YA<;*pC)<`g~!Hyl` zBu;whsYpl)KZv3&1MhWtvQn40eCRUFF<85h z*WD_$Yv%3z=AH7veBD^naToa_?JH%dLoGm@->-!6@YxN~=}>5|!Mu#6WU+L0V0>#Z zvEaq49jz9RiPp|z69Yk+Xo-i~C2_mAa=UjnEvp6yTeOo|B|0@8^hvkh-NPJxE*D&H zJxd-bx=@*~Zg&kHXOS(F0y7`Z^6oDL;TRh{Nat*2jVp&n2zGmko=NvP^hi6Q$E+VQ zEY>12Xke|{QCV@Z0~S^BVSD+6AhHDoMKp2-O}sMUSE~rNyJlV(0Pg zFJR9)sEpEqT8e}XH72snt0TE9wu`Av$)LhG7~42YVnpD{c&BFRi8ifM2CA3E5E+A0 z%4(_2DHhH?$!O4zteVFS+lQ`U`-89kfu5MYA*L7?gwsFft+rg!u4QH|hQ)7-J+Idj z@9T_3jz!YgAR@81NgzQfLnoR`iMe^_DLrw&fr@hT3hHV(xpML4zzWJ?X-bZk;LokZ zZcjvZR3{Q-`nrQzeA%D)E>{NAG`b|*h64J~eD;&0?uiY1gg)R;#ldL0(Lw%YSIgMG z)5ss(20i=-u}EM-Cp1Q1`20^XU~&H4k&m|nJi~5HVZ#cNY5pbQ*nNCoq2Dp)r_L8w zSM8$)XzyO0?V3c3ZHV8_4BwP-QCHjwbsH*5cWvoTO59nWaW#)W-eo?HL4=?=G04pj zaguIeDxkPr*8s5(^&Ayx&R9iV@~-ZZ%-3wMkH%2(&sh$Mn{+@KTa&;1cp7Fyr0ASEYxN4h^-gOq zgG-cGGZ`yVvR(hUIV6MIr?Yjeb=IP&G;C)2E-HVnWZ`T~Dt@c4pBux4!}Y>F8tl)- zKQ8I-d)csbjzlkog+cb2sPZ!>D_6P78HpW>J4XK}L|;;kYEZ9ktvxbsBih zuVT1jl^4+u891|%lag305UR%RX($P)pb8S;<8e&dLy~(AoR@kD0~mBDPBxlGIE17|j{7Og?56y|CyZF(Taffd+lp+b+G-H{8<`HxR z*9AEs2py%+;LTNXg8VQCP^4W1g`hX~ZJg#Yh=vGLRC#H;1J}M!O$3*6F+xi4cuxXI zrYD1451w;#>;=9cP{aai8Zhbi!n4Z6~|~a2ZKT=l6ZjFkeLX% zB;%ID()HXR@a>=1g=o5 zu45?aOM2qc^@hns=AWboaE?7BA9}2=6EMNaP6Yx)HHfw63>*SMnF9*MWDL+=65Xx3lr)+Uz?@#b>cWB^MyZ& zi?=JpEnAy3n;lgcUK`m%xarDmR8#nKA&xS?t~~ZKy;ofsKOK3dv7PcC{e-{*uftn9 zV2R5f4(uHSwHXXoT-`uG$hbdLJ&>4mKTt(Tl3vK2*7uXsRkjws=p-re96y|Y;6m+S z0iO}nV?9Ee0x7%1-dYEFQj1(XS{#bP)>wwl9<%lKOEo_-1_dF|1jL|pk;K`=*$jbi zy*9muzM85XVCtVAJp*!GfFX&S0p`ZOcHKwkbA_aE8R#fJDDz?@1u-cyhmm)39m;4EYh97 zpC(jLA0->y&Q1xR$h@}*^h1dz(dGKg6~u`{G7rrlokuam3n6QTP-httVRbPD1duWg zFcrUrUZbLTuaYm>{Vqb$HY{GXrrF{ue-=$uG?j? zcTo-@Mv8!wL}ztMO3(NN{lH2@f;d5!L2`^(B+P>Ng1;h6SeBF}?k z>3jyQ^jBZ3o=M(uj-gMI?@3(N4GWo2tpxc|@!Z*2w!W#pBe zWS!C57*>0jI|4ERH55@$edver-RkreoS}$M9*5=+J_QPcTU(&LWGbyns}vaHp;r1#<)YNo*F!aDcjg}Owqs|M<5=b7%TCF)riluhU>@YLC6lIsX=R89aj&4 zmax6n!KQzV#w@^Q7VY~=^?@!m88`B|e-sjP7t<9UN&tiLokyglz|{Q}BTiWHt3^#b zs_BoX+b*CFWdpzzbV&UginIGc2Kd`(D@0fQ7?Lcl%`0`Za(1AmaAQK ztPwL)EX)`aiK+kG=uo;GN4{0!WG+p!pL|8ciJ%&%ne>ov`02@FT=7%!8-{rvVjv@72wB7-4hwiKQ9VO`>=ge<(?I$@GEY+A$66 zx;~n%2r5)wIT7q#dzFp)qksK9(piO4S`Oke<;I22Z{CWK|DjMKrux-3An=I|MTwS8}mDXJuD^|y{Fi+R3kP; zxQP+OpZ+FTbPI1qdYYlbv0N|7tFuGXiC7$Y9rrS@gClc~X}+D7ri~u_og@w8edM4+ zTc8eC2T7w~6N-rsXCKZuN_1Zk{nzDIc3KQYC~64SE36@&0h;j5iZ+M^v@%dkz8A8J zrW0nL>e^PjVb%l?bFTPQ%~&K3aF~GvTQD4fXGvAXQ(-SOLamL5vjfG)A6<$+sI^=C zf-4m4Pi@ZbkD0`SUnFW*k+=DyZs?S=8g-=A&9g0#yMS%~@|6gi6A3vq*G_orcWsb~ zG!43}^ay%hq-QGx!w!uEf}+}m@&g%MQGwzz_9_k2&M)#PD6|`lj9$$7x7GiGGpaTF zT})i!!H{Hw3+jqM-w$VOSo$D$Ut!t(mPRfFl?M4V+#9X9$m{ z9C1q7_hw8<$D6 zZQx=C(U^6hAM&HApc#A%#}I#6H7Z9u8WADV*ZNhLa2%uPvZ_9@dB2G?Tx&1<$WVje z1|&ymob|nU*}J`~^+4(cF3sid-3pB&#PR;!@g9pktJyCGA;asa(S4OYp_H8>5oxkm zH`~3xYsCgeT+(SPk9yR5)_QP{fDR?-32DLB2@g^ZEeSqoBYKv(r|D7X6DlbgB!@t-ih_;71cmr( zMZOE*8yM>9y_i#omq1t!SZ=i@C^a#)qi&@_c!L8ai7h^Y`7yzU9@iMLb!2d5+LF*e zT7RFanA~)r$K1>jg+^uNt2<%%0om9_GDj2` z?^|E$*td~bh(Zv9PyNd~YGpsJ+vIoQQVCMQB_**#q0F&nr-A`+l@D5_W9H_oIihyc z^47$XY9FjwJpfA2xB5_x#o-xF0rJQ-_xwO}^a$Go()W+BKYkE4d zwN#mv0gR1v9+Rl7zPEorSo3q3R%?bAb@MV8kzbnfpIK@)tQmz3NPYC)O>9)x>6;6`+=iv-mg%Qo z4S5S*BcPPFb6qdILm-Yf71Q%&=uuJY=zLXsETxLSyWxseb1vt>yiWwB)UWKBQ|Dg- zy;@Jh&sJ^x_Z2JoeRXvM#Eel93HdM+k9TDILPtYCz(?GMpY~|$$)@!4=YnUGZIgqP zn0ct#Z`}vJjBGdOjOV<|RZ&Qhjm{-8BR8023kTT^}QyX0adR!P7QNdE95d$ ziA?Uho_Ql~&D%yciD+BN#YgUeZQ(98%0fB|CBG7BEc$xt5n>XF+Z8;!TM~KRAxNrq zTs0y6Atdjd6=cp6aq5KGZg2Q5r@!sT*$k>+?kc$_0Y=KFWZ_hN#hY1zlDQn08m9L| z=G}$nXsjuCgcVN-^bO2&%lhvaL0_Tt_6?gMOLDm!UC;KVd0OI4RP%U!wz`L|bv!>k zGGDf@;c(zVrp-RN>u17MtakbGoB|e9=gT;icS4{U@D-9mNd@`au`S_FBuo^L8>IU@W`bq_8Uz z4w1(rVPSK}32b-3<#s5q>zUs-4?Ztufm_@1YSLOWgN0ZfntxyGBa4;BMm2YElaiH_ zKtKlPxgT2*^>tPk}*F(Cgj)Ucok3X^y+Dy?f0i5`>LrwrjYoA}s6xp5CnOQ6U zc`W8e%T5xziiD$rq*ohyaUTA?@xt9sORVsbu4(`>Hju7Zn2s*#MZUiAm;S<#*#2GN z_>{!iL=#d%+abA6x$~(i@}b@+l>S-Kmi3U9yGy$qX<(;Mxp^fN^WbxSGZW}5j96nb z!HmGsuelFcVEvqKOEM)s{+_-wp392a9zXbWax>nxmkve_J$z z1U$0SUbb^F#m)fCLq9FNHK)bWw#W&J0eefXv zutU%fVtMuz7T$L2X*9$k`<&0L3*L3^f?@oy+jBxwA|}|h?(r-!RBKDEHO{4|VJHf3 zm7;de`DHKc#AT%nhPz6-Ai61C3Bg7kf~i>D)lPxTXPZmki0{&Ib|$}Y z&{v~F&WgK>1!cA+r)tioDML_RH1a@h*i`CJ>NUIDD|GB&yA8;>A8CIAnP6m%>k{MV zqPr>@a^%h$d8LF%B5E3dF&h9Eys@q%o$2nPqeqG+c_BiG1R1`~sgIBZy(tkzyvvNSGU?e25y;)wi z8m%N8(4ix#NYeGF{#H^5Z=N13O&M%JZyE;`j7yG+nuBW<>&Y=%9-Gh&n$ z_=1=eOa`gwyOidyTK*MwmN5~S&x*J*K;3pf(&H^z!1}R8Aqs z0<21Dp0Sx~GkT^uL0MA8VVB%M(M9UPM3~ni|2Gz`fCw@_Mp?{3o`2pfo!^!GkL*&n zJfcd}SyRi!DL?HfKBPdna@BCS@T77v##NTjxCwSpqn@`cK7J|1_nk>AV3ujv)Oq2a z|C%aDFojVuP$^PTLv*M`pHVe--oaF_nl(RGQRAO2rMkDZAChMf?*KX zOD4Ykxj>6J1MK$}`7*C!(ar}hrJor=^CreD+ZV5f&;No?t~*Hvh@HHC6|rntYQnM} za&a>AjO%P!OOm^?tp#vUbzKM^D8*kK7eg(YqH8dX<9xYjo= zo0k=Ry*H{#8ekl}#k{lEwz^c zJWK?go9~Kx))v@VGNSf=bo=g4$X^(YkV>LNLq_xEu}eVui~*75b@Dq0_dEB$6FZ^2 z(6$=rjrbUvR_Ud8v)0bXbfrYGiu5@iIKtE^pNm2+8B7$Y((nAKHGyq=-wRwRv1%? zN0PLAYCvBP_J1s)r^-7Qj2P^f;MzSnY9%eo<05XO!a$CgipE#Q_poH-iC$QYIR~HT zhg%=KJfX|;{bGGM_B$}=kmSfe!5H8DG&GcGK{0zM_B7yGE2h;wFJAVC|L6cws0`x3 z!hw&W?WV11@fKjFfS&1OVMwp=P@1EnsOZ4sV%yid$s|Z`1cbMu*yeRr3yi@jWnq2P zkyl~y7#T;AUt$Z$N2?0$WUu>lDEs{sKwv&$lBRhv51TNc1ku*gQ$Usq&zIl zpxlTMT~Pme-y<4gKxe=$@kTMyv&*a4@;Ip}VA!gW)vLaFVrMrO28||}=aN&nNobQp z=d}G&a(uJ$oON9ZRW)|BesCeNBmX85(;mET0m!3~13JU5tn6l(wKpt6yIZIcKL*yOI+txjpOd`*5Yl zuikD(D~|zbi?r@4#XPIkk@UZioHQ3^K$TQ&m$Dvw5phUsag*@?g=?MZWI^GH#hhtP6|a!F z#Kga3?}*SiqIQJaZ7kVaR6#3ri`1XS$;{39sdB)5>RliDHoC}Sjt@PAKj0Lx*IA@V zZ783%M3mYKRF|Zfwh$|C>{5mM_05dJ-`YFqSk_FiXQ)`VtVA#sijo2v@hJX;I}SP~ z@g(7a_#z4s$L;)$3E6&4#WspemjMGMnqIB=n)hn|vBoUIR7OE(>9-211nuB&YGg>Hb{vtmc-& z9w|oNf&DI7jw+8$M>5pS=N=r6 zjcfw2+>x~Hr7%xZAI%fzO^G75O5R=3Vhi#ArUkIJ;@tInQWqmhj5bnLk_;PGf+AJ|)!lY*|L^nh->t%2WhCNs zl&W7LsVeEr(H?Q%@7j!r?h2}e5Rvo&uoP~aFX*QfOvhJ(UtI*gt~JRjXB`;>TO7Xw z0M&ffc-0{ae+*6_1}?KtXk#~#;$w$NTXBYzZm7F$RGz0Ar5S>2{<|Xej5E~k0W1Lo z7jZ(=rs{idn+YbwY@$tHrlb4ZiIE@<(;HT3)6*{3yCBrXamJN#ea3iA{y5D`rPpWM z)>7fQM+k33GASYHLL~&_@g-HIBa(Q)O`1yj)l@n8*{)_SLI!0?5T!hdr9*Cjz9m0X z{!L{bnYSwe!&0*04oXh3)~46FjS`8ie_G!=u+rJzUZ!;?v&SAbl}HIb)sTlwE$BS< zB|Xlj^jymI&pT2E2!HZ47ORQHczyMsLV|!>i#I;9%%6k3Ou6ujQc%PnXLoat$Ah`!hHfeb=Jm!n*x ztE{q(C{Ryj#$21`c9!r_>Y|E4;)N(tnhdrfYC{YGt)BB!_P-fCZQZw<(_*)}58(Z$ zgAH*aNL;7f_u$^l#n{1RU5u-9Rvydup+d_p(GCG`bk;}Qf$mcCu-~oKP}^vQwwK;( zU`LP#g^g##5I=p;_jzgq92Ltj!^$$2TGp<~0!k|h*#o$M> zbTU3jw!Mgv`z&7>J*=JY{wVaXeY`b$5(Bz`-5COLxUSvj@NNO6(_aZhdAe=P&;z zW0KUvh9`o%LseO}XcnL|yhVpx<7k6cDelY!TCJ4PzFTX*jN+A*HiZTk<<%!NEh<_v z3%Y`JPTW`}7d{qcyu(}Ii%*e}SiWJjyduO8Uu7q%mF0u?>9V(qBa zZUu)IzbSF8p2B0A4J+PN+)lN@U7bkC+Yf!A6nUm4m%6hnsI*HBf9t~S==xcSE5Xm0 z?yO6f*;D1A5rs$h*uvG&yOSTuYUCuC6gtn`nC5$G87wlS?rA~!SGxScm}SG7y0)dQ zvmSMcm52+C76%iPho0@MDi7zBJQX3CV&`nx)ePfz!l_=( zg}ALmg`&d~4c-nk7Bwpk&xFl!YzmzX$Q>X5YMFi!yX}AFOfx%x^;>KWlOwM)VaE74 z!~aT209`<03H|7g>+g-h#9+3DL#{*iFmI|&@=bcQ=yu|P#x(@#0!bw(G#aB0;eB?L zU&qv74^!f?UUD!4YJ;Fk232sD-l=9!jy18KDip2ACxA&#EaA5%tHIOF#wAA}>^Ybw zRauG#GfNUnI+av5=LQMkMl6+P*VutWV#jQPL#q_UsZ)vrSlp9xmKO|PgTvqvG=5;Q zE`_R};%K&AcsqPp`sdnU455uW;%x%i05uAwY0Ke|ZYv}T!a^N5?4l#E+HJGkb$wOh zz28KW(Zmy=BYSowfkzbBB%s`V z-lAY(z2-UtHbvAIfBgW8U#%#GyKST;y*no-suyPfA!Qlk!oj|xK4b4HDTg_46E6UG z9ih=%J=eKb;)atdC=L3Pu;uFTmtrH7z7=I$dY`%5T3ZD-=4Z8?8*hz_YVM z^nq+2tJA!cjc7TRpLr@PN0FWN1W-V7cs-R{eO|O8q{YHoN#~>2>!3njTvc9yh5>^i zTt76Y`91$xw{6{b{;hW;&C?%40h#{XI1R~B^(;ULiFy{$LoK(%w!@4bdXh+r*~`x& z@7Z|T-q^7w;J8^+Sm8di5kI1M>FKI-E3ggV*Ry>A$}zV6L^8U@*hZ$GyrLYZ@X?t$ z?pC}L^>tJFw-@llWd#t)@-;`6O;U%vgY?1W>P_`FziGWF}W%lgEr=pl$!4C2^N@psRs1yXH zKK=Vl$i+~O# z`)rtd-nPVuYKLD1m>39gqmFm64c`g@O)c}4MFmJHQY^&ee?WV@2x;8_j=8ZnKMrXv z%lf8ed^@~>w>y-=JL~JC)RhOhU4TyRI;4$T@CWn_?3nsPBQ5v4d62g+tZ2nMdnG3l zN>pojced324*n>NCkH{lPt`qH;uGN%+Frl=g3C8vVn zFb+;MeEoeM9GiFa50@MDnSSo+?PDtL?n7>R1C~%4KfW$H1D-{ulr}eE!*og&5{g+3 zknn~LoS-)zXxA#e8=2>IcZTS`(q2~_7KTZmpY6W!ywlvdF#spjr71_VctuKYgL-(cV94hGX~N{?v&Pw^6p9dW#&mgR)*z?u$)s^44oIH97iYF zmk`n=t%rS<)ut&yhOicl)y26(zZX{ry#?xR zwxd>j2b~5&40zWY*SnstxrH!w$;6-Z#I6a#vB4&JLK&^MyusrGXLz55?&h6MIw`Rl zkxEFmprgI!^~$9B5f(;|wsX~|_PpB}{=fU=*0k5|uH96OVhD<>H=&crJZU2h##}V@ zFCuoC;5=NdDY6md>&2F!Wt`Op^{W&I{O{eH_z}~Ui0`phcc+HAYzGdiGnRe`R+D9^ zvmd>^S)DDfcoXC9*-Nl?Ztt@F58V64bSaOp#|3UYlgPHa=mBieP?*9bIwKCP_2`uaLtCE zGCpt@kPg1S#po#SO=`X||MZaBnga7&A^YrTHl|s%W@jVqFv*{@p>4i~sdH{AV<-AOIrWQW5+>HP4E&YVaE$8cLz1qnlXhN%O#>DZBhH`;tz6 zkBv!%wHfzC|7S^U^w+$<$vu3o(a@ZFvNX!c4px3>+iq$m&J+|boT{7-1=t&@t|}W>ONIJ`n37T`2^6i zu`LVe6n38pJ@^W=zu=QN<=i)$4r&5-{xEZbz8d~JuQxO(pmTW=klo6uk_~`5d6s)FH1lw-I8w5PGW5rW?n{O3dfC`*UP|>;p}aTcqiat^orF zcIzX|mQh4@;bF`1t3(Y2pcmBeLEcjqAoKv^tJok_2)E=d2iW8%JNXyxN=H40YfYP> zWxVp|M}y%L$9t>mfCf>Gpge(c{wmjP>wm|G(1^%-SlqNfu{tcub#%plT|Dc6NZwYt zTG}u$F*)hc7D>K;*sT;s@4sC6uf5z?Lw<4JSYQ8ove`1jfB+=ss?H8(l>A1!wio+2 zRj|6Ska(aQ=i%qqKndz!vk{|0H8(3-)IQA(y%Z%$%bh+Rt4*pe4M!_~2F##nG)RBX z<0{zG)>GANzx(BuPMUxW1nr@0#4_DRkkuQGjg7TRNeHpBvKkv72kIe^8Jp0((fvzF zB{s|Vc|o6qS>H!*n;j8q*|=vrrOeX1cfJkmoAvka1s>)t`TP39^%$?kK3OQ*2>FL& z+bg&76Zyy+3f~9nmuoO&4;8a`Y-`(klm7h*&MXeh7@j(Kii}O|0WyeWsGGi!zTRt5 z9y&w3r@7(|F+U(U?*-WzlQBT@DMtjUbnuoHH~96V$@}^ic?V!IHiGkX*cOU7wo}5# zE1jPDvCeS%4ypK!=m>tR95!y=C?!4S|93a(NEd{p?)XVd;QO2%6)V#=Q(6|(_P04D zvR5tJ{gn|W6yETr2rC1b=`!W>?c9v5WtNv2JBQ@{zrA9u!j2X)^RG>h z@J2K?0i7Oe6Hm&X8-Pgj$E#fAWD+-|7gE&RdtUN)jTz$>21EWx?$>oI3;-P_=imP( zt(LV+n;ijHt*=T8i-r)W*DL!(s)9G0e$h$Kl4!l$1k@?^bC%@07Xb^SqTL0ld;-M( zCIO0!{(C($mBU5R@bOo%8xg;iZN#4(UW$8h9(~`xcG=`&#px9>#Az5j@nh{nQPRl1 z>EBqiF5n^yBA_rRwyTRyi-I>h>zbbOa@~AV6(GMi+VeP41HS}gxa5#hv%D27{r2bT zrHCajU&>_4cf+8Ow4C4PeKzNF3o@05XeNX5NkGBpY2%h=?M)FWxgaM%pVM!`?Y&Is z7T^G$)rJ}>q|D&FS9X9l=Fu9D$v+EngMlk1`70rmy~>6JJx|W?n0@6GqYI#8VC=6z z{nN$XS5KLHW-iYCGgx1eHO1IO=0!+V^Kh71{R9_)U7m z&^SMk;*$vKOzU6D3of-F#D*bbb^(q>S7*5O#qlq>+^7rB9{!BFI>!3Mlglh^12Zax zdl3zhT^*3y^sOfwH*`;ouk2{XzW`gk;{(582BOdR3CT|nfAB_ZBMZ=Jk#>e836j!g zxuk9=9@`j^z9BDF=)Jc_o>EZ7vy+yK1{1inxVzilhJVZCwPKs|?FVJ$hQ zXouDvPgNtwkeEXxNz6-`#dH(*z-lz73zZA``$(6xWOHlq&r9xW!|@c*%rT&&dQGA) zL0(9A!%hIMj&UYRoe@pQf#~Au4MwsfJ4Bmy?`i25K%gNE@Hxm7XAAfNiP;iuT z+b}m?T_J#On-hCV#&sAmnaye+9l;tzZPmIj=x!4ob_7gn73AD(nHRsI>i=Jh-|7m6 zGFGT=hF=_nTOp~&F*MHa$RyZQNg8s|Q!g-@BE0_GqEJQd_MWKFq!K5&>${zutTt;Q z&^R~kmzVuJN%&c70g+U$mZ)tcE_^G|M%n^l6Dg58gWpeq>tj`?)f`K#8pe=)JyC;O zfXd)7a{OVL^?DrjF6{zDMFeDV2xJ;aD3>AVnj}?9}l9pB#+c~G9 zPp5Mtn9T;v{!H=Iulw~(t@BJs)S0$uVfwJ^PW`Ar3Y#>mJkZ*x=5p!Zq@50XA2yGW z_nN(mOaqZ(-!6l(fMiXJ3{UiNp3i{HfZH|K+K=X!fe&Q~Q?{ND@Fa41v%M!}+a$A9 z0@`u>m>BwZzi0%U&Rm@3ryZ1l(6e2`$dujj!LYG21%R_UwL%kV-hX)9b*GsCG8zos z@X6hYiozz)Zm7|7A8^Y?m=nsD}Acs|YR}F%Pd$Z7c?s+z<>@0_B6aDD2t44es-oaM;bUD1scxn`tCb z+`32|#pB^**<2JNcoqd&11Ohi)OA}*3*^U;dr=YW2aGr7gEzWsTYp9TRLO4w+8k6Os-lkY#)9M__u>xCN<@F64sM^rd#$pv-IJIYImvJx7 z$s(h?!+~mfgZV>gx)PSQKow)J*`sJy>*ZdJt=46xa-JDMr6Zjs8WqPBu1Jc`XtGG} zj=$Vo7N23hQP4KKdyN0VKd3GSWLyUeKWtE%4Mqu$(#B0)_D71ORKI6NNMDDsZ3cA9 z<>YAY&)0?QeYSZ{`VV~=G0Nced_g%Q`ip+%SLzBC5)AUn!R&5M=>E6}l$@Z_8lP3O z%@&yvp=$4FnwAT)D(iR03eARjwQK4Ra{aJRngIp8 zcq}XzG#>e^jlP(AUx}%rjvfobi6pCP0KXjIH4crX{tIg_;xq;#ajIdMa^t3)02p$C0DVIP*AYsY+qh zb^7u1%eq--Xx?`Eduavqc|_X>60?R>d6UldXyCEW+#}f7GHmYAg4WDdh=97n zJlmk>^A!DOjfT%%{D6}Xj?UthyaCKs>dF9FF-0W8i9|*vg3^To0{Jtw`7BPYeN8AG zHW^jU=Vge71lq0{-?+i=7%#IxE_~Z;`@9YJF;ZJa#ft@!kQ}mrBDQ7)0<_MJ9NO2P z=4sl7imHt~PiOBFq$|F>f**TH1dQqf(~(dk3DhS-y+Px;L|mU~4kMJ_8Go$i?(z zSW?&w6hU_GUk4A0)GzY{1EQH5zG=|p{+Jjl;E)GE2cYw0+`yJghB~YN`r`phtf6fs z10`o`F|VVn1#O{d`A+I)%1;>GA#5#mGNI%M)++z;F5;)p zr9u5v^lRa!&kD%o8Bo)MLLoK=k#y4raWQC}eM70yp+>-BO}Omi@oiQG_4E(jjdIb>PB*0bx)xA)B)pneSB zP6MSW1mOATNr$mJPh)?fbw1={Li*l8uP(-K1@QQN#$OUA8dCwa7>P z(lHeWbdWtP<=YK#FEr`D0p)q9vaYf&Q@U!6WFl**GLL8HOYcZ~aJt!6>>$D(25dBj%KTMlPem13fNje#A#pD$R_t4aPqA}<1-1VhyU8X=<| z6`=7K2K9gc$;L<)TeEqD$33;x;2xj`%c|GE{P(o=Qxl+WMYigtnyI)E~Dt%T@nJSr34%^|#>){g&q3DhFoDE|P z1EDE|&+t;Ls?jGnJ(AV+XW^{3xkn{@e00%< zYFG#%5a*KzBxK$&T%ta_@Fx>J?$#Q9a29@os*|k!d%vaGvm6!R*Pllj8@>(WaX969R-qa}t|BE#itVJmib@RR111yb59)!^LGLVDs3eXH-JNuE| zB|xm<@IhJ7D-$DdMW%SaVq1zBxWULQMe-+P-&*(cyO@IO!k5_$o`{@S%RipxAhn#G zg_}`B0Qo@(1Bd z6-27k#)MeDIj0G`p}*$DEUgGSibtuuhUv|TF2ufsxk_DTY%G#LDBg@Ep(F27P^Zu( z=a1M{IrJ%)rh@RdVuZC}IUKLyjI-Fo*lHqhq_3)vQu|<}U2?^)foYqNVuYA{NsLle zHCHiG4iHPkjPj&+y9?(auh3gORdFvDm8&Yr1Q=oty@Eqs^tw;%ZuMm@5$cEl2lYSM zr&~!R+tZL3s5JwQM+j}A8bLk&-MXO!rhd*-l||^QxpzbEz~T|V6#>Pe#r4()*^s(5 zO-lGy@>97>&2uxJIO{It%vxkPr1X;>%gL!x4&+<^ldsd{1-4F^!r>QhM(Qw(J!DA` z&YhN(j(#x+zQ$Ejc*9Zj^9>vTOPp63>r|yAKPH^wg0?FeiB6)ySvw3vG7H>xza-5Q zkZeq!ppOVz1!>5h@e$YzKP7=Mc+`H;nh`NuppYIt6P2f2D_)c-3zJr>4a_GioUe9` zmir9-zri%|X8CYdN5Yy0#ZDBBz|)TLh!U*B11|43H@${QQ-=6V_ZcMZqmc(YYW8~+ zlV9c&frdG?;j^0BHO5H!?)S*I-6==4G4)bR z<8S)6rF{P;V2T(b7P?AZ3K?po{1jA>3wM}`%!a?)EJ#rD9N`_3pG!3h3N`i%ct*D< z6RD19#SM;@>D-??O4ft&N!SJt-0!FwQF8)aRxhJ_jFxE^?ktwyk>iuCQECP|QU}E` z|2Y&%r(`fBVwUE^m5b-+jYPmSq@ukVcL)wcigEM;54_+qlb>g+hOD;>^a2nEO!`sf z3;synvaVSJ~gtA7QTk}l~W|+S*)T5 zRBJtz_Laag+i#{ch1k3fmC5*%9sz; z3zCFZIZh#(D^#lao5nmsbc$(E{Vg@c=Js#g^a}j`oN$8eWBLXt|_xhim2a%ATxR*BY}ZHPfZfui|X}>mRt% zkS;uahtZ(m4L?FiT$KQ0vpl|Y*M`nni?;MFN^a+#=q%Is?$oz0Ej4fXzS*`HrbkfPUe=Dmd_0hvzuY- z7TdTXY1w!<6gQrqO|fmcxp&6?YuZvceXIRZMbpo$EUtO+=rIOF*Q3q-fHpJf^q@!5 zNDBn#-uzLM>jRD<+QsML)prulu2nx3VtlkXZztdK!+h@}@jKPH)?R9tM-YbX{rtGU zP%r$d=yq3a)vM$6>EH|v3#9dCjiDp^qnezRzgdVczdtln6){hmmGNzREHs<0^aV}o zgw2eZdbqHhM?sUX^Tyk5m0Ho){-hSSQ@tju+|;dhFF0|k5BlV|Zgjd`Gx*(u$;oL& zyWcV*;Oaw48L94U`OkZK&{#$ZEWwyVchlkvgURWp#e+N5U+;R#HXbV6s*nD%tb}>0 z;&<_N#cY5swVa=Nraa(vhCr@ml4kv&ZG0H~S&J9blHV`u{VDfoFqu-IcLsaL7o!=Y=N;y3 zY~#!&WvvyT6RWQ31_|C*u=tY0NcXNPZm4Dcb|44bK}~I*6;flf&;&=Y(9M?nENSbF z7pDn4*NlZf%)e{))4$=tS#0BRQB%|RrXTp{?d@Oe07n1axTW&KY=62Ci_RpP;f<2M zlou>4cBkVT8^cRU(V?n7uVe1UB1Cm_oE!13X##|dE0ap>^x_>`j9NR2d}+@fjb?1D zta#SgYwL($i$HfdSUA?2o7;r&L$YWsfB*N{Zc~$TM#F{n=ZTV2V>KCj`*cav*r*IH zP{jGok+qaZMNF!RToZ|@X1m~Vl(9x|s?wK~OcgPYN45Vo^@THDGp0{v$WPo!$cd8^ zh}wgy#ojh;VM6&6%lXz|aykuf3_BYJ`xbpwG8axSE%IfdQ9o;B(f1K==**{sbSV94 z?AzBXpBsr?F-|v%=@G-M}(>w^kj+9j_|LB*{~z2L`BKVcpvE$|(R}jsvUJA)&jM7qbG>`7jg5{vHTbPp zzJ1Hx0H~aK0Of+QU%yB#xF zv53lTn0F@Z@JwoJO>hl(0{}S`LGWC4agr>T!gX6Kiy30$Sdu2c-@WR3W(;VZIQ_sv*q_$5T_(#X>|!}ze^3H?-Xh)lCF6n`Ew=_JcQ*hs3Lbkaqrecg zUtAnqoag5TZ+!FnljSl2)M$TG!D?EM|J-SD<2onCu4g(V>HOrHwqt|i*%Y2h4=a36 ziD%7<7!Jr{n;ai!$nC3qSpCTbw_H^yIPiA-vxjPR=w!iU<;}r;gSf6&CpvyK1}UG0 zf%sqJDo?*SJ&mOOP?ZwTG)XHMv7dy&{0uz6J8DhqXG!!-O!@%v{>M*a!>O;UcI*g5 z#k4g8q9{V=C>b!Ph(Jb!t3jBbQ;FI^LY~S+eak!NjV=E?>9q<8hfEc8H$2j2si^5< z=+~VqcLyfSm!>)gMX*=exS;P!?Y# z)B%tF;kH!Q%8Au*lz5czB3-59J^%L#9J$QDxjM5~bY9?__R_f|p85aOboV`-C=>t; zK!26nCBk0#u(KovC+Fp11$iWDr3!UslU6Ow5|+oyutqo+s0n) z)N4&VD8KTuZ?(r^C+A+UptSeT7b3 zQb+O2E6whcyvP51p$lb-RS+nJCQGAN8U(OKaFxYEysLU@&hPj+9bRTHrA7+@zU{pM z!m)tL9s7f^1A*win^<0s*A7dnBxU=9KS!jA3+^i*swi)gDz zc|=lVlCfu?XWcuXk4;$&m-S#wm(*nD;okYXCLs&cIZW(+p>wU4V|T*yNq1M5X1>AG zrUs8c3kKQg^ZH>lG&v4kI|0bA2#-zApVMPz1k%6wsVO_~LYD~uNA5mjZPTVk>E{{n zq276rwePq7W6kcj;2p;zUxVqfT9*p{v!ETj#+-_%O9?gzoGV|Nz*x~SARJ;tn+#ci z7b_E*91t>MeG^0why8uKH+kZ5Hr6$`^+xeq`=5RN%2J$E^saWcI)HLKchAgW2zQ?_ zKu{6?rFMG79(1x+mCPAJZ1X!L#7_SFXrlF?ptkncqE(H179bHQlEAMY=XYh<)1^s5 z=Jo06Ao!l&74vW2?*Iw!@2}bpfEs$O!s0bUuW&8q#@KM86ND%DbD1H!8&S}^C-Kjw z^3OX@YIeuRriXr?>T6IUt%jeW=|@4H zetL@`2a`e%DmnZUK9ydkSnw!Y)eRs7(j3=w0q_kW@vlFgSV3!DF{y6WroTB;&im%~ z*CspZ{q?^!8b0sM57bSW1%BM|qGuv7#2TFaQe{Hmrj*Y98YZpTHtf{Y)ZoI`e9;{; zOF0ez5hr}%z5Z{jVSssozx~V7K`%q(>)z_GhSMB+>Qt|}c)@x}8*cr~ko}t4rtcdq z7w1#r#igYp*$Tlm3OiYY)xaeQYa)_8K)}#3>Q$ouoRcbd5#sq-q5A8EIJ0tTJu~9@ zQ=gf*sgumurQJ>dVL#UUoI_y}(G55nm4M&Cg;D!&=|geWXDbgU*<5l6nE`at7ncmF znUm>*-$w|;04x*Za}+dLUF=05;BAgB|6Z$LA*3pFz0CtK_LY}KeGCL+EbpLl3p9Dy zp`7i4i7GD_Xw+F48YTmo!^ct5Bfw>O^cKw_-G&dWn~FF2`(H z%p3zco{jh<#bZ~0<)gcIrX26ggj7{HZe3=VIfItp#%ltY`hPX$Ymuo^^%^hE1hGYE zi#+LDVx4Fc*$plF@1 zZa^`q8tUxRa*4#oF(nn(zCxRKfv{@ix>i)@xBloqBr_wq|UuNqH+YV9CTF(gR%KwsuH<`AzkY;GmxNC&&#y1x1DFS0{io2Z$9AW11{7oikt$W2?iohzk z9~VG1A3+_rX?CAPYsDe@YJiN?_#AtsFYqe30vM%RaQy)Tf*%Z=v^aIfr@3Ad@zri= zfHZHfa9K6LsbdqC*Djeo1mx&gJPfCoOatTrf?JZu&s_g$H~sX>`y1CUbF7@fYZXaE zprAUCe)bEe?5Ex#guH_O`Y{I{W_&wvP*1SussX5!KX+ z2Af@vdovz*x>Ub=@T~elz?Yj}hAiCOZp&NF_{}}l`|PSmbQ@;#P_w+)~P5&Q`h%=5r8mq z0%+bW?pr!uXuyN$UfWZDzN`Z!$*u^U05rh0eJ9|`->UDK;_aN*_eL_Be+n4ptqlO( zgSwY*=G7B<0I98#0So5iONdV^gBP$L01KXa!4(*@SCs&mILhVq6+l$6 z2EK<+u1MSeLAX?n29vml^wd)UfJ}EDpiB6)&~sDL3$#~eL(t?d&*g!*=JTRON!CBg z;}gCxAy;WYcD2OJC=4hhPh6_=LSMWG06>lFFppM%XADFg_xqdAlsOk5#9y2ncKlc5 z5BRUKp{mlX644|b{8y#n&~5Y$9QrZ_e3YK6}SNnkhd{OYN&qs^82~nsQcm z!QV|7D0}h;J)?4c1YgpT9k%cu=NS7;a?|OSy+w`ER`6-&u7~bPtrIjE5Q_cA%pvEu z=IJgM8Qb1tHzDIn)!A-(PmqM`0~z`#wjFtrJYP>7Uj54$vcb8&*Q94Hp3C z5l=1`jbnupj_%*(c8x04&MtpP33`E%cRxFea!Y(Nelk4F&*Ast35R+>dW+^&{{Z;Ja*39{0-oXczEQmYyDrWy>(a=>ee<+DJh|} zFi4k_Gz=mjAqa>9Dk;+4Ff<5Amqt1WgIiAzKL;6O)cp7C900;96r}3h+0^p!K@63HILJ8BS(O~>s zZS{**4B-rNw_XmC>gI(8q6O7;7U?7&w=YUG>}>&)A0BW*-!R14HWg~Z9s+>aPQEw3 zS6poth>gCwtPDC6QE+wt%(74bk4I4b-EO^oV;f@$Hwhw!V(>>ABT7lTKh4#a1*xR& z;cUy|oBq7O4OaXfuss2mX@1_;=5gPi5k3b5L$sNRHi+9{p0fX-9In3tm^<==)fUkM zSfPIN?B=IM!Wyy>5PHy(NNs@T?H1s%r%qj@kU`e59w*)6eTKg9B@&Ye+Ml*xXj)q| zaL)9+x?{od>C*(MNF5+dbOEI=Qy|6aS>s>?)UidktCuf9DI1G`p}UkRY?UC2kJi_Z zP7h1pT_+tu0)r0URtb<-HhcH;6}ZB6GC;`lEDRjk;v-cMf8l)@SR!pzxH*&g`2tWL zZCt7})N6U3n*bFN_0p#?0BW_A8>Mf>r$G>It@yA&*3 zhY^jZwT?m}m1jqbQFJ40)m62iK{73STO$vw6@R+=>64s?_E^|SF)L|D$V+|4Z-Sr6 z*Q~M#W7D(abe%Ij3Ca=zjLZ*YolK@r?B%q}pkv5gTe7&i=rlEfcL zCjgW}<5|&`g&ASONWv?LyS`Jcj^RZSOT=4K0SDG8Z1e*d_W{y>1U-s4fRzz{Q{E`a zglP3!C>%ZlaAsc9Bn5;ro70-XxV>IplS64HC{H?lu-v3!rQ6vZt;Aj15d&dOgJm-E zj(3L^4L(S@Aub}aiW3U}f|=wo?to^&dF1-heuv3(>PZ6RCu81joCDip#9bihebi1j2`K0`UD;>YP_?*4s@jEpWzaZe|Kx0aXpOd+E+>rE<2fe%bjrPkYx8*p#E zzIJo{VioCFUH%G5Nl9sE+9@4xCvrj`M6&45))sItyNjib@d`|I4n)H@Tf$y^2)xGvP=_WgV71Ju2doLA zPe*F_nw#GhH#!E#W_!{9`PZ{0>PyuWk%7AUdU&hC=tj zMRY(=342h;CD`w(9`5?DU+f5ZCBb`I-y2e`0TY_W!RY0eDch~&>RpGnUTfN$DN(bt zdan0G4_ND7fXV8cG{n8T&mgH=s3xSf8n-S)qiI-Eo!+3l+U70CORqQ04A3|4-}*pM zf$c_mLer&V^`xXr@)z+L{?eM^dAXu0# zlOZ9?C!FAl$~#7MIaRU$dTcY43QjeD4^SnTzSrl3Qm{Xid$PC{Vk* zL5b(~3#8J+hn^+;5d;!u;RG4OD1(f7ClBpKf>>X>-3LjGDWCG18p=>7)sMl*@f*^J z;xHum--_PchYd^T95(?ot(*=#3BF%A_#2^a3&fdoiUHMd$e@jXvC7!FO+IG%{?x+QOTB@qgt=Dn7wQBv?8@Q4Q`MWzLr>pXkKQ+CW z@?^i?{e|TIlPw&?6)zBBDacHuS^PwSaFWpMtQpk5P*S1 zGu37`PQB7k>y^U^KN7}>iBB=U8rI_ACeECB{uX_EVnmQHEHk<8p|$x)$_(SLrx5w| zv&A1fVCbbkrpo~R`O5O^9pEd8+)?o6zhlBDSd7+AVbrHQzl@u}sJz=O$T-+nPE?0- z6`-JK{n<{BtF3Y;dJT=D2dX}yIsNQA>&7)(m_JaT^-Z1gR=0`)J?h3QeD2aARY|YI zLyr@*FKr)y$ZF6GE83cd_+c|n`oMU=QAxlSmOM)pLlfhGctw>@E|;njZ0}*Y%!*2l zc`S>T{QdGkg^dks8`;F*x;?YZp<5E4wXY)vQY27bNZ#>(wJwl*!L5PXn-%8n)B?tH zQG|$yXsSDobHh~fG>K87SK?4d9OzYa{1S9sl1`_lrq(ol8up89m6c&fTtz2Y?>G9R zt1I)@YXN(gg}EqR*zCh5CYkN5+5faU>-pv3QMrs1XEE<9#`PJ|mp#JkrDSW=`iL^y z`>@-gI8k42us-v+U!JWz&T^E}F!u{Y-aI_4$R2qM<}nk3Nc!8v(yu(xN|#lkrYtgB z7A7!y=sW|?fcw+u+ko;sdk?Op#3;DzaFO8~Alj66a1sShR<7n_+2tQ`lA+hz6>!Yd z^2u>nDe&!IvNgz-*Otcy;IPAAwYCG{@%gu33_T!YPEYH`8hg`z>FVjM-1ZZi&pNG5 zJF7KmjMA9g+GI>&>hen91I|2L!z^AtG(P!B12?M4%vn7IIX=sK8(=hpRfk$NQy8h? z+BVdB8*9AAiE`?CIpk<|3}o_FJRTE0)1r`+idOn%;+vS5n49mnsrXGq z?tBmD?=3}{G@Isg7t|oLsbvdbnL{|hhCqNJ`-5%&7am1@vo4o_5dcWQhVDlsF8AvG zfx8SJ{yFX%5P^YWm+0h(diVXGWaYnz)c70wjgI+PnXnucs@m&oe@e6^mba~3ja z!*caHSf6ld!)2wEDn2+ksDl9H&;9ATDfg?G_)legRJ*_8?uYUMUzmZ<7hfo@-~3hM zC1gEm)J1hY9aUH(el+htGkaDu>s}xM{wd_R{IF&rD>oPZBN!BP)o;BSM$xN^|4vGv z5+yMkI0YqpP+X!j_%|<^>X$MlMH7>@+9#R2O_|nbEY6h^>v^fwbF;D5tzT`{-i@35 zP^D9hlmT|TB4V7d>|xq*xe$*ko$wkzbCGnESB@${yWVKo0F=ky;4;i zGY9|AfcO^xnIh5D|MC0=#9GZ+vvAHJVdmn+Ud@H%Gk8)cDQ{#5+5wxV++Hf@hd9E=DmFfKTz z4S;ub6|a^~rDmC6jWrk$QShpaYrl2C#tu4&uK$!k*J~u@1Af zDqSIgw_Jqh;;s`Xw3seqKe=q^5EAM|h#rZUC$8hKAjzW>Hni4XOunv!$h2SUL43YW zNIL+d{Nf1>up$)FG98{beSjhs{A2|63EmSwpW zN1C!1uTvY$;<*wBtYhiQVoGU8L4O0My z7L-7IJ!qH`fV|hF4=~*Us&pw*beYn%7Y@?HKix%)k(g2>=eTbYzo}$?-A)OR$vae< zT7UcbS^T1b{Qb$YDCEq5cbkmbJ&A(h8=~GynO-5L_dBqI_*s_*!SXKYOZp8y|WMgjOB*u@37=9dr9i~%i%nY8&dVwoh;%` zvrZnL7gwfmvBz9TjT%M5gD5izxk_Bs!*#ujK-}R$Lrww_MN8cQF#a*dGx!Doh-d|^ zg#bWc6|YwVDKhY2EZN!`F#^TgZNd3(~VWLu>3`ag_q4qu`|`0 zBa;dp<`)JeKKI`3>7&vL0NVdbD?k=OLtp;8nk9PHK<`hd({G1p3v>Zm>SwB| zsxw5d6JK~F&Ca6BM~>;<>%5jC54U<9v-+t1;-WRQU~y#*g<;$|`zkn{%-nu))u~`* zP4r5D!GQ_;y4HW*{ItLj3h~5>0ZJwV|nUs!=XoS;+=}QBU0stNr79_noH8 z+zWIM`<#V@#X8QmvAgTckG=rjb1d9L+O zv{`-h`nE1`S3sEbKa(f_!YTa$*e+-*cGERB_10T+=JM;p?S#{&p~_*JCd08OujQQLD(?2Nw=w#Bz3G(+oYwdMY;N9P`#aVss?pj5|oZa5REJQf^(L;wTe&;MBjU`ErBt&}hc%HzxcE-e9>;a-rbnwI(wCYyaqwQIxu zMe)58w462oneCa;(NUAs)Kr@|Y|gtX(Cv=@12_Zfq3cgU(gLdfpN=&;Kwkg;quX;W z`Qb&Qv$H0BA|`%i2`%mH80)SQpGM+~CQOoD2__v?o|&1_ijEzGbP@IX5X6Cu4;vG_ zDdqRwl>f^kUEA8K0eMwTWhtv6EKuAWq7YixL%#d896U^eT44u}S}DgV>ElOcf=QjL?w zTpydOr=RS$VAGo68`0Z&>us!k$^K=45*$}(X>Fek z&`hxpxY5dQO17sto}nMKoHUtv6kPoJwl7wKizWtb$9S}D`E!-aSs|ZlBrZRl7ctJa zf|$7*&2~HLH%P*f{VR~vbF2y6JenQ=by#;$``X5MKgw7e#BWyH*Pa93_dgrz44f!z z#>Wd6z?>Nq*#H=qY5|8pdsOu9z%`4vsv@SSS)pd%a%So4k1rysnNK|WQ}Pa$bGfVY zbZ-<%^mF`*;*w1M5ydh7MHKhHX3tU7fsuIIPfiIegx_ZKu3yo>1npFzkJ)&n*oz!m zkN#Pg@e6+I&N|vW5W;7WXgAsi&CtfM$BIvF$gNs}e_iF>BL>JFhcr1W{P)p= zIOlKiegD5LYGnXi;l2yO{eTWGPNAuMU{AL4bX~^J%w3LNQMq(A{E)(lLc|1FpSGxg z=zwJ{3@2`p@SSlktq`1W(p1qaq9_JcHOGz0K`t?ioWg&Yj4v|)X*LGA~@YvZ{RCfecC~az95TM3>H2WolE zUgq9TyOFvyu*oBQ26WEt{em+Qzu!>dUj`cg?K=Y8#2Ega0Na%K z@2UBJVFJ)vwmwsXB00;yqeQoE_Noh^_?yKev--RTv>QSaV)~2%hyh@Q3xxJ3wrrmn zn9>N&r8U5+xzfaonyw}+&GsBPaNf^(xLH{pT=-*y>+|?+%Z1G-U0vGO*Q9T5FNVGQ z&8j;AJoz_R^}nkv;Q6KgLh)PjM$~OtKEN8y0BdyNn5vvAFhCeecwN$H&U|!0s5Qqq zh!wirn`mWOeK2)c^2`E1%apd!&Q|=m--`z7A&55EaquxMR;;9ssb)cnozdZ$Xdq!clU4X^v$O1n0583%YlPiA+H6lw-6jfzlg;CXsbw1}V z^&TVS;3SQ_^!K-!DZ-+~FBfP6Bq z$g&#XLt$_KlUp#yi8>WkU2L_kW)~~;{PGGS4rL$`%d*bBb*uaqlrWM1n+X5+8sWmq zk(;jf3lzm@5Cei`Gm}%)x1gCCY(cX7awd;$t<5#&#?3$fBYrObe{iiwwxwbBr;X*^R0H`Yk}scXmq8mx=`sqLz}U z9V11}Y?B46dg{a{0c<kMU>VxJlFNivA%$YLj)g6(d#c;lgI zTiwj1YilWV_#ECLB!2Mzxe$+7P}VF{Tb5qOJ4v5kSzpm`eh>uv(#(S(7{fQQ6r_G} z{S;$B=QTW}LlclE3HkokQu=|Q`FBc-QQK1{9^~{O%6||WTIwjXpg^j#UO{&A#A>nH z+x6L2v91*r{{Ue);dbh&!uzswl0mTZzf#@*bk>a|pb@>(p+C^Xzor#}o|UFH7)5SK zWVee=vaEZAh#w zsCz{|7o80#R(U`M|GHN($Z^VVdMu@`EBRbPUJkk6l10C4#5Nng$d#b9UUArZXD#Hj z^~I$>h1~_YZcZruTQ~Qw(9a#0Xva1rII?-VaWs{_^41&4puR1)uNery@lBlsF|--h z&k&RF1j%9N&|Ux1a?H;%HUcAoIJb^mPYOe+|GEr5{-3PmpJjQ=rG-3eLGZ$d(n|oL zyDS5AJpYPznD1=k08!8`q|(+&#MX%y8NO;ao3Z+k2q!8z!PcqtTNs8HoaU2jWpcpGKx{ z_ZIn|obCt%3FJ_+@*AzX_u~1@jV3cPc;S!Ob>x+y4PP@M!D`FoPyIw5@*qi`RAHMot$m$hnn^mzYQ_$FIeUOVTeIh zN=70pA^izg0m>@}S{*q6_htwbBPg#N22y|#gjjm@RehT}ja*`HU0Wa&SI8*7u2-jR zM$YhFlPiE$AJ{j+-Ph=7$}mk5f+O3P_d!xR;_9K{*4A)rpk{tb>;@C^QWb}NZJjFU(nb#A4JW-GbKkRw$=_ZD0!iSsDzI! z&7i|WmP#4jP@!*W$0Bjoq;HYQeRS33#=OBjXfhGmyg|e~f>(iGhDw~`q_e#}oV=o% z5FIl5)6!%E16nykI-gM#HBf}WfQsmR&3LURW>*%pfF`O~5&MxEw@2bR*I|S*eFB_~ zoF3au_5rnZUT;p3peP13+=VSHl42hG(ahqdr&aEL@ZmjzYYeuJbWeE&(aT3M^6%($ zDTdm6=!yGcd(?hIYg?CD*rA7F^G7$N7}&}!U}s!T>rJ16{pf$pDo_*HuA}7}bj?c@ zd@v;2;h{rVfJ{Jh<*8kTzm7%oy5 zG@{X%3^;wj{vs6ebUP{CrFv*C^)8R&*#D-Sbo3U(-EojQn($z4QssMZKk*NI`qT3Gvf(Ge&8xbIIf$ zc6tk3SvOy%Uc>#f@6IxMzDddTiiGgDX);E1*REi}aFG40kZRjOeCTJ^+#e6uh^sK% zAEKAf)TyJlqk*{Mw2t<3^Ig86Y!cWj&R`c{_wC!Pqw($>XlguNOGy10>zaNtL z|Eq_Tpjth^3D=GbyyM||`7B6u2;MW`KAJ}^R`t`@MvKTEbEi)%4^=pZ5Vq^0f8d5AQ zEe+0FH5t<6RWP7V!8BO);1Ekluwc(hs?dnm1clZJFrZ%_4_2kwQGTeMjqyoe*IA_? zBD$RH>dnG}jptRDIpQMwN5QSGzAIPrS`3-!pZoc}VZ5HmsG=>JyHW1vCmMQp;%KzHSDdKrB8qFj0Q9^HQV(>Cu* zPU=xYEKR+gaI-hXJR-pgLUbKvXbe|yTCPg87*h8oq-Eg7X|vr~VDWwCEyT>=BOd_g ztiA#Jx-j8J5;9EGj>$}cDCBUso_B|JVzEk87zb&`L2_5J-GG~`rCrI#C@S*&^l%7B z@MZOZ-qs9gDV&zN$xgo6di#$jJ63`+h<#lPi+uPyEEw!9%SR#9sf+$!oVwjD?u(cn z%)QSODs{m~^_p7(N{|NV^_SDESM)woTyA`OF<{GcFT~J2z8f*K9TJhPp5HERWFWDL z+5i=@%jO%X4Y-^&yoho4g|k7~xDUhoLvqj+mBTaQx;Wn^k!CsIyVWs>`(dwaf0`DT zlfQYwhH)m2m_&H3@eyzY28*&LLAcK5VD(ZGO0*>C88-%wg2@gFt;3-)!*B$x1_>a7H@V!Xw> zKrj)hCyb>d;y#DAhg8oNlGnyiUKTIJb^ zAf&-B6&&-1FJ*zWc$~K+~!E|CEtf0W;6l&5xki!pb;~DAb5D5*hEYZjE=LXNxJP;V6 zq>S)X{PP8bfn3;gZGf5L@p0! zuGaPQWo|ksIg@8wFkR8R-AVTKN}nr1`=DEjNGmd7D?c#Kk-C$TCJPVwtgy1IPZOO; z$ZE;?J!lF2E+s|157vw5R+E^PXcy(cx!DbhXg|8K$k=%c8yOpu(7}CEdWMJJPMX@; zJv#3_{g9o_zWBUo|3fFow^q!Mv3M31a7#v6qSN=$qDC)p#b(FlWfo(RX$m>ld~ubI zTHmX!Uxi>U4h@gizCrm3hAn!3Gpc!9@z#s zWX)`e+>+nwB2D!V^fR2Cy|Vr8l@Z57rT3(CED*WVTRbN-PD9rPaT-Z{$t7bysXF2` z_1DfNqh-gl^;=Xn%KU%d)@h*N1AuiI1W?%K z41UjdpD8bhBQ3VEVQZv8V49t#%FL(8gADupEt>4=CVO`y`71Lz@lq34cL6-G$KC|qeWL%}Vy3o*sPwTYyHS+8wZYh~P~C zza#sSZ${E_nPB^S&c}}mBruk}GhG`S?v3#>|L*SY;hyd%8oM{*3+(LETk-p61C3S3 zKCE~^?%A=Xr=*Nlcyw*GL(m#-wP`wKRNPx{ULUd>*`!O);Qw|mAZl0=B=79aLH406 zD5$BF@M3NWTV769mV+qj0TaCu4)JEETk{jj(tyw)Y|MACd%Swl^)UcWSZay?iW&@8 zq?=)|#DSNiqrhZ;YJ##JftGtp`k)VTUUju*V4=fk_lrfzi$zH@P`h3U1d#cKh3a9( z4J}n3hc+iW3C-&+WnbOS+R`zg+ z#;lKNppEB=TE? zN_Oqki6BoLKDHV6#FKdJW`FpgvpYFoAm($?aOVxk%xcV4xZ>RWR!(utpCA&iZI+gx zCEe%3jqD=2Q8vX=ndW*-RtT@iilZAR2DE{lG;w3r7k>S#eIFvp0qI$zh@%%0Fuyc0 z+jw{5DkP=dj1+SJwAY!$qdpEn&53S$UC`kcE)wTqdc{uR@1qPVy~)^&1ew*j0nms# zXU7?-gai_E!D|ErY^qVI;;xTPOmg7wV3!jUoOYrqZA#z3fkshe8_IZ|o#DIEY`O?b z$Iw6ys>;6uguQkgVj(bH#yYYKKjEjA#N_$P!V2f)HEyWx&y(^E60{~G^cUcNO9B8( zW~x}?fQ{w|>YU06plMzQ&riOyO6D!2TXpt~)}NJRX9r#&=q~&q-bV)RKrZuE>TNsX zz1Qi%0Fd8WpXB+0&nxiSX_pHq{&Fys>YynrR-lb?~ za-MjFfOp)nBtO5qbG|A!7u!sp&GtZJPb1~t>%v>%16)lK( z^ms;X=3D!k*&Ci7rfp@Y6&mEQb`HK9bW$7&?gcw)$^Uwq@b?K%rHVO+9?`)O=b*7b zkr_1h6cd}Uzt(Xjcu~-M;YRxVwl?V~K@g?0DL=9XC{y3@@5V~J#X^`-sG+tTk>WfL z%d&Yq9Ia*>o>lS z(yuROu13Zk@0DqHdlt1B`v}dt>R|`f$G?1tK03HQ?X#ZLDynn1IaAQEL-~;RlQ$@G z3YO93n{HZ+6o0!CwENSoF$h0OqBcAtf*q|_u7cn})5%B)$5E@Av`FCyD7R$i;Nf}d zCQ12zciS@!C=UwGHJGU{Z_H=VtDp&+qZ4g1cy&eCmpKOfBzf#9vGek+5zFH{X}n# zS}-x*=Y3=(;eJ~^XyQ&9ai|`Lvbb1dhZxXxOMsz9Edh3RkN76$k49AS)~SdUn7d-v z?{lo^klnh8Jbxc9<32S&46J>1#1slx=%^xK8h?|pSW}{1qr#jE`mi)Bp}OLeA??yO zKv^lv)n9F4)y;0K9BN6r*$1qx^uJv|*f&02N08jSN%jVUGd8D;^twSsRo2qZSSj6_ z=IaXId_t=}CZ-_!?2*pXcTzDVP3?p>aZLm47VEUxk$$+7nz1rbR-8{mJW}zeE-Gm} zV94>Pc3maD95fG@orn%Uz6>s*erKOsBvMURx5yWJW!22eNOExV~nFR=QhEg@k-@8^mX)&L)eSyu3G;u&p(E2cbgQW9=av$E=8X9^p2 zMllt}j#r>XQmYsOM_OvcmGH@7Y5S6ph=4jKnuUa~JgfBPhE9^aEEO&ix(l)3!JQ3X z5`8cn>M4zBxO`t9VQNU=U@GJkQFm?SZjkA)C@c$kK%cTZN_PAX#52lrx%t#P5ztQv_o!)`GuJN&88-=W^>o2A9fSvO#Wa>wTaKlp z0;h|-ktMe`x_!9=WZv$!p30q0?nq9}!bdk~R2lG4M zD{g2vrF5G-lhV9T%&VStB8tYf6512&%C!#Al9H0t@O3YbqAnFKPf9NHK~MEsyfn#D zvaODe%77+&#>DSPJI2ru{cll>hOz(-*s>BC026nylgSMauU|||E8+rp4aEIm@ENU0OAm(Q(e5>&h*U%@I-t$Fr*o&_o znQp%CJm6;2e9HBjWRLVLQna-9T$(j8qU6x7L1KBhp_0~gDeoPvWrnBu6_XK&RtWn8 z2=wvWAbBZ{Hf(P+DESx_ce>l{Z!L@|8Icu5DJ_iPh&|6SpeaQ^5Ui}XJdc+WLiD|9 zJYraR&R&5oLJ6ULJ$x!vg-~F^iG{kF$bn7u|7}w*EWh?ytw@@3r9ARNIHuL?8nr)% zCGV#1iZ@DLfvswE*PMTnSf(H=p6(CBbK%}wLx(`K-*rk8X}3nS;zik2(Z5 z0CH0Y9ik}Ie8Jk%&NCrEv=Eq|py&Re)7F$zw;E%)lULiB)1o?K8A6oipn#67-=KNkD5af z3iL%zd$KAzo$n1{uxBJ*HbE`N*0pEAg6-5`!NMI&j5dGz0#{%lZ~Dp+#3< zM!XclUv_k^&`PTRTTwPj-&vSwTc`TmOhqd=xQziLDuNLpvCn|Kh?Sr?RVYIvE zg8@Bzqf9FxnU;PfAn}QBa{B(6uB9a>$`fn!`RJ7{1l~Eo(XRrHc06~#{p9EIwcl)( zr}I*Gd%aeRSFG(DWSR{w(dg%Jt_&O~l2s-$>ACxl`{L&a1^goJo=4FPqC$hV4`3ub zBpE|#-t~IS_vWe?f`sCY)hrrp4JB5tpaKemUR6$CI4CC35Qxf>kK%aIsz;sDz6d56 zFr_heeEvKLCJCuhQBiRVw?61`J1r<_Qlw!v07HF~9U75qe!zk2FSueLLzj{cFlwokg-k9m zhzfVp2|>gWtK+=^STLT6VJR*yu1bK_1B0pf)d2zm zDG?W5Mj|0R1nkp(vWW88^;IPJE* zL#?yaXJC2`EzNRtmLGCA1x%O_b5dv}CG_a3l{z}#28~*txj9?SHR-y=mKqe*FtoHM zOZ!c1;=*`E=7~K#`kaSoK3|Kg{i1%=Hl%~ni&yATi@!$U79`_I0=B`blzLo(G-v4J z8Fxec{~A;n7!$cQ+x!JPeMS-09%c7fI6AU&RY=n(1%KV=Zx@AK6O zlKR03+L#@V;>P-12Dfv(-6@ZS2In*QLSe@j@zcYwZtUR8&ZetO+^#L%qVbT4$IGsX zx6vUN)d8oAg=moVPWUVhs$=_u^wa4TQsn#=7(7A8wk2_uYJG-;Ho_in8P963!x5d( za36@U+4@^+MaCDSYWR@zUdJ;?P}7^|g$g=e+T9TmQBalGf4hV89r^t1?l!qZKpY^c znJzA9PtAJMc@AMYqU!=DX%`mIDo_H;q;!su|P|na-f=)zezYkjZs0P-a z^atI&FAIY9buxd@*1;nZ)!PC^<#>wKq7kKkA8d34e2ddu;pa&361fi})C><372Oll zV*s>-cFP>)n{~*Uwog5Hh$T9#aoQph@$l;l>A3sZ&(jvM@R9vyc09?zDv~G|@<**q zJn_!}WXV>Qgj;J^hMc>5omSyOAYV1{a^UURbc*`%>xnXSJ56U+gHNzvW(7q|=?QOWX6FT1vb9wq8Hx4ngjM@HDqdbe5HEaTo96OZ7P7Pdf0X%RqiDcM3mOW>>D zJGCrN+dIC}>_>{N>P+z}8zMqE_7l-Uy5r4j;i^vz z`)~xEBVM+F64RRF>|=J0q~nDzJ{%2_7Wj`t7R%wcE`!qU%+Y14Uj$O=tVC#0`fl$U zxVR9W(>pl@%My5bm&_;xrXw0Y3i9zq9BuLo4;HP}Jw@@(J07`@uporcA#b0`I28e+ zXv|yZjx`#2vbCDGM~}5BVWg(ag9xQYC*n)WuafppxkkP-KS@zpTMt|zpD%lKZLwJ! z9eR`xYv?-`5z(QKuVZ5SM=yYt#TUG4T3Y#SkCv8~2b1_sNmIJMepT=HcRbye>^<(D zrD>2%I68t|xt}sS2d#O*Moe6E)$Es7&`^O|a0psX)kTCi==bu*oS z;K*&!?qT3}W#B3^CQ`zlzp0$QT6Qf(+BXP&+Y_qp8x-~GxC~_IB=2iG1&hzOB8r<1 zs!H-ct^4c>`#5gkRHL1Ork5(9Lsz2Qo?EY!=Eo8Vk4B~#`Qt0KcLc~4-KWfhWYRdO4af$Y1PvUcAsdR=@S|+72Az- z-UW%bfKcKon4q+_F>|M$DS84mos1H?iimoMW^q*DiroSBh4!M4um!FLtq449x7H=A zG8K(zBcA*>bBY5MvHGfdF#P06pGY=BVs~3PJ2=5d!;Rvk02?!EFomh*h{V01I7|gI z$J0fgxkyUkU3dp&dcl$@@(g2eBwF|0&T$SGw1s2d0KuI6STM?x)!@+`K0b3rFTdgr z6V^s31_aPm&UyDztk#s_zdB%vyXXhWbHX#Hr!x0($Lu&!QZ_GnLu^SN=+fQX}U_ zg4DhTpImURm=Qz#dtL-KSQ`I}#;|z`aaY zm6Xg)mvI zFd2t4Nb1|L{}w-3wD`BP9WbyXFK4~dj&#ebSZ;1b5m5W(W~j}pg&;Lb88T*A#aBBG zi}Gh_1w|_f^@5wosj`mq6AvyhK*VTvNbFHlhY2~G$=*~G3!av~g53Pr0{cWD>Ba7c z1@TO!;f|Kk+HYfHznXDYJ%9WTk7q5A(H$MqRB2|meiI}Zam|fo^nn7!zl#NB4saQM z7J?rt83gMrE$zOrExMnCFhG6%Vo?>9l(N7?szpFkW?fH77k7>HKB!0^&~=@WMa>`j zcZcnV1~JtRTBVVGB6v&9O?dj~Y0LF+1Nog-4YX<8Zq)q&h9C4-DYMaU>v8eO^%B9{ zKQP(`RiL5}#HlLyl9uEj8NnhsK~nvfAHD_)7coJbfd7DdaI^O;dOW3gL^UgpX*l%S zPo8XL4b92t+zMO5=i?P($w(Kjp6n?LN3ZzjzCnF&%ptdcUL?o_yUZ;M*td*>pCs3} zaG+2NJ_t89vMX?`f`_@k#Srh_G1MX2E^(55y055bhmD{8GqXK_A^KVZ0teTEYAex* zZl1gYANPe2q!`eL#A>D>hvS52{6ZKVa<#+b@{wyxJHoCXU~Q#1v(m!CaL}4W1r&@q z9U%>XLLrM*+~wnzrzp6|`on|Gw&3dR%@wUkp!oO1?fXw88-qf0Z$hEh(L^;FZfmHy zzv}7e8X~JO-Xw*lsnie*Fn`}sXb%XDP2j0~ePbT+Kw=BzdXdFyrRzXURL=}H3#E7Z zh#qAFyOJi?^l^^XCi~SM%>5|-WrO5G^wVwwJY+C7Qp7GVN>6M+&af-h4ju}1x6{q& zy90jF^E=-#f5}ePZwc8tVM9-NxlM?oD!MK!(9=k=lS1B>v(db*=^+q6&O;&Ayf5lN zhVmRXI{P^8fg5r*Qr_&jDR}GZ44&StsF-b?%yRh!#tqIm)gf_h^>Tv8m{(NBSTm6Sj4vCyp(!YcQohO&#*EPg^V zv}2xr6yWz`@NzSor^dVnUFPMcOH0)3Ygta?Tk_Jyu#1hMbX1l?hm3u|N!D-sC4P9l z37FukG0Gx=Xhb*e4?hP#Ql+WJ0XcEGASfs}fX~wa(D=9Ev9a72a-N=0ji*nC;<>ax z=I4h3%J_as^Mx1~uKdW!Nq~%uYyhS#16$CuWyb`-fRE$K) zOCK+0sS^^TL(Vt=4i&s#|&J7a3 z^Y4VPlr5U8>-U1k=&@&NtD{2^enQw$xcZ9k{jmF_`V(9lrn!D*5G*qSm^I2lvf_ttwxMoi>!24()~XA=n^2BxUm+q(JHzw-G*8rWk2 z{|iH7gluAB7mlJ_+luH-pa5AoNo&2o%4(~p{=g8QFHc+ho&7id_5_cmM7XZZjXlU4 zXinR!LW~;)q3cY>%ADXgGV30a%_H*Vd3```ct-4ZAUW&{9{{?Pvlwz}+5eBSzYeQ< zYxl)rx}{TKN{BQFNKZfk>5!C8kyL3W4bq}aDM2NqLAtw3K}w`+(hZYN8u0SJcR-u~&Iw|x6Csgm~Zw2Hg z|0l{9#g`^-?Oq(Rj70?(4nj2XK;9c4}P?U zq0(00xVev;7f(xqI9f*VfxU#mg4`&Q;k*3n-dn35k+-A1RE5$~t#OgHDsER5RSQ*3 zEcxQ+4q-rF7YJ9Cf?ZuB{eM=fg>dfpX7`mgGf6G0#vdsIgOs+$<%+1bP61)XTS(|N zAZ9rv*<$t#z@9)mp`h+6Kg$J|@+*Ri8i4;)FDoq=b>1|0+PqyOhBf(?Kcz#KO&op5 zsZR)-br%w-f@voIm} zH@FZ;hkE2dv%+2jlxWoe;cf1Do(dRFLzRYc3b1!vcsiY^`z``42Kv>fBT8{0rzUnk4m57c{ax>s=2CHh8bG*xrs+}!qRzqfl!HP7p1}+*B z5E>FD7jM3v6-Uduc8~SLiDN&wG{s%Q+w_Gp8925h$ZgX@;Y(taADpwzP+5?W0wYkN2~lh zi18E*+O4*gt(1y;pL0D{=@JNGI+1rbz;%ArIIoETJ?5f12PPKfrXaNlz0i(lI`x*I&FR(>#RPV%#@p*iqF+YPx({Z%qg zK*%OF34?Jv0lrebZX&9#HbAR z?mdH50~0Pq2;2b{gNHIa(uGO%eOQ}|z8LEC{UQVh z9go;_i%o>c$n=v&_qPiQdMdICptubh72f%RnPN_|XybSopGc2BqbOwg9aC5La@71xB0Mpx$pQM2t=wI{HqG z1~4PsB>!;6mM&qh7tI%%&__)K8|`gb<-VchR#~JacN6uKo(&7)+plT}mZHSsTw23B zptWlR3h}?K4+lCtUMaKR(t5s=W!Ab@Z=|P!C~^Bc0Yc!-lW6`_r#x%*-(At413k{P zxn%P{;iX<=gY&ujv7{F@oh(kXVqDoXBkdk;uoHjx$+d~Jify%~=-9Ez?b2R}V*_72 z<>KU&CDh{XY<;v4MFBOl6Wvl|grdb&8kH@{T7A|06%``mDJSL?SWl+3cM$**({%bD z7+Fw#7jd9I3imdr&OYV0I3|c4tc-6twZ-5qiQLZuB`)`JknA=@&Vaj1ZC#nQ*FK2> z(ozVjgVz9tM=03atN*FjL?elbZKe5Qy?^oYtK4ATjrW49QFPs5Y?)XM224$DXvDW{ zGJxLF!N+3ry315m@4V-H1J5)LTuyB9d#QiBy*WdtNf&0M7#!-KWKlF4S?=OsMKo8# zlSIC>*0~Vo@YD5!GZr(}8LRD`h)osEH#zTUla7v1`ftV`YdTm*CPt;88~!)HcS=z2 z-Psv>-`I-EQ$nXE~5B9XzG47l}Vi*mQor5pge)@E(3C&Fg=nyPs8 z>xV}~BtEvz&HDFVi8_C-VF0z8`lGsd6j%$of7Swgd>VM|C^L-iGzRVAtf?xuh09x- zIJUMBIWe=H+ZjoVt1jq-pVH^GH45L1a&U7hB&~q<{d=}AV8+28yr}6tP4J+DRkudy zVCg6A930$iF`hgF8I#FMOZWYNL`&?~&i4#H=`pE5PnsqO29=lp^!vWCj# zIh2h}^d9fO$tAzrx~5dCTH4&2rBbE7Y_weTVW3DiXEAiL*AOgz{B}vnjX|!iy9yo*OK!-c093lBNzC=@}9`RwNjQ2d$-Vs~qRiuoB7qQ9LQ0TMyV-3r^U zFfv&24e+yN8(X@uaCzjHkV+DwzC(Gcc5Lklj)meq z*(u;CxY;2HlL|rA2XI&Xd-Xvi9KWMJhHTomBz_u~;emvJdXrr|EzM)>O&8tJD6;j! z$X}by2%q&keifLo6ttbm5D*T+cQSIiT3=OsFJk(=g&%QHcTvZ*I}7I}+U_k&{>#FsK~W(tmwOb=5t-+pb{dov{-Jyy9@fQsuTR& zV(=GZ&=mY#8w@1EtMk_mga5v!$1f>p0X5}*@R>P!6Fpd;BJTBD-irqGyEq_t@L9dD zjr0rj^I?FlZ)hpsfQAkHVV`$=e-jI`PCB^7)FgSDvY81D_2C`T$o$l_QU<{D>(37j z3ayiH^Rby<6e5((!mkQ{D3c>B{b?#sh}y-HPW8|LR=~B^`v(xHq`YVmfIZg)u7iJ7 z!Sp6Qx_!lhT*4z+D&|>^ul$9s88(+Exd9&L7SD}E@(X+*C%Y2CU@ihy9y^$yiuzqK zG7FdI7*rLtxa2|n2dpiLiESaxd^kOMo88MVj)~*COJw6F)xQ;LMMg1d9_Nzf_W$Ux zEFNTH=ItdKY_}RWpVd+qSHhr+pl$F`sS8ydb}Kcy0^d`cy{-m$4PFAN&R@S3L0iaz zP|Cxz1e4|2vx$dcb}(EW{{zH8v~q1t!F?a&UeGew`PhMNEPOUoSt9*<}1 zf!3qGZ{=t5F-ew6JW4ku_}bHw^yeE}6}Pf+31Wl`e*KAH+_D`fQ7mvEprBy*lsAF- z+D}ijB!1vxS&TLc*aHLw&5o zoEvN&hLu@G^VhsliHVl?8T)KU{^4tqC2u!`95YL&jNx70*QV?XWpZ-N%TKpERS@k) zsrK}_6NC4g=rSTildL-8Gs$U<(4k@z_&^pvEUk8cM}piqRq0aG{Gyu*0Vv;EBk*yk z{%PVZ05eBT(LcRDWl%3Ilj6*<*zc8HoHuC7=g3Q0qYvpS1$h2;!bmYJ{sGY~i80B| z;FHJ4u^x}R_UT@MrdBk}Zw53=K@qQ{dZwFG+m_pMAiz$Q6eD~(@@B~$CUaLu-&M^3 zkkqejEoa>`tPNI~Orm^epQLeuq#BLn>th=}#-dt4GKYU4`(ME`kvpJ9-EQ}%%T{O3 zu(;`>G~J_n%A8kJmucBcDSY~NBsN^yYX4S@u-RK!txMVIn>WekcP%*tiA4{jySj=o z)smAxJ=$5YGYXMMY~qhl7LI;y_x=qwMa|dWQnEf}RP=DSma@W6u8ZCR;f|o%JO4mf zu1JVai#-%_b8{CZ@18gLpb-`%>+=Q;?wtsZ+9q#%IUGReo&bpbD>_DlUXpE<5nq%A zxaAu@iqU+*o5j);v2WW2?q?++ zK3Qdccp^m<1#4P#wBKP23m)egi}uTvo3%gtzXsLdMn+N^PWJS;m-bPUFb znTzx|p}c>bRK?laXEN_F*8_5oC?uD(B{V*Z#3I&_P1eq3_Bf~hJK?LTWgrJ$%K`PI zJQ`~b2b^?uFp~X+G0|aFtX+%kVDSB|#!h9^GfLyBUvTyWw9x&*irj<#RR!s3xK2|~ zVwKM@J7}1(az=yNj=nxGyo@=n7WnI*Z z01XjkFYZ<=7WNwBf8$X=;)m7r23ISeWL`+?PS#-?AYjF`)m^o)r3UZbqxtp9eUjr9!0QI-1>qxq66=T;fls7{BCVDY+H^(ipqs}&l%yl+G{NGXgP5x6PHQ`>@WCa<-|@BEWa%;=!ECSS zh_+;1mS3O;hJ%9TD-qO|_1hO7XI#XB4BdJ8NU888Rhp-yD`9yo#gJ+TJ`8CRBzFP{ zS@+S>XL*5j-b^*rju8YVxbYJKNyk$gz8C8r7p{Du+T^dUw}5IxIk?sdm>l-H|323* z_cINEYp$NX;eGzK+BVYwn%^%At+g7e3p_n4<)lUh6Mmm|b{w|mZ_6WZQy?j|EEMyM zKxWvd!gKhW)PT^_>#9(%Evv;h;dJ8cr?IW1UR^QVi6a*py0P?NRUZ>BVb`7}xN~uM z{z9)R>mDxtLNf&u(07{32Sv=tB!0Qp29rO)(*I-fM}v4o-njwTQIj>hy@#@dR7=*< zr$<4c50GM{x0t(rRhp7@++{FLu)PLAb21HXSslO z;z8r4EbOiIau5G3jfPVolfx%GXgUmc3%4_Mp_mhiw!@g;vUK040r0Xz`nl~`%a5Gh zCO-2);5DPEzMg#=6p`LB<(CY`e=M5+KK}dBWgB8cCv`%s-=^d2Y$%$=WY^g>&{02e z>=XRO;vbKLL^OVsw?djRcpV-F5v(T=mxiMZ$i&XsF^>a)cph#K)@wwSeMVQT(73$q zsBKzyg~l+Gyw&&?bn;UXdPd79gyo^_Oy3v=#k%MLP)`5g25JvuP5d;J%Xa2JaZ3!O z*u0>U%)-ROSk(`RxlfM(-sZYnQ;Y+-KAU<&nyA?vKsJB(sXexAgC8YQ2ET{M2ox5S z=H{;f?99x1j!X!KR71mpHs_^jw6T8d{av^im6AkWr~wStA?d#US)<2;7ko8FGKt)BtKrfH-GlwkNejUvmm_}bWjbzoamWR`<*J!mX5VqqlwG$$we1iqJR}i#vEB6oVn|n@dfVJCm9QBp{x2B2z z*luEXsY2ce4TR{%CaERXE9(Y53rPIdok0UD^Sz#2;Yn@lDrgRT`!jyYLiv+y*yaHj zq-@)?F#zCZ$ZBUil9-PH2rH7g+M39h1wXzJsJYfnf=0&0n~=PrlJNIsAJ25md;J+Q zl`de)6)1fVU`8o6SPdA!UlRV)0PcVZRb@9spk1eNXcQ;(?UY%n+zfRS;SLZ0wO=en zc}j$x3DFB*m-;4Y;T#$X{6gviO^bF<>plt?N0zP|xFukwO-aG{pp~`3wVigMnMZ?H5S%DHn*#F0%k^e{48E?~;6jc;A za8VDu^D<$T7xw{bgU|QhQJZs65eQ(vI)y?y`A?W4dT)2t6o1pm3{6%_2lsQiAVdA6 zaC)N^Erd9wt%<>dt^09oPXocnThM#9CByXJX4>_u=j!r?+CO>FxyEH9Bv8vW8P-BE zUWLnds!e?oX_>%)N^;1 z@dV(uEw`STWu|f;zL#VDtdE%6;JMy==D1BA`p5}A|EzW;w?~JHhw`2>a67)Mrk9mkM27)Q=$$oJrXkFfs`-jCXyxsjk*-yue)Tn(tNSc)EB z&(|p0D>r;mM0-%)3yYLN)>gA;@>u@2nTyA*TH<3#x!YLpn-2e~ycA3lIqABm570z; z0VzFj`^5{kp8$sBY8v#N|I-;3K_bGa&5~u_%+favyHZ%qyllhzBF6g2+va>}aj~gT z`joo;?pI=genLTtd=_>s!*{%fRcOnz>4Bf{q2~b#43)=6UKZ8i*{k1!7~uOw+2mbY z9%io@!K@eE3EFMOOis0`58%bRb#$}3=4u3J1odN-fQ^kf0~rW5V(~w6Cro_k^8@15 zv+t4CpU(ZaO5ATrY&cu9058md;k6G?-p3 z^uzdWz0(}w)tl;T?8JZ6c?(vSH%E#%a{1xKFe>DJwk6x(;Vr#}gO7sxtuMWKK}Gou z4O@)>BaDev$HQH&0T!&zt}aS-YYR#)Ht94|*H;AF5n~-Sq$qukV<0Fq#VsZP-v7T` z;1F|=8-Yne{QChqcWEawbmP(6eR7z!?)p9R=*4XkWO8@*>*cUYTTJ7oHI@hC_d?y5 zo)tF*EtMn#(Z`!Y3NuC-STjVw_Ng5!lpED*81DD7tsTu^L+@EA&*1Y;W)|UPH2;}s zuBN0a53K@=4ZnbZjXY=fE1%XV7TUO6E|KJn32`Fo z9$rSU{qREgHxs*s;J)O`SiLB)Y!0WTr&ovKES8x<;Up7F{U#Cy!T`3F>j&fY|2xD2 z42eH*AWcjQ=!HKec!GXdJbET|4{a*)1^rEnYNHHbNUXTO9z`b35T6~`@gPgPJ5+pF zwz{A7nF>(A+|fK46jKgq;5Az4)NT-Y+5#1xd%VzEQy_$;D6;2?L`6l!)dnusa0Sr} zNtB6zF55Q}sDcAI+b>YEAWzUYqGlVQf4Jt`j9|YbhjqH*1|AxWZNByS;1xYJReuFJ zr-W;OR_qzPV?WWro&J$j%1z%wCN}ikbfxX;4-M#YNU5(y^q>DMuCA}5#34=tQg+S0 z^D}UK0o;DV;27i3Y2baf$tMvm57PKs9KB1TA8FK~ljv)CSBc(wLZ4O%2%O`O#@zPS zhG1ZFY)CGy1~)>@Nr#`LWC6&{%7Du9=#J&HT;0OQ<}iB!szbnA*Hu#{m#bVw(SR- z^u-xoA3wlUMNz>3s8|b6K$f_E_E~d#Hb?NPQ@e?T#z%4*9cp0xN7A4A;PR|3vk}kI zWN#H|6gjhB04h@U+dv>p03(O_Q2APZ|F@ZgnND7JeEk09_jOkyXz;N4-bFm9!FLIm z$#VB|3w4V=v4SUgHg3oxHA$&nd}3-M@k@L`;880 zujx^N5r9~;z=g0QTqb{tDiDXlXB!?w5YU9hR)BnmLH>4HL~+B*6OBLL1|C;o?%&k} zO(MI^_0?Z?>Bc8USaFQ?)q>E~?fg4OL4e?#)=pd%)F*z5aG@Jo3NO)08MC+e%=T$iG{VXm4IQ$OdGTY{4OO|TO(MiQuP19^8XN>#8!-ZusZf5gR0F` zlrBF1+emEpHgm*cQ|I%#ccLCgtw5rf{AO}hIpLifFW+-Cl5n0~x#i<~)NW?tBO1nJ z-2RRpBE_5<#(okrL5c*fZ}n)hhf7HnLam$D^MI8e2Wo9zfyrpXW9G|m&_jEU z{xf=jwZSEoeG}|;7y3tp$?2JyN=iTP3_kSKY(q-{{hcZ6F>+0?!S`{RF)LOJkWTXr zJUa)n40K4iWNZ}GFW@}JEj5)li{MW9d|Po_Md&3SVuY}56l>Bg*ZaM6O?Ap%m(YD7 z={M5%PXx7AnDSME6iFYv9#jPghYklTSQfBI{=Fy~=5L_OzZm15v}N64&J(LS|JaYI z8+>0?*!w$IYZu1+qL&i)I%ACbpf=%`-jVPC6~&*(r6MdN{r6vI*Jw2OexN}ZvaaW% zrH+ZwhYpS_BXJfVbD>{$> z#Nhynw!@5UwiVR^-ub5m{LvQj=z5-T?pO5P`fFkn!<3jar?-DsN~4DOr!)xNc>i=O zt2SZSzmP!pTW{FD|9Ut6fA}>}_4LQ4a*yMp33VRn;OW92-Mo&e56`TeV#>EVT*PIb zUR(%=gs!zDteo2kd)bA1dEG>ICdow?f zZ2Chk-XV2Y{B@h`KNgbuL5gM7k?Y$4&@iMQtpNgLbrn@^0K*nE@g))>ont%WNHCy0 zv14&6fa7D~rfzw~0$FjMWRH-Oj4Apk4o!*DHTG4s=an@Sh%`u6O57jMkHDQ60UldL z`YU@Z0au~;WjlIVi34wHpSWan=yS5ctvp};k%_8)WriAkfK zvy*n1dr_Zi#xd3egN7#t{9dS=I2vXs4YBBGN#ce3Ss#>3UaUW?{3>-9)X#!Yap1KA zziu8oU8#+OXG}~xUPQ2>h6A*zF+LwExfzZIabg$~5PRes+n?XS^bPoS`gS?7S3!D*e>{%ywBH5emdOcE0(V-=#GXwM}rF(=v0%a zJz*T|UAKYb##p9N(tE4pWdRMLn@4Bdj;$}fJ#EzFQ_7s5&5`~6-pVDtjHjzeXCK%D z_n2Yyhj39%ub=AxYIdSmkiw5p9RUx`Re^qvi z8qc(`e=m=^*OkKqF7>6Lr4$7c{P@eOSV;$hGEW7bkw}t|h(ubEoB=Wx2s_&RnBPfP z7yQ~48opbPY4i>a9@Mu#`W<+$?j{9F0$G}-Xd@i#wDhHaw4NuoKYIW~?K$VB5gfQ^ z7fwcz_r%8^JRHEYPYiyq*S9g?gdN&qz6Sao(?Q zG2kVZ5f%ErtGc*3ZK;3SPaf;uimqNUm^k(1?FW|`5>J8${l=c$u*v@m!da?N;Ppk!jO1Jvjyqf?-O zZ;c)4#wE(nSj;tHjt`8GsZyK8U77~qf7#`QnDZpyINYu5p6rjIXcZDgV-y251Yf(#pTId09fAX<(x&cZb zc@YqVMzSDG*hL1~5gj0b`PTuZoE~;Rh&C-bV>#)n0N174aq*T`+((#c@~svXp`eJP zmztfOD3<<`Y{@~W!zj_JoQ-%~&jgHXHRDUzDGLyXVD|4~7Ag`_F;F@Iyw9ulhgPD< zI{Z&}oHlZ9j;6h*%{~(%V&&*9O}9%>kzt@tHqI|zc^%!iib?a`6Th6>4^ZUfRTM76@{r|JC5e5f9 zapnHi<~<8KrHGylCt_$nH>?|Y4Fd~L=CY3W8;5kDO*|8r9nh*4gJymjGm0C&HtTYh z9%)oBV_Agz(aYVmx2(^*_DWu|xI@T-Q+Ah)2idSD6efhU$l?!&M4EEllV zU<}BnNg~3bAK8Tiw-i4mpgD!xVWgY`aA(EEtjabGtx){@(=i z6p!;?2~j8RJ#uoz!A;v41=>;<1B6xEF{Z(oK2zy8YLn%;It4Fa4`>4V?%5OKg;wkL zE{7}167CzMK#5sU=8AIZ+kD!a zSx~(M|Fa9ihOoj!T}q0gVH5Y-W}Me67=pqg9n;d}QcsAR>@Qk)vN` zL2L8$H*hjf$*x^fq6U?ev}a8pI^SVdomq)8HVw;da|MMoo~kC{P$KpuO#U!2IxStam#6|l`oNzuMRsjg9?O+7um1`Q5C z9o+k;Qz!zUoXg=5re{@W8xz%{)l0dSw|GymaPSGE3))y^K4z9DuYYfh9h$)}jZdLC_5UX^s@V7{l#*tvh_RAy0?64CDP@hOU)zF#UzSGc+BHs>(wmth?#qWg>` z!u-%)i&Gi@V2ocUwk?Gy68oA_4%2WD>l9RSd5I_3(eu?EgbM?qWgQzOl7uS@K_^R6u0^XU%|gs7)d z5ue}u>aAE{WZqJ8T3GFBC_$xIm@}Vb(z+HkRBCdmo~XXsYB89uo0%D1`kW3b>P00U zkPFpgU)a`th^nWlrrn2g0Ul+BVXxnX)^j>d=nFIvm0OIk(cUQFMYUu zXLV2Cq=gU*NsGQA9@4ejD)aNr-6*Z&Z{vboZ5R|0w+71mM&QbP zX}xM}&Ehq#*^nqdtmzQXD}OH$g00J0Lf~w^)~yll)l|mPZGz1bOB2!?7d-5R@w=G> zkt#>6F~H+AQ%JzIBQ>Lp51XgK>?-9RaQ0m$g7zKk-F`d>CvKwo&6^UA%ix;**3^2kP|N!`NXCECpkR9Z;LkVWuf z&t6w;*2PEBD6A0*3PAGd41Q|%X80qtf)tNz4aCXbnTuU}KFhENco&b}PnVm{)^|+p z7&B#Bi^(reDoUlUinJE~pa$#G`c_+zB3J4v%>XpwxaAmiAkFHk>%W+)bV)phnbd7d%gcHk6jD!t0|TzovTx0fM7-B#(B35Ka7wTYwxQ!m`AMD$^^s4$ z1vOwSBiOp_It<)84iEi~tkmji#-EMuDlMhPe}sI3d*)+iYayW*um_fWx+yNM23C+e)HFUCXS zrBT~Xwg+Cx_!OFX!(Qb7$mD^FE-h}B*UjRAVmU`Fa{RLpPxNY|II*fy1Xn?)#QLzi zA#~an)gM^>zx#u{qbCuak5GY2gccx8WQ&9NRR_NPe&fEhin6j+H1_;g;ImO@zNrD2 zg^`8SG}`d+w4_4+0tp+{t!-_MCtD>3!2SuzEmSK#C#Y_gPLRnQ9+#*-Me5niSD zb&iI_t9d>AO%JYl=d(K^?=v0bhV%zpo&u@f&8@zn>$yg+LT7y%ezWW!Kh$^(21hnF z@(-``3ktLrT+Y9?UiY`^ibG-Tb;ZT%tH^Wk0;8rm2&S{^48PUD_j;X#Nb+8}g{0K( zRE5b?8_PNhe%BsrvTpRk%a7R6OO~)g^!l89j+L~?cduJUA4Gdar`nM3mrAd6iQ(=` z5tFR)H08tS_NSz5B?|DKvmey7;y7U75J!Vh}V%4gKDX9W2K- zpQpL)N*4h>@-@0zgAu9YHF*gq_V>|O;W<;k@l+G>CoT<17KLCHB5xmOJS~rOkBe`& z3f>O(cwAKu)#+wx^;|Ry00%nq^{|ua8PK3px^u~I#KPxHWLNP#D#}nJ&|jEnac2K| zR>o^Dg}`!bZmu{;g#G^h)>h`_r4P0s0Rh2A^@Leg<6gtI5&4l^1n~$k8Ru74#-n1; zK#pHQ3B?d5oEy(jkWu?W-+e9xUs9PEWhTnE3Sgj<14hVGOp>Pf%L6`Rplyv%pa|-H z6bdg2oshTDh$FDv*c18Dw-_6BKk+ddBuPSn6w+TA5pi@|qXY4!z!ys+@hO?MU_3CK zYQNCp>h8p2F>-~8*$D2kgL3(>;GdJbURL9De*9T(;8)D77s;FnR;kz-#6%PWJVddu zg8zf<&slVyJ)A(rjHF9=ev&fd4_E ze88>+4HD6P8b1)ib*wnGWeQP7OMW% zC=<#^J)JUOb@Rx~0HbW`)=-QzLnm{_9#H?QkbJ02+v5cg4$XV9$v*y5(UI>T&nC#eGYRro+F0F<0N@={^C>kotbgji1f;?VmmmC(Ib=rffW8hqDa{8Oj2P*wsUenQxgsA;=j6f{Gc{y#BsHfe zf8*=EweEtv?r_GKP42$9C|-$vM1?7O^yqAY!9a8k5Fjnd$ieyU-g&hF$r4$i=EMq` z(vN>EXF8Qq7tVdL<@GAm(Ou+3l{Bdtc zotLZdh^hSZ^o%d7I!J_YUk6mqZG2?%M0?Qp0rs@cdgP2qx%*0$}ZG9 zF!lUr76A1_xG?e%Fd`+1Zv+1tY7Wev72)8N?~eg_&w2x%7RRQlm%h#&*&eup6|H6E`b zjJnrhsIM>X@j4ZhA;40m51lj(71+hl&Xu_**(>>Z?TG>WC=D}IIKFWxI zWG*dPsi^&`IbJUW0qE++QviPzsNC!hUE>LQBuXA$%Bz}(aaUVC%B>Y`xk(2cko1s@ z2uw4Gll{1;gz|vW;U}E^_?(OHcqa++1u0J$)5uttg?^zqPWkXKnf45=Mhdr(dCQ0; zP^~i=;t{1xl$;2?Z(Ani2{=pH&t;8F|8p@@I3~s8gbU6HFIb*J+^d#%M_$etZs80& zBU;+puSs<&xQ_KyRS8{Hf8?J%)Y6K54cQ?Z9J=?f-$kfHSn!)|a#_JWV{aI;vCkBr z61fpVhVGk@@<@qhaI+de9LLzf6$@79c$cE(FV!FV@>%|yv{+@Bk{6TZ1zLBHJO=F7 zll34>?^TA0G2bjSc*&yjE7=I%rbIxvjqN2pjFB{(W9Ed7}>29jW}Db)zji8de^WRTT?g70lGxV(=m_XbPe}5LjE{u_>;=1 zZ`Bm=XM2lJQ0)RYh}Qe5ucM=Lyw|w@)2ro(@v=v>a0OJp~Tb3A6dH6DF=D&R*<)xtXUo`4u?6Eyx67z|-$? z9v&W5F3Spk^FI%fo^01K&a&_`bMATKgN9TZ;rjbZ^;(1>cgBN-PjWjstad%EI$R;% zJbvhqoyRUqt}@jYah(BFUd4Q&XIQP0)q4D$EVpXCD_1H{kk6?;7EqNf^FqnhS2nqJKM$Py~=s*(ps(`;f_nA?LlFMpALm5{IK9l08+ zrq9_0Du!C%ivPb*82{-&9!(VmlC*Viz zU7yE5Or9!n-+y_Q;P$;U-D@}iAW(Ln*BS^ZP+?gm=0qTc7IBbu=XWG34!Un(fX&lf z6J!>=c|%}S<3#sZLBWBK7@+rK4-8~bbg9ihbg8588tFaIOzTEDh(GNGIpKx#*tokf|=d))W60i|zoHT-_x?S}M7g|<# zP7=6fdQh*}J<%)v(_vB~%s30-Ru6mPAaq|vI|}%lrj;`(r~-{y#b)bzyJHr)vgxvm zx)fgh*sy>sAYHj;snU6HqQ5aX)^f0>y+K!)oP%QcPb>%qE35O%+NE}8CR9TpDGbty zaW3Wpu}5to=>5hXrpNK3{Mx*-Zh)NsY})TyI@jkH7^#hPe7<%mA2;DibYu?G3Qi~4 z*%S;pB}gPEB<j?gI(n4Z!axR-VE$@)3#G`)$1YlTE5K{; zHyD=lM}+@|KjqICc(7hr=c~?KjcBBw>a@mRvyci|J`S1Sf3p4s6CoP^vTz`mCG_{L zh`&7w5UVEDEIkX|Z#p8DI{G2Bwc716-P_wcrlp$1r^n9`&cra@r{khwaGpb{67Td! z?z!s220)bn z_0h4n-g~Jh-g<9H^tHz;T}o<<^2z?Q?SY0l;@>AJo%VB`ADY_DU>#tLB!NJcL>K&o z<^peiJ7~LIpSxf~!TS{(H8U@>Kvb-6Gu0lv>HOQg`_3)9Dx}+I^F6n3{Ov=P^wr3_ zZh-SP^KiCU`UaxUGR#UNaM^j*8R&e=zYXqR_z^8Vwa74qH`a^+X7$BjTb6`OScUe| zCfA+|#_!Y)y6K; z=CIfs1>%#QWrjbEh%&Pb%4u!^0sXM0hVd_=ZTy25KwIUmRGnz5&f3;#loLV*V|W;o z3$n;nLWA46Ld}0@zB}TO{St(0{)FTZ#?XFcN8UrZ^X~k@bSxoAJTkQEaMC2;)qNnA zbW3Wk_J$7Ce`F!0PLQe-SKCFw-%EaKT3UBj?A^o|99qF+4~633$Ck9b>kHmq=G1&; zJLyIo@&`1>iMQ$L^&;I{EX`z=eC_~v%0?GFQHqLN>~HY*9&~PTOm4YxO%-HX3iB5U zXm~pd6BR^SSZ53TaJ(7%Op{;oBD8{RYa8X=y7jiKBLme%=>x1Mrx>QSjT)o&18=U5 z6HEQVJojb`;u2bs9fZF|N9Crbrrd|5&hnEI^S;8g7PrQ@9S)+*Gc&Z;D7bw{u*td3 zmUks&>daqe4coK7I$O1uG=6Xvqh=ZW>ONCj7Ac_%C!V6!)5Y$R&o7NKc{b!W_lM2> zVdY6QHL!;a5@)^?_sA|O8ZHap(e;)`;6{}AoKD&51>|Y^Z|OK-9D~OS3h^~T!sLso ziZBo%(wwG&dL86?x*dpWAw>R41}!8P0%Gfrv2hMor%#IO-!eb z7M%#J(X4p}q)up{8#D(oKp4yJ%|t4%+twy>lYXDzZ?kRzkAH0J4g@d27v`>sL5N-p zFX)aYx{F?g+=3w&I?Z6}?!<3((4mqJhdN{w(ml(&IOH&*x0)0Y3tO+lgd*Nu_s#Xc zcOz)S?7_B5SStU1J#BFhiIDC|qg}WhueAtzpbD+g)X=yWPRHMJ&LVZWk=2LhnIRfJ z+8J_m2}0{fjbAlC22(eIr?cG*a1oY*lvzvX_YVWFY6A=R5_=1pr0(5Yn-1`K42Jlp zoQ`LogUCkcu8VJ48;3YCvtHm;*H+vO`Sd<(UjY~5^zH03P#XdE83*zEcaG$Tuh8Jx zeYs}T2dDn~!7s0_#-g{sv!`dj3OM= zcb7!(g<4_pb!gUiq1&q|S!^LM#x0zjmTs3>-f3$Ln4H_Tp=sGoGA(Hi!fxevY~z6? zl|7?>TN%rysz3Pit->epZkKY?%@q-EfidIP2H7*aJvYO>O@h3yf7adgQjZ!t(-S?Y zjSu(|I`~QbQkY?<`tcFL9m1 z5bXzdt)@OxiEt!e;YCanMzk>8izD+=ERgXP6`{EKOvo=rdhJ2~xr?$||QqwmY0 zY9Y1qOu-R>4h}Qi!$567z|b(Qp118|C*DEe=lN9NaeE^_Wt%aWr044Gdl z`#lb5?n+82krFM;d6MfCW3fzsF9=tW@FFSjf~I#b0H|(|#u7SSJ0Xjs^|=9;`<>NQ z=$5BqDGum|$75a~W)0!8;zP1GW9p9Xjg{U|n^5yG>pb5WqMa)e{w@(T3tCPg5r9yV zd+4dN@?L*u@c`Ttj}3POqgr7HnXVqsNZz9uJU}T)jdx*ED;w=;rF}7E76)x1!S_WF za&Uw><~-VQ*D$c>h#EA&BLr$wF3_xA#Cj({Y&N#W3V+SdmlRdPm^!~$^EaW>y%ytX zY+?j@Y*CMEb6a6x%{2fNweF07{6#X%@N+tmCY*GsuDS&X6U_;{&4;2ExzUnoKed3-pf-}l%oPSc713z3>2NQ?uLkEcL@kX4Iy17Lyu7r^$=D6KGo13VnT ziya(9FpaU(pQN%)#YUg9iSnA%Q?SWlWn*3>hp$cBMwuQLWx(2iW=t)aopV}XUlrR<#%#P1P`Sq*;imQH11qI1y;WYU4UpG04pnJKbsZg^e6H}8;+vqC zGn0}k>@Mb)15pYMUV0*PwOrA0q^~Qf+p_5QvrEF#jh&trPT+ky!uo)AEP|e0Q5#BU zvuWP+)0@FMy!aJ#Fm_=;=so@W&ee($_ghfY`GT#?Bu&u~>zOxp6BX`UYSF^W$CyT7 z%6G$iNz51^O0RO{|7LLzI%z7_+CL+Sn=Z3p{DbH0%g8?05$tsB9P}^h>DMdl_D5?2 z3CYPyr7f3V-?V=dV7TMGLbiltOC#tFsL-t`i2hr#^ zqZkqlwtzIs2(3?_C3YIK1a!CC0<9h^K5Pgfmbi=^C`BIc5X|V82tshGtJx9lW}@%> zvyQVmJ-B{M$|*6_Gl*xwwABESzXtw^6Di5FwRM7p*1Oq>zGK*b@9&&;ENJe1{Jsyr z)-Bnf;zER~Ta=-dZ{%C<4aIkXvqxmt^S<#2rVb}ys=pKe#n^dJJQ=U6@VoiEI<;4t zaOGve$F{7(LRGpd*KbBK^9QkTKl#+>a&jSp&Q>HK@(mZ!y<2jQ0U3fG5t-IGKSC#i zusd714W89HjB#O0&5mu_)5+X{UANuredzc!E1heEH{nsAlTNJX`LodW)5Zv6_wn%M z#jJ}k1UPrp>%@BA8I=kUQ`BIiQNEz{J%)dbPZyxcK<^Z=U%=b96KWvCgxkQ@HLT@W zY45r$FevP`)$&!3dYKnwH#@r8$$S}(sURv&Vyv1G@41R*cEE$DJ2#HZ*@omCoL_tI zSU<1d4#H*UlW|$XLcNp{x~hgyR8%bZ^5tRoOMWgc?E_k=sBfYVK$_7n{IpfnPzM|u z|K%gbXeCwo>00@#Ne@2Owk&}ol*k)Gd-vL~8NsiZ-(uW?Q#%Os-9S@Okm>&sd@g29 z7}NQ#=vRB3KsTOM)AOX;{Ridi=#z8L$O=r$jg1MAbvcjAZn~EN=#gd&PNwaP9|ja^ zU{<|1{hlO?V8|qGelGY*LbIftsyvTe3DLffT^R&XEIk>tGlHxY=f_tzPOpV`?d(G4A%XoH8lt7~e0qN14-&q9uT z?Rb|KGxRteYb8gABc6OsbtlO93|TN!BIy`@PO#kY>6E!v9Qqb0$bhNV0iMz-YIKNEqHAj^J0kdbhRaI!rAVCODUs$##SZKeacR=m zgHQzr;{*5_X9X4}fHLfZ7;7!fv*nJk%b3%>YCbeLp95AT%+C>h*F5$y#r?YaJ#-k-KXF0N7EzF!cV7)r zE=M5?wB06YbZmexW$F0vM4djO$|}LBhy#HRKU1Un$t52)wsxD}y6IRo^!hd=J;MVT zezVQ^cx!$D>6JnKeX-oxNW&F2Ijj$eG193}IiLV}B>zqijDs8r!2^HOiq=elE{U~H zuPr13Ye(6+ygvOa8Y=3x01KbMEiO~o90=|QwCm@FL4Nl;cH5W3aQH7PD<>@KHlV5` zPol|nm1aCZT7dL}G6KRZu&;$B+qWvU|V{Z4X1mdOJ8 ziW3<)1BBsq_yWCjYw24NiwaFBD*S8xH;`ED_>T+^KP+uJBoOd}Z58BEezCxFUHL`^ zm61z`=mn`~DgPg5-yM(j+x~53kB~AiS=lR*aiJ(=X3Gqfy~?<3GD8%hgp%wnGn+z` zSxEMlb=jNexVpdh_&xW1KhN`ezW;px>6M(H^E{8^d>`+jF(o+egH17*GUmM|?KS=M zs*VybK6mmt6HKrpW`}#PJd|Q8{H?Q=O5yZ1J>~x56@fa*P^eh*6TD|x0J$7g5&Qc^Nqnq9P>u5kobFNz9KijEGr?Fj4+N!&F7Mt#OHy%?bcd4{tWEI60u!;q_`>ix!tJimeR8W++J^E&U*3U+!*#Rz4fF(~stIAsc94gyHNEN3 zVS-gp!qgSz$bLtz2Wq?rW+{PdS zMD(%I86--suEH+(_rz$^y7g}1*LPccN+yLrG2KV?)d}G+Y-^4w%F~?Epsw%RebhCP zHqunB57=+y-nxWgphs=X9PVIN7I^l5-?)Q4>`Vo#I_CKgwJmfQ_c%zfP+L#cu~AVy zH&Ki-wbcRcf-2hk^`8LCU8^mJZn8zw&dseH=K`Z+1U6wyB!?2TaBpf7JI9*dGV2so7h!15r59bS z$2|N@QRVq3pERg8Bw4d?2mC+XnwG>YaRMwJic)-6Js4<}=OB&dD?)b_W? zN6kQ#iwJfnSL<0ylw9~0>9B=Onp=_hUW@x-L3mhLa9Q8zPn;@vL9I=}`|MB6!a-g# zXBr_d>X6r$3A3Z}eu(GizTDPkaXfWl9Q)^pwqt;{q&% zrKRN+aq;Zh%X_y;1&36E((uAEr;7D!qw1uZTUz2P6+AqyV$!>=HLtx{{@gUdCMc-k z>F7+zs~!P@U#5`Vd9Qsl>+E{83=Wc!2Y)W^=^Kn`l|JX|h0CpY6b0Sdlli4WKOqvg z3xODsTV^`dZcOXs53;S@s`lk5;}c;KdTQ0I2^qT=->E^3DZXy~H>xJfpGfCc9=H}E z()q#PBAp9?;7vKgGa>whD2ke}pf@IvoKs`;@yn4Xz2+YU02&miUL6`@Ku-waPHTVI z8qRR{TGyd=5Kv1uQDUuL7mQP#nq+~7!!`S&38sOoljmZ@kl zZ8HEt;l%y6eE-XfDYh8Jb6Ye1X}f198{R^8%HvFKpHwJ?Z>Z?Tfs*G!wvr947ZXo6 z^S`KO|7B6WT0FJ@-v@Gix7&pHRyXNfbdo7GdMC&DUnF-&0rfkN^`QO`2Vwlnn^vdJ zwc^#>T=3g`6bjDT%?yh(M!2Xm6u+a-|o`c|U z{XxYHCBj-h-asu2->~Np=^`9%Y(`dW?HHEW5mAeG(0B4M;{)JEOyZ}_f_r=yUke~){;WaG!;PJA=o_LtF><+IdC1wYS5Qhkpcdx zeC`|roU9^qXh|`_nce;wf?Z zY&FrRbuTtFYvCWqs)3YWw%CXZM)(V4!R1qXi&AH=9>+-$bIS-sJfMuVfB5jAOZmbV zXw^xw(lAX5?_YPlL4YDjt<-PI%bCP38~W$jHE+7(d}d94FK9P@7aNhhYllVcYi0f; zIgwt?3=iF|6s^kw4H4~1#?+*+43s96V4s=%_|TQQ2&Bt}*9Y8;mH`b7{t_8DpSqgj z%uBpbLTIip(OHFQ+`pMp_aGoQgP-B)4_C50Z*yg1b{eZ@ON#yN+IZIdZj~o#wD6C* zS8AV)lSGv9fk0zvgOkl-ankv={HgXwl@G@4^>$xk8Y2?Ad!@*Xomr*Ed&pCV&bhuo5=Q&!X zqh%#&Ili&C4Tg#Gzj#Wyh+3(jli1Pv(@^ZP_}fl+d}T)DrkT^q(PXyuWmR0z1O_4O zydCu26p1WN(bYvC*?DK(*XGa8;in60?1Jyt$(H)&POnIU*jo170AO6k(xU^Q!Y|;v zUJ2RpzF@=i4gspw&TB;!!n6ZfE4q{E$ahI0g>lbx!>8B-Gn~C)1G6mOO|yY(z*1mfAC~3AK^jX%i4!F~OKsWA z&Dd(W3J++H+@VTU`1ti7`aIadL1b&g4q7t5FAomk5w;u$kksGBJ%7JPdpBb|xir28~MT+0wS1EOB@Y5wz@(@tTqOkv(HB=1F z&p>J4%AYU<&meE_f7V;|!QEVA)gx~Mqi1pnl> zHujB$ZMM@dPnJf{;dDor=HqpQL4M{u=!TrLB78fyqB2&bczqSYJy}Drp#pl+MEi<0 z*a@1q#yKq`aS%e$d&i3pKK5O{)~{r7vP)6$o|slmNr_iYZPASlvzWE+XG!#;)xPzKMiHEB zuGktT(JLNeOATDOqc7)SXwcx(7pH5chU?_h5p|ex7x#K=PDrot1A9; zMF`Z0ij)^!xWE|WekuDJt|CRz!(DJHdjm+}pUer2gbpY{AfYpkNlm=M54i=gg%uRN zpF?GMuBnGx1ZVe1u21x z8hy(Df-16DNK*SRZ?1AmAlmAzSjyvN9cH?r zDL>LwJCq5;N7SWjyXNEovg)R3G)^0T@3Xe1S8~Uf_p>~Y$xy~;Y9-w3BBRZgGEWbC zc!qUe$UXPyTC=IX@^en?3?qPqiPO{5SFT)nKlfyAZqAzMq5C?La(o_M4?!C;{=YI7 z4&vUB#l?N70{YU&U=j1_OCvGrEqjX;R!KH?HuTbE0*R#)IcFnKm0(pe+7dMTCgo7X z1YB(K1D4ZDxQ9#l}2|0IuZj4E}hJDWI%e)Lptb~lr&3+Q=XG}~?X{MyDt*g-lIYr6c(>=e6eH-anrwBW0`wj}M>*-3A8{CsdA z-puRBdn;{O++mEzu+XE#aT*JO#Lq4$$k5JG&+%jpWu~O0v`w`>KG-gMIIDc0iy~#&qr-{- zZyPKQ_Bc8jJ7y`P=6p^XFB@We9OB7d|4|@fQ00&L_}y53VnPdd*PIcu#UA1s(d(O! z>!czgBW>2k>aG(=qmJNRwdn-s^AF~3J<%ITRFY0;^|{BARw0NXLW`SCIKo17tN{k# zU$GmRv3*V#pG!(&MWO*XETb~z)r#V7Y-FRS&hU9t1ho6LBao&NyB8-CjL*~g%*@W_ z93mMy$H;&iIAOSM%!cef`)*Zh6H7XLe1nZ4!D88yqND{H#_>knBC#vvZ0L@P>$#!x zMl#4h)P+GfN(M+f@9i+w>CG7p@x|*6U{q&J7M!*l|jvUL+ z=R4?2tcL>k$a~3<4T1PLW9ZD#&8j}t_=(TNb|LK+drT=8yQR7GdC(JTgXEe1s%oeWW>6cR3yAG%tE|ydMR)ZU zM(}l9V|4LP*96FTC>$XMty9(LN9^nq=Xx5wX6dao{xfAI7oQ|ty6K(0ziL)H6hOdm z^LXC>B#YQ{fmZg0f&x|0*$Vsz-4x_*8(aMvc|Dv>-ywGd z9^qtpJ8w^X4mJX9b}C#u?k0RBE9L4OO6}_Lpj3Go;}{Pq(!Iq;T6*SteNIVc{r0tP+*~sehiPi<^*QT zRrKAGp-1)f=8pwM$#1LP_@VWacUEZzKB3P$j&Yx2ey^#<#W61@0?GgXK+j|0-9if`!sAlTywBM70U);6V> zB0-_C=Jwoze*}ECxrgF%;J&3zv{S41`+f$rgj3cA8JI%z^UCn4NBD;$;1P9Q`8kFH6t7J6n+4q8>y8no*G!(@)D#jA2>O^w71fxI&vO2h zFuXtNecKXc<;e%B$OQxz*Zf3LYxQT#SXV;V5^7Fo_XX*k-GC9Oj zXAhBKqO}ZQ5!+Zk#f)a~+r}B=hPhW`hyAeMFDckrD==qQxVNojY&tF>SDhnVc1iY5 z2wyFeEd+TQ%g(bc(WwyZs7f>YHlg61zBjg8uc(s1mzJTDsO9Kbh{L!X+cjB;$&??h zaCmJ?i_hAbz`yA;D^>^%Y5EX8IlOxUP?8?N1=bdl6*B`a;^FwI3zMnlK9wJZV@8j)OfBx*3N#*)?MTTJD5*KOxr%3Z^##-KI|`-`)*ve4k=tsNOp ztmDpa4b}VBB=JoTt#u{}QV>r=T-Vqd$O`{Vu-*nL;>szVOx1bW;xdLmAv?n$k-5)0&Du$!~@AIt>P&35e(}WdR zs0h^0Ka71SK>B%~xu*ETwt#F^wa*mwo3}AOGi<-tuAM?6fGGdld5&)kXj;YS^pjq0 z$veN&O`G-SIJ7QNB`DfNv8}HDhBu1#&BM!ejnjP1;f(peZx?Q^nL!x5lc};wSrU<* zY{8k5S-7p1Kd)nGV4plwho%L&xfdVwJw(W&Kd`c}OwR3@gDiMU<8({oY6C$jz{@Co zI4mB%QH5kz(Ag_=8K*KjDnaRSFBmW6$lX$C?3cGAQUKJ>;|Xs;(3X_y%hJk)wuEAa`FM6ow; zfz14OXc4cI(#Ml+-vtrceKy~zNX*ofAWi$*cWLt6!Eei2JX>arvtab>eAYFP-O6Jl zqEl)9M+Fg-71#^~RPE+F|fJHDk>Czd*U`^;E zZLBKdabj2WhO5^-Z5fVtWKJHh2R-mfJeFW541Iv}lHB>^4Z)H9gjHbHI&NFQd~tZR z)y<1W;34d>4WDALZDIHtZp;#RI|Wr1^J5rYdHrs6Tj3)s}M&#`)z^>DdE7;?HuNjj+@b*K6vxTdrRqMNbg%R`ktcM9826fR=8;f{;4t#~h}BsTCAtI!XOm zY{j+qb3ZJaYjeDH?%Z<>5xrpaihlhp3^|MVO)3XSki(Og{p)Q4{Jcw_=&^1!0%?Lv zmP2oF=GBq}-}g26xag|DH)P1@9xaqsl>7|7Je0gT8t9PzEGr!0r{Z2cnBreh$nS)UOV4x>931l5PLfj+(x(F6ffIuJznz2AFM#oSg_6I z9r!ue*>8CIierT*_&#=EfIg++ra0ekx0y-LV=V>~2Znc??lip}BkamgpH_KZ28jkP z#d!yufFR2_M{fiu z_J}?0e**YfY)c=Q4DrS5>(&ne{uE*8fzcyb=l!`WteKPFcA{5l>0irf)fo(j&IBtE zeEBnVGzIKTA{{?RRveY`@a_{2tS?T3O@@2!m7bPXWzIXM_KlX4WnWXQcp9hG)f~-O z8>ihxzn)4xYqZ2Ow=4wV!0uSCLVdo_Ojks@MX(eRS#Ro?6zELE^M^e9wrbGEHj4~x zn_Lly@y8>ND({599*_0#cuI<#noeI`jdXqF1}JN|#X2jwi+4rZ1s1KE7xTM`tGro# zQKp z?D1p#M<*VNFL@3YyAHDwf1Q>GGu7g{1b)7|G( z$ZKGl2fr(3Oco+(U{M))pD1dZg9T~e>5fB_`I+a|8I-t}-d&mPs0`dkq4hDqL8?>; ztpw=EK+cE<{ulZ6H-Pj1366t2ZsL;r5~gdn*lPvw7r5}z21ypk`UY@Jujo5e6GTrO z9JXef>;6)D+Wt8@bZR(erB9$3=$TedU3+y^xZ>l0iqBeR2{=+@T!RcV9Sv z7a8Q@jg4p;;#utm8lATZBQR*hUlh+_G=@0MuNmvf1qnw!@NQ7qh+b->y*on8IDMED z1dpYgk1jlXT<4b)WGeehH3qzl6Q<5}C|WaeAJCiyQzCi)qID+ec+_5`*wLWhZ*^i|Qo z<>Wo4d-nFRC`SLv^YDhe`vWGMWc+YY{?CkzCC^)%c*wmowV98Ce@lj1tK5;C>S)!n zzmYvj4GJn%Ie#ECzOL<&yy0YKlht+NaxfKmnMcmM^<__LYhmkH9gGP3y&WB+K{l|s zG22NyGj{tFrvBV)Y(Wrg$R#bE(%ROR19_1Ek6{l!;1Ux{*x1;x#>jQ<5nXZ+4V}f* zoqst=)9tT6mu%!cYqR{^$1b}6d7$1)xfq9{K9tV5)9%9X!u;AmUm?6X@1&~RVY$6u z(1%|Xi{iLW;S@p2Q=@ok(Wpq5az4d?fGwL~aAt&(9+)Tojh2KGn&N|Fp23&DDn(=x zUyD(N<(vdA)X9nM00P?B2Tc9T(D}S9$bNkQ-6JIj;RTF-OY=X^J5vJ)Y77PeJ|Zw} z-py}+pOMq`g(xK^`xwCd6~pRZeasWWA+${n@^M>-BHwJORxE#!2tP@ zTKVuYK5ZBUb7rEMA01KH{5dos8CgbI*_Gi+C*}f!lE;QdMvL&~aGmX-(RI<$d0}|6 zkRGE2Ag%DlUM;wHFf8joy(l{xHE+vVr~C7kL!D(ARimXu^Xmov>mp%P30 zvB9FzAMAizgyzU0+r-bNC!LAd?r^iEL1c-*gQW}7mNrHjs%=ehO3!wVtAX)YUUD70 zc#AclO#G*!1OBCHId77{pwY)R+TB8ql|WDNz+N?_`^!4qyz)e+GRN46tIpZCj@IVG z8+^)2gT@FtYYRT-bab{fd@y(keX-Dh~zdXt_YAQd7i& zhPz{^2a_@Ke43}!Mb}lX?2b$C6Gzp3f6Wu_|l=q2$rFM!0?)8mO7Mg zcujmH>JO7!7}Dg4t?j-Wp(jn zsQsNdVOmLT>a;|x{Y;Pph@~TAU+j;JVE)+J-{-~!>M0tSV-PI>-qZg$IsC_&^Km9tl#%C?K1{TJo?ebQ}U+r zkIX@g6?2AxM3FBH9MY_PQUH{}C?M7-&``-6woVRi;MPTbDZ5uTi;LbEB7au?5@w>0 z3}3J9uB@zFK_c^IPJy)B2ku_F)_H4wyER+iwKaM%wt)}box^!U5q}g)ARfeMb=5e9 zDUc_sad9G7K#O4W=5v{*fdN&uP^~wR$T`P(*G)=F%BoX%|Kic| zG2JB^GpTVekx*~Phh?kNVb}@GI}1F2_X0S_X8gTF=@e5_wynbF-PP7ZV4C zo?auVigCETjcz`~7r`7+#y z_!);fC*a@y6T+gA#pVG_`oBVL&g~AXapaWM@!{@vLvOBL_qARSGf7K{uLr=aCo9p+ z2*!viV!u2vPMi>%_gCMtS?6nE@%Rtv_Hd;#2gCv#+26Xl^r%gMtw-#$Ckb4D`g0pj zb#PwvCz@~*a$ZSD`jo3w>m@$;X7sYv^5M5An8?43PzY#aD5igqH{4WWhhQ45 z-xkgEH!&YZHCW;BD|4TnHn;oRF`YBhIlYKD98%$G+09RH7N*&sa+~3#3ARK(S-f+w zo<{F=Y)lew{x0%OLvpR26A=NLODQIU600Tp#HFrgd_?99g8nC=)z2Pj<@C6NKt(xM zJV-CpB)O!j*gC)4K;Y})Y##y9h3ZXlSEN~#J)dVbM_w7ZkMqNYb-yZMWQH~(hWIK+ zS!ViJ$O#=4&YD`;wgpT*mL1mZ+7~@$46iZ;vV2#cS=;-*!x}+o^pM~!KsmDLiF@ef zS(n0+H-?nzRd~B6hkEz>58i<#$d3E&YsG$%g!*djXU9-9Lh+%o23I&nV9F7(+G3L2 z71BuUf&37FqW558X4a200FS%k(xmrWTdt%Zho-JXz(DN#?vTN_IW2~XXFUJl&v9$R zyW56!>66CbPIh`>mqsS3s?v>?kA466Qo;t`>&ZJOdA}WRT{rlC@?+STrqsS<=qrqj z26j&@h?B+y{ADolKAtZH}QJC=Y~c^H8Gm~a)Zinjvy!gD$}d?W{ghP zHiiXg8dBm0Ge0d>PRu{kyGbZ5f~*4BR0Bc%_bge4VOGnJBCO* zl+jqu#WAk`(RT^)z@_E4*=Qm5d9}A0j&d{NT{Yq&5sUIZC5ym}XpG}q8{4ng;ZEzO<_b07y;jQ?fYtQOH>~suKdkI>dY!k zSyFx_erjTL^2>(S8XZty^ImT5z!{5A@RLMUr;I7cjo{`zdd4Ld7HiSGR^0bUW@>a3 zN`1A%m$U-t2N(TM=KaI#4u@JW^Ne_6o9#3TUnMowot>S&C)At^U=1qlJIia9299vn zl0<%8==THS`OThvcOpLEfH}h*iVqFn8Wa_>iI{2v7{adDEHI@dQi{#7=KK6CO|0Xc zI@@*2i70^)@r2MuH!0F z;7wK!wXjLHUpir&zmTo*WfFtvFL-m>dN0zT2t~?jFQhgxk3E~;DTXRVfFQpPoDSy( z#!O+XISR+FtV6vA+O@>H^FyrYH!xls$2aVT{!}l6)c$XA;H%Km|053EPSpLA6Zj7{ z6i!uq5EX183;V$|zRTo)_>T*Xa-x@FEqW<@a5UJN`b#n2sL}IVX@sxemaF-ul>DtI zIpLw49}ijnFzI-VvUK68^LG=YX?ZM8x>7?6TWZtjRUrO6`mToT&KwF93kxb{2eHHs z?N7eZg*%hS=$m?mr1~A$%o4qu<@?vJ61@Jx23zja($`{hnM7KlD>ht}wBxpD!!+n6rS=Fn)9y>u)iXFh&B)^~vIXgzcEXAVOm2MfySZkbK-nBB)iQVw+ z6j?YXES~}Tj1V~z{n*=e_#!e+(dv+W+(?s?>7mQEE+Xa2IBC{C5KILU+*0Pxd-uK?7F z?mhYv%h3@TV+a4GUob@l!bJHw@@i-_LRz`TedQfkrD>a+voJ|K49?BXy~{1Du)Gb1 z_qqSG*M!QRG(`4#|!Vn<*zlo=K_E3zi>J2L|50=vVQ-zJ?M?`3vSZGb9www z{jQ9(wA%Xmx@~DB=SPrK`lb@%#_R`@w6VO|tgcHS+w*JPR##ipD9*_^2`MJSrSM~! zecw>u+!V!TrO0_v(QWCXOCQp&SH`b^#FR?(YC&gTG zO5sLNiuF#{m1%&~*gp_^#mm`&+#>rhG_KH1;M3ZsWN<&}0n$5{|3&le6>?na_U2tG z{9h&}CZMxV4NpLB4ER+;TT~e=2 z`aQTm8C;k``(CG#%sjxFy!MetJ-8E>@o{1&G*EuLc1C081OE1C%T|g$j|~nQ^OpB| z=tTGVfRb%&w31<;cLd9u90*MzBB%A7#t}iTrVt&}L?rTFA^#o(j4xejj_^PBDr=55BBtgTP zzq#3~Ux)8%#ELB;cSTA^Y@QaF(Y?KP{K&hn&d?#kGCHo{4}vR^rCcEYy|zDOBEeC3 zFKe~eZo{AK@6%Spc=lR$ZS?kP<^tcw$!D6O%%=a6*TxslAMXdj#$yruH8EI#*F+$J z^?X-~3`IM2%mXjf$c8;M;VTG4@g@4y+o?pB+8P(vVZ0^?nEIeRyMp-r!#rk0@b`JZty(nv{3Nk^O;UE`l7^Dke%{32}p z`}cDo{^Sun8_NFt`STY^Ny_{C`@idw)_M)08m)o9+#jt8xco}9X>W}yE@fNZef-YF z-;C_yisOb^XE{IKgz%Z7PV8%`xdSZ7m{6PhewV?g68LwYn4k@sCcpI^2OHthh9qOS zg8szr{YJfcliMI-;{gAK&#{&i({)6QV&zQBl2k}S^TiGms3PR(33RCbFM=GVG_ro7 z(Ea8UE#;U<9SNP0MaSLC*a&yt)zfvDc@?G1Nkbq_0?%6pOq7S;Um%9zQwdiZqXWMs zqw#k?^7Q*TW%qB1=6pUo(;Pzbn;DlPdU`ca2;`%Rp`A!NyE3#fz3j;R9O|KChqW7t zyML-q^5A5s2Ggax*S|k~rpFkOJiIdlmnvP+A1Hb3b`hbD(>VW9%e+GTYeM@`ojN?*t}F ze{Faxp@iJ#PlvzsB^Tr@WqsW>hzhX7-3U1L!(oSFBjQl{YmJ+4iFa>`ec#_3z%fi< zTGRA+WN73KbAvKFngxCgqJi^Y5e<#$LdMEtsquaC`&L%{zPqDY`QF_rQi?}TK*ifx z`K7otShRZw(6cvG`{jWRjp=mzQoqgj%|<1!y?*|p7_YHq{26_!`iSGi^Q3?;)Ynpo zA`9j+ok{T(DrV3DVTydse!<5aKCd|om^$g~Z=8PiDkeyi7r08n6Q#yZSzzk;Qja391MHOHddu1agncg zI`*a1zi;=L&%|Y~&}Le#7QKyF#*0a{`m>zNcUpR;&qa0P3l|PW*K&I&WYpAMP3rGE zu!X6IM$t7#$dJK@Ip=@VFSeRUlzqYYaF&+FLL>d8B}r&u;zoIL14h}WrKRPAVWVf= z@N<|DL|27klg*>8SD4aMIz_SxsVB|psV(iKH4g(6N#iXx*m+o0XBqCU;q#JE+{S-S z5fazX{c@sUX3-eDkUULeJ5=61_sG62m%QagJ}(;a=$^_{qWV>Bw&q0XVgZUYZ7Ob& zb@e<$d>&Gj)r1$o{Y7r)P8dPi^nU#pQ`;RkhI`~SgSXS+yE@+ zf2HUPw>@B{rM=ylo|~(z#`P%QeP?f|^nPT-Y}eUO`T$O=u$&GYk|4XTZnL$ua6OIc z?r}GuhAS!d(EO?Y{Acf<1ju*X%(x=zUD9WUn$r67`FfR(zTv)DQaW+uKr3OP4MK_1 zgi-mb>UK4kRw>NQ(|&tMo{_$kIX5xct01}}Uq+nP3Cw#<(~cD3SK8C>xCB^(o25w| z3%>V9d;~UmTCOOh&Y%l{K8!i*c307~smUy2;(JX^OD~@8?J*E*V@Vw~M1Y7Zxv3Ybay;IS&&*^WK1XLnF~$3 z1WZ+&NFJil$0gLBIx-dM;qHm|FUGV{wfznNT_Xf}e5BxOl&`#Z-~m%+vk%vn;oHc7 z3&g+C-Tea;X^_;>gIl+GA0mUpf_p-zbUG9mT|PvbG_o-vNPcqne(#e~Z<*HSp?m*x z@S(SFb%4A}adYmO8^u%@=|bMEG=*Tq62q&i<8#Q9Z^waak@nX+C&I?R0p*`XbD5B@ zt=WbHiQF)byzFwrS_y@OSxMt?=1z% zK0`SbC6)kQXTHgVd5Lu__XGoGwm|eBW(#$V=_GOdV3qHgl^gewfb*G_&(G1&Aco?K z_ZI-hC4sYuA=(X-A?eMno$=2e%swh8J3q$cop4`k7cG8qdz1nh%K1R&BzCjv#Fh3= zeq)WIt?_&96VPC-dV?VSuM*Lg`C##9W$vV}=*^pSC4_lpI zOa=O$G`o8D`tVVWqpgpnMME+=VSn%xxSF;iB0o+pOe`|p={lwck9TIu!R%HugZ zT^^s`2hI1q#yjkbLT|$*eg+{yC@K{!wntZMuQlsekj!fvN|y5s&y4J_mHQ@)Ns76ul@;0e4IbSWP-{31gNKz>A1F8RlyAq{W+*`C1o zSFU8c54vP$G5b9z-JPrnT-MnY=Ll{)D(7!(gew^E!nl3%cJn?=#9#o7FdwV*JS%bQ zbp1eAw5i?+6u-P`>FmK38?ewXNstkjr=PSK)}czD94KaGpA*_UUFHqi{S_PF$9sZ3bQe z)R+1G4lo&ale`ocjZFk;tUhZ?1Sm>2hl?A-y8iXeVU^3lZ4s0iBWqA>rpxQLE?qj3 znslkWp!Z#>vwxANnOp#WqKW@1(AnAwJ*FRpQcTs&df#CKXKFoi?NX6Cw0iti(#)(-f-a0+bxkMw!cIk5RPIGLedE3e@`EQci z@WOa;g#@MA{IH59Rk|&=hKr5cFocp@HL~s})Yqu;xL4kPf)9rwy0(hPV%4K25InU@ zy;dw3Tw0??J1Mi6Jdx+A(GxT6fPCZtsz7J5ESG3UxJYea61*F|{auS398!c;VE)GskZ4ekR!)xd%D*+0C#vM_J@Ax-8;02Tpi)-s? zy}rgVTigpA-qTSUx~rV^DRyEQDuyuGHyi|`!h5DT6-JTN>CAatcZgK0{ki(zmVh^a z$sai=w@9RkF8=yPkrE`6Nv?$)!lav zcDLw5_+E8S!M-<;dQ}axMd+4}VX~RWI_FnOjY1pjS6Ue@%!+&~V-21{lAx#G#sf01DJAjJ= z>JL`o2Y{1~KUk^dhF6cT0OQBzs<4PkgLJ=~ld-k#7}M*Bel8JiTTSekY6kyIb9RA- z@Oe$%4gCCem3J9AC4|2&zqxn^%KyoqzX`e~pT+w#XQza`$wt}QbK=xBmie}brS>o{ zBLajcA=`P}o-Mum1RIRow;kHf`no%DI|K!4xuWiFz+*t@x2!4>S45?Tp=6IJSVLqEcTwIKZ8g8~u0@_w{uq#_)}$}rq1S-7$O;rIV;bSz z8k5E#&I517tc6`dE4LZj3({2ri38`@^Vpjrx!=BAKB#8)J%Xa%8%jc4?-%yJ(DiK zAftE_rss2}HoB65k&%6jlbt;n^l&lmB(~yj)iy-MK&T^I40oh@%j=2H z{c2aR)3aCZFK*F3MD2lNb3QIY*CEIiW>$?T2I-1|XW-{}lBa|y_*1=()f z04SubpwU7pQXbKMC!25j3r%W3C%ZA_mmk6dvjU*C}ZSP;PTOobbH<(?+wQ!KeO@2H^8o3wmF%*W@pt6fVz5dTq( zgM2~ian#K-(F;DH`bDN0fXUyyxi>LVz;M;^Jy<(qLZa5hV=5}dL=`{%x_b4hwwITr z@3JLxI=~Uy3JR^?Rv;vBarx&5*M%MyFpIf;?H-IR%RDz9KfkWJ6Y9jG8&O{5MPHzcmuH#R;0+*{e_2c+ef|FZ&3Rp!D)5Ts6^{k> zhcLEgc=o+iwpZcQGQO!}>@qUVw|I>^;9RbyZct7usU3sYlJ{9tXpp z*GAnE*7@;x$P@pk0Box&mD~ZavA|SiS+M8ZZv?U#X7%ts%vTF8(y6XOKgks~ACJt4I~@ z?nHyP{}~tYtdhl_pn^_1Y|X~+Nw4!)#g2(@pKV%W%Mkk1t`?nUUCVZuN`AFc5bu$L z9u@`peK+*Pb+5^g3kw)|5lz`db=rKYw|XG?PCFMrf5tEQ+b->oQl%^c*1M$ExY&N` z=ILQvrNUuUWhZpbygM40R-t|ASwCJ}F{i#(dAsHAs>EO`>!0I@m3LL^rm;jh0xe`>@P zVySx>ZNL?mq2N~MRyU$Rl9h5)=ZH|+BGoV#622BkYd>_Sqm&xmhfpKZth7in^gY_& zsUv7;V)&iW|9kq(N54=4pKnKpvx&HQy5>v558y72O2-NwM3e8Z{S21$seIYH;%|ZA(&sS zYud(sDOr&_xz|GOxBn(7N%Qo42jGU78&4m+xc)Sr0d2I%<*{Io*;}ZeE`6(~^F;~T z4=k=km1bV}UzELfJk|gEKW-!=J1gT5WtEYYILIzS2q6mDdmmc}nJJ{KWD`<$wxVS3 zy=8Ok5Wd&x^?JWQx9{ioeZM}R-(Tk+<2)bF$F=U){kmV5(Tj+bjOG+|*R@PKzJf1; zoFW3TKU-8G9C=kz*QZ07s+uG!jUmBhr~1Cpet$o0%fmrcCzuB299>{Po3P@XC^N$P zMzcPKE`ymvw0}MdrDo)VTJP6-dU}iJQ-7VIrlzI{QCsL*dNAY_RPO$Y?TaI0OEwl+ z2<1<|t(@1g$+f_Y<4d*6BD49HzLsfukEl}+W2&X~>9!6Ju(xEj3}We-Zv(kC=!FR@ zXO9A#-a0P$yJN}#bD;f@*>;0y>Nm-j`;S{Y`;sr-GB@XNg;~ZB#@=HR1`$-w^nkJN zul5GMSNN|!ecDsKIw^MU*l+XP88y0M`QOHzFcqG_Qma_{a`x%GUG2JMefb}u-982u zvS_+6lJd@`KnVoO0eRy_`rDTAu`+Mlv{0Y6K&{%1t5g;@q@(aj%Xqiri z_H%K(fW1A2WczZ?Kir# zo(S_?!5bg(1R?@Y2tK#4dP$eEdK4`sQAipDo78}{`CN5UQw48M7TPr~@lzL>_> zw|&K-DV_8>+WTk12Pxn3C{>mW1u-@5`ga0?4I{L$o~+q36Ra)GJjhC1F&8hsRR72H z{7VY5@Z!re(?;)e?~MNCtvmh&AAo#3|C3!Q0*2n8XVtMo1cz=QYRHk zch-N#j^U7_YcmLFW6n6Jr>~CAk|1O}mij1oisB8o3A1 zq2%=}g1r6?Rx|?Y6`uuyO?d4@D3(hO3sXUr^|+7NrLoDd&hA8CqjUCMDCNfU)1K$( z#h-rCq@d(R6LqU$>SZr=0!wmocHzo>WOltn%eB-3>jjqKgh^@`JF+0gFL(47h*=1l z|NY^p@gbn4?ZY~bE-+?M8%wn636<^=%<=#CG#-XHe$TWG$Vf?QD1wwu9GfDf2DT&KvhLEL?|qI}IlIf@W;QOX^!jsO)G(4E5n3Z`eDtD!&J>-5$y z3dKEgI%P{d$H^;Z(~U!xa(ywx{YP3WDbbUQDNUxjKdFZD$-7WKb6vQ z?NP6f5}WHiXd!$5w*OmZQ=Q^NQ<|eFT$$pK5b>#oeXSIh!NkE=lU^RHU40TtK6Xe& z@8nmXcMteiLFDmG*+tE2D!SI#dbR>-$v1inkw8$-JTWl=9d)Ifz+DAA9ScYtS&Du@wmVE8q4QQaCAH~Od~ehr6~K0=Va}uHJ9~@^wWD=t{6u`hDI^m z{B>W2ufB&xq7>v#r-zMpht~GWXr~-M(>EMLP0zH}bRaH@O?@ivFQ)}d2;Kk>GVOMj zzdbyAEjwg$|9yl8(BQJG5`#mE_6FQT3WDM2JrxYHgMn z(%F&-DAL+tp270Q)n*Jnd*u`SbqrR=_b;pt(z?mMs7oc2zQ^417gxWm1Fv8GjVeXx zd|d)?B7`f)1a30n&VHyT&6Maeb(MY*X3D%~ykujS&sRP29t#1i4(^97Kltk2zlbj~ ztkHW~g4u9}m%nR?*>?=ej$UWZuOpEt$!`=qLDH?5#gtBg#H6G>WPZP7WB?+g+Oyvi{%K$RmQ1xw2lk*j{`IvW&RM!p7~N4z3(Eu4$2o zaqZBIt=xP5518G665z&V`&$$;W9!9Fm{R{TQ5XsQ#vt*(DXjmcghMmc4N7VDhD&c@ zh>)9iwdRUIO!-B*`68#n_Av~;v1Eydo)WZD9GjjUth&eA$atx6QsV`nhW9mJm;HtH zB>xNR!3FM@9qHv?zr{--i;*UK-;t*EO^YJn_VHI@;+6 zJ|zmZM$!@FUnX{Ts`I12K;<$Yi5w`<4@o-byaP!wB?pb)ujvr2#;wrM1Mh6cAE^so zKhHnw>`~^ck%QgRm_2fOpUfg#`zdH>g3+2LI|KUm-RJnKZ$3QPdewh;a^ic~;a)3C ztR=adt9Efmsf5U5-aF16WS$(e+0A%fKP?|VJ<=8yW-GdDXeA_3#g)1>y_ug06%sy* z7?+5-YUK8*Pfl!rZOn65ZL@QG%@xGqLSU;Th{|8Px zhqhQ^&VHC;lcDXc(D2U1S)KcR<@??BsZRh2VCH;u@sOe=t(WIuWmmZxXuGXF)mn23 zqWB)rg0ChpPV)4;+18I!suz-5bx&c`;%ZXaM~q^?2W?Anf5q$Tm2m~QJK?jDt@-QI zk;?sFW+X!6;JUU5aqub<|GvT_OOPul&k(L@si=FFCvXtPB^G?`;gwc0bTl}^>SrrE zJB6Vf$4l!ZT50b^=lYr>8J2)cV5JM<_S7^qd2_QE6kyQMOU1(}A|fJZZuY{3gwU^& z7-?r}q1^ZH?{x)A<9mfWNJh`iJuYpB?s>nvuiviLpDMp@m(k3g(nGFx(<+Xr92V`^ zO_mG1{79KDtOb!8G1VZJ8dN-@7CoST)hWbAcBoGAdG%N!z)8HBk<5x1HAEi_l9w$f zT?~VCM{oWg2;C+g5@1QOIh$W64fHeEs%FNQ;!N4^<^*TJ6kX3LK)1f_c9TsYu^Dt` zkK}_$;R<6`PAET&mn0A12F$a|!$@omHV*o)yF3p1Fn@4MT$IpmbobJsr01G;%Yxwx~+ci%>}h3M~V`;K-1)ILCipwbiO}+2*nc9>$lq^#{_E9 z+)vgE=U?ATpa(?z{>uv!f5k4<|B79O*t~UK1&L7?V_7(U`Wi3%4(bKUDR^0*c8CH0JwpP4|G?Q^m$b^%lXJyQKPUvfFJI+sdQ@NzeJP_mrtr`$wkZj( zGt>LWg^28Sf zb1wC~@9>TG@}9r{U7np7S3b;9POCxcb-=n>5D!)(Ih8g=Rei?KB`1C;fA*w*7#*OT zHJ9MPqhe~ofQ<;A`{W8KxX3pQpW`2;kwHMzroojmUb;?}G}<;n?taLtxtM2`!rvdY zUl`BR@^9hc`F-$%8|F{$I1|V^?s$^z605L0v%3Vq=-tcRAV+;t66E$b_{XOA0`%G4j zloKKar5p6y1s0ZSYNOBv%(#Q*fi{>dus}XYKR!37eHKoWKnnFx9u zMv+ss{w=2W;}PLjchR&;9fe4h7uc5{R$~t+uo?|M)=!QysUh8oK@}sKFa@tSwHBZ#p_!!ZoFG>ZEM1 zy8(GUHkqA!Fha_+JU(wUgbOFdL2aEYt!GEHeQn-;5^TK4X>S8;{A~OG*zU!M9sMHH zan~T(LLtxO_mn2|{ro@=jAZ-h2lt!4%7>`)xFku>DCURt!%tcHWEpKocrWY}AzX>Kc2Dl%7x2472*m(0*3quY+Thv~C zuamn+a1{Y;zqB2eK*~o-u-zL*-ozjH2@PW1dqMYi-R9^8%dhL|05%J zX_gt2SP-Qi8;dG{krh5ZBybnCNL-zhhn$w(hPVit$5(@QeoW&jDxb&T=szUX=ruzMKy47_~ z<@B*2&N^4ZEG9hE8BJ@H6fHu^!Fa?m=*Z~i<*&Nf*oY3#gyVKA7&;PHEHbdkewb>J zLGqQWgy9BK#5f=ZbM*%pwFqMsmt0i%Y;S7pW7JMAN2MwL++-N!V+nc~`johv}s-1JQ*@*l+*70%fh4DrPXBg!?tFBX=jcyd%E1lLv z#v^6%8yqbj(X(G1XU=nk@%)IHrTh{9SpTD`Zlp2C*NIUPyNw$6<)cY+JYJf59Ne}? zG($C=H!gh$d~JUAbfF>k=rdlaGZK6-&?-(GY*s7GheDdmdv;*JpxEspXS^QJc?Kz}LNUowhsq0% zVomO6MJca8NKw^&MpFg0IQXcI8YuGoO4PU5oO1JIJ^DWmZnn1FHyHW#qZzKG>7_Ad zO!-L<=2Z|qq2@z~bRf(^^tBzb`L}Gu^em^uEn)rODq)PmAA_;}C`7ikrA)^3v^7s` zDut~6In71GzD)u`%BgF)*4# zsdA1nX*ft1(ytG&5$XH_juSiQzwyNh5B#bRG`_sSRANey}{2E=&W$(FNoEedYgMoYd1MXV{;GRAd+ev?&S3A8Gg23AO&61QWgxIt@}5+{V-lwSZ_Xj& zZJ8V!lHJcaD_$w)<6=XpZVA;>LRkmgs}zXCW@ETiwf6Z6yi+f8wqMXQr&WJNG$UW1 zQvs2=2v|T1t5P7&N_tA|UPeDkXBkxT+}Asw{A9LaR(#viR+aU#{L|bfVBrXRCWne5 zaf`OqGqCi-2oj1`c{SuGvIi0-H!yCBf0?#RP&9bNmuKgt?0m`RO9t4{TDpSrM52?x zax;0NsA@(0Rq?5Ycs-vKUuU1)jHeUM2P+Ggr1ceA@2sntz-rQ0#W%eenIM z@fvf=4wu=<09fka*r)`sh6aQ=E3Sn{msZ?4Evd|JY^o*y4kj z4K_kEeNa$H;rd&3%|WbnE!HLLeZK4**pF)R$g1Gr2vT7zvUD@4L3?rUPjSBCRWf9@ zZPG4^l=GJrz4`!-hLdqq5|W>)y4$^2)oiRkNic4;l-c^zP)Skln^@oGhew}T#B(T^ zD3pFo&CxI*?xeY;dI)quLqgr!Z4jbuzzJrt$gsZwyn~x^k?;WF&b z^lN{`S6fq7S+nQ~X2oBJgL^#bLpcu1^mIT?b>{p@2?EWkQvyiQ{?grEqB)$C*7eJ% zMIxeK#>HSss!r#xgPMXKJZj-?_fan26Z~uvZ(4b?VYYH?h2|o^oP_wSmWgYsun(KQ zMq1R;;fs;3CfQfr#>ITEFisLn{i_v-+b`)6fq_s8A2L0#Ueu;Q9PwT6S(qj+&18A{ zBAp|>qhuZS)~{kk`zCSddj>Bu-t+{eI^YK7-HPIua~gtZUS?I{C)N9@+sAy>wVS)(7A93%8zMfv6CrG_6Zx0RKZ*6PKc>9)R7b|z3 z6HZMVsyJ((9p7bTkm3=MmXh*47lmIVT6ebhy!aLu?OASX$QHE%EO0zl@D(}k5q)Tg zxdz2#qzEnh6)dUJf!{uVcAcw#I_1fzlE8*pzU`jW4Sm%Wr}Ou?HPsGjr>==ZG89^L zrG-LxC^FRNEW?UpCxZ5ZCw|7Z7!LA2-kNQex#gNf+sPZS4m#+1vxnN$^8#kY@~#;^ zEU1)Ptl)Bonr~%6YlyAlQ=-ridu~;FYVA?W3OC29=N!uCkrq3T+&9>hbv(=e${)Wo z?%8Ph62aDuZP~sTI~G(Gounu>=)P<$9N4yntgqXNxh#^`oE)z7LG3wpwkax-;d&3u z5nI5hnGiq!pFKoOlHLhbRaK!zEzrnZ#B6;D4J9BVB{6JA8-p{uL!A+IMY;fAEfFhv7#ESmy~%AQG*GtROHg=C{8hH5(w!k83vmCR zF08HUj(kFx`PpJD3t)nOwyd#X6?)pMb%dP-=KHVmW>P=LXRoP*2k z#+5E#zKntIN=r+Lf~ja|G+bSUBcq};w6)`L*p`---jG5%Wc?a$*nr|jb}bHq_~n7# zZ+rU(Asp+R1$vBX`>!77R8b9>KwYh6yd1Z3PRNB+{ZmhjDjb?{kQSk2Iy}JO4^s zZarAI)@F9wQuw9bIfuX~{R@`bc=w|mGZg3;85?jrD_n~w>-6r@MUp7s;yTaDEUP*I z5sOM--5EeG%Nv?%I7l;%=F@l>@@P*G#YH^mT9>hHU|j`M!>m`iQ~O~@D^hgxI~ zxq**lxy=yvYSL;cePlrLa4RLVgdWfTWUT35S^#ahmG|FcuHKEwPUoHGt}b%Nyu6Hz zOL`R!X#va_PJ|^!7NT($1V^}is88Etm~;vsq(SexyVQDcaXa-C36dl-z0&9tQTwf_ zDb7fixX6+vA_8%0c=n&+~xI;+5jNth)G$~QeVBbaMckUF(b>pqgxi5zO1HSR5A^_i{4a9Knyk92o64b2;IyaR#DOAS`m!=}ks=_#<@wNHhMHlLx2~;L0VY?2BQk}wOlg7L_(LzYHp*(lYpxR(h z)Qr&lvo>|alM!&U;!ccfu-j7sglbQ7Zz`y&lKL!&Po{CCpaLZKilcKqnLs)`F9p9T z%HC&1zr=Y#RRte&j-X)t_c=zB%DKlj9qrMEmfQ&=O;;3ooF6bB!)a&-W1R1m?$m5m zelB!=K7rIxWHv}uapzOcT>bJbm-^=tuvcMgh3aubH=&iZPtpRJR*s7obEP#!+>|6A z7kAriA=o%CdP+z(F0}P$-{bUeA2fsBC|=fe_gm^V98q!BwuI`_Xh~*}VBpHO4PCEb z!1EZKXSW*n?kJ?Cq`X6;yqI+CE9i4g)%{zY3YVVbOPP^Z?iXzzUtn4N;b23kaBl-r z7#wy5bs;Mc6x=b)JKUVHzJu2>NWyd+8(8wy{o+$cx{k_oj+y{b{;y-&_9IQnI%m7R z^Bk&oO-#~Z?ay;<{}6oELkq1VNFWbAcD3#$+?w)fcinZmslh$d|N;uRAYek(vI&ZfkTg-ljA5?&n=cjw8BT^!SKII7 z-Az&G&$*^INt6+fbSRCPkhl8&d5d!CbmHNi>9mGcI@9B`xH-DLJ%V?xQy8@5npIm~ zOklY2ZE^xX-9eD}(L~voMF*u830W;`sp>k3qRjIQ6h!IzLR#sh_sEFz$9`4c+^JRE zc5~FA5>6-I@T+l*i)X_dDx4ucBwr?O+ixyq4!|z|sSkV?;+lXK3GfMLQ z&At@Yu!fCz&2ML8AKeRqS)uGL94LStmODpiMjq!%Lpbb zg9WDlAuG#v)XZ;K0nK=qt-0IWyu4Y5ho197ES}Q}uw{ z%DETMQ?JKqzkSODB+q8zFAwk#K7q3?AFH2s=(zTTy+@%==hdl@rvbPh9zoPRc24d* z9v>gy0kvm!YwIgtzkcmbk?;b}nF=-kLZ24n_$Ijj`Ap(tJj?o{f)A!XA^8ZeE{QDN3E>`FO7L7#J zjltfg*Ul^3+p3q|S^WK;23?4|#Qm9QWA;SExn7)jZ)gxT90aoAAi;;4F{2`;4!fT? zuWcssaDQZDu77>{l&uwr*5-mEd%B($76LNe|BIBcw_@pUvaa2Dl{~0;l|24VS>=0N zwT0frj6+c*l|43Y6jxIimHnA`zQeNZ_+y$)t;oQW-sBGr4p`SMOHpq-we1 znq>VXBJhR@Umg_U#|WfXniEW9NC-_k>n!8N0*-Q?F4YQEb@=ge%Y9Csivi0c_*&eg zY(HP+&$drdVR0h8&Ydl|hB7$HlUH;Idrp`4w8e%a!dQ>K6JO-{$Kp36cq1b?dS#s2 z5F1Y@p0(eIeZ`m=p*nK7nOaKIXq)IqYm%`2B$oXd$*8x%c1W{)Ymvcc zg^ikhgz4kQUBM&_eFsuVWD-aUExk5RNqg~va-`bhlak|oO-)(zj-<5m3D58p&t)!Z zkl^sTgA+Y^OIJXwsB>P>^0F`{1x%QKxgTRxQFlRv3I%GvDC!P;o981~Q=7v)H%RfX z3L_aWsdoiQcdaZ~qR}xC=rrW}FW|1;?I&BT{Z8GE)o9ht&_kH%J zrj+cc?Y*PT@kbZdzxp}nDaglBW4{mxGR0bH-w4}SQ$&xcPYlTxpb9_OdmDb`MojvB zWwF)AURLj8>3NU4s}Nxk9<$DM_3_2H+2N3l>pLRBgm_&=ndU(wju8r?R*%!CP-lel zEmoViUzeFwM{YF6__QeNTheu~-o7?na(3zT-Sc+5M^RnKM^#t*une!bobl~)lA*GyWq1^W@qqwY{02g+mqMsfk)4*mEc;&29z1>if|plr=j$wZ_yl zjHgd@9`RL+Bv#?)Qe8iul^nFep1){+W3pnfWcSDgH6$o}nK#L5^z1!u(iC%GG+^CI z+O8nN!}U3bl;NT!liu~ep8{Z+A^Ep9Kl-ope1E&9 z+)K{Nysmu1r*9u816%KH#|=GKboUcfAJ1w0!KBS~-kTjuxrTnnuAr9q4s>ofKQy#Z z)6?e_o+B2a3w8Evf((*#sNqr4t}l%Kb4p1)>>Zriz0d)8EH41<3srQbeLD5C_e}AR zmmkL|@qNUzyv(e(k`NC?^(?1TEWyKuI9@cRDTOh*mYKoSOYtr?mCRwcv#OQ6GV;j?cV-Z6SNx{%L zFYtc}^Z?Ln>gBlqt_Pq}l}hS2Oq+RNz}tO2D02#$ZEbDuX=`U`=)yVNxllb6{>s_| zMTGpNV7aAWOjUHqh8()`tR}5;GKONiI>S4^VxeYRg?^=;0Gmmz;VoVZN}Q@2 zDvzMyP@v4No)QTyq2xg;RH@r51mP1IH7SQTP2^JuPyL9ev`%xO(l?!IIP3K=+vocn z0U7cxI&gxHQNp|b*ORA_QmwrOYKhql7;mt(A(Ky9O)`kSg*`N7o8ocAUb-7~S6x9! z;-l|1)A}hYi%2#YCv7l{O;3Mv9=mzpg7LLLVq|A$QW?5m=V2yhivwsOdz1~4!+3KVvmzLkqQqaqpI<%o?HPV&(x3WJIaZ*qGh(SL{DFOf-i%i1V zk6=H~9K-}dD(b>pY7DV8S_;13-loFC)(OjyXirlC5;JDX2Eqe!1No) zBT}D=qYLpBEwwd#ai^7#IO-8Z0rJuB#vt4#*8n3;ZdK6PJO4%PlxoUoq8>Va7_N|a z{`PR4AerPX_i@)(0(O<+l=;|h0=7ZEY}af`m{BIx z%pWG`)`fbvD%Vu>OcbS#XTI=gxd@#-d%!noK)@#bCE39h+?c%j{z_XvJ;D;HgAO`u z^y+uPm3OIhYe_XGb=13J?}YrU)8lUK5PQbU+Og{MO(hRnYU;w9ksGm&lY)wErRC+l zKtJuPOGu!*S;9r|^3^NF-+Ypih7D1$r6egZ1k0+COI%z(vv!7)JeWoA4dA(;SMgWd z0~@I@ec2Q3DR|tOMx^z@`{>2Jk$^XPdvL}ztPZhQbJ4Q*tjs6*k7wvKa#=~1TLw(k zuUW-hey94)8^R~xtFMoe`Gf25&2yMH_|mVA_0F^5h?7x#nGmsF&eh9Efkk3%He^&a?)kj~e^C!90q2`P!!vIni5?z zS6@F27t%g0t&2U3=`H1ycq3VRF@%y$c4OxXra-KkXaoCTUk<$fW(lR6&+UKIH(^@B zxKzkWE=+mrPfGywC;qD?03?^4n4==$?sNP@lQja#bf{RCu#Q@w&geX*L}h$c=sMz` z^I_f>++_+Zp*H*>PJa32uC#1x>8vIQKD zM$1tr98Tb^6)n=D-y1cqFRu~^PwK_q5jT4LOxn@*4;(2ox$*#p%2)Q;HC)%~M&!(6 zq>f)EI$0VR;vgb;4&?+r02gIHS7_o6HEK9ChW|iycrd-3z4l~9yBgFw}@KJC@w-{kL*VRyYzwSPL)J8j1+Dm5-8@1IVH z>8R!39jam>iMbbgX1@%^pva~gW?S~}4mzY<{VK>Z7^<5>t+wI>%rz8$WkF{T4l*ko zE>0C3^Xd+I5XRCIu7l?KUoq9%<}?0TmZVzDI%C6r^c3eA00;APPWA^9OSJnoDzI>O z)uOfUiZu4`$31Rr;)uWc?Wygb(t6P=`A2jSDI)KNc)d7^I-&+S z-h78a1Abixrq3|wric97pLN&cl9s!a)+Ul()L7?y+p^$J(-r*tl2Vl0ofd#19Ct)B z`&s3j?%(xV)#1orVq7MTU{yP&Rc|q&Cid7aB?O2(&3rwzx?lQ%&f;7o%}A(4E{+^3 zXeD$EWVxm40~h4A^rhmis|;vP-_uTX*f0#B=W*01dC=S0e0UXhELJ^$(^vrnL6yw! z7!!opKq&c75UOb|^O_Zp4e5S%w`pmmGcFc~n@DB{_2kVsIX<@d&X9DtdcE ztGAz>C>N()hhqa+Q!nP2KKj27*JuRQLw**!Hs1lRily0cSmV9rF* zoNW&xUuoFCAPlVN^QN|~6{y^*mnkEkg9aK$2L=x6J=^}mFGg^p%Zr41o^6T54WK`mVQCN7Ka|V8PMOb8{{IBs4;?=yB3Imuh)&-ecVtFaJ#DS27I@q>*8 zZ~4}E-x+7Tav3;-63sI{hs?u{h^oJGOucx(zkJ(PadYcIaD#M$OQPP95X*E{lf zvs>RK?;SM&`X%)0Q=UZe+l~;T`KGQ#EryfIc`z!Dd}KlX=8@OSSF`KLj0F*0J>TmC z=9ci@`vGk=fL6Vm=dYDNF7(3RE_6d!#EJ~savDyaQr<6VqMpwWs@qTNlrTe>pChm9b8fhv6@i4|Sgpw2BD^COk%v;4Df5}nRgOk3EB7nvPcgkUWbztYPV z;3V$e|2xP=;v+VCokLpt4+IA&m7?vwXX0c;JO1mTs~nlcNTcVOnK`qW9OkAxHLOAV zAo@>^WB>Emww|=`$@c0KfhzxR;}KtO>AgU#lw>{UIEKWMZ>qrr({;_B&gl!^He+u- zP;;Zz5Yu1?8O;#cdmQ0maNBY|*Z5Pp@8id!x(=O2j{&yGW|#U9F&iW%Dk_tnKI@ix zxRFYuOsC;{^={?T?|sflaRCfYzf{P9LG61^ff#d4|E3?PsgqpCz7FIy0WR8glD^?0 zZ1YV~nOv&jUZ7=QMhy4hk$v&NgwbJixqT16%)HLq`>QPjyzk^t;dnCVrzi;0g*+m_ zB}4N7NY{-STZT1FMiVq6&%XBgqW_)b6n?FcRrjv(+-M;GcCz#$pg(lCyvY824 z|J!)QOIG&C%Ir`lN>(mzp~a30k3&c*vcuXZ4gr1Xf*}M#R)!DfV9#-APBDDYKkX@o z42fyxbv0~{nk10KHV-UoxaN5*gUeKLPmQeL;hmN3^IR>@o?vLh>EYnxpb-JJjd<2JfB{HX?|;_{)i z#P(ZUJqk>rds7c~R*M-gWNkv2l{ZS05IcO!V<3<;cj%ko#Em8n-G(Wi4K?Vuqh!RP>rsAH8-nL|I?!+61G;0aZ_l zT)nsi-BXVRO-vMQN<5etl91cLa!ab|PZODp)Dykv&*b?8SlIB?$odDL<{7bcgxALf z9g0q%-!l?=ipQ%LV(LJ=P+L~NjWx-(EsjQ7`;ul+&njkEg zG(W1vBJ*{aaUrOyyQ_v@DAE(QimLLmq%R=!e+TS{h}SD-JD8vkSjL~e1=|zFbF9;% zc;~Yd?nDu4QoMQwNRNnkXBvD9$DP$Dia_u%uwGP1{wNmqj3BMkwp}Zi8uwyP*XF3l zzwWu3mX}nG3+2*#EJ@LiCMLcwG($Mmj-VDug@)PY*%W;H(w$!P5S@>cChzzsB-8UB z;x_?z>3!I|S^&WJnKeiR|A8dKZ|G1s*^L|B!(6SekW8T8sTTPzWcq0;4a2kxXqhFo z&TKXwKo6ZR7-8Qej*g~f=*R7yc;PY<7?RB*wOw7! zf)Wc{C@Ef5a>eZU?OjbnPrbd+`3loA?1Xv9u=t-T7Z1DBi0BoGI>`z;-oCKOAPgsV z9Yc}w!6t0@`b+JlL#@v#*DG=7TM4;^c>{n}@`9oqbE#-ieeR?5==C&le$Ca2Ju7*qVAZa-rQ^Oz9B(#7^*Hmk?k^Q)i7 zF@5PS3!jg)z#5loW`tY93*5^ml@ z1OI?>#D5%!s5}_97={l84z2m?LtvLI4%zBOI?vDEs+-G$L%G+2K-HV&vy#-E+Hq;I zs3?n7_eoX8Sf|U~utSEt`om;i+F55pq;Kcc?TwuXa2qDwR2DGi#OdHxfcya-Sz-7B zsW8*z71@l7DTLRlFJXITcxmOpHKVAbaX!Q}G&}yMC;nAXCMl*ppxUCOZ}Ih==waJW z#;{L8c>zHkFu>aMnmdIr(Y`+2-6BFM(R0Z!>fT*r7dl%mr7R}-+_}yheJ~R!S!8Yv z@47G!!+QdPAU#Z%__ST{pJry_%zT^?H(pg!QW7Op$B6e zk-QL$-VE^qH9J3eb7L2aO!B%OL$;xq;e^uZX3I*67~k#8S7T3ISPMr8G=yF2`CV~i zF0z@NFVs%n{6sD{LjCxQI^Ut?P5Sfp`jjjx+8UR%g!VKhyK-8_zsNtuY_5+>e`M!= zn&BvR^=g9MBs)DruiazQshDRw;xW>pEF}{iHy6u`L}VsK^3HglZu|ULD*U=h)wa^s z^**r!?O4zAXCR>WwpVEy1F3p}%aqc2AJnn2-fL<_6@L~R^1)G>jc;2svyk+8Hn8zr_QCR;E2TGk(RH=w&*`E1s6&6mEzNV~U z!A#U!X$5{hH~sh%7|s0)BCR#SvD!MzRk1NkKR$Qaf#*f-cEKOpvqqwP>+zLezlGYgmx0@u*r zLZk0>GiX~hP(GA%X?gZhTTH)OA$45+rnS>~PDz2)4!1IU)MxVg=PcE)FFYHvn?BvZ zXv3gg;t^j3ailoL&iq0>){M%#au53v1a8gC*+tAu6hz-vVR!H=8m*(nODxx<{QQi} zC1EF(2Jzbv4)9qVR_*ImU|wAqclr;xp$VS3+R-uRrDFmA7BM>Qiu(s**PAgix)BZD zXAsEA!amnteI5E-Y(zlna8kIC)n==68=Y3<8oYpF&%=-4-3t35j9_fb6BkM67SR~m z_vBXa37N(h2WeZ8);h1sCuM9tZQOHh56|Gf%r}!hbEfLu$6!R?@pA&Q0d78?V9Kd4 z-4guoO4JXfFGUF;b^4__piVA~TPnesSYGm9@6h9Xr08@j%%#bNy zCt}whe!i4YTv1S+Y_r*%-D8#NLDBlVvGPSVux4~>-``wwlit~&}I5jcIaYg5knDv128 zzYp;`FQ|6#fB-r4^0h?5Loox{?CEP|2zhdMURhO(4F1g)_)5%*Uk|Q zveskwEGlA_6&b2WIe+W4FJk7y82zK?MK(+68YoTsAY2(=rIJxG#n;c&sTiokgfswZ zNdHWyF#O>;OD5sub-hu3qJ~!@yInWrP;)q8b0!jd_uU3qn*uE__ z3<%uo=5oiV!^!jg+{;(lE(WaY#zXQc27SHW-bMmC~_n^EycySemL z!8MgS;FYf5APh+@?qq-ZDa48e`CI1JH%^@oFEvaBRLl!_u93&$3q>HHPig?OZ zJH+Z=-irdo|Cm8hU{C6S&D+4iL@ojkf93~?^5QW{wojNnyD)Xwe=jv~5OD=Q7}}Am ztxrk1Xyn$5^q7;*(qd4>oLy{({aCfxI5(d?@xpQHS-?hJm7jJp2Llk)!f_rxvphyj z7Tr7b7R1m%9BQi~xJfNqtH)F>+4kzKwB4t-^Macm2SL(ZpeLr!N6w1;MfVEJiLn9@ z!z-g&kvW|oogetVQ`}#L_}Y$jiqXCgas2S&jpo!R!Kn))03$9`mm z8JTEQ^&0zSC?X&WmBb;-cgjXjxh$H6Z&8kwds3{)Tg40!P|55FE<&6TGd?+m*??U- zOlpEDwQvwRG2B`7c*dU(6`%KT$I-BPHjP_Ci|)_UquS}IOzW`BqY3NxAINpR|9;zL z6$>g%(YVVjv`|ZV4~f#}<(fbDb^RD@g=NhAAXP>x#KB(Rh&N1b#*w6oB%+8e}}2OTDE{X;$$G3A{v8GMhvlR5XT02MPt)Pp6T zudy%5Zv)en*B!FzOynD>q#yNcjFp`R!Xl!{wf)jX$px9N2e(}|!d$qqY|iN}dWs)O z4wEmA><{~%>pX!Z`L*GvO3-x~T>e+piGwhAFnqs3$D;bY4z_y=jAtaw&B70gdKUUC z3NB}i-K=?Oma#Lpf;P+0CT=WkL0pAX>=V8V2@BeL?vR|q`GWA^1eCxvvL-uU4e(;a zT(o7eF5)16(xNToTfYj%G3|snm+lzJnNA*KM+}PP|NlCL*_`+hDFKB^uN8Kptf(#n zPMQ60Sr3#VNol9LC2!RPvI+fU?~&iQ)h0jHaM1CRKV+;lt=o}XzV;xMkymG>=!f#V zaeqWwgY>#c&Grq3Y#E~r8IS^zr?;pnDY78VNaVJzqbk^uASUc2?Jt2tZ!TbIO zR^z4V=IK6!J4h%C-{qfbvTFgK%C$+VZ}~Z8ypVa$oYYHXE4{gx@BtY7ILLdgIFfuH zV;*^X%k*ZLV5!Gm$R_&gBu1kX>DSUeF1s_3dDi$>%#&~LymZW-Ult0b0YpW4)+3SL zI*rrje4Zl%&+$khpu^fEr@l}w?f!z)7GpCY;HV(S5Ya#}&8czhx)*uZ&54RS?Y@o7 z z+Sr0EM{a>o6z5stTQCcc^`x94@~GC+qU=8UCOx(M@8v?co7vC(yrG_~c7&GV-w%jf8lTJ>59iKUqnH0ogggEE7N&07#w`@Hl-GrpG0zHt z{hbzqIB;G;^oUo;qPHtYVUwJ7jL0R5rFhZhb_2L^InUw7)efguoHz)PJoK7ztgXIs z{mBeZZ|7@xa#xbR%Mhp;Zn!<*3Y=}Nt8+|#L2>(YCI2&!#bil(bIV_`v-%8zDKt!6 zdqhcblMfN4@USMEV1LCy^kaC0vq&%4wB}c-S8$^Qc_k#!effVi&@7^!ek*`Q07|fn z>)!qQx5$uaEZ}M1b#OpONC0@QPG5Hj8blsVa9RIuu_&y;RJrfv12M0xyqCVdtMOY| zlR*K=sY4YB?^v5+8sWPnXOwJ-WyWz(AkHU*u;sjTLO2&=FZEN#2pH*_z0YE;`F#a$ z*>>ek|CXV)nYLavNax+Az$mwVBJ!T#^9+g*og>Uz3q_d>Q8dbjjX|0cg#&l2T13$! zDS!EGRtL5*)<@Ud^p_PsZO`0$2>qZEhy5rfgTyy)VrQ)t6+=Gm!o>JpSPf!oZZ2-q z@%kpJ=977+hL@LkWJCl@p3uD;-+%u6$t~VfUyo%_=bMaK2GiZ$o!1GI4PnvI+0bg{ z9(^I(B6#(WIS5`|Uu4cyE=|t)q@9+e?#4F1X4OYU-x4kF-}3tmqRBz7NJefioFm_o zygQVv=*K(bsE<)ZiAFRkP|EzBL{6Ip{c3!C{0g=z7#SITA)lK(S)1&8x*Vg3NRtnz zX;`^x+?)b;h%@q`4;Xm$^#5(~vUM*4D=baPl24^`4waDgHdmC=3{VNviHyFSu>@q# z(EMzTf#w2}+XlHCS^DTpj2AwuK-skO<%Sb2& zxTo~u_*^u2KcLN}(G~Etml!R`1nY?uO~`J!>TxwzEd1|F#>E2m=yC_pN)V7$@?ss-(LmRIi0xI2FQ2rId3 zqugk+yK7$%w}yV|;`F@^!I%Sm-~VX$B*roBXT(a?`?jd`qq|;wWV=~o;EvX*wo*Gm z;_SjXUx#@=?`~t9PTDdM?DX6lHt&xYcUygXSvfw(6Cvn&x!#1`^tUwt#oNu$X!_HH z_lk@hfkwcwl2h?k)2(^5I2GGiIeQ`yH?mBZ00u^YRyWr_8=pv!~t1WW+um~+17jQ zRMToF84KJRAl=0&AfT-f3P3qpii)@rXR8?mh|T$?6cfKwi?gZmMnwRIv~jKEbAF6} zJ^Zg~&ZVJDsjySfp?@jy;CBeaS=YKk7|c+qO$mp++1w8kNhZSbBk9OrU1!N)RK|zo zat6x`96i^0>b~K?en|IE=Tl=<%+JS~*XFXL zdta?3{0*V`F5h{ZosmngP>yiRi(Pckux#QQi~W zjP_*0k*kmF-}D)~Wu0ccpokMcu#UB+)%dPu-JT2)g zusu!ru@2f1uV=$1VEgykdon{vnsw#Lo5sw4SJOc%Dr||q6 z*%d@~d@4}77zR8cok~($_>GBh=pUif(t+cMY`)H%@GD4Asu%aR5y zN5b;-<+KuUCvm5SZ&7g-gNJ9lXLm;Y|5z#+YHU6QVod!yy91zghS5-GUyd0?!K1x@ z-$0-!eZ_KooC!$|`%!s0?Tiqvz!i0Kgz9Txc~|0Wr~1}1hqLo)*M?7NWmkE{}N zvKtyD!Za%u`oF;qxtBAT-V8@dQYZmZf|BpZQKEV2wJ&K>kzE$+xB-VK@7q1CbSuv7 z%L=esk5aC|g4W|uziy0*=Zr%YCVnA%0=O##UeCNiSEJi{$USbeY`|~>^n3{5_vLnz z{ILr`W(vN(4ayc*!0s*#c!}+}9YmO3yamd&ilkB(kCsj#pyX`( zvkat!uO0{J4^h34+gY9e>BMKs+}V2}l8`VZ21tF-x)yllA8@?gIOr;;t@ z)?RZPs=U{O>gux30&b98mWUHNAgp-JYfNB=3iUC$MJhb@H_XjSF_D+(;tQ^O`>X4& zXx4+Wl*pS z{5+}f@?A(s?q~69KP(&r{>=ALQ5wQQWm(g9oBF_4B7c7tHum=5et5zKIIGPf;!Bn{*68RnLUO2^S!iCo_R{ zhcIZ9P89WRi@gFm?`I-KpU)}o+}-1U$fKxG1IBFzbsp!SS=VIYX%4F53f+x5Bn{+? zBF=38=Ikj3G?m~4agHK_qp{rjxxm0At9(&*xvj0uZGD9EB~2@>l;rMv_1tp3v8ZJK zt2a2XMj()t@1{o;q2PN^=;%v0kQ{VySnO|nxC>OA@}AyJ{L970rYQ3n2p8sAk(y*z z{P2CxXie_K&rV0LN9&b)?u8}5hZbmsKzfj*Uxw2PBFk+RaJQa+i&`A{Om5lm=$Wtw z>5wWe6qkcG_`JbL{y>O%)L{iO{X1K@k=mk;&R<rw$)iBWi213{II69_hYQ*gEa%hDQ$-HP%Xf9AR-AK}19&7kzo@ ztwKz?uc%}LurC|kc%vE={q%Y(O!GUM*U*!{ciB1s!Xzig$CclD)t@PuJxX|5tnRp= z4=*~ZxWWIcpHKB|Qb&#At=EKf?}C|bE&s)dMaT2 z(Q{lK!Ew=GrrWlR2HSU_zw`uD%_ijL*JD_)Id0pmW3mO0n*5+}>Q2@nNQg1b*Yba2 zkTvM89)+2}!{Z%j7-)r@x%ey+~ts{q0He7h6 z`hqd!U31{AX;Rk6RPq<_VztJpWdAsZzSbA)9~qAA4^jIB{&=j@iC9nx35jrY6DV+O zWL-@Zc}-$Jrt(mOyJ5|V+c^UpGjaPZZ@>yI4%_ty<9`!v(?bq&=p1)1R9+tq*`GS~ zTFyGKo=N@7qA!xuyOi+wJsM1!H#Qefn^zQsZd*lqwXx}ZB+r3{Z?*F62_vM2xdvPq2W)0eUedz30jI#_X`RJ!z9 z(|lk>F!F>OZM8w4X2{c^GdTl~_{3t(^Pw*BcE|=L=oCjrCvQh>S0i>=W~-fpk`ary zV!guC+IN>aV^zbd7Fw5$I!CAc_CBZl1|9Aiq3Ow6F1vot{0ZEHK1aVhc`p=K9k2d6 z>d+lLsry~6Y}y{pROK+6Zkgh%XFu&5onwL-1e~&F*10+F$8a*BK!-G_mXY!;=wLI zU5vuSk$TJbFi9|PVc{v|wNb|kC81U;?c`qyG%Dh@Y5k3!yBr5$;q$T($-QXg%wPml z>dmwOl;=oLo_`f4`Ct6v2owyPieFI@$Tj(9z30{Q)DWrS%x|CBQcspmL|2c4|>ukWW5eok-Wh}nn_ z#%rq+OqO_L$D{DS5`}HfnT$3`OF(<*^Xi@U6gc0*<^*b$YRn6-KchM?u0vplz z{f&r+jk$J;3|TGiCN+(C)FLZWjEP?BOxL?iNmsaH;^J%G^XJLRNO!<68Cqy$kaG`iYHGcjox+f(W8zjo#s1r}>W>x~1Nj6sX!*gE z|C^v;b4H_U09Ukk_3hwS`Y)pXW;FhKnr95;5~C&#j{hl@Q^-N(b@=G)rt(_;Ea-Oo zP`qOyxUrJ?iGqojiw}rvqeBER#pv5%+CI>R$?q(tgk;8Tf;cQFA}}V>)VEYQ1L949 z%$)DAF|00CxG9m?u?`v?ISSc(_VbNNUmiS9Pc$o>c1_ZcB3OvgG1?Fm5cmwtDOMwe z=QK3wXGn7tQtGL1=@v7bY8o167ZGFtqLq(Ny*z@3Vxi?pJjhT7@Z9;q;MFJw z5k+4ILufl(_L>y;9}SOWf-#Ej0Y(nEDw1ys123yExI3)JgG3t#;e*B^2mocW11^xO zQ(boYgQ@N8?96rX@uAKPjay7iOfI2;{JVW7tYY@&AYJq|xRrW75Rv}x$({K9LbLUO zC7EmvfiIP)j)S?yC!yHeU{w0=114Rg$e%u2^|27ox-YK<1#!6{;s!AGjq7vo&4#%o zh4Ir+&rM!A0vn>cv8GZki`P3pl*RN1)drPVfAEV(@k@2Z6(8c`AVj#bC=pMotdmn& zl@{8pDTh;iZ>7W1QF&k~b#v4rEK9(8-~h-&=2;P|8Mhyk8MOsvNOt8COz4LBTxyXu#&t9S919>+8pb6Fsl<;E@2L z`dqa^w!YQ2w-*-F?xsiY-da>b?=)$L#CWxoOFoR=HvA@|8Rk|B(jO)a!Ha(L+4c?0 zJM{xs{5dCa1+!Fz^$%tL*TLpvqHV>%if9zQ10JoXG)(_}k6V8yk?CbrY~>(#PX5}J zU_^{?zZSh*=}ik>DPUU(#NV-mm>ck^(ZPg7Jirx3wafZCaOcC;-A@ptwae3U&^~}a z+`;t!pZN$Fpt3%qaVLrz8X$Y~CaYGPvX56bX2&}D4x)2KZ<}m)Fgl3 zHUUQfj{e&>kMJ06Tsg4OB-;h=p~>hLJ~43?P#e!(C63xg?Dq+Ca&Ux+EWw?fe_+xZ zA(w)wO*Gs^adB~Va6jG{pWj$N;3)8#Hhv#^<$QoI=Meq#`@gjSh_5=E{{X%(NGdaN zW8j%+&@x)t;bLj=58v0699o~PV@XmjMKyo0Vh4y_kdVZvPY#y_D%@~Ml($4YC4(P# z7hpt)s+RhK{-!wW8hE6%z5DV1SXha-Ak&%Gf0XLg2BiN^nSU-l{UuZ5L3peon1$a+ zLNync;lL2{iE_0RoQ3P+xEx|EF=H$2d2hd^wG20i;2=s2`v3Xrk--1-&|AdlReIVS z{*eb>fDH(wXtZw)omeopHXATM+aL#tQm5w*itlZ?p74v+!WJ4JOVB$+;TDc_@R1H0 zH6>=)%K06b#)q}wQ9rO0X{ivuaVIh0?#FCBrc7K8O2cVd5o2O#Zz(ov3JS!}kzILk zmw~wT(per4jzFKyR7=0n()zSMt=mC%4sg5R9G2#nMW`F}2NiFmYN%kWuyP^7rXZ(M z9{GPfWVU{Z>Q2hQdkt0}1ninmgSoNEr~K2GbtFwUN#y_MDGIdIc;JOXn|x|R`XL@p zJt3V{E5lQX@2pKkE*^CYi(Y7mJbt|B!Y=nLlyGb|cPIN+<{z{>cUPG1d7jPo;aZW_ z;)9rItF+o9nRP~nG(M~4-bxNm0?wzhxtJZ7d^FE}Mqhqp%Oa!Gt2$^4a#tF5KuDtB zM6a}o3^7<)+aWo+!nDn{N5wkAU9mh5GMHJyyP{rRCk} z2Opq2YUA<<8U4VBh#20Jasd4Ok=a>QVaGY0H8l|)Wdx%7EYTKHYS#O?V}KN9inqWg z#Sfl*69B?H3a2@*5(c=zd}N#W(eK08>sYH6tmY5;$IU#P#%H5%Znq2EuF$Te^JQ*n zwuy}#ageG)cTCiIV9W%N(TEzt{R5!T+o6$><2xpf>7ZCDue$eH(rcV0G2$&GA-fV( z1I^|(LLbAsBoP_Gen=%`68Df5efpA~Mf-G7`W)B>e*Ec34R(@dfD!Va@Nprk?8KUP zdNv{=jV^?Rg#w%>#IMV|9BVc}4iFE{_Ln4K<|D$|1CZtg!Fkp8h(+u9{HI*_8WQ$3Ioyh(^xK&sI8xSiTGQ#(gZ zQ&lx`@5J|D5We=K6RM3jJw09U0FjRm8t#alb3rdw53jT5Wd;#Jcwk=wZZc-RFz`eMI&0RnD`w$d?*#yIE> zT<}AK3Uxb1DSXK^6N2P?f_0X3vli@Z3aly;8U$$0ung;+hux_XLhe`J0igkGHj)T0 zdfZ_mLCxwU`psq!K2>5(NkN{y_Ac%R;*2jSF*9y7xe`wTEf|ucg3v__jEur&$d1j{ zm$$TW>jDGK%*77&O>U^3(*Le1Y+x|h)4smGgARH}4P#@*-T4dYfnWmtLW3-q-BQcq zFW?*_l(jdU$X9!S@(FRhqt~wV^`PK4j_`PCP7l%6n?cUkc)_xSp>Sl-w^esY?fRIX z4gB#SfV>)f2%}M1)!_w@_exfw%LXY3shYFP4ecZ9-SDUS%cJRX&z(8(=B1e$*LByZ zt7nyV-;}*wt}foh?!C*9_5e0tmnt=O zDg8be@imA7-^x%105Fdhv$omTT8CQAafLi3ZoL?&YOlZ&Sgk12e*|-YUobl&agoxa zQCD}aq|u(lf1yWZ?p1?m3u3W{8oJ?Z8BE+RPrYp9V`hwN-XBcz)Z}mX%F?fcpX&+! zv!r~t`=8@6osfn4{Fg6OV$O^2l#N^SltoM*t}HJz)Nc-g)d$!sYy)Wm^l#?sJ}%Wq znGE%F0LZ@8MF^GkFXd(`VSO3D@KygGfza1ex&P{Rz9tRzcrhdj6=I5JO+s{IXjR^D z4#wP)i}}~w`DC56IfzwgYI<7N&qMP1`lM4T8*o~IKYDTF85bW4g;@b~eAW$|4%cF0p;C1%Gn}piRLY_Qi z|GpIckEMh!u557AIlJ|=Yp*&A!zT4_x1x3UuJwwHxe(;H*jE#s=tCqBpwJkV zVKR;bOtqJY%^Q0tP@=BLOR)ScwX@S1r1ydUHCQbDz7f*497xUr+9$Hh_DH1XuXF2puq*afczu=7P+5(?a1AYx ztqsux3yn{s2_Omn7&Dzz@u1fi+$o7HhwLoz3;Ecl^C&@*Bmh zsNpfEpdHMhQS5K9|@ZBUb)!E9Y&w6^^@o z!^@R~`J^nU8!S1eUzK^y=bV9M7R z|6{LY+g<_tWY2%=roij-2M&T}trPzlxk8*!n)C2_DK`r21a&`rx%LC==G9-{1i1RT z0sr?s;b<-B|7SQKABxiJ@HVIJWng8+BvC}V(LQmT@A+We-ctzl+x`_d$ig&)9(phn8zpG5P$(Ut!&b z97q52>EWiBkS4Zb0iVLbg|lKaslaLi_+#{8oZ#OLtJKPcAGg-!19!Ma3{bX-!jS`x z-`-Qvb;7Je(mJN8=qZ&?Ir+G}w36aJMuig>7#vtEo!x4lF=gP*fzh1Av8FRqDwH}O z9iBK1-FZNPmEj}Ez@Ye%YAT_lnU%Vt!3%>kUaVpK9;aC12_oO=!DX8XgfwIt_}K;P zB+g=eZZ_wq!_$<2{+fOuP2H$C)9P$BTSPpbp!};~qrx~Q$b6#lG36SCHisY^(KsV~ zsaRNS;7Ca3YX-xX;5;BueS;_Z?>E7oD_E#DtPAfi&nlGT50?9+Sj_*c-MO=gXdZuA zMEQJJD8T#B>1<}qs7Hp*;2%y}>ou77e|@C*pK)gqs*@b;)<{y>oE;@Z!RXQ>6F|vjC|QQESLKv&{H;9`s%vF$)gcg13hjA z@l*vw5o7M(i}kRCk&)sLm5;vLhhUt&maF0=HQZ>NZTQFZ21chGIEB5S{%gcuIhoc=|zuzNFmAV6GfG+lAuXJeb2WQ2PF6vS`O#{DGm z-tzhdSCIi-N#s7_NkS2XUhEBTnWWtX;YfA>9t)LYYIC_TuKU#-gF-YitW#6ob0k&m zV-*j1$EAf*6*VQ*Q>w#+;i8@3coH$UjBim!_Suw57VXV#Z~f}6eR$sgcxs}e=q8Uq zSA2;~iDbl@V+fgIyEVwg;OtURqizhB*y7;j|8OGWuuyA-10`A)S&LzB+OU(y-V;o} zeQDL8|0;uVB~9uUS!~#O;2}=;dLt+Cjwp*2@8b~0h3cKJj$rM$PrjlwRoQ6fbu{Zj zQ`o6d#})#8-t_g;>oCmQH%WK$DP6n7_|C(zVbRRWbljgXBA|%G>XM)(=7LD+bhiidstcCi-Qk3_rRQWfc7vH*MIDbZUpPgMj0;pz% zU0)1bZw@XP4lD#c3PGY6?%UU5x@LuR;`>ENgfUbHb`|?UG#%-#iwL6|-$y`+gFo1V|6R$H4hcEc0v_L9aj z|ClHv$8@p}oa4I)ggHqThFxD$jNZ*RDzWEoH%ghe-4o|bT75up6AP>!;%i++Wj<8+&aeG5M%*Xym5S@HWYM0`NhRKD=GfT=@}W; zTT>PJR)y^^o$21ZnC(9kyCu#xBG`&A-4a47nX+49X{D6FH{tc*>Y%3t%Y&KDg61cu zAllc@wN`Hy;gTPTEb2`cta;KCCNb<>CiCIYJ%@XK!lU)XC_KT?Z)Zaf(nhfp%6ivl zQVSwJq-j-5(wsr9sBP+fV97F*(BQ)TabqT~nH85)_E{TUKr9Jj&)WJkxm4m+2rGU0 zn;-#n7u@EHvvjx(;+Sp}u?Yk|Fy#-2$zV=Z%za9@Lp*3KQTohJC~^jprI?3wa#)g5 zPJKbr{OS8x5lx8Qer%YJc3V&i6DVZQc|ggnWlC7MQ?v*l9%M;}>+puSbwIRBEL+v;Vb& zA_kI9-qpEfO&FDA`YXWESIFY$b27%|i)1kP1Q*jp?7oc+^QI5(H5E0^*zWV>Rms>= z=(cgc*+%c*Y@?sjfRWpOphT>+WN+T}1=YN6RYqD`AV{26Z6U-lpFX9#MA)wN5Wv_P zI4Wpg8Xxv58Z=gy;dwG+k^UuVJ1H)7#K#d1&BIe{Vih)w(U;1hH6SJ(dP=izY4aWH zn&g?OCuiZ}g7JXjDt~7A;-T;CFDxikkF?3LSZ4Wp@Nlp=yjl{ zj7SabOTZ_UsWL z^mHI7f0O50ywf}TOOdSUYGvKs zop#kovr|L=yiK808f{q%9=nS}mSbBAvHCT_76`|8ke?k#cd5PCBb8qcd-`ap19&q$ z&B(SFg(I-}(I`hz>>vwK<{k@JVkah$a!9qiwKqp?=})!*CJs}t(0~%!{sZ{6=4E9C z-)KTrHC+~B(lecQ!6|;D%0s|_By(=g#GuxV6MCCfSCusCh?|Qm-MG#}^;~WH>P8hN zt%d|f(~4a15`MdZdh}r|(d!5OBXfvJj?WcMyOb@VtVHT7`2*)I;u6x>b-vq*jZPPY zEtUq8q2QIeA*hj|E<=(;>7Cpqvppww^1N&%J@xyf@bf zo;A*T`Mm*+;TJZ@z+EuYkVibTT<1V>=Zv1uPKsszACv`v)`OB*rKC z?Ad$E0dos`F0W|DPta55mmE}UOaM!z)$cEPlP913=R6siaCC6+8~6-mrs7fO`mUyh zJ|5pHnFZ3#hJx91)0oKK3S+m*QaQ?tS4-%l`E3c!I$g#Mux4E#q>y2GcNghzq~Plm^AGXGw&JfC`o(}xk){sm zzy;OF*TwR83^m=Fj51xGOt?E*js3ed?}jB^8gQ>Z#_hWEW08Lp4XcfaAW9>PgpAUo z1_M{4F7*>ubu1FZzC7G|{`O2hBYv1zjNSr_uJRFtFq%Z?g`mccp(!T1LH|NLBkKZBYCmx1RXBZzXn z#ue}HXl1%iEHBW>=U%>80VtyXriDFR!s(4J4c)nc)~#=DW|o&fewm?Cf{dDkJ{zmeZ0RJ)I}^!^g!=p;B)vr$qgB7B_5cTD8aj`_pOd>fs z4`M!yMAm=Ec=+084uZsO{+hzrpin5$7DL4(lQIcP@EEyu@n7Xko?zo8!u5v-{ero} zx|4UzLrc|G%31mMxeC9vufy9VHB6`XHzfqjUX(6s__=fRT7lCiFFSAELSrJl+wwtm zfDH!bMDa|p;_8kiAg7{bKK`+X7dVHh_Cux1TZyL|8?h)?dlM`uMb8< zIh2tyd?WbF3+q0;KwAO)G86rz{@BpOw}hl;jT{@ipiI`PmE(ZC(j2TI!Q?%B7=Ph-hw z6$i;%y6#F!uuG)OSBGf9uOAspx6DyBhw|1l$@h`=o2KA~#Rq$--C7NbIPRxlT;oL3 zC>rpno$hYdEmPbg(|$W;P^X`%E!W8`i1iKuxOyU7D?I3uBR59D9+AkG=vHPgD_^SF zAk2COPKs6Fyl{a5ec{Q~8kr$V^Jh}1$o62p#!H^xJzos2K4+YpOg$qCk3>m+r_`(z z-l&WH{MJ5Yu6`w^AhEKN%IQbL_>T?-sT6K}QK4<(4_6XuJiv2^g?{TgO{+dH_{Dq zcYW&-3K%Rpi@K{m;@ zmzlY%0Ln2!UEkpxFy5{02WB96=E@SN<^<}EHQat2#_BO=70ihNMR{`}X~lb~aQtxB z+!G?Bi_KzxA3t+ediu-!7bDQl%O?V7d2gM+ldMoBtGq|MnIwHqZN7zd$FffwHTXd( zhA@obWOSFyAf6U3ZYKY*RWLr%1rx?b871dNH=ejiXEqz4G1K}enT92^dDww$gb-!} zG_^}>kn7@SYYW7p2hnx>oS2$&KE)JW;JSfqoznp=JzJ*}2|X0*E_Q$S^Ibn7nik(X zQsU3)vB-*?4;Y$l>HEE(cSj%ajTk6}-g#fQ)_3^>&mW*X3KC74`gKt)Yb+ZYcx!;N zzAA6cz4a_v*;|h%eKd?2tXmJ=`0V9CtW@d~2I%>xWCklh2Y!{}cM!1mK`?)bD*(JF zt?K6!0Jz~g2;Zd`3JLugXPbhMfneB>^Y(A}uxB zn%K`&mPBvBAwz*WZDFes9i;2_UE;5>qpuSU4 z6bKN0o&)WfqGF3;^|m#uo^t09*fU4gbXM#^6Y{VQ{H$k2$JHkeB?+xd!1yn>|95$9 zmOe&Q+K*|jc3qW$ROR-;pbhH>KvhXQ-HLqO+etp;vSLIVr@Xb^dwlmP8y$ zmL^j%I#!Yce~5o}uyP~Pq+@kM*_2^2s0f(n(wJNfE^ITxKP|RW!Z_uyDQd@Ozem%6 zWc?~Eqe=?2_VqOK}H>wP@bp%)HRpJAbeltpD1T}qQ& z^!^d1HSpHCiFWg_tCavHE zv22;ewSyxng7#P=;S~27TF6P6qu+K#xj{$?A@+~HSX&=8x7GGxAB{`F)GE;1#qEBz zX}Vg!Ui|^xmeH;xqG>Ff5`ivpcB7;BpKB1Zesw{{g6r`>HTd}OTqkM=;Lf#l{V||& zCy|dcDtoLmHGU~DA`2C|35xdJ***dV|5Gejhg16BczR)s_tSPmV(te>4GR?}mZ>w2 zyL8cZxuH~{BU;--&v)wwS{wt%mtvmym<)qR`>P>FZ%ovgJTI2k%PI1!JxX#eZWBwZd8l5njbjT6ca&p((-%Vxofwh#pspj`aS0qQk zO>@`MKgZgGLJn zCt2V9+VN%Yr|)LnpLiU5r~BPP%I?TgVRM*aTctggCbWnflA*rV;yBQj{80J*i)N}t z>>%V88NpqW$=+{j^@|Omu=4xjr`L`8HDej@0qzE`!^UFhlNGkTy5t)T?ittqof%h( zHB+?);;br`Wy0X!a=ldO0F%tX)4`zWn8l@lI;(GqE4`N0%RTdRY@vTTW^obN@!2?N z>10Ud?89dB^piukt*^er?SvOFf&no)Q)2X^X7d6M-oj|RjiK$?;CvP5tJYe-x^e#9 zN(`u88|xj%pG}>-zRH15=4-vnY=851Q*&30DiCfM2fuyTVI$DY`sNieI&82Vf~1kr zIva!_7l}V$K!bBCZa$nFw_gOn{goFJC-cKbuIpVtvuKIOPG$T`VqGCpzTcxS)Cc^Q zVCg=eJeo6fqtpqAi!~Qsx*VJ4z6~4ac>A4g@xzBB_VHs}#2@9F#T4N$7)TE-Dxs=^ zYWM5(qDc)ewaZt+1(mYyoIS3%umk)eV+i(|W_v~*;YL7_86y2M@PyK%BZK^Q=~^bAU|GFxA) z@MgOrL;g6W_&{%egUgrCHCe*28S4#>RoU6MONW$oWc}Juuw*ci%q?8R!E$^#1PY^U z_jD%NA(I-j`99}+sI?W()9b~qIiH-h^ce%XM30uHx@*WZ@6sh`H9plEqFnVX74Grn z?H0NueR;B%Z%AW%(Cc{iysGwcXgtT3{ci%V!@-7>45|4KT2wSF9~bd+^<@D312gBP zRRDY!w*!J~9iF=R5Ha<9)SMx8-;-;~H`2r7;$&f~NcOZj?pLmh>jsw(h5dEL=O#X& zRD$HN%w$A2-+jNJCV8DW4FKR?5PAG1sz8{llU6cEVYHrq2} zT~a%-)L8}gnd!$4g!K73+}WOS>izHN((VwWX_^A?Y`crv4B$tV)jZ0CUfGx#9}C=L zv!1(VfJ^Bx8H_%nlcE51Eev<*TJZ zk+Ui(OVOb;>jU|kGtlKi;Nx-sI3p2yRpkkh3k&>ur(1%{$7_T~$8T0ZrzzumrhnjQ zqvg@%D`3S2)r?XC#@J=IiRai>=9ZM-llerGcnbAJ%ki7`L6AP0rRZ_KW>$en zz^wZf8x(1L+rs5Y;I;gq_Gk0L=H3cr{~spBoj8wUxN*jx_ARS?dFpD3uVY0KhBQk5 z+ddez{T2%v7~iQ&)9^%^$R#8RnnRHF99A|p-eu70C0^_y-5gX7J=icjwmZVOwW(Nl z^?h>AI{6`4Hw5{}prLpl=V^>GDJHh8=T(WN}ouW$a7lY0c6r*2UOSdMV`zOkKL_{CCszM z)nCvb)^`}(#25MhSA2PR|GkS;I>T@i;$@uSkRkzRx9nJt$ zr+%WqcoOSJ+keiO9VKIP*JEh5ZXw{+^PC~fFSTVW>h6bLjN$W>Hz78J<=ks*U}dIZ z>b~bnt*=9shoi}xDWa6OUy>B$Ds)3#cA`bbAjntw^eFO-2=Ms6%{<7!fVR`qV8IB~ zZErr7d}do9NE7ACUPM~z1|z1pPug9A6oVk2gwGjgQwY0&0dyOS2{Ft zUNjdAPTb#=>^a$U4CB;Q@DPulL?4WlF~|EACH4d`3dHyogd9E?3nxZ6d4CyM8O@n> zq1zT2`RmbRjfE0}54?E~8MBa#%(RKnInE^7SeGpFlUi|Io^LQ~dPoLSx%3*`!}ZLI z!rKhM1@RPDp9#D@Ix(tly_VxAt;-Y-rDlc}OuWr9>SWEkc&7#@h|n}C0i9G^>yQJ4 ztPoZ$xsL>#KTlSCEo6x3CVz5V+>V+}GcdBPWb&wjRgaD@yj=NvUnRTFrF$?9;;`Ul z?JIbbCqZoeuX&R6{(A=dPi?E-T)0&xHKk7)(0_ZWPs4onl1VFQf&Uyl#!|73gmftO zyT+N2%a~NgV-YE@7X=AfbkI27q`$mzayF$zrwa~Wg_~J>DA)WP1K@vmIVn&w2W+;Q z1EvGsjaU;eIy*GCq%%9zT)nGo2Tc>!nITMMqqkoCPG!m7&(S?euZf6#YxPA^eXPGU za7qaRU3jy~UdMIo(Zt=~8HTC2f(jBF@W9>E8X35b@lW0Otdx`8BhNcZZ2>qTn-%;s`W z&b1IMEd7NCd*z?y#$+7;-#Y;j_rE^7P-RRHyO?2|W~`v#!nL^WHQA9(UeT8!Q#aSh z+9LqaMY$9uG7gtJb5#mBNb!ogjG0-tQ(4p1YI(KMg~#AEl51E@wgs`kiy9LhFt;_; zGRU}^pBz4D4 zvYPVa%zd)T)Z*SUTV`-9UQD%Mla&QxzCx(z@j629kMl zG%T&>9M@+5CGi|x6PU$O-d9pB{sEqJCFm0@*h@E%Zxlbq_&sjUKwy~%z!$9TZ$1)> z#c5E3cNA0t$Hm9D4yT8oY`D&TE7KWBZQat_eLZAP^nV`VJ1ET@9g(DPh9>VNKTqUP zCxd3urGBz-XOcwKSP;{oAMqgoy~<@xbTNV_`1KSiHTp%UY(#j(owORY=+)|m?T#ZdKCaqeZ6B#hk(IfoZZ%FI_k(h^ zRoKGf^UVGbVdb{Ox?frn5=rnb!APvdxNz2GMR@Goz}Wn5MJxuidj`DMA9z6=!v8dc z#6?gzz92$#zzT`MN94YH=q?EYC4V>l$YXS?`fxC5?xayslmDUS!ibt^LS=4LAO^I? znV!71jKa5m=|zJ0*w|VvWu#7*5FF=kK}?3<@OFkIU9HA3OFC)j%9t-tqlS~vF|B<7 z-sDJvf!J&xa?^=a!uvP;k%?!=15XF@t&&77T*Rw3o;49Rk@)Ettz7N3m=5L7U7q&J zN#)uvj@U*Ey0eHW(ai35#A%f#-^n#)W%O?8bHzj|Z?*Ny5+FaN69fc#N3FmtGU&Fj(+Xwp>C0EXYV!NpD$F+L3la-AoA3@*F{wq;u*|H z4&v8B4oZeM?I^2Ea;?^JN7wzY9_Ujp!ho&(Vlf)?ypg4@8!#^Bsi&4c3sLJ zrk}CHc-}HOHQly32WouAq#>sm4Cptw8Akx#3p|`EPj1HH*P^>Aqw%H2kWQJc?Nt2J zTYUnF^^`7{`h+EgyeWTLh;1A-d=jS^F1D|+U94=5zWJMjP^NpeyF6u<$HL~P--|8k zW?+p!@k>geTB{;`#7SPcSBW8cmIgVbXmR)3mW=euQMTK2auj>j#MzyLBsuL^$i zT`WX7hlov%M~d(99FIdpfXzB_l4MnfY5~_4>*vtcCR_v!ijTtYRwvl7wkbDUl$TO` z{PZm~yj>uFhMqTmXPry=eCsXI3i69S7VHze2lR=?AQ6(^%VGl0_*^p$N)ur~4?gHt zHb|Ce(W|#po#n$9`;c~?^hb{iUi{_Uc2_PaF6Sptd%qks!e^af;Hv1w4@DO1kvYikXrAftZ-nDGAkMFG%@xI9pajiv{SRYe|xE_ zX|>tB@$4N*%e*ZE;2v(uZJHo3KykoSh$~k@*IgjqP|S$Ff*sq%t(#AshlC*N^C#>pXn>T*-oj1k1j?rs2 z|MWHXaM>{Yi)9X8@Vcp|S%x^=y4R^R^2=)w1|TpoY$sS2$C+b{H!s^>5;tUqH z@r28{*SPE^+XTR&G`~P#V2RRe4hqKzej(zSY)QR9zTzyC$0Mb@2J1`K*a?2jKe ze7#h^A@PsgMgEj98#8pSO#S7)T!aO(=X5PZt9%}qtmyq#1)kB*e-a9fakX`rle{$K zT~>y2TS^gnk%<|`4sqc_D^nd@C`~RnA4A>Qw}x#8g6=_BKZrfu!zGsa!6dyhW(S2UzqeBZ0)4XmU1Su0-TZ&yr(9d zV9h6A{mTG&?LNf+=X8mWP!e`CBoXTEl3dj*o?Xgdf2f&OMV#ui*s0{D2R7c+tUzKC>~AxAV8EPI3kCh z+H17zRfr=+SUfSdIJU5W2DNFi3?fx?^F~ly|W!H!k3o0a*9g% z?Jg1;&!C$RmsWjiu(kd*-)Bnu)qx&9C9j8M|C@NI}Kq6cX$Po92DdnA)3wO)*teGZi{F1I?WX}2bY5d zqp}wM1Kqk{=&x08+0&+cGz?Q`zwm)WGp;{*0g`Pta1;oGj9uxf6sY;`GPCz`I;3SxoR{Cs35j%vWzkm2lXUF7CKLZou(<6JA8he=mzGibfEa;}+G;8NBDbvih z(6;FMUyhf482#qmC--V3bzTeHOytt`h&q7~@^AJMTcq;9bM~Yc#fUiBznO`za@KT4 zi3tOJgJ#De$QF*6*&Pss;W=iE76F|lUHavp!74HXLs!lm6ghwtzMsN#H;3~ALJWB_V$5-;v_D_90P3? zYku;63qB*fJ+sO>qMy&P$YfO8l@ow<(3K5p6XMt*=U>k-VXM80Sy5g_7w4%%5+(HM zsLS{H;$m>N$_I@G#7Gl^cb?{=S(Lu74D5Ag<94JbozOzcDr?V;wgghqA+pA!bj9((c8A7`iM^YGBsyY-4j(=7Fj=80 zP3?ZgPbJ6T?O6@OZ9OYbtp*!pEMYzLJ1vTjCb;x`7J}Sdef&K`V+2V!X=}T2Fr6IY z{(~hM_Phg|1e4+CQW`B7;A!5>?*7jJuj39%hGGYocFaz7K9!>#SE16xf6T7R=XHfv z4^H^H4Q3a5GL-N6$UM*q6)fQS5qUCyATnyJ~($q#$;#?cZFVHwZ~`T1m0 zeS#F*s+?1+q^wNbLOpJFNkhp8Iiw)LnQDGHXCCfhr$3eL5PD~l{sNN?(H^a^I|-S_ zut$Yu9oG9V$PMUAD#)*8{(qExbySq^*7giTNs59r1Bir3Nq2*Qk`mH5ARyh{64IrJ zbO}gH_W%+~cf%kx^w168gXee7`+k3XXRXgaSh8HmbKkR{YwvySy|4Xox10)Ru(v`r zyIvyvDOJ_V0{&y&zVh`83UazzNrb<<8onr#D>At`&Q8;7u0 zbc||@`~$#&d)EM9_}5@F`E#MuMaYVb(&;6>r`ntnOM7>$SXSzmOg-TQfZ&l*8|OYe z5SrZl_NhhB^3KT(cf_7F@kH~!ZxJ~o56+s`i} zrQ*wSQFBia%LOae^?|&b`HA&{Bf;N$na-N4;R^jcoyP_#}N81`2z4*R5o6Z+E7Au_W#>LP+o%yY{P?(NB-v%Yk^xm{@Ue zFNYij`Z8NG|3ciLa#XbCIQG3ws(lf|9*4S*{~_r_BfB8j)vC7p-Ofc%9yww->3t8s z@WL_IE96`?zem3#D86D=*-{Jqyz}arNOpyd>oOXfgWIA>_wNo-lx>l z2y@LwA9>*?(ldwg)9=zpXdw4hm%rx^Orp|%{3!lO^25SI{S_y(mwuzmX#``+X*JGk z+kIMW76D3L%)?E_Mocg*v1Ck$F93#36$Iu02g0*tuvxgd6RRAgP9Un35zIF7p23qP)H?6^%%Dz*h?Du0p^vd`6zALK#Q<{bCBY z;%X%pd)*6Y>?;2<2Fjl*hSg`tVC%GgTxG|FL)@;k(RqWX_BBC04?n=mKSB%_QhNy# z@-!}rG*5~)t;TM;q}orWa*d`HeKq5L&(uf|&_Eo-2Zxwuf{P z_Q@3l?mWMyQIU}ew_fjSt=?}qRwgzc<^66``u>4s)o069<`<9(CQ{Tl^8*HL3&TgL z`ZvuoGA&T6>^a5YoMj>pS9`ym3ScC%NApN306@p^J@>G27}GtrA?wYtV7h9+fP7Wa z@_tF^ytOQQx@g&i0o_7wfqU|ZD$&jqWB#}@L_}m6hz4-5=>w~)m)(^Cwp-rs2Vm$K zj3kO)b#IkRiqsOF3g6TJq`a89o>|%#Kecf7C_Q<#%Iih<<^58 z_&jc2Q{tfzk=5DfgfvrYHBbv80rlmDZ@hWBZ7fg11(adj0Jwr^Ruh!w(`Kgk4|!+j zb;0YT&yv@`wIq&L?SAuUnfnLBY?fB?rpJ2e(~PPHUO5 zw$SbBQgc#=MyqYy{soj2S8jJPE6*b^;pU&%(X)MO`8gjTY`vU-+AEo>sF@6Uo@TG& z+r~$JbAMe5kQgFyCvE`iJXJ=FuhOgLc{$S@uCskqNM8D=y!mx!=N5*yj2qP*o*n`i zszfOE*WwO8EuiO<(%$!kv9nRamt)uVxD^%L4m)Oj3~zg@KI=1fA3DoUXq%c5$y_Yly{zV@z?-^GdV=$Tb<31eCts8-FW6#{#ZhWNs$Jw z-c_!yjX5^+1m|8le$(whu8ns0top)KGP;DeJu9=$fw?y z!}%^VZvXF@afE;OQVsiQapHm3Yis)mLnfA6Wam>p_nY=YTV)$rtyxDP!V?Pxj;hpA zf$jcbfm+ibl?mPRO4oAv1Zv~vw8c6fq1|WS`%bHu`RNA46F`xI&o`69fRFClET<>V zP>o`I|GPMe+qFe~iFS)aPY76V(}Gt>mJOI1GjA#oJaCAf0ZgyoS7KaLCQ1~{y4d1Y zIa^gWt!e4j9Yxyb){Abatc6gV0f?p?D2kTk55c%sgVVKdt%qHNf6cmgn)nFa01=7^ z_;d5u$UtIEyp+d>_rP7orz#U@B0k7DxAuB_Ku+qJn52j2MpN92Gpx zDA-fFD&74(a?h9Pwa5^QXGT`b9i8*`zu%jZKNd@IwD@VNTgyVNWozSQ^0gShAj>NN zKvI8(9lmttfj@p|_Tv_C3x>K;X7C_GwC8_PFP4I4=fD9p+!)VVcH7Ux%gaV~zkg(s zl>3Jo8zFEvj$9_g*se3Me8E?sHTo=%-t+wT8yWu(Sif5;~@XX?!-?n1H{I z=IZ!kxxKTk6h39&q43rX?z3wu7&gfCq&eLDfvdA|dlY;LbR`VqyMw;k&AIi7mTzS0 zmAK@}9pelb>8u-8IM#&ot87+=kO38~Zu=(+y5Ja#)}grc$tGrvr>g3cwx4ZVHCZqT z3x+%zN2cgAhReR;oPEg=vg}zsKPIs)eIM{jjrzX&Td?PSt9I6tn442J1*V7v;Tz!G z0C855GaHg z))-v=;3d&12A%Qlu~7w^PRsyx^i!5nDNok_xx;Oe@)}oC;fRw47}^~3)64kEca5Ej z&C*N#FV#ZsnnOf@yBi5o`5OdtfeF``EjM@7e_oeZxz<@K<~VMQSnlST4^XHh6mJbz zZYd!mavX@^C+52sqTO@NioedkxMF|)^toV7qq)&pp;=}AVHqXtuHxG9i8cp}%8cnj zOlz>BzfWx73!u89w%I#q6hBco6&jn{h_-OENpY1IExToWm5S7mhdh|jPP!oeFsg}V z`gK7=1)tKNg0`>l9*FME1HjFjN|FD!GMY&hgofGd$Ye5(&#n$(ElMk0|59zWDADUQ zwM&=ZNO88XqKYwSc zOjnCFlN|oY&hB%0YQ*W6lc%Zmx!zH>G%EiyK#hgz!=t-3U!SN67S=%DJ47kMsukfU z7`R(LGr_9*+?Gu`+%t)Mp;BonE8D;G*i=2!6vFN2N>ld?6i@A?qARm%6!SLU6u-@E zbjEj;U7b-DTCeWN+d3Ptg&;2d4v%1OQ zA|%BrNkpVBzCTuU>MV_B&ueC@Qfz5b(be(g(_|#0m0J&S zUR8-2&a+LQ*GTS-d*;k%<&qoa-;aIc;W2Fh#QY)#f@+dF{3a5v^x&Gj%aHSadv*%oMY`0mw_7cuvGoB{bLEN$#>N%kX0$iY0Y zvS#gRY_1gIKn^^Z94G|(Hp^oajU$npPSGd^dZ9ZLbLp((TNHM~LW)o;qlU7sjn%Dw z-{V&)EdSn{c%wKg$_M~Rfp*5tQ@NLScj&PMbT<5#{v0`Ogk(VXg1z9;r`H78xdn3q zHo&K&MD#yU@e8QH3yg-*+>C29&Qt8H3E3CV8x%@>#(gwipNBtw4Ru7nOFWN2G)z?? z_doj9s^?Wii!`2oNi8=M+u1Se{npq;&bv!I4(`iM`4{5K_US-GhVqqPC?C4%H;7Ay zHMvrW@0tNEp8YoSo@EB}U%gEAGC@LxWm7v`tt}(Byzlu1girr8iUB3yHG%(H0*>T^ zOP_>yWGM>8)7 z2QtHKX2NRc^E8?mYrz!_xz|=+!i^$YY{_eDJwt`;X|Z4UvXkC#c$l-4$gy9OJ|oV_OC%fJ16Bs!u^1My&-0_$2LFkh64kSvb@-?G`3EI%*Ttc*{{TL3pDD8K7#n$>Sj%!~{Vf9m1+o5A;xNuN0ugJ~2D2x+lF@+qzw)lYrccqN2La;2zS zwF0Jy#pP>~SaBh3AIFSSNYRgk&K>sWlFEaJNDnJ4({!Y^lLfu`rAi#_+7Uz;#7 z;637cPx1fi9RtuM0ByYRDyw9s)8WOrG<3mxNVH-(>>#7Ij$(DP)!0ELt4%OhsE3{d zX?z5P&73&+H;sUq@=yRoAX0F+eilRd=4#(S?CXP|^YZJ6H{%y* z{IL6`bx=NYP`e>LB59)WFfZn13G;E>x&R|UQlu-4J5H%Py`Q~#6!VfN+y4A$ z=2xkL3!j^Xm@N@U99pex=TM^=M(wM6}wbv2h%{HW>jr1I{Gk z@#OS;okbuyMOVE0LchNB2*^+a!rmAH$9{H?H?ji=6)^Y1y*DjDBC1@|^o^E&m0tS8 z&BU_bdRQBUD1chPK_321wU!*NvAh^DJ%GT2VRs(Uz6p(nEXQAiyZ)w}X zC07!TM3e8>K7cvrYyV#2R5)}k-^6V`dUhfVL<5*83oVKdOl~v|t#2A9Z8Q_z@*Kr7 z#LUAR-+Bb4Jnl$t|02Cg0U*Z!&HsiEG#ZgtMf8DgEK;}KR<7>y6 z@2`Qbmu3LG2&c#Q!~CPWYiJz3VyZ5weUsR%?AQCsTq0I<%<$TnJ z6n0bW7He>C5;hNOhCmxcKW+Z0f9Y4KaLUYF<&VAEB14S?P%Pl|*feKY)tBBbX9%_q z^lSIWcm~)$@%XXtv?I;F4v@*X<00K0tABp(<~f@H^>#H8c#y;(3{6PtBJS8Ly1@oZ zmw1PNx+J!uNj>`MfvAesnAu&1+HzNa`Hz+JAOiGh)o&GcwtXymC2N({mWoM~av|xm zbo#$AsotNDK`u42ZUIQi1@ensT#Q{e+&K`#VsSOB_eLvk+IwJJ^V3DuSMx9ltvr?@^50EMLAm@Wn3Pc>ncuWye30OoR?0r@q&V0PW zUQ}G{yku9d1Q11>yw&I^ z>;6i;A;>$oAVN%og z<&cyN1E?N$bbRUtt!T1uMyYeiAu(#C0K~H5TOCMULHEK+K;f`KMncisR(_A`!5%;w z2W~!d26mR%i{G9P&ad^ST>o*oIbUxCWJIU-g>-^EqOFK5tVSPYiLCsf-1a@c@Htpf zZ>_7XiQbm_T6TlyN(~Xg%u&7Z1(I05sy^o@5RvCd;CsIMG?rHoXkElW!BqvHbyMi+@+%HcZ`an=oHbB0b7&AxJJcN9WU%L$ zRXE-*-+uzN$jUwk2*Ge4OpzYIq7Hy=GwBEoo+Ks~wqYW2o>^iag>a!%?Z&F0BCMfj z!=*95TKtg@NQgSiEm7xQpHrkF zD(UZ?NCP`3!s9hk?qQK^$aA`;{Cs>Iz9KA*VRpwN^e1NNz0v)HKT|9eyF?4X>;oW> zZ8<^!o&DFA@jxpR(_`k41~I~?vh;-yYL$$NRgX}X;dAC#Q*WH|FAQ2`ZXY#};GhKD zRU36CN}O8HIyvS}c4kFYqwrc+;+5urbqbd*xc;!&8k=2t@ryX=8;C_>Qc~k&(;Bbs z_;*d3F$9CRg4?`Hl3wMzC}C%0ES9R_$&aLZrvbt4{$%d_MHg@#3AG*c5KO)(iClE@oOQ9Ue#)c7najFV>h5HV*>4`p!l!QL$EkcD_EkObfiXU z4iqEljsb%K5*535>azS=5(r7;8&J}-H-B_8!zOSFd`4D*05V(gq6I)wcNj3m@E7e( zEF<;BJ&y`52i#g7b2j#mPfiNEx@}KYbcp6NPfs@Qy4bGuB`-{oZ!3g@-Hj7fy+0%8 z`Bt|XNV(Oh*k;-sigT1?EgGxysx{)?Y;Ph@hN(nI1x4~TlN!h!J+sF8)Q=XNS-5$_ z5nFbpcoU;p*MPeiLVj`vILqeOKCA#nwMLWVqMd~2eS-N-2VnFg@=f?Q8minpRfWBDuzI5qmL%3s`gNLNT=_nhc{=^Ophx!h1KnH`D_MDN-Pso&|ZR z&)B^8VZUL>@|I+%POERT@Ny*goXe!ax|#dfErdC6Fbq`irt;nS{DRl%u8YREmk#LC z1`eGhzVc_%grX|}C}2;-C7jtm4v=`S2h_%f47_%#Z^WjZn|1u<%b`F@zJjzKW+hq- zT}59lE36)+Rx2N?;M)$fHJYnaT#o98+rsN{zQV~B8!7`_BY=t?s(|v24uVrXKP#IC zKa+&JnDZ}WCBYHE1qBr3EKdD)2Q-cw27ON|cboTo${LZ`5h8W_!5rRgt%gqh zytey)IzQ@BcI4rsuoGXL0*Km43H`S_RD#jFy6w!YiXA2o){QC)_csH=W~W{KD!vB~ zq2st@1E-_;D$pZIN1*MHSPg?y@(4qXOjPmS?Mc;h7K*V&i_r;3D*d^j*P3jOj(okU zZCSxNxXUYKA>sZpC%d-!#Ept3+->XQ7%LX9JyS5A>hNh0EgpaBWP5MzFHhD#2MlK+ z^MF26(JE|!`HPqO%0S-`i#1!-7~wrTwl)0(1u?GDQ!DaMAuj6r7_c19{3`ORB00Cr z6~r_4M_?GokJlfxEe5=<_ikUn)L3$`Xk7|~JMP$tL=M`s$(9q|TCY>v)0Wfb!B=TQ zH zoPSJ<#n7<00n+Fk1#z5PyJKWDNB!SsNCQoANBL6k1l`?PGpXZtVu`2ws2Qz+>>bHu+WuZsvfGecz~8WIeaTlZ_9%oS9$H$cLy*JnxEx3km!#Ml&vWo|O6QST(EL-(H_y+H7v0(C*M>b{n&i!k05s zHHf3;=Evyd&64=_!-{eJ29+e+JjS2e=V%PjE-WM4!}jI+amyZlvT_1COE;b)!2&Pd zJeMb6r>|sI?%E^EBgjb8*@G@rZQmgxU)b(K_z9LHb49{XZA`|iTNIG?a8J}_~ z7Rk-3qU@Jl5_Gx`5N$qzK|z5z3oPvQk^zS$j>Krbsy}1(=lUHJPX!7+R{~^$u!QZ| z|DcS`LCQ|_f=a7X2bOzBH015O<&|sWbsq6tWKzpdJvcw!k_xa<>fial_5=yC9?c6Ap+aLE^(7rpuv+$Gru7@9BweCx}%(s z@ZR^@l;c*K*s#S6m^t#12N3K(k%blBT<*G9!7Ih!kxq zlib$!{mzCqU9g4nbqu$rs#|?{CSe{48cHH0XRyq$d8YYte$N$H_R~NZC>xRx5^gYm z<_BnqsfcY7`khI)77>=iI>Sj?T(R2JGR}T7i4>p!CC9P5)js=HU?w6mUau2tqr)Hx z-BJbG9bgv(Mi{;!B?l=yr~(x0`J%7~+j&!nuAFRE@(aC{I0ExR8LRp#7XnH@oGF|% z7DwSc58P2@l7LOTUOk%pDpppi?zc)Y8J|#p)lrwhFaojz(rAByi(hvHD&|^jn;$hh zVwfEsv}P8v0t)!lWTy!tX%xej0E3o9g+pWBpK5#Me~8%rK#N;W<+&YvukrT2~mHEv?ak32$ zCNLc@TCP?(PGhdlmSZk?AwkIBtYt@PCPBxYvji9B%&=gvlp0sfC&)YaaBe2uk3gN0 z^$hXOK`Y0DOYwdOykz&3%rP|PM`Y<_Su$1+1NzMq38`8hk7xEeTthOYb3NEgm=sIR zLwhCGbI`N(D`xY^M!+4x9tw#DbdkA?{$ zVzZd7r(`?RF^&~o;bO-3$8ffdckx}YWNLUM1|?gip`9l2W0^#r;7)mm@N(|rS0XYL zO$2ayM)O>{N~Y8iSSDx8RmQHxyN#nzh`L!rdVaKC4TMK7$R z%84;77B41hJ=ezv(u92$Tqi<;aY;SRwfR&?yI4kbI?LLoDuQB=dagF^9b>(>>8X9& zQzoyl@qIy4#;3|9^yT?a>1TmCijB?uz-n93hjPz_BOEP7IJ`rxgXHRa_%8adY>(qU zPWQ&09TI5op7RifyE8m_>1_Sylzf}pC*YC4ZatqVp>W-obTJ&GjL_^9^}=xul?^0ct&2)?ffFjQw-kSH&77`wlR8Pm5uOwvuIe8<29jhbKjafF~mnZo9nl^ zbV$NTxVGupNS=}?BH-4%_cNRCm2KTph#0u+PGj?W-_G|i#Q+A&QSs=sjq$tc_B)d8 zyWK3i`91GCYqJXvfQY@iFiSF6Gm4=S{Nol63eli^Wd9_E!oQ~}9TdIo@jx|a2VP5W7Oo5I)lUGlC zp1b%WZkK9Mkv%HgvrBxYvG}tXZKWpSlZ~BMKjmf2iWw&Ob6?awPxh9e z77@CbkD}i~AGSkUuEtC5XYIafkbb znn;(PWDzG*bS+O6%7JtI)!@vrXgK$;G01L?MpeAvLEbGqVh~T&@>nDX&KEsy95ReZ zG`WC%NpPw*agG^VK|z7No#$wZ2&%$-kj759-1UB&Qh6fp-~Y*&_yrULB#gSHE!)41 zZE4DpmYpG4k)e(m7*Njm&G)tDq{!&{JK!zH~A+WacfCCy6`=bG*H1uCb8GZ$pu(}dY1`(=j5}_!t zMAAJsSu)Uot&TywZ-=vGuYol}DPR$;QhiIHOXMBY%M&=8apd3MP04S26sLQaXnJ)E zFDwlRZ9U8A3YXH7LH!VD{zFn`&;72CY`Nq8{J-x_0-WtKy?Haccr#%q>9@*iwBgtO z;_bS;l~qyW)j@Cb(u08t?SJl$Y?j!<*7k%5PF&t82Y01~UIIC=50U-^W_EB#DZJtp z{#M%G(~$WP8+O8D^aubBPsi2% zW%BdR{G;=!Zm~5V`MVv3J~sKlLX=C2a$>P=KXlN+Du>^6K0Nyb%A20uIi#`xU-)}f z;2epk%$(mqG1r%;mu$$z^8q)Jw<@->&s}|PFBjc%E77uAQSG?%V}%+TlHOj}|D1za z1Y;^tnMk)L>tU43auom5Q2UQ=7GO^vKE8`IXfe^mKOd*Dx2k^?6L3f;{zdOf$d&t^ z*Wy-=%e~BYS7RI6a8j@KuYZrriIW?H)?>fvGUwRKW*G7i6>cpbQrQUm75`-6R>NRk z&-mJ0{4!Z32tz>1M%>j;wQ_^i=saA->IFWbdUnEYtPl<8vD5m1%h^|ET`{`_5yEVH zn&XV(e{4rWh~@5#51;OK2c80AWOIL`0@}T2QW-Z#`P30qv*f^vxeaC>vwpymIDr?U z3k!q!XNaWC%A*iMD@i~%{<4kG7eV8(LUj7Mwy9Ho{~+z(?*kc>n3fr57L4^MQ=kSy z@N6WI}UA!-}RPJvl{aLi+U$$dJOs3(F71FDfSNeANaj=4(UP=n5N#N6F73cMI zuhPbo87tALwi*|!f6#$bj2S*7@jl+@dQ;mL5N|9kEZkU`k$9C)X3)OB&gc&~P1K5&GSGip&B%Pc`t!Etdj5LC7tkkZAR} zR*CMaq_wG#F{bdTuCA_kzqYIAed6G`b&)GsVtVoGqtR>g&5i{C>Bag zZG&3dG!?fOSyB_h0A`F*>0;zG8BG2CEOJxOwn0BlFpw6FyOS%=u)y(6&n)xP*1$OaxZYAdPU;%qFxpdaqhL#A<)}G^i9A%e zjg^&ERCfP~8U!_Mo^dS3xaku6C$<4v!x!oFt#X$Vz_6S^G#CMjjO2A~D9^tj_g~oj zFN6Cx{{3Tr|9neZMhw&`%2ui({;}jcF#m5q0B7cW0Q?Ayp}_X^|NFP}-F7nP$`Y~N zF#nc)jJ2Apkl;Pw;rN=7ci^$P55SK5t&-tbefspN{#ODMQ(AoZp1bXV#fZ_usQd2F zVs3W(P;hE5ap8KZME=N#x=K#2llt%*QS`x?@$psMr=jcLT1B`ARaz4$U`l=-t0Ds? z`hqk!FPw5(i6d~YSKmncZ8$Y?)u7PVgIh2S*UqX=lh*TF12Uxj$XVBxC8GB879)9m zp13{pFyCmcj>`dg_k7{xizE{1nL?lbeTsSpgRZ`bCby1e{3X%Vl%3ta&amdT+h6Sg zbq^5yc^&Z!3anFORK!XT@Eyqn`>6?%n34>p@VK$y{My$~I?Zz6h>rPPZ|}DYPTTPM z!W6*1bS2etKotOWf0v%Hk8>zI6u_0UZyjKcnGNZd#wvwU>}@bPBj(@{Ly?P8txJ_} zdvPyl&gec86mOvvQwg#-mZqhRI)K@uhE!5_`bb`$HIe8g{w}cY&`=B_l#^h|GuRvd zLf0L$E9?9B-{OxK_l2(!9+oIcGS-W@kC*|Wb#k#Rk>WnfpSpw~KIfuU@Cd4ejhQ7K zFJ2r|CGeVVtcpo#M|WQ>JZ9Lctro?2HMrl`&$+iWJe1wdC4Yubvp$o&oo2tQ<8HQ# zDcF{pFR6n3ZRAZLontR@w94%q6)i2mSX?M6CezL8J6|Eu>kdT-TM$o-(RwYFF)ZLT zkwu$R>1cRF9az^9I@{RT91E!&O`#f_DKO;X(Rvax{ZLdW=7xJsk&zPVp^M3^S0PlA zli9)N9WL%rigic)_vxlzDJA`uc>AbLmFY}{4>^&`eI~ozO|tAG?Uh4D6oW+3l8l&d zdg`en`Z8OoxTg*s?T`U|*au`64hFl>(j7aIKEFDwL3wdBHtG3fq|U+1tQZkL9eJdY zK(zU{;4QqW1xL}d4_;1DLrfRHj+X-9+#TE5t%Rq4#CXzKzpF??d~pW{$%e(dQr7>x z*?4@M2BEGa80>Z;;9;a1Bx_gF&)9OHSuZ#I;Oo@9R8`KnpUPAE3R+L!sWy7$q|)a?zJwGj!VV;Y5e+? z!foP>c|Aa$O!D&aF`gih!#TEF6D7O+t>;m*^-lR2$d@C%9IbQBD^EBSM9gzrO&v#! z!sSYVe3do&r75Eoau3)|b}7pE@YCCbzm*DpU+cmw6pCxg$*k042cgFHygGmQw?Yn-8)1MDj&MIU<9lac$!x3|W z>#56^lq6&Ohw=y9*Lg$p0DC6diWo7vVGirAH1gi>gox2B=6=UO zVGc3u@$F;9P?hlAk1(q1rt#|AS!kX;d<^TL%2lJ<&kCh+1eTE={3a8LfLsB*%E^ys z%z68vf&8%nz&6+Nr1PfGPznl)IV+<}U4HWcs!;3o1r$kZ&fGBbK+ko)O2%#mlkbj{ zcUPO|tWE9t&F*~T|K1yCUG=&~4y*Zk}CDJ-w|B_)Lf)NZfk1rk{0< zxrPVXD*z{CF6*?2BpnQlG^g5_+yc~$<%v`&8t@MAd?nr;78h&xQBRyO2-zEIXe2Zq z4hYW!JBdYnhDpBQA~EjRHmH?55e=SG(BY$JItcbU1e)8hEa|b@+IflU4p3=wx=ZUb zGWxvSkAeN9MNr6!U~3yzC?WI&6T7Ls;rb70>lCG6G9KO$z3FeD+|^8kd7F7_;IaD2 zcUM|vg4~o)1RS$Z-OYvB6Z&>vGRwkh@)aQl^FgEUwWl5IL;Zla%${89NB#)~X94R6 zrn3MeGT&=>^1STQWb}jFut_wGhHfjC5UHS_BGmzFHW}pXj{8)c(Id3Re(?ubv^53D z-Sq^#D}LBxV9`YpIhRxLJZet|>U&&dbWYzdpk?oy>amt=xc81)(lGM4>jD&okhD-Y zFxWZANyo1W9|6shQ^!TGN(&Mzk?)gY)at~NY=QV$iI$mzy)mgu^V=s#LC(-jSXuu_VvSvh^c1%6V__(^h)@LOpAR`9@g%ak zfARc6cPJsYi0X7DLFMA+k9k|jvInq)gnBRgHqtuyb1T4|H_%Z$3 zPj#=5Y>`Qa>6IG}$scVmUN$ctnsbE!LT531k266BX<~++8+pDqnK6;;Gu2k2D)x9$ z>y6t#dan)#Quqh`NN=$+9!`ct>(yBApMJZmx%!GM6s0C8;J$L7G;li?Yv&%K zN$=d9Z}Dl=V>6I8)k0oTcT6ZJ{yB# zs6k)uX_~9GTl}S$LpgMVAiROk22DlncagPA0}Y@LjzDWqToquLP^T-QoF!nAgoWk_ z8MN(VxzAd%`PGW-x$G2e0q2pLKbOUuCaI2(1N*n9ez)s`ChC~^WXksw8+rIHx_+)s zCwohNDK{Q6ilkwryN+Tf!}f|c9~t<{+bjG^0BiMgC$2nQx4dQI=Ns-W?0T=g=1Fmw z>Q}WYE;;)^T6m7~eLVR@S7K6M*pd|U4-j{YfZNCnl0y+4Q^o?tdfkbD@5^Qc4y}@< z`ZB+HX2C;@6KRv0g6(rbnHM9@{N$E19mNg{=8_4*WHv!P9nizO;1utGag%1^iu8-T zql2}yZfcetM3^LsEm3)~(O|@KFw+Uxs&OLJ5^3?!DV)A8s;VLaXk%1qVio+o6rz?9 zB*cP=Y>7G)iWJ__@tAvehpu&dPmk+xMZfrkP(W5S|O|&cN;~!TW36J@!}Aee6UhF6j0;dVZwhk z;flwAlz@r6Y0QKS{+h^cQz#O3%^pj#crTsUDFBpFNsKpN6{Qod-RWIyt~{ zCm$aT5`o_fZXw86{_wUR$4RKiBb5xrarN6xU~(wf0SUjf99uo)QXC=?O#(4rP+9bP zIS1U;p%?D8pJr7U(&K`K&S52zj1on(DsjC%rpV~%0B_TNnNm)I;z=aFx40H%Ri^?L zf(jYVPB8dGEYqm1Qf(oy6zLjZewSwku^^`FQs1RXiB;Y>5D;)p+`epB(8;SjW^E?+ zkEwVvEIm{>lyP%ncRO+T+!4zM|D5QG#qUVoZzafe=!vCdwDD|a$8*0}ar6q*`QFX$ zUXv|!`!n+s?3Yp;QcN9m16Ps@#vR<+LyL#wu{M1j#y}%^QtQ>KA=5g|5V)1X3fGFb zfow4N7TtiV{^J03Ab#>`4_;|6)QJM|_$h09WzOK+Bs&MOH*IwL~!tv2N%F`Cz@kT$IpGPq4~SaT1^4v5qRIU&3ISbTo!co(Hg1>Kp zfy_<_wi9=~vHk}VsictD^Raxf)l%ZXdqTf*qbMFdQxuR5JGopIzkzX}6UksRGU5i( zN8y7XUPL&NLDJS`LA1s8VfX7lz#}Mj$>gzp(0P^RvxTzSy2WoC_Rz0}Ld6nwAAc0% zuEAFSz}`*{K209!L*vsL0YlxUSYbR|%e1fg<;gAr}>~_15xe-64n(L8Fbc(cF8+gHUK@P$?BM}1W zV!|OU`9=W*%tivgRHqPL@VGXLQ-Ag&a>&~4b?fc=s*vJ#>+NN$S03Sg=;{fR`1waa z8a$jeMb0tI#%_DR{EVRh?TeErJMWHp_vI)iFky@Q35HbFh@;T>tLf=1&Yl$n{+CtX?I(w&i39~9sT zEcx{ECo`wnxg#TkqW$6i6f#xUy{%Ufe~XZ5+Mx9z9LOiZK&~$w(%d(Z!-Ge`_3%{m zTuDD%f2`*L>j8vkX@datP+tclMes%}U_L(uB@@ZFXffHY;a|?T&BeFy?Wp?v!$34t zgs}rc0So5+%&{sswA~03)18vqh0TS_g;UREGV&-5}9Th2PK7@jS zFo8lYKY>R^m<=BKg9<`SlY3uckXcBnGu$C*u>U=&>?PuLFYEiJG#Od)X9SI@E}^un zN2RB&x7UU$=FtEtmT|geFlBb%C}L>*uHt;YoJAe&a1os<3(eV!a%5P~k#t%S8kB(U zCj&BOoI&fWhI2{FAQmzw5P0H&HO_?T6j~J{Ge>0tb8kinAKj-~AUiqY5AS(y^3huA3@amF2DbQz#j!hg^BSG5|(5_LP(U~O9Zr0{N^PRlewVf00}s} zJDgv?<7;992dN9c@r^D#Dvpt#v2R6dnJl3aGUQ!;Es zNT8d%z)zXyZZ$8*dwf%4B9z9oaAW_l5tiHq{ds9#yz!V8YcC7jEx|tkMrQ7Z8(|vo&V=7{M~MWO-yPb07I@Ge zb5m}g6~Xh!+lRMgKhpLw=YEl(&er{I%z<7dM`t2r)DC9d&(clfJ$cK7UazijUt{k3 zGJyodAi}QDMWm5V$`FRm)-<`4zqW`p=mg6ZgHI6F+q80?0JP02ysp?&mjsiMFOwyb zuSVLqa6W%YO%bggZ4#e3h7k}cg{7W+FMx0z7?csa-}#Fks0TYUU7H<*hJd6b?vp%n z1=Ge75i?)=V>$#-54`HI(lK@Sy$BzYe$#cI;Ws4){mdc|!`>c5Or$IvF%pKLo8G{n zmtUYxHJ?JTM|h4nHps~+YfvT(nLNWrsR@xJ*Z6^=8~Uj*8N*B&`)9arGx)|`U-UDd zsU9UU_pK)VfIKG&75&L<{99vyxSeFLb7qi9q_CqD^{s}I@KW5 z+5T8QGU@x2gVYv8uHQ^6DFf;Q9YTKGJL^4;3uUh9X%atA5Z~{@^63%`(Qo^>Z|-+u z?!o=+5A4$hw-aR$mXHjXFq(-1M+lt);U7R4_>g0ix8t-29qIoJ{Oqlbge@Ee(l%VfptZ;G*ZEF_fI`mPGuLX#0>K)Y1Bsy*_*ae(Sh|j4$ zY^J(4{E%}kHowUg+e03G7Tuk9`9P-E&#I+ z7Y`{BRPZ=zc>@cREgHk(_u2DreST}0a=gmCE9m}MlV<(?$|&#wSWH4ohZ_ek2~B`j zC;y9GA1jrBfGpEz3j zh;K!RWfo{K=}+Z8NvAfH<2R{&cpwb47^b%mA|C*)u2avD?ns*LczR|ImNb${Oq2wv z^rEz%Y)l(@)IjJ}%!NSq;PceeKJ6pAbS@nCpJn%`?RlgruT0PA&iYP4w5Hk!k9wK_ zzCMQ)?m-%ZWdW%9CD6R9R%Z90=VwE(ciW9T^d~!5=C`&qp(zzMdtfx+0gRv?DjDvw zcJFLHZhi0gA7DD-A>FzW#FO?kwQ9 z7~D?tJny%@^W(f{&97N&x~F&d-nFZ$>%Ph#_*WV70u&+87W9LE@tDl~>MLlzG(VqV z*t%TP8WfaN>wxaN>MkE-O;a=@+wsFCVf^I1grxFs)g3WQGc^7xFQQU9V}##| z)+n$R@-hiIzURj2_OQGKclC|C_x!Z?{g*}5!OehG$JIoO7eVq_@_JuXUq@JXd55cq z2t8woZ$A{saMMe%Yu+hFpR^SYP;g^$saG4`Br3zlHQBo?;hq|BF+R4|3J3|6$=G z@PR`^F?jIiH;tXYYpmt$dZql;1|UN4Pk0en-D|=c3;xH14@I-4y6VqdPgAmWr}^dH zwsvcC-|(4KERt#9Eb9UGVG~0OLZX+(lqOE1y@`FA_nI68qynrY!ZE;-I_D_vKuTOu z`pF&I!(>4Sl>?|%KH7%;+o#u0IlMWVMfql@&mYSwYr;%0=PUJI5Rh1tDC5>zHHQEN z!h*S6!%oYSm|oYlY$XQxQ-!FyFZOR0*a-JQw8?%jg)ZIdnB$Nl6d6K>;35ne7BN?h zmKB#EYAl2WuPkO4R=hb?YZe6;01)UUEOdtXgWNXQ6U5L|L$!j72$4*eAxB~a*>wY} z`%JNv5gimf6z_lvfK5~_^mwuj@MxT)g|uSHx{uypf(;Z2%T=e`V*de#w@ZCrtt-dl zR{b_9+xmTIQ1ix~%o&n(dI`LqH+lbFM;+F?=GH zh+o<=aG^*V;9MoHq#6kWq&&6cQPH)_+e7cp1qsE8_spzko*XOP5+QbVjM1_EVlX4{ zXmRh_h8&+7I3T%94LAa~McYM|2of(976w#77R4vi8gpZJ{k{T8j>)Ya2LTOiPsE?1 zNN+o5Il6*VLPvUO-~{a4;+!EyMf|?fJHdC)C;(pvrhlsv+y~RU#Rd&l0)Z@uM3O!j z?oLBHpE?pg)p!4-qfyZP4om`l6b|on;+wEP}AMN($r(BF}+mu_5mNN3=e1?Ey7+ zfDSx0=se)w>wc?+K=T!X|7jSUk^ZX$q93?m{*?`&j)+@fC`76WnKc;Nco(}_7;m+*Wg#hqLdU_+Q34alO%oMMkrVwE#?0*d zJWVs+nW=`tJ9iBsTu)<%`AgJ|@G7!|qBm6LFUDnrAHxx-A3KX)XeRQaBT7Hm3h+Z&O(6h%<$)e`IGeIhvw{OcET(?Xf}(OG?24?3S3|h_iG*Kwp_=BO;b1Z%6;$MsdUt@*pm&>@ zbvOHR1r&$)1i9Z}Pr=W};SeLahhdwz5;#A>_%zmp`~@nSEWM((-IiAe_4yny2fWa{ z$WbCo6$fhuu9bq2LPUrA?Z1Qw`v{0J>4az^VJ%J>;$*L<&njH*L4!NMv zN80a`c=fTMcmgEs+MDsMx)`6$oDVHS3(4_v@3w8WEr!*hX-n~_f7Bg0{tCQ9m8ng4 zB^V$R#~9-^33~Pj1jSY+VCM)%kLFAyrg)-6v8DHVHnO^w8r&Ubh0_9bTkO04rQflR z2Psz2^$7d;JU1g<|N6Il1VUcGZhhPw*SFYZJ%Pkb!zEc2*N+AxS6e`w=0)KY7G^G| zy)!pi{4@~W2M}CaM6YhdBnqV{Q{;#~L`%!+M%glcChd3B?GQRhRegfjW2G2G)PiMj zO`U{q(T&=NEg3RNVMDh}hj)kjtgI6uG$KLho14eshhVpk7JMO~L*_*jtSD+#X!-g$ z-x{Uc#TQOeD_l=PfdxdElrOMeVC!lP|MPBx(*~qzCMsoh>qLq~uVYp!TlU(=ywp;F zpkH@XL5|Y3tz4$+1M~l6HC-64`Sw1CTZpd(Uba$KasnfJwY( zfMqsRTEc=tw=D+ya7ks#p@_@O9R1Fw%KAgCLaL`LxA0#+55En@X58{O?_hzOf_uL| z&0i(pCr<(HKxm*^3oebZXh`x$7`kJ0Z9a>scVkeLiDJiuGfk6d$e4^l)S98$c(>~z z0~Z`GUweKHWwbXZ_yEC&f-$>0i~?+xT=y=LN_j7j_ZI9*Wa~IUd_tI!I8gqAXxx== zruGQY5OUP#9!y49eYofND1nz^7?UBGEnZ(%#_|MF=q?9q`3&4^`;R3U^kZVnBBoR? znGji)?(R~z?~o{_v7p6mDom$wu{!lJk-4Tglg~9{u^`fY;*Ad-MlPG|pBvYGwwc|M zo>RA`%G@d!S<1-bcoCLZH#FA|tTGQbGG{i0AD22`GTV=3dBz^w9N=37{1|mH3zN=+ zAh5ic3bnSaYeRhgu6jcRDf~#6C?A-vaoi;6ase57)SxpgQx2!YI^q6uQ06cUe{AM- zngVn4?Uyt?Ig#Lwc)YuCbNHSYh&U?);qlV6Z(FFB8HtlW;AO$1h-qmWzIB?_%;me1 z0(A}^RMiQHzUWg6myZAqWNCX4B#vslkcmh!h|iQPiWZ3#gz-F~vy20i6|5@wSBBCi z62~C=?E3+U*5r!DXxuB5C_3p6OjZEfjoXld?6$>PKlJ2swiFv zSCI}?@EIBtK0`RAJb@DJzw8!XWJai=310$Fc_)_1b)02fy1T#QALC8jEV*el|%Xmg*^4BpyR8s?~Ki|X`p^u8-1(u`Upz>`*}#t2*$ zYU`rkW4a~uE{<}?Im?D1g7F(IkdaMvfuKHH5!*I_e1wcIVWb^DnL?G|Uq2)&(?5k|MmKLhbGjA#%Rj+Y7dLT3K9(hR34Y#;~z;u0Rw)E)Xn zwRp97$ANTkeCf`V`l*btG^XnPnC=~(k**^o($XOM}UOnR38n=0uEhEH^^bv0Z^ zUYY?j#T=9~CQ=S;x5?~Pmm2r#Vm?F1s)RetB> zH{IR2%dB& zPsU5>RDPz9S^elGv|*&I*vfV%Y|o1+Eq&8kz1#Opmnm#r8EY7Hc^vhvPX^FECz@jK zXz%*#!id#^Tulo3@u$q$L_*_C{&5@!qaib%afnXK2hOvs>FnS4A4M@J5Xn+tKBFxf z{Hr2e!U5k%43)x?CeunbAR{GXC!^Yq3|x%CPi=prK^dafytjiT?VO7FB)Ks9EF>h84=CO^b}PGDFGoeD zj!5>5^$;mH;sg_S5%1A-$pX6BEt2a`u9iHpWsUM`Z~co<;fWt}ILvT4i#?0`4?pG; zp;M#AoAM%`C~!U7K)>jhwbZne3i%Lhhrqlg{A?^*lUxJD95!ON*tG8`tPrRkU05tU z@@;DxJ&;(fFcip-{^$G#vuh}Xk+`2b(Zp)i(b`c0K=;9iqL3o$U^xLQYk6}Y3j zP%4Q)y#==$?00Q;-U|lH30=8w6H4jmEzq(-_v}2-I%*atfSa% zx;>n&_DuolxY2Lm9AX!hfXb8Kndka9guHfgP`Fs!Ji=w|h+^7lct z{Ks|Nr7T-!RV7zun~y=wDv5fUu~m{(3Q^Ik3F{s ziEnQsKeqT@x}8jiN(0idF|k?#3KbAe=*l*;m-aiD-E~Yy!YI~F^r`9<8bRQ;0{siL z>eV;7_Xw1b^2&_av+b$e(OJRttM`?R!@q%;2AV0ITAd+=wqiMh(V}uRD%9(+FW+-C zB-G=M`n-CyJu74O3o>JsYk5$imP-sf2np!E6yUb-ViO$kXQNN} zDxGT~8gJ>5rXMZ{CS+7j6sKVjT_n_@i5eeed3$mikWDqJ8nnX|8hKwFjIo7}&3RWw zPZJl0`H#K~6F-P4PylUP2uys)RbZoTuY$++Pr= z{vZl8f)Y`ar(+C-llFTeILv_TBZA&gXPYk$w=KR{DQL}(jO|*zvly>r_&rqdso=?x zZlTMRpf{yCl!O%xP8LM~$JdE)m4lPo;bWsEs?j8Ih;WdLdgwfJoj?s{`o0Dkk^9ii zg%H6ePgFm|W1!iP7DUAqs!w`GF`UFRJKCng(c&5$ZZ5Z zM@$GlOo&A58jG*C8C{$|5}EXzCa`NZ*p9zX6kpszmWgW>LbElNjx>d}eT@e_3#Jz( zGYj?_LtO%~i%5#-H0nw3bO#inK9e00;sZ0F(^A+$!Qu=!MW~XB;q;xS*tD5X;#oZk zWlV6C^4;alGqr~)i}O|~WtDObLq@hyBnd7sSwixM%j8AkH9Uw0Qlq(Xc{fGeLR@=c zR&-;0131fTbE?kKuERnTn9!K#;EpI;wD!W8I;}!37rb|96tE^ptVLcpeX%&bf49HI zh#dQ)L3j!3h!_-zS8%~_e_|L>g4&)VhSMpeGVYKWM{%f_yG}Bo1ret^MU}#*g_y?p z3}+8M|4A-6d;|+a+_~H&51j6Bx#1-fxASd-fWSIwGWLwv=p^eo{zC9kA=e(`v&d># z5E7j!WxUK#X7*pwq9xv%w+-G5V{)i#Y&DmC>8MLSWZp`lP+L~}U5__{dk=MwMKX>q zBmr+!ULP6P)ew*AMd2~1x5l@ed^JXOl_W$;J(8`R9KCFCS5d_AP7?-b6fYEH z6fWY99BJ{}#}dXAvRY^Dh6f7?-1(5N{CT&nijrXRjvUva%fr{;;~OLH~YGK6#E&YY9n@tp#1z`=>$Bb+$~$Tn)GgkAfLlAb24Qz z=Ih^eSRcai!O`gP?w35GuUt4!Bwhp=QOl>J<3wZ&Y#co_c+=~olD?q`EZuO7>BkZ+=MHbX4%sB2eBt6VEXaGn%g%f)U9g zwIQ*4Kluhp(c7OSh_fp=g7zGpU5Xx8{UT$;&SYXK-!CHn)Wl#3-umaOfP+fycZ0cT@}&2S_pE0wvD^pIA7r-iyuK*{ z@6f|#6sqjlx8sQQXHJzNtU3K}G_1Idy-3B}SqYA8nt3_j$hpc5W zhw#^3A@1^J?z{;RiIoDryu;1MlE}e-RM*|@h+9$pW>Cr8U1rr*NaDF#vW z8jU1Q2VVdU#fpnXa0L#g|Do?_+wuFEhE=h0hX8X#-cg#L({1&cBs5*pd7s$}#9ov% z_sySd+xP^?qsoRKq2)pQ~ zT)v|Y0;If{@-@%k0IqF|eKWtor^_z~KSP3#%8s7;EnQ3sC5B0EhQLEpg zt||=1Nv!U+9$nXe4A`p5J~cGF$)lmC715ao_Dt*oaioFG=_0oDln2CcmR^BXWr;zE=n~2~(<(i}N zfGk94zig(K_@w#43gY)|{UvzSqv;@jyEyQ;-B6G;$ugtXd56N4TO5mkQfqucp4l<#^~=Hx4M)~93pU&CLlz<9*pWg$Qb`r|Q?b?H z$zR?AW*wjh+#t2eky3N{f=TU-DebwB1F-YHl7V;r1La+dQUc0eg87#ERK^clAsmx$E|a<;|5nHe06wBqn_JJ?T;I{r2-ipDs(x<$SI87bZO_TvL`P){FwyMd~S- z@B89BB>Y18(AcflxOlTqs&+gM__BO$cN_*K8~7s_a|6tgYjl%0&*v;yBb)bMLNEn* z1(V0UaS!t;-6%@xJ}v~D9Qy6~#YD}b{202>HO|*xQNQ?RF4;S zJ0grWudpEEWhx>Q?meNf|9f8!nS7xh;EI`awJ$ycy?8lA@1-drrgERQIMBuffBu)s z8SiaJ{7h!Tck^9oA3p9?-OQ=yp3bJmibkH-2Y)_23>nv7yk&Aa*&O zj&}WW@d|ir?KfBckqM{g%f8+pDD)Zx4N5pU0nQUPj#+e zn>W0HO?1*fUrz1c^8KXoJ4~Tzq0;0yE<}zx?NKjlqBAylK2RPzK ztN(rFgQ@Y4Z)M2NIB5wpr`NQDuR^tf%W7hR~dTeeM9)LYy~Xj;Ar<1`8A zs2_D~`e%AGuiI#PQA7(XV5p@c;-J-8K`lDe zTzNBke1B1sINIm8LdKNz^6tuH@H$}ns;78Bcg4UR|IaUMG$AaKY_}*dMA-lOoBwk(HyT$k2eRa{}+{{$okEe@u8MoUxwgZnd*%=C1w<}Qx5Q`cMa_1U-PhV4@4inEj!^JbDCpk}P<37YDa2UHz}L1 zSY_nDcW9fjtMCE1C5r*4IV<~tw{UuIZ2-z*40>3P*(Qbu{2`atTg%u`Rsd*zjgK zNc=zZP=gqpVdAFd-HlG(XfcWB4DJ25UJUS|YH!ZJcP>@`ocr_PuhY+e=?xfj>5^ZBI%K;M1nn&fAqa-Q~h-Ch35tB-F@yyxx9n$(p2QLmj$bRQmRCF+R? zW>^lJUGw!M< zyyP)?i0}QQSHt6ZiIe{tj`?;vx8a1;^?1_ZA#_l}OQhpC!LISnG9haYgG;Uo&``DC zT#W`TJJk=d@vOOa-YhxKvWk&CPDBG2EQ5nDnL82&19{Yy5=&cvJns9=8bQ!3*zx<% zKTcopYVD6^I`2Kz#WPdZanU3Q=^M~u1^yr{Xp@O+3v$V;x1Z+&ErR?P5tzuy+(F2gc zpBI$eux%w+2sFS}@p+XkjkBD&^!ur-NqWGH9-E$vL3-7XWml(PBRNf_1u{Sd`@xSa z_4K8zyZ4ZM>88EUn!kTKP!@Jf@9|wVbEi7mP;E+{9VzmVUua>R4XJ$D?VV5vV6auX z*-id)@;lr9GalR{w{o5-%*)mt;veLHC4&VlxLPKxu`nwB8iZyH2RFH?=&b zWLp79-H#pT8S=7ig>m5k4e2c|X$395z|fb0XuP_x@}S$-Ewm!<;^M2})X6pTW0+U4 z@)g~;20f_x)8?i#N7{bZPkE1JaB11Oeq#S_37l=6PVncS$%C%PI4J>}U~h7Er8RK9 zfA2=#sW8Zv7q|{kE_nlMqZv1`*wnfGY@T~5N*YMY}E_@n$vZA zO9w4}fT91Lp7v^aS9h71SXI9MA0vT}s&_`~;@f$}uq^N+>0v$|#afAJ!&tJZDyEPo zb)(b}`|>kiKzT~(@e;sfIT|Ku1yqE<$@Z$9Oy=u(V!KFb;&rKWoI8BJk1JCr$cje& zXTNsGL{UBlmhPGDc8-%$lq;Ges(j~J!V!RGEZg~@d=KE~j>seh;opeqazAFYZLt24 zd(>G>dt4@b@F@90u;VI}i}n?*@E7I83^Uzv^r4n_%PaM0cPqyWBv7YY)nuF)!Gbb( z=riiq%sRJGQZ^LL1!I9WA2csCld>X@e+XtGy55*y{nF3QkBZqq(<&KdWp)X3ow%`S zpd~Hq9X1{z;hq1`dO&5KxSJvLnf{DNC@SoD?I(+*a#1=Qa7ijZpl$P_TmskW$KxVT z*IWmY^(b)?oNd?p4Y8{Gw}OZi@ksI+wr&B6`aAw;2`{8Q$U09H?AvqgOP|*zd3x}g z!yn}p#%H!~&;#OdDkDpTOzrynndz@!wilEAj|dNA3FOyNBp2mW(Z}Q7$LDRkr=G^0 zoxSwSJo%QQX?oqF$9k{o`-g?v+1QAhVgl>FjOLAh^c??g5CT)Kxk=p@a{&LQ1ygEU zu4?&*%qJ3a@#oCs1?#{l1{l-bfl&-U1Mj;FUjW*ZW3p%D>_x3}2xP^9#g1LX(jR&Y zc*B-!I174!hVx{r-b~Eh*rbQxP3{pxI?M6~)wyJl!kzKrI+@ekrPOkR3333?>1870 z__mHCms!A(%T$2bSC6Sg&(XnLW?k4yY2f8YgCno+t)9kCP1E(Fcw)!60ly!{@IQ1h zZjh~9?do^V8#=8AMRfMqmcd=SzY21%btm<(Lc!AiT9auzyLE_Rv%fk83}-Vh@pfYj zQ=Z_L#5OOfz&95t%!%nr#bIpr1AktAme?_sWA0`aD%qFdtv#K{=xAi^ML$Ka6Xo#kIL*sI|164| z`Y+z~TA$WwqRN9`4DH9Z@d(DD?$&lm(uYp(5F8dtm&g_*pQ$DW#Pwhm~&x~+ex$J-`+2ypAJ(lcG#z<#+@50Bg52ME&j?ynehU2#N{m@eYQ@}uo`z`_EL z$9a4Se}1R#?4uSwHVqa;wt>hNG7j!T$=eDS0NzE5Q}f)HxnHTP9%3WOgcjxvODmTH zBEm9q^0FWm7pEo98K-W#`>;N2rda3ff8z1ubX~(gqTcT)@S@cl0MFbQ)l-ny{+nAzK9zD_uY?#{agR9ks&^u5 zGD(f|%o*vFjv5~3ruH2m@6Y<)B6oslWwORwoHiz5 z3~JF!jWT%Ze>MW=6zYOi?Zp?o^}X?6vMix+0{z&+LAKhNdryjbu?CJa-lMfIII6UCx2c^Zt+d$Wq%(94gl@ zEFx_=S7!ibvZKiws6Wf@3-i6sh+j2W1=o*thdMq^>#(rTc+g}#8LYIFM`Vw``!-7t zffRBqGGzld@V1X#dOVj^%ZQi`PB{7#aGN)o!C(_&Oue@_jt2nMn1`Rmz*-4e2DoCj zds-O?(GwVR&W9#!LhrE#Q9FRe=*%U2zUV%h&Qa*cioN`Be<4C`;u0J9Nil`H%$xR= zc2DoVRRzCBTaTPS+M>0RSU`sjClOAU&3 zj9ikts2-w^dTZ2rti?CnrGXjyGgy{Y((Gn_rnykOGZ>%r_QEe<|HCoi#{vy$tI4<_ zRVL9<+m(QeC2I4rrG2*<{jueTRAS_D1wiH7bl?90PyCZkE>Z-ayKlNy2nY-h54Mu8 z%%H%f>taTBWa`X45Yycf`ucre@^Xmr5T{&OC2(aOqH<-ONtvO5eKQ@xn}IVPGoDNw zS;;pkP5lPw244QJ*DVct!X(Z32SWI}oovPkH2PBG<2oZ&kWa5po4>bLu}bcLOAQ}1 zx%@ILLkW1oK^NS_qx|6J`qWJRkLkta8!rj7ERr2B1O{m)(^2SLx={Y0tWoe^iz(#N z;zy8DlL*_D)UWL_JV#+vgA9dqlhVOr*MoLn70id4r*;0@ZLUmxEh~GSL6H)pQe1x< zjSAU$)#YfCit=*@)753FF(#SCmgOC?S8R>@5xMoQ!7qg~wXyLdHy;p#v;tJDHZi?w zQpZVlL;q&GcG)~iJ9xVI2;xBfaTi1jAyt+gi?zH1h)uPWOQ{p2Cd7q;3+WwA#ofQ2 z7f|l*wkC#XJz#TcW*{sYbJY5Yinw+T=STGxZ0p^4MNvXkbE${$B(43@CMIoT)S#+q znQB}^RkQ~wNpxF;@s9?~$z{=HdZL^qzD^BI%|vDmqW#Xg&z)EySH?tTD`#l)^N0WU zyxezdP(c5r0Z!GZ23ibZ#?mdq9}~wcpOu6 z&JK)xx9V@T>0C|g0(zxuLkK&7kbNirGxF6m4;TDHD1diZ zB4+d_3Iso(9j!@12m)j3@VIVi0wa#6lhQxt9a*h&|7>STgjuluSua2MrXd`LQvDB} zthA3k814QxVvxVl-O-0owa3~==S3cR0tnq?A>81PC1sxcPn<<#^y5VDwvwj@kI3u; zniH42&)&JTTr6e)AWNiV#o5$FYdAWUH3Q4%Z$tib!8OL-KShG>g?f6KnsJUPPuRmw zyNR|9*mgbbPZ|QiLWTukw$lc81Ti8 z?d6?-Ews=t>QEQ6Z6B>*MR2=XryHlJx*mSVmei5GxXEhtN5zN9PCe+@kxjB_%H`k0 zxyFBvtDN<2111vH$R~8jCgG~Tt7$*X_!HU&4B(rUka@`LW5AuTP#N2&Zllp-O|vdW z{+LKm3|M2rN%0SZGSGYsSLto z1awPcWsZ27c<99yX{ZAfJjfBM`YKgp_<9YRo1=M?o%)UXOUnZcrfUiCQn_&2?k z9p!pPyVUgjS5*QdhF*qxgof^>mig1G5zBpJk(}olE_k%hDBw>B=uGSK^g3PhiSX0E zHoE7$tvOYdwXOX+{5-S;;L7Psgl_iN8jhL?NXtKAZd5f@TXPt{OHPRc&+r(s`KvL z0phjDK2${UguYwRxGrCOx%2NsFEL%}vw;X^q(hsPxl35oG`p9`+L7vhMc4(5vx7~U zO$?P8POlHk;;9;7eCD$SSim;Fd?Eq{2Kx}G%`uNU$z`$4Q;qOVR{Ib_!pP84lir_e zX_*JVQBp1o(})seQ@c`vr+<*rU1wYgD|Ee7n_)B_`52DbpLjWyqOk^Lz*S_IEqlFM z5wLxyi&<`v%2#Ar;B(^kgL{zNLr92X+{H2Zi+J>u*oKqelRoCPB0QF%o%-PkS0%S7 z4cMsPi~nRkq#0ztzkp)B_ZdIUB_9x!8u~%LUGEt+n%d#v=Cm`2QXU?43JpQw1KCXH z$j=z9F%}(&-xelLGua*(nOf=9YzUX37mPjFs;m(Vl4<`5EVlb2njYVUKELCR@)P!- zsTTU4nC#JeS~!0L_NXR@^`hHiz*&Hv1R-Kvbgs;pV|w~v3m_q&Ah`u(cruf)#u7qJ zLZ2ZENrxRxyqXwD^I#ocW>}-H@Yv*!$@7on?HXlM!=w6|!!f1Q%;69@PT!0>%?GYf znNY(}&E~(P(VPKVTlE(K1NygkYNU%SAQlMYnkDso`^9qW8MC2+nQvROK8-hhBO`~3 zvT%nJW!0sy8N9BFoHrS8o6I31ka$S&u_cT7B|lrr8gIRgdWGxPEfe5=xub`?fYNx) zTJo$}s!P`~3QI5KFa41z-0P3z)KVP1=KjDmXR#+!mp8v2o42A3Rn4v4I#xx$I}35& zHo1?wZ&dfzKUsL;lDm#MteHL`LqAZeN7FPpb>2!$r-w72rJ$iMuiUz>Z}r+Al55*) z)~4vJPb}wmT?((_9W?x*siE2}C#ub4Yf@=v(9;`Bwone|u28r%CWhM#dZ!9C?WQco zk@37=410CFgfFo_)(qz~9F!6oNC_Vl4QD$tA*TE2Ju0-0g2rKseTFDM$iBsh`0PRQ zZS~2?6O&X=TUgQyDF1C0SXU)EE{w78txpL(_p{&jQ|WqeV!G(akBq9UKE;+z+Go8XPv+^mjdnb(i-lJ?5w+{*$As!K$rcMcGzqusH?=s2t&ZQMIX!V9jS$*tQU^ zhp6khi#9Vs2-+BmT*l-un-sx$CfAE%-2ybh>VS!^9YjyP|dB0vZzFrJb0L&37GzE4L~A{DI{vKnlsRhFqNCruhKPsQa)&fU}2=sqC|EB~N9VJK-6dkTKg zQ^>69zbYCg+F5mm#shoVOGk-Nf3)Rfra2gFM_xJlwR}&VrIIq8Jo2#+7zI;;^mrD%fiIc6GrpQ^LkFGWUH(75Y z3j*q#alGaPV*`ubcO-Kynwr8f?rXuxn!^Kj4h>g3O{8j2tO+c(W2M=7>B;Z=4*nJu z1i4nthaM0D6S->ES89|qlMP_~4VIf)AdyArLL9t~im*ewLPI;I4D1R4dqZ*c#YYBp z^qHbNwnQ>jg-zGs1}Rp1q;6O&FY;IE{kgix0yFXZbAeQZ#aluO4QS?e4CeOBW>Mc&ZA+HNudxvf9s?uF&a9M{^5Bdv9}#9*kC5 z87zw%jXGy&%gbOxNw4HQ^fNq67rNqs{Pm6wV*b}kpm`bImm2EKi1A{zydyT<#bE83Dc zX*ob{T^U3Y@EUhcKD}Z7u&2d@UE+rRuLLD{w72&V?EceFV*ls&T)= zEw+E$g3FsrOL3C_gu$QWf}MU}uzNDQZXV=!xTEI~_H{~LwXcrvq z68f2^*ROUBrYjs4hRS8`?ssQvFLr1AKJ8Y_Gjs+L)my7h6EHAovDoAOs%@rWuh9P= z&yG>H?9<5Sn_q==U-n+GS8VxDyK2%_G+XGLRhX^4^sJC+F}3Q7!{78+BV343O*ii0 zB`U&g{%3Gj((d{hTD_}pynLf1aVAJ7$Km!f@s*YFlaX-BUSsV)Xmq5Cd*93RENS#+ z&-OMS{xiQ#WGyliOR0By#8pNn+C6CUgrOZ!rKNk%JNTV@nD|eRW^s@5Q8Q1?Cd2DS zX?+RLfT20w{X5;7UGd6$3+g+EyQAmZH>z!EN7gr~|K_xCZ2L8(QqmLZR-7OF@Bf=0 zWdVOaZ8U88>0#ZjAB22qj!7{8{j>YDcQrB-?(yUNo2bZazWA@z<3O1adzBosu&rHx z*T_-NVb8F$8$p6!vl&X%@K~>=ntb63zN6_x?}7^Ld+i~3=BLCTiuD7($Xio1^snz; zn^%`hx0PwofgdnIpoa&>Ba=V>r(5@aI|NG8pY`xyG^1K_)5!9>ncKL7Al|8q%>)v{ zD$9^u%OWf6SU^%!(IHCKTg|&4~?`8A9 zn+eOI`VW6psc3Kac*fn-^Pf&@XkXCW@g%pFReVcw*7ww(F53$zYhwp9#=iVDN($lqIq~*>F$<0@oli*of7;7gGCop9oKQSWiWLTENamNXeo9iDGu9D zS+nnb&G}Wna7}-FU;WQ*{Nm|&^{?Z=_IdK+lrg8b zb3e>F2HOss3FEvK_!E|14~Ck{I49I}c+{RY`YpU`WeoIK^&av&N`U>Q<0*OdwX-wn zQtG97P`2$zt{N#RsqUwKD4UXJ8KkiR>Lf9LoS4Z(*F`ZWLaLP>CUFrK*6U^;+w)B) zm>z#;=c#-F(YBCUjH)`kd-Z8Ow`S_p+4#;*xm&ICyLZU9TfTCkSjpMhOndY)IqR%8 zwqIJS;XOyuYimSTxE_0ZPtK;Vs9<=n{^tE&M(}4lX)U4zM!9$SJ@s$;S$R^B1HSlj z*_%>SWT~?E)%e%b?`1z9*3#_?sSB=dhgYRVSKv1IANJIf%$&dN6SzyALnl(N&N14X z$GuTI>8+LwQiWkn|u)wlol3*Lp_EiVQ=C zBYieuTmdDeecGo_a?&fo`%`i$W7xG?w@Q_xGcxD@K5S1NCahs(&g49OzU~`EXc96! zj4Kx0_wOm4Ex8LO8{g<&iyY72e9Xp6>Are6aa-DK=O^lzxj8zq!kL+<>-U}OB`T|0 zMqXZQc(}N~WXclvHsQ6)lFLrWY%6@po|8hEru|Rid#MK~rYauI*8TL7*UpP=7+CJVy1zHtY(>hVd z>#`2z_)_q}p)`wEYX1$0KxzmiiS&s5u1pn-34Ef=mJ*aXJzkd-SwU}Bl|_==LD29r z>M{%j1+IA`7Vu4x!z9CMohX>L21N2qL-m?JaNz6G>S>e;$OdBw7?T3 zzE)N`F23>b@E8O5vpau8R!ADOB#{8@Ez-^1{V5NRCio+dar4;y-A#F2o$d$YA1;hl zh7HQuU-4(+*@Fi~cdXBum#-)4h{0XGrt~^!Ty`M3?$@qE!XSdP1Pp}E9*|f<@K+G| z(snU73U6jY9ZFH4AmEef@U?yK1NCjazGiznDs+2?gqsu?n@X*l<=dQv4w%Q|)%U(Q zh(2o5LM4bK0oog+1#;jS90P9@UV3_-W$NsQ#fQL7M`ifdRMpfVcK}e18dzs)v*UmN zDm%sYrlnIlHqs$(y76DH-gEA~ z=bl^N_x)p!0S*T0yVkqbjOTggoZx*BMRP`@jFCvK*k<}jPq$~5S-y26ipt6{toK-x zc@wz#vll&Ji!;1Pws?`a*x}=Zt&O)d3OaEbfm33@&zA?cN?;+IX7vKQMMX&wV7>|) zBhzq)>1mc?g4uAPo*)oL_lnq{VG^LZs>AWVEur*!-474Wt5-9+ySq!`m`Ow=cXE~6 zPJkB2VtaSodf-9bp~ky{0@6cC!c00ZS@tK1lW=QybJL>JO=pM!&F2F+OSc`fE z=rG%ZHEW0TuEOA{@A+Gs9gcaUX_ya z)J;~A0@KSmsFJ>cE-roi`g_=DiXx|$LuasZI>VzAkCo-+R3O3vI^jT+kEz$-moIIm z$DoDq<(mB%&jVUQgiHMn4K&gc29SV*m5 zzT`b{`g)vN$Ev`h_br{Xn0vnN17hRS%m*yQ{%H3&J!sYS8i*9)lHE4%J+-!G!$C44 zkgq|j!0Fx~YA&|oE_51I5;@ccrw~tP&@S@_3St& zC*5&|U;5%wRNbu8=+WhFFXCZvsxxsIDqxK+1f{^>M79d5FgPp!xjg94jKSyWos}JF z+$3S-F!DtrxL1I^4udQv>xuP&c{@(l}DSp z#4-(+jz(lBy9AY%mCe5$(s-bE1;1X%dP)KChji`$%MBNha5x9U^r~`f3c}#w7BK{( z&X|ytD#Y3GY394WYN7j#lS46~wCMVU-0JG;r6i}RRDXZG<%rp=glB0fCu^qt{8d;8 zWW_YlVJShx#FgzFkLf-9o->c$dUSAq`0RAg*}2M*9$kwg9X2yFLRxC?nK1q)eUb9x zRxeGLzb}b+7QsbiOUNtd0AI;xL*7O14NpC%;7q6Z_+8Vjnna( z>qawehd1YJJ00>EDD^c??Am{4`!zeOyIsIuMWnLp5JkfJyFn6pP^VaAB z-(?fV7P19f@i(ok*xrveXblXWTM(P`U-Xnnj*jMBZ}hUjuhzZ=S3{ff#K=DTSjinc zgd3KRugg10*Byf;G=E--s5rMEKYu$X`K(v#8Br_*E5WrH;5g3QJST;PIQKO+4TexK zV%LQJEJBBi#zM~++A@fr^Ja&_Kg!H?c>Q#Kq(1 zd0ihA>fW;eMS~xULqo~vKY0G|F#rBZ$E~end}J+fcr_D@0`WHKNtTG#f8W3)bNV7i zyhmEP+nvAln;lu(l=)(P+!iZ);=qIFJ>P<7c~uTvs;*Ym&*AOiUc1)+gh|fPUi?^c z(WQf#&nDs8sE_R@5DwTeeXGwmJj4|+Z|+TCijq29N*A;m6BNzk<>n3G# zd0X7h;cW^QV^6=6^dzxHA-WMq5`k`HQU7LB?+ARV;@|qzByrK$844X{7Ccm=%B2c< za1+C{B5ydTCp`e})~?GK3(=h@DzFe{48Ap;3X3pGxTuTqo0=}HRYEQ6qsI@J9dD2K z_um2!lyZ6B@MHH{qmR3Lv6YjMw}y_6ShPoJlxoD4?s)E*A`Q{YM{h-N$UVqP@6ip3 zj^dD$Y~|BDvu{dhBNQ(eRtTmO$XpYVsacCi5lDaHJVNbLnEqT?BXaf;Ap(gST|Y~L zoLgL!mz`HeZ1|p;$jwb(tS^(q!^3;2s6Pq%T{m6uQM|ZW<_X3eIkW-JOU=TkpZPPG zfWnd#z2)ftwHmZ5e8Ay4(EQL~Y$}iRlM`fjU}3#GEX&3)#NY=ylypIuC>VI1FSGO< z{Cq6d_-jFU3sY*T9mVfo^>hoV4bQ9Ps4SdW?-7PIx7>E+U^T`D8U z@sBnPw=`;Mt*0f&N}mwB1M%qVvRg<#$5K8qm80ZsDRhRhPLZ&5a{M&2xEe=xNXRyLgYA3G&{R<1^`nN;1bi^wP&@i+3+u4^#Jk& z`RsXk&m4|JOUyC}JdyG30)6R3s1X%Y8zVTxao>6Fxo#eJ`VDN(ee5AY>`!e91bNHq z>qi&Rw)H&sr(R1p2UoS2xZxVQNUW$wJ&YH;$!Kvi3t{>LC03_f;$G@cLaL4|(4(IN~EeS(PItO4h>B2I!% z9cpDHMnBSI*#=RVnN=tM#?W0H3=DkuhE-gLu@GxtghxPt_aZm#12+wdg))0SfQ%{a z$8pb(%W#q-&>8tMe#L%=As&1h=%ikHw^BdQO?^^*1|?l&c{`p6#d3e1l7;yL2Nr^I zR^QJx8j4<-ifT54&cKtBlKL5`d(g(RvxryLz?~cUD=v&YL4eW2O{n8!*L4a$R^?7z z=AA2zCIyZluJ9(bo^?AeG?ZOjI5rl)pASQ_H`(%Wg0+$9A682Lill?{DAy0M!26y4 zXYUufDS!HU>C}tMMg!n3cgb{4zD=JN=oUWw5IR(-CvO?;i(k`eumBf#3gH8k>)?P{!B%@|$sxS_8aO_BhCA#qJlNhvhZ+o-8TifxMa=sVx0>60gf_V&4( zP9j0z%%(@Xo6i>TT1`j2+XE$-;FDU&a*v4^Ec4T^WtQNMVV57W+uD^-ih=@D$o?Nl>GcFw&)_<2xUQc=wF^$AfBghv`I zZyM4ipu{|mD;2+R%pG@>4KL%U1aK;)H(KFmTMj#l!h2w%Z_7OwGJ7sNtg11wW zT^YEvq=7nZ(Enq|nDpzFVL7#PM@AF-WeHFmez0E*VL<6yI(7Wo#s9PX0Rf(>ZgDNrqZ7 zjBWYr0bQHyy>Phjgc}S#!x=5IjD7$0)0_j(dg{5iZSi;9nx53?su!n zB=xEWyINKN1SN$g`Cj-b{0S9CYOIKHADo1AIe99aTB8d5)(vKBfzCHJA5%;nFpm0* zDBHxTyDY*=o8(@tm$9{j9dR&cXWcfPk<|q;=f~XUD2iV^YDKHeq0&p)6HKBOf)>+b zaa&2(MMz2?X2f%@+8KoChnAEm)^ z5eYny#kPP<2V}7=IG800RC-~pTK6Vj%0t0niLV`FxEi?XiAgu(a%adzphFSzheP3r zR^`Rp3%xFjhgcv&OBSGr(G(#sXfoZKD3Q09DI2CpL07Oheo^(@C?EVIrHW9pUE36k zyT|ZS0>nb30Oss#auiGcHPZ)1A9gaaK-TQAN}2F=_toO$291C1r|QucS;Rt;6xQy` zZ`sySGCy57IXh>4E+P8tpn_zn;$G`RC{f zQ1Ej81PGn7z_`JV+@+2f-fS?l(u;_Qs3r6Rh)cl`wutiPj)5;79UYmIQxBh2-5Hx< zlF!k?!l=AtNt+nDtCp7vkPv`}G+`s@2pW;J`v2uKSgjcamo0z}m4w zHrCTQ42DSjcmzE@9)_SmG2aME-_!JVVTem==fKlWu66$YwC?}-v|vXTihV!9rXb=<3!5m?0E! zEDf>2$n`SwGk-bNV$A@{w#mM}i(MKa!NI+tc!sU(Aw4R+sw%F+a`YA{DXF@u>P;X6 zOmGnVtVE0t;=wL${tJDCV1uIm>Av9tcWv`7KQ0Uhcyi-oF|Ssn#Mc>GDA_OXxacMO zI0zegJ1ZfnYGNn`5BzR#fie^uY0KmPyy=e$$VQ`GZEREy7m*-DzcRt+h2L|!4~mCw z(i*t&>pAq@QGfW5tH--bXM;Hb-AjsxSz09~(E6$yaA)t>DCt>w_`=1yx)eP80AqJC zTX#2)*EaYeiqn`2xdRt3gmNTB3ln6|*J6#6c}{V}%8GCg7g@9r(zDuWvD8i1ZV86Q z+N zT(*|c85wRvyushpX4wt#0*LO`y!mZ2Y9H+DGv##Z&It3;VC9!`D=F#U@%J%aOq~r3>0!pEdG? z!Q)DM&Y&r1oB5xzdDFvVXHp-=0)rD(8cl{`IT)vkh&l@kYdaUD>c);Pv0qd=Jl(6~ z#gcvUB$Li}>m{CTO5$XAN{TX=AH<}XAf&jOPl~Sh8HB-U<%Eb3_wV>P5TIsnIk#BN z+&tbwH6CECc&Pe|AK@*(jh*S^Kn3Vs6p-*+ctCyMyfC1Y1qOH1KYmX&EYW$M$UVkL zFPSwt4xl=5=qwl-D?+n`{X2NEAnEvr+ss<<^YX;bfF(Fa7pWX6`8r8v2%mA3uAh)x#1I7RSAU~3ZN@C2wFmRo$0%Y&=yKYvWv!1`% zA-=>V++-CZ$fZ*s5RmMGnMuv2asxQ)V<%3?uzl>%Dn4PmC3}6uS-FB#0Kuxp&OZxT z>@+<)aH0R!%$Ohz{R5u;gPp0E0H>s{6O)CEMLcwB^k?uu@6WGjL8e6pSnpI{7edHc=YpTW$g|ty4@98!q@~E% z|9^0!#m`|x9M|YdShj+Kh;+)$!nem~_KubT_M6(u?3p-HC5jUk92|VFhZH5v9X@{E z{OR>UkPba{4+j6eG~o^)MEJ;$eRD<;zPTw;E?t8XHTuHGQs51P>_C0LsL&PrR}C_ zUH6`Wj4G|6;a2tGO5XBBmHqZY0w{*#t-ET9y!x<$gtZ{e#uS*ovP<+{;LX9{E@A+) zeQu=1L~zDe^j00FPVlN5NyuF(CH*2N62~Jq$r&~imBUx}?%hkx&%b)mdV1FZ=cgyr z4m1%1sqj;5knFK)^8Y+dJgy+V;~)aA@0sI*-9v-(z>-UUkOa{H=M!$GpEe`lz1U;< zb*u4;K7Ue%rTvXrhm}DN^U|lgYe0CL&r`j0>0M!Aw1C*|_i1Gu92~o13xF8ewX_0s z<}zKMD1Yald+0O3{WbQS_~4VveeObi1ju|mf6a_PgBid|DLsyXdyW2nRw*GShHYkl zd*k5XATl{wDK|H_{Bav4q4;?Q2J`PzpCY59Wkf|q zA?g!g#jiJB(eg%rr`n;A0sj&(QSJB22P&zNBw;nOwcZz>u57D$8phJOBKz;>hzLgz z)zI64416rJ>+lphQTZ`x8?G>L2m{u6AsDb=@|6y$vFe-@sEp%07e$b?jP zFpcE$YW~pd#+N6K7zHvMe+VJi?iA?hg(ek?rn3kOKj_97da6JKF&KDhfc*w7OIJq? zj*+ojpv^+exK}{z$W0udMu*C(gwP-!M!A5LKVvByyo2HPL`n#Fa?Af%z)K1xs}Hw+b45QX6&)tIr3sLlj4%FU z;Cco_P^j$bSts~>A86RsOikJJJWqD|^DicpadL9L@tS=8p;t^j9<^sysDKWOb zo&&|wR{$22a0(_o`N+x3`!E|eXaW-&MtG+oJmnb<90z1Cz3WuP=`mxjhdDKT336MA zeqRmwVc2_z1CHxYh`Lgum4~n9XB}xsw zW+4{-U?C!V0lq%?q36#mI)!cuKtJCV6=ky}BVWYF$D7r^z@ql(lkN@7 z%A5r`9N`Oj_irDpZj<*X4=_1s##Xme#k;vZzpi)fqwgld{F-O^=}b2)ptjcA>|6i! zqYW2{1}FV$i^3S*$RqOOXP6@#>>Tk2vY)0DzB)$s#7txjgMd6w3E0zR6H}hwGaf3h zfWrGj{lCx|tvqSMBnFhU`_Z2Uv-La6%gf;=xo|KJ)yR`6<;U@2ZfWWLXRe^eKlklh zFEVCH1=%oo2oVPD8UJ^TRfwrH_fFLB279G}BtX{%=&<-T0?F^|-ayugVq~{FOFC1PPw>sD^=Y1lX+^#*3-cZt{>?VuDiX^G%kyT@@rER zI5^V%rgt%Aa#IC}#zvOfjK!OaHw*^@9X9o?j&7;6rW-@7?FW(h_`DBxhge(|n^Kk9#a8}`~5SnP8GB5o(r>JQ_TU*!?8 zOY2J2aRs9!C6$N;w8qJjGgmfsb<`fpF@MT=s(YTrDnouK!Svd}Nt+cX`+axy1HekK z7O2m&yb*zg-BoA720J1wZeR7A?MwL&Y+p2f$q3%{VF|ntf_iEgFoDF@^QBu6DaXEG z%8#DY(^)v?|rFM828!Pk%UR^MMTmCiC{tdmAFY+Q2q=CKk}o`bHc4LTi;fT&q-j8m5K@~ z6}UB|s+t+-?qMnE5bbh=E$FEuIayv4WD>I=bH@=_hbL#Ce4%FhOb)NP<#T5T2ze4FTOltuKLeCQ^kLiatfCq5Ydt*A`%A8}-Id$Q*Nj zmn1ZtlzECe8x#?+UD`H0=&CYw z;edaJ!g-l6nF`n-o(L;kOsvAi#aTe6|H4V0`~fGq;_wX6j^FGbvM3h#i_t(C5(S`7 z*i-c(sK}O+2JBR0ZmEf+QYlUtOV{M~ZeLmXHx;fY1Y7F%?OSG=+GJ1s_)MP+W#yI` z9Bznk96KL3zTYy}P^56~f00msZ85?El- zl!^QDhGJWbWoBo^J|U=v)4{`Qr78yB_kJ24?4N(1seZ1Z&$*b%_u5l@G=&29r=R$$ z%auD))LsF#nhTLog8J2X^0xr-W!cf9zqVA<6eoY zFG`I|%lf5nEl!Eu8|F@t$+PIl(d<0iM{3TY#;(E0X4Q}iE-iHpAC$AT`einZ(ST#O zjq^XS#ecoov+98T@Cs0S(&d);7!O`sPvP>ZFfQ5s=(6oeyjr-jd^WAGgXXg#zu|1^ z#ooXnxXb2Fdby#?MQ*Ax>F7@O*x0Lc-?6b2h)Vl8q`k-mwt!{l7|oz4!G=%xe_vX9 z3+Pr57P6ft0pw+Vejeh@+dDfMoz{U^L@80^;@0-gPFp3=m!5~iAt~oibgHz}4pI>9 zYc(2GgikZS^~QpQsfgXF23gXzdB_U*?uj_ez7|91jc%p3lSJI@j(b5`Yx~SmFO_h1%Y&FZVfXb3dl&kGlHnyL?D~%DI^% zBf^!Uxpdv2)-GvF&}p}ic^YwV^6Tnh`&Y~5R%4<%T|sQG0ROv>SOak}=-nd}3U&et z)T25;jY%-j??4G}Ibh2{x0R1jDjyl+1kbWPv|sEF)TZ|!I)lB*xwked4Q9Es`d@^m zbt(h+e7M>LM$R2~NeLi$ao|$_&m(9EM*kfSj>tzDYsD6iO;0Emt&2-P^c&cCWkTK8 z`G%3RvzrgB@RLj|YGsMEx8vi=^4ut#v%M?hdV_5hn?%%ozqog8*j}xViTs$EiP3%2 z)4ZnUh}{umbsZhK6wt4Ror_DpdspkjGbTMS;=J5)^cuiBqBmcF)J5tZT2)KyE+jJo zY9yVwsh4MfpXuD%TpCaDTZSU}Bg-CPhkX|PNCK6$>l*&W3aUsm|czFR5Kt;XG& zX$9m#`G*f3Hwz!=JKwn#`vm=Ons6jnY%lVSaw{o`9A&9j!V;8(nZ;w=lA*QJ#(FG zVwEa(?|Xtd* z+HKqhdeinj>;#_20{-}9jIX^A*RN|}hdFO8^tDRv@)LH94pSZ3xB$##8EDYLJ(Bki zx&_Wa?KgVcqqwfzCR{uZqW(cB>Ti4c6M2P^=e=k5-hzM{Ae#H53==40zr36jgQC!@ zat5W?VOac?J8PjXE{h|gPrt3CbJ0YqIeV~XVqV=8;KLBSJXt$;G~!a}*A#n^JD>9{ zCzjGkcIz)jz9B3O7h`z0ej&&4+t`(x&EGyu^C%~FseL+H|JWaX@J=Idshz8c#O0=C zf6$2|&^H{130m)jSi4D+^gDBKTWwx@y!P6gkbGp*wILTJz$~Igf6i$|w}3G~ad6}P zCMq@JP)BspW@|I}0}nsD+b!&{sS@6<0^RTBM!a1-9qDfTsAQU+Ch3>WIJ0;nBo98` zmh163Jyu#2>ljX0d$jFBKSe6fEQgqF>{c-_;61svv9UkeBXFGr-8VVOeS+9nlS)3Q zNBN}U^~|B;7}m-HP3`#ToHyIpI3y&Jp4Du~h%)$|Nb|EFfYG$<)BM#Y0tY%knY%6m zU{fVcwZA0b1$PJ&nLz>$5ShWlSb)HFKK0dykoXW$pqt86`CcS^@7IlJjkjPxFu;=$L5=TNzhW9*$qJESD{pU2s_@g&AAnr13jGr+>` zT_F;`30!9a|7eLZ{+BOb`T&Eu1OSbw#jXW;q&T??KL(9eV3?YoE`4}7QfZsMy=4o! zXS8808k+l9&DzQXu>`6(-N4HJW1{p0zH@8kZ%i1-<6RKTUprP)GyKGl8CPipw7{|d zObs}xYe{?RQSNRtIB9 zO@4oa8HZfxUbDAV)s`164u#Mi%BTML;JZ&lR*}dLploN1rUR-Z56>I1bGF?XQK00Y zHlB6!z{r$A@@ncO1rla>I3Ygx@)s;8X?Lc6FVxhj{QdhrpfRR3@9zcD_H`~CTMz3* zg!6suu(dTy;0R(eQbG^576*U~=wg}GNb$}1#%iF*Hec?~R0kz7mQFW6@M8?ojV7Or zsOf}Cv~T!tD#h!OEV=|#>9Kcz_w}kJZOBiFdVSF(m^-IEo3any>Eg+HS=v7NUdzJV z1m8!_NDsKOf9#~-o%n{iumNm(g9&)8}=96K4A=jLQjEMilySzPuGpujS;Z%|)qf`?dstza3L1mPMRPx7{XrMJif5cP#Hak|djc5ES!U>tHETo7}fQvxG+B)EvjGv0ji~wy-oMMQSE7n8eZ#Tk3C) zQ0?V?t>TI884le6MJ;Xy`=Zocz{lNG1o-L;h5h9UnK9oE@>MplkGj9unLp5KEEqE? z0e-UUP6O5-k}p^2)mfTgMJ+rD4^6i%lflD?jE&rJ^_{g(=I-ZWlr^Zb;nX;XWZS{V z24uE?*eW0z+}+*#)!TYJPwkhHyHl>;qq@zUUk7!?W8PAet8cs=YC^H9AZZA2$Q>O| zQ_0=gEwjskT3aJz-5SaPAdc!69>Y|GO3%)gy|oD#&Uk$1 zB;?92MBHal>4FbBG016al3|GH!?32)prSEAJz9UD`yUo9C6qS}o|& z+FFpP9H^vo{zN5BjFMIck^zaNH6=*@`^br&xZ($}3EAWBMlv!CpQ?)jYtpD(+SVxB zDMKa%H|DiP>PZlxN#C-Jxj#9`tR1!c&8ur9D$=JJrxQVX`%AB0L4m6HxVCBbEF!_D z>veIGV?|fDr_V<^pbsi*(D_DpI zRjy;OsWTQW00;do0B>c%ptTt-8-h&FY`UgrW%)y0^a6Qb4P-RhC(o#=s$K-S`K>t= zCQ(t3A4Z7VBOS%Ck0HqH-2aA|;nyes=usbl?}kJL1n9lz!rF!8Z1?_*+W33r#XT8x zeVO>sH*slK-?9y(4cw`fvHRvvFCZpv3gRK+tCti^nVCdc-UjSHyu$dl=NxP4Cadjh zBJ?93^FD151E2*=KYl}~83S;pKbYEj_GaD{`RHEIJ@PJ)k@hO1n0}xX&5j8_4@rzYq5*sX_CN%Qx$x;^cf1@Zzp9tB01lM> z;srKgbr_R4tEpW^Ru<(EhVNJss!Zt*Xnj7c$L5a2xZV~9c-9}CL^$aIIg{9J*WI;n zCH&EaiS6Y9C{v0tFpDE^6>>Yc(qb+zFTd>1@a(mL&4#=@8&EfC*!}y6_8NAWUbgts z=(lXYhz*#=Ig|cU`a28qL;AvAt^8Ps>SG^=B?a1VRA-;0ju0;7+@PIhsG~M_Pzy_~0?hORf3oLbue?Qlq zbd>QU^u5I}We>J4;II>K<~)1{LdeKJgpi;8k1d658~sTg4$GGqUv-l>-K{<7vJNdP z5f>D^4PfS*aS(4RZa7ehLEi{x1E;fm>cfCfM+u zHZioavvDP5(YoelIXGZO-6q9Wfrj#erJ4W+xwj-5FM2)3cO?G{lhedaKR>@s933HhElo|fEx&6T9>4!&w}ynydoZfCs5%8uUJJD)HM`f@j-iykWd0JHcPnx&B+D? zPO_3CAogIG;*Y_&iO(9Zb*2gyDk$WDne=DRd`scmk@B*nI~aJiW3qR$50;N=>JFDecuI856Y|*|k zd2!`(iX+LC>(`ZI+c`<1G@gND&`za#8Om^O^*?g|n}nQlv7TVCpvjyROddMbNX4mgLAbHtYw8^gwiE z}m^X{$xjBFiaN(_&bh0wNNb$P8sdT;Tr zSPPldx4iEe&#-z;i3GIsp32S9Vp1Ie*dZ798Jr4$ zaO%6fScItGj>mviXI1-rfc$kax~Kcv!U)j(RWga#kY~)x{fn$*=u*OF05*JWz!(57 z{o119=Z^vZp)`HE`{9Z^;L_K-Y#y?71wnd|6>yT50brUPG5Pavukjey@1|Iyj9c3r z$B@N-6-;9CP6pQ#+P6MA6n^9#0ZEM2C5+kfdUm5}b#CqZfUKCg-uS8~k(aVuUlKCk z#PO0<(Y|U0LE6RYUN0U4RpO@tE7J0GqO{pfBJ%_%D^Q@92 zh?ifR&9|4xW-&OstyHsw;KWCIaG5!yx`k(@v`;-!HZlNrfG9_BSb8*h`z23Q$2nzY z&`s5p;suvsWHzX4PSwB&Dm{CmGEcFWkV5#3sO8A}Tjs}-noR+2z>kSpe<%F-neXPJ z`lzyR=u;7${Ao}B3b=V@qoUsS2j+PBD^+pWD%<{LuS&|Pyk$S~-pFnuc_ST?q|SPy z{YsfUI~PmTeQ87;mN}EFu=2%1Pl_@@>L*}$6w<5qL!5x5rZGD*Mn z0)RWrV{yYX7GkIxkhsWRKm2SQEIfFxX^q&dXJ%$*d%Yo#yl!D48IF-*jWjIG$EY`3 zenkEQSMlV|frg(tt5<-q@ury2213RvI}|%it3EYw@myG)F_5c0ZP?=$0JVN;JZ+~8 zC>9|nkvK2>I#SOcyXIrIrHZjh=QHZ6o|4VG4lKvo2*K~g5+Ga-@s~m5@r}|0v5A}b zP+#vh?kIia#WCJ`Y%f_pjeILe0a~p2f~S)dZJWv}2Ix-*bvq$a2w^U}@@(5Ius0ME zQ#^*MRDj4-ZMZ>Fjt^abDqityQVwbXJNMS^>C<-;)}a3DxVpBq^bKgzS_I)LnF8F$oe@lI`f^O0u?vf#pWtOeVHvvJrqI+9hIeCF4yWRx;cB;=hKo3unlgbaYW z*plsYrb!U+Y2N_dKYd7gpeeDInhkQBZ3rQ+i8_3{(6@E&qUk>5-M!dK9adGO4Z2$A zH*VDS2wzwmZfz0vlXyUL@(G{==0tz$Sz%!}A8`%}^Ii6qm9_RN1mqe|AxGBDnK}*~ zfcy~kY>r&;!api~$JtF|cqL`im$23l3o1_0JI^x!8t{pmP*-+UuKT2@6-s8)bH&VI+Rf_h$G&HXp?dj}3aIqDQHQXa4}_@&h+B5em>to#M#kxj=3&Yg9((egQJlL3=fdeMW+TH08h)Awg==m z%AhaA?|Oy0|BC(oyC4}0&UVI2tFF$^kA-XLny3c#biaZsK82arD#{)#| zZ_n_5L3$EnMA$Dhm3>dl$_ka#K}e*WuCM59l7EsV{Z^ZU9rg&6A*Tc+xGn{26(&EB z86Yalq~|UxtO2i5m14CHLPYP_ep~motf_P{Jv`A`C2?4iKmGA=piumkW53S0cxjD0qqJ+3s9EfLSFNGi z$YR}>tZOi+6+k?w+ZOb*IV;jw!RDDN+yRvm@@1mEf3S$x_4?vY{#GR421CS)9WBLT22|NP74*c46tKf;@*N&}x7zYs z_@4L|ixvPTBwB%2u!9p|?mVxXHt`@CMTehR0~x^K2+|IyP||Ab_z}Mw!B78{5!?b1 ze1C~?E4!k|jpR#2)IXdN@apyI)tvJ3NZ?w{#w)D;()bBthyfN}ZZmTWG-P_c{6&^7 z1mbIZIoSG?B1lj^GmRzD`eIk2A6!k8yWS8Mz$WoU6K$)rPm@b!QXuAvKSvTqT^7V! zdHw&#TRs4DF=RoP{VY-Yg}Y1P@$qu{MKPy`ML*&J#Oyrdl%F{Fz^K*DFq2&r1Re17F7kO1P2?DC^9a;SbezEerLWRMJ6=om6|0k z9FaHolF#CcO}A{BU&OXXLnO`c500!OP`yOSA_w|uz~HK!a>gIAFmw@@@~L5A#dCI- zOMbgx)c@TDBS9Q{NKHCTyW8#J;gA?dLzO>fvn?T%PeE}(FzAJ#$RK3-c6Zm2lY=8Q z;aPPcXw5bF$Au(ik7XKfVa?3BbxquV$Jt)Nge>1BA^6-cEgN5L<{zutAbKkR-6 zi0}BIcp`9#8#1+N58`F^{trwr9g>8Eq*v<4mQ)8l(*ivMKrYjvLJCPRK;SG+*w?Q{ zqO(31?>>CU;J)$7Afusy*y;#h{1TLlfd)c*6^~(XYq(WrizBmh|9$g2iX0l}9*>bB z#7=w$dxyAAkP6(G{ySgpG5&BkXo}3IYu&d& z>y8J92P({u1b-f??8MvRifK6H&mLNdIYf6m9_C)=eMLjOI0Mx6Z+?e_>C<4~ z&Nk@MeM5{xcz1gs72xv&09a9NY6ES z%G1R`d*hmTqa$eHQa0w>xG79lp;7^CsK!Fy_E$#!jx(sntTaw1NcTqZZ4=;5|69L4 z<-Vt9o*cv!xwo^^w=vtATUZ$StoFb}^wn%Ltw9E)-Y7S$e^J782OF`^#E(GSk~X>! zH50&qtHdheYDK9QFdZ&L%; z-;4+0@%496g*Y7RLa_V-DFXw;JP-Ygm}sIDeroEu4de^B|5hSU)_@9x%bkky@)6(P z#K)iKWM?OcH~lIzI|)T)aZAULqFeT_KrCdA|DmP}L^WMZG^cj7D3*OIhlecOl|(K8 zxcdbS0t{1`jpYmIlC})gTT!P7AZ3H{{WQ>XkD9aX>(qsvA?sd>>0ngwe|NEF2I~rANjU%VF`pLE@xd;7Sk)s z(QOD-#}ZG(hL4A(P?ag*v8#0=v?M-6ZsOYT0|8s=?d@p5tWJ0=#<@aWrViXB5Au7u zyR$$&T7Rl^z>-?Z;W;3_rtI10!>;23G?@9fvG;?$y%$W+*uj%=KOZFsn37S`(423J z0;SQJh-jdtq#$e<((VfbZyoa^K{5Ka+)+%Tu~DmJG~9<^;G6;?4Z$ztsM zI!z)3s&$t}N{sD9t)~z=@1I5~P#qJ@et=ACFfT>-vD{;H-#T&cP5z^_k}lbUQTX9& z7~HZwDCI;6MlO{5e$fH{`un4K{vur!CBKG8)f6yL-JSL!7-)lvCqb_~2x!Xzbi?|m zJ$=yxYf$wC)o&6C0A^hVa4g2O?OFLqNBjgK1!d)IWzY@8&JlkP7c}n4AiV044ONdb zMO{+H0ruJPf0B1?zKsD=jJmAHYIeU>0+8GBFCkZQv(5I_C$CZT92(kRMkLGvC-e6B z)`zMp?W{*snu!75N(D$}kh@3qWzr7V5T>Xk8t52*8xOwN)ET6gJ(k-ceB+9I}6lk4Jz&&5Tk9?cg4b5ul9M9B*4)0d2RYaUj|Zs0y^>OR7P* zF}K6li>CKH*4HXA@;fup;#ZnNzPr<;lBj54i|AQL*Fg%sL3d#~RJwAfnca~2L5{(j z$JSE(7>tX=*At1@a!DH5GiFuA3t+3|qDJ z{PDVGk@mJ&`9=Nl@P!V1ps0B?4avs9M!4^At%I&9skL{0wMu~$%fEH}fePklkE<%{&}P;Dcj|6emLfg`@Iq3pG%TYY7f|3heZ$diiOWlL11mhRyc8cTjK#CMI;s*U>vz-fU zTT>tvC9*iK5vaMS66%ennIMf(0JBGIEeOy%=r01!(b)M`0pJ*pPrVvh3$A5apHC^0 z8qB@Y?6{A4xhB*Q@T+EFxwbrMIIYb3XMckvy9V=rl3F{kgglbXE_QaVsY*C(j=AXQ zXSwnIUP!TR!YYMh0`9-r3!H}CWAjJxPqw^i;`QUD?c43mG|ksXu83hF=&Bv|Nc*M^ z$;3wcrC*tx>xTr;-Sp3Y-wn{+hpc1N?F;D1m?;(d@q6t<{T`^4AIRh)O-P}hdSEDU z+sN}|N%#0<)Kx zMgklGa6mt0blFG!j{2{<0SyLrpq(%qpxS@iSmn3koPm&Xtc``$v%8k7O)+sE{2h&j zuM?tfZh^`)gV+hoZSx>t)TSnXRnCEf@$sj$b40J@#WyKcZ`q=K!YZrBfv)-Ef}i?_1wqd+l}3UdMm9 zF1%p!zR!3@+~XeisJywpvteWPc`=0 z6-Gb-pyAO1ilNYp?`O>P7yEa&uP=A3q*M^>wxpyZf2)`_5+LtFLKgYIv9ZJ!(i@Hp z+)n>ilRE06`2YQsXpSQg$o;S%&XH!-e~gtq=6;gvN+Gq#J<>se01o39KeC1KDYK@fn-3E9JEusYI0BC?j;DS*$%sg z>X+GjQ6oXVEJQ2{0OvfvZ=dxWA?F}TSP8fUL!+aqwZgD37~|&|Vy?v@^k7!CC(gGx z=frtuhTr>Yx3P%546y#y&k66<28HOCFWu~U9*6S!N`qnR@Xcg&g#JbiIU#8L+^4xq z-6fsCT*m%08SQHAXbJHO?LB+y=+tks>?sY#6ptsqE!~fptc@A70dFd9Okbgcq9iDM zX}_ehlIKEoYYXrZF@V1K5X;@BRNVgVE}5ix7&{9~=sDH6e-13y>cTk-C@vgc__|27 z#af|kZfs!RasCo`AsPkPR{sYRg2l<-zq`6tsFRZZ)s_L)8ktiIP=Vq%zH{XMkj2JD5HB_L%|I9%JF| zJpN7*wCs}ivGVZG0r&eWVoC+f9)6b00{gL_fV!`LLmU;~KfMiTcoAp36?J~|?c28q zHAZ8^L^}8-M@}G<{y$#kY{DG^DGRvspVc=T8sn`1Q{2Hx1C5Q*pH5|sbaaxL4^+1@ zdvtYmCxO;zFXI82gwNh`1A4uh=d(o^{a z&z(?9ALA@&1_7wWhV@-?*V<$AbiVjmX{wjcSFdd@o^oD$ID=6;|HwEp`0~SRz{iU4 zbETE?H|mK7q_mG8KPLGGIMW!8(pezkaDqW>N?AOuhmMkzWS9q z+O;ByX{OpmQG~ol9v>6zoHB_4X&@DM_*Y9G+0&f0d?61wkpgIh z$2rQUX!O}Eci(TvKtZ;tv;{S*OG7w+Z?M&^-`&+x2||S14V06LOAzQ${Eg_%^_El# zuir0~&#&$w_QNaNG1|{1sOeYRlyAKa$nyt3GYQlsENu=o&&&S1yGW!zfLfOyqgW9J9c7>$4U3@EMDc0flzBGy+NzVq$F{pv6{2ixGOCHe~WJGOH+>BCJ1I z{$|zkGa+`XOec(?@e1|ZUPC}v$J)lLqDfzVB<%-jkOQ)(LT~z$c}5eCPw+pl7Y*tB zYz@I*51r<;I}lm8;}{3RDB_cbQzStE?^?H@=wXUH-R9} zhk1X-3%j$|ig?C~Yf7=c@){w_1%j*BKaO^yjIxYVm~t<(!tZKoXTLLIvwa`D*=WaP#MQ_jQ0_R-O0tLH{qX5|yt)ulfy; zAF>2$_EQr;|4yOtr%N;%WM@rDgbz+hK1q>7DS_>-el6{kwOtaQr{ar37}m7l7wl$K zhef(KcE^DAd17+)KmxE0MdG9zCG2cu@&}cO_RS1C*!Os%ZX>@;{ zgR9g(!8EAp$PB^X>GOt=qzcX#Wd)g8;LAZe{#x}74MP;)z&du;61Lx1{kijJi)%f1 z#zuG?zjJDnZJMNqcyYp>s8&~%L-2JDo|@9)WA7+S$1Q4 z7Tw)p*^}oNw~cm0F@XfxY<=m6;7#;;vr~6sjsRUG%)6I5&s#rpwRlWua1ap;@{+tl zt(Cpc8mmyVNSG=&E2IVu7>}TGqSdSv3l-DZu0nSya@hSy~~g59S>1m@)r2`mVZhp8!{&*Si#OepQC5fS5QbsmZQZ} z3T@1`vCKk-eDBtvw_Qm~ERtq(LgeOx&nwxoy!0{mbm5qfpr^kY_~uFu2M8USC7bxG zSg0X}QH=u2WP)1lt4z(-VTB;vi2-pfrV`e}r@deUfPT{D$jCwNjwa(_Z#*`%6YHhY zicGFad842^P3{Umvm4HBpO(;gwZ^^khx`&jn7cRc^G$UJ$WrryFf|Sy8b>{kPfhF= zgcc8k+i)3wM15o6iQW3kB`iF4tSc5nj(r>+kuX3l2wkm5epSyU%On**^o7?t51l0X zQ0Rb~(#;}Tp80KZHUd>s;2OHJUW4j1sIC4Iv$w};>_Lsovayj z<4GFL8$a3&oHa`awLNLDzeI=)1q8{6nKu3C;`?*3P-9<72#nd~(5Uv{#apM$oX><` zc!|&A5#G}8r0`wTteuMuQK%1ErEGp>oQPKi;Z;=VR^oNyy5vtJGKj>%)gvqIw8b>7?g z;oG-Y`{}F|h(gw8%ogY_e;ykZtCG5Rx^gf(?*H6h(@<0MT}7tZBjz+g`L%jF8*(B^ zFeNzCNN^tlUqQYPIsL(_;*&R0NG6es5E482Gp!N;QAy*M9Z z%D?AHJ;TpV*wQcVv?atlPIF=tUfoeS7)J==BELRWHIt;V#K%o!aX~mG@%|pRTNc&MbuGYN+*AXC03Ml$hCBEI zUj9MU!@8@`*>q#^Z{OKf56QJ-GwPow2CVe^;QZ*gwDsz3zAZbIrrWw|?UxD${#6|vr5@pCT$AibR!2z>qLvB5;O3pP~9 zbsO@T?b%9F$(HY&u@fUIwq~=cseqMg5v0 z6C9vn(dk$l=W8beSl~=UH(P6EZ(Q!u4NP?@%HJFsltQ5tbnL>*{XShY;RW`Df8nNp`=T zD3u=Rbdg=V(7XNz*KpihI~NmTw&wi}7Ln%NtE8)oV$qFDR$hS zIVG-_`{+p6_n03aFG`%;-r?g5BUurQ;b913cFkQr7|C%36w&%KvDWLU%TLW1P>h7f zjrp#Rd6>jq@vxCS(=3&Vh4h)ErnEd}`7*kK1q|u@m}>4`q9&d5yctnJd8dFPlt%_@ z`pu*nKn8mN$9ih$lB*EZAHtIHJso=}p2@qi!bcZ*+jr_N^UsqLEL;TRBRcZyK=HH3I*wDfQc*=E zy4kkX)@T1U^)t+k4M%oEgUE*_@gs^y%55E3)Xh=<*I|~f?;oWclU6o zc04OCl0L-k79h1f@F%|o4tXW2&(C4(vQ00IjB+ZnNtRDjtWqfRewaaY9pi<&ZV+>tY|&4l=!LSacfrb9ML z{JTu?Z4*-aW$6KDpbpOT4D_{dOAq-YCyqNAJWgkBlwzkf@8HZ369;i~EfYDRxC!N+4jLhF+g>}1jnNJYf4XO&S zwrWUWdWK3t;q`t$&p6;tjbUftHMY%v@ry?x^t21vt4AS3hvZxPx#Gi|v?@@%59%HK zi0O!U2rI`=QhMXDpbkEzJTWs?GlIjL6PTkRei)x-Wv@4fZ#WFj9e1(zE0*OQAn>o)D5dTBU$? zN!o?o|DWe{>v285j#anWr%OUp)L&?YPMW{`X^I-Zn9r}+U8hV~$xAd{U%@OB)Xybk zjd=Aa3+1G+2+g!lr9O&rMmAwy`$;+Ll(TQH6=U?)^yYLjaiC5(vSB}yM8>9vgQCc( zXsME|L?{Lv*O9R;4_(k9dA6_p?RA#(m4B%wOwctsY`lRM!FN38oA$MqR~%!%wm)Ca?_wgYcwLDc@3B54id@AP(pUFA#Cp~^ z$v-@YY?l%kU};6Ih3E`3CFUo{rhI#;p4FBEHkjS6ks$b4*e0g z6npHzZmM9Lugxd3T(3O^TZTq91mt!bMA0 zt;qNo+EZ-Bl&8Mp3=A>;RVD=u!U0#!Cji^5|2`524zLRt#mHX1*o_TvQ$I=&kG$st zytQHPl^r@{(P6DaAt=06_{kYKKa_aQx(*Nk9<&~I7s)4ofbw#yKWE}UXY@Q*m=xUK!YJ^U(Hr(|1q2f!k=3@n1bLqO&z}}#X$c} z?^d@He5Psb!kq_d=^vc-vAuBt7Vge@uoB392bP8Y@6N#=`T`uHMR` zR~|VCQ^bM3@*o`jr2!taQu2QgTUeI)--I-sk| zh4}?0E(|))vT`3}MruJEHaaG7V0*@ln`ZQtE^XIbMa0=x+Z5>Qowl^-uS+&H`{XOHQ}kz z+->UUSR%qx%sA-dKz9smU-ctCA-~J~)!Ek^AhAyP=Qr*ty&CY6etNrf-975OBy~N> z^**LEzrRxLMu)Ib_Rj0@OCPeey#NvO2%NQ5$*iO@!lY*%&GW{j(gPKyyFUC3oQ6|z zy(jC%&72@fky@$sx5f4d!L&5PnBdL(_$#4h%6M(t^bkf`{NJ7D#DWypG`(ftHJxva zqXM)1OFS2A)#T3LusRe-1}lB$1-F>~B#+4aB?|$PrJ8@zdhuuPa#Y8s%PT*G8a&Z_ zcpR>JUj2HEFv*>V-2ZP;0Np2{82Cxa^3yqV2%h=<{<{yYV*zcLJ@1BT!q95-gr-aU zOHkrV$uo1$fNl3zcH}(+&q-)9uSy^HR;8<;-c!%k;BsBtA-sG*BW)v^ghf)|Cs9}M z4P60rd%_nVI}mqe^!n=@?Q9$Kiy#Gh>filahK_WbNeZBL;!8&_|pPnuA57O42 z$_MqAXHJ!nAi~3nPB8Y@ZeX>10sX>A@nt6qH3X6Fx|^&ooyTffeXE$DdUU1`mqUYA zqfkdb*1`se{##B7WdV?}e5g1SLf9Bul~|?@x6v{`&j}q6@opOwW#E=S?(>!{4CT#o zbd%IV^$5gd!79tXS~pnxEZEA-DZN?%9R@cr!)ut})W~~N7Ye$Of88hg|KJ%3;O~wV z?e^aZxe+MeH|-yo$xhQG@pqZt2faAhIm{IOgwXIr#8igbc6I99o>!sG>t| zAF30+MZ~FInc9qr;!qrDMrQ%}p-(uc0kg2Aa+<}LVeRW$k|4FQtP#s`3qjzOVaK%ACG*3y|O|WMz168AsRGHzP|`FF0$ouwjmSrt;o0N~m#*?4yxzv+423A%oLU6#E!3~bKOevJ1yYHL6 z&9CJefJ04P@Ap95yKC!*Y4`O%bQR!7`~FB+l8F9L_arb*0IDHK%vkbb$CYZ508ZJ* zv8E>LMa%IzZM_MLT`@lWhnG^Nj_PGumwA%dwKoYca}x@xE<(f+nKgmAK zOnRtzF~MI;Fec<2NJkZ^g)zV?8}1bg**x?5=M7c9K=J!mOhWO~9nC)i)>Bz-O85=r zMAP9vjDfSnde@C!O3f_2vv)sn{ajHWWpuH;kg}lG7!yl-T9SS=fpt(NK6!OSbSM7o z+&vG26he4hqZJfR(W^SUQzxB;63;-@``9<1?9JDi8AYo8atkLXSpLm*!p&kc8gz(( ztPfqB71KmFg@Z+}@aXvybZF)BW#z+D`Wok_d2;@1kMT;_RE{ z4T7x>_v+P^>3ES}XHS>^6NGKFau3nLo{F3;Hw!&TjrihVy)S}83MHJTOJZnkFQ(Ub zp;sC5iY!^R@$0d1wb7WSi*fiTgT(rhyZLn=yzm$N-H<}Wiz6&+UkvQ;8px;vyaw$T zjd-zfRLvYHv2`$IT{YGB-uIp?Va;@-Gi)9!szszdYgS?{QCRQSqOaUP6?*5iTYID% z6i&w(De3_HEh70L1RDzI@d#mbc5O84y}wq~5qe|jI{gmXUZDvw zY}8v#u=?z`NJ~S*qUs{a$G5(F=-x{4H?dwRvN><}%14QJku7*p`R9%6H$Ehns1!@K zxwP8%)w@W9km<;f4PVx8(c%v|o_K(bEpl8>Did0puROGto##pYJF!4W+{eZLiuq6a znPSuxte#21p9b}5ml3}T8x`c`<$it{-d~72-m`bBrH{X?6=7XhNI8BH2CdK#b>MNB z<_VHi|K~0Sb(C#>y#N-b`@9O%2HeR%y|$m&mign*Hq;hWA4FpjaGe)ECTzm0D!3OM zQL1Fwx^m%7*V6ri((UV2G!aDZJUt>Pw3Ros1UdAFyV^oYm-$CIXs72KA{-+wd*1$! z*%|Tl!2Z%K50aI{dn7i*X@cAkeIqSBqvdH_A(r<>(KBeZo9(@>%vddNB9rQEA4*&a~Ce!Co#YYAhIvG@29aZQ_Uz)(J=8a$u;W7ULMLZ6WJx} zfsMo*%hDI*%Hq$bJcnfh>EbI#6U##$=&w(KtPB3!Zt}G*A~CvrzB*5YO9cBFTYZtp z$?bxk^t{=|Sv%^W<;T(YWVu}wLUCFA*u|t^vQgHokip?-289e_8vb8(I8fHi-cKUk zc`8@#iOAQW0tA^zb}}xEwt0>Nb2z(@c)8#Kr*RtSiIBOp7?phpM?rrZ&4tD=uktOX z{Kt29JdHmj>e(vU_le%z{gb6Jp^4<_bZCR@ObzYd*^4?lgej0>n&?M&M63rhk|D;7 zRv`9MYB#=xDHv;R(phhPn&ix(YhfKiV`IbQ%pAA=S4oIq+JEmTzHn< z=IJX1Dk~=&%EX&CkImdWO0P&^s`U|DXX-S-RsN0PNA2P?hFd7`4>o(k*snEAgDQ!V zw1$sZ-?d24zqQTQL?#?!{AqtbA^BNF4VA&k*{6ZTXK;EvljF$vcOcuWx4dgdyt`Aw z=yoOwYPhLnENjd(FH^Vz@1dPNr;P$PldtJ5l?bgJ`RI>DMp_V2TbuT{cmceV|X|Au{qJ2`bU`qkgIKy;H@7L|7 zAcz(HTX8h@4i=}%{B;lQ<8>oQ-V|HT!}JEb^vC!ARkA)_dgi+Ai^w%N|5vU-2NUwZ zS9CplM;pFH&K65c$u+E0C+xiXNGrUrjO53zz#D0K2qUzCTdfz(`U%GHWMI$lmf}5~ zW&R(Gc}o)i4hiFDzwPaFal3*if*15MBwP!615fHh+2v9A&4!r2FG%L2K!Uf2sh9h% z&E%rXIaJdg4cA)Wwq-K?Bt8aU+b8y=zo5p7VRYv0b|?mvgT7H0n|G7ONt8IIci%9T z$ysYe@EAKKchUAVIjwc<8S0GI523^*Yqq>-Hy4+)oaf6cH7R!i!H?2U@03xGl>QbE z4a}RwEm+u{B4Z*0WL=BT6jdD==U=j_{Bd?zr9bo$@}rGya30K^u>K#vEu+f)6izs~ z-40~}EljEWP0lmop4Ej7iSn^N_yo3CIYhMyC^qQF5JaLu4}{)TiBEs`!+{nXd_M9i z!3XIJA{$=0FwTvwa7BiFWojl5gni8(bW1C95XW&Ug_5)afJ(;^HBMKnB?8bv~!Q;u$OR%>n7_YnUF0@!1zH zBOtttH1>yVytwHlCbVutO|+gMGV@%Y&mIfwkOxi!Uq$%+$ym3K_cJpN3+y$vL1It= zj;&7agYwk-k~3?83Gt9s^F1x}X7&5p1+?vR7#F+Jv-)W)?9N2VUtU$Z@>B0(tn2uE z-P$usW7jE|_$L(aUUGNemi}Bx(!fr#SH!Tu3zAQ3ApN6B`1<)Onp}`qL1b4BjF$+B^mgHZ(u4^4yJ|~%hpEzL`@*VETPf}au7-AEof=hu+8$Z;0$!q@^1Uw zA~y4{lH~uEaHGUKa*5M%yiPKI=Aa!b_n`=hP9-6LiH&{kcLC%q)_ej8h>_d$GHTJb zjb@-SKZ0mM6p0&XiI__DW};k@Q4e6mga9Li@kNEJ0aq&qwgbh-<5IMJI2w{GtE%E# zTN&OpH#grDK3l*Sd&m>gd~EtCWByOEVbiBCNJv-t{1Oj6hW|Jpxnnwz)6igRY{tt5 zDZp*Lc#sH{tN505ge~+arJe6S+D9tLzH7a`dKw*y1A~jt@m1d<-I%{rEwm5J`Qe&< z#5~9StLPsu?e`!Mv-?X|S0EtjEb%4Mnp_O&GV}9mE&5+McqXuHf-Km2{p#z+qx`c6OHUSVwGU0Yq9b z4;@1*?xq+PhV-ZEQ&p8F#1}3NHjMGZd()}45yf!&De(t$5J(?{FS>|zdDFG+o%_O& zvW`+}YqWC+S>W%Uu7P}v7(=rYNhuM=2OHqXa$eo~ zFFm8ZB|3~1=;7+NvzW&sW!tuJC3Sj8GCs%>SZk?S?F7J79+jULpgcl&70*Qq+*i@y z-G3zb_q*R!(DP<`&wsn|IQ2WS_GdYT0eM)pHtytfVfZzqoJ|E4%3CRPs*K+@K1ETY zjNG$OOT-OK<0C6dEdp1j`}60|1{m!E^9P?YwqqAsJ%_g>&%_Ew)$cv=^YFeRARx#h zSqQkhk+1w*DcSmG9^nF<>O)O$K`34$4m=lQ=6Wp+iO+~|YW9@dER4X`IK=_>5Td$P zYUdyT^;U_hUEP>IOH)mf0dcAH%Z>vsI^5d9Ar)}gQ5&P9qDGG1>iS$9T8e=+#`hxZ z=jxOiUN8AyDKrIQ9{Jsics<`R`uO1Z*iFC2A~Lb_W!<~n9)98i)i5Ic;Rju&sRIK} zN6)%PXo$;~Hg6xrjKrWlrt6z|m~raf88+)bs`%TOdG`^<#mpJ6h%$O!Y0QXm@>}~u znC5EVbW$cIlZ}#=3%*zyM)f=E61UTMYW*@!MF?%YMYo&N%R1xp_pL}!^1+(E$Rwip zYt;dE;txIBT2s6Q3JMClFRb2mNX%?u2jep>*Gmcsy~?BNzP&XKxZls~tA0S$Cn-gJ zG!gndV=40F5g#9E&D*{2&V|GDY74z_yRG4`?vDVfis(-fY>R3YALGwIt5Tt9 z(;epTzBmXM76?&N$8Li}eOqJY-ahwML(PbI27H@-Nc^TWXYyRfG1M?GyFBT62lZtC z8t|A8DfhW==Q{&Bm7WgE@$%R^EVk)`P2ge|d!C(ktSMjwgT|k1|eU# zioV`pyH6)TvT^q(e}g!@?dd;0YUwTv1t#?HVV1QdN?egjdR7iy+acKEEarDv_p`~l z_ZSyQb2i@ui%U$rO02pDx&p$3KrJfAG)HOdzW=$|;Mmwhr1ewGVlV0CZuEK6xC<;4 zz4L{m=BD)r7ZSlXOQv&fw1nSz2I|^8OQjbjb$LZr%Ik_Bs6FIX62|SjHB!MK$D5>= zGMxNoMFYcoS-yl5Udog@DlZZ6s3XAHg_iM@ynEg|F@;+_iA%BnGx8g>nyR<1LA{Uj zrfs%f8g9PcU_AGA7~Xs6dDm_f%?j7ImJ8}X7B-GM36&Y3bA!8(Oi|t|CH$(Q|A?Xs z?iQAoXVx6Ey;?kmEbAr9H0ULcG`O%S2;h8u`;3%aT6rRmr>_ug}tQE;@e8nR?RQlUP=}q_)hN|9nKG|k`^h|%JJM9@Jo0^r~ z+y+lh38iLcldU@FoemQF)&5=}%o|Uy6k@)Vp zAcwia6B8392s0E6Gfa4Jj;f_aG5Pv``tn}4Piz}vu2^(QzV%urH_%$<_lpgPP>l8D zc{rdZ>p;q6HGuV|(Gv|Fnx zU;fhyqfrJ8nos%WNOV$S{xTSR`hzkVTL#Q@Mj_aJ{dQt|>AxrcgjGtLxy+G=8OSu^$GBOq*UCKHK1l1J~JoXE)r_a3h{6wPj zNFu{}fjfn7uQQ2g^kTxgPL1Ckn+oGz}q9y#nG^?TPJbRNTPmsqx*uu~|v zh!*iR>JXCCQ>{1`7t5TQSO;$Xevy*#p@zDLo(-QAr^sf->KO&a#(8=o{m8{%!H3)7fD7JL|La{s zZ`jIj8X&iJU)8HLBjbT!rMb|7FApw5IA(4X7SveGPv;aF#*E65!YJO#$33BU6ne5H76y+wjc){&zdUt}@3P~46&NxrbK zz$&n2C3Tg#zOgZw-f_$#NP!q(L8d%7IH)n}#n5kbT-Y7Xg5_z9P#GPejWI0--1%KF z$ztBlzP-uZnXTPAJ$TLw<2l6zxJ3E-T}LQj5W?+W_fuY3vDs||N5^X85pJ=-IxJB> zUm9K`L#}yF1-2M;V5oep6vp3M)2yCMaZD+W@Vz$4daJI!=-(f*6_A2_DdY4#Yn)}q z^_S*6K-*9V%N|Bl>c}sT932jdd)u@SnVml=BqH_~4g>#DRl8>?Hj#aSHWGXJ zw;frM3c#vrJ^5F;esha83t=tr+iyRMA?Iad`96J9Z*nEPg7(VZeuVk`%?59PjhnZR zw|5K%FWbX-soN&x`=`kS9Pp}->;GU>Kf<>BXhm~E*1uzZU3`S&MP$2A{u1f2ei^Ws zW>1t4z7a>^-N~Nr(lyW;9^Jzva{#XPbQzE3cde=SYI=l-i6M3$A(mi~ZbemW2Ly|cXqW5E{EuO|E zGunyH?kK!0BbgLed^;q7#};(ez5gJBdSWkjc+yTr8rx$~&?qNt`dB(GyW|k+N|KCn zbn&69ciJGs*B1b0$(@hR_y58Vw(e-{4g*D}L%+nu^d=b3D#nmCy8UlHm~Nv;O}V9G$K~;czD#GR~T3dEo8o%QeO#?V}iCBa{NWs7XS22LUj8z*vlrTB??;u^rmDSIdCuA ziTq_vV3!00Tp4ZG_b@0>^?VDArf?;q3bFF4fp-~v88llAPF#XGM5kjNTn>ykuFlal ztlv%9;4>}mWo=;QlvS&uwUCTO-5+c}$hxNMP&NQd2b^VT2{JoY$I7yn44bM{Z!G0K z?_FAB$Dw0EGj!f)i*=_AXYNhsOYkWT5C3Uhhdqm?{bC`Eit7fJxkaz!i@X^7pt%W} zuS_KAZ^KBZ2evbywMCDox?IIbE}(h{|60HA7x2IZ=5#&wL2A<#Z0HhkMS6laMnlPR z`_pw?2?lH8BMyli6ci8`AzZ$G-`>7J+q*?WlBu&9buUCKP)<&6G2p{I1Rdh|B_lK) z7a8Vc?}tL567#h(Om?Zg%!QtUhGB)d#y>3+WFFBbHam$b^>hP2(z)aUXD&+lK|it_ zce?-0qjV3y*B}02{#-kc!$Kh7?cqwGWpKib0^WG%aF;7iIH(vSE90dvP<8DkKUm0A9L_q zD6xmzmJ%fURi#VaXS6xA;Uc_8FwKtjG9Q&fAx`6$#S?aCZam^n9|}|1hE*3g>!hhE zI7odrDo{1|RJWBr;*Z_=bXUpB+yX9WzjT!h(WTxOR^(8XV?TW$772DSDc^ zG!K+LQ*8fT#EG78Gl*u(2FMT6!$BrXFCa`bOponYM$>5 zdlU5?e9h{sDH45ln143{ip{$(G&sxMWkrP!?(X%2v)xcyUyV|kAw6eDO)#REnwpxF zn#uz5PuAC%8)aDCV&luS!3iM(5rk6LRX`ts3U1a<3=lQF!8>zu6!RWKK@kAr+l_;>Bt`m!u<|fj$Ycg1aT}XImJ^w*7=uBC8)C=AL z1`9gmd4=^oqK=X717uqEKN1-0oIWZ<3k=`lBJd?bv4G@e;8Qkx-s8fZudY{;m zU@JBg%LntJe10*0Gxoa46<`GbHE4*MU0QWpc5W#iRm3rRY{9@%{CtCj3g1%sxqhl9 z3ZW=EHG2r*r-qC^IdAmERxX(||D1i$zUw+0f9(;qs)S*xL1EiIfU7>b7 z-I5H9j6H!ay8e&%%o&cCJ7#9|P-U?ucS#X2==vQ$xPWf>F+=h3CL&^oqGSF}yDuX{ z(+??+cW<}_ks-eF+Ec$t-@zC3f(lW8kTdh@F0Z_HQ1#^j0X6f*?g-!~f;Q1J&fhc; z!NDQ+{!!u3fHPC}Jg@soGU4rQj=t(YR`iDUwW!_g^f4GGUaIA3f$k?ag7XDp@%Wki zK%>CZ+`Lw)+kLz4;H*1vk*^Zn*b2t89YKTAj{F#er* zeDbS8uBJdpElQC1`aG+(s_EXVq_p@a&t;>na6>}51(Zy^_R-58d37X3Rv4kZmzSV; znXCQa#gqLPwhfbI=@Wi2DEViOuCBEJj;Cq&;IZFbXq|=~6ql4-xm_T<&iQv!6t}9$ zpnm=VeLp0sw4v+;ZH)7FRw@1W6Y1)W&uNvHyFZ#u`(7Jl3%TP1FRTO!@i3}X@>K-1#~5qpD3CPG@h@HM`RJ;Jc+h^)1!<8IGh+$p5a`k2XUG_R z(R;f%6+^ug+V}a{1$$BumSnnWj9mTfVqZt#_)o2ot4$w&K6D64O=1I0KU6fqPFW^m znVPbSqMnaNYPNJuQ91hdPx!QIh&(0J$e_O}|Ll zyNO7MGGw!Ja?}QPVzT#fe%AX)lE{o}JZ~J5YV+)4zBDjNVSPK7LpblQq7j%}c?kK{ zZ@Lb3^W%Ki*zBiY{4+lEJ-3RlA#{@$)LIUfzfpIU!3o1V)UDTD=1_&=A4F_S|E{5h2Hsm#ynmL$dDgwo@`tq062J2JKAr( z67{EIc-#H1S5B6-I|@CAf8dpCFJ}x?MN5X4q~}AxC@J-rbX@e@I3PM6u3tj+G4*4kgYy#ko^2JCyOYyPq-EZ-G^u#l9iPJ#j|x2>0B$>gXN#?a1Q!uW%(y%!l8pn zWcOob^@9eL9%D1Af5pHE3q}bySn+d*D@R{1Kd!fDA5CyjnXHDV*uUp%G3)J0i&XqD z9LP>lrI(TpVI!;@O1oN)-LzYg%_Z@W$HT{<969&qR+p5V*|iZjbaKf`xEK2nl5u6( zvR_;K*1_7>mv(%QC~#Iz{!7UGd0tiUyEqq?6v6z@*zpJTfAJB!Z0yemAX4s|IHq{= z3S~s}{6J@C?dcuc_W*6*K>0`R1(}rRnWN}6WL{7`fXkOkkN5xm$!5#*PWKK}LixHS z>p$t8eyu3lK8=N>iLZvq*=V@0fVXDVwsPw~`1m~X@%P1+9@4etlyusHuHNy@>p>%L znEZr5tfgkCdJWkMI_i~IJ@&-gwB7}2a zDwb9D>OEzGLJf`o0UGo6V-sGVU_iIquT1X#1f(uqk1h#eTNe}*#QN_WzHVnh$ZTxT zES-nh|7@C=I%$0`(WF=b63b)|=*S0XA*!0gBf0_M9Mg-yT#U>`M`LuXGRnxI=D%`mG@u%MU&4%~vdP(!&y3%6uP8@Q{*1+9029#ZQC%QUh^l1*KMsw)|R^(k7=x3wNLy0_Q z?SvA~_SW~?`faQ4MNQ&hY($p<5^K5JN59obw!*?fSuBMefN|z=%dvew5|P*_DiEBU-dJ3C?)0poAjh(Qcr^zG9-gp zhajlZo#WS+7_Ym)hA(+z?_VqftDgsIEQi+-bEJM(r&PA%aerp5-lq2SJTY7X9Q!#{ zS0b1uMLH3kZnpP2hmdtkF7= z8f41SP@PTk6{N7Ts_s?%z4%jC;@h zXAj5NV{c)8XT0$|pEvtyJRal+pS)XIkjF==W}e)2@7wJ4a{Nf+hy2cRw@wlW&zb41U(Laz-AKD`yUAzMSC#Mh`L&s6p<}LT@In!O~=;7(o_wm7ky$kd$EKk?{;qz#L5%x*g=rPW93^M)2Ah(C7H zGS%VV?N7Ax*^e$kb2CJN?ri1}`0yY1$l`Ogbo0^q-r^MZ`o4c(-Yy?lliGR&+-fSv z^FWTbTE!}T^&lyYQhzFGjvQt0whb%Zm5En)|MF?YCIJJ^?YHzl4^|XA9W;d?nWPjN zv>KFK?W%VA*;l?n>EtIK;SVd4p%-|swb55&CA6QOVTwxBU-v z0XWTCmcA-c&a!A(;l-sv$9tRj5RsQzkFSv;;OOxJ>CO;lB%BiZ^k<&B|EimfC;8kx zCQ;&n*PJi!&hPJ*MyIDgOeT8)UNb315x4hcUuF>fONn8FW!@-;(tiio8B#ud z%_W%J9qyiJMwXBM{ndCg;)K?6%V|bn2_n5!0!r79;^>N5Uk{oY?c)*jsGhS2At3OZ zthu-19SmlOv!jsj`YWz~2~IQ)DAM{VNZ1HwV_;K>ntt%`_Lg|`yiA(T8)Vlh*!?yR zx}f|&A)e%ehPL&wp-mBK8tq`<*=pIB1VZH785sR5x#<@wg>_ zT$ZA61u0o}FO!l#WbG^Cw2}_(iO%d0%Y0vcX9e zn8(GRK3cYyIRgSS+GbbKX-4pvW(CtbciAaK(bhkn*}L$vlDT#~iKO zLFy23{sv8M_F&64C9UXC7Xo9VdZN>!TNCQnsH*IEQbIuW}V zn@D_b6e(ZeJc&SIZ2HbUMcr?LF~-a=PyChYHy0&p7t@9ngo+CD>o(P~0U+MWw{%*Z zBV}s*NR=dBlU{XF3+n^xp`Qr9apeLEKd1pHK{@)6tQd!><}?TlJB0hA42@F~a4p9K zcl#?U>X%XRU|jerGa&x7j$s^5m`COIWuDqh8JhKlv>-rGuu=HE&(%_oXrW0dSXg}9 zovl=PcDwze&**l-=u3Cx(sjcUzhJ%$=dqUu0N})ciK1V+aqBuaYLN~c?=a0)v}321 z~ z?IQG3braL_L6h=1l$ADBa3A8y5yEGre)&eUsK3_RGSXcx5$Kc*t*?lvs{EaPO@7^eH5skwo>p|VFS^;RaTS(8$640 z+__t-!R6{}+IP!@i2&BvppIHoMfq7)kI48nhF+RxH%{o)4Xa8y!N6x*f%>Rh)*b|k zVjn>Xs5;}^%Cy~5D2GmfT-U{K;JCdbCCt=#Xjcw>T|G59CW7&N`W!R*lUC8Lh$QS|^%Uu9j?-jqSnC<5QE?(X2% zT3UTL-WM_i9W9EHg@r64Zbx}NJ2fBY1TU+-uZ37SIO0Jx$}9)t8TEIwmod0dy=2UA z=Y}-Ce=WGL7sCm}&$uhR`&#~JYRutBFq{zwWSQJp%&vr?J&xFSHxbyG>Zil#Q6aih z=r|E@@F#T%M45|Q(Ef>#An`#Xd0UGnzqSh;a*rx#CXD>*@wX2(4C5@^ksuYa%+I`0 zk#AgqR^-)G76bjvWm^$R-_b6L(j$a2HgN0|5X8_;)#zLQd?^knFM4WF&ZF@TgBZT- zlW+b(pNr1kP2nKxX2Y+~lvVn0Z{rYnBqlpyX*E2Nbv4QS++q6D-yePbXJJgEXFlYF#I0W zORYpO6kA>;kZ#x(s9i7+eCC(vOpQi?h92G!bhjlT>1d1Eh+x2m-&DeXbNxI>e8$1F zZ}5e42z(2q#bnB^p$bq_{Dzu-?Z%80RaGTe13S!l2y>6x30`zZQi<6$$t9nI+1hby zYo>1Zx91VoSJXEx)THRGH>Lgz_n>X~jt-i}S1HqyCx=A068^GMWq6t9A62M>cc<|v_o@ntMtfe4f-mD&Q4E~0{Dvs^9Y z?2ALluPc{EQT2;=PX|_3!YVgr${tk2PC!2CvbJ1kvoB{p!_FK1T|1!NyMF->*_PF| zg913!RY~1b*|uWPK_W zNPL~;$BzPT5`cnYUL|pRGFBB)(ri-xZHr@OTpWFPj^!ZjXA-l}MxUT?KcQrV2~)EP z;STL)*&D|=2W=R~ZKq$K8ClwE0}&{Yc4t^8EI0gf%7ZO;;N>_k^dO4IFF=mMb8@PT z&J^`5UQlG?46F$3ne(NDyunu)L&U*85}|cF*7qyrUl+-gd=~Z8-?@%i!nJzQ8VN_f zO#Sn!g2GP~=T}ib0{V&D`p9%v*udv7hVS>vm!BZ74>(XRT8vAARFCy3|9{2gyx2Eq zKb~GIJc#FcuZwpFZSC0LTNIEuoMkM#(i|Ofo|gGAFBa6;C}Tm!Ct#F7C<62<8g_eq z@J3mbjzOr+epzWtk-5DnZz7#@WD#U&;ImW`UMmcMfR3fclZ0aZgL7&HUD9xqdsctH zR!Z$7N;K$2{ibuebYxq;wk)Xj^sGlSR5-Bw(rW|%t*+%h)h2kevh4qkvp%pm)&ock zqXDh{MQdwo|20r9br*Fgo0;XCnwoZl_Q?kacl{%w zTV9O6LvrwE#uY0v)o8jwR**PPnQdJ7JrWeQ_}_XbTHE$0+k@Gf7A%+ z$g8A}-k}kn@e|~Tx5k5{jw*VV&S!cdcR(AA{Y zw~Xdf^*U=6b8(DmFbxDxpH(`+b-JM9>e_2Z*az_D6l+DLd_x6c#HU9J>k*g{4)wK~ zqKGR%P>&q71fPou9J{pvp#-DOA>UI6mAliomHut7+?>5a>q{#oeY>0z%pb@aNH}2| zD^n$)cumT9o@+9dfAhZD&Bn{(MOn|7JdRm`9Bg={2s5^Y`W+;mkir65F0xpi`m5*r zA5g#0F}FEzq=Rqm?+b?XdLPAQDr#uNJfu)8kw9a3>vj^Q-gjo-Eanqt5R+%{Yx1(*m_Q+PHDs5(WQ z(dq9#;JN{uSo&E3&wWrx+44&zJ|a7VzYnH0%KH(jx~PMqA?*31rX!? zkMtSTcBQ#MJ_SknZj*wFDNF=&qMO-&@nVu3!#6udW5zEpF5^nZmdXAxoRsRmdrJ|F zVT^yz*sXP7z!n0U#Kp5;7akmkT@?}SUC1Dj-Rh|Sb8xPuY_b`>_7-}-J#dLox+)*r z0i?T{@(Z4#-Xk-X7!`*S)eYTM{>7RJK%7`UIKTLCM#2OI1TfaWJ!C`x4A^Z^s#spW zT#7b*2t-F1jxLm9E~;KvW0~YzcqAmuKn0ut2#|}-*bv)l@JLy+Dql7r*TCt6_dje= zMlZR0<&-9C=%kL=q`iA zjMPQfCoNBefY6JK>-C$qvLB5m&B9)ux4tiXf;>voYZ5n8(x(9nq*v6@Jrl$mAoy}} zaZv`7F0gQLQr(~gNnKrCD!RJlX(^ppCvQI=>m}b4*vTp=sC@cVD=RO*$a_%zoe>oh zS1e;;BWjcJbH`t1TcLHc8($Iwif@hr-9ixioVV%Z!`apJv0I>mqGwo$=722>9F2_} zX*kF>9u9~9a;Iaj7SO7cU=$$X{Iy-$-A(G-n*Z(7$R?rV5M7w2f#VWNwcK)CO1~Gl z+59aDDL|u&1t1 zdNDrWdZUw8kd!llrS~haou--+sC@Q+_g#T!d=~flD3oY-!yUKu_pV4Ub)Nx6WsfDT&qL1_|x^T;Wovk0Wnx2``r7wbeF7UNN2qC%PqDm{D1KokhmvZ6qVFsHPWUvQ*5}J zEgZLd-e4?>{kN|F$CC`|9`c42G_GAWvue4t8G#+4RB*lspS5_+9EWowOA^@cXO09b zNd;D-YsJ9KnySx`x|~pnW~gHk%wgZ7j7ko}t>Q7}laZ8YZp8xsL{2}vMt~N&Z9^7X zcCZBDq_W9kzGHn|HrWq~SzW#1jJ(17Q) zn%G@oP+?i>tw&9xo|n^Fttqq2pruKMX^Y!;ve{#Be8S&HMe6(4Ki_j8J1#Nj#mSbx zd#8V{8VZ;x+Cwv$n#;5~&8u;Oy{F;6E4=(J)*Ynfgd&QWt-rX%ctvTzkPX?*;V{@U z#xA)YzoPQBm$Bye#Ek`Vo0T$I9iFf4i}Fdh}7<7b5;T|LU<(N$XW1XJnf1=0w% zO@knah~7VIq`jQ^Ci<=LKx(Z^;nA}nvd^N%e=8mf_&$P|_)skbvt0I+k&6U)kb&y` zT1;h_8K>9I_!hRIWT`J2;@Ihi;pMd}y9Sy)0`E+D8H-#_S+wc@-`e8AhG(+M+$9?? zXU$X%6&R^SekF3MrJa2_uwgGih??%U`{uuKthY%)JLW)g^e#aO@oKu8hhcae9p{|w z*XchjfZmgiAioWIU>$5U2@dzV_VD{5$yLw2%OTym##1vha-hB3auaY#y85d13|aW? zM?b%rhUhbch@DI&Aa^C$5xM^Lue4LGPQNZBOy_;r*T)yG7`4Z^UGD0Zm?!g93>Ob_ zQ<5_Ij1^54LPebv6s>hq^ZarHAFQ)WwF(b_i9K}v=#yR3+8R}WqCEht^V2r5WpZM` z&p|6EY|a+uhd8{6&nYzm#UEH|#y9PqQcZO6LcGhB3F0kT7iBWyPrx&n5E`ajj?<5~&VJKVR8J3-pyWGkm8gh!@2(;o z$buT3c@Yq=m%4eb8&Y5SD7;hkpSRu%B9P&XJ@jHQnla$$qv0f=CIW{(O8%dg;h%l~ z7!RgzvzzG3E!c|+qqFV2SpnKCQ$m_cdA&>%Uj^ZegZ$_b@euSVSMG88q_^=grwhni zym2|rCQOr#XXgLB7q;2)N4dZHmw+jla)$v&irB+MBZZ;E9}NpOZX*7NEeFhHL|aFc zb@i~(%hpKC;%A#P0i#+p2JD(j0#5#i3W2#DnRx_y4XV7|@zrX`kP{wG+bzE4+y+@+!Rj`~u#>dR%k`dL>H_4zR%#!Y!$rz^+RyXdHWUX%6{d54V@^|~A4bb{R*rck2t zke9ir`2OgE(Fq6wSqt@m{zJeikrJ`40M3B0TZ4h2h)z)ZdTu$U$Yn;GV*&MQ=uUA% zBr3$CaZKt*dA7o0*L;v0bW7^?+i8uw{B+Q_fxN3X4@8vXzY!1b^Zt`sSB_uZn7~qaJz^+ zL>FsTHGT*lZ~wx|dNnX!oV*)78x5g=f8Pqg{`C9iOvX%`Cnfsg=>03e(Bj~Ct3v|S zZS;wMZ;tfH88`>i+y!0tRIV$@rFwrpvA==&HDLtiF z#=9VOP~X%26459MT6FFKGamm=!ob&e*QJ-}&}Tjz7!Sx40uDj5f9lTbr-?@d2;#`cxALLG9J?V z+IQ&yr?P@N;ftEY50sSD>wG&%k^Z7}#az?G{H_WJxr;UQNvvm)1_I5(S>W49kN-0NL2DP-3b2SECJe z0a5gbPvcR4gqqvs#goPPrt@qy)klfKRlvNoIW;>RyVcwLDd7{*w_Ap5$Bj5t5L zP{{DuQ`$@{i=W>=H1wmk^+IeF`m0eN4;r6I4gT%G`Pq~5nNSvH+WSVBe;@%pN<)!6 zacMU;DRPkqk2;F3fTp3sGv=w2E#d>!fw$>DQ(f9x3k z7Yo2LuM|TC85Q~{hQfcuTmiu}$&|6XExJ-SHIsqW?%hKL(WEhgdH#UA?&m**8x#tl z7|!{k03TE!C*a^ZF8R_grCcw|I~Dz7XQAEo)k=wx7{PLjqn&+IzN;eeupy+JAUnzS z@WJZ%e6I|K1zout5pbB;4gd;LC}tSWJCV>a_Xrty+ z4^q1k4!7t=%ezRnx(?Q6dTvIwoNUJ1Jy-U1eB#4N8s%e)56?&nn1PE!?~BbpP}a&M zCDM_@GfwqkwC}mz+KWi=3z0laYW-Atv6vfo9hX08h!9?CX03ZJ8hd<(kFJtP(LH^u zG%Bkvz|RvkvC(P%kl@?dek1BGJ{$~q6j%3wKCc--MDbT{hhj{!e9)#|)RuWk&op4k zM(uK>!=9Nn*8ra`Qq<+s47;Xk4>thvBe5FzWdc%Tt-@D6XglACuEM+Ulz4*IwBp_V znELkoEaW|~`oao-d-I4y+NzLbW}3YieTu_hp@mP@G0&K88S-Zj6P_i16?74S)|-l# zB0>WqUQ7N*XyN4M2+*hM@P2Ulv$x~ zbH({Lofv>*{=e>v3Q2oR$K)cr>Dj1`-#AGcVKFbb^C3*zq9oMSHsxu?L`7 zdYfDnZ`wtXeq$5!gkVM4Eh_Yfq z<9%i}KJ&Mp;c`3>+T;5Jfc{V+#}?3)T33%-Al26j8^{G_Ic=@4U`1t!C}<>{v1nsL z5FTG{mzCr5y=;Uf*4~c-O~X`8A=wQ27o0#h%tX(ZfAF?r(%+gs(~n^WBnxI-AzaQQ z{${_)3}Xg1g?HQt{z!_}JY`c(jD*eflqa93ZvTvsuU^&>#IV%$j^;n*Z`oOAgTpOT zl*B+b!>7=__}{J232p`Zs;XCu4dX0HxD#6biqBd<8c|_WqC#=0u5xpyBK%EBn+K*K zEOC`?tf2S(0sauLU5r?BNbqG6vvjV|IPdDFB6e=l_FYrpB(7Y3u{1TPgvOmrLGGU8hG2zTII3 zF-C2gNEp!HZ=8r70Kp+4bD z#)k3eni7tx$76~FgbaK6*PAoS^|?^Db%5JAhvt{uP$fzB_I1m;{4ew~o>(3mpYf3Y zpmU@@$Jq2<4cJtJqr$FoQC6x(Hlev?$>GXnaMn4%a<))N74#9@F_B}kbA0s(AJ?$AD zj=rqw?(UxRlmc3J`s>f%-ha8^tR6O$HwEN`uGiQ7C$}EDSy}VF6wyd){P9CW-uK-O z$2V)q=3IzTBO`had9|pkx5V4K)G_zRclg~1ohtg{Cu%yc=KTI4>Ld;T@93FCS7)cq zIV!N-bs}hJXl%Xs(_jB~BuCCMha3LdakblxA4QV1H|?z&se(hqDh)&J{iS5(TC?wQ zh8fur?on*5GL0|VF@uI%Znop_k0uYQw>84-O1@~}K>cMC4kozU*|o3DI#)IYoPZn` z%PKW}a%-y)6s^?&L4pw&OEx^Er9TrA5%qu)^?;GuyR;3t*qZirqtkWyf zGK{E_h3k=r56>r=D?~ssrcl3!M*0nJT$LE81Hs`NF z$*jCLeQtvQPJ?SsZ4bsN)Bruk_~c{?by`LS7b7EMIZ)=WSV=n+03Y^asPqU^I*&&B zRUOXT(W|~+r>#n6cnrmf@7rI9o6eqtC^}qQ#3^61L^}5HJX06b;3_tjEPIOY9?l9Efqa=biM%o#gu&>2tSUJ%?lTE#=2;B4qE9fQ*NeODl_5%|hUnYH>1H}FLkr`Dae5}uqNDQi z&DF7AS9QyE`#aHoTM>^An8o_Igx@XAdoxz@>=TP`mlOwSgVCbt->sSAfTQlels{?r zK?mtTWNPse1!^<@n--`oG7i`1#sOxV-_w_!jR$}j9#Gp9LN-pf9$hz@|K9(I5pag7 zni2ooay1}$+>)Y3nD;UqY3~Ei&N-mzUv#SViYBzkU z{NfE0!@H(Fdya-p$uk899k}F1R#DN}IR&PVfD_(BiRjIr>4QdlcwhHZ`tR%`1^^p- z_KVTz=BMCzS9n&4Tc+9RyZpe>BcP+D2 z-pSeewK+|4MId}h#*>{)^VO9nFdgjrP^cY>j&-EaF9uH%&JxaVI=aq zn|{=dJ)!vkYErn7;_xAuL^7w!p}3yJWe^H4v!ge7X<+aX`f0o2^z^6qg46p&E-u13 zi%4E9S%KEJU#EWJiWKrgQz3Tz8||dcSt%np9Hgk11wF z$-jnR7k3RBD!YDpkr{RJkxXX7q9g12l6KnKuHuJ;zUv!iMfug zC9_GIqFon;UnpiiUjTJ5mFfXA6xV=79?*GU{0girEV%LobF66+b{Z;-#k<;l=O!BIRc!JMR*v$qJ|Ng}TsIW9bR$2|o2Zrluh;Sm z8Tvplx$NNfvajQQYl?=6y)w?2Obb#GDl3RV#~OqQ-h<{LAn{;*pSLx;Rtweq-;g}L*xa*f_;@O+Ea7y zGxH-bsvf3a3MN)Jnn_RJuX^7^fqz})@ZlM$B|vQ#ZtNqM!YA3Lcsb@Kq(z%ymnPsco5_0oF0t6 z%|~@|Hj3qjl|_TrG(=rfqK*``gKjT@_~H21s?geEg3b{SLk+M_Lgn2aBJ_|&qao(y z!<8WFUZJMT=f>2fV7!i!L~U-a%-!0HyLQ;ggVHRmVhF?b;l@Ol6LTVmXC1e^z*{&R zGnq0IC*E~9^mq||X7F{~qB-|_jTUM41v%5IQEgK{LKK5)a^=N)#JXlbyFZ!0Tcm0v ziLh@7ri`l^*@3Qn9~k4a+1R&g#Z^B_aM5&IegB@aq!Em@ARRuO)U*8(Q1PH|d(X=$ zAaEKv#E+D2w+?21a}i5lVHzRf)=<9HYXpBsZ$c+|}>y7K%C(0pw1q z^@va@P+?Uc1#*L@P@46d+U=T+hU)kv5y{Qr_8mssyA(8P=AU~&w5v7Ne@W%y(>3IM z=jire#xz=X`0Q|Nr>uYb;D_?qcg&1ap!OWEbW;NsOvF>nac#!D#-*UOQ!n9!o8FRl zGmlX*H{LoYNFw1xrv8dSK1E35Cab(gpL~5r^F5D)S?8fvGq7Sj>jPrzUtOC`ppSIa zaNs!v+usNJAkqP;0Xa2UU0q%OIGo1&zgkV8-(kKJc!r$)2!a*B0R#}Kd!Fxk8VC$! zF-DB>Bh@}KnN16) zpY7^g-kmquLT#ps^~{f);YsHwC&?a=pABazI>|YC!DGM}_CWiOQ$vD;Kij2-BxTA} z-#)pS3)yrRWcqRE;|6Y$Pt=e{@QaZZtE1h>cL-5fJ?X|M7A&(Wg-v5zaGD#h%k`w^ zMx_qx%Jwbj%By^IX`YC=w_B0|2H7aY4ZdW&(g(}j$ad;{hYx5QpdF@wwcG{9Y`*I2 ziDP~)+XEUx`t`68Ss3)V9{?!6lC$|AY+}Mcbm=eiZSYF?%Bb^EW<9GbmVC@J86`(} zqK^vELJY+aUzERVTnK*SX8IgEXIflL#LY_jU*@-OTa64Q)#>tnU{v+2C#6AY9c7sd zLqi{rkwEV*R=-LlhY@Rlp)!bn?2kUxc_1LzQzHBkik9^tm=yby`^-KOg8`1N(5}OK zRN$q)$U#km^pRk>w{7RRv@`afrQu=C_;-}ip)6X`2WRv1`UKL0N@xTG4t%Y*fF9KO zE2#@N*e++)KPUFhWF;=}IR#@g9X|_{I;DZ;y0vN03GiMs7H=t~CMB8QX_%x3gz1+&`#j3T6}7~u zlBj5GoGrpMe*Zt!hG8Xuv!mi{kU1hZRbA|2I5JjD&O;gpQ#Pn0z>6`0s(nw(^hdSu zaySr5uu?{e_eIy^myf}63rZyl;V!1I(c3`@VlIc8tIuG-MVz1C9GP3oDl`G8dg#rZ z5k!Qi%|Sakpl3LWO6)zIP%?=n&>mDv49WuhNLHFMFp%voHs~$FR-Xue$Layo+dvRs zl`nn&t`Q+hxBC#%Fw1n%(pSSmuh!^t@N!M+aT2<)&4A|eNMy~7Tle|hv9Beo@2^S2 z@N*%$COXEF2lXtNr*Iw#o(R&tbAS{g)sa!g;j5;`%(tnrY4=VefX@s{+wG-@B|pKw z&qRvCSU!XtxkEm`0xU7E%XEb|G_{;=qq+(-z6vOm@=5fW!z;aSWaG#C-uamIe%R|g zR&s|((gMC-ko_m`QeN{@0y3)B08BUe_8e`U$xaQ$7ycPX{|d^p#1 zJLlzXL?Z!g+_Nd!D3As1;1BYo7ltOcH7Ae58ySSlM&bg*D7=#{g_z$rwu>xDRKfZ)5iFwv z0htWrC#UC}h%Cp0mRxSm

ah)=ShP0l79t2Xk`(Lj%S z)+@P(UF6Y>p0^5dTI6U9e<}HBZ8$@wMTk$_%+b88QrA0;@h(X}-1_hNT6fGDsl0ZJ zIa6l^f@^f=Z{hz(%pl}ELhUPf&VE24xj0#y_96}RS?Jbo}v?K2RN)D8NP$jU6kDG z-@*I=WQog2QSBi+oogvQnA;;Aa`zvc`u&COy0zS{F2NJ!T=igG&bmGT@|Kv=c z$3~gF!{U6p(CG*O>#?U%CE{X^)o9uvJfPTad;i?CWddk5!WNmWL`&^lb>1`|+bJm3 z?xLOy|4BvN1>0xOu-2*P1l41apFAx9Q$LO0ZY6Baz!Q-kO8Vr_H#mp`#@)fqu07RH zaP%jPoBZdWi6X7OqxHUs`5bRxhZ3#sM`9wW{;b*B%9N94Ud{sfVU^xF(sytUm0`+h(dTskqyg zleMKkcU;pCb^iL!E8M?(Ud1j(LFBNC6Re(8MP(P_8ffzCJ6DJymlFD1=Ho(bZ;;l$ zAC_1WC)}G%FIau3ZCq>|&)67OpxujP|4&bW^l!-bYum4;D`kJ*xKY=3Ph~CKS>eQ! zi6j!kb}x0)9zpNC&lZuDONx5W7YiK+m5K*-Ub1g;s3a1oky4nDGVhX6q{0_HqACN8 ziQE1>hxza#lfsi*5Gm$JDJV?XXL>Eye+-Ijruns>FBKTPbT0bqqUpRoi?;T?#Jy<0 z;W~|C@NVyRX*X5OXzF>>RbKob`%J?x5II*awWsH$P%lqlpA)NwHNLgPM3*ckmBf{a zkP@9*dVBdjJRIxOvM<`W<&XP8XQ(!lRYxe%)YE0M?>v;3BT-&?8)!h_m5hKka(8>J zDbAYM^hebHMvtRS?3GE=y6M{~B7vx63r{P~b6^F7m=K$4>sV3m9*TJsC-=ije|i?X zS?|KdbSLGx_tWFu7ktR2T)AJ=RACqnep#B>yX}U*UFKB~rx<#K(9R2&q{?A4O)RB^ zTc?5<+kNfrbjn5&ez{b9L3M*dG@t5Zl*T;>M&|T+rVsdoMaEp5BkjC8-{CF~MqDSX zEC?fv6P>|p-AwGdHo1&)e`nsFS_*Dqr}JNF6Sa?bHd38Y*C@wf;mlLpdtN_TlV(RS zB5Qs2n<-)xulf6uH6kU7R`e$89)z!5ciIO9;Lk_0~foq9Iq^@0?0C>Im;xfe^!w6|ZPdHxU_eIBwhrjz4 zHbzHlPV^n)XGN6h-BI2dj4ok zyL?IvLcmGys4!Zr;8^|Q97W|Zh`ygy&@$Y|7J!lxQ*(UGzh8W%%pNUX#VQmznN6HsV&8dAGx-e> z{-OEQ2_J4Z8NH4m$!wvSz42la0TNexF;d81c;7F9P{YC1d54#!pm5LPY350uQ{Be2 zBespLzM61=`s3SRX&V7UF;es`U+|CanUmr`k#x%#Rsm?5Wzfe`e!v>{+p|5PEH|e> zpgF>q**=a=RF*b)a{C^0c_hgF2=yZRndp?{9B#7%HA9u(^3T%GlEHT+b>r@c5F{v5 zm(Mud?i)dpYhr$dS_br6=n8-y-LeU!=N5wj)y1Zj!sTJFCY{M!0=YM+gyeHOX^l2*z*EO*@7l;2=WIC~a#$ihx?Bbo_?V%J?4|e_9k8 zXpOj@h`Y%3==?@_b1qiQ@Il&-{6Sw{)!w%4o&mBANMhH|1N7yVFMb^PeF%P5XbufH zgZxJ6W*{iRz_?Yn0 zy;4`S<&n_-O+R4Ms>=$s(GiUjH0>JoAiSIu(0T+}9bWw_l{K~_TqTY2?PGsL*I|eH zqraRfqu^J4$2g_0;DeTSD=Z-|&tx}5X0OdGdL$BS+{Mzo7xj!Shijb2tY(tAdH)^=&sv;5RKzO#8-QIKgvoBF-1Yi-6peV2{BRBmm@fS|O;Uy~p94p%o zA*tqT;un$+-c8M$XkRo1mqXd^|9#|;U==u#!-wTAqLHs<)l~W)?JCMWW>6r}DZ+r4 z&c}9wu3bGaCyg9Lz0n|B>#pKXQz_!hu|?2Cf~x*%K)@N>HQlLvIOL_Lr2Hq>k!gi$ zOPNx#M~%)%pXPp-xXUn|93Y@*Kdu;j?xP?Oit6pu7^9qe#X|oqxzWwBq?gI8hTY<; zPBWNAler{fwYpcm^rpND@a~i!$Am4Pou1;MNtZpPQ(1CYe&ys;(SlG2e3ABV#Ih|9V47Pki9|*BUCZ=vn;}mUA+SkpH zWq+CL6jX4@)+{pya4ACrAAvxSC$@>Uj!A< zzWTNcn3Wp3^*=_eeqg|P-hb&Cq5{|Db)dz0fP5ak%NR}QWwG>YN$ahMQN>yJl7`nl zK~|5g|_&WSkICxn?YqNXZoMVOEgKx9^}q zwr@sN%YEp5&<;R{B{3;!>~OVf8w`Q`Ynxa-I> zU_qV48wyHw%*vkT24DI`SI&m2;!um%=q-F2GeU)_RtI0-a5l^Mph*Z#y5fxXq0y3r z_J_J7$~eX>5C_g?Tn!L|3iFXYm@;!R-z7&F`BrC;Yv!>?%QpVp)%D8$0V>#jxXUX! z<{~6YKMM=9(#2d~8XMD=WpEc{JIbSxK}Jf3}TH zJ^C~8B$hg|cmf5cZKGt;?B^Ym-9;@jTT~x`bX&iT$^Hs=k4VJK1PS^zxowLY2^yZ# zS%Ud*klDi7+}( zX0Nofekv#+r-*G(p+aF23i9%=pJQWx{?mDkP_oo@dLxYNkGbm5fIWCNJh7+F?sZ1Z zWiu!M6~^>$DiSaszRy6w@wC#uZxBPkNkoDoPPd$jWHc~FC4QAvMf?WN1DC+ba7_6d zQSE7E*XD0-$Dd)LGSRcD_1Zo`r$c1smvRrASDUT^MW^L}MogGvSYhJg3kjYRvQsH4 ze3?8q9aeHZQDBDN&Y+kOIO6$RFyO*ntdI5G`7JJZN@aY47G8+$SVy0_188nAzo;-> z7_;!=;^J#PJ(X|YzJXD$LK^Sh(V?QCkS@@?(4Ni~2)sh(7@_(29TnEPvbtKl+ZJP8 zWuuRlgJcoR?fLT2Ko?#p_Gv*S%`sx*BL6dJ>MvU^p~)Nl!h$A1Mq({&U}&xaWc`c-~Kdu=B^mm+EpL3RWFOr-p|;jf?H zgBL*~iD;xRv&_+If4(L@J-wJx58(ft_UA?N2L}7vT3cC!gpx+b#-6);I0WK#u=j!w z2RF$`oYvoUpK%03Z?!K+$NZ3@C8YA^(aS}N+l;F*rcS)(t>#f-PEsz}groci8Q&R= z=9eIg(IxvcEx%tV@ed$HqCmdxWuH#{xef)b)}@kKBPX=wLvjW~?i?oC>MlX^QKW_| zs+%uj2vLH<#4iv@o9utbCQ5a>@Y8)uq93;SiY0;wfg;WS!T>+g$h?@Uxt+nZTXx8X zJj(ErtsD);Ms(wtX}&co^a`%ubsCW3F3$ov6>ALKvAw9+#XpB$V^JqOTqj6StV{~E zdseZE!88$>w8%SveHj5bu<>X2D>&Zj0a*O}{F+}CUdP*uYh;wdB?75-r(*>tkZvS< zBT1@o=6WWJ-R3S8mYG!}WH<-!=6A>4YFel~E+>?I3%f$YDRO>kPP}6}XoVc0?Ja zxqh6wB|LhOSugTJ4*A&iBvmL)S=8M3Zu97_7WJauq`Ucx_0{V375SNG*L7z$|v9@Onk55opXq^4IMw?HicD^@{A%8xdXkY2A(}VpV4olRb`A zh&G-MkCA2IDJD9cRA@l`jW#>au#vbGcFtnDm=FjFZu(t_?%fc{kBEwIlo2sk9-$0BupREC>FnOXu+Vh-)BG(P|`8$1OFALm_>Dlclsq)6!8;V% zVqSunHv{Q1Cw#!!A~Y zkD^!bsMZwj#^?kt3d3SrKjl@VyQEuXasN=0Iy^#Y#=EzA^rfE={;JsoHtq6-WlC@> z$5wkZG(E$b-rT1QD)IyaLy~ymHO$QR_(&l2K`z0@N{~on%;I#krgR0cOydHXjB20* zDhoh|@o{mv2wh#&-r+sYxa;fdBcQMLl>h!DO6g&VZV%u7JRd}Y2C7?^cXg$Sw>1ZMMX*~WqvEgb#vzorS&FdHq5i;nV zsOn>iwK{vrk78^8c0$zW&p=ICeDGzsmm?Z*8>Ih@M7%=I3)XX2V4*4x8nW)waE`9< z2t$IND13HrAOUx7E@hT0^WQRuvt18Dtoy6yB9Dyyiha6RN}3dUXVqoCJvRtz^0X>B zVs^7!ariGZ`Mu>?_2Wl45Ie|adK_VR-tHI`fF?g{*Obxym6jz4XZf_Mm%PL}y1FRD zrCrkO&yd7U$H ztgI&B%cr^s(Q2< zqxtYLiVuy8%)rO^6xd12KU47dMJJN}Qsfnt60Z~+|EK{UR5;8GOQTm}PE$3)K&FC? z0F`UAO9LN?DDTUA#D_IerC|N~bG?@g;@3@XqLg$m)w0NI$}?YM4Oyqx6K8{2P9}pF zbzh^z&k22Ip-bZ@L-SNv#&oPwS>bB7CIfgqw>Li*6|+8sD%Xy8{#R5SA+^Gcv5lr5uifFw zUl^=w@V@t2M=?>D8qHVHboyD=hWB48JVybeeQ+v1G(!A8tDqtwNXgn;o^$Y_vVDm+U$+ycbqI+#^CXWkKPZ))CL-@;K z9OYE<3JZEJtzT**7^f~);*oh_H=^Im=yx1Eg&G337RIM>Yi%_j%LQJ@khpdK!HQBH zuY8BmDLTGWo|i8L0ZBDcIR>Z2_Jx$%+m%Ck*kuG zy;?Wtm`N<~VCEUdsjRVy|LwH7x_Rk04lgypspA799lmPQu9+=KEJz}H8J?i0d9sbU z>l)BJT)ojz->eS`K#s_2u~0__e|y&%J^x>BQ*vMP@RV)RGM@HkD=WqhWfNIwI7wts zJrU4Dj2c?`5}B{OBxazHA3a~^s>#Qx6sfKQ2|R0CkRbRk$O+3>|1mch$vL)h*nlmQX)K1Cly`z;q&Lws+z>*1ectN-jgL*7rdZT!Mz zSYNnS>;?CuX2Bg4kkCfj0gZG`9moUhN~x$S?k@4Nwtdj+uIoU&%)SbdT69i7#gn5M z+cOaI|8Vu!VNri?)F?~}QUlU8l!Qu%NDnOxN`o{ANH<7JgHqBWBGTPRm%tzjNSCC* zAksB-!@I}t?|IL8&VOEd>4p2V_Z{nAYuyfR@Yogu#SaYO+=xuI33W+~W46yVE`b?x z#KYDVn>3GSX--S9IJwz=nRcA`gcf4}qso%mTmAErfx+y$iMgTo7*t;~0>gm7+h?EN z)fu1u{s^6p!s?79yR3Rl&W)JFzg~SBGo*wGt>1J7nQY5OoXA#p@HH}|b)lJ^`V(Yc zc)ZSq8rh-$il{2k_e&Z9OQ|?hbwdM>Y92$3Xc`7&HeEdS+7kUBRdqZ@E2Zvb`)G93 zatNgEAdV2~HIyh+hrnYz)3#XCbS=v5T1y$M@}bylWt<)Fm;d`Rgqdgl{{Hu0HRR@E zlQnks${@tHBO@b|5)*TBFs5Bi%l6*L-z|^U4`;r4q~B>y`s2H!e&-Uwc{XH}Hc)0R zyj4+3`N^T>t*9usCrLc17?8elF>(|VEE7sklBNySvd83*jB`?M=TPb@%vCfPa0tYN z&ItXn7q+%{VdQLs05hCohqzg%78OhsHXg}v`}Jn~3v4JT5f2B&cS)%QtdV4ljODGt zL&+PDUF0Rk% zq_S$xeH@iT15H$?xix7m7!VTNMQirh0xSJevbEJ4#%hB`s>G^4%UCe?T*TE2T(F=4 zbO#D>jk3$P#_Y8s#4FuI;L)5;J zfBvtegzfd;Y^C6O+jzCL0#w2J0LN_gEr*!?e1%i|Qy0Z2%%h`JDna4PI)b>~bzZb#A)dTs0C$ATt zzY^Peo*oQWk8clAj>S=tkB^zroswO(7qfNrWRM`@oWS3i6pT-I|40XImYnlw(ih#d z!`#Y5cU&yFZ+CS^t?B^`_JxTkIcHfQ4yejIUg=aal&}tZzeu|y1E~})Gl}aaqF}Cd&0kX{T!3{$_&S@zy9p?P&Q2Dc5diZPhc2#1yE~+YlQDT ze$igdA1ais-cse0h7mV?9DNXA5)=;1jaV>-?h}O>nwJI7Tn%cR1b#6k1%$}1!#)A5}!8GTe;k}zJ zqC%RRzev09-3^(kw?QYG5|HY25hxd1`nQ+{SAh*fh0GL>EbdWYLJOt=`ey4nTCV;4 z`IF3m^LraAr&_MARlR>tPXceeQl$bVH<+XE;eR_y*PGb@_F(xD_+x+V(7A9phTpeM zj1XnYxRM^9S{5$gx;eKTJzj@JY??~&`<7_zRvi!e zXD^eOFcRzxUHwp4+OoFV@{Wt0rM?Mh}*H#ob5loo5p?JL=zY?2pWcSsc^Z)!%|%L@gSI)SBXLjLbDW z`s9?#bcuoMP18WkS4EB1{1-}Pl;yvqNT!1yu00#~$A=s?afIfz zep~@)vsv4K`@%!e=|N&NH01d1_HK|ZDjc4!5T%9}3B-OOMP}FJ9hYK2I*-lti-A8+ zbnXz@q{IHvk^JMoIO!s;A@jbw5(Zzr`Rf`Q9_W|0?6w(RG1AZ|g5@I``cNXV(*vaG z7y&>YL0RE_cjj2j8WUR9dD-zvj4rHp;uc1n??azo@^@S4QH?ne4U*Fy=l$9BN#AF-@;Z;x{9S8#1-g(O;4jmJFd#o|sGe_M z6FiF@nb@KJf1l%Xxt&AOJoSZelht4k+Y(QOR~GRdRgU&(Z{K$$*(7ssOGuiXJ?_uN z8nAX*924ziefHz}ukR2R{lp_m1R|9{y>2v_VIcJM}QIS2nvv+5%^) z1Pwn{7hpgJr)<|5b0%Y-=c>Wica{&hr0ylYl)D7jsm*IlXc+O2eQjf7j96JG*kSa?uBy*8i`2yf=7;(08 z-*^MTjTAAOP~A-{$~G0b7M4v$Cckx?qw;?4L0tUw+(h;Hn69wp=y@4U6yZ^WQeexu z!awZin8p*Z5Jtt7;VyH2OD^nl&5sj=Funf{2r|rVIUz#3rTHyL7eowH{5#2$KGH|1OcCT~XlAmI=XA5fl7W`iVeGw* z#IR@Cbl>!?eMy6SR`)H=FB6~ORG)I0ya9g;lb-6o5(irqW<8yU0ol&@0zO5LMsnY& zXioN}--`6EP~tZ%KZj>X5U)>KCN$AngEF$iO~TA1O?HC5iq1FA0v5fR8Xx5!!D`EV z{ek24X8mwrcYG-4gFxWd{=8$qlvi6lc=?) z!)(2ZWtdA?#61x7F(6u9k#&=<<4-)!UHuHEl%1tB?oy6&GZgo~<(w1j%*FmxfX5t& z3dde{KPjPLa3;!MYRn&S_*d6kLD^Tz7fTSi_@7?FNj1Kb&+I|6S4KE`n!dlqrGa^S z;XqX+*J@Dl- zYK(8YT;|hKR*oh}dktKgi(6U@2PhNYzh4JT$lS6rZUX#=eo*?2$7;8r-TKhlvJV9D z%X=|~2R4i$@XNyV8?n#Rbl#6;dN-6+gj+otLxlLGhgGkQQo|j{`N&s;ny=iCbpMOW zjpzEXcURQNY)6aTG=IU;R&0Pp+m18e#$TYO%`l?{(r}W#2vE;IE?Tt*He{|7z(|u_5vg zZ{FYtX7f{eqT2J`USY6^`aw6K=LJXdV?3?A zHNNj{Z0Qp{c8q(w_C8zGpF$ZXOz28Fq@uRI1}iQ(nM!*z4!clqLWuGcJxmJ8O_Cw* z!h@KZF~AiUAy1nuEiTsROXk*>Jv%$&@CpSc9uL0Ux}$Fsf<1J|?M5p9P3?KDmaQD* zugrmsXa>`npYZsU$;05A@mgYa^VOhiZRP9!_`sK@f9@NHeLp4?C$!}!D0GGs$Gv?@ zCPZ8!=o7x(nDbwevgQ3vbhZEoT>1!!AiP2;w~eLsUJ`>OI{DcH@}g|>_%4_C)!JZQ z*2;7TlvGY2kYG5iSTfDd5)^5RTF;Fb=7U$LV@9$QyNZZMwOi*Oc| z9^AeK-XaAHqp!UvJ$wvg1){TW((tK)#LdTdwfDutgsi$pX8LX5?(Kb!TIgqC4>8ci zg$7D2NOzMi{w6BCS#a*l)?Obeg4;}q@nXXgzujXUj`NFVjF?|6CUX8Q{z5|YDJ9Pp z1))B|SC>OWC@)HM%7WzDrvu9EN=floZK>xL6D{r71@4KjeOyzmfIb+0;#r4&Oimtk z4mhAUsCS?(H*QIOBp~o%T5lzay$nstdinH07(JMB<_8C3ih1oYq=WINPKD7^uiviW zKdp{|qhc806zSjs3B|qk-oJlpJZU7;WpTtkkBP_p?Z>z#Bl4Ik2PcE$F-#D#GIrkt z-Gm0R0lSPnjGhJfQJ5 z(V?z}AP{3KwB2JOM7hNBGynS_3OSv@cq|On9u)o? zxj43(%nKx|rCCTD=5T24`~PpKS*pv`cCT-Kcc~GMVxibF&P!ll5ks(rgk1U+hzMG5 z49o>BTdQ+5($*zFrxT0+M)|k4Ce_C9tzfogfjY*jI>(;ZO96}?7pZxTvTiPiZt}vJ z0#ck>k8}hfmiVjN+vOV`mqy3K^#KhW1n4(&j=>0QTQ1srFpN!vtWzw{2 zY})GUMTVubW18mz3h?s4I64JWy9)$9CEI)R5G@Hwd(KiZN`&dHYC2k{NU|>b?6Wg( zEsl(aW@d?Bza_+x9g`nnM$Wk`*{e6S!>CS=Qo2uUHz#VV+S{>|J(_Ly)3E){=8SPH zj1P?*#FI%Q=2}qmke{L-n2_gv%n>M3Fhsmvn{Z3PFz-xkU{$l;J^S*E3a6R9uInePw z>xbNjuEeiE0a8-%{>5oygeQ>+ z6;mY4mp*Lhdy21Br>ton!gYrv7GvB2L|+Gs#^cpNe3+QHxORQlZor9nZ%TADzSAuz}c5|pk5b`B1V$%<`nzp!iIHvabH$TkFbd8_itOYsn z$Bw=p~n=5fHNfc&jdq zpn&k+?;_$WR!TvrLirJ`} zR@o=xLCO$r8?Oq+=-wGJa)5pnPfA>DmIfKH=wD++j^rOm1ye6ti8#t|04E>)p_t6s_>pTb9wz-4ixKcp~=@(~`g8850~sxXx*Kx(=^+8$%>~h#sEOGI>?-BPO|y zg$=<}D8)(z6FNrpXj{z?klf$A3_qRkQ*kF!-Q%lxnthq1NN{{YhU712Qa&4_4Ti5G zXeg5!M*1%LY#-RwIP}KkvU{I`KX;2G0A0AkvEIKif^T%q`mBox3UPJj?!n2(<&+Ol zqxif1+LKPPQEroT&@I0QwmaEUIaW{EYgefY-;6Cd|I{JV7`uR9XW0EK;0j_Rrf-(* z5V?UCAtjhN*WNi{Q`0xhA%4|=Ov(*zP*}XHM4Wxbx$;YvHwqG! zW`LV^p0Og#k5?lFu0udEkqeI-1&RbXMDmn*4*Vi1Dd`E5{~;MAHT46Z(vT1=?S&=Z zg^P?=MAeRlhK7*>k|Lc;=*?q4SB~G%LD_mXY~WT3WLP}C18U&fX*a#I(?4j`>#BF=X?$&$IV* zP|Z#`J8$paX(yxzXdfR&&BMVPGU_?!VueGpyX3U(rTqOtjA2>!A%b)zE@n^O=4kT( ziGj?SQ@!?*x+O{@UNUh)j{K_NY!4vVYg(944w|1NrT;MHa5K+N4hCYF2=k)p(|5hY zr4H-4f!}dlSy)#^p7jDqL!}$T->*Q`vd)5y?#xz^|6F$TtvwhuI{iEL=s1$T*aai0D}cjZaRF#RXoPlW6##PONy`mzOgR4uQr;ZvQKuH>U01UI9qM@yQZ-MC||Z z0x-miOW1pGSU7fc|8>%0x7KX+hu<1ZPGD$Wd+}pf(;5ewCgejh(!m#C@Qh56-}pB1 zDPM&$XbOt33;ls3VX6$nVIjIOjHP)UdkYG4o%5-}L^Qvj$sW1fo?X>?;g_O$?O~1V z7{!CD>u%*9#3TWRg~@E13|ai%ekit9swR#{ld=hjM^N3t_{h;r?#w2>?U|IN9$*&JE)TX9rjGNt` zT6+Hm6subEZW0R`T!66r=vR97Or6?R{i%T?SXuk)h=z_%b3xPv8H5ErnfI;yd3^E& z$sck~Iv1Mj-drMQ>Bk++ZDUjjJ%v^7imcWsHk7oU;Wq4*yL zo>o>r1!BgGP8}u66fRQecViVuE6BPm%EB7d_Em`Z{TqxtXzXp&@D5d|QaYJ8Dwaz4 zWYnd`jY_uV#C|vg66TJd=_@BxCirq#k@qkg1G2itjs9*7{C5~3u!>P}&ds%# z{=zYAT5;HSs@3&07i4s;!!lY1!_rt1-}XnEtr<+pjE*KI$11DquogXuAyYCCyGxbG zI=v_qet00H_u_4C?T~I=sV@~ZZ=k8i{d{>m;|D>uKaXLH;%LN6&o`}w4pk(Zup>n= zu8zlG$Gx=wxZ=|b0mXtf6E$ES{UP=!Z@z8$ZR}F^XQoir4$4MJ67vkf*)I7$p5n!h zS#385hP!aThFqkNdJx3lLyKd1h%i@Ou`eR;mxFJ&X!~w7B9up4U;ioCDR+kl^o>A0 z7fG1RB<>kaM^CR^k5`%dz~-yxw!y~cCR-Sbq@-l6-`OjJIy=hBmzoFQ1HCyX<&o&b zx7gO1M%Y)syhk*oVSveYi~-ekWvp;q&t70E*7SJ0qxUE-S;j-Qv@P*z`j+g2{}sz` zRrTz5OE4gg?`8)Nj&EkPWX&V+_0nm}^I~PQ4*>Skq882Lp@Y;Qj*OR3WN%fU z&5fc8AU8lQvH+1OjyKJw3M(eG%h7y@{U1o^_I15}*#_BhvZhO-t0`)y|7B$_mws&V z6yoWNn(tu5462n6DOam5+RcpX3LgwG)k12w9dE$?5d#fy6*N;%s5tzFq3Vb zeC9xBgQ(YUAZ4nbG}z|ng7M;RPaN?DJA%~aZmyJ0>0K*Lviw||Gipp&%i;@@gohT@z&m1g6Ic-F3MW1T z&X8eOo6MxCniJ6p= zQdBK@>U^D+-Hk#$tfpAuLRMM)yb~1_rRnnhIiW8r%5*{1$BpS1>%~WGJ!b>b%8g80 zW4vul*w@z9qCnG>7jK8wE#&do;dpnfeg5WlMHGS=82UE--x&}K>R}xEjQ(=0PbCTS z6H#(aluQiXL@@wHCo!$Qf;&1Q0IP@^ZTI=Akbe?rt3tr@EUti53Sb6wR}W~RbX`?T z;HrXdK;(CYV{ZZ?l=1l%;$nU9rQI%lFohY;BgPd?S?{1(;6cu@wL@Q!>1U)^-pW>s z-yJ|7JNG^hQb8;$F#j(wce(J}YU^S_(~SzT==R!YO;qhM6dV5j7`tO6{xE;UAp-+8 zg+VSdd|#0!qjD$5w8y{^N3qRI{*io+3yKoq@e?)7z`@%v48(yF#OslWTsI64P3F*< zVCinfQ}=q-&d?f*+Ef4~#C3Ockg<;$VE9PP=U%YrHjA-6v!DEJ2bKV$|0};Yl7x0m z0q!u{r-N8}G|K2@?2s0H{4*lVNa5BQ^RnyKeRPn$lZ(D)E_p7H9La#l=YbVVu1Wz| zj`~T8{5{96_5|~JlNT1At z%xbJ43?W`r8JH5#T1jz-8=C^s(>eOMIQ}5f>NghpyU{Q)CiA$m1KG7WL9h54A6Jy` zMYYfUYSG)Yt}_*q$-c4@axk_@rcWy zz)R&`hE`(1@Dufj_BkF7F}ms%&YX+B!s(uhZMK#_k|I&p^{F)wFDK~jV4bHW`QNl#vTInPX~xO3GaVVwSea^TLP%Dmq=fR zdvBfHzDqH8H*e9LW3l>szkK)_cjSX+tx=0sG&i_fuDH-Ve&w}*rUo1ct=zC2r0`;* zfPC|W0QGS6)2ZGgSoCaH#(!^g)qBjbZ-QKV&XcH>gsmml-1JRARZG%oKr43qYacrb z`CDhIuER|Lzg-WVBrGZZk_~@4>gT9baDU3FM`wRJ?;kw&<+us?46#Jyz8IHOr-_+n z3#m{m+$Oxkg;NK!vdh4NO_9i%H&!0T4L7B#PIZ0MVV&CE(Y{APhJ1i9F9`ngvJVX2 zI8Zh_wAtp3B-PH=yg|FYho1zvwr;~z5hw06v{25z*|lt9+Gm~*@dYP zfJNLHVJ3MoMFp?|y6KB3!*ybcCj;_xu`v=8G2R=1mt+4==L6IxXyZ>pXi@x~ze%6hP=YGVBi(NXsuwj3G`m_-kX2G$3Lc zru8N>z5!{nMgM{&hRJp|Yy0%6*#m!hE5L|ODYXK;DwPWQcwsV4>PHaYbX~n**WCr zgvpcQp1)QB7sNiS8-aYd4Oj1492H`3Icwk53ySm=IrAPE@re7XTJvunGZyx}?8coP zxyQ?3gKN3Hk;3#)j(+}q5FUMaQx|^7JOSC|^I)u%lk9+{s9MF;a0BSh?=r9>)YI@b z3IziI+(C1NIdDd_D|pi*{S59uk@jYoHoQb47;n;2Jkmg^5?Yi+95iaU(p~y(S>P#T z(3_O^OUQr0#|ZhP?iVjeWA$ZqOrxh}CokoMx8aYUW2W7Pu-&nv)P$PLX?$S-IE`nZ z4UdN>vI^oKK#@Sn9)J66u=Sm-?K2$Xx9(AoJE=gaJH>l^jUKB&eB(stGuVRRT0^8r zcWQsXwqVVdvTLq3jNx*Fz0@Ru{&?x2t&_aQW-oUys1Ch0^A+L=&C{ic+I}YRAFxjp zN7N_ffeWm+QXlA6j+Vkp*PmO8TOxjX&Hi~pIc(mWuxX+;*Ax~$Nae=tL5|nhfmm{J z75IUf=lq8|5T}h_JtMoVYRB4W=huvzt+g;X=pk&V(MfrMe^4w%gSwpqm*sc7&%n_p z132sK`8f)=ekn|OMe5#!nYdy2YH9AcIX5u+T_qLGS|!6{nCe_p z6Ba53f$NHKCx}ljrvbkMM!yJ~O(B=F9qHikh`Bx*Cl3mz&N$QWZLG47AnD*Yh-6)P zr^UJ+%N}|E-SE(?M9mtwqC&PVqAu*1&19@~3Oj2^^>elzC;U z>Y;xOxh;Xw0;eC~*ojn&=02vbJ*u7fn5QtRWmvOlnx00s0gj!@nn zzhK9#+1c{WGN-&zpF!q2@~E;9B#M0`(NWh`9@Pl49gk}tQ`saEgDVW0&~w+l+iJV1 zwq{l_D0~$&PN(OCE^GXerU&QpQWHP^4iD8mJ%wC7;o91iza}Ri1SNd>^t7X6GIu*XJRFeDBb%F>BNp83ot$)NSuanF zz2@?RA{TSh&WkbPijTh>n^a)HUWa$D8#z*MH%~obYqYxTtml3fMU-PI<@~-sJ5b{2 zE|Lt2R0{1hKivCabzhFfO!8yf7gl}S>(77g3jS+G+U=i|@x_ii-;wF56Vf!3<9nozwKm(Z!V>BeJ1h6E%mWowt7X#- z76=ml4g=w}X5;p2Px!}8{52Ii&B<#$0vK{G%|V&JJEMw^YP2G#Sr8FNA;)jnEFBM} zE_%7B$y_$|#mQCg+J^BkBRanrZ(S9mKi)Ca?W+VxLjr=vhZB2t&r_}#%6p>=E_69e z1cKW_2h)S`m{!|ztX^L!Qs%RWgnFzrto$&k3H|!X4ik=6z!34GEkd|%mv%#al`-Sw z!bt$b30&mS9Qk)#qWaF4tk@QQercf2uY9U&+~)TQ%`1h+GGtq4_=F|%7z!OBqc1^r zj4&%Zta^YEcYLjJp7(|JNL-8yV^G2~<1OBK(QAr=6q%dX8&45zLfUgw27?Lqx40 zbz6Mc%+x<%i7|t_YB61{Tkzms_>O&?$dg_bdeS=Ss1X!CcxR;@B!48EnD*RTU@NqL zu$LqFiT@DS;#BcpW(wPWxvPfeg?~9oS=tu8NqkJGLTRc9Y(Egl6 z%%dmiKP9Qh(e$h5R>_yYuS!&Jm&Z ztZ%d0CCc|&%`7ai1Tz?P?SD=TC9sKfd7gSkZTLQSBm!iuZMuRZpQ>j+{O<;vn`Ew~nbR%5k&#%x2tU5OMBr}1=m zcP}C$d*S>uk)48`-na8SOcLq#Hne<7W?+!VSJ0E=6@7S3S312E{cCKYYR7F`6D`Ny zE0d8KrJ=y*MH%KGuZ`%k+^p^j)I`5?qSr;S`D5HR+5%SoKa9pdXNsO?=JW7!2jz5L z789sS3>IWMngjl(6Sm8|kQr3?^9nIC;WLfG-c&bfAk)6=jgE}g4b6@yQ+jdXFb0!B z0-1^zD@{~xMeFap)Q1a0qUMo9)6<9B4i3&kyZcRjllLTF1Pry|sM%-Sf(^>eRMM^P zBT;V>F;zk{yOXS(0eZRtu*pNi9(!TT!QTWu&8!kpE3)&w>Hi}R8l4iYV!e@jUP*yCCO61hPB_XnX4*k3ExjZ53l|0TA9041c+s4T5( z_F>(?Ct+zmw}7GaNlN4*Ln}y)V3@CvlN*GmcI$+?Vc1!UCs(k?ZVG3*Lpz0NBb5^~ z?hb{sb<>A~_)`NCdRR3J_B3>-@~CXn9+YXAu*T!A=^AV8kyjPJT!$o1ii}svAlF~( z>vb^WfIZu97p`Bwem&RJ%xUXGzS;D9$gsE-+bA-YC**+$O@Dpt-gDu%qRzyW*(z{x zt5akI@4c$lAX+M}BG`ey6-X)ik*7aL&rizQ~HLAcGOw@4eoZZvxn75x# z@@J*}x$NhsFZAZdj#CdTQK+rc4#LYg82f_>L-shx1|Ls9zC{BIjF3BK#s;epAgq6y z?;zLw`yr)fc!A?mO>X*+co46N6b@G-YNqSi+Qo0fI508fG`*bNR{DdbtoFS{@qZ0{ zPZip+pjN|%aHL{|Di;U zDB8gh2=>|xBExl}DsilL;1Tk_Cbs@gA1nOD7 z_Vde5;Kg`2^o}6M5c$R^olFi>Z|GNcc-_kA1YJx0HKRYEaxi6M7-dYrh`kx^Im#u^ zV7!%$M37h44)_k2-YS^6)2*CfsZjSY1YHo}4 zd9WZQL(l6Ydzq}9T;=-yzQr5oS_8TeFk2B{Fo4*m5%|++>hSG8D5MNxq$d?@CaE0z zERGcy{pR6#S&Cc?qudx|vLrB^b%~YAc5AsO&vk+*F1zZ%_>6EF!Q?@c*TFZOyhMdk z2eMMSPT~ONpl~<$eljzr;MmrEpfm%o2v@E|8gblg+y0ppZn)gQHXJfl~ST`6Ie*`;;DQMAETL zQY2T0WZLcKM;pIVIo3BfwQ&1Sbv&4S1xD&IGYN_+l%LFIystCQB$EnzxATsZBeTuk53%{WeQ6XW=V zMymEbOWqPqY6-6n+nuuhmX}pqXlp+Cuhtn(C+0n#85@&>$3gSaI^>=9n}BC3D*3>I zh@zVyyUA@;^Vzeg-ksssigy6-cYWfuV(B`A^i{0q`9UOIGofl|Oa$G)8;-3*bhzYU zN&5N_^AA=C5HCk$J&h#RnRV4ccC257a^;*JNU(pOhMqkovr7~ah7Bhdxc*$A0^xD) zpRDX(c!b}xNF$LRwcCBmalTPNWMST=4tqr5p#l)c9fUc?Nr{++&({d)7}Ih37IvxN zRZ^Caw1Yi>)gR&=^J^e%SDLoQdi96#N=x>gj}CkjmgRuBD7`#l70ML-s0}>7@q;h zAn1w}8<_Y=(0WHlEBB(n9;%cY1O%h`gd|1_=TQf3^J=z@*d)iEkos7t+v;?z5d`-p z)5HA5kKrg`%M6>!JrzTHUPnK|!MZ1)2LLX%)@O7*s}6>{q?X^qbMU>nlDwL!=bQX2^J(;)w2{pnStlEyAU=@~qn5hfi_>-? zpF|%iC$Op=W2h19tRm9D8O*7#4DySe*!~z2BC|`)Jo-G|43k)cq>J{)4)iyVt@qBd zJtG_DJ*^H}uwYL{?Sz)PM|aU+_TOG@yA8(dv7TNrtkb^9Z@BR_so~rZt;OKnAUI_O z4_sX<3EOqIQwE3?Yi-9kqGH=L#GW?j1KDl+Z4tBSDs~{Np3)c+Rz~Y?M~``(xZth=W!=Op zhM6XcrDTE|p$qBrVWb+=@jm`)tZ%3$pQ7|{$lRG^$V7%wD za`1?k*`|+*cB|0cx%5jqCIx1#_EOGr)9}4mxn{fg1rK;i@hp8e_NaJw>G~6SagW@} zn<3+~T4sLP>7MZg)SIJ!(py~d^!&ZNnC@y$L3Czk;GcJt&=B-gW~lO`G3ci*5nm6S ztBTjjlUHrhMdMqH-Y7OTrk(t>gr1X|9b&E*Na`V7Li)rqrU@doRA3%J zLkV=NR^#R)8~@xRw>!zjmFQ+q^RJfO zp=9Ei5ve}zN??Tj?(wNsr?<_v^c(5of#7gR{ts+#cLAWx4h!eU^RRP>cy&it=Kl9& zo<~!ei5R-~KVP7Rr9MHO-ff?;e3SBm5>$nsYA|<&HN}h#HZ{`r6;S;092Ispkyg@T zBh#>ygz@E zfof#IFObc}QKs}&I7`3?Lz5@U^_6-@C;h1Hi#Li7Rhgtf8Q|ya;OLkS^rH7c`*hL^ zmbiknr>&{Ot^1=|*UT*bJLWi&IRvO6wUm_JrLsL_UfeB*~2eI!t+ppoZuIgr~`JTvqTny(w`-lcLr-w=L9V}@7sjuCHBiW&^rk;nkd_}~GO~W> zPWTmAG4by$d7ckAb%ut95;#3Xoz9=M!NE#+T`4`F!zonDEC723U+@3q)aI8nH~e#( zFq9-Y#;mZdwwNkqTaHeRNCAWY1%^zeEmIzQF1zB%u9#SLvAD&GP{A$Gw=ZrrEz$H z^)*qV=4=^eXf-B#k+7?9b(@Gy_Z`xbKnY5u>yr1MO=mX5EPQnwRkTBs7dP}vi!3OY8VkREFs@L#$cCn* z!Q2KW26A&7Sbdbgz*LdPZzM&<*0`E*l!j|(!)JW+f8;)EK7N#3XTYiSuqN|L`Kdwq zi&lgD>Y9GaP7+?#Qv^0d{bi2pOEgq^U`+@U5v#tv9$U#+tXbTZc02$nNnJKv`(1)>Gkp*sz9nvruOcjPo=+nTIu}hf|I_yQmET}>?0*+FZP}sL zRH~%3)OL5imB7ixpgA*>3E1x!e_JM`=KY$Sy1JVFzpFL4(6mIqwu<+j8P4Bg zhCf3W(q#4`{t6dtqvG)F0HLo&GAswm1mWO54qKUFDbPCkPEbbhA20$oz5FY&67zg9L_RCv>gyp@{31x#Mil+(j z4)LCI|3=Y+;R@Nbx~q4_kG+l#?eGV1860kX6dwrt(Z>}519 zByH(Zrn6W_i;=on*#C~;+tq!1T5nza4-^`1y^rCgRppU+ANc!Hu7MbN2oq`+qstvE%+-jiSjFr+@MyOen9P zPE8r5k}m%#4HJ_tx#ukgA~7s1EOl;!7DNS*Kn-T{ptziN@^vA)Blzxm)Ex4|OIfQ5 zdf_u<{~PK33hLIU;0|21q1?Oc%s4vQ-po6|Gp1N~u51rj96Xy-&i}|9$MlYq4Hf{_ ziuF%+KL6P*KOS4u5Yx!vj1!UZ!tg0*f^H*1^R;eiENt^x)33?d96L)N{^78=yTT@* zG2`)%FzD+4SZ_5QkaQFuf$>Wuy*+QItW-8t5p>u2a*Uw=AWzG~pEA zr&FEI2RPZ2B0hI-^xHJMg>eP^{|^YRuf(@4Iw_4i{MR@-B+djAsLHst2-9t+zcD7? z1~Z`-XksCHCNvLNJBo91=7*(fz0X_AXFvAm=ik$ykl-0bw~63{E;1M$(u&VlwLFrj z=w%J}|JY*Z(BvC8{F|0f!b3ggMcGg^T^`jX<(V(048t6-Obk9#${D&!;2#QB+|9Bi z{`XXQlvIqnXd^EjCVq>T{Vf-1tiTt$ylMI_Td1HR^!#|=AqY=gEmqfa*m+S} z|DB>nY?RRlXnvCnCNym6&S#Osn%}GrZ>m8F!+jU6fxN;amO)Pr;>OybW_VKW3xgm3lEE zxBYWv9Y_D6P-ducR5S!V@jY+| zf{PO9Gs+)cn=oU$4wXrt zoAW>YJf8&Q?c^Bd4B_KgRdq9C>R&Rf4Nblgy{WHlNzX5@8v`vl-^l*CPt$za#^DG) z$5X3OBVa>g4OY)%m<9;F-j){qAvbvc0n3|2R%~Mu@3hiQ9S?a3b=`31X8~JV0}AG1 z$OoY#X|bVwUvarTZ;Q{kdidW3)gB2@|BuYr|Gq0-2S^O(KG$GEaZ@M&{+BP%vyY_j zS@|tOkg)>$)aC&M0z5Cz7bAnwwKUHF4lu3rm=!=&Jr~Ue< zQ&_S}>sDLB$Pc95fM1*}F5kbMi;xaP2#qJp92bfUgJU$}dl~3TXsnRj9V;IRc&$3s zv;@3b&C2McVIF0xd~HsoumxP_!tScTZ}5r#NK9tGRJo3AGuv0Ng3CV1D%m8XrpvmX zICn)G=J7j%=nP(V9oMOUPRaXuaUHqho*mOhns?Fn-73Nd;}=IlR!s)~_!nlS*0cF~ zX)6%rf4`-rA%PvoKX$7%xb9WLRksHUt553@lNrSQ{%6Zlx33;nme{V>kL z&6l^w-{J=Wx2}=Y=rvkrG$48*XJ1^33Guw!-~kzSKK`Jgb@Ff^1|NvKR#=IRQxy$p z>9KVyU*rQyrk$N#PDTbaH6;b%vFt`cN-9l8Mh3PN;ZE}~(J?aS18Xum8k(#Jx)t%2 zm3%*b{LoNVCi3z5#QXVQysoOU=^NT6hHdb>O6ZLiFr44xmpLqFYyyr@eCH(~Vc$iL zL=>5MdbY(8rQkj#bKi}+`^Wb~zNSz;gLv$zBf7;Xlh^_Jmxo(ZG0K&g7Lea`;?qu*3X66iT+n0tP={CM-aJf?x+2MJ`L=i0ZE<%Hs!E3kI!XSmFqLrVU z63L$%8C`({VxVqCybbTm_2)dsPsHv~<6W%qG$loiAL#cp#msd7qEZYCUxb>+kIc=f zIJX{ArHgq)onKsh=w#vHiJ2%jgnt%xE}+kbbxr&~M7?_l{68ZAsb;;RWhV!1 z(Sn7Y@QT=9M+;0CfgM6LxqYR%Gg9N1q%>2yb5>%Pq|I3Pec<|&0${HU9N23Xd&D{F z#_fxdJmEs3)JG~zKRtu8sdz`@vwuBDnM6SPfQ&2UP}y##V^$n#|A#j-q~b2bdU%CX z4yo5ifKX+boJIn3Z~x{-P@$szdrHn>R)ZoRo(RBFh*jsLx-^&zU@$6Iv%6 zmJj5Nj}t~HjmW&+k4Q$$#(hLJXB1Qvr2_4INtRigUp6~^{r?g6mSIsqUE3(#f`pVX zbV*1^$=kR-Q^mBjv5>1Nv~=|&9OuK$dOM|$)3oRAkk1o3W^5B zU4VOUd6)C=A-h6`M$@*enke8Je%mf6+#W}Qm|Bz%7u5h(mFrnd$DV*@g??u%`1tT| zJfz2O(&hDZZG?CI#?rD_%KTiv-hs)+y3XO(&^i)-lL*~x~U+k;){yc zU!fN6sp{#H|ApYaf{)LOD_T0%?zc}VZX#lj;LR`eLiHeJ9^2a>-(4o`B+|;L>iVbC z3^sUsdwbvgyT3b~v#nr*^FX1Bfbp&9_SRdk*_DlnnRz0O&w2}Rmi~y>i4nVI4GBrx zDE<%h9U))4Uj$g>_Rv=RsJ;)63K+5n-(T&@ebboQT}hO`p7=uYH;=92k`jfuTpg?$ zO|ObMd@#3GCuROg^-4Po1)f}c8qA%9t`pH+n_TNEb2<7Mk6yf@gs?pTxjk0;>gl7H zg{{_&)dMQ>TrzRax5(5~OtGXN0nW8YGerjhv*PP7jAQX)p7uq4e<^1J z`!iVG>zBf$^31Vq&I3%l7#OYs>Pl)!ehWohtUSO?TG?_4BrY+xEYh3oO1u)_u%!(fWLz88k>N2%1n*V(oHq ze4}r>dD{4i?3pKpC2FqhID(Y6+EqD_(fm+dKvz)vJ>+B{-s%yYhpcne;ra)rNVhWO zhdqD3DNnW5V;^~Lt%gUcv{aTc^tjBVuN+707gHTCy9PEM&4F^jU{`qT8tMn%U3pCZ z@4H9zsB7@Uj&$r<3IXyjXXax76}FKMn0Hu+m!qhnt4Xc}_VCs5g#RZt+ zWT^XHM-}j-GX+SfFmEes0qMw;^UMRmDl%k-Mw9Clknq)t3=zS*eyaTQZqE7!Cy|$+ z+p(s7OXB}DG=;ED<4zO+5*;3$EVh8tLVHIQ)?-5UN#cH8k(x>R+-~<4Z7x+*#L(h| zV>81R7s1_T4ES(>zKLe%YDrO69%x)%BYFt7!^CgtICUx|rgz~|n-42QnWA3F_p9Rf zL1yOWN^?j{49vKN#y@vIVpb^_y9Fg(R`2ic7gAwRQPGZwk(w0Y&Sz48yB*WBM=^&X zB{YW~Nbd9&L_f9mN)))5z>KZ^f>{!CbwVHep3KrQVXrLaCu1dQz@w4I-|6!@2egku z%;owj)J3ahINp~yzBq0ytACuzxGY9Yx+VQxl;Q2@ws5wkx4|^3&8+s$ce$rwS5#&_FNc&Bj9?E_LhEpFSzNkaM*{5z|-t(CDq-x3_jytyDa0 zDcUW@`f@-;cXe8C_l1n`UA^~^>t|qf0)$CR&4TlDxP_DX^E!#F*c#T&{9n#E2bkB& zz{@A)O0N8H5ePi^5os311;bDe=EXg_P)a- z8j*cJ`n*&RRZ5@21(BHGdto^iRH)|DQ@Ifz*YdbfLfsZ0QxqRxg*-`n!|$u^4VJ)B z57gRy`TF5@(V(BD>f<9SdW-16v2hgWQ}I0}1{j`}bLkGi3%&KwPh6$>_lE=Cg>M~w zeJ%s<;@R38p0aE<;QQKIRe~;56MEQ@p=qH6@A7XV2r*#SyGfi3BQVQY*F#*~e~to- zxEKQ^s)LcZ{4no~x`B9A4($PD2A8L{UyJ&}B;HW-^H8BdiFnvH@uHsflT`|Ilvklf zrt^5!WKzb?s$&&dTQ6~cANri%ghaM6lko|aaUk$iy7*s|^Rs3jr#fv&X)_*$_PqO> z3vK_f!eqXEuhEqp6FHr}PS&iv0KJL;#%5>DTP60)RcCTn7HoHK1BwTa(bU4+i{? z;kGE%-sKe)74aSGbAAS>v3=nsQP~W#h%){cFU)qd%i6Oz3)MW75zpYAU3pfYy7-jv z6Dfokx)(M$0B$=SH4wl6RV81EBuVpr>G6tx3DR;B2&CKRe+g4?T z{*Bo0DLT78ieZGNqah0<3Z4}^eHX#-U0k+OTufZXlJhkFcF4^2C#!F~t3RBlP%Q1k z(_2a!2o{|1b$}R$tz|RntABzS`)yN*SW3tYB;nz}rQ842@pt1H6|95*5 z?unlRl<3A2RKyfUMn+sux70j=Vw|RZXJ@Cx13V!N;u$_MF+qaFGyUuU4=U7{v`cw+ zpo&h-`5_+M`TbaFI{p_fSXps%5hFSzvnCt6+f(qGW6`gNd|oc4^1OKU>Yg_f;nTsK|7J})-* z@%51Lecsyl|LpuLut!f&Qc-C^2>m(88+%?U$EdD*VR4CIWzyZUgo!*Xz^wNlfi_v%H=w5iC;+0en9_Ab@IL^85Gi z8X6h}HppChwc$dOJyRQ_ok8o%&9P_ay;U|ZwWk$MoJ1{zOT%eTa0x^JRU!vBKGIxR zGvi?n%;TN^bKdwMw%>tfdr)QY!+X~M@fEf9$f~@Hqg(${r?V3(0AI=zHK#Gmc(hLsoKmA zrvVJ+uLJ5(>Ic4J;$$GJ@e3raY@(uuJ`uYf+^6tJg8PhR+4t|+sKvZ>o;>&4NV8_8 zr}0cCy0MqMMPQ24r#IRH`or_*Q8hxW-{=Bd^YVhujcnABg)hF#>_dia%Lrq^MESlm zNRHEb|5W6Yy{o&c!-p+l11aFL_D+!c> zt(oL(tM`o;sugv$Rbk16a%$c>v=m++rg*>bArmaBv@>VR!VkdgEq`?WF%x~IrJ6J2 z6$3*`_SG=(%;BnJ``;gvH?ij-h36IEnX8Y{2ds6uf7>?13aBymguu?qPguD3J82Am zxj@~72eA6XMoUrv=B||h{m)zLmQT~DKXIVYzx6_K-KbX2DRM0Ntc}2KspBCcIAp!l z$nWmsie1#NU#iWk(IOhn!hS)MlOFVMRaJ9*P3~{659Ts$fDEZa5rzC=p7rrz_a@VxL;m z`3S(Sezr^hj6R^v)yEb29JE5k+f44py|xg%yBcJx=k_Du|K$QuPpX}^_!%}k3xD=_ z2k~R6_-h-@SpbH3>HLo|A#INPW!Th{PuLelID3cOc}dpu-tbdviXPwoD}ISV2Z1Qu zc0R>$bVaN{sF`Z4xqsLJ`5^K&yT0mJettG-p=^nl@r!eNu|#Z8QIuKSmx9(kz+N%w z*IAE2fK;Zs?lOnz69_~(M)aKA=b~jvlV9XAiLb9|6ch7}&*gI1>A#wbMKx#Y-%W=Y z+`^l9!zT2+aoCS(yI7gk7?YmAid!+nQ64&cuX`+BpYpG=?bQ3Od?{hwQosJzPMzr0 z=dZ;Q*u!X&^qY8!qp2Auc%2tM{6Z2c`7WskS+jLm=dKsq#NT$NO6EG+I@&(&YF*uK ziXS>za##Rr0H<~DA^+QR#q?T}dziLnbOcUxkLbQVwjki9uIS^ZF58YH7;TWgf1x)c zJ@*V(I6Y(JbEaVp3V}60-@ojzA#bz$irX2&C$NQYpI=?10Ch~I15U){`T*(GmUEHB zfuUH(cO5s$nZc*h57L?Y%RBS(7?4C9Q}zCT{*WzA@`U5K%e@e=`(xHtPK)#$wKB*t2jf}FKVjt>&C{&UY*W3N2`|lPO7X1$> z59nA5IZH`sD8|(TujXvMeLD1Jug0Z(aymT(4_Z9vSX}-_tnn9{Xb&;-g%u7JNq#J9 z-#k%tr@4ul-VU<6@ogo3j{ECmYo@_3-7geAo!R|;HywaNP|7Uzj}reRLiKkb&2Bp?D@Fv1*EFcw8TZGSmkz`mzfgiV@%X4Az9Ex5_HJo)XaiC0|gB6Iu-A{p=f^1 z^=-B;()~SZlI+vWfgv(;@YNcpDWa7t*kv76jZ+9A90nPW&B~10=8&Scw%+BBzk&0J zirSM3M4lIymAx$m2gh_{*Ny^}V>58()pa8-Yw8MYR6L_&PqWc5rYo z{?L0_LngU15Ljq&SpKJNFc>5)raDWh1lT zESCJ350~W+8O3)#etu4>Nl`X)@{4(%-VQXl+7iz@#>0B)1AY;v(cAq2vBr^ac^Yi; zZ(`T}{3_KPp6MY7*RZp!pm`+>+t;yZqv^ot>2qIN>GtFpivzn#oe$M)%9A0mg7U*OUMI9`Yk{cv_!eGz!KgAf#cu;_a4A zc6w=a6x?48(HJ2F{&aj8y+VVp9z`p5{VD3~Nr9{rAmB&6CP;f!lqoezcf6?KnxVyQ zeS*(Z23su@uwr|XifrE-my1*R5l43hsW%MYxC6j8DpadXhc0qa$osM~0%5WkO>>V3 z>opzxgfNj2Zg^02v+(cJ?zq;BDNVNx)5Tu=MWJm?-Icro6(f|*K>OxOdpN?5xvQk{ zWHTz#+q@w3c}ScKJ6--<3{NF-Y*%)-k0u=v1DOf^Q7Cef%ljGBilw*2tS*U*R8^Pe~V#3CH%a0ODMvVL$bAnvQqLnD)W>kGY*;d#qzGj-MH6^aRdo1jxZ&FtNy;Mp9B|>LeP`8L%>T zcX~a#*u1>7fV~)`7s6FmEO8JM7Ph}f--)+|pYY-ze*IDk25j5-8tw{SOXPT0Jj}x8 zMm8CfJ#2`_0}PM#sx|IijQLxi7KI?0n=6FI)j8`q2^g~?DoY}9efhrvFHXg8hk zce@+Z@Xh=`F7>4_282m@^u>~&F@SS_V05HF7ZVU*j=YsuQ4v%axcd8$KyeYsqH~X7 zy1;I)e|HEh`7PrbBN`RnnPf{9bP6%XNol@YQ<4woS7VNJ#L_Sw9r?Fl%<{MLg0W97 z&FkmvIAnGssIDpS?-;&7x95&A22IcfObGq~lM#lOrV$M&H6E!;*cA zm8rt)wwJ$rXu`YE!r$=FbnGs0`CJq--jTRv)t;xC0$6>>Z&Ok~E||IcY<~F^uWayE zN#*${E7@F<5OZWy$ZtKs6@y{Fn%VZ}?_B{nh9?K{uf_4qw*h1sc(7fEG6`RIdT8S7A#H^{w>y$2_Wf+%tyZs&DStFs+8R$tC z@20*);r+`VMEv?s^k%5&kS_bLs;Dv8u&etWi_(n1;T=|I(Obw2Kl|f4(xO_K|_N_b$$?ZWdFL5xL;^J0Z_ASI+&dhPX>z@b_N71(m-%P?wKr z&4F?;Ih2-`K0?6us`}PO1eab2L$L&KaB-E|C1m|w-QAzUoq$-0#{w0uaF`tN@uRzw zmT6v8ozxTv%epXItmm=G@oLU_H%}O5elG^khOz(7k2EX!+&Y2*tWHgAdbQLc2144z zIL?Dl8wf{j>5~he;!WZc_rlSb0%2&z?~%ZNvH@Yc%;&E0Goff%&uQ#p>&3{GCRRhP z$l`slmfymcn?((Lo^E&cG}kvEi!6p(9lvOerJ2`ZB`6P}ocgloR9Vn%jvv*C_)$X>*j5aJ|LHBGOOiU!e^igpN zlL6We8Wuyg6>ZG+_V)3anfAwbgwd)PpPP^mfhu0fw{O);QIi+APhh_kz9M6{{ku5i zQXt9`8AL)pe!D6ItFV7PM?~g8Cyb3iC-zC4@>L0Xrj^<9G-lU5>iYDt1?q(nL zcg{B#DTY|bZm(s5uIQ=f`nb~2I@`PLUIr@HDjuL>+;Hv2`cEC6+sQz3=OE@UM@;Jc z;+UH^VM1~DXwNF}CnNbuCU|;kIvFTlj$#s0xU{xo&P^uB&UYZGYi9|0vI42a7W!S6 z2dA!3rDU}_AyV$YSZe1;2!}3eePJT#x?)DZXhR`bnitIg^a|CS;RiyW!?P6Dtea}+ z^|RVaHCC#UEuB65KC#%o_dBQg&=DmAKZe%_U0@h2@IyCg6j+}UU~X-g2Egv9y3{N@vR)q zl)Qpl^+L@v%-qgd$hgBzK0Bhaf^ckUOb}tR!evaav(5elbDKcurafsXsngt}Vs z8-j)QS#!Fy@Kd@bIuiGw)o#;dk8{S#@=F#baBQ zUC&$;f;sO|hT~=9rHW){8FU8@Wir2sM`0oea+Ez2q7zDqEUV$O-p5y63sjNEjwwZ2 z|37xtW9V*+p|4u1h!Gr$9<=kYkPb-fl%QTmJ<$H2C?R4DG>XN<_VVM9Y$l3+sJt1@ zi;JM4W{Rc^{a|I^SJ~=Yp!Vrkj2lClH^F@qZ+FwT6!|;l2SaE4A450#+ajA-6^r$q zv}kWir3(!fawI&&jkqi#cK+`{&c$Ef*u)`;5fWwDrW6glmJe)V$AK6Lo$ zmZoOkq98oB-e3bFJUnda z!DOOSgAX)`%tAPYw1nOszSUJ9)n=wm_D-SJDA}r!%vGWM%_8n1(f2cU_WkjQ@m3Xxeq9S;a!9{gyMUrBe*8!k?FPs_oDMMMNrrXuB zx!43k2_e}?FoTx;i`!N*BD$OBZb*?b1I_Ct$4Qxmu{cg#HO}+Oq@9>J(C&Ot6|*9+ zUa4ddfDw{DXO5iDW+nI0x%AUxcyZ-ap{ZOzA17Qb>{{f}RRSerEmil4=yBg4vUvAvNb=v#4!>^61i?tU?bICL4fO1VkQZLuRk-lUlL z67+zYeJTCrLI9>x{fiIk)nUTr%#~R;ZJ6H_T~+K7Px|HD`Bw(?=KhM&Z-d*qCFgHV z>~C#uUSk5poyj6S7)=pza}W>IXLv1e#v0U5kW7DC1NJL*dSn=)`Ca-usbIOYY18d3 znuL`Mi%x{bKknLUMjveBiY zuV2>+Q;djY-ATyE-gtYrj+-8CZN)wZrM=YOk0_5yRlC=wO5Vyg2WNu~W(60Qn#jmV zd1vQpD54V;L?Sc$gJaEru%Vr!n;}&S*3=Gj@r*{JP)xp)V{VVLo?YDGGacK+&zyI> z(NKbWQdz~xt4}A}rFZ$=O+1+hD=Y6McO%a{i=v+tETuTwQ2K4QJtbQj3LVI(Gq0+>=%8hRL8S%(5at`Jh9?haE>--x&!^5ec4Krp^ z3{V4&_=E~lB1Ddn6$7bOBF?h(&aT&BA;}`i{m$0QlIF@=orhWk{4eN`-2Xf>qh{l7 zD9(xI@;X^jAy3y)4ZHAXf>2_bI`eHEyZZxqy6d?46rRz#sA4gcuor=U7SNQBC4$A> z{_pNEy+0D{Ms{^Z`P`fj=sUDA5s03~Ml7&Cd)DkB@g`rClXIlsNbPv%bbHeI_R>k% zX(iZuSAQu!>Z#!3!s0Xy4%A>e`rlGWw}fPZ;TWQz^)vs-u3Wms*cT`t*J2g)uR&~` zEcoX7H$<>9w$~|&Lfk)1Kd7MMEsrv0Nwz0bz>;H3MjR=SvORCWNp7v1<8_2XAr9Fe zlGN9%=uhWD{MrZgoH#Qd(=ZUPCOAKmu+1eyhv1UIRJ(6`hNzwKl_O%LrdPRSIt_c< zcu~D#pEJe#W9CCyJ>;zEo*8f#TRw3XdD4BKl*DK=i;d*)feRcc% z39Rvhly+xO!tnh#o5$I^e5#V|IIm^uX54}fUcsMd%7)&yoXjM!#$rYmV@^hRS35se z#N)vbylCYwKi205c?;1n3V(ukAz1DWJ3rgN2~RhytQK^RB27=`0ceYdV; z04A02LVtR7d1_BkyjH%>tsAYB)xV$0{eiC(cv}5`cM0u03rj0D3)tze)@#?o=O z@1Ug73mV|otz2Un!VF>f)VxIb0F0Fks7OYIX*cgUl23K?_0y?@on?%C&NQz;50G=d z!6Cb*tws!sgYFKaj+^Si`xe z{QDPEw+g{xi}WC}?7rn8u-=#i*{3U+OM|<;H1I?;kRGjgH^Si^#&%r1uw3z=(UJVV<_ZFzD#du}KVlW5qNPLRJ%g7Z9l4>li+V_a#~|_6>}FqT=w*eA)~8Y#Y%#dwYo|n`1+Or6khz ziHl<;cM+zzc{_f0^xqcu7APEu-LEe+xmbA(nt-L5x%Kmzl#C+PA|E`X^?O*c{>{lL zKONmDxuKk#bkU>3?WXG*LsmSJQ@9VR>_L9`pJtrQa|b%V9#8VERntnVsu@-ssJE@I zEZ`Bxr2VGr8OE%bCAP7Agb6EP{2@i?C^3$P$ckXzeycCa|Gs#~k!S!wtgjB-qf^iA#gIn8Lj)MmwrV ziGj2Jj;nD1!4J+qk^0L&LgwvQDi7m$iw!|***keXyjKrdU-f?@Ul*7}>tn9JvrqBH zf~)y&3baiQBE~=l%|ixLl<3PQ!qhIu{}S^2V}|?p!6XZoFQa9~=#T@?H0vefHqYs` z)kfG+USdkh&|4KzOW*#wP5=`s1Px0-Q^ov165K2P6yY{V9P)tXOi2sKztQj4pl_tR``J8_Kc^w9880JQeR$earj!z;Y z5bi=-Q=`PkLgZ9cbBLoK>r6UV=W0i5xPN)8pOwT|ifmi_`_SH$tD8Uk_H)l!&=tpJ z_kw(@J4#4(Z43#=ZyC?byGJ7n$dO{69kDbAg=v7u zJkR+8-t~n%lrFc>T`^kIeW0kJJhtzEHCB=F_fM!<7YH@W<3Ik}Kfrhj%LvVw&i%qA z>|Ch-I?g?hKBkG~1CzU(+XxQy117}v65f4baFR0+R*g+W;8B9D{Ky=5+!@!Q7z={- zPowL0yfnPaVhs%fM5UVS`wZA!Kj!|E9{hBy4d9l?eSWun%n?`W{WCDVt;|vDAKv9< z?<6dioya_wg@p7wx;kbQ7W(eE(Qb`9pzNrywx_+VaG!8aR7n1c@(28G__z#5cbvhEk=4uy+Qg%x$1v_MvF29# zhwmiH1&P(juHGNXXFyR(DE@UZ1YlOA@apo%a^60U_W2uom}{||_3?`NUpQ0P=6gd` zqVGg{|JeMKK6kzUZ2KZQpNd9TyETSPUpKrnh|p176s_fH9#kONg4Wc7D=&M6Ofxvl zUOeju`S?f^4P#p~w?J>7>`-XDD;oxtrA7{Doy_6vFa5{V^_bUAuCneKqFysw2fS#R zi+W&l4F`H#{PrgMB`Rc!+fG_&NxaSF)z=Cil#!hm9-c!u3AF>hG>fgE;#0C8`Rhi9 z5+eh{IzuXJb1RlSU>!)jsYLpVVjj=#bJ|o#)b#KY$j!6;&pS$P2X|`xs*jJtm>q(- z`{l{DI(Ef8p1l4;0S8VsgCMGB{!qs!hDVRov`QbHV412vRp=QGlxq6ZMYdY?r(;bp zp9n}yP9EeNgPOZJFL$G(@}}l^4<&O}oA*V}yN&icZd}7wqXdTq65I7^tfF{EJ#2;x zOs^?7IudKX#9*QA(!c2L`4-XH?#7^d{pFUGHJrrZ4 z(IT^@q5_a^l8?zESz@u>vS|flnyRtWH&Tpu3nz;ca)RG8=*d1-gF7tW8AtCjA(j3V zD{skS=e+s-=fp9=16_aP;>Y7t7-|UISuj#QaSwnAk<@XqV+t2u9$X@B!?#my&OF z#|#JemfGKl4`t zpuS%8*|lpi@L!-|Sj>{{J|+=)|8j`!jSFb^4`-NbOOV<`j?W`OT)*)NLvMBbtm!-h zudnL*-#iJgBM6W~&*Q;@?!+ZFI#|5sVi3pba|?`33RfKnvPczVq8U%HjSJ$Y99t@M zw)NQ>5u<+(vZyMAGmN`}`9$mX81^~CekY}<;d|_~quY9hV-;vlXHj**dKnM+D?bxP z@{SQOAr3|TMeN=;2X|QI#5EHYs;FbOh$rWnf0CoNM8>ivfSH1imSL-QJ zkx$6j&CSi7uZ}GrI3H6wgPKr^Q(mUuF2qdg#fsNSscrl4VXwaUsJ%V#2PfVKSJm_)14R}e>Ywzzr;U+Rq26J@C}l)h;kIb9bwpVX4^X%jDh+h>67uBP z30dNIy)N?EE$8ArlHd&1mPGCTgIy4)c}e?xK&iVMWqBWAgD4z+&8zxv?yTZ7vZJHz z;B$Pz*SNJoB|$eMn59VKd8YEtclr+PmOtdZIiT@*`Ajbr(cG}fvCM=7OcRecoC9n3 ziD0Wo87MkOk}oGE4nXG%B}U?$Mdjj&9bB?!Q7+}>vZV-z$Tw#ssCrcH;@>MaL?bm! z=cCr7FyluZgi#3Is(_HcMz_!gYu9%$Z|=SITG#VeqguLIynv??vnvW^efje2=6pZF zeaS~V%j-Z`x6UT1prCUbZS1WlwaX1ybh)}3^ZPJE0Q9PV7v|(h09Cxdz#hj?a-BbtKds_M0$2sqm?s|_(6@wodU~w7qzE`YEqo4K zvWacZ)Q5fpru?U`ZRyFs23a%W|0*22`H+{NUl|)IAd^TNDEx$c&a2Qzg3Am=2iIp( z^VPO93n}IcsT*6o!UGP=$el`K$a9^LJ`?q32|3uW*fDuJuHf&y4up{KS~^#=bhPfF zftP+a+BWzprrqMfSTXfRhh*Y=43UT&!X-nE>Ek^M-A@YLH`eoOQZ60+@rBjaN?8_6 zeXmV!Wuo8KaivxGRDKYr0uXZ<(f_y^Qk zvEsfKb&gzoDEcF2F$fbc^~Fy_hr| z>>pepVS6R-VHNMy=Ap7H@+jihZxiH%aDhl{VtB4F6l&iF|4{Vs2s(PDuC`%1=h}Fo zy_wkA3`<`_B;gZ_)W5gq3jEl0exPSmdcxo&2&BbBL!NCVq@vRs9yTOF$ znOA5{yX7qf0KSvYrw(6M>TmAMTncyw8*}an>$2?4KzOVRV!)UY^?gwZpH=qcOPbSJd;BfwaU3Z+LzOQ zBkP=Ty1b|gcPiy)yW>X+`(?FuV)6r%;YaF;^`nB@XD$haXoF9-D}{fI)|`Np@8M`a z{4F9p(zdlNZM{36cix#|qr1(C^Dr~(hS{pk*?>@W4A|NR8DgL-=boTFQce$UHxk?_ zw~1^(xh1Mkl*UaHy$0jmZ?EG$eGs6g6Y{^4K0}zaC+*bxPHujAY$y|hy>YCAd{r(X zAuv-2Zi=YQfpw%2fcbGNFmL+SR4)Bb9teT-hkV<=B8EjO8K(g80?Zz7K_ZUc{+FGL zQvK);EqNi3463+EFrTP?WWhV6zoLk6W;xDx+^co2^F8j_% ztEP`KzPF>#PVE=!N^R@k99f1z?DMj38? z{qu8b)#d8(NWj7MyDia-$NL!kLFNUR?94k`eL(sp$+FDc?_?Yh{eQ zOTggOn?Ljyn+@S;D18prh6jA3r(B2VZf*UwKBDI_vZ5#MTA~PA%YklInbm?{yJ~=( zvv=(jttl@K$7KaVR})hpwl5dqBUs4A{<2m z<4}fo`AR8dzl~~R7IwnxJvG#9ipL3h&T#n`%pt*O<}A*{o2K7`kxAs=Nxt58@LM@# zDvPX+mf^Kp&`M}r7qWUBSzU|bN%j5k)!!%z3h0JgoB69yyJyOnm*KB`W8iOIJv8D# zALyu!QY~9cTl=9u<2|^X8?QB*J_muF(nAla8OvTq2edrZ`#L{Z6J`C5h^PrY55&(l zQnHtbEpmx!HO4=pOMe`WD-t)Ey!Mjz%C$hJu#^rRlAlj3d;iNviL;DzFQAX#03uy0 zoOV(8D;@iv0;1@mJ;U(wmN^zzbH3Ef>?i)#^A7JyNiJH2=S*y$kwtkQZ!ar=Z$SxD zo!NP2!8^vVNphH=R7eq@PUXP(sO%aY7*5&c2yhj~P}ICY{l%BlyWhC|l$#EzBqfiFm3} zu0&rWVk*#MB`q~_i#!4hsAiV6A3he$BVe{NGhxGjA6Okv4gvhTdi?Ng4F`PUM^2#A z=GoxdvvskvEZc;pQe2W|>wK}}Js^wnp0Wx>jRbaS^cj~L#vO*o?@C~_O(g4+C_&@X za~$d4uLrz*=@2js2lSECL%$-we8>1DHOpz~J(XP?`BToLU*%Ca!wfxLgrvQ44+;EC zKUUT%e=No=Qvo(*oQW6l8uEL8mGfWk!Ti@2&V$;|6KxHe0<#%!wa}E9TQAE%6#o{{ z@2d&GjOXbD@Nx8hr`BBU#ef1$=voB%U&*E^3;B|lpnxQOj-c&?1m+$aocO=!x%xCP zl%~Qxh8hAUP@uYuV(Gf)P(6`9ztbvazg_BR!`h6ptVSIzCnz5Y`*Ea>4&kDV>tvvz zWk9xtF!MX?)1HoOdlvhMd^2w;26Qb|nKF_V4xM&itcehp%#i$9~O*~?WH_X`8n9Z zpF+yp4YxYYDUF!$N<^b#j|0XP5;%ZzhA=b9lyM9en0$NA?72UjUu3k>pipgDT58iH z#Q1#oO)cKB!YucF?}#*3L&GMS@;s(Zu8p74o%y75YXnAn=>%#_TV|3lb29@z5%oi^ zSss9in%!6_s`cB}0#E3}hv#FwQLZ*(jFiaHq@l|TzTALG}>G=tIv2KGzY zM}E8QIE)E~8&eT)fae1CllcnMdlv}C5PR(GdX3}$rxzvut>rBMT@w)2B1RN>h{_*R z&|^wXWqE(JKg9fPyM4N;_r3;}~el0L&- zSPG$Ks_K^bXY9-<)33C%$K!9~ja4pc422@eR^~#W7z~|q+rZn7V<0gjQK;hvypis0 zZj^hajY2K(q{bs;p7*&G_NO5@s;E?)xMQ+$tS=%3A9W8b5$#^ z$GqDyY#_6rf2@&J9{6tOza(FOyFM<06AKfWem4mmYccN}SaZUSCnzJlje(eXB}if9 zs=^#edETFnLV-s;HO^!sk||Yiqex;0hwx8%)|=5W_zV~?JcNSAkK!E79pL%@;H(dq ztXQl;*j+iu>+y6=P%54t6Z(=pmFP+OFUlFr0I)=5dFX^bIsWq9`ej|joa&nz^z&Qk z&(KoORp6UoDE~jN;=&SBz&yPwuI3G&jkIsX@0f=EpEHuHKfRaq7^g$!YKlN2Y~7iU z8X>w1?{Y6GG@d~nPT6Gs%w${G*)zFFx(GT*Abz4fg}vzPm)UOmUHNqupq&qNlh~hX z7qqmpKHTGXx0YNnxc!s0R2T!(A@4sF0x2O7+k`98wudA}81zm436K9`=?Em*vGQML zY2Xl4R~p_X1AL&U9(;KY@=`w~Wd(6u7I=j0c&=v>q~1@M{-I=D8ub=!Czb2$aWjU} zY+%sKh{l+!9el&2O(HT&bHvM^nzj)ltw2J`ozleHv(GXN*jKaq7ajAN@I1`Ph#-3R zxkS?)*7BV~qTk-&JpKmW#0@5Le&Zz%L>&t zB7Wg2*K2LTLZnE_FcN#4 z0{G(IkkUiz6RjxHpE8Jh^RHAx@`PlUbu1*?^%VoB^@CcLOvYFOz0Lz>TV!EqUm*<6 z&%x|dFr5=2Rxr__?c6(g+-8k?vC0CMM!XAkC{IcvxznE6OwMnxRN zkLYI)xv=AErSs+l&i?y97#8r0C6<7>2WOu@S?>Pyn%JE z%{s>dmND7;*bZ)5N42>*i9{u;TJbKd^~rjREz*~l7`^C`npzvoT}^xn&dZKepLdaa zj=ss5d*`9u+2Q|WB6@W5*X&u>7Zn+G>Su`Xf*Bk{69`R)xughka>|s3(fWZg!fPe! z9bWR(?Qxledok=O z(f~cs?;~jI=Q2aSxD$N-8m0SIdxKHI(&*D9T3dZb-MtoIpbw`$1q``2s%0)oTe+24vh*s=aRuJWa<@4f<0KiXCF=! z{0O-BE%`XLL#Aztm_)D~5;W_NhQ+8G{enLxWA-326hrQ7!FPAJGTu&9R}&oJT_`$a z)*mOtQN839SACq*Qoi6{1wCQgV_jB1!%@kN9gVjY2L5QAbUs8x=_kTT=$K=Sow#r6 zhh}~4#H~dO%(JvUdHC^8>6(EwQEM#kQa_+C@10d2SxIM)Q=3jU5$p%ui^?Yn%}W_} zamEn)M0Ij`Arn&5amfFgJ}B$)l)U)#ANHVM^ur3D!(P0pAJ4O%ifaI|`G)c>_-5cK z|KB*`C3c5+EjqctBJSBic@?u_>Z&3z=Hy_(_5=pQhsv6e>`II#*2J1vczt*_;6LM) z5hnq{$vhv!iNgaPuE7L3M)_UAVNk|&pLTN;$D!b11-IwvsqaVa|Jau%_XNqs!x1z# zhM=H$6E1L2oiBCyD_or|)UeoQY#heAvwT&>eV%w;!@9n|2g}gCw_T z3K{RyC}jnH__O&Od_tO9$FiVqoP5yDslx^U%EAlqWvG<@yexPckCa~_;HMmm$T10gvarkiZwc;y=SAT$~i!+YbX{6 zN{M_f7?0=&gRw_cx(7~V3}X~bjQqVJmQ8HE8_Np#Zy(-NPz1V9(|dzzw0RsGn*38{ z=y}Z4P+!W+!V+s4H?0kM2z1Ag>77fP_U00>zLDTTyRKcQIYt6E^HpB-hv(2T@*NLM z=sTCkJKF=@)AeEi!#@+c3i|Q?xyzTJcV85sQ#_abJLDW0#_vvdWDzzlY^0xP14)&G5u!-RB$Gz{I{-AD-{DJ7i( z(lT_H#E=5gB@NOILw72TbVQO@maP??Ig^tj>0t(m3 zxERQPf83+Bq{(BJBCppqNnx(POFPoL>Ppwi??#JQw~Y-#^y4pNl5uG`oI_NJ$P3}w z-%LL04JtU<7B2Bc`2^$WN=`+x@A$u_4}ApE=$8jJH_H&+eR%o8+(Cmg`^>k49mLxd ziMrDS?tJ)8*3#wtB*1YxX=q&tjL^~gtyHauaL!48+e#4qA>51iXzoRT;^+8(>FuK* zehJ6J#}ZLdNN-^8J*Vf82>W-zWJ@y0?;_*fc;GG+f&E-s?}@e1<{~QfltVZ7(QmAP zcX&xQ-&=ORl$>oyh+t>T2be2UyJg$X@Nxgy)RHe9-`-#Dl9%J`SnVW-ohDi#bwDjr zhYUboj_C+{Z1+$9l`f85>D67p$C;^tv1SUa2KEff2#@+&kD@Okr$7?PZ{uFF#9?U! z2#>sXJ+;ccwqG@c(|*bqdI6h@@!eYXq8%Xa0a$bGH2p}$to7g(W_^^X0?}-_sM!HagU#nZ?*YkM|AXl9P zDc(bydA{l(`mVr7;O%BC1-;q@@URn;gbRS{u->Rk9fX1<7lZ2mC?8D$e-RmL%$l=k zMDK|pIY2vI`I4LhP18%o<=7tX1F{_jrN07jjf`|o@6iS_ zRbnJEbCw|zbEK?5hy!9sD>>0dIgn<@O2%;iv1XqOxcEmH`j<1oM|a2Dk=n&Cv;{bB zX@)=_*02H^0%GQXxeG_57AjxN`|cZj4lE`lc<;^X2xJ<5>i@qt_f6aT1}U5g591K_ z?#^gRJ?b~)$7>J2h405#07>A61dQa(*_i>ms=AC%3o6F1wldf44XiLArMYT^txCTf zHKurING*FiN&un=uFARQH!GoSFT2dEA1}w*Y}uswX`g~3wHFSgExk_mWpo5{Xp}vx zPWQjK*tj+}zxFgiHwYhvljn4z=&opg68SJ)tlRrD+x6F9fF*eNjUG0n7WS%LDC#Wp zC~*=L9LF}a)BWK5!7QUKc&HX6Ojj)HQG@_3z`cTiOKKNRb?X%WckqN;T8MfFUk;wD z)>;}x5A9>f`LSk9Sho!x!Yc9>@1;t}e^^C%G$HusK-yHaF<=yTD?KT3P*5#B#E}>A zg2mq(yzuJ(UzmIOSQ0otvC~`pKl)?-xqD0%wWJJmhR@&7{1XaY{?~hF7!+|04LKiE zAkqJeMA6`oegp@*Ih#lUREF;e^QvD`3FjaL&{&aN!A14EMktRpberRD?vYRvb*sMV zf8vyd>${*DyNhy3fIpf_FRpd+CObq}Ox^zF&pNsv_iexS1c@LUPM%EE5A$qGkje1> z@&uXCF~r9o%rLKDN3bz+=Y-?A0<7chAAOT9%`Yq5d%$&m zdvGG2czBSCBcvoii?&H)^;CJ!R)jjis|(~Qv!Pq_BR%|MJE=-2nGug1EhX2aV>|ZC zDC1SA8mJN^H46&@=!>^5`so?$Y;K8g=S~d?9!CHB7$=9oK)w_H{Ri}Uhg)ru=P?KjOTZcMNR6hVpS198$**=0iaU= z*#+1*FZU;j&Cel{3}k7NbnXGHYtM-l4ib-VXj|NJD`*m#guw0BcwZ#5%S)u(6;=$| zdG7pKCtqT4^0x2?Kzt4y#LdS|U%#RV)S}79$yum1n%gcWfmtr=Cfqe4K>m8!w}yra z)9Lewit;!OV)h3iz>A|6arG)6zE^`B$zc~@1;$=iPK03leOH{|zM2Qb#s6uKgHZa0 zw)rWl?h45h`6$-P&$JlCyaXrVn?AgJ;m)eP zYqd&X^Ra!CbKE4G!^DD9c>1Op!;)N9)&`6al0uHd-4}AldW#h&6KE2=;+srKms^W; z_rKd7cFh^Hz6MkStKdrNnG=(vWD_c{ zh5OS~`F#G_++L9XM_^utfF!b#qT1-WnqML+&aUh4$E6-^@r%6T!=C06;IeeWBwlwp zUJ_Wb(CV2#jQ_hKK}<}{q@huFW>sf#7qb|?#^)u`6crmQP`yfDXH#i}qLh)|!pP4# z4$ZKxA)Na_D?VLqrcn(=G}|tT@P`Ws4u}(4B|5m(bmfB29;l*a2g3PMHZgG}mC0Xz z(XoQ0`RxoG-4PP;YZB1OivWlm#;p;#&qej|AT;%scTqQ+0jGLAN&F%r?EOo)Lv@$B z0(@P_Chk9qU`hkyZ~@%SC~b%KfT*OGN?FxHhjrBwWn6?RQ$}yy}ICw;Q{V zJ>Oi!{`M;$&7+&epFF6AnfRXgUyM1ydG0G!(`*63-AD1!rHHQTr!l(4;``ixr=DGH z%vvN6!4%683v%?&jO=?Yz(W3!1xSH&(_$Oj`txWJlW}Is>TyXrNGuAC-zG)MU&77* zg~`JTmm^V-QqsWt4%Bk!UxomqKO9uuO0GX@KD>x_1vkx_UPmneShhjI?Tn*~q_ZJ3MOT(JiJVuyOnZRV|Eo2Evg1n9`rZWl2$Cu0N4Qf1xC z)KgGY^k&un-m$d0IyE5yPgzAJvD*K#y!O*9DOSzCdBWyotZ0(TAV4HVf8Z4joFnK>x6aZEcMQ+Eb1L80_ zZ2dfL##|LnH1gIOJI0-BMT^mDak%jhn>kP&0Lrhata+35?$EXm>sa^Lv|?pum}^Gg zS+1!ACO(mzq#As)(q(``!0a_jOW9 zj?0bRe69+dA6w~dCNdKMb5JE<4ykwrqbmOpFr3lyc&R~CTigACO8EHE$ zOHTo%=@!tjN`eO;P7_?6i>at`MwQ3woizd_9Txa!HjATkrVP%o$GA@2ctQL9|8B!3v4Jj=TSW1@1l%^{iIC@(F6?(9 zE@uk^wE7|bj$$Uj4r}!Tnwjr6g7NHU#IqG~W(;{fuG!m_2^{ zXTJ7IbiCah3ZX+stAKYvf?>aXb-jTgPSP;Fun;NlJh}~#o6knrs#jitLdm6`ZzqeY ztJPmr;{cB`q5MPj$aH~XQF-}WU>L09(;t723E;PCE0RSO81HoOAkPveIp`^}l!+Cf zEHDyoO-Eg+ZMUef+T9zd>aIg$HI4##@ZtIDl zM-Uprv}_7GhR9Vzl-zNz1O&(wB1Hdhz1`5SI5H;Ya+JZoJ`#PSk<}SSei0G7#u|E; zmN`>;5i2*5h|7BU)u7)R2jXJNy&DB?0=P%uU1wYwqZ* zPzMTdfsH4D1!#yuCp@^ATf<3095j<;9{X8RZj4fy6gXsS*1!s;wS{2d2fqw99ggPe z1QURrY0kTz=ARP*8JyQaX>nn0E}Uza1>?aMlhkdL_{Egm+2W-C+++WeL(M`EibTYZ znxXQ3Klk=V#qV%<_tXjUaQG;QE`pd{Ev0CQDWRyWN}yIC|LS8W+2e~qA(l?%#(p~V znFUmEacwkzYpa9_kgxHOK*#5p;?8a{Tb(VKURfA$XJcC~>N-^ph!>F;FTEh(ME$IW zh8zMKQ0hm{!U|5hdHi!0@%Bz>U0K@MIlaBnTOdnSX0v$=mu|x_xMQMb<3ra^cOZ%I z{9u(q5r;Gs(9$R@mtQljxl!@SjJPTSn5(P$Pi%MUtumSfZ2c}5FdA9~Z((h{?l%g| zOajDZ#xG3o7z8Sy`G&XYbNx@i9kGt2}H5{}(UwXd*5*tc%K z+jf3DsM1WjANqpzlBqbQsjqkQW&p_N1xxLBda~mYFE554DX7$#nGA%uL>u zW~D$Iw}6u&(mM5!tcgER3L2FCq{dbK22czU&V|dIabp_Z$Ny}n=9B644@fCAbuP33 zggwiLqjxWiYl43!Ay@#%CpVLj>Onxsd=&?gqr;VrX7pQZJ4j=6S8^XfBAn`+0o%rO z-mhB)5Xr>n8_07rns|6b#Q0jwznc)L8^o=KH`1DhhHL?k^8p-y*=fm(naUiexc3fU zFh;5}NgSFKkrwGIeup=-vu}qUq3`Xyizaii_lJdJ>BHya9r%gR(vtAt6O+gyn4$8+ za5v7oNQ1YRtn%P(#CUqMGs-9{3aRWIN~W9J(`Sg?jA5KhwVGg1cNYEzg!n z<&EwP7W`k37%O4!DcCi$C0d$Pu-QrH8!&r{rjiF{J~j!%rej_)X}~1x-kOSFz3Nr7 zH5J|1RS~z4Ho`9d!y{&)Q$-IFUUb{tgt~elic`gHhY%iUMW_Qt=KSXs=+t)YKB4(x zxRMPs((}t2%yYxo+(pU|k9WhrDo9l7aFILQ#T6f|X0M!{zAyduX5V%{absez;m$la zH<@s-9cRNTps>-9mwTVeaCa&RlVNnq~Q73<{^X+97NiBHU{(4j00G%rXU`9kuQ zrFhg9NWrT>umgjd1X1Y5axpmzpcoh!u}QBB2DwZ+9q3)s&mr$aTM&dC z7N`&BDwAerG$HEz!0u9(_dJqVW^_#3J2p;XGwH0mX*|^e>fL|bYtRszUY-)lX^}l@ zW%c5E^D$4md!=sSLMR>fd$$qC*G-4Iu`5o5VENC>w|)R>v8ziXq0LEy`Osi7&K({z z$_NHMQ9-IwhND=_5TubnZik~+K)_gDa(?vu85H4hK_h;%e6t?m5*5{k&Wj(@Bu5*= z$KS3Gl)E|v6DD-n#J{Gdr~~eb13uxWcENfugru&waU|(b zMVrC;s?d<^eE}t?*DK|3I3GMmaAUk*k+(;nb}8bb2@8wbVXkR$5Ah-VEMxwtViv)4*<}nt%iLJl?oatP!YG6M^zkC;l4{h0At>pD7DE z&?Hc~YwPOpf)Z`>`=2+cp1OVC*)WT0oZfG4n$rb{2@5j=v!;1&5t=^#Va1WW$sJ@O z`wQJFVEcF$y*1A0dcQi`a&|)**7UIrxH8HtCs6WUc*A+eTg=%(h|X84P=mvF@&std|Q`7JATmaUiqvQA^&_r0dbH4lx1T$i2vbzY5(-Ahf)S31tyx9)Y z-%~ftDgbb40B8sRs4{h<%;n=9)_nf(#UwhRrk^R^DA#jd1{zlYODv*ax!VEQpR}(w z;RIWe8Dna`Pexbexon@4@J&-GpH3@%&9cPj(Gm?+uv_i{<`NXEaBgGan+ikvc%$t9 z6&Php;ei4rqquPu7iS@ke(Z>t%7BGQ!kd4tDhp2&Pfm>+V#G^DcmucUa@l7t(l}(t z%o@9fp@Y0EA$T^p7^Q+#fk=aRoCxVQrKEe?Z&|{c$eh3b?iT4yt<40U?AmbiD3E~) zApr;0sj9VvlQ2f0(29e7o#@2J;GGR)=$d{T78`EdX3(oUe&n=*!CChy7JlpN(~H4M zK;!YNbgQDW{XGNNF4<3Ap0p!@_|N#I%T8<}$l&*jU7Q$3_L{2WY2`r!3;Ppol4Xa$ zX$HdftX%WJdh6DEk0y6%4jMFz&D|OHMeRhO8KKiZ-s?FwZ1!m3j#AVp9R9qoD3u5h z4O^a{?sqQdO;YRY`Mm)9zrL@qTuh=OH(;XTu1+YJ9^mwDHBB^)vZ0U_B4CU9;BLr> zXahvJ-cE(xP8=lIIw@}ZOkN2YIx!;m=MOS-WfaGHar>YC2V0DFs1x^#0ryA7Ei0of zl|}wQ#7cHUi|g8*Y$)%pOoZDExb6jVG-(7HaR7#Y*tLfNhOsku{lbD6NZwS_3Sr5K zj-Dr4y|K=h|HT{)_*ON4=JF>8MxCr020ZNrZ~{}xx>)S`<2^X_d;#=65M@V>2oaVW z!OkGF+BOAm7mim4UJIe0Km3ZD4*y<8i@Rv^`}#+SKmz<%iQcW5Ncr8d<8Gz08Gr*C zOkv)dHHaLfSjfmxT#P!H=ua}UgfdW6<)(|xLS`CVYs|TTUkIG zFd#PZtJFAK_|4M@MR8e)tjp3uDe2gE0o<68qiG^#1_7;R`s^3vP?ak8`j21vIX$8V zU4j9BM1+dL?XoA!3W{Nk*Dh`=SBOj^ZY(qv|7#U`0cJY+9$Y>i7tLK2DjsEjUW|5;@LNN3xK5F5Y;*CBuX~((1DQ5c!#zN~4o%7;vcaE^yQglm z4KSKW@`~$)Q>m03!8N!y8d4suwBJ5l{N_(buKah9GG)=#<_+g-f?D8p92vrHoT{)$ zE>C-@o~GLIT_4s_q`0T40?wEMXm#<=8yf|0%e(H_5XCz$E1kT2=MvDxg|)FQR)@W| z02y#hCgI?W*!qR#e-?5>E7y4lpwKD{u;i)!LL`qE_L=t~{70cw%kdFI4bA!fJBxoh z>@l9JqVL&b%Cmh4S?vUxB#CDK+hF(1JlL6C+y?M>j9UIx9bJK zWGpanc~}H^v)SDOW9tX&YDQRy`c&(KDkPR{=<$AG+0 zk_+xj&QKn`T`YQ=y1kQXBB(r?<9}zjJnDLXZH@ra;tq9lRo(Z)Pw?k=cj%^ljH>KU z#DHA!$hX9Fll(&EG5|RIQyGy{TdvFT33yQvL3UWK9_%REF(ER8tN{HwZObfqI=1bR-pSWrJ<1 zOMNO(Ucf_)wto(*L6WFWs*~Pb6#FV!`t4MuXhsgn1-N1AT`&0pEI}Zk0Q)v5FBZ9; zCZ>U+>l)J;SDY#Aj&ZbW!YW4E>CXywfuA1VdW{(>Cp$2wkTiOQsm# zr)DSH8EF%fE3?P&#BwXWWt_Mkp16 zS)S(=-uo#@?mH%A)5f*5DJ*rtSi7iH+|yD@`RP#nszQ}WD1y(Wa1}fA#V#EZVraAB& zSd5?X)A12-8sqqK*QoQo-ZCL6Bt-;``+B{1L+ypeBp z{qN6ij*viITAMJ0&n>=;XnG+!<&p_0^uLOVP{eaDM8XVs*#kU6 zS*|I3)rrxB^1OHvsn6QrLUmUdO}LRQV-^Y9xTI!y~#?*XNWKHANoY03#&kTAOX z#{Dm~$DzM`v;`zNLdljSrOgO2gGFHMOFHj-0_1(^WQwCCY~F@Q>~rObiGTF`J#-^O znA0SG?T3RoA6-e9?5CZCzug%MtCt2I(Vwdd+%mTfQP_Goql?6dqsB0=VA+H)H4(DG zU`;Lv7e0)1Qa)D|56fMT85JMfbQ_)4ILD^DjRHzbOM!`lMq=+}M+Lv~OBbJaXtU0gFT?#Zz&U#aXH98Sj+tA)IQ_3UJ@;6S)P==$@Vk7GS)M? z6?R;Xo1c^=A%7P(Ei~7HbkGh&*4aV?$Rhei$k!HZ$>H9Rtc-`Vx$_&b{7Ue6CexNsS^7C;bwYG5I|1n5*=lvm2C_J%o0 zNl6OTk3C@+FGaGdN}JUvk;TQ?)gsiwZKFg)+`)d~x{LHr_k&WZ0UUv;!)~U9?q(Fg zI!Ew>TW;zhZy~zI&zV&nF$kjooE4Kc`VFvqJ*31VmTT0g(cQ?c&0}65CP&V1s5oS? z01ypeDc^FboXUs3?Okgtv13hj>U@-c{Ca4n;_A9OW<<&YOT&ri;mN=awvXhqnLwQ< zaE~$Q^6w}tE*>>`=r@7x;&H73Hn8JtO+|&XYY*dVX##yhUAJlwu8=NG?r{}%m`4MkHS?_I;hK^2_$ zHM>PB!scXuTi|x=hwS1{gw@=5`WFPAc-$ZGaIN#+)CGzkaZV;z-y4%p`gg1IA-SOZ2}c!WrKN~dA2jdt6ubX zfF-S!rR6IP-f2xeJ?0m{L|K-EU@Pn0lPn^LpM0Z6h$++K^?=K+lQ$Ngf6UBK(DsCu z;kVIGq3Hy=eRN(|9?}Io;!J7vZKXDX5rfAamV&gKyoFl^HCX3{6%pa0u@A~=W1)z! z^~9L@07|mche-|6KJzGi@P(_`nrLKXoc)h?x_~N^IZoIJ<6IpR4$j4FRzTP;pO#4j zV&qKNn>HSavul})Eiq>xH0lf7`Mq4~^=bRBLD_h(-Uwf-!xVxP_k$Ek*MGgjq;blz zPrZggK*?j(wRn^HO6)+2mU(}&+%!p2eWPm1Yd}_Uc7DDS#gxrm?Tf4z_Wd|EHr5po zdYNsTsHw$@KizDdt%u-@{7}oN7#H^jNIx0^UhN4@&=6?4!VVjF6<6G*w`Anjh^XC- zg=@$LNNPwShii-B-+O!Y$D5zpQO;V7?74;BGGGq80_i({jg(t6+GhZ)fCrziuD*Ef zWqD%WSZkvU`bl!_lUxFhzt_8$z?cx;7C5vav|lEG;R%p@KJ0M$thndypTO6jQLQ9 zHWp!pjQdY=+j2$!8waTV&rdj8{^|af3!z%W&7<+71n)B z;4Z^SyL3MYAFP0h8Wl81Mlkr9eL~*VLHakjSzpB=a4~l%Q9pB?e0VF=zWbHt`V`=# z4G+|1%~!o#%>@XPS$gc^lFeWpf4_Xf7SsG~t;jNOu%Bd`a$m}OV2+M*%sL>D?Tiq4 z6XW~$tqHFy{fnZ%9WcEH>GyE$qkxg#7pa)(d&-2ou?U656~zsu<{IXY zyc?)BQ*Qy=O-U{i(svnnIfy$uJ3X2HE-o(Cj?l|KU>gQxM8;)iQoIz{R;H#fIqK zpYV58hDKe9kAOVn#gYriu==h%011tImQ;XoVp39UUUYO00nTW z+hQn)Tt#14H(DM=RN>AxNYhaF@vz^xfkWlk;Ns1EjhGX4LkW#?-@7$YtwylZ#aomO z(%-;R-Vt1NAVi^^$oI^@A~7Y+3nD#b&y|;OmPtz@g1p)xU{sGNAnKu;-9B#)wo$Q| zFS#&V_UQksAjpXbqx%iDK%eJ9trn9d=TvgUu*yvfJY^q1`h-?@%!aq4iEzB)Yb0b< zK9giYZ5I|g4_hgGCxlU*K7h5`Nqdv~h5NEA{pKgF6e;hAQz19LF%(#?BC&_h^G*ku ze5Uj}L_nBaHJ++1%)<=BEhx=KwW}uEhbgl;Lb}r&D1DY6rSA~ z>aJF9EDQHw`i<3^|5$ChCa~QU1?d1cFbteLods=QH&uhA;{X@aeqCgyNAkmB#(8w8 zV=pjlkT&xw?*&rjokUacs4!}oA@RF?Smz7W*hm&FC2@as( zw8hEa90c03q^6OqHAxSym2y`M zav0dIf(uvkZioOlvZx*yW1s*tc!;{{jEjPh#;?ptDaOXn(y|@Mz5}+!n&1(l?p%Aq zRrGcfeVqEERN}&6+!!^-A*YS9_Y-;W8q~xYDD*f6&1^MmD*KDPAKroBq~siyEqp$IGu z4i2jMV=MTHu_o8uok9W}C<=X1Ksh85+jjDP;~zEvBO&vi=U3zB9uwIVHokYQ7YL@# z4%XN>WZ5FsKeWCRjt@_^@pSUkhIpTZk|js54XY?j#OW`}AL{LjiT^^qu6)%v=h@kb zuWJqWWe)NEnb8ABvNU^$|08vFskovs7go^~_iDx#x2NuxPno~F{|0KBJP`#yY5v|q zr3~XXffaK{0PZr_2$gA`FmI72*q--az4vM9frpf5Z=Kd!Ij`DWjkxw+C0AWEIA_WH z8MC_pbD*M}+vzVa={ zly7kpYtzsc*qhODSB-R2uus;f&gRf=2)u@d43DU1iCQJ5@O=+yJ!JnD z!MXF+XgK}`1K@6uZQjPD34A_FS|^TUVMmrld3HYk@`^EHN7$EiD;0?VTxnFSf4R&f z%`CxeLoJquo}P;yXtdk4v0z<^SV<5UHr+rkgf?tYj9Vl0+3#qct=mJCUgl=3equU@ zasWob<7D%jXD{z+{&2LDR3iA<5WF1rb=*YR=1cbWkcmqm&njKgX|_~kn03KX0N8QPsA~! z$WtBuaKa*#R3opXU*pWHA}86fERtZ^vp1U7j0Hg%%*{rzz$GTQ5X9~??=cDuc|N_< zHK+M4!VT|K17#1@`;dvd=)+2A;i_(x=FKh{tj}9>!xpS4OUXEEB#c~+3$Ex3NyOkc z>ENjtuJ-%5nBxWyC1*fipxT$99P0TOfHiFuLJI7fAvdm7tsie}M1KahGwfP5bDVyE z7S_HU>V16X?gi(CJ_4uHg9PRd&B@N(!^4x=LT30%5+-X`?LHT#gC}GR%$gjt;ElAQ zw<;ntJ4);EAsZ<(%`}YOF0zMl>EVH1sR2#6WRn~R0fnA>?re$h{RU#`-4xe{VK(D|uH z&V|l)2uc5zJ=#1f&Y^d+?xyb{MWQr-3IrvqRvm@-G6UXWAU$Z{sc(aCpr~_1w9bK)GL`?|3?kB zUV#H$o+FF@j65Pg{~HP<=9h4w&hXJzF`1-E#PDH^%Ev@ZyK=04(lh=rJd!g!dQf?0Pvfic` zw78n_TiwPggH-D>N+Jkpt_T|1kKC3;bPm$XAGr77b00c!m6LQBkAMjNOD>=G0S(b z`x%>zkG?*=xM)YO5=SX!edg>73|ruy1;pO|3TR1yrzd(r2PI(uop`fe-Y}u4IDH zzoToK=q%EWh;DG4ccWyfy$w z%vjJ#FOC%ZZ(!89_Wltq$7Etn&9K+yl?#19yg z%RWmPa&~oF?uy`Qpe`3@x;&z)?;@97czeA&L?OTraJFNFL=<=ft|ukBve)T+ zfXRUfs{&`v#sj8>8(zL>Bf``#X}K0XoBu>AHh#UcdqKz`@i~%#8&CyL+^l;B>f|0? ze=2%0>%ksZUp^EO9RaSHAnik3Y#6qxj~GN8lk|5E$N_5PQMwXlTUZRgYxJ@&0NEf% z7&%NS!h-#r9~2z(XcqG(b>rr8>`zfG$~(RE_)FuVm!E`0{#&a9>CTS@N3?eE3rhj6 z&jZVBEG)yv4KLjGK5eJW&wLn;-dFyQtFC!hYy=qw|1nSg0mdTD)pYjJ&WIq@?*sH! zCz*~yGZw0P4;ORhi-GjJEb+h5-vEd2t3lUe8U`M?9VJ9qZZ5+#k}G2VJrXUMEA_99 zp)Y-t4@e+Y(+T-iRntx+>5b3ZEY0NAdCb6#01fdHB-;=$LWHm=5c9Tx?cRM&Saa1T z7B_JU8hlOE@u-x$@M?0~dT5tHn&>m4?2uFgr-?4~?P9uTZ4-u0HaXTF;F(3I{0S0O z@-nQ2(SU*HYL4Uwl(EOQH6$+-uuw4Gb$ZewcppAD~3xh9EzB3kvr65t>Rmv(Px4vuSPWLzvdBFbq< z_WYiH>bEA8qXDkcsG3=mRc6bkW9Uz_UCHU$`-oIHlqOY;bpJie(CGSYYf2pYs9Nww zUf>W13L>~~gOmbd^UQ{FzyN<3jdJ?1hF}wV5lRwJ#^(SSC(xY%sCrql+~cHQgTkDL zr&Zihw|JjU&F-%kI6|`-0Rq1bGu?jVisK&<6&5`~SZT$%^&xhBQF_zm-+Kb4tK7bi z&>%#G&aVlS<+_!L0DA#aWe+&gktvjI@LX;|4%IYkW>IbK(F+xr^GwMpCx%NDz~J90 zF&C-8zq%ieK5V?+NI)*lVr7q+pIE+a?2^}P z`qeH-S{7dx;jfiv(jPUEHj&}aBO=33>a~jwjaFKXiR?7wiE2u+2sG}PB&s~7D{WRS zL*FV_*+;{luibX+!%vfi3a+f(PrAo!cgM$kx~|*0t{zhq#Ev|RVgid0B!+w;#Bf+& z`b(*H;32>51aWhQ7@-A**yAopx+gxjfnG8aMzLOh*l`2Y$xTR_mU5-wa10b@S=T3@ zMpAxtsS<)Lj?BD-Z58=RQa@Fxm5IB!iS4SO=(5D?(!!*sMafmoucFFsgW0V^ z7oN`1rKe>bwj=R&zlWvl_8hqUFhCr)82+XWk7K)1g8n^6yl#?0v%LG1%;26z2VIpk z)uwLskC!);&NmR{GIuQTwqwaaqPFy%&Ih`2tZ2q1Q@M&VHczhJ3*py+C|6>+gC9Nr zSiz8fyvt(s@rZGBdfQgM{JCxXHPI*OvnYb_S0#YiP8o+qm7SAQQ^+{LZ8M##`e+Xf z{#Db_Ny$R2wH(IR(!d)#JyB~u$zTA2DamKS8tPpMK?TVyP=|gKRG4s{KFDqM^L58)xj?m* z<(zJo*UJw@dD=&=S$!THh$SC~1Uy(Aj>Qjq^kNAu@PYCIdrCA8j>{BdQo;6scWwQt zUUlH)9|UnCRZ1JmLqf8AB1+%0Kt=Hhk!uf=4Hr(e%?^A8XoyVzr$#$tjrUi@BR%;6 z{G@tK)oDMV4i7{^r&Tr8)jrUI>eoj(lQsnFGH`a~F)M53iYK3u){1qAzNZtSQ#06R z{h|s)@ywSYt?+r>Y!1RfoN>}=E3!i%L8mRlx!a3lc>2Z(kBIVH-DjK#OPuKE;?iOP z5z8&_O|;HNTE&B>N&KTrMG@~o0XN^viA4=I&e;vTi*EVb!_wH~S`~iB$ZhsV zG2+3684ic@P5?_{vD2^3>+WyyIKVdj^qei|`29uEPnKx+a*<=<&Hb*>!+7i zRtj9NxIvJ_T3cKBh122NTIL`(D|?bQ05_i~G8+U#mHz=n!4tQSr&umq)Ev|%1S{!~ z(&zkS9gM4y*f~#TC#e2odV%xbf=!F#ZJz`I?emz~F;bnzhkyNK=e4}$%lyJOlhqma zyTkt?vonacDSG{5{@Wl6y7T694r1n@dCcZzfwqveslvqe(28AnNa!}&A50t+Ft^-K znc)wIUnqstQMdDBxg;0aZ><*%Ja*x6aKQAdl{EfMRaFz>r+oyw_iN9c<5RS6F>JyG z+;&wDVe2>BJN?89y@W7mjlZVE!#X5h&v3 zCo`Df6#Or|ZP_zFT`68ukbM~Ev74b^UMj1tow5Gh-%k4b1sPycp8MwFbib}w&te=ran z<1Thn8~_mlyu#O9ZG*8s{o8BCLF@g)-r*-zfbjQbm}K-Z=>smPoQtxXN_W2m zZv{@d8rtKelZl2EXBzKBvMqSelwCTfGQV3C{>fgDO7IOCg>jMelEXN6-WwHK(dP3* z48Si3H`y*Sn{^x;;{BKqtJk#JI z6lht$&W1tn^M7Ng@aA@$w85Dbr($~t?`4zNXv>E2bt&Ao#1+{|i=8zvBI}t#H`M337W$Ro53cUQUdFu4j$8^5uAt-gPOYaIf zt1FZ(u}ewKyL(&Z- zA6nh3`UL3XC|p^ezq-01zuD{CtjVqRf)+3_m)`jr85>vaM8w4r_&rr|`vxUhG;BVm zUJIq8@LL=dT6(mUeM(i9+D3zs<7rDP8pWfC1AC+!J17VH^?Hr;Q}58cNuBre>LrS5 zo%QFBG*l1YqKnH$t{y5z%B}(xci}(_0}BajK9&)SAJ#tq__nin%lk{`<97$(=<2XaZcdsQUC{hkrMoPeyfTij+&qSyPd5T3|jN;yV$>F52CCeA?^1K zq_;d!hlZSdFI#`&9RGO}vUK&HGoXccVe!KlWb-k|z;Ofw_{<^j;iu*CXjIn!zyO!L z-*x7lVmiybLxiO<1nymw{<6+U#LoVsQ=N`gX`Q)^E;m;F-Na61*4iOC*moEXm|#@M zm%6hzdCX^sUBBQ^iStpim;HCHa`1M|Hy|!!fStS2J~}^#%UKtIQ}o$$T0b{}-BtHd zl>hrOHQQ?O^Y84wkm)o)Fd~iH3XB82n|4_V_1=R-u%_PK$7%z?U3@)(b<+7k8WGe` zX6|hqr41<`c}>3kgCS`glYw%#bX>KO9S3ZQy)H8kvDOKEUM>(5F#Mq?=+%M+wjgIR z1TrhtJXJVx5`#FWi;T;LA4PS`?Ai=V$C%t78g7^wjIBn`UhdJ_u+(3zaT~9|xxb}d z1MbEo8wf zL&*Rt64Es^(nEJiiF6~4gmic3J^1_H_q%u9b=Kl97R;R8&wlpaMImMaBMbmZ_EH=q_GuX4Hk`w@uun zhnbqql1oThekffkAsLITQ8yx4UJgbK$j`D`!I54FF>2Rl<+hID$vustSE$>lKMjkt z71t0hU(s98g=R?5C4*+)x|w7*sL;=?U;(Qu3G`K|C;uQwOpfvrudxq%Vl}|l@+l=c zb`y^Fp3RiwDcK9G#8~z9ZXTcEyoJBQc^dVQ_$k`tcLHJ?BbE9B7cz@qp~ZV*66h72 z8y=|Jh3f|O(Xs=X8n9SwMDQDy#O?AG*$Lu&7psP$={0F$6>q)ZKtD1BQ2)>3a*P2} zc)ae(gGkF%nnjZLXyF<3SBf4?C%NT>qD#?O7T*MmvU%_d6hO8n#9$62Pji1N%`rn0 zqHD_LE{<#DYqtFZJ1!*e9Q5Bt7RzuZq#lnVb*=)V*v&dLvP0G1h8;ihn$i~>Jg6M% z9A1fk?8MQ~lAmz!^%ofx4Biv{XPy-%RpgTejr(4Mwb^MC45i5qO&?JzB7uJo-LSw~ z`k;=9s{K;5s(Wa-k1EZ~(L~Q-U2Y#wlSco2-`PXcznJ{ss)gpa0!Vvv^kOq%!2>eI zmTc~*FESdgHIhK>_~S7-i32JdJZP#yEVRrVYbi^&(EX=p0qW56WWRD{_%t?wu3wI|QQR0N;T7C~Fs}O9D0kyo#GX;i}_1f6=ub@L}J8Dqm z5u%v7O;Xjfzn#eamDjxQWhJR)Y530T!Sc^jp)Ttk1q_}#XlQM%U)U}un>wA<(_Uf zDro?0cB`J&vWgiTu_ctmS?yxkV2SgMkRt|q2_$Mip8(4fVfwAwJ^}f^u)Pq!kb3k5 zt6pholaH^6K3at)Nd#66ZH$qML)la-?H5?Ty4DC=2{Ug=%x}w(@0KrrLC_^#imBa*V1CM4ut8sEnGr{Oagv~MklJ%RdZ0RWo_zeF4=6=D;X4eD z;h+Y7l|wqxf&bYBz=)kEDLP54%)~ckji(jAKKJU^k`Cln77vP&KOq5u_rlQkVs}Bj|j}40GGFW|KR-H)#Q6xznG(VzGj8CW<)K)DTYF|8txN0 zT3e%+vs2>)zOjp_flIrrvuSIYNz0Ya<^x10T17pKHf~D|rf$mdd%ZdlS-1Cz1Q}65;S|R7egz5a$8W34DawcB_%& zEEI{};({TYDZT+zcNP49oK82g|K%rf8By-;NPk9^=5TrECO;Bm?be%a3)EEg)o>?( zBuJ9C!I7Doek=7=LVd^(r>FFvt%AVNrNpT^4|p&iC8wPQ@}MR*02#Dm8$swsQh%=D z^kzX0dvMx9PFdpy1lFLB^Pi%fDYWXo4mWkE1gy`T zzwqsXPb8Lfw4txPCtv2D{fo0A+zP( zX(z6Kvmf!pzZK64=%_s_`{F17oijUlWNDX*SI2gJ+ z_9x993q$t^9!w&r8wjuQ*NJo>?mUKY1>f zcO60n=fHS4h?PFs){`yKT6?0n^GKaxo>*QSUfD8Lz@8S-0jNW{ND)P(2Q9zuy3Dv( zi#*+Or}$5v7X~(OEVZnqyYu!bWDD>)One;ORy0eJ?5Fx#A2^y;P@e=fJHIV#a8dr8 zb^;5kyy+Q1hT!ZG?Pq3wEaD1{usb||#%*J0d|=O{MMZ>yv((+RV?em;t#VU?`)h$~;@6)rxCH;{Z(R@^2jBvphNDkuD=3s<&4SD9ovo-*2Usht7 zqQJM1BGz->^xg6Ol`XvrRC0jYXDgNT^Fge+9*%lExXoTiHyGYrVBMK@DUke^U52wq zn;78n8#Me-t`t-Wm|wH)^h^VZTH-aA!lYv@6};M3c!lfeNJUqg4;}*y=J~ZL7?S#g zRmS9x&!0eu>q}rcg(3&`OF}%|H7Ezx=^f)g=~bvLaZThzGHz`m+gi9c%w{Vyl0HuY z1Nm%{<~tM-%L1}gIBWnvv_>f2P5Nv`ba;;+eN6_R-?t8J=0uQxIB2p#@EUhuv_(Hh z(TV0F+&0^IlXg;%-bZO7Q;4+G?oF!HKW{Hk%qe0#!Al~V_qcE zYRNuJz{-5706;>ZgbR3q+l{&LbyGFdwoGV!_-;QG(U$4^zLI83*!o*q0I@(o9Kdqm zXi!FDM}uXtqZZ^|8NS=C-=qXz_xYhT z)AGBUc-r(M;)1B$G;&r)G=KLpQENu_Y@(9XVm5zePt`4a$E?p5n+4!KUx<+I3ueo} zvy~`4lx6C;(i`doX@@m@iYPR`+q0M}BjP#!b65!sOoP(xzs zv8iaVK|NG`jd?tz1EtHc{lgEunM9s|1ro(JWK*BA-S`JT%ZxOpuGAWX@t@AA_BHpX z3`j;$amXq-asVXqkzM?+U=0U?@bLU-qH482A?=AR`a5(0Zp%}j21PF48ge`Mw#>?U zq@0&d^I>nN0u2dtvcaJahvWXnfz;kk%ZS+*Dq6?WvRm6n^0hQ_FLbD-Ou&(`Ty(Rj zl@u{$QoKGwcAr2b`0Jr@Z#d;!G>X?A(Y#;FVed}#Ymp%JROVOed@Yu9&#Dwe+Y>b- zx%pouTj$A|q89GMFo87Jm*qb(1Hj%>YU}_=Vx)uMcRh?f%Zl>}trLbMIFdMq#JLU! z5H;GbfRi-?JZ(Yun>U22*M$_De5BRCS+E9tCi)7G6(_Z)L3sO=8;S{}tiDOCm9~zb zQ8(ZU(ZXDp>6LIf2cz|^y>89V6Xs;7_QgqBrT!L{E#dA7t|LEjp&YHWCPQ+bo{@J} zDlJs^8~c{VD>US1h5Ncd9rI7jMQFn{#oBkbKSjLds4IIR}CbiPEv}oO$wZxmu-eVgvLm za6&cxSv0_SrO%}Y7QT=y!J5B{f;!V%WHyj2dqlI?LV& z)1@JjNc;_1CapQtFKVFH6dOnc`<{H(7NphPIwG=^)xMdm5VuWMVk)d`==wB16)_($EG8_O%V_XZv+g~u`S3ERjKc| z)ojqwwZ5?5u=L6+aS-D4{Jq9sK`RviiRGK%B0OBOEf1GVF0$L_Dnsa}BNUev6%gIC z@7AlB!vMrU^)(760iB&$BC^}k%{QW?07d0$Af$X1a{9qI}LVyYBW2B~*Skxk2o0VD`q z=17ruc+fZMv`4OwzD;Gd362AGrquL`im%a@;r$0Kr(4yG^~HPOhTUsr<-!4ZaK*BL~|fP{_tKm9SAQt8ZS&) z7m2=QQV7;&s17e;W>v+`pPq@RzJFob_9N(t?cbU`)gs;)u(0;lbx}Xo0EtDEpzDmF z^}jN38jMHLsx6o*?qB*=FGk7y_;w$}RHRbSku;qdJW9VPyO-7euQsThVs)NeZE2&ASgzBuF zE5qDB^ZOCYt5HM~si$FPi&nbH?Z)GCOD00?Q;2u2Qf!%U=@dr9MkP^fws#Pt3m`hOuu3qt~DJ2~jyXPC2g?y1aCWS4--9ETn871A7SFm2=j%=fUDvGrJ%Et#6DZ6)D`~*rX0F8XA__AU1UI#bHNM?4x98Br& zeP%D*M5|@&dS3n5N$CUN)OzOIx6GnRHM-gI)wrT%>ReJr2F1@S4XB zwz5J;Zbt>b=*7`r3EFn>_00kl^--e1y6QmFkjFCYH$&0lAkd2iTMsiXo&B1m-JUDe z*5*oP({`6p3+)l*UjX9v%;IBfF8&D&T_^1I%bwftKs6OcVLN820jtD0(WxmhAmzmv zQbG1I&jUeD4ekJtOG}ogVEJ#{_1$nSfEWcSyaT>sB#7U<=J$f_;G__$SJNO$jd^Mj zpKMruLXyjwZ~l}ptBMCx6SNBLkE6N;y1$B6(RZ!BP;nL2 zsrQ_K^Z=I_#vaq0zzUOTLJBZgQ~7iBOWER8WO)cVm98Kwn?zDLo77dyf0FxzW_VL4 zQ#+S=)cIRs5ItTtddTIU&@|Y|L3o}P)s$jv^Y^w&*?Z2C>Q?dZAqw%Pwa%e#KbWIz z#Mfd(ZM6Q3mJC;CaMU1>=KX(YJj^PVNW>-#LFQ-_YAEs~szO6g3TH`dB%i-$z_?-;cg!k-_zz3T|QiqwoK~`LE*3&55iq^j?UJeq-^&&>!;asn(tE zg&qqUg}#@H0J8z$XiFYmU5R!NmZdK`vB9-0*)ojYB`|5n{jUg9KzJ}N{C=|WpG`(- z=3o8BS=OVuU&j-N`Vh!2YS>72q81sLc7~)++4uit15;Hu(5?4X&?ir+>I=wIT6aw+ z^ki(^bQSEa&*A6)}%72o{k%{eUd*z6K-8Zflqzy0HP$}oOCdq-=U1hC( zwDx+{Lc&*Ofen1Te1nvSPQUI!p(hR&hcj4b(+0VUQ=J;)lgP3>-+-X9^akkX0hrYD zrFN~@==;#h0n#MJjQ$X_?j(f?b?fL#h`iQ5d}#miw;n~Evb0rZ5 zS5LNbH00_X&|DI)Y(yrrKmyKu(l^4v9>S5;+a@W3)C}KZHjJ|y>RMT*_?1N$84!`X zsAI0ND2E_{m;W!pwf)Ub-m*$w8!b3~ASFaymnzDe8xY{y{#h=v#3=%fOba$ZRjive zXMt^b*A!%0pt2U12O+dVc;32V&;(pSZ@2$d6)WG~Joa$gd1Iu3;e{pH%vpoQyf+c} zu4{j=xK#*C-$kE=?0@zFz>B}AB1xihos99L2Zq`fR-GeX1k=`bZGg%o&zKJk*~dBx zaUF-W%0%A8Tcd+s_p?}{BWu<}X}gb7>3A)j2|#WI_{dS&h9&2PmlP%fUD{PO8M~a9 z=GB}Lb)ZjR!wAenftSLU_4u!5d8y4p&kCbLCTs6pf1&d{p;C9(m;-nCuYc2GETS?WPL4!txz+C)YZqx=( z1#D~W+IH2?mYNm03ABe88W3|4y;S zl_M&1`N7Yas~vD8|G}u+x#h_4>RKUh+$RZ{?vPBXt&0_9xd^vZ-$DDBl9NjOlG@D* zX}@~-lqB}gnPsJQ_xf`pNo63D0lxfChS6^G=SzQmG1vJ-YjcMvG&;M5+2OXO+UH!& z#~Np}-)(qx{eeW&7uJnAGg8)kpM15|NOqDMb5hPJo~f;^=~++hj<^LdH@H=@O2W?Z{=0pk%ayH}))wiY-8@3qb6bN8su{^6KKySwO&2YD@1^C69+` zgZzp0&@4|BluPpYZ<3<&ZIaBAyp?M<;98@bYMFosO`TkXTvy_1^1Q8JJ9Ueu&ga>t z0qq;s<72aV+6zCBcDBsgCWT6hh7|?I!U{JEVFRvp)b?1neeSUF434|4c7CB1_kQeTyRFVHA#HIm$caGE7AVbw@MLHlbjA+|NJ_thNf|67F2 zU_hPy1enbuV?z|4HcEy6Z;o-1g!2nxmEU}gYn{lW`vZ?GH*LgGEpaJi>| zUVMU7e;0wBZ(Z-H1{@pW06|nX+U;7E`gfphbTBsp29^`ockg(dVE( zE&gzUaKf@7kjVTV_YBbQb7Tk#>1LLntV>XXMHvFI5`|=CgpeR-fzX9jy*@56A1H`} z;dcM)gaxmB)`V0&Ib52>q}~^uwA}Z<%H+y#8mDor_PQC9v;5NLZQooD)Cixj4+TCf z=ghEw^tRtoI|*G67`5Ewo590LW>cH=YXng45T?XIm<%s0_)@l1K0{jwCbNn+h8C5e zKR_Ue2(5qFXQVYFiXvhPYz8N@w_em`3Bzt&wq)wFdXzxc>X& zv4@ru_Nv#Uq^t&+mE1rjsm`u#<`|y)dKdd9KnMu9%x@kUW40D7OJG!xXwO@J=il#6 zPS3q-lI(bii|ST$$#6Y;Pr0yPqxH)EuSH`(qh{2z&y`gWezRdd5%AYfU`>)zeZ(rP zT4!&3tpLkLpSfco{8jc$HDf4QThE+3*drf4FRmxLh8>Snu0Tj81%?9jw!OGxB!d?* z7^mPv31uYc8*S)FDL&c0nzV{gCLRn=S(ozeTy*IL2PR{dr=*iMm(|zsxpp)W@8OYY z+l3n82&R*|$zpYQlrv_k1z(B15+*|wLHu2J=mTV9C%VT{j492sEduTcDYJ&a} zUXh&+IBL7kGS(F8W}bh#%FcB~8Cnl{kX@CvoT6J+`B%F<^Z(_;ZUE4FwN^Z1r;mRw ztmK{RHZ`~@H{9O3xCSs=bN~#9XKcV86^9_bY&ZvAt9Q?+YB_^S4>U5}>(;wC;xu1| zr77_#xqi3QB$%0@EJ+R-r}~e75FA-ac<5X`osU4A-H;7F$I>NcEc`4VIdQ@~fKn5= zqvF4KXY4Nmlu{Hhbd1v-EHv@TqbO7nvbe9Fci-ib=hfcHJNQhu%sV_HQW=l6a0@S$@=PV>6cHDU!&#>(kjSvrXo0a`|4tM`lcGy#V zGf`%hA_qg)qC7nlVf%a*HM{nM8Kp`(o>*s~jHEmqz}r!*`2Y2hok1d*Xop;F-5SCX z$s6Ys{3-Ep1N}HV?&Gr27D@(9@;3Y>T5mx0l4+z)Jas{MtNvBjaraoz+MFNKZ2c1UQ8fKcK+WQARu{X>Gc z4%KRrA-|Z;Szs39;90tX7MwXhx9WBI`?swV znaAIfSp}WcLqL%smPc_FM~+7F0N0zAv*EEvCH7;k3>GW|SxvVonql_$Dr>`C&h=U2 z*Wlz=>CNlUFC3GqbvZ~~xs=QA9Tqu>0C+p=^Hm>(R}_&%$b^-X_xd*d-lSY)qM@!A z#-$PoD&&9T*04Cm`IHSLx=W92=A~*fHW)fV`=)s&k)A#~lfn)mX&M8Hp)y5^RVn@^ zr%A^^KWg9`AdJ1yFt@%3T2GQN*QzhS7H*EgQg8PNo`m~sNNW`Db~|JL?>m-RM~1*Q zL76Ih1^mM{=|8n=lz(WFrWD0B*P7ctpm3?j*8=|9w+)&4TWG|$Wro=g5cQ}U4Z_cB zWS~ZgJ(>i~LdtyoA)=zeJw^*nk3uXI5P-WB?kDg^Q01EPN>(JC$L5vx0*!aomzP!c z=pvaYy%9?C&bJ+1LRE5FD}&xGF6YoH-!5pCtmF@9{BnEYbgPVao7pB94{?fHlsjBD zaqSV=wj*LuvzT|D$gP<+l_`Ml=@MESi4oaL)elmMf9Z+9|NLJ%^?o8umQ zy}^az6$rwmh_c}By{H_WknJ;CQ^Ni=WfY3sFg5D|GW2)+{v1gpy)Lt z(ZoN<4(NM|E&V+|fAJ*Eq_u8TBu|@R^V=2kmWgQDA4N@AW9xc-!=n5-(778x5iz7b zQ~iw@KuPH#a15r`1b-x8EVLb~=giYzx;_nk9kAoYmy)`K_)QNap|#xjtw8@FI$8QO zc}vZdd7hU7gomI1RmVR5K;m#8RV!SB(wLs=y^U63$v%0CICD8`5?e{oM*yXjLWj1o zp!j$eUGLM^Xngd(QR6P9*74<@d_#*=1_y_iEvtBaW{6#+kXb)Emum%RiW7P3&V?)n~7KqEseNZA5mZvpAKO z_Cgb*Qnq6RJ6lzU;2_~Bj^1W5+<}fo)sMJ%DubZ&O)e^GPw}|GI_3U?6vic8J$*Zdl zUGgd7>$PqsYDi@R!WW&Ey8r$oa*^|smriohI-@jNv|f$XrHN~_F7(lMq=3T36_H4=0nMMS$IHu}0$gHvVW)9ui8f@78A zhFX=`lVU!dPGBvdtux=lTV&tUC*5l5U-dtQ^6fDw_pW2%t_rvy zO_m?OT}$GuY;^&>cT>I`-AYdefaXeodcheEL;sMgOv))txT;@Pyih{+!_`o7j7!U9 zAWhSpO^1}IqYsPs$E*A@VXj^WfR2ohB>e*@hB4mLc?lVU@p@e3^~9}`?_r0#t?XY4}%h1%e#u^v;i42iTvVko^nA?zPU5X_3&-zBZ9d(*7*LlHa zpV#*k80H2D+9EX5^oer-jf|LaFX$ZO(K;`rNOAgC{9cQ+f6>%|;}hk@5l;`-xpz{X zW4C=x6``lSi%SL9g%bLr@XXTQWES3i@)11D2BK^_7M`P!F zK~7tr?;oeFm@&XDw26;?;A@Wj_V9lcw}vm~Js#lL;iA4Eocj{2g>MrS`KTJ9dm_Vn zSZ|4NKBN!<^xG#(0ivplvlft%ABn8Ttl-+R$tV{~b}fY#4NNlnJ`Iaj{>Qc^fAmVK zIFO@Ie<*$fYQN9kt7KX@R2h090VB4C>(NEMO9bIv@}@~!biHzK26GgK#ST~n1fC4@ z56aVsd^i7nhZM16(1@;TW-s;G_YO0Pjp4pNv-9M6&#Gtp#W#p~(8 z@KFE0_400j?8R1^e{rw;CsuYchhx{bv*y!kFivVJ8-UE5BUxSUo0BbtV_@P0tok>9 zoWxFRLLivA&AMN)l6|{($%XougHnbT?^Fwm(r(QB8=bq zBf^Mm1wIT`DvcE$OGbdE-Fi6-wfaB1O}dfy@LQ@RYl+Qh{(YfEgTBS91*%ITo>;IA zLZJ7KN^7884EiKDyye$mTnKe{_B>*{7lK)i>v=#f!pBH$@tplpvdr!EmA5 zjtqvQ9GMXNb0^~|yXLZs7WBga5i7#Awdo2}K_okux9RyOB=10?Z;LWWHsZ_t(#y`X zuaZYQPLSw3PK0`yN2}6+B1GYL`0YagGWx)86>*1J$9Y>aa`KY*KWFr6?cojEh@$b2 z^xdiKFGK1$$a*q&39dc3zS$2#7s(IY+ptrg_WwyZ($X$nv^t@TJ)EI^v8pQ5lC9a* zhjTWRYa)EN&R9b>@QCV<1AY|rdyFMfk`49p=T31gTUs15(py`6DP3y zlE=wsZf*cDm_ZCu+}=qEB*>6j`$(3bR#Tv*`*v=`^BV+GqWRIg9@Uxd9}zQz(vv;F zvYVp?Pf6x~*eEiDc92cbE`JSL|JnFGeHCh25ZY3VGUmrzu31YPM~!rfgy=hhudkK& zR8#7$JRnub`ArkHpqmf5XmA}C^0EOThcT+_!TX`(PnJ@sP>?vi%|_fw zo>Vr^3S537k=+^}v@XfM+Lw~y4Cws-E{sEG>d)?SVoEWg!?U8xs#oog? zHndJ!g!mH^NTHD`+(&@GMlt38Kx6;${oBvS$g(biOw>fTvGqd|+X26tR=#q8J?hHdZBBIc z;Aniipw8y{k5FJ(sXYWp&X=l>Vcq1_uW1a{7;~q9ZnUXXqE}7rXkdo9X)I>j0(%Ti zih42weJTU>8`H0qc+BJLrLtcf*kU`-pceQ`0fza@2Xl+}wQwGrn1=i7oi%4dxcKc~ zJj=OShjm)2tFI-eOEuK7V|CATRO92!eHnwWV11w`y!v|t{Vx5CX?u55vrgMT=w!=ELR`G3->K3Pw zn_<);FL;8H4kd;%1U~%i^Fr_}Tn%~Z3j(Ww^{Xrg$yhcvhBKT%jq@~|w)2hdmcR<@ z+T@izC;ui?`2v*U!a~ji|A(6=8JLxqcUh%}Z64H{a)dH>@a=Eei1mV4<*ekO^CtpJ z0wdLfsfZhKgZO1`O-Xrt!WL9af@ucqDL{Y!ACBd_FMA(R+d999vVGp~ z@uwKZFE!Y^@G?EBEOUyk^C_qq{!A8s0%~!S$XL%4)n2NID)N;@6xd+8{6I+0FIkN~27!U58T$3eG-u4AI;5jU~nqsj`JA<_{t)LBL z-xIrsvME`EPDng3L6U2W{l0Qqv1d#p-#pUR#Dn==`~l6oid+Rb23u13_XHIvA5|V^ zyplvrGh#oXU~uZQ7L|8*g?pPpg>WCB&D4B^AC7+%`(9+uRjCV=96e9?F8S%3JEbr( zE>EW4m5R)k?l}FlWx`#rV&1(EN_yYrVj-nT5T-Vq87kEo0l293q|3+Vn3%)&MWE#1 zk@kLgX)0|e%vGzO)0Pa97&?X1aVT4mV0|+cSnG@9h$);Yq8k>G_rhttOI_M@>; z==|GPC@*DO2P(vXCmS3^eg_k4gVLOk&8S2nw7OJ_BHFF9`XYx%ec-m~Hpx?Jxf1k4 z+X5Dw4LFfsH59H2vDN>fKmf1-G-Lu`#UFwSJPVi2G7w)3G#iI^%uf@0^jL_X#`gWI zx#B|t`kOcl9ca=SIS8sRNQaxdniH>$(i%>NgrDqTiC>RK&T4P&_{mw78HRvWC8=LigZG=)7}A*<%`U$>0@4HR|K*R1{}!l>i{#A?hlkXK@V&EjI)CVrNXQ z?Wn{_rKN1-I!I5A%S{6sHou2yj_O8*qY&Y!)Z`LgL}xMyQHTdzAytca@e4?1YCPyW zWL8Z%S#NJvxKO2mlTg1tNfMQc7v1#PVPN(lD+j!2esQUi_ljE^bVf3E)qhW$(5cC{ z%I#5`H5?hikv&zk4RHy}zhq`DQh1pK(>!#ZR8}2M%>*@PexChqo3Y(m#lrQrs9fQV z%e9xsunYAEas!7KdUnEYjF6T0ywh_%y5x1Ev?QO3jzPtFHIvrO)()>bpOwETT;8j# z&3KPRR4i!W4yvUGVN_)brZamCr5yB=(_XQ|he2-3lGE1>*W}_b+h?U2t{ooL8^1mX zEiRl0BOh-1oMspi?T@;)u&7)kQ_nX~`MfEA04xGCZFA;kOo4qyu~g;bajfOha%Zg} zrA#oz(^LZFpPDdAMhH2bMjnX#*B$bor3(%^ zmtTr;iGiyD3!}@XF@1RmdQ-_~?^-y3ng^v78%UXzSsr<96V^3cLiAo0I%`ok6S2pz z)FdH6PV=*;)0^=u&0L=|Q6s7b@g)Sa1n8}zc$?)lBfTSBEU32vdpn8dRp_Uq0fhI? z)5i7k*K-wJ>RZYKXfVCN_4|%5PbLEzZjbv*hGab$#=s(E<5X$PX&s0^$OF{B`_FgB zX>r3*e_Di_MrE>Z_J+_38T%;~p}GxBF6pKc>4)dIM8+6}{a;%HrvG|DsaY@S*X-ld zsl!Yho%B)O)wb;d5Kqx1bu&d!l+#05knL49wi+ zSMb5p06gEebmkL5kZ8d@^_I=m@tPHTKwrdx?}o5tXDA^W<&t-$_|)3PS^9R=@xcZ5qh=MZg)Mrjda5(9w?c4NmzSVvTsqgGJDg*p?K<_ zzrRt)jVvW2AH0<0B97?-j?rPXmg3!fb45%iM9@34$L_c676L2)sMOY1`8QTsO~TL~ z9L0dLlk`w~p_}5DQ-mVPx%||e8yN<2erhLiA4$`H8GcK>lQhX%twd_`z+|9%5Z^17 zE3NHrb8PAljP&%lt_w8-wG|)d_VbL(Pr&}C2&GKvZVEA9U5CbF2Sb}b^&c?zB@PU> zG@&5F-$yIC$!~Xdz}5yPDjO4wX;`_yl~g*W9f2^Q6h?~I9AN8qAMfw_Ma0z&{& z^P+Zxb7T;pHvs+qW;dcVJ4e(|}HcW>K)! zvXf$yM1Z zbNw~l(;~ySQqr8bUzr6yeaVV4^`>|xS`*sGHI_2uW_=I9ZO)CrKNctfApKPBhV6C% z_0a5+v@tgeqEyVUQ6&?vyxeng=g7Lgd0cMF{mwh?C8~yDpq3%bgF^WI;@1Tn^?N$#MoX5Vc%(RU;-qhH zq)XF$SQR+Y?g=ubowDISF7<5gPv^=+TjFzpkovF1>!ddmpr!bqq%86{`Ry2#7*jh- zJAdWVHMyCc8X#^tM8*E}bXvalmEQ**4HEsKW~jMBnqJ*b(oB{%os<0YalCXj!i`%V z{WhMOkL{y#;2{X<t`YfD4I*O;wSt#4GmBl*xlQ%B= zH|&PAiI&8ly3t7n%us+R*5u>TsQpBhW)`2L+R{FhEIPkTSRDeu39L=#`T+{kS)hN_ zfyau61PzaF?(`MSe79C=(9+K5+RNnV->z~iHTmA|ox=J3PD$;4Tyve2oD2;2m3dLb zl7BNS;O09@q$CJWEFu-uvu@};9M;>~FtO1a=fUI251SLvoPc^yh{feRhRU0Q#nk4a$P3Y4G`1u0y&Y>5M>~%_BRk6s# z1@-eWJ->LSW+8b!VJw%t?CiikoAZ~~Q)JW6L_V>q<-i!OKQ(7;Zx`)%6k3uPH;S~m z6ZY9ym4X5i+_X*H5o_SlNekl!SBZtnm_1i0EL<1LK?$M037b*aOj$5-v*O^0?BQ@j zzDciTFfTZ(?Qbj0y2hy+($#yjb&GO`9H(TFMIQA$sG+CcLRZigZaI`{V+B3D0YR$S z-ryO!^wL|NZBJOKU@tC_FJ6A3v>vi&K#R+sBT>g*I=UM67vorJPt4mEFVBF_yy@aS zxea^;{k4UAo^i(T%fFhQ8aZ-dczV#>uBny>c~EC-JLb)l-9`K=dF3}hcWt!ohTq~L zVpMnO@mjXO-_HHjJT*GKcym9$DAt#mc|ncHeQ&5iPl2m0W8<9!D%IQhXJD5Y@dO`ym=-s0&K%G@gfn^~q&;IJ!L z(Kc#3vj_NVR%MkLhQbrZi&=Gdls-Y*W~VTv;?P^uU#_c|q-}hHGMGZWL?Ti@i9D)K zC}aFA3l@X%M#+E0Tl--war#}mVM8DH>Jc4oZf#Y-x-XAbV$<0ct^7DgsW*RG3FLj! z*H`;qHUIj)iP=v-YHiE7O+)&a+}bW2kK9hu=e>ZkN~cgBd)W(PWk!Qk9G6vXp(63M z)0EXMQmWvoOer_}m!l2miHeeruj5;)J6$$rbef2TOof-6-uuLo!1n_$WPeKNTu6JI z-1zF4?Ao*h-L>DEnd^$Qz79UU*2LTmadU9B%h*Jx*<-s4-y3TWf6}(-F6+SgbS^AkF&dg$4ch;NW3pqJwy?!y@iY zt*?OV*n2pU!Biio$ET)JfQ6mpI^VfQ*j2#)o&aZc>LO4iaO&jbvE+M1MAo@8uEHr5 zWwF0LT$epmj$2W`=tGp3bEJB9WW@i^2X57Xy{n1K@jvic^ZE5%-5s&_|9mJB)PiNS)60F&Ry%G-@$-tvnKuk=*hrc^SJGib@IsCJ zbWzgvkAFND{rCjnwwwR63*i4@>^;Mp?7r;bgoNHZNC;h!UK9d^E=5tWB1$h(q=g=( zh2Fc0O1I(jpmYVKg#ZbNQdA_=gpSfeZy~(5zjd2{{0D zh9PGpW^vI&!{?Wx!cyONdWzXVey$}c6tn?or|xd*`*}tWu@t;MM|Tg9P_5NCrHFwH z-wAB?-^Bjs<&3_LY2qR8>+Mgv@p?QTi7j!_RP_5X%(=`LlK4MMV&=7>4H%x&R9@c6 z@wN>Rp!XXzl}A2Raq_Qf-MTzcCtcLo`9I@@HN1f_6zcN*PiW%jO>6I(aUTJpiYFtX zqYj=BXUO3(twoO>`JWfVQ@Y;J#l!0(M!I%1j}pR{Ckh{mNI*{LYQ_uo`)TaX;1G?K zjmD0X58vkBoUAPmzhYMk^iDMm2*U<;{MRFp^hsj$lfH7Zmyh>18joDY>h6DXrQ}&E z3r9mY@2vjU>T}`i)xplq_vLF^veJ(X54!{~F6&yQZ`3|>nfz@%`X5u2mC6~C)7hry z2-y=4IO`f%SXjO`1roe{_WedH|^|v9z1w3&~7d^4>0Iyg#NkpcLr-j zQ_)=;!{$IR>)T%Aa-zMhtyeOAK|#TU<1^0=aj5m)>X_T!+JvWfPpHNa&%NUC>4%?W z&u;|k?L1t(;MGI1OmbCU&YLdDO@FRF#B%1x=?|qOcXc<98C>Gq&!5Mqc^UlR`jN!F zg2l$e=p)O)QUlU-wkrF;JXPC?A@Wm0gV2$Emr9XB`sfVjq6`)?8SVun0ev+BXD?bR zn5Xxew}+2bIlKk<5TjLE89D$>XyV}a@ItqHc6MulL+Kk81@il88=OC8+qbi)$wSWH zUtfA!O6Da94yCl$WR*5$0asW2yllAN(68ZwC`N}e@Nw2d)7Cv8f@i0Li?3qTMs};( zWMxi|uD6`bQOZCODN*=nlafx6)o(z`wqI=c7RHGaIKgsqcX~ao2a0t^#R<7l{+%nU zF(Hsv^U_Fn80o4Lb*BB95=gXMcZ>anxL}!XLz;c>XJD7GwA|ATDbX0GnsnSbf26%ziLsfEFTUGLC- zXZBc|*1S|wAM|9yRIq%Ty2ZzI89aagwJ6i6qHPWK>vIi4G<_XpEKM}6&FU1LwCLKe zE4;dxi*13$N0Rk?A@1P4Tebqne*^e7@Rv?aj#W?E@Iio3cIpbw!^k>NX_>b%pw?(? zVp+ponxJi`;j6dT?C7q&pSNOK;+9`a=_)$yj0zr2kBKeqBn`1?cXF=q(3%#NK0VPE(b%>z1de#NKjTJaS{EizN?NL^nVA{w-TG!7 z09ZV6A?SkvVK<0#bB%m;eWk(s$Ex-$V_5|Get6qg0i5S-`{o%<;n9ABMshehp-n{K zI5jFYa^_x>N|8ad`X1}(K*VJD-pg$_1qFq*wnSz7N;``7=m{X&WM@Dhl~E$Pu9^PI z`lUJ5Z1v3YH%Aua?i4kbZTs|xeX zqseTs3>5BTg-7M)Ikl_iUSJj1ALYRaxRbEnm9H$i#Vh9Rb=hOdE_M{qF&Er0Ip`F| zNfBx*<39ej2^wYLEDIl2>lJBF*5k-56J$NifV+yB%&97&h2dDOg`**{EJoMgOjW6F zx%F9$DR*?>h6LkRYZHwVQL|M~+;XlWbt3xPw0>sWYlUDxVLA>An@0v3=iAMcr_-IX5k zWp>zH>?2NeA&Igi_LaKV*fGU|^!AXlqgabagLAK0j1dPldra=!g5yGVYjTl%kWZ1l+$yp0}Ar~m0kyak9T>kkuGA| z3=&bprh<3xl|OU97#wLa9B=&fn$}g;FN9!c;!B$vS0xD6tGvKp`bt%c@>zqx50RV^ z0!MT&jkMTqKUO_X12M1Yk`A-RYFy%PKaf-Lildu{yELJbU2B>p>^qXxlJl9xxQ9%Y zy96n42J3lv+(yyYLTR2O=P$v6at#u;)4dLDIj2XKDY+45MEhFIGux)YMjY&>o36hxUmQ@7Swo>U`qM(h15IS9~OY zW#vxC5kUVIwl)S59o>397>O^D{JfoO4zJaRbXrtFbp3$4=OVCsH-7#Z>uPZF+giz? zjCpi9vZ}^jAy#l*>61=p!1~(XpinSi>v8e%lYLUaVbR>sL*m-xV0im>u_mZL6g+F9 z5NV-5XzV2ERJ+eSlz2Zd6Hpyuq2Ldr|J*FCJ4y_W1k&m6r;`hstL?>(Vpn=R7!}2_ zY1Wxl=1y+bn>vpo7rs1ss_fF_NNoqy;s%du4w@zzU0IfIfyCC8_GDshtDfjt2C=m( z?jzI>%uxKzdnX$)r1t2wkE3U3iOj960BLqHqyewrnUow};{t-rJgKbu{AIn;qJ=Yp zXW~S#;~-HF-jdRm{4G10tdDD4e#!`tv%g0!2+3O4E_5{vJy~WBNvW@xxv=Vu9kGZw z<0Kqyihp^B>A|*e9B~6p(0vc5-yuIMJz4d9TD5xLSKn*rQ)8Rbl>-04#HQjoa7l0* z1q*1AJ-DwFW4;C2FM7sT$I>EDLKfQLDvf1qI*pW76Oawhz0>R9Dx_R{0U+wKZ$3S! zw^!H{CqO`A!$?eK0@7?i2M&-IDpm_4*0H;ok zAbP$ib@!zmkrkP}6IfG04yKw#USGx@V@g-)55#$#&8=Q#$57${?C`f}@%87Ig2o|m zmsuiMN03iq0DUXXXdtIaZAVx;CI82pXCYA1!R8sb@&>LuZ z(?D-etsGwhb6QdliAlz5cceOcOl^`q?c& zihJ9|nfgy=G$;c5N^Gnq(`zzV_Kb6kXfAh;4ec{VH@%>oDA;-9Kyzg@lT@N1>^wa* zE*y2B=B(NadfbZxQOM}W8kb2Ddx(t4vo{V+X-P39Cw!PCrdG1t6sn8;sS}F0(Yypd z*6QRx=w7?NC$X{3`Rc_W5Qe_Mh^7=%L`X*DBrLxX;-HlDh;%&d$xgBG)H*(Qg6B6j zp`HAdF`n8-2rXNjk&n>FNpo?Fy_gkK7BK9a%kQ{wVET?TTAG4L=O~MAz3UPy?6Ov7j z7H>S%U*`^Czyj3@sQFLr4jN$>!uTVEOJq{AMadw}J?%Qo$<-l-h_rpwuiTHl&RCAR z(^^8{<-o7C8a260JZ|RN&C`wbYsVF}_05jH@Kv2vi&cKWkmyc0;V!`=_Ux)g$(%JA z<>twQX#>`%-;mg`@DfafIfA?J@d|tY1xQnnSabNK)4(tQh`3z!e5Ge`Nk6!)NOxa| z#8QemPMyXIB%JN7tO3I(Ayxb_6=u!?`+IeiP9Kq}HF+>WDUCh7I)xS-B=893 zr|7P^|Dud_f6qA2ZLW8Cl*(q~FGTo^;g54mH&`hkwL}^rd(L!Kf zo{VPA8X9BEg2Ygbqj~u}#a>mGL4pMD?ha>1|E&F)qpt%$7>zl()8DuX84$diKApf= zGb%M_)a&dky{@vw3MW4rzCgi#(<1rC(||N^52MLxol44tQ2-_a6RXJJLRl;+YG zsi;3~!-nDjPjeb|Ni8x-Z*7lm6f8P)sW)sHb2{KTIokrND=zXdpa^rK5iEy1v*}Efp0A{s*cI`gN-JSasI~fUj;oU*>{H8 z;%N}0gig-5-nT42jG4rVW&FaohI+toIYF;PCc=3xxP;v zpd{ruL2P_PV&2(j{O4ZhM=d#ba4Lax5l$Iz{^s8`E4u-Ga881u!ejcoJkVXV^vdks zM1X<$U2*s8I11N!jHfL~9Jg z`Moy*KO`z8@Tw>RKaD4bU>G+7t%1I+28ZyfbDyMVkXxi6M_s9VLk#V$b6L9Yw@sXL zupqE=26~xkYR0mWC^b}U4wIT!%Hk!M{>@L$>l*T9aUEj@$?gCf@%0}D3~xZxgbd6+ zaf5gpvB^Ophwf=^@kY>1q#M42APTK9xNtw>|yn+#O>bQ zIx$gl>`C_pUaZL{mt#F3W&7)#EGi>&o(|D_ebqWHh`4F5a-8GF^vIMUDsDPE7Lj#q zNzPn3n&FJ`TF8PRDSA1w$`(Dl`Kez|E>;CA5hExdLf{%Pet8|(J*-HZDFMA7X$wxY zg}YctgqZ$WXPnfi@l)kimZsKw(bA*Y>~vUq0~3w;Rno~6NqAL&E+<#>i{WH-87URM zIPF?6myT+qyn-N`91lbt7auhT+^R;kE%U90gfMPwX0ODFF-=DuPmn&TgS5%iowB71 zT!hY!RW<6FRkra{1OQt9_R%$fD{@|k65h-~HK>YZ3-mIY1d-@ZQjxeADP=M^dp?}~ z2qNt=>g zujEu>z{o8<7obPc>$3XvTRDGNtJvYr0Xpy$wvboWpawG7)p}J6jcH<~F?2?{3)S`Z zIk<}iu{5(9!v9o)riiU5y^M4#z!YQbqJK5zgL2+yzXZsnX`T-sVX=WCL z6f7||HZz{P64w=Vc8l9B>09Ct55@$ z&6p^;^Wl~jOWq2W$q*r~*sMuM8Rm!ARL$Cp4Y?Eqzk^90L%%5EZ9pZ&cw?N9eKZe!?aBQB!47elb^>wjb#RBJDPqm|QDV-LHW}EUz z!}04VP`aF=dib?&3U87k(j<|Q0WACtB-@%)|Fxafq^8TEBL-&Ag5^cbFN5dV2Y9Ry z3`)-QTkO|(%=G}S+(6SkK@u-Bnxf5i70pePB(n~dTgsKoro_KujY;ac2D|d5zN1|C zyhqHBft*C&E^bpzt^+J3<0I96&{7+P>dz)LXa9;g%EUP^KyiFYtp0fqAd7fyVPe+ z%G9M8TE)kB7@7ObDZ9YiUvg?cHV<2ZxMPG3L*B^lMUc1?^STyTI__(R9BQ zr^IRUQPZ>q`32k6c~1S?z=;{I)N4XlZ(j*PPDbQr+e;bAV!h>&O$Ed0$7z%JQfX}J ziCDi`Ds9r4mRVx%iE3+j6^t?8(MA;y(H}Dbl6f~b3!AK{5^=smiH0J5u`u4JD>C91 zS7L*u4A()~%PaE%2Yja)K0W509Sb^R{k^Jt5KY!&emkIYu=d@-;wUA4jFotSmxWsowEQ1?CbTt=-g(o3iSBnwyDdoYWK2Y1`CbuZ?ef z?*UswcM@68%Y2gKj46DsJw{b*Scw8cT1yJ?hbpcH&YBfzotGFMP+FIH!quHp!%haz zXIVl|D?5%9e53-ShIl5Rj=|0#LvcdFKRAdUm}J7Zr|>8_(GMFMD0-j|viEn6yU+ZI0@3{ENHiWcKH%?CsL{Kv=+%OC?^Z_@_#ZK8!l$C-lE4$2)7<+9YAc6jF zFq1vsmAX(sasFOB6b$`v05eV?^D(d)7h%sEJ;>lmV6m#aiR%NpO0ou+A4<#ljbsvJ z8b0s-virb0aKT(sEkJ$*c(~F49vsh=pNJR zK?LTXh6?Ds)h65YK|CF@Oe2dylS7;@i=VUry9&_KynGv@#6l2j_g1)S&ipB}+ll62L8CT$ zHJ2W3(jOA&eoCQDPtmIpbc2=r?u*mr9+l>&>&~Z{q}Z#xP>Nv;&ok+3>pV5YZDox@ zc}=?Dp{zCl+ch7~d)zYyEU;dab!JWE$c=;VM2b75r6)?fj2VG#10j2|z)-BYEWAq} zDr8ua*PU{DH8SpBuy2gJx6r)zYrV|sj4HQssUkgKMh7$}`k6hU3lzk%qS?ig#WmM@ zn4kT4@awl(7N-U|b~Tw1-JK0V$moMO#Z87ZD4_izrMmqw9}0*jq<;oUu|D0g{uO?_ z(n0g7RLIr!FHf#Hm($XFKU#q;sDR}T6_C{K_}tBf5#NFCAzJ_Bc{aljAaL;kI%f_} za&{1Pw0-XaD=ZL+#0>VFR6G!{D|L4d;i!8y2*gTaiWJEuc})G1hdIwALoiF);f*=m zq@!Prt2FG={G+Cd)tF_&H=K263iIaA96+1dHpJ}^01`Lr1x@W1AIAGS7jU=`iA;2S zqS;J_ad@W2Ubfif^jSm^Yurz$3$v!%vsV^@YL~0I-a*}PpX@O@ z0%WkL+UMr8UWv{!h-EMS=TZDo4nk5xEVuZ_%TU*TVnm=@%*6cXgpK+pCnf=?=6U*5 zj)}`qwDXYbys<1BBjB+wJ|b6oCH92|f1~h_R{p);tB6_0Tn2#2&>L*p9v91QkPKz^H7{(yB&-DSh$L=e2#75kV!$+pGV| z;T_)6JUXu54TviTiAc+V&9Tu*X!xYD5-{alG5NuQ|zN9fkD9a}%r^+MIr7M!d5c5g; zxp!VOFNT#?T|jVO<$t-Dhq!lG>=Ny`u#m&6IjJiP(cpEIfmG~@F9((mxgvq~0t&dOSjJ#Rz!3nwlU<=(T2*-ka_mK)EH~w6s7hvWEa1VQ>i#+^*Di zIlwXAIX#;jOpise+7-&vt51Px%?x|IVIpeshPPHtr~(3y=pSu0tJ}gAWN)g$SW-$FI3bM4N z+Ri3raS+iNlFrw z$K$`&m<0p+Vu_*%)bw&0i<_d&+e}@!3E!&>MTI!c$MmiVv*;P$oX$>zjO}8u5FBH_! zJEL192{~_g&dnC^HBM`92jzAcJRTJNdvHk(vcCGh$%_@DcJG=2(XWM`(5<#xF16Xc z6zA$0=u4tkKE5rslnG6liewmn$))DbySCCx+8L}*r=xIfiAssVU$TqhIT%EZ)aaBj znL?qpMLzE6_fKtvlB;lC^y6U6q5eG~I#gGL&Ox#EiA{3m|`<~pp0pl19yeHZ*_r6&`s`tt|eF%YD z93uZ~wghND>OA;KU>w<}$jEVSzf9})BgBh=@{HXn+6C)aTRsax3b`c*;=bo%iA|?w z=4VmGhrxDvSf(%|TN_C%#7^juGo-GgMuhn?cQ0AHPo?*ouZ*udytcHav8JDSfcsjO z6k2xd3$Ghib_7O9dlI?TR)3x4o;%jR*tg8y|INzS+=TiNOTZsW{PLxcbNj+A^dc!B zk7w>b4S#5iY=kq5Ky~_>!ujF7mwXM~|7HF9d4tw*dThXoCQAhy5Cgj5%M6$*aqyF4 zOqF5Q4K+fWOR1#w!;r0zcM6MSJ=hjlo`CDdviLXF@RPx4k%xcK zn7RLWNx}q3WR_lBfGIU0rs3wrQJx6qu34QaM{>!HkuGBnXDMeNGU?(c%SAnThbEhO zr4YkvXRSKHcRLaumUWUF<*&%Et~~v*^xLc*o+Pq3=;C}1!<`wIa%YD7a0Nycfiu;!GHQtTmNCT%i?7QGAEbdFK-u~nJ({mD=AhL@nP5rxwWBXH zpi!qY+%V`eD3j^6sq)@gVI8?gbfxwNR=jt6pict1K)RD`q6F(9wu@qKvaUnqaB9)) z1}t1`IB_T_zEpL(_ut^wJdc4mu1r2FHf zG!qtw2TLcfgL*bWWHg5Hb5Ys1Q_l^3vf_t7+p%I{p1O*PtC#P7sk0dh#hmz}A-7u3JwfZ8U37&a6** zM{GC6vsQnfAIq_>%H$=%x2{arKcE`PK2v@ETR?!%p9V+fCG^yqucK9BV)BT&#nL z=zgDdwEEzsK91<0XdXBtFY@5act2yeLq&1ey(|TWe`6Y1;l3~E!y>sWFRhI~wOEVM z<#&U`lm_C3pIi3OQ<>(%k>ejbp`7|p=Zg}31)|3m`fSb@rn}PZnZmw3eg~W=EE{mYT*_96?K!{|!3h%dCHa^gddQGx8qQ zdrda)iRWx;@VDw%syC~Z-W{8hL(lQI#ps{GtbgHri_boH%g#Aa#Mj@o=nE2>TOij* zNPh;*wv3pK-%##;vrI3aXX%c{gSZW+`-O6DqTsF#Ew$M1w%C?M&(4aX`kU1VlPfZe z$=3b#9Yj`I^CMnlipU#mk5G;!P7ROQ6WYgPknpc(CYJ3{yD(VfSx32+tuM{GyZ@HX z4}PVmS@$XJIY}GN*L%I>YwGMgcC|vtxn4&QnG;QjQ@9_hY8#)QRG3hD9gv%+CSFDP zW}RKq0@uWwcnnpAEPg(4fT|M*=oGF^PUIS06fb%~`_eJ^{>w{5kQWg8_lbMq{E0uS z@ud=k89u!fd9zV_KJKy~?=zGtlJcNt!iw2>M#9zvS0is~d@l!IF88lmoiWZvU*a`Q zKJ?JB!l{rMek814W1L6lZyR{Am9f$+UebGzOUgfKf`zT=+E4nH42{X6(LKunnABJ2 z36}({uy`t!Hi6d7ye@2=8E1ZX&9v9Ww!yMg#JYy!tlH?k?DSQnwD48?oiMa2#U`fE zP1Uu#h!a2HN3%53@SyWdvNk^dW!?m|6wIgHjxP*6o3hCC2p)SI8z-AOj@M@S;Gv7m z2sX+Wz3Z4dM#t^83t&Sowm;z?2>!77?48%Xg(_)A8FP)?wRqV-YEFdIYo$G{k<2Ln z4ay1gj&`~>b#yTgJUag1E4(YFPViGN@e|G#>)|OrnRzoh%WjUzF{3~BGB7JCUl%E{ zP|#vx2lFxFsn9o%OY#?)p=NQ|r%Z6Xq&~LxB53YMQv%(*ZnuSah?$4%Mx(|A3cW_>hIVk7{(>*q~Gm1vs(3O zOST6;{&qQHQ@nKe;f{tcrDO`vlNEMYxP6_$3{>6EN%4_xkqMpYPfo6Ejx#t~a_b&O ze>awn&K@BL2@3SriflX_j8H!%-&_J#8>h;ptb6XVi!jc}e=`?fB)mTaLBiN&)BGB; zExcqc&u!`W$1b<s3X3E@U;|W)X?Jp!e zhNhfImJuxD%oIilLBcN2O1OdczucLTUy79obVlw(cqiXEd3X91yqCAUaJ$qydvAtF zV>MTjRAp%Jx&9>nJVOTSGqmRWL@!iV4?droIva3!lXT%%H=8N;8)FE?ps14lqI;1y ztSi=UBpKx#aI}=)tup>{a0bHI%BCAU17wZE7kz2;MIsOH`FdCQX>Eou!9`)O-9o)z zd!aJ@C3ySClFbWCeLGX<5zNJ4?d;%7 zxF$d7tf6v-d|a4c!i*=9-@W&4Jb#c0HSB}x4o|QC4}sX%9rSi_3Vohyo?K9k8snry zu8)PhUq*3--+T5FWDvDI5p?A}N?tDtcbvMQH8}GKb z!)7mjR;B26Cd`=?@9QGeYDN?Gv#NnWQW4Lzt`U}DP4$=-E-Z3m7N&Z#%>;4e z&-3WUvO>8QUk3V8Cq7CKfAv<5TX#2sm!S4Rh-WC{87bj&O%3Dqh}WuH!c-UeyRPeh z#5C!rQOO;&&PIRlWJYN!3Zu^tnzI30*DB<5hr3O%gf|6IT@+N46ea@|bQgl%MEy~O zL7Vwmo2V|qxN4H54l_z(=%_S@FcX*$OD_G2>l`k@d^`u5&T%j3f@Y8YQ(nX8!WXrf_!)fFN z&p?rNje@DLthHH{?M$L3UB#guoTr<9`@3Tl&L&L>mALmPdu^U{>DDDFJ*c&Fb#bNPAkXtuK;qyRP9*hfqKMm8~`DGR5+2>g|R*r%!9yIK!r3BaLY6v&8a5 z4gqEz!O}0`#DA>>f(H=48WY%SlbZ087b?ZkU)rqbDu-o}DdQ^z@e7-@}OoR@>KvA&VH|tpN)IULRCW?Y|w5)frGe z!jMRrrr%EXivi&`)D{EPXmO>R{;kh+XH{`&7ds9$;Vdws7{Uu;z{!EH5<`%uc;*hi zZqhTZB|z*TtieV!X7e4D0VS0O17z=Z_y24FClSGMv@B`|ZMWJ}qRUy+i`~X751j9Q zVNCb}FWos7zV}c!gpB3Y=z(*DZ&3*TzFYI&yQ%yOkB7~89($?&GpUusgtb7~PWf1i zYdJE#3TYG1t91r($w|iYo9B07RuT7m>6q0c+2~A|Mf}`R^mZBNc&@jq{6nws<)67@ zM(F|1emO>lu_k5N>&E@-LX~b@d+2k2Y~j)O*-#kaTd`V%NfL~~mOs8y&qhw|a*g`i zNtR3(9*Wv8d|53EquY11yS=de9C!0)&5X4_!y`%U-5cyr-1KQ7xeS=RatY9fXiv9@7h0M0Zo0b9%^zCiQ5V%ahGF=^NIK0T&TLL;Z|DZ~ z#@sIsXNBVfVe}a>$~n||_>#fQ<|bd+JV4YFy%(Mb))6k4iLXwr$ON&{*K_Y~#$q~Dw2IKvL-PYrFJh#Tve*`w|;f!>rf{Y^< zZ1u|nvG_BPto;)!0oL*iBmH*M(DBP@PlS0n@sJCLZSqWOh)5gqUgW3n& z`dV-KS%*`i#`WN7=pNf&TGSx7yODDLybBnMWWIIsrVTG=r|cn_26JGx!RwGNU3p!6 zG#$Asd>R7)57E^>Ot&WFA8lI&-74(vo8=9@N%|8II`WHWV%g5EDbOnIjxj~(VKuJA z$xW@e9ivgAsxlw`Rdl<*DYsWECgbXMo`p=GAB@L5LoN79>CD+B#mGMq{u*aB@0;Ln z&a^zY8wY&tW*KU>*w~G|VdVMIjN6}Zvl0iLUp;39=jth`OCl7(9@PVW21@SIY_-V7 zTsehtC!dC^K=cS<&!L6}@}$%l=E+ZO!bXHpk;0H5Mm+mO`4pwQgXR%TeofI}8l4tV z(S`{T{id%6S-oSMSxDsak_yMVh|QkHqz*#vUx@HHsFZ7nVt!~DX`GoyClKoxH)&DCHr ze{40kdDtyVMIK!^nf&Luz(U`kxh{G<9(~7Jj$+hzg)DO{rnA79pHhXo%`zbXU#0xOIChrCC;y}nq)m&-X2$r-Y}ryc|EQd)EZ%1pE!3uY#I|%#{+{t z(sZFTQ#K5@X`>pHxB0|%U`}tl(O1O78u1)oakvT__&r%P-{<)C;Q@APGT~CEg8}(g zk*9uF6{=X<32l6ebqI1Kk^6aCcdSEdw|jnN$#zD*Ctx;N_Uq^b*HLbznO85l!q~$% zx&+qq=oT$%_bCY~;OW4V^x6UVjQdHKqqg;9L+2(YO5wq6ynRdui#f&Un+r{r#CS)D zfIm}0zPZ)e7Eq+iDY6kfcgB3~@#gunJpwY`52pDHzQg9saiB(RD_yGGc)G@6gm2Eq zgZe{8vF*pDZqWtMU#R1HnCWEv<#@u#dkIeHdYb{E zxs06y$6E=k{rJV>^v5m~SBPjlsQ$AYh48AcT@PNnzrCZduDN%7{2uCa>G`I5Nv5vb zbER{e4Pl$5J4!7B_+^z1pUOS2>ab@Wi*2>#F_v~8C-!Gt;MvKz819PSbLtGc@rQ4- zjxzLqGWgw&too3ceAE~pwGg0F(8MG_9hQri0;z1Lt9WP0p@-2to?U#O5JRm$1gU4* zUvB)Cg4Ms9vy#*mTY<{>LwY?P2#uF^53Z5!T6%?3cU0LBjdL9g!3!EaaNH? zT-D>vG^cN-2QzmF&(rf3YeZG%Zqmv!z|@x|e>^$3EkE8o`KGto(f+do4_f^qq^dH; z>32Tn#H*ttUG)3LfWlkVQU@O--x}f4meQLKJ&mITe63np>5MZQ!bT)2E4^RH+2_!u zz02&m%J^@BnlCSmkUn+pz()(V^L%qHU`~`{k*><4kc9*P*$rjhX=EUxv1shp(ZV6J zK8YqAs1#lQqdM*6mP|lzl)rNl=VF4=#Tx!EA8e_HOmGupKF0sUcY&{9(dOdN?9FMD z>mC2wlmF|1LOiit$fN{0j{i$zfPdM{0@^dzmi#jMe{K4Ien3^4P6Exwd>!_G>MfLR zP84VlK7!NqV$iKhO+zFFO`W$n{%02N>bfH!xc-Y(~*08@@>1Sf2ysnR&j~|@O{<*Ixzg+#|O8^{ae<)19fnv z9^YP!49H(42CF!HKJOMmirRnUslWYvjAli|n|0B}GGj1JK3WaY83>V`X}FF4 z&RP0mL(6lZ$SAwiLJaq(JQ@Baa0HjgnlENgC`moHHx*85h&uM762x`6%C)P zUEA}MoSEoQ+9$=txLW(SA1?0fR2b;30hRjRM?1eyI8#XwU?5?V;-?9M3-%laR7z2N zu0~GGtlf5}?2W(W@pTS4F?j*sY5gi4$Ta}1;|-+x2Q+yEdd$%Lry+H|;|=F__x9cb zCEVh7+yF8p(FPsY*DdRx71nCHIJ608ZO-^N|9)He9cWH2Jo;cJWM|l%^S2w@eruq; zCl^!aD~%??ZAL>-Zs6y?Rno5k!XK5B-=#Eft9fz7J~8Q5^yVzMeXK1YYKGORmto1< zI^v$r&XCEECwCm5w*wAz1pw1n&^~A2H{P(*qY|ygC_MtYAkkvrwcjcfYggcN57oF}&$AC$g5g-GG5sg6wx!Jq>hIWt5xe z^FmfWG%jA82KZFIP<1o9VSqiIKLzH~m)bPsD{*%@MsD`}E(#v#+ne793a)JO8aG+HxREJhbRY$b5leNIFBI;Y zAZvBX-x^O^Eg5T^4s5E~E-+!H48B<0H%F0&5luiWI_ChpmbVi&#cp#D19i1Ox9O65 zy|G|sJa2{xj&iqd#qqqoo|FyJr4rq;@7Km-l-Cd1NXKnE-wWE$L$hbPgv=S}L`}-B zQ)=Gzy_C{rR+7`%Bf9C@H0Ii)n+_|=p`5Ih^QA;DT`3}iL9t?F*vZa~9K z_Cy}JyV6aY@ilUN08pmy;_lB1{R`DiFUtx<;VJmbmapAzE5x~>-p_9Rq57)@b+K#B zZ~q3(rikMOv?fMIy4JZGGmV||j1nNE`p^A-uX37>n3;ZF7b!~a>NuqxFU=)gmelU> zi>a#gi+(R2><>+nYgX0Sts=T`J)Psf0eJN=bXYntKlmjxst2 z`5mTUllfcg#8r1zsc|xoo@ptW{;RW8;8HLt+3r-VQOWk!2ai3CTOEk%qZ0rDe|f1i zCc0fos1xESfrj3vrzf&8k@*t6GEkqxt^OJ*<&}7!hdNyx= z72|U>;WJ}1x~Jt!RJ7&)dNQDY7o729EH{>=aM8BU#Qu+MD0T)VC_NU6(?9qSRdz@L;&3K~ivw!pLtIZDOb4l_8{csv3 z+2E_t!HJL4@x7xi18NsAyXjQ)IiX3ZASdpQ8FeIZ8x-{Cj@ww3$I>rK(ExA+7D*Ue zd^qD4ncX;bws-$-LMt=r3yxuvdDky#Ct`d#3g{frr*eY)6=KPxuIDxK2Aj6!NFD zLwR>dU}<4+?$)S>TSKu!9IsX4@ikrK&#CO-w5fxE0>?+*cuvl_dr^IRsir?iYyb4% z532^pAc#L=dx7ull zvSDgtpwbavFz5hz>RYZqeD>goy(2wQ>{EuG}&g=aKGg7bwNbBrm-bAM`njzrX5(^1^9SA=)YuksRTY;^7khHX| z+ult_4J&%vTV3Pe3(m^1+iYI>m-AFa>#5JC+a{kCzMOh{H{bKR`O*zyXOQyJ?F|ol zE!w=SLEopJf#YRYt71zR(nBuk-u!PafYu8AKMSph$C<|fi$GyBw>4)&SA0}EIgWL! zcD52%F`lU~Qmlu2GCnu?r&1JgEpqPj_#7JDyPc}WpnwqG=o&aI?#h1j0MhQ!??CeB z(~s5cf{$*CGzgC#J2;@4HUFJ+?g=HbXTkEh^_e`Mrcl*8I(tijt%ud= z02it3C;YyNeq_nu^w3^~@DJl0mPs7V@Hls5FUWCip@CBd{civCIObF(;EnF?&zsv1 z$uqx1dJA1*Wf)HyqgNWY0*lZJw?9sCO0DQIaFoavp^P7OiA<~7<_DqvoZ(5yXo>zV zkOf9UOJsgC{QyvPBifjqcI@!J5DNn{yokQ>z6;-oNe-Q$Th~&wkj69Ci;)H8O0iWd zD*^Z$;txjny0mNqtp+gNFo<{h+cLB78i2)e(g*2c_r#s8X5}wEEJ`;)^dizsG6pG< z5_BDxsB`%M309Og^V%L4UHo5Ap*A-@kPw5WKE7#nN$m81unj8!xq3=}%+g+bMini> z<=$qrU)9OuhTSj1cy1O#`AWE6TTJUREL|d=0H?7hP1&62`RS%*x9+H+DIEvFr{1}{ z(oM!6B~jr}Olf@-h+lL48U1qTT3j;!J=Mq8;tLGt15Wn>>Xmrhx!}%eb|0*QqcyXh zi4%v-!dM8bd}P0Ja7oVsgdfc0cme=WMt#GJd98g4H|qWVI70ne(~n24JJlL>%fy~* zd1rA@`+OX;G{)eT;IJRRvPN;Apbz>Jz=pl!yrMhaBha?@vHF{)Yt4MQ&z8u~T)n9E z;L^hCO~IH=!QXlt4}p*uD2<1y0R-N@afR~RIz}g0GdhRdsk^AW-eVGpq}2}o@4GMMYO%d^&i5o8{U|`miZVU3+oB zvXpX(Qsa~AL}70a6HS%US3MmG9DhS|qg|PEUY@S zD$#8>J`5K6^ZLUAwpC&r;1KKXpZhvyw)S&xv~}^qU3;PT4oC1M+%1QXKSF;(KCL3! zwUUUzgc{jZb|=F^X=xWa>)pgRZq&73vOt7Hbm@Nmn2a0tA)q<(73rUL5*S6OlNq=V zW4Gznb``G7DlQbAPjCHmyPBobO_e-bZ&+r^MD}ZzigeGK3uuN?`b8prvr@4DB0uh0FtYc)~x1Wtdg6lTg9ek``&7PqX{_g{10hN{ii3B~_s6>u)@=(+ zuA`&wkj9w{Hvdy-D}47T2)b3Usx|gb`+J zKRVQ%T1XnD9QoC^lIuGgu!F}n$L@Lx!0eMMLj*%oD2kufa%$^2K6I*IMPE%JMo>0W z>Mq~I*J<8t2cXgf#_^z_isE&e^ML%3-Am`;=Vq^-UZl?)r7M1p3S$hXS-Kv^^zdbH zf$-5+((r^Jg1ETDSv0FfI6so&p4n@I-H$Y{Sg6erVA#%jGpO@RUtQ9{AGhI#JW4Yg zc}b7YA*+QPG9vUOheNR9H0TXNG|2p5jhpba7oFc~!{Be1`|+V>X$~@ixR_=<<+D`q zx)G+V9@GQeK5$XdYfeI#Rp;N)|tjqUQw(|_5PoXcP>5kU+#66u-~8=#H%F-PwrD54i=Z^iqdCG@`<5{R3F~m_y4KPpL=su6n)K8C zN9ki+OXN&)=dj)bHWWmw=GFVM-3th*Bo?&O*ZQisDG@}zowO?Y>;>Icyz6W+*b?6Z zH{T>1YTfo;lv!Hdlr-~_+01oG>6n2LzJoB%Senp* zP-4`*;|?NJ-$K(X6J|5>hc3$&z0x~OoIoB2Uh-^*g&rzi3OpzFDjVWU;Q}Uw|Wx_%rFABMDd6aY&MS&ke>Xh3vwgg!67M!C;c z6D;h^xOtXs`9RBePpg)sw9SNX0b^nw;G^7|ZuPb?Vw%2}T}1X_QWN=4rVu0azc-I& zCqU)yh1)*X(WEu*1_xqvS%JGt>eS3fM3>2wGcw6Oa@C`Qv1Uei^y=iZQ+EeE=qpz7 zy*!oQb)OmQnR;KFz43L7av~>ec(U=M5_Mww2_NcZYtyRr;+kNv*ml!tsE26cMa;Z? zW>xev^dV@^kdDKqcUw6=v@PKUuGhDsGAA!9maCI`>eeW+qf&6Ly*X{k8B4+NLg@jH}KB~xn|OV3KZ!S=1aYoJU;CVml^0UWz2Yl-JHDKg9R z*m82@E$bca4<(K*!k_RXvwHlPz>u}Cqx#G@+9dbhZL)B-^YX{OpH!gxkdRGU#scNU ze|E*MfIJ;I@8=b> zkW8r-d;TW@tlpfG?mAQjPag5V4iLso?H7{4=j|NE6t$RT-3q($8AhWwNf@e*oK+2_ zNDD^slUZ&VF#R-uKp0_UG!CzEa2NS9y5Oy7xj3c_u$PY^*(vr;jN zIRu{B6Y*ImECOCtn#r$u9eWVc$v<{g^4NjvYFY<#nkxR`paGZX{bz3`yS5+^>!3yRY4he)eQppb>%^fiFzmvmc_2z%lU`v>xcB5(_E8^C)~HTE z==&h=mWu!Ze+u1s0hd>dXxIrdMgdhyjQzmdQqrI8QnwJy4_H!uVGE-d%!JYphHLt&}VZ z+C{hlQlp)S-ajABoN?dx2;t>9axZs1?T>H60_9Aqp(0s=wANutZ!po}`8l=hXHuUE z1*FU9)xB!fCr>kokqPWFul>yKR*V!z{ZgN5#}3kM=n|K|VsUpO@WiVx_Awk*@(!`# z@hTKgA{EV28ca0%HG{f7n}M1%tmClmP%l;H4uTB3{XYAf&RkcL)u=Ut zYpr=FWN443KnW#%{55t&*qgLKG}15${X*gTnPrsuAcj3`IEhPUQg)^nwY4T28oS}$ zy&-RZLsndi=Io2zY0vr5BzBOa!QstR`|Bfeb9q9>(}6{GHxcux5|YjY zNE4=oxyFa@_wbY5)`A%rGS*volSdpC5mYK@j-x>Yv5-RAykS7#QSYWR+$X*o$?s)< zUY+*lsddUrm}lV5LMECO%5tyVZd)DEvp34B*CtcSV;$5$(Ns2ZvuoCZ{#G-qa;d83 zd3d3@Ci<>;g^4tX5R8L#E*g8T`Z+K5{ime0AIdms&A!c`I?qXYma>F4(5hMz+bVPS z5pz%WOlc}Ly0eIn{R#)}z95TCwBJ?@z~lYBxhm=asb7RUA|kYxo6lF9@A<&!V%m8d zcujvo=iX||N45JzuI|?I^Q$7~*Gg*wM*VkaG>D)JAI@hP&zT{y{ts8n4uH>8MzR{R z^3?4OEcB^8Qk(Bl933_p+nw9UWTx{zfP>!|K}e#ouL`_HF*CQ0^4*CdEqhdRE#@Vj z%d|2+7U7#9@`s7^&I`fLu|=-7OfO<8+bQN*ZfK-wyS(BofZTk7HZo#&CM(Pqo2xjE z+`4|9KYQi5rjUU6wH44EL0%H;rW9KqUS!#;)U4Rg?2USZ53b`rGJ;r*lFFiu=x^|x zeMPlssowhfaihMfrDgcBi(kUIiQjI0OVQha+gaVq_O@7@fr|npSLfLr9+w^nnOx)W zfA&0BN&3Y#0-erS{s*dRjJU%tyIF#Cq35njNEQckKG_%VcRD>mM1ju((yc(k78)lY zzrY(jA4Mv>dWai4Zym#JEcKAZ-)N7xx08;7?GS$^F}qP%iA-bksuz;E>n_63*v-Dt zNP5nYFGvN4W+iBXEi8;7%~SGfk;4>#5os<+tWaHwYt?6i5@+hvO!kyTnrxp7VyF~9 z$NO1i2ZZ_&8ens}80fHXvw!~10@>GKd2`5|%qbb9p;!{!27Dk9a=B6KfKY6@^)l4M z8Kh3;+jLr2>$*Z>#mc1UmQ6yC1sOnb)+Y#y(bpPXZaul{d-S86XAqaRl;)U1(~HzK zl!u~)_*q(}9}DQOU=k0>qe!^`)!b>1Vc#^XocZb{e%8)6f}joJ9yYshJEKr0cM88& zk6}3exzQ}s4uh{}-#Y)H{aSFJ14Yx~!7O!nv<&iU-%jlqu0zN?LnI~s%{b2J0KDd! z!z^ov56ZWU+)E{#c?9WxSTT7g_^zEp>}ad!3;fNz)gK1?Wotk7Wgk6F({HUEe_GSA zHwqD*Oeabres)+0A*~`2BKN0Xtt)xeg)Z9Rdcj$WeW6cbI3>f1Ks|CL+Tb%Iby&ia zI7C{r?qz95c+X#Oy(*<~kn@i4{=q1C8amOTOreJMj|`SSCTynEwXYRtF9SUp@9Y`b zMcpMT*v)5IbW%c~Tz3#nC;HT$qL;f0 zr}+WbV|0nC?1t>x+$k(Y?5!_LyQPGrlqUh)Q3{sG0}V$pkF>{p#mUQ@j62@h+v4fR z$^5QH{$jy-RJ}C$G~OhH0^V)_yV=y#H$AIC`&^Dm)A~BRUC27%e0}pGKUJjs_i^Jp z6qdl5G-zW=J1=Fl}vdnkq{ac zo{gX7_Z1>|jg&(AklySY)ric~u;)yzhg8U``~t8rDu2h`6FTZ|w8~$C#*H4w1shAw zU5gwt`&zCafHyQPw#eR5p+P~OSAWZz03K&hGDd+6#4BKREPSq{N*~m@ zYHtJy?ff7<%n?P~mQSV%aqN8f7Mx^SI*5G&DiFm?FvN+Fi%}4fPf6W@>HcJ5W_gGT zI-U@|KG8}v<5=S$u3YidaQ5ZATa1`(V)C8GFL1i%ljHtuHnXVfvrplWzz9ZAV?c`$ zH%4af36fRIPm>X)5J0U-#oG&6$7cOc##jRItnDkZndvK}QX$+$JnycWyaHPNUNv=6 zT+u%|n56wqes1M+KlVf8lQFI{R!(mDnisn4<){^nmbwZGi^FRaGHc1%3wWTPO2eIA z7`j?exRcf|p*^vkvi?0uhv~xiy_48*u@oS5nkD-l z9~y^((U77l%a}TNCBmbgqO;t!yaee3NV}iwnPxmO-Fk3B1ocurXYg@=D<_R2#nxoy zc^?o$Pu)s`V4&xYd{b9vm@)T;1H-;wUnHGcWlkkQR%4Zyj$_m4Y zfIYTm4&ieBN(LWQ-Xjx2xf48g{dgUAQ?_J_^-YJZTu5Fyttw*})+l{-L&eqh(d${X zW^3;bOLy&r-7d7`rAw2O70aS|9BfQ7Ha{q@l_2Cl7KPnA>mzT*198+W`f3Tg>9AXhldYIq!~uv1Au)*mUio+JtrZc`By5#u4nmE z2q{0n&D=FMNhp7sqd(MDbJh*ZVpXIU4Eo_Sb2U8V@P(9J8tyU2s!TqJf|sQlggl^- zTNECF`rx}K{~Vod3t}<&LPc%VUl~j1dyBnSNSSuq4EtU^#QJbO6h%dg0`ID|Z7HB85)1Af&xO zYF>tp22<%Y&n@#s?tP8opQG;~Asq>v2l>hx+Sn4+6>|s$84C#x!?@@-ruRe2+XAut zBOiWfMj_u5V$ZhHQXvEVOYf=hAyIOs_fUM)FgeHL7%H4Ns{rCo1+?h{Du>q5lBeMN z%_(hi__c>{TYmw-|5h>m*0xm`0@}?ta_MYzvGO6bKdZvBF6qz;YNxvod zAyNqf@e$J<`z%i)1!^5~+zZohHzo^|!4;KilVIhGl*%;sC5N+pH|kNw??ru#b-35> z-{Tk+OkmB{?7vQCH13TwB@~H3A**Pw8W2FSm0gYbkbyRWorl=i?f%-dja&OLDZk9NSQMkYEeiYWw&YX+ttYh_Sv^}vw3Ij=W4~oPr*6oV3nEgKXj-R` z&}LY4+`Us1czf}EA%@~j^gUa2{ek`UnRlC;n)0ynX21u_Qfwc7EHLempCiauOP}D$ zMOP<(!2f8bS&ej>rid?LKUMR&ld*CaQG#{4%7Q>llb7NeqU_+Wu5HyjaGt9&o-W*E zJQ?lU=1E!8A>-n-e(gb*FFj-W_+(7hrp*DUFR3w$n%##h7tk4<>xB2F z*GQ`?0*D&e;v!J94RIdhgodS5v(U}5T3fM>-uXot{*R^Jz0A*Lwg22j$k`*a-l1ll zykAC*uD@uyX*gcgl5wSPdiiQoAb$>HJ7c?Zm2@ek%!?nR+yQt6QT0d&sY$rl+mfKW z8>(nBT?plTNB)+ccpqMeuStYosZ}YSXmRn8kXH>$4)L=aXFml07&g5*7l3mAdA%lB zoE3E!GJ4M9e9SpogAKWkJf6c6lv{T^0E*_WQ)RaLCuaryKl12{TA0Uy7B194#90Psde;ESBYbi z%v4{&Ny zx=1{BARVN5^rxQ*7Fk74!s@Z_`*zCVR@Cd=JqHeFz^L1_~*(bD^}KHGE<7ygWY zBTqfP@O~WU{2GPi=MwxVNh7_6zAbiKrh{{?mkeA#KVDOCb@Ic(j(XcpA^A8CFcJpB z56(0W{Qc~%!)dvLk;dG@r*TiPsTT5}_!AoennciR6&l@|+VVGRW31F?gpW&hYt8Jh zX+lC+so-p3w1L}vw?`@?Qa`+E5vDo*o@^g$h?VL0)JQIhyhb>ODnQm`!l=)}*tu|e z4#L;2hRKRqBQv@Ri`SGUyk^hT#7*x{$2Q2${6pa0C`H;_Mm6}^Cv!xMb50GhzEr(s zR^?)83&1j0N!quT?$-ysTVKVd`1s@DV~Uqd$hH${y!DrX_RJFtlN2&ROyPX+NlRqg z5zhJA{RzFbKsM@zu-_}cxR0vX1MukDi{$W2f0vAqQjk?elp6-H93l*Tk;ntK*OLZ0 z7bK)uth@&zdPtM^KHE@V=8W0?Yv~(^=C!q#^G6cc#!c_9Al|>Qe&XX)}gsG}PhYqmUV!Y25~F&nmx}zP=>CpRtEjLbH!pLUrS|cOp^#U2Mlk z)yMq@M`?@qd#Qcpj8M?Co=vug^LDLQHeOrD)!e&k119l};{|;WRD|yBjAF zEY%@$ScOl$7Rnz!f7md7>kX^$aKUGlBOhO6V9#|e^Lkf>6_mP@GE^@MRIX|l_LddiYnt0 zhbctUp{F%ji$oBy+bG}2(aE8qA-Ui}<^nUikxi)RF1DZW9W!+Zsn@MOwu=QgEJ%MF z%9yg*{JBj3P^O50X6rElG&s{fOIxx@a%v$nEplc>uZZJAFUcIYo=sXQL(EQwlOWes z0%%OasTpG>Qg~EVFPb%+L{=*@^k}?>kouIt{o{v>S^i`cv!Uq+uGH_t+gTM8dMp(+ zi3i^UDokx!N9H~}J;ZVpTFgkJo{)d0WysGw;}5%?F>vdw^;U8@de$m=Y1--*DB63_ z1VAZb{=@I+ug)_w%m`=0%;=MwPIGznZ>>qL%4Q%X7p{?*X*<$|GaJfCJ4RB@ieXEW z!^tYI1Yk5?ACohiE= z++R8<Z-t| zdS19fU_w6t+f_cs*TZS!OwtH?L(X}sIURgl0vpARztTQNTH-?k_Y}RT@tyBtTL&_d ze16!*Md!x|A*qS9X?Zu@MTD3jTPUic zZb>TDexj;xbxnI-h;Q2UYfPEn|B=AfvpF9oq||$MR3e%ZzefDz;r%KdjfXEf+(jXz zFK|z+Cu-k6GSb*^h>gUtTDyLVcSn~60m}>uJP$5*EiWv2IZ{~jO5*T}Ydu-EQGN`~ zGn0qgF;moEZ(ao%c)z6L55%zeeE4{~8BAV+%lz~$xX|7*(j8 zxIF9zhj`n}VOR2OtVl>^_l8`Ge9<+)7bLNHre*5SpIBD&FNlaIWh0Mj`jS~sBOiFF zJpH~QWn-&}o_h$ed&S85X_%<}&@BfdU)_5|X662c)Np(ydlsgW+w9EO4AXi|%U@Bb z_Ix+TA@%XMx_NaC3r@8exrxdXA6M)SB`6rXerD5A?C>E7^~N~)=f%5NilIe9@}cAh zcY)wL`3!?+{7Km~36>YDacJkB%}abgeB_so((;JObC2=;or!)e-q9Slb$FcvUHjX8 z;pG}OMf`PSo0%hMu0w5)CoxnT#d^eX8mx8r^DvBfR%)JkhQBwgdHY!>`Nbn{FdDhobx=$5xAk2PA3}Rmve4r&72R?LKbh?;y?K%(SnV~v)XxZy=U6%CfmF(5 zthY*xRLKfH`b2$NwMv4-9pC*z;TdNmr+4O^vmTXmEK2jC%Vj8-UwSftx%21Vujh2e zPeyNtltHwM^4CkAG0I?V1Tfod`fi^3kLN&-@fTM<`UD8LsM+Cm=J%yf@%sNQi`X-prfxvjmL^yd1R(QF`<`7zUz17@R!8+50vSOWdl0RLXOQzIAy892S^ zR0Y3?MyYig9(>>zx74e-F~f;?$lup9)@t0bDQLI8e=pXds*lKQXJ-rItDQMZP<$%e zRHuJ!vDE6$v|GU@3N+YkjwU^eXl}IYMzJkX=++1}-&~rf8QBujUC@i+A8v=OQO`7> z?=Y%2Ze`D>|8TMY2q1FCFCUwIv5_}?PS)igdsk*fV*=mQozRK*u8yzdF?g9)MNQf3 zi&uM;5|ua>xaMaa=f$75)QWfYP?*+`g`ivKkFN^pwm=L=0`uJGom`loxz7X|q(^$& zX?o#pwyItG^hav1UwkAay|pT@oNACg;~Aq(VD3k;A_A4s5`~i6+DV(GtaIeAEU2<9 zijxNq#)M`DsrLq!SZ}Wk{!xiqIB~FEC2t|0NtFIdRe7}=xA&Nr(f)%@mNWE(xf|e|IC+TGaOeXaEO~Tnz#?5Q??T3i`vbNf&1CJ`YLQ~iuS;#uoEb~jqx98-e zPiu3PD6^HOkt*7pox1lnZF1Br_-GimH`j@C!@(C8e$CT1h@u+bhC zRX9kl`2ra_B%IS7a)r6-E)Q3g6Q8Y$Yu3!05~x?xIOc}|hvXYqwLn6{9xK5Ygh7;3 z!x6~tWI;1poN>@eJebScd-oNVY!xffbi3<$+|yJ+v5a_YiKA~g!g+@gS_sqO zVJckpTlYz#O?*q5IkpkB1yg4dt3mplBT10NmI}+6h%M8APU$qAyb)+RPwCzf z85b8`*QwsG?_dkg>Wq6V!-A-p%42}q?ii6rX#_;zy%^V6+_%td)@7HNd|FQ0Cgw2* zH3L2tttIzQQhG~HJQ9DYcXpkRa_2&338AhGV>olvKQ-O%>Qr!QWxn3vCASXL*w9=h ztu7({{&MN@86)ghJG$kAAoZ!8p5lHjIqX-blqj`gFiNd$Km6iGc2iSVK94ya*W;># z@Pn@Ty8@<)Kd^q+xjcB_0v~qZUb%15xvThgb$G}&mY;frzIdc$$ZoMa!%`?x7co?| z7dui{Rc>IP%%2q^Rof^jS}c^&*JIzECfxYsr``94;V*SM{X(AmQI<4s^q|k}%BpJkLLAtVkCV+Nl53 zo$`Qn0##bHDF=zQ^Vvyt4-GYAs9ArUg)-hNo}dEJU+wCm>XrOxlc`+?C$SeaC--kG zSzRc9c5qes?Y5_E=?l02937DXJ&4atJVSq@&s0hsR_`F`v2z;sC8<0(HY3oY|}Q-y)L*%uG82OddS{vAYa)e84)-_wFjunVl^yW!$dS$S`zqEW*KfZ)38y zygYs&V#no&Fev1|-ek-rqOo$iX@E-q(lKhF#nPj_cul#===M1DY+A|0XSL8wQxLHh zuj6$%J3a9ItYT_luRVB5og_Dj4s`$o5Eh!YH&$E`zF5kh~4_wx1Xlj5&zknKkw&y=9fxx_uG( zgVD}HZ@LgM2a%{zD|%5z9q!}$$iVF$5ft`u=pzCjN?d*i5{vt=4%J5nUrE1C;zA4( zuUAZ1Ah9CUg@-(lSk3paIw$D?U&mYISu^#;Gxd^a*ukVzIjZz?oxc3@4ldloud?EC zjHpvE7LjXngZ5jXg%ldSRzn8Y27fGFo7&l#5$yr@SwGT2Nc$R2JB6CwjN+1(h=c5Z zC+s-6b4>1TDe?4y>e?)jt)(1LntE?a`bo8%1S0ZKQR=P<2WG@C4>qtQSwJ%^KED|t zn~G)Iwk(DI9H@gG`K>8{6B2uz42lq99&`B+A+xABV>amD9BwqVAN=t+{x%cgv)Sac ziHn>EMI%Z{hCc3?zJ-I~92v=skLs<*$}p))8r6~Manm5At|7mgae5Lj`*NrG5gPnv zR19WOZ)?Ew$>338wq)=PP(R`PjXmk*L9SurAaoW%T7ZB)Mpehr7(8dv(99iK*VR2hR2 z1JAFR(S7G3+er%9%G~MVDYUG140t>_aK{z#)`BuXmN*>+@NeX6 z6)Ovv^>)AL!eqm)G#ypq$>qfkjEc_+~J1+s)U{cnPlmU3QW^`zHFNf*qkmPQ% zke$Ke**&}JG1JrrqSuW^bnriEO2%|vi;}-x369U@o`6MHfD?&1x~cy@x;39P=D97l z0OwFa`;#B0j}LWutzbkRAd3(EUpTt`Fk6u=H;g*Gb)dl<42q;66nQ`>c|X{u?r+LX zAt*H|35;xRE*XR8OM^{wlE#NdmuGkQhNAjkJnTX_13Mte>ksx6{E8ZQvgF4H#b7zO zUHxh76f;vvhfpO6As>$8#*<@^K}{Uph8Q@V8Wdpf$(ZsssTyLq4j$b9uLqL{bd77O zD`};(A6c-zFu zar@_Zt;5^6;7+(n0R&+WEJ$~hAdp+XjQxc33b-~}5?jD=2HN#G**u^NQ`yB^zgFhl zL8X;FJw1K;P^Yy6V{{X_pT~K4csv>02_)DAWl9)ZnjOho$LYIh96Xq-qJpWK5}6BQ z9RO7;2kl#JM<6?F_WiF66PB$h@9<5{sGvUw8>Vjq$G1&YW(bgF z7^Tq0Xt(SQD$2)bZBW};ceI!~sN#D(xZ*QPH=qj=lvmD2od!U)V>-BQ8dk6nRs*0^ z^4;U8fqgJUDVOmSh38Hac95|ZWwtP3PA99bRXac6Y=s&S2aj-q_IX-{&y&B&&Ae8o(z z*7`>N_>7pzw063%(|GcB8={8xgsF73mN>q0cNcuw%q>%HWaT^}G;xHC=btKkY46U~ zZGf@34@}f7S%B=tSbq-KD|5;c8#wsf#s1$`QSmx*zO)Ofpr!AkQFpwOpHCGyH~?yZ z#_#0a6W!cLN5z157g(=bEmEm_Jd~r9y1ib2sVv(CL$X9A1_SZuB!4&gf=NG%cu6z` zAv@n?Ls_+VeoS9&@1EyDGCGa8!*dy|K`ISzoA6Bd&(u)x$Mzu|@C6f~z?Av~q zwx(J}@M`{4O0UxZMY?Bfis!#PO#%7uGU}~qswJ_`8KtF?;8#Gcm#Z9d_^&&?mm?14 zaP&Lr@+OvWK7CN^u0##Tl-BZsV!Vb(6EJ}9Xbk#k9crn}45d8RMb6CsL;3(X8r0n^=up$$5r zsu6L!FCGQ45+yi-CQpVW#1hnuC_^M#aiMqOx{fEGT)0+yqi#BHOnsYlZOuuim>S+J zH&rS|)a5z_=16IgV2s?oT_8{9f0@3^{kb%b5$W7%el!b3laj_|7=S9q7|=!A?HAX* zg4@LnY@;8@lVNhOE{N0Q8aeosusZIP>Yu0a)T(|=V4%SAm2O|6X;qa`TGHRPkuQZa z05jKer|o+FG_!TEOV)>_o)v; zW>oifQle7_B6zfe1sluoCNzmCO`j1_R{i3QdNt8ir4`zwQ{iphdHPd~|CDv^26TPv zLFmlYbkTdRh+icjvmit&T%nG+$abmVHcWB<5WMtXrZ-DsWG;vd{y7biMY*mrXSxm7A?LgCq%mm}`gfD1gV| z&ZWQ}ghL%S7+(t%rcFQu)azC`pC2umG0y`<@ErG8EgaMz+JX5TwlOZ6IdK~_z!*H& zN>!YNKFovpU#ck*zCIp9`34EDz$kl(a@UKAA0kO}Fu>K_ymp67EkqphshTMrEHCEWCwudN6oR{TNgkro~8{ zAMS#}OOZ$>`xs+V0=tT+N@N~AR+uESYvhAK68!XpPrVHr$%)i@Fx^}?x z#hk8bvd|`$0SfZYxn1WfjlWl}y#pL?34Zw@xc!{x8WxbgurtH7$^%mwPy>xB%wK8Tu zO!{7&ErYr=xw~GoM1uqzX?$xF&yQ^Jp{jorZ~R!W!-u9X&-)jNB%X=?+!H-AsICH_ z4HG~wiSw=4LAU0Usg*I(%99s$l|$b+GSf)Jc7Ij? zS0z#Xe_)2rdq;EuvbuHl&o~%<_%LeVOdNi)weiG2NX#k2v;3DdNH6iEW*c67Wz7e_ zY+J*b`2;3$cL&ZhM$AFQxLt~J$Slykz}>HaEn!A1yJKCJTI=A21iIyFeCSUDdnAs0 z+$ty!ln0Qj?@?C(4$%OZ#F*|n?YN z6F~KBY4B&W;E*T=V^M%*>l^5@jUJ={0C5RI{*vwba$A3z3-^il{XMHCx4KH8kC%Fe z53MQ1PzpgPWBA`6Fe6X_Pcg>(5>FFwAtu3~v1N=;Zu?5f{!bxPut7u&%;HnQK%-+! z2}8Utg`4J%a;hMYgx9`spS$vTYE9{jjtK4)#AhBX>9`-OP|vkDjEePx%AyJG5B>n3 zJg`-OSK=BnYnta@m)xCODJZq^p**l|k>Jx&@gKnJ>fLjiPpE&eJTn^8e>zoY^Ebc- zc**^5cWfSf>#sw2mF6wQKV)@vd2DR9X;pLON$=RVEljt@;_*GEam;)?clII%M(NjM zalVa_C|>@?1)DQue?!wsMPv9jF4-{DJJIZze#z zoALh!WEd-@vjeP@l|6mW^UL$rW$y7=Z05!fA3GHy8Q5>EJug&-oAv7iAaMJSS_qVr?T#mMXKS$eV?tw|!W6PkDfBAg?o$lx-AQtL;(+WVfKI(*0Fu2vKOhN*mp|0PVN)I|Sm0FDU8Az9GXsufF^&|3#J z^vmcrQWe149BlIxP1;TIe8C5K6{SlVo{MH4lU_SL%NXLVs~#sYohbru$me)4QyEhc zG-w>kkmwe*K#F?=JV?ow8@Y^ty4pc}nC=CG z%%SvgO@Q-X41ME?F3_h}asRGfRZ>E?Uw?E-hf8Vz^ z>b}X!TVwBB20Q|86jo%kMkH z>=#6L3Z^&K*Xj8BXW}AvMZX=dh|qn>jJ9bBmf>r(?2CHxGv!{CS>bNJW`ccip#Gy& z+;)Gtoj>Ez%Q2yvl}hO3=LEzjypz1^FgKYLF>jrVmFVToxSte1JA>NSUh=5t+9t3? zM1_Bg3OpAQiVAPFD!fVAtDt>v@s>K^Pn;UXE>%Nhq%T?v3iPxY|A*Q zOK`$EK66M7YI%u02KB*JvJ5sz(F0SnpE=79$SB8mImL3?peZ2<*T*iWcY=i+M9|7~ z&UF>r;yl-D@G=i65A)x3iEU+j-5C|{b$G<s@61%SZ~7&j^THE{l3WK@ZO8A+MVvmX|}V=zKd!}fRQtqvNFdLh6RCfj*F09G5*55>zWKblS`2h%G@ zqHSJ((?iQAq$^F>$x@DFTY{qMP6M6hN1%LJPXt?k6s8HP?2-<2t9e({wf@eK9nMbO z^mcwW!?>m(YAedMUjC!X!nIP@Bs)MB-j)?(4g2+g+p@YMMXe{=#l2dA;lsBBI^|bz z@R82Uy(^f1Ne>)LOs^nP2Bg@DNI2Dx#DZ|)_|uMq)sgz&FL!kJHKfF6=pEEw(G=?b z$(QcSb8Xg`VchV^25$aHAFG&C^{q46@m~L!&3~S=3W_9WDLpYVyy}(40KmKe5N)aG zGVk7=g}Jf&eb+EF-(R};6s-+>u!PrZJ@vw-y=m`sEknC*n5C&rg?!?Wh&L&2-2dLU zlKj9*^Ok(yV#$xT!U7DmtpIT0lOgCVvb>UC+)FATv0gDafa%BrGHNojF@rsq!5~}T zZN43r&ggN#NWz--8$Z9{T84 zTb}btzbZ97ICeG+yzjLjTeIoa;cQ>7pDX{|nU+i5vAW_O6fmp6r@)|qf3Q?-LD%7v zi7TM5lnRFDqZYgG(iTE|$@`tGm82 zO_0OOewG{``a8SbzW6wP+@9v9Y#n(Y0>+ ziP6ACrEV)jb}(zmDR=U?H1~L{s*YiJCvh#AWZb*HqKm|7;QB$6B>>Zg;Oae}J@5cQ zdM$7&oUBE*02l4@3)nl8{)ic{Mx2P$%q)$7P~8`WW1~qvu5D%9=GDp$WrW_q>!-BI7A`(~ZLoHyI71~uHo(tO-kr7Skn ztChOen$<<@tKF6CY^Vad7QKJvxzzzUPT25I4+2)gc5D&~jv*fuoXIu7gaH;=PZbmQ zVEdcYdw0Xe3sCXGH5j$I1(rJMJQoj)$Y)?Jx;|1h2c!B4uM0`Ya)F@cd5z21cjq>J zt^uT{ZDvOGruu-|$wuHP_j=>(qa^+qhpFIT)9|B<`Sip#$ERF}nABx={W?^ZoEY9UFi4enyOLhi?6) z;%jKI&VM)wz~8wiaLJ1}*#ixXQNn28ayth&?P`Er`ghFM)+Yv3s=&|li;p+w3?-7G z29>-$nW9{0`)?x4lKE{`-g59(HP!tdVi=O@Z#ESBdHUs3Y_{3Dn8fClG0@^56P9xd z{3*$gJH?l~>GzF=qzsh&0c2ZwrsUU(R#L`s}532#?gAfq6)#cR_i__E0VcWBB|t#^)58T377$JaK4}l~zma;CG+Mi| zNC;!L>lS-uw>M(qNoT~?wZJN;*DO*EKYJ`CDJ10*6*WufJDhAgpEB3yB#C>ERIC?R zSP)h&TmY583GZ!o#pwFi|3=rrDgp2Fzjr*rLJ{V_kDc}RPGj((`tkeYuj+S?v#4`% zoJ_Ny59ZkVd{|+a`${#$Q`qGCZQbHq>-qryknL-!{Za9rKY26fAdLa*!|K=6OVMlp zhv>B_&MrATTGGqEz#2zq{fV9ca}xprjF|8&r$AOT2qfOe1AuXH6lfKFsgLe#ABf}2FcEq&J?fkW#BRZl{Brz$N;&i=233Wbgl-6G2UAH~0` zK>XKwS~lGyS2zB=uqFSWnE9&0M+uCyN#~g_g?_o*f1sKF5p!EafdC;rh$5$$42G)! z$OnD!ARzKwv_xti21 zB!&*C*y<%}7EUDlEV-*FMP`;M`6Pyp2ct^e8C_P=ZIzCzv5WsnT#x{&#*}~%bkP9E zvZ7V!&#=>_;QL{&;QnLA5HBF|decmf?i?gz2!H;s&3ucWRZ;C7Td`q8t@qk{2E&KiAuNm!{*j*N9IhT zkI&#$iy8eYr7p$_K8A(~*ILK_Le?1nC;;Oh0b5jvCa&9~zueUOF;n0U!lbpd0TbVO zV<4m%1F$UrYk&Uz7`ihU7d%078}Zp6FXLh};ow-(>xgk`U(ToH8%E5g_|SOiX=XZEQ-&RCaJC(3=B9vwjjF=fA-&SIbXp zr?}hqw{e~SUox&7DJTp{?7Z1{kdta#ciU#NhQH^X00)m=4Id9k4YjG(U-uvUwAa|! zxIEH)?sDmoWyOl8%oI6z*}GPRL9;K-O@NJ~lO}P%%^ZV)2yz^;Ngj|BJM@j*CKF*M{ka5u{@f zkd{_*00C*GyAef7I))OE7?qY(0SS?il$34+l}3;p1f*f;hW8oP-sh}+&OYyV-rx6+ z4vXJHp1A9}uKRvco}GSGET}02#SGhKS9JiezfE;0kY8Ob2bd{|JP2$RMu5l#*?P6O znz{QBINfz(JzgrVdBuV#%-_F5l;GMfRB0h zNi2Opk6@0xDTA)){npF7DdrX)xcKS%Z2+?SKLi}NcWl6H6quH@<^0=vXhFtox#-iH z{V31x7gCFeXxYb;#%vU@k-ZXxVP2^rK9*Uvbn6AXb_hQoAaybi!#yA2z-zD6R9_oTy5m z0s2y~332E`>;D#}Wa4pRAB+}9Hle}=Zf19@TkO2P4S+3A01bXDeYXE;1!yM}(JGZ4 z|J?nfslJ#h$1z*Cj#KXdO3Vc?=UTIy$;V70zzF0OB*Y)dnQ!Z~&S$87sNMU6uj4`` zxUTn-QhBrL#@2w5mUKfv51>SgR;zi2BaSms_=Y8#vIS7Hi(QZge>9x+?=C<6_^aY$ z9>TCR7LgoV%V~NUes!Mb`40VbS573V2smQ^%5OjVt770{6rux@(m`=!$9VX^J9N-3 zd!P@IJ#$6BH=W_*m*bm@s|#b0{ww%XUJ&-=`ER>e}B1 z2Jh9l^6`{e{mJEO$=>o?(v>^?Ga`IxvYf?R)0EGJWflHJzsZn5q(RI+~|0=9&0)n|XA3Z|*UYYBs!kWg7r^m-kKGR-?l3NYC zLv>zjJH^H86SVorgQljYD;-9<|K=B8p-i7%`~$oO<3I2^uSlDdQ5{VW-!qK zKXhY2f4Hv6uDww0Ypus|A-d*^4tZ7Xwy;|} zMP~I`6dX`>8uOr_3I93oq?U5?iKmEPU&xG6eb}YYxH3dOrzWS%QJu&aTQ7CUi6^(e2{R@%YdN93cd?mYK~h(6yq;P3)@9E%|x{Ysx2b*g? z^-``Qk9g5$rria!9cYXME)2?L@U{3uVW0p6EW>;)S}39dz6_)eE3UBRSZyMi&*Rc_L;5O$8@ zJsnYcnpT;PzFbBmhtBW8NW?%;RL7wFN;KRhxJQF6= zU^Imob(bu5V#34^gs*X=;{xhMbaXC9-`w_}cP{Qxr-W45t1TheKO<|5v6qj)c>P?8 z^sU+E_r1Nn<2Ps?S0EfeVZqFXd!`$wFrj1O-}N4Q$W|T33{)rC>m}1^vM|F}Z{fks zY)a#8^wakyj&1#{)Mb*Muxo7%q}Hbh*EeIt8go-uv9>4#cW3j&K_JvfmKFs=F-&L# z1s3ej>J9J>gfrW7H*WNYz(yLRH5Y43`+!_9;{5vW@G&e{S|m?P`xjC0!Erv;2M2DX zZ^_?caA-E3($AnhMR9~Y|O z;OIaF6N&}%jJ^)m!qQ?>LWTvyfiH`)(x#w4jF0()#j|3;NSMGEvMd&GKCr%g^!nJ) z3%!6V2P5?N7qMUiqW#~$=YN?tHba|?5;U<)z31B_ zRAGq+h32LW+oZP3Ja8+a^63>{>Z z+?^eFFItSAcs6B%m)}67)|jYrOp!^S1pk(^`kx`p60BI)2u4InwNBt9#$%!7yKOt) zalWlT`Ou-LZEedq`Wav4@@vPsx1pi)LCg@jOptJB!r6$ONzdG87#|i4rtiGzhF;kB zVsiDvq^pH_6aD{M7&cVJVrFzSS6Q-P_`MfcN;YdzNUjy z3Ze4U&f4Eb7OP zAD)Z7RCVxe);TX*TMqCpicYx5h(*u|Mwl8S6#DUS#y^&amsg*k3r=DC=+VHRAMd!u z#8L)QYE95TXTVGGKm8Ai8Pzh5`2|Dsy-e{$VC6%wr zO-M-S4TT8{>+F-Vv$H$2jjs0*7i9|2GrY^r${NHyFq?59zVcx0|0@s1fGV?i6Z8|@ zJ!P;v-6P-m=rdBYhVP{Fyg52)d(^8D^-)}Xd_BeF7HaviicZfA3!gL_4}Nz^(h4P% zTKFAh;6bRF5x9HLRrtZwUEpSjNAGQ5<&1!S8o9Aj%e;&XC=oGnPF&nI+-BLG_*g9s z4Kl@hMwr|fCxG5v`Tj-($0%k>1BKJ!*3;AD37&h=c5^HL#N4lSPVEnk8D7pmoq5b3 z^p#>(C~ETC@^Z_k3fphMX=&*NcbfqtKf;H%G=+LYQP~w0y3>^D-7c3G=e@d&bFN;k z7h@&nIm9&l`LcVYT+23sZba5z+e;4Qz;&>rf7NplU@cnrf)Q2GFJh`MG-^r(G8&pf z8LY1S8gM^WEex?0FppNVMB!L(Z-A*W>l= z6wVK1nvIY`w`FoqUOD~byUr>%F4Wl7H6H+G_0f#TEfxw_8|BpQdoiQ%KOEW+V z<>3b&=~*er%gD~oW_7T$%S87u5;<*6*Bko2viTnN{2a^^wA68Q@PEZ=-G;wA66DqvF8Bag?J9B^w?-`a#hkxqK>c^{*nbLcy=V z*&YcTPhThLJ*1GJq$*RW&4>t0wfLNE`l;oux49aKJx`7Gb(dc>z22{|Ybq!nMz15zBi%Z^ockHJPFp)e+9n?N!>lehu zS82uC3*fW~F`*t_*N}7mNX*ix>T1!GdFD$MG3TjF^h8FU5tfFNXF%w|D@cZnuD0+G zv_po-;Leo{h-JPHK1A;J%a%4sp$81FbO*NPf*;3<3H?21eOU%_6iRTRpRy&VBk(0D zN%#jsGDTXLNjy_S!fWeaRFNIJlc)`>+?e4fkeX3GySMQ+W`1>bRSyvXZ=hX38r5dA z&17%3tTPLrj)}*@;p3kkHjq&wG1*23#&6y^jM4HqB&gbpzGl0D^(-n{(5Gf zA*+#aYCFjDs!V7WAAvX1-nsHS48fRca_>1Sz5&d0oQ!CzpP0=wsDM=CGw2Y}2$M*` z1$ckSw3XzH0Hf$`_wyK>N+zZsK8(Cygy zGT0h%0vFp1{p7EMUFRD9mU-{h+KUXdDVB^-he1InUPEsWfC-8G7UGphtnb{p0Q5my>}c}AXWiERv?7ebv<<>GR`Q~C@C>3(AJ`MXjt2Uin&$$1jYEj?7)FK#tv5d1Wm4{0sIp1@l;-hPakd3VZyt|X{}4JInTJ4Ur+B87C|?q!IHb8ILr#q+Vs}35L%~QU7La%cOr&39esgZ37D(=RgONg2Bht6!I3=tl_B7RBWEXdG^Ylk-_y}UdkpYIL zCk5q>sd&G>*+_*ZO)bz)#=6;?2P4#l`D(8}JIW?)FUqreM@5@Iwi(L^CD6pmp>BYg z;X+XhcfayR$qg8mSTqspubA~_$ zG54`V45|?LwzX(u*4CbbZFAL1n+wWBzI?f7eIr(4R3*l zHDR7(aLi=8+?5>|8TqgSx02_F$(wC3xHb`zeWU;Wh1Yd>P^{&nw5aIZuw+@H42djf zWghV}0UUq1cNklEBQLG+o=1>n^%9dbvxin?Mz^@&iA2tZ;Pc~Y$@_a}Dqv_|f(I+a z6es6$x9exmHGBgY#a-{R$M{{IAL@6H&dzF{9&G5A(|{%n&&r7{(1j8AwkNzp&!y>@ z<9yWeJZXo(O;H@gNPUyu7MnCut9=rw7_+TR-XD!4ty(#(V)4Bd*C|mi9ty-5%ozB3 z1lQpyuh?#Jd67nGi}wo)WhxgDc|2wyp7}ztJ4=ofvb-MTESHBFT4tR{HiJpMiTNyw z7$sOL3UYK!^+^#v92n{ue$6lClBxnh17B{TN>PEA>k1TaabYI4&G~Dz*(QB7pFQ+B zLbt~yzQ{W@*H?IfUoO$j#Xpn&e7at(+aG_m>J%H^!WB-}kXjzuqb+EWbt93G#E{n1 z>b@IDE&5-P&L{O9XK`vw$Jy_fROOrY9>2-@L#j8lA{iHRZ8 zxNC39XN8QgrtxA)RY(IsK#qYO(@g|o%L5)26T>s^_UAiY+Xs_iC%ESg7?u2u?5(@B zd$9ovY!y&wYTPM07rJIt=hD())I4$k8 zDe6P+%PbPG%;%V`1DYfrl%ZA!!EF`R-sA1;m@wCbLGsM&&nH>%*ugs$mkKZP2(m9i zna_d`wq`ZaFTChGDb^OZ=gfnIER@JNDLGjQ{k(u229vAMty{PBs1`>JEpyTE)Sl+$ zo+gf%x1rR{ZBz@>8_Q%K)Qbgp+=gJ7d6O!BY4xDs@J^Bh;U4Fjhn=Dyqaq4PEP{9k z|AQhW^9rwvXny( zFoKS!PqtgW1$&NY@-5s~RA~k1^>xB-P7l-sN>aPruvf9fSetutf;1f-`H}S-k*F<2la`ZEUy7ZMsK3 zaM2dT)tb??#08yo2i?4%-^Sc^{V19Mxs86IZ%-^}SFF-wNkdel_Rkzh#a}0{)v=>9 zL534dEZj4rk$Xi}2c98rA~G{og7YWFChHVg#0>QG%gEMH9_CxGlXHp@(kq}9Ry$9C zhbJ4z;0=GhDZ{+(W-Z%BOJs$8iXDI*698zE9Q{uQ1slr@Wt$DIY+Z<7QLllD=n zTg-f&Y*3{VsWUIFH>{Ecp(Bx|uZM%t#pDr;U*a4!UFaXdx$NMV!UmCxealOI z-)A<|E>2EG!tUqbS;G&YqeCma^+#V{#wg9PG>9$gv7VL-M~WkCiwS72OO zHTk!p_V!>BT^=DycNeRc=gpvm)U~(gK1a7`;X>oELdnCbo-cL3KmYZ<;KPFD<;mFS zNrtrl$X)zXOn7F+$y)P;BQEUPjziY-t>>7;5Bpg)j&%41S6LyrO}tGtHQ#OoX?Sc2 z>U$V*RjA{2+X&2~bj#zjC^w%wa>+1{!FpsL#+eM?L<-e&XFn<10gTVB;Tl;*hY>5SgjBJNw z9)3r{!O7`Jm*%>#rjjq{S?%<0E#0;*VF%i;sPKrS9}a< z(Cow{`RuIL;ne!N{Hdk6`2*nUnUhjdK8ecm^J^^bs;H`F)y(**FRtCip}5JV%p7uo z9f<7?Z{ZyneSV=TZ=$NgJ3@mJ0;ew{0nj`?a04W7nL;3rNt{XdiB!J_f&7+>#(m(x z@?s~YP&dS1k_ZL^Cc2lyJeVi5&rRh+?udFpVf1jM{CebE|O+oFL05@<8fs2IqWKtd3aUpE?nj3-03;uXO~GnL#4cnpbx6%Pk!&(Bmy z&5PEu!C|)SwyT+|kaZZbxa{ush`V=A>OI|v*D0@#8WrLQg`kI`+B6vu83-XBv#d zKY}CHQ~iM{ij<4l#tJ6bId5%eY{AJbE7Mve=%BqRB&7Y+V^Q|%q^19M(r4H(R~i!& z6TPr&;|Pq_!Rq!;5Z`nwHmqxM{E*5^)QQ4ua0Bx=Gc;`3@>-k2Y*QeQ*sU8cKH&z& zqqF*a0UuN?F!B8!@H6c|b~(Vp6^t(#HaBNY6-r|P<#JUFI+{c1zviwbWBtP#jQ@M@ zVHfpp9xSJI06l#9VB;F9K_~%3dLKo*1SougI*2JMXmnrB?_yq4@)ccKSV){tPyT8E zqZJfA;UW8d4Lc%vhWr2}xEc9Im#drTgC92$A5=WkQtw5iY^Vji%_J+4h`ZoXr92fPkS&0qlIr z?g}uv=6L~twfm+m2;iApavISlc$;gHI(nwDXZL?5&m39UV#c!eL54=8?>CFYkR~~Qm$2~g0vYU?kY$Fwi)98B;(S01DZa;6Le0nvpfvo|NI;@!0&+wF9Bu^J zHww5FDntXnOJv$Dlg$rIkD+>iP(J|$yx!|pAhW;wh0@}Sdw5*fHU4l{PMoYuFk3Ar znTm?af!ff+Lxf4%PmeuEeyA0^YW*XyF0DZxaZ>`u7+I0%4!_aRLv_%5w6UUu8;HRz z^I0gR5%$Obg`L7%4HM@eFSfL_>ga^j_l<+a6lqU90*<_##$O?gx0e&mxDAl45_ivN ze=9?7JwL~0-9UJ?{+cdbFHFs~>^=^?CM%?|1E6Bs^7Ht%|GFTuFs3miUp=u zn#m?y04_>!q#I6Ya^M0V>-ML#uQ1n9s91HVhcl+2C_roorj!*sXepd$Ls)&v-e zUJvX{EayLh6OSK1E})G};Wy8Yh`_6AvLEKStD^S-Q$=kYvf=aR*BH`*?Q39= zLQY$oyw_&<#dW|SWaVPPtfuOJPH1vENUjtgx(rn((N(_l@F{w-MW)=xG7= zFA;K#s}V3WDyuZOPFL1=JNkEa8`qQ~99Xh%<94?cfPo5$QDqL+U2oy=)U4lU9?RYn zbg0_C45m9IFr_YzU+rvf3_jyW zu<1e!a?Vpj$;%gD=P;p4c16cNp2sePHvRR>c9A<=cZNUR9!La$>y*%62pdZa+rWgd zNOS2`@=&S?wo36Te5fNsPDgddm9aT{F!mHKd9p)y3=FUSQMmLec@tyin8zaeEYQJ+d!yuQ<~6ck^Z9lP6C1(ZT!=M!yHB5foZp6tW>Lf~ zxlJ8(*o{r;gN5qM1Wkf8uL@9fe*=!|(!KFuGcK#S^bycGM){`?ELf>>JNsk_U4*W~ zNuur#PNtaTzit3P#ofC2k1qOS+82pI|<&d$!^x?T8nRtuAf4(A_fE{D#-FQg}6UJcB z!VrwRO_a$hBBI+l+2}TpH#$06AZYmFU21&19GIr?cArSj=+?$4CWJh!8_@gmX4XN5 zHYjk1dEVt*reLA&9u@d$$XxV>+t#&OYyMndA4JqF=qh@%M!PrRDJwDzIpf3P$^sJm zNd;oxNw-se^A-I0hf{|iQRB{D2-qX#-cy%%APqkF7mQJ%X1Fi7n~qGvXj0}b_qMiP z29xF&)xllOHq-Ao(42V@&+NkJzQAjnu53$WsxPB&Mn+ms;lRZk6rEj2z}1?hSw#k4 zT`jaZ-UtKX>FIJxoB_oUk$GBJCB4_cFn&MB)xJ2^|7~B!4gG?e0sD4FcEkWj&Uli< z44WE`W9W|+|E`g3Dh~e1&6cRx`PpZ0ql#t2y9K*@?raRsAwV&IK>A?d<7-Njcyi@< z{+o}%k5KWwe2Qia02!@MECR@we;N#!*dxVpJFRfzqo4CTVu?h3!kTY%Zb}6APetAk z!Z`Ar2Rl!k{SN)49_;#X^{ak>^(~S!(Ai#=lUWj@T)84A8L+_>I0%;%zwwVNfL_PI z2T(=Odlv)D{RILMS|Vd7N_a&X{rY#5(Fp_mzU$XQ2T}O>SSydH%(RZG#f&61Du-IWu6i0#T4pUTo7yUheL~-VQgrguTSw930QJswS{3o(-VaI6td));zo@5nS?fEU5CG?h;*TWJ-X*hIQ5#k}*G!?dtR8Lh*zqVs{vpzBq zVHnlW_i?wQB&N#k*23*yHRme&zun3MC{&lE=2V$OueP-$MChPFJ*NmKQdfW&tS=*d zHCaY7pg7bIPnkQuJ;4bngKu4I#tq~E+V*pSz;K&UNqh~;nHJ#6q0bBlo*53VNad~x zAXBbEV#EC}7V80T0}e2718nVoDRNf&Uh5G-8Wq9^+&{)(K%Vp-Jpupxr_Fz{w{|*I zD$={w#ww9tY=0O7oStsHD)-c;azyy|zZ_GTAei7Ih~RXr%P;mZ+83Er8|F?3iR1<8 z9xo4HgC@ENZTcL32vQarv|s`4nkro<1_Yph(g-=Zf&PmH3hg*f?`X%~z8 z#+!tx;RMv|OFJjT@Rk;W{z%K_vAY1B(sow66$n=#15E8>Y)WlU&ky!3*oL#RlB%P{ z*gTa~ce|t)=_nlua|p=ZEfxXq_%SM|8ic1+egJER(>Y?nzH7N%NTgvx!YUjdme#A` zLFP$h4~qM9Yrkr_|D^ZFhBwTPf4X~$aY$Nk_*jdK^M1ESl@>X&JWjr(kvU%}Xsl%O zz#n(D3eCNumxONuR2WJOrC!${poFarENyO>r9yu!E1mmiKq3I8t$YItTu2Y?b6i+N zciuAV(g=KQ=K+=TYCFTOovyam8oD{cg`B~m(ORUNC=klFz9@xP`G7!VP?v>>u4E!ZumY97p0dnCG#;Iz{8-V;~zVsZO| z0YTJ!-G~lx*z-A+XJWjTKgR!;*>h{ry(G@Bw%&5Ttg0`DFjp@<+oyF>POO)(y)9#ZT@OJrvH-$W1=r3Nvx7@6(H?_57i- z*K1SaU)XU4xP!P(=fBHN`hxM@dD8P&Ka{`ZR(tS5NA;UTc9LdDH`fw5CQ4j)T9wzG zBL5~^vU|eAKbB$BfX?=Q4nGpsioSqaY^Jqi{q2rLzrldysE$cqU9j&f3!&@bfBCkg zf2Ubmbwq{?=x{pLFK_S`kBr>8U(X}F0=!#qJzL_Fqt)Mh$PnX3uk|^%j1cuV!tR{~ zkE%{Qo`NlK8bw{!VL;ZTfvW3oX%<+>#9YqU#0aKDnv{*By(CL&mVh+uqlBf3{v<}a zE$a0f#^T`aS5ZgDG}blX-lyMyHlcF|M2gf>*?;5?1gN_aVLm?1(-8 zDx9yBSI>kSYAHdcZDxrDv1JM~t`d0f@=?~p?&B>{;prOwciyGnQx9<)abX|Fzm5(_ z+*2;C)>dl>eNNs83TjI~#mIjr!*-0B}A@mj7xx zSkQ#D)CLfCV$7cAg{7+Se2dB3NxRAFoEAt5dn;~#(s=@bK?9;1Cg!;}Q#@9vpiZcRxo zN#jd^O7$^4t3x}1i$y#b5Y-hF7e_ldIE*h#D-I40CMG2*`uh4N#>H7Ry1uIl3Bg3G z2tdI`&%~5FphW_+$*-+7VtP`s_8ce$sT05EFfn4rlH>h&8p!6E{W)}qBIj2-e+bd9 z`rp+4v&Z!C%Kg~Es$`kfWrp0e5!#79-*kEL%HLBNR-3uRsMJr0yi#;cu(Ce^rTM!L z`34*XU)|3u2hv_03#s-(CmE1aNwhoz=wr|c(qdb=fSl*_lW`6i^)8vag`!twOrDtMNXce))`toC5UO{y=kb0l&*<%U5 zeDNal`}g}^-}};~p88n2ng@43r|_)|WkZI9E&iBp_l#-vv2eIm{6kY`j&xtzbx*Fx zONbAdDWvZ5 zN@45x(>+B+;i)g7DCuj@1O_76kb`%`HTKOFJgdr6)IL+#DaZ-4d&uP4lX)#VLSiwU zFHQZF^VL#rKopjhWc-{$veO6@D>7m?4|8h z4YJ3=Z6baO_Ufwi{=Py=twOV#`_`@dt+Btb|DkS! zuKy;0PpvcLnDi~`bz9?p+oiDAwI=EmcEYpUxq}L>vFsn9O)uPJB}UvaOGs%szneJx zjF1ALdzq}_;x|FiBjfMfc<}c;1W%LUq!S&mwV3}Ax54KD>gB(bSXV}O{s<1lyX{|U zn=qj9FdMqL9E&dl_tP2G9DEe1rR(mzXN6Pq$*W25%-}#zcKPq@>qswcFVB~892WIv z!teyG8Jo>%Frg+dbIU1_){T&FxbUc`sQd;d1cce3?02N)S$1#x;K;~5m&X0%2?IU7 zdjP1PUGI#IjvfR`F9uw-&lMH+Ki=MGmHeM8!7> zzGkLBrqi&-Zz>iDR%YvtFI^Ng^>TVK*~?OGwfw4r?mH;CEnLpFL0bN46>KyK8QBmR zgfzfu5_`7=KcQ>=OTjErF#m_l*#rS?ehU1}Z1TVEh7a zHFx-3P>;bcs{SSM#BQD&gyJ~1;#kmn<>k3-FT6mG%FP1y8LdS}%d!7M-?tC;*S2Nw zdsm5q;iR~e3a50fL~M1^2OXjI@JT9549Ly?;y-0PG;4JQQKUwlP9)z{KXYi)Al>Sv z7ETWVmT(6xQn#`S24O(iu*6JTwflX*jw&u}Vsdh2q(E2C(z0~N19q~E-e2T4m@}pY z6zc38J07NHMQuiy8J?b=1K^rJ02B9PcXom`N+|cpgPBt8H#L#urY(Gd8XZ|q1q5f0ZQp#nT}r>|R%9+7R5dM#=XJDYBsWS_u0BG`qOZY}+T$WO zplE+09U*MmI~yc4OS+-+=;o%smAO=t$f{!*6}tHMOh;$IR}|Y-LRlA0(3SgFe*AAW z{i_d<@qOh3#PF_l>w``4ZmleT*C?6hyr`cG99krhG#A4FOpso-;6Y*&lF}1#!`}~YHH@8-`e6C^!4((gO>hhnb&&{ z+QdpLp^k!=f_ZWA_-NCG?Dq5KBxqkJvnAeu!5-cs*NeZd$xHi+K`CgdYj&ZQi>Eg# z$033}5);~KY{of0Zni52Sifl1h+BCM_4yS+iLB$3ze|R0t69fVJW)hczCvt|ao}WE zoV(OWYk5daZN4=N)GV3KZZpQ!QQ_^GV__)v^MuY9z^EA1V&YPWYR4^W12Zd~V zlf}Qab`F$EWNh|&BG<`ryotjGUGDb|u9Jlrc^;LQ+De>Dv%O+0#eyldFWXHpyR5v$ zkl(4v%CkXWF7EixNaN%IzaiG0(zKWB3rML}H)Ko5uSjN)#65W*n2cn4et4~mhnrh9 zy!iwS=Tql3Ecp<4dcdtk0o{b%9$Y8%1vN!6{h#8T=urvSH6^0J?PEMV=!3w-)^j;y z?*=0FWlf||XW80$m&GP=gk4&@>4rtRBHcE19xDjEJkh2u=)!i+Abfki@2?wj0zzz7 znCPCm3NN93I6Zo6K2SZIz4|iuRPEncB?s!oZ@MySvLMu2!ail6i1ik~dY=E00J~`0 zG0h2*$r27n=1AgoElc(vJY8eT0uSPayPBphMjE$(+_d3=%rrXB-2`!$gOd~J*kUt+ zE_@xFoj(Hh|E-R$u0HE7cw8V49eF2e-E!3Kmy|wx`0#n$0^?jsX1fAJ`U4DxIx(F+ zp?>=7v*J^Ab#>jB-}l{WOo>pn>5>`EPl#c0?bxbq{bPq(kJX!dQ?%PG7{2rjKHEp7 z+9I_(SxQzVBl1%kulbbrJrZYrV6D+01~_vIW~W$6^zm2A+*$+~2Qa5|5DWj`%t@#< zOCGQLz4d_0l2WZ?ws5wsrg`n6d|Qb>V@ z-cOG#8YqSIIxM{C2&tQ~APaQ%k2ITCf6CSM1h!5u(j~TE>oS%FGL3UTtbo*axU|7Fxgz%;`Y$1r0DFSN=k=5M?wqjVhWU zi-~?V_UiV@$h6}63VB&Z)Qrtc_dR(y~lO@*(e&sQh#fHsEc5VJh3cFIlsHYPM<6!$a-jS!WUURU1-#181f zasGd5R&l|MRV6dm0i1jaT-3!thh*cHX5Q&f+XUhwg+OCV04|Eqy-WL;GbUvRcX}R0EC)O&0Si3oda}=6^w3YLf+?|kx&f5_BSKb6 zpW!!SeDoULRHl8RA&u4?(kH9%N|HY3*?B#_d-JC~6s$UCGwu|WLEwHh|2$f{x+b1K z0QUTs#h`1S|F3qd87ydOkLl<{e~-PtegE5A6JLZwfBvD5P+OYqI*BO-^)k8JqUMMv zw`QVB-)wpD?Q|XApXK2SF8U}Rjh8QP5F=`L3NPFu8ZmTh z-<)^u_AutvDhfH#k~1{(`sF5{a&$0|o5`rja>!ML1=>d`_&`WihurO0RKKy?e|dKF zmvx}~0sphCV`#xvDmm$sD|BYa78P|3JW$B3tl}EYeYAM;4uA&tJvalyqs{l3LT|TZ z+Cn&sfBgASrBVkj{Ve$QEBRo_%|r18GC;pD4{KRs^s=F$-7sUy#H4Tn)*qhOj89N z`2ZYE9#uD-*6i)+Y34&GR}cK(6dLRVC`Z5mB{*sR&!9ER^h@7QA6>^Sg77JF`JnPA zxQLf(H{qJKCIN)7xXS96t@lYei=S@Ne=N=|;E9lW_zif1{TSaMAPzBz{#O8+4^`Wx zbquPq+wS@8++^%WS);~@luUA2Sw6Q2!6ZDHOc<=KT_OLrNQi-(45u=Pe{A|wvm9tt z^R%ik#3=>>jf{GeV#c)VL|K~e9Adi7zh^hWk6Zm@(S zi&VFO;@sFicmCM>G1C^wRLWEmFTn-)Vs9}6+9mX@z;W<>Hv$$L@oKliNa z)Q6bU*ao$7iZWk!O7qvOTC4jOt$3xyPN>&$2AflNwl;xCvk>t1e^WXFqex-!UzzSD zqkr7rOsQeeRKOM9+C78`-N3fd`*y6jTFcC(f{#+kLJeHog#58c0YVf%_=y_&7t~yf zDUH3dfH8@`Ql9@^Q>+6A3gfoj;;(X=HGexhr{_PZJ`N-tCTg+v|Bimt9xv57)`C4- z9PSZgHs4WY?sUY1yk;iVJ7gbdO_AGi?{(*ot*yQ){>oCQ5zZ;Z0pMM4K~4WRqRApFX6&5`s#w3&!b(TodRf-)_S~v&H@!`$XjbE|03cJ!L9zMGDJvRTm_Vp zS)uq4;SDD37FJf)=Rb>#71qW|^QNZEK(7(H+ajKxfq|QcM-4Lu^p;MP+u#=)l|L_w zalbh8t#h4wF3EgD#m!9!^wlL05fO2T{;aw;4q)`&Kg&TPAeYBb0f8tdb$6pRA-MnQljz|i)sUe# z4CbB-4!nw{Z4$~lFu;20+-yhXzOD@Lbbnii-@Ocf%-QKKy#Fc<-mCFSdv@@k_b);W zupc1R8H3J3uX@5uKzlBlCiN85^r|YNTn+(AMg~?e`82h9XEA?7k)Q zq0!sAXXlcbF&M7*l$3Pj<*|y*>yzEx-QivLNJt@&Vde`IKIl%#1^BM_yL2rm8+Bwj z)Nh#uSK4fQ2LSzgqRN-=2w{SeHPwMHR_XklEaKHB$E6-Rs+zO_EP$VxG5tf%dY15y z4CP?a*cs!y$7!MWU?6pc&N`!26Q=*=@@V%+q-*^29Ox<3P+Pbb^2vRkTSVwBs3mO* zFk%Zsv2G8io95iq9{0!euUp8mr}cvv`T!(3g}{%Z{)M_%z>fXK$bkYyjAZ{z z(8^Rv$)c-v4~a~h{Fae$i$dVoHn-oqcIO8kw|<``8f`XH=s_WqykL(%MJ%nM!!F#y zKfwRPRchP?K;3`p1wl#mZyMBrcIdvQrpFL;9+JTz*tdUpI1G7)!e0DR4%#OROG*rU zVQHALpc7KkZ;z|0riM2*7CZ`d&-W#xly?+*H1+_{B5R04Vl2^dwIq(N1v?_!be(D2 zSs%a3gJiEZpJ1Ye@EbXH;A3z3yO^;r3+Vis3sTeQ;22_VVJ8TSO$`VEvcEQeV36vDCGXg$)g6i|Z-?VM*dOEKGxf z7IPr$6DZjK{8<>?oiDkuGMu+^y!0MD7REHZ8^8+Xm$kltnfadZ$UBs-#m3z)A_8u^ zUa-nf|2ytR=NmV@G^i%8goeLyFepLp6wD8p-FdoR&^ESXe}FQ2pK`AtEo|CS5poL$ z9_HqMttZ3AhD0{++)FCCV+qthhoT@*7-|NJlEUJeu`{mUd5W!GKc|h;sW0#iA+P;hiZIA)b>MK|yqZBQQnDgD(-iW{2D*AtH6}rZ_8x4jW z6ux_r`H#69+y9gx86C7>mtoEo#SPDkH6N1}o7TjD2QaLk=i$AM7rTA?8pT^SOkcpq zpdU6#Oi58TH#gryYuT?E0V!HGcmPV58&7NJccj43>gcD@FQ^&Nl41QedM79Cz4gO~ z4q4OZC(kJTm94sXpWWLTJMg2k#nvSDf2>!v=YMA0P9kM;%$Nc{;3p|JeWeTcE>dLA zn2`hR@B4?z<n+1FYB=0Td`>7Mn){%G@DD{BnR2kK-B?!_$Abi{ zr<#ni^|T}Sx}a!DuP+Yiez{8Kcm9yLs%(kz#*x7$+dxy!Ep|w(o3kPRXE8O$trsU? zQn|3i-cPe}z7_@5isei6#u|CD?+g;6KMm-E0{^ceCpf2Jpwa~jPsjEnm=STrZNXKI z-45gNlIM-!kR5_Sx{Y`Yfpv9vQ%xO#f!~@ykxOI-CSoXs7d~IYkAku|HP(Y+2m1Q@ z1!L$|HH-z|v__wXbf4_6jY`ls=nW9eLzHw#%#z(h$T8lw#J${F-*|qr_hQ4t#Rnte4fAilrfu?EBHV9##kYN63~OxS2K7?xQL#@fHa$6HKeYNN zXYWb&F+4PA_3ftPNh{sT`s8#pVUnzY|8r@;JS}+I5*M#kD}yvz&`rJZ!cUj2@;Y4R zxjDXFlqi--X7pWCYw&*x#VMu}e*`I*ln;Y6ZOh(Zueaa6naI9}^Ub@cXxyF(=Gw&I z|3leZKvlVQZNr=HR6>D`l$4Yxx#>ow5k*oYl?K^#vk~bKknRqpq)R|SX{4kZK{k!# zzc%Xgoag`F?|Hxf?7=aWfr2 zerhf*f@sffJk!?DAV&*m@wo=I33x535>a8^SJ*%YdQX^OwaIQMIo+Z8`T*B55RITg z^v&@XJL?y;=4E(>v1sAi(_dP$j&oO97R+YYQi`qe*aaHQSiAbC2=R=BzRoUICVZu# zxmMT~|G`l#;VTJK3_soME51+H@7_j!7_fmNTU=zP8rzg!^6())-4DsY5m@Z^br$~V z;i-8TXpHNYe*V_-yTJava5CRzk1J;V4=M9Fc^zeg74K5Sb&%A4VMgWX6M` zc9zR%%r18WMpf9_jXg+gg3y~RX6++)T^by!qi(t`U)d2U`TQWcu{sA6Mw9!WwiKF_2PS3utbyEyfHGq&3&i%kqz%u5l-VMJI!*#c{YO<*DuiZ3JRqryW3vhOlv$9-}RHt+A<-Dh_LC^teCdGc`S0QYcQURL)m)nf4yJ90Zy$=XoQ}E14&3M zt>6{!>Qdn3At}>ZW^vO%gHG4-)unj(gT>r4z<507o*#RHaOmC2?$JPpYQ7kg6)O4x zLrYI-zcbx|6zAj%c}mT_4md}g?>^)}B3k&NUGH&t+MZ)SA)7^2&Anhh#`Z6e`?Tah zIdo@4ZEsZ(w~C9$TvA+Pc0q_6e&+U=(p7?*1MGDNre{he?Ek^=gqB z6-8BwZhGXn3s#<64ey3g)=(rQw!>wT!g;@&F8ZKmxg=Z~KSn2Eru7EyPpe=s4|`5- zZXxp`u6m$fz+!D}t(K;y3`m_}{2%SewzdSL&Ens@8SD(BVHXumYIh^#w9t6+~*18qf@qnhf9%sIW;xWuC%f^=a)0 z^by0ITY-H?L=o2+$EhX{EB8$G?J(uRdA2=&q_!_1tW(I|b##`R4q!hX0)w9UjQ-Vp z{qKmZ=k>H5XZ{T)mVt`uA5z#m7y&8=3GgKkg2tDn>aJ*Q^%%yPPLDNO{F{gGs1|ldYrOOss2T*l@XrM>5Gc|A-4JIz5LBze^DNQ8mXemFSo+ou_ z)g^^s%1>GLYFn7)uSt$*`XKCAP}TRXd$VXfgm9bHkBc9)s8`iU2RQ)YU}?X_>qw^c z1WuBU@x#rVSzLjb^fbdLEjSprYWO5y&}J8?byntqE12Y{X4Ta2$5-u4?J|HUiofJA z=%9~&4L&=8-I=?(S|tz?LYTMzOKA_83nR8BFXibozb94>2%W+(ryQ9{^V9NZTBvSJ z$1N=QEqSq(E=E>)nLgac11|!)reWnGg6P;TS*v2c3^WC9mf4IlOehM55yI4o#c$RA zc*F4jW*L4nVNrmQ>bd~hCi)AVPlDHr!Ev)+iDyARvWf%D*Im(hcBEvnBU~!Ea4oac zSG{{qXoa(aob7I})hGOCvuGWp6N?UxJo`kd4vH~~$8D(^$_vzc*maJj1>;+*zJb4S zdOT#mazX`wHN(RX%o7(ARdk-*PzKnI{WU!^~L(E%MD$1nKMD-QCYt4brggOo&$6Q(uS@5ASA$i zMZN@-t|v}#lz)Mvu^1L~AsMqNNk%+ng_eqGA*Qm4_f>oB$1lrUEv(og$b@H%Q-J?g zW$jP9yhthLY{atk4(Fb%MX;k(BQhNN=o0QM0tdDvK=>XSba~an`wgCrOrIV7cJIi; zI;|O*Nu6BHml}5fOw{|c?kebSoZQg2UCZJNnqEroG9kKH`x^kjw|reB)g%fQ7j$(1 zfIzLhYX1uL<@3o~)&*BTO#G)}HC87;gY z5=NM1M?+1z+Ty>vNv^7v%P)wcbq9zy*T(|00k#1U)%RMYQGeMPGr>P!0~)o2-iV4q zsf!wy`-6?gDFu=rtR>!ouP$@Q%gRNc9^OQz8yBxggCA|){sK^TntM_kQ3iJH6>k@Q zcVhah{@`2x^IHI~Lj|O_%6}*_spt_<6ts%v0_BE=)qF3ZHOlb&;=p ziD8i*V#2*`opmqkzW2+}Pbb`aa!(_lm*rb+x&a($!Y-5L5fl@;EgAHu9Gxm9de{(R z9-D&?MAWC`1VNTB^ZdOwTyoOuDLZ;ZlIO;FmjQJDwB|OeufWxtns7y28PwJ|a2c-{ zMJ+Y_p`(X)?B%}shANjq5JqL+YD~Z10@ziDF?A0vkI5(?9qQu!p^JeEvmLKd6uWZ` zZd!jEV(OTX$CX@8>(f$=DT0Kwuy+S%0p`R=Rq4XVCHkkTZ}wf4s^i!8oiEQfFaQ)l z{VqpPd43rfIKTDDe{YgM%qe^he$g+qxqL7r(0Ap)Fr+2xxn1&lebB0|COw4%eR)(& zi9!VqlO)jaoz!oP170UEa4QmSlDI@t^?&^T*+_UuNt@S{#M@3s$}~AFkMa|Uq!rh# zM4wZoQLnZz-G;?-2)#V{ysjeRloOZ9*tY6RBwU#XYyUsL2Lhk2zKE%Glys`&tn=Xg z9p&&>2^EtXn9#GVnBhVG`zy9inv@u4cL{4_OqjHeKug5YCasGHwa|8XJF_mQU%n6; z7u>^j*PrWq+}d<3)JSryLhGMXbQ%5ib^hb&&M~2>mAm2Ltx{dPm`gSRq( zpJ6}xrc^oQX||8L%UhF-h;ZyO;^XtIKd%rpNKvnF09V!i*0$u4F(n0s5@>kzBauhR zz9}_}+nDgZu=^TJeO_WuCgtP^MY`Y5vvV>iySk5g^?|l|spG~k6WVWu8IHlwiDU(m z(!M$Oj~Hf?ulMKc{$3G)C;g8rVh#W{%PCfc)-=rb;JDV@DkQ?O9ev?ScH32JpMef^SS>|z8^l{Ogz4XBH=_% za@Q{1wq-OQu!B3s$$DrVB|CD- zfneVWxY;AiU3N1M+l-op#KIYczhponglqbKn?HWgbp^Z$l&M9=+qc(KABcAPciD}o z0!(!fux~O$bsvqIy1D6Yy6mm0W5N2(ThaqPpPHDU9HnB@(#ilG_BW!-j6!txJ^h;jbO5WZg)u)JG}Uqh9Vcb|XD_mWH_QCkGYj(Y%XA~!mYZ$34}Y8|*~ zjLl2=^NBfv&nxvMAxj5wFBAytVI*x_~HZ!$S^UcIx3@xAx!*Ayb- zU=v>T^-obudlS#g1^~H;KF@+8hb+o>YJGgr@O$ zy=ZUDBw_&ApD6(*!ttOI21$Tms}~9!>g4{i;b*QOE#1~|O}_$1^f5rRWE13GKv#I9 z>1Zj}Ma%T_S_kkrmiiHamiAZa_-dx~LRv85#ahaj*$}sr7k?};ZMOna0TDj_Q z>;UD_VXojkdYo3H@V_I1@0JV_cmFc4)0A~fM#gF!X*ZD zu7nbNfGc-G9<1M)=F=SzPJ6MOao}HgHxi5%NZLg2@F8K-z5GU} zh;;nvUY>+@Q1OE#fr3Yy#}jvv`NhSHNVE36k5^Rl`*n^zRY5ucQ{O!3BD81h!X`G| zPs1sqzJ9;xCI9OaLU*+WEnl3bi-HN2>qe>(z~o}0nlbL_m?&_1+uW)z+PY*;DC?s& ze0aHey%DU2mY&}IOM4BlkJpFUms))je*E^~gM0=94e}aJhv9Nd>($gi;oLtPd zFBhE?q`3dN=otmGbY6hne>eQ7jjAbq;$=XCnA0k$vx^Jojq`pP5_ZM#Ej&QlL1VBd zJEx2(n4LoF3zzQw5nz2_>|~!@0Tx+J9+iEbn4^RWfT;AG2IP?E?0mlfhiApF4g;2( zYdZkxdM42YbPL4~msm6mly3n}JAr~}EhOScE{^W(umOzCSzyb6d+WuDp7<}Db@81u7JMcP^1?4^WDe&>5I?%VIZU9p% z_Q2%ZqVIIU1H?>}Z~D7ZGJSEdw*dR1)v)8~tHs1Fm+~h^3C&G@mT9kPspAAs)~LE{ z)Np4aoUxQ*JFU$zS6a)tK1?H#ym9eei3guO^o-?cN07fDH(*?H$*(cebb3}E=iit+ z4h({>&(f;Q8D~_wYh!mjZWG2)!qm2#iElwNF%CDnnO!9E9xL$QzqZl`^c9uf?vI;0 ztC(1aKFT8XMH>k0W-vAeaH++&et$SV%`b!V zx{x3yMzh)$Yeb}lWP%q))mn_}0+@kyrYRlZ5<=@Tgl96&iIly29WTz&B(?@+(@US-%SYrjIe4R9W%@ogIX!YB;e z7zU*xYw%Z;dGqSxovDp$8PB;q?}+d{nCuy3OZ1){L$D3x8LG6H#CrGBHcZF^E$fHY zIyqJPM@o-h4RE|FX)>?{7yxy*GBL?>q9@!aMGR^8dRrhtx6uBYs`p!OUil(5?XC!V zor-c&@53zmv(=3bAX^LY$9?YiaXFzQ3G^(0J8+rXX77f6GPP#_nwZ(}@dn}-9INx{ z_sJz*JDZ=^aw`PuR!3Ra@m@7=EqbVK0}s^BPJ>Bw0W6I2CY)*@jQ>JJLLri4;!tO0C`EgS3+Jg8)y4gA@r;A*e@@&8l>eEnBzeD@cl?MPgM^pmQJm52Nrb|>Q;JESC}Pm z9x3F@PRg#-)ZY{f!d;fC-*-(>_gvcC)9u}QMcg?>K}Sf3bVp~1BqhdcX7I0?t>Nq} zY`TR+%Foz=q!Q7R72YZc2^K?2&iI(j&(CY6O2Q%QymdZvxH+$zTI0$Qz+vRXTKLq= z@JnO+7CI!t=qFPKy%*CpXGS>DWF2(w7v7SRF)&?v;8!Jyvv&n9;P)8EHk2N8+QhW; zjezc3C6>eh9Q`0LH!Q`xQ^1+1;FJ!i1liu0p9F6EZ{*)%1@5Cn2ii>sI^31{$cNt5 z6#);;T31cEOPsO+{Y8cXur?-qTW^|8W@6lRlqV8dIy$mQBhmxt=I||jLh;#$;n#E_ z(9O+Ft03S6+88o<4#r6K8o;pMAn{uXXF5CODU#^;8)q5(di4FfUZu@m(5Bn#3^Y@I%1bOsEa@X+_Czh7?@`dZmc#*iBf3}Z z&nK}dv0(T^3&Sfjv*6u!QX@xiQy0v?q;GMbsiVa{jq>1%(rPs(ilGMWtXVTYEL|h) z;l;)K{X_}&oB3Nu)|4+g(LFaUnpta8v6OvX5M^Pyz+lm~38YbMw#^Zq8z#!!kVvp2 zRReEJB{iFLg+IPFV0(j^5&JD@OLP;Eo^^hXVO;|ek(*%;?_e~e)QrUGz27-n1sr3| zK)Cj5grH2%r%(OqFN$8s$ruK{BrqVdsQ0T1Chkl@5U;imh+|f~qdM~|YrL3E1lKt* zT2%Es-%U#+vJ5;`!9@TQiHr$v;PA9ZMXDMjPbCSSE?My}MK!z(%-?=zIQ^Rzm*)fy^}EqS`M%TN9HAO1qS|bu#z? zkFs#LA&eq0*v~8EtHj7vn#62=XMNgfOTDiSjpnAu3vNO z@mb$}S$sdM@`z2k8GDv2g5LHe(k#PqqB(-T6%r53YuEeE&z4SgOT~~sMWx>)Y(_V! z(QR#Q=@=J922dJ!DC!a~h_*duD8t!txY0KR8hGZafnEz8REApEMT3JHm(6DEAU^7< zKhmqUB899%SjqL{>aw9@$Gej{~{enjH5b*wS zoyUN~`!RNaNPxl(SdacTp+%2}F;0ADMz4Stq*6fpZcP8>F(bI}rD1a}#lwOqH*?+@|g0zE$Iu z;yj;gKiq6Yf#(bWJm(w+9{La}d)=mo1WJ`)ET|t84w!HcEPhcrR2JbZShL9{yw`@##|BClkw_B)4 zJ1fSQ+W~WohlRgS|#M>y+2d2V!S38^ezo+274jSZr z*7m^3EBM+AUnzY1dHq*iKlRX7wq)PaTqk^j`^0oE@dF!Aimln|kjfBjVN11Uc|hgB z;a%FhjnmN7#w^fP6ZZ%H{8i_(<1Hj#BuOj-J!lnS=O{ivYnP^~SWa7Li^+ny#L2Z1 zFx^4G=DXta(bAMgxQP#6uGz-=wMSs?jum9r@M7PvyM5tG+R?|2^HP*g1Yp=72y4#B z@T6EX!?Bl{6^5?c+@p)j!H4yCl5BqwW9GJ9<_#~}jbTd@JH{8Td;?r+Tm~DhQMvjD z4U_)qthA#|Tkj&m$CR(-zBUA|;FujTp5iuOpb3LRSm7Mij>rEp0xG7AYa5u@0GhrD zTVvrSqzCrXuUrBHFi3gtfQwm5V z#urG7WCF(?7Opc^nFGYGL0(AT=L$GZ5y5&sW4R1?;$5HuGiGB#6;WsWsKoiw`X1oe z7qJPaC>shXeJm(ORtzDP{OSv9s-^6Y{oNbz?!|s+Mh(NYHA2`!q}M|5>xkkqn^+`o z_-?1X{>RVGn6RS+4o`AB_Xc?>F5!0Huw8=I}gk;cm)aQ4G=5UIU+6_U}}7=Y$HT z1?VKDZ|}4k_x29&=YL#cN!%tpUdWFHE&#MsN{7{`F7ljJm=rxITyT}J+9?f~8YtQx zSicM;qoc#>RTGx5D1gXhoSmJm%y`Upo?d{N8S%R=v!cI?NI`$ZL6Oj zdh)j%KSyABsBs1PyPUUUynT~#`u5!#v-EYK|NP(x4jUcv1;D>{hC<~ZMZXcH9M_&5 z_$DFmOqbkJm6O)(@T&{6?^~F<0d;ua>yiT6zKR=S4_%E2!)mEcsChBKoBGta)Y8rr zDs!Kr9PyddKjEfI_>V9kYSnwbnRjJGf3LHH@;D}}79alX;}b1CxUC0HvgY67=LIN! zJjLR93?C|W^FdmR^$8#G^8ZjhUsSz1+wzjS$mmO3`qKWWVIGRiF!nQeg&66JSqWOl zYTRqQ9<{%<3C~ZO+UH0v4#$Xq0YHWaHdL6FxLf^kA>h(F2YHJo*8BZ7u5YB~juRe*#q!sdbx51*IT1YJxD--Klk!(wYd(4tIy zk9Cax-dJ#X+5z;VS1F)E2Wec2sSf%8LmcIY^-Tcao&T=pDd5A-#OltIH=OOrN2`+S zO(+nB_!l?6#8gyZz!$+ZktNJ`KX1O3J7Tx z9+MZd!t^@b=`d_Hnsq4 zC#^TPku8UEibcxUXWIj0gd*e?`d;tBr6oA{_4lRq*z~me(sQV8=RaB&r+BcvinR!E z;$$vKwi{`H_K#9;7h3~N@Fef!B4~Le6RdL}KXhZK6()IdxO7|>I4WLDEG39r!i9AT z$A6|EHs7bWHPEqNt0_~=I(z<}GC+dB(z*U{|91mPU-bEcqi^KR#b?gI^E2G!%wDT^D`R?(zx`^<8IZOye9>O2(`TMqc$! zIi=IQy=ij0(};$U+Wp0bYrL3OYT{i(GcNChL>E`sm{}+F0wkdon_pne$MS8ju=!HI z)lzcBTk|bPVf`G9I4zbq-8$`yiZ@P0Hd9Zu550TE@_Nrx8f!9e0Y-r#tvf!$z>lOw zjV3CEkl_8We|x3Bn`2anc&3t*@2EdzA;c%E*B^Voh` zhC$^uc0b=q?Ec~Q6m1p_46PzTb*%WGKuG#l*|r!xpAopXc{*gIo_lQEo^mkZ$dP*z zoU%jvrj{6{e7!Eevgux+s@@xldq1chFyKPP$~7<1;Sl(T5hJs0BM1rT)}BI82yz1^ zaNd#8#q`1PL5xjgOCU$uTCpSB+jDo&V1#_&f1!iGUf6^uy5Ryme*Ci!qJ{WziTm4j zH$?{|?ZL*Uxy6d;ny2sQ!&+oYYpWY0&Yj-B?Y{2D#?BF7FxC{gn|Rds2udRM4uXUr z`wwaV`3!9`*xFSG{k^Y=_V89j>TDm}WO0-bz5`oF$}Ec@^IxoGyg#yu3u# zw^XS*yPTBkqQ{oPG#-Ob+u1no^#4loIuEHqCmC2!v*h1oe~}F_s6H*3++mMGQ?p24 zh~$dFzxx^O&kIY!|L4OpMxK(dSWk4cEEw5e5o=;ckTXi>SB!3Vmw^|CX&2AGQT9wV zf+e}xO4Eyx>uX3B8zjQ=?)8f6XL-&8X=yLMJ;y;(@5t^a?TDd|y&iwM{Q#Jx8$&?n z#LWO5><pDCx_VD^R~m1>MkFwQR^_r9>@U-8D485`k4< zA(5fsJD{B&9#=D%nu#rGPH z!S!EwS1Hg*NDvh3^D5w>^cx!RNcewLVSqge6!bBtzpT&zHPN8&9_r0y%R#_@M}5Z5 zxgo$E6Z|+qkmZe{W~+RtMm#G9)RVTiFgPa8&~gm`qDchN>=Wd&=iC81$cM9hUrJr| z&)WB%sC?qQVZl^(H1)-Md^=|4uD!vPUc-Sa1eg0?83GsqspIHyxV(aEyn3&7Wqr9X zaqJyOwtSW2j*HI!0DClfPLc%?=%5A87HNby-gDg1bjH9~~5EHR0~-SvsfC#tV|6>)_4s2NJS| zjl%H)H*JgRc{A75PI|MrW^w#X3bY$m6> z^U%2Y2{E`ld@8iWqM#A{`g3g~9h{cqc?L#DnA2OClwft+A8pL|3$oRz+pvMRC9S)FQ$I_jwF5`v6Oz5nMxi2XefiiYU~VDn)9KHW|HW_ASNV*dWh2eG(i zu^3mPp!}BYCM;k_lZl<{o3zxqSMN;!GKDP;G$%~osXROI-0l6_pHEVxYPgj%orqoM z*Zv-F>;E|3^JLpGbb(rv-&A*F+AL4PESZnrjRaBJXl1N)9miC>ZVm!s_8!-VEX_50Te_LR)sd3IlJ+bY+T&QZ%k$DlgstQ2PS9Ci4y_e4QOR4fEYj5qCriYyBE!0+Yx`K`(h?s$;V4xePd1`dTadu+J z6B$bX++lt#_f$6MMpiC1ba0fO-8wg8PQ6w5gmTN;xlU5zxF)LOWL16`@6HR z4E;H>B!7?WAk`{5D5}taBNha>&xBt4jt(4uTo`B7XZTu-mFn_CWMXa^ZG}@jez!3- zrz&U%C)Ww7!HCEhC~{hM5N&Lz2o^JJv!Gi+esK8()5*5~LH+0065;&&*wQ}R3J-5$ zaNAyx4#Lo}{E_*L7>zJUzuIsHlee`$-WMAC%G1&|;&b zr7bNjV-pe-+uPfIlcAx}Nz$u5h zYh$A7HIQ^<0X}I|OpFYQRP4uyE{6H$bcx41BTFHI!-rA6DUg6_@L+RtL;&c?W^}ID zfKc4SPlhBlIq%@yOt$+Lu``sJe`Dls<9^;RbmWIG49(&qPkK7biQiJ0XIyNBqvPWv z9SI068k56Al*wbKccm{k62T*w`2~P%;jDx7gTNH89RW>|~w1F9oTc_JJ{M{n|2`p?azKoiaIe)Sgtbbf%`zdEmb%kN#LYh6s=ePETmuc~dh_kV$ZOup`&NI|| z%~_xkDOYK!CHou{i#9&+h7hJ2NZ3AXuVK|CD4p^s$NAUNc>ga;!z>#YP(@BcwA~ho z)S4gI24+72PoF-$Iy(l`gTU)x2nFO(gZZ~2B96<1bTD`%)B`DnCI513`awxaNi48d zKAiEEz`GOW>3!5rzY1VFC=eY=qh0ZI6rKcEjb_j%GNhV6B@MinAIVm*nXLzMZ>7-m z#eCAg%kzGxCa696^rs}2(pb!i&etrK-KT5}jAQ?&)tTRZnV$XXfJ%Tv@%)sFV3nU( z?(xvK=V0U1DqR;n8H*{45jQDls^ml9!^tE)9`#oS_z%o@$X{4$AFZ$^RZaivx}^DU z*X3+ni;UpQ#yDCiI;VlxFVm$~bu~4~vgUIU>xs%&DA2h|74i!1dAh0~ky+-s`MleG z;j7?`mT~DDZvDd9poSS>ETVjIHgoY{=J;EU#s2yTe*S8oeRZ4)Jod`{L&y1nxj8a( z#Mf764kkyxrX+WmcHCl9=hP`2^;?3tvx;>%-MRIO*U~uwfl^L|*7Reb=2ZlneIDCv z6si0Y?R@rYlMnTpi(Qq}&N)p-KSDXtXhroU@AJrD{|e_yQe*V^#ye6`>g*%`y9*oYu(`xCm%sHlNg#QW=`=&q*Dii+uV zf{R`UON_2hrDgoJn{Q&{s#4UhFfvLDtwcx3eAe6&9i71eDbHQ4ZiX~*aYF^F!bwZ^ z6_4Ya?$ThUQEmg%myJ2TFJ})FX3BRA*66QioIEt`S61mv?VOGnVmG_%p}O*RzxKn+ z-Bu`svI7~D4>es!I_HdQ z?mbqTfimR!HK-xUW-MT0=@)`e#l(CPHJH1#?(x@NC`69HQX5N_JgQb+>TY zbnPAVL>awh5gMf@)VqfqLwubR+*yd5ckn){Bi4{}@D8RNRDhG8e>&-weK?WKLjlU_ z;R7t}m93OwGuvP^-6#qLRqO5yai}UYZEPZNJ9XJP18fJlD?!yh;b6%<4a)_;BTIj4 z>NC$FAFFR}Am(iW_k6dJ+HG)W%7c83S_A?Q9YJehiezNUtARYT*>n2oNs#DIgly|c z1+Qvg-i_;Ptcq1_>;^ zK^%0~_SaNu2Jv1?J&$ZBaUB#|-NVS+_7f23c1c-d6v|1`LEQTgH7Ej7?57wbfo}nM zcKCtJi^cKo&J;|8{moLcJK=qaRP^!`L{r0GjXF{oV>sE-3uq~}k)M>pv&FHYce(f% z=URgdw~@glB&l~;yDp$bnKC(Fwfg2tnmpanN>b<*&K}#3KMG3)!A-aIY@1U* z7?^KmIFm+T8)8f7rWy6p-w+|(6Pns)(bF%O;AoUvOQ0(1%Xmiwd&W}D%pKoAi_T%w zeD)HH{aFjKKn5WgJHe|93U07CfgbDDcPRONxgTdU7 zSK1#bF=iaYYNBP+&7Nfgvr%~F=G!GP2n?pFIY@GDrOM9oUSSsdC&pG2-&al_L_Sk9 zQ}}y?0@n)r<4DSq(oK2n`5|`RBu6O<~Mb6ElSDuvk zm-Y3L4&p;E!IWyxTYm~!|50=jH0tPv(=fs5bl_|n2iKE+{7OL{O!+wLX+C|8PKnNq z$`9W~w=Z-_ob!pD?G53>6^SE&h8ido=C3iD0%9EkE3eYjM&8nH@gn?O z6dmfhq5nQUrng&wk0bVtdB^*0@s@$LD?fKxX4P9=We=zX2QHumnTT)Z1IwqF-Acg; zYV_O5Fx#e@I_oEOJbw${t z(sBi3T7(VU!Wp~dbE?6rbj9_iycu0Z*Qn1VMuvCN|E!6}wpZ2W*6f^deg>){R@CMG zC-Q>%2dqHq&Z>iXNMPzjR&+FZoVg5nY+sUKM9lQ#{G6OX1J8Z!xMDr>h#B}o7)MtZ zO6z;Hz2F4M7e%BGfl?+1@Cux#fmxO;NUA}EGZ#%elz4>69u#6e2y3c4 z2k*p?)N`c5DapyshQ^J$a;b5oDz5D6w1c0|koTJ~VIn7pH6zO_XX`^6x@l>ON#kQR z;(}hqpmNG(rEF^Q!v)+m9|-Vkh0l}ubnR(h?Q0Q}3)@=9ZZ z>t84|oCPls?=^DQG-#^~;0LEmm+I`-=Ra`=b&}w4MXJ*Of)ccH`YL#POVEjXBz%;S zf$^dW3cv~0)VVcHDgBt{txB3r90stVovNMK3!lzs1MAAPOZH7-kob6YssQj8JYqrnPO2|8J zyX=S@;MGM*5suX5@h+5_8liHn;W!U-BdARA-S<#wHA9KhF5n(r){uOjbWhw77OKV= zjkRUTKOaTOCkb7h&m3keLx*uZeGNCCtUbv>i-~f5F`>tmXdHiA`fl4*ee$D_3#v$xv>}n!7 zQoT1g^u2lJ-JQTw;j~_@*N=&2G#d>jckMQp{l)%OMo0W`#Y2^-m6vxfYS*k0I057@ z7KQL7@VCg2hu%BN2O{_-C6reOsw@Td==k_JM{z6!hp+O%!@BzVI4XH{^(cH}Q<|3? z;$WUh7+`A0O)hlDaniPrAKlviNxDjQ{kpQ3m)E)pw_(%${r&ynfq{$z7G~!Btt*t2 zof02VsG2Q^EDfC-z6zS7H?;3KtINp<=5!&3tcaD!X;&4zxQFY{@{X<}KeVM=c-!;S zaaiXLC#bnCFaNrFg%ZZHMg4^9Z$hH>p91dnz}_S?BOg8zRMF0s;@w ztj;`FjwxGAj_*1}`EH>WaZisKQ!$S2~_)mEWh=|N&=7@$TMe{?0`Ae$6q*TkToVE#WtF?{1U!SA! z;rFp#emXq3J3BBfD7!>Eb5apa@x)AgjA6zoe*DYK*S-EV}vuKI8pVaVVJMS)hCa0a%Zpo^3 zkCf4M9_mNT{k+>#mcmO>=+Br=|?8Ba#;2K%;Aqb3piC7B++l4On!cWPU5?8+W?q>6hsEz zHV8g6l##(m5pfP-MhtIJ~?B?F`BwRcyx3o(&H$T%{pX9{)_Hr8_C5PxvNJ*Fl3ZuIA}A_pJLl zil4fAxWt?a8v<>fyiuN{WF0#F7|iY}*}Z}RPXGZv?xl%$II8eBS@(?aq~V?1h4e0% zzdKq!vwEU~%6~4m7Rf(aCedcMM6Cvm@x;=uoDv# zs}bI(S=|GBF5ZVO-*{kM^l0$=&3@Ao`Z8VAn0K7^25M}1(wEZO9c)1wA(O?NK|tbI z8olrOs$B==Y5h->?!9nZx+%g3Whac9{EhON-vfhh*UCiK9`-)B zv}E|a#=H;}&>8Ka3K;v$zfzMah?bUMzPmtujNkHs#*M6{J+ZBH>mrRw+v&i8CJZUG zL%4!`lzd$-ZF_AR6ZR~$cmW1=A5Sv1l)q)&t(yInQ2ccKo+(F1anM$QUeTE_i2WsR z{uS<;^!^K=)}D+81vP&izWRIMfeBaaxZeEHBG!xSKC`}n>`$aCtg1U9W#|!E4c)FhWe{T|HtyZh(nG zMF4d?yiPz*1faFKmsyE9SDty0w%d41{6=lR2mNnXdR#4ertFS0?k7?cO-03EUCT)@ zzWU+M?vU}}VXg2gI$5Ch$?Af-hcYteQWYx9T;*>BEt%4CY-k59O=H3H$PnRbSBfrO z!_Ro;{PUor>9mel<4FNm{1l@fe|_z2VZ^Dg&IUae!9n~poFO7BGqcncqZIJ1em0%hoQ-r@cf_c*8R0#OH|Y?~e)lfw<>rJO ziNtC71l1LO@%Tu%AIc8(iEX2td2ceq+6wR$DH{X>>mjht0$7Ep>6SiU#QTMIu$sXk(H~AN9uvqtM%NxIRrqEGp!*D0G;liaXN-U827BhCqs$^QvJ*iI z?c~b;lY}zO1v>pL14uI~BS9w`|5CK?G6z{2c473=EZ&CJCMLvA`k$jB7xb$Nr zi(E?=;P(j`=aVh$EO(-C$^CR+1@#9AWb-Um)Dq%ufoBj(pFX(?1O{xzQVAhKBjAC8`nl=1b zfTrdrYev9!aJdW`s9V|%im!QayS@$*8Xk&}sFU5_JgfAQLSLy?%yi|W1fuTE1o%)v)MfI^3px_8BQqvZP04^ici!v2cV7QO_RlNXhNP1t zY<*;&RRGqwD*;x}NrU{t!_KZh=YX1;TJin-%lEu2+>PVTLZG6k{Z!quK<@6Ub@xzB zkjAN+TPb5PKa!o*Bo2h@S%y(=8yb>5qKV^p8_oTht8fn^#|9p%OzIu?jpG z^KeEe)l;N%4lXGf?tDJ(4R#)$JYb7kl)Zw&0Iw=i9f9%F#8~P;8Kh;wIk~%3!Q%9- z$@9eGb2JOHkLPUka&o$N5kU5OIj8OAz9m= zIR=fFB%x};?(gr|TNK?t@bfTsKaX|1)4FOap4H51!wPaPFpM&rLRuF%f9(1GPe(Lc z6@t7Go^Un0vuAo*Dt_~(u8i$OFCL(TcdzT|5IrJ~(U&${qiAq!l!m~PM&-QJxtbmHYmh^CTF(eIsf zT%Gh_mSG_PZl>70u1v=J^VUjCK!=F;c>{hP+d}sx3-Z~>=;#n2B`a2wOK$^W@`nTU zonQ0%4nR^!(XHIZ+3o%bn0${utFs|-8_O!GZjAS;Z}tmP5YIx4KI?BARt%YIkekMZ z9U~NkBNQZ7IM+1PR&Wk)Wky0S*wL&(T`V^6;Xm{Gi~lXJ7gV!Fwam)2iD29YmU$R* z4;rLhB28j&29ymlXlMlXWhZxDO+#Rm_B#jp{WtLKhQzW`TL%gX1twbinYaW(q55e` z?CO-nWM&VhZ@JoF`P`?xbN_eyZ!ZM~?s{(=)fe@3by|b=czJBUGEy(S;(`ArB#c8P zGWE@yTnE?HzALI9#oP}f11ib4qMq2)1`nUKOD8Yr|MqJbn?~vn|v&gZPb%X?QE6^_tisQ|Uj7!|_x|hW6=cso!!*ff! zwiNx0^~dL~=0?e;*;$Bz-R*8td#6)0g9Zh|dc7LGW*&+P19wHm8;3(^OrhxAj1~7zq00DfB-|b;NH0a&rXD6^O<{9S(&nFU%U*%gM0s+;jhnGGRgsX{?xzi`W3yt=I!uY<9(^`Wr==)h`V}J*DWSk}^H#v1t6ubB z0x|GB!qsVMA9u0e8$UQ%M*ZRUe>{CG)w>r)!F_Twz^rB9(t^;ivoC zCAePwuXTNLogd=ew>H0AnYnV=W@AF7djDKshUS?Zz>i{Vw(Q6k6*<1Pe|S<#Tz3v; z8MC30fJzx~C(XaiJ`|ZF6WB>aVn^-!Y&mtFvSXWb*l>K2n~DQhD}IXVe7XuWAq#e|z^~Z~|l`EfgqZIj9he*uMZAUmzLe6P_aKQrG|m)ibk^ zOh~|>m9=#auxUh~RN3Uo1Z+{HI$T^_vB}BzU1mIMl%rFlqv!9$zWJtZdv_y}@2P;X z|0(azLa(IPEzx&pKgwX{)jHG(TkJ0~{X4?$M4Z%a%`^u4edOgJ^=~%q>t}O^^CIom z=j{D;?{agVrC8GU++gA4lXitWJus1uOQ9|BQ4mJZCR;@v<1K0b^cH<`@611IZ{(}+ zois58=79KmxzMf*!dAqitPF--`2Gj?l<@GwrRVVi&)#7sl};~-zK%zf0iYgm*Oo!| z0&v$p67E{*yYRmo5ji?OCH&K^1Cxya@9Y0V8Nz~tslp_D4^xZ)IB-?5=XRE`w*p&P zzq5oaVv{wI4vzWmP>$QZ&gp^{$q zbUwx-0}3rENW|xnIJN8On5IwXp3fO>jBEpAi`pzqqlVpHQ4T{CmMLj(Z_k1D>ql9$ z3dp-FJ$^YXRWV!-4G+Kl;iu+Y5vGHp7b!bA`91RZd+57B=bVUgBLy(RsDTd71EeaU z?qF_c^^)%G1H5UQZl1@!hd!1*3Rv#89`Nd*ko7uHnEEyKC^f{5Vi( zMZFHxXL1|xcGLj-43L4^4}Kvn~1yzx2Ebslo*|@LPQ~s3&H~t^Sz5|@Ux6_jm?-Y% z&0kMgklFRe!o@Xud3@FnG|WI@`tfz-jb)K5|g&;PKcB6FJDY$<|m?-y2p*QO3%wCjLo{L@GfjjgWX6Hy1 zfsU!NDqJ0!C>ptVvA&9GoTCV8tADrEK<%*|Me9q5@~cLN*zi;h;(pBg^iFRr=X3uP z8B>fFVky(?^)slR>5k_t)6RM_tp~;4QwycoFM^zjpGCCwjjPQ|K=qzYX@Ix_uz~4c zk>bfRsu>4rpPy+jD#QQeWYw-0eHqPXizj9flO@YgZZ_&klbYdZT}FVCTFGt7>%C2J z#LUJWt(tIM7sjLP1A`IC3A$hfEck~mmDgFqB-$GMW~X`YVYQB~0zJ#oMq5=5~uXCqpDA3S+`!?UO!o~DJfB_ZXd z<3qAtxesuFJFH==b1 zAph!r{O_zFy`YY-vA0hoiggpLR>$g;585MXmf5Oz!izCUVwA^C@4(B&w1#q|Uo5#1 z{$_RHiWAvIgE$G^mZSg{gm0?QN!Am3elVjJHOuxfA^N;A3vc4Yub8k?bk2pb^t0 zwwOZp#@MU*xWTBu4h6$cN$`*1pAY2`)0li1C}E(AaQ?2@#GE97?YZ-0)^$}Gm*I|M zMkb+ugR7sUqxp8?V`AqeHL&{u)Y*G&WUTbBEfBT5S4Yaz8Bre`aD+%ezvt=={O^n4 zXmQDF-00_h+_7%Up69YcO>iw)#h^X%Nf;oFUROE4HoLfV8vZWV`|&GOyB7u*Xp+S6 z5h~HFza1u>J`2!aW`J5spq>KRidx2>sz2t&$Qa)1ugUW|5kGW`E>S}lN=XvNMEv^k zOw4pzI#ALp31aw0&WM1_&h+71Bk4a=--vQ!@$o+}e-C?b`$P@9qF)ed1OQ!|=Mkff7uBH{$hYsp10}Rn;67)z4%?Z|+y6A*|Jp*|5YL(u zIvCa z>^X<_&+&I1?<4s?j(_dhMw~^h#-N({*Whv}XX1QI2m>SZWj*+O{jEr0s9OThke7zJ zDz4m1?7>6pPvwqE9ALb2@Bn_Tzx1z;HJJTF_0}kO79dUo=lOSSV^ZKD;Ik9JZ$Z07 zOH9v@Kr9fM{hI#AIu#D%76t0)u93ItnE$ukUmfiJ@(DScFMLm;0KX1qnDFV>l6;l7#wG8y%>Z(Hs!M!bX#YQ|lH)^4n zck#Lkt?L}c*LH7pN;Jfd@~}5Cdy}^2%r|q5*j0l3Uz?AX6gUrQbDN%&gKt#iHt zt3ws+(SIgZ^~a1wmNf?Y^f%rKeM`R}OP?wwg;V3ajN0pBz~b(lMdSFiouTLb<`IAj zpGzX#ciljT0UQd(nPry$ekgqW|G_8!TG#Cn6W@NbkJ z)Wz(bEp#LeuQ3T7-a0KG1FwC0!J^`L7n6oiNje`_r>N}!P(2{f@QH|S_k#wKM_sjK zIancO2}HAVsi^@Q>BD_v3dMWJ{lj+^Ns81yUU3I4928{%b39?A^k{gFBO%R>l=lYA zNu}ujyFsCNqyH=K7!A6g!XIJ;26`SCHT2m<)n9x~GK@v)u2ZwHZ$~xZL5bQMyIVoQ z*}i_axhQIL!@xbaI_5bhrmd?lg+!%Lghli7SM^K`RDUz4vHqqA`-$Q6@jlrOl}ahl ztqDsVho%XL7HC=7&b}4i^_tb37*^R%%S-

eQu*|8aZT^aEKng4Fyu8;U&VqQukq z!d{qh<4*|>x;$!st5E*Gq?-F{4pMIH26Ws3)l8dYFM0%JA$*!Pdfz#Q^Ae zN3q6g@O{i1&&|$Hlg*^AT-L&eSL}M@eg9L-oX#N7snsXCsrv6}q@;GJF zhk}mkdwNQ{?=@d>r0v?qM|EDIf&R}=5^&cqC(B-8oShkmLarD)+tVrY$F^m|rw$m1 z{(enhFqHu?i3F0KnVGcLMZpvltr2p!J3-jSnoiUw31v)7%sc^Uncr1ZY2y8&hZVOM zLTJ2B$LPlORPF~c8gMoEG>#AZ+(!$7uUs))P@0b?-i7CpB)g-Cz>sgFHv~+z(JaWI&<2aK^%-K18_HSu!NiAXD@@6$JTo0FC?|lktNpE$P5aIY+X#p_eKQg!@ zkAn5Rw9LXsGkgJ=mYxBpB0*eO=-} z?~(m>2)Wr+q3T5l3WWBBF${=BYhGSnMjV^^Kn$}21@f)1GlbiyGV-shxLUFi2z*EY zroNy_m36a&TpjvANlEFwvEcVr(L-J|*mXJ#bZC|ds3E-Jf5Yc*K_k4c@BYh|FH!8B zwXH4Pg|D%!Dk%19d{UB~pg!&;_6w9R0#HM*?ynB+XY&SxE!Ke$I9vtsX>8D^xb@eK z>I>L!Q1|L_1%0ll&G(g??I|6?E+3h_aN>I@uZzl$b~=PIK8ek2nz_XJp~aVrgGkD2 z-Mh!|zA^JT%WsEUe$-qlh{IzA5DuKEE&WPK@hyR#SZ-21RH)RuN1pgjVy~zK{okzn zO~5bzqapGW)2%ohNK?~xZ{9WSiX_o8eHzuw1O|3x?%CNRN4E1M89(gL50C~w=9s2^ z&ENM;Cj6n57yVqf>HvB?8vzWgR?DqP))=mHI>H4P*F{KaCeBInWcdN=tg6cIi-K;$N zqDe2J;D`))w=2E-^fW*Z*W?mhX#OzWSLc|>V*ulS$$~wOJfck+goUn!w=HRy($NbN zo{Se7-{#z93rW}@7nX5-@J5QZF01ncB|UvXl%}}x8SX5=s|D)WcPAYg}|X&JQ$fhz?=h{*np*hD%* zG?++ZRn9Jc5Zo^>LC9;+{3o_8+-dGu@RV2rk{HT;?h|KXu$!d+U)=OOpC?0YbNXEOLSz4;e;C;AZ5c@!>>6>HKR8CZKr<`Ve(v%b$qVzdo zsa{9=!0nSU1-WuT@hCU4mXuJf8-6){y=c(e!}-DF9eP#!k94$zr@jcJY?&r1Qwgn2 z+y$~#8D8f5qoRFp%_p*9Ek3)SE^s&oa4Eu%=q5s1SVn;5Mi#++Wpr?&#S@ z#^wqbA5WuWgOzUcJ^K9lGsQ-9!2CJWayJ$m(1-YVbxOKQaj~<106ucg^o4rP^NWl@ z9s1@#OSy92mAwAM4$slxU2_xja}0@;rjVz}FV+6`0+1qWvMks->}{nP{VxAmy?1y( zjM&cebU?dHX|{GY`bp(gYkGDreFFRM(_qAt;_@`}vDGbya)Dsn+x3;pZ&xs4ZQUG(f#E-Ye8)lBf*@01Qt>HT zTeR-x8Y(#Zseyn(^h=%jHm1^XVTVzd!ZxLAT{k(;D@lvbE6^b zAJv?pHMK;88+hM?zsL}B;D<)rG6@jVOFc6_IO>%=ExsZzJxXZzBZG5=ExBKVs^q8cb*ez(cCG zGE0Y!=8Ld?e%tBP5K9l<34nEeI-2X#;Rh2#X3nbn{@JY7JX(HhKRr{r%ZU<=MA;LK09Hk+7V@ftoeJKK-D#Q|&( zpum)SJKTq`$b^6t?@EGHG;`+%Lhx!eE(6a_8Y^DbM8iVW$Eb;3cg z9Bu^b+ZJw;({f^rXIT>Wab<8<8RcO+A;pQns_-z8@0OP_FOd~#0ar#n$n*-Q*7b>Ij!wc2IxDW2 z5oyeGIdT)h!Ra-}2SpR!v84}w#WfU#T;mCl)`)KGTEF$~_$etvYZRN0iN68v@A{j8 zsa$2L<;J>tN)VFt_2RnSa6{E4Vq|o%G7eu-`6TF+mAlMIW2;}RH(sa^J)NJ60c|p< zlrbqWSQW}P#pQzy8MjaNjkzVhD(SX~4373o9o{5?Vj|z_xB9r6FZPBxUAmOSijA$y zOGhXTOuULN-I)QnGy~~C*LdpRY+v{~$FS#qf6T7#iNtbYb%F$zv-Nfqc38}U^v*Z& z6AWbZ`q@x}TW!63?`RDEW?E{;hZ_u@M4X3O3Tr#DYanY*^>^xiYc(?z-8f z;nHEWMh(zGb(>wdbv4QKGWq*_=1A9FN~I+F5R#_+kaM$HFQOlEW&qFc>RbIHHrdqf zAr;EdP#D6 zAJjcplCHcKnY-Ltp2|a8;3v}Z8dL7IM|fOk_x4L?AhVCGcEK+ThGe`fC$MYOD?Zsm z;H^BKz;K>TAa5susTWno`|-S(NZrZoIozu|E#)_-wbqd0%O|HcU|s5E+FbPeu4AO^ zDnre{<(Si$l9zru@}%#O^-g?K!1?HXe|f(h%GsU6(r%CNdQ)GYgS`>wo=odK<5S05 zM@iMcySiM>j3lD$h0Rb0SRYei>s=@t8yqF#8ma+f`I%3-uFX?1KPHCM8tqhA&5fsY zv`oa<$<~(rn=}WYRl#;FDBER!T?ZX59wG+;`1M|#-$cLi<+k*G_b@engOA-E(~DTS znJ$*aEs~se{9LH-Yp(T~~LOVZgy!?Wn&tn-JNi>glt4}snrGbQ2rL`feUix`y7x1Qh|IpL??1d}=Ff$ueWLJtbFsUUbCnJ|{Ir%>{?*;gG~~~7zK_B1hmWG@ zMKg5ml}w58R4FMavZRfa=H0%n?(B3hYAGp&y~}--U%L_aU0WClKrk7m<1jw34HE6m@XZ%)p*@~l$ zJ7m_&Y(3SW*=;XOPNDtMI7CUtVdlen5j4-OV_A<%dDm|q@E(Ph<4qO&$9UtefrJ3mq5yC(b_XbD}W%p97_`&^R;5?C`eAa z!&794>cEhYXGY9}}d9MDSNn$QQ*S5swvzLILX&NYCLb>qbPJf7R8><-dgtFuL zeF?mLmawe;3lp5lIs)I6&61?*fEO{n^oO(#CCleJ1_qxZO~8@ILGlXrO!3Ekz3@nq z*!=s=!^ck_5R+v7TJqM@*DrZW&_LK!zAOreJaG6Vt;P57NW%J}sZ5yNE8GvGku2ru zYKA=K*V`;*9*1(}OqJV__cFB6*=fJV14OM?vZWGAF&c0;HDzV|DX$4fj}a5^JNiXt zX)8dUEyTyy%r~{CDRBE_vgYu{)o%z$21W`pq(FD)f$XA(xY_-HLVp*P;T zdpOSe4NGNSS~(fHL}}fQpK&v7%Y2%6KBCU7* zUY+Ll_ttk43#^D3kIMpsoOxFqNU|urW7+G{)fxCP{V2BI&gS67f#52?6Xn%qPT{go zZ*2S$H0&;!b2F4S4)pZ*d_*7q1@ocifjq~~_v4YkbG?L?ZIn0Zgu3MK7m~-bnAp5n zUbZkM9QI&{z({n5K#r0R2ntuKlS8o&t+C>;wTgbB1NJ*MRqU5$;cdMMzZ+NAXUhWO zhEz*ea9-_iV@NzZ`ZDwBWqIt3jDYCDi|xu$+AY{m7y?z`^Mo0c!8*}ip4 zovbipi(#d9?+6I3j5uxwo`SA+=q(ht{O}0n-vO}G3PcI=`2+Pt(akxgtzQDcF*mCBDIsgS zF<_-(QpQFXN>eP`0U*Uk=8kOEt?+(;4qMG7Ny7-qrpkIvq98!0jk{1`(oqkAdFZSt8{h^cj zc2pbr3+LEF&;pd+Bz&EpTsP9v(it(N_@#Gbu#7&@rR6zRxa%A|1>l=eMiG8~0N=a| z0f$8NOo7FFUm$GKaU$l||MvV2p6V_4S8#~0;!Bn2_rYX1db+F1lU}F0pw_nN61{R@ z@bJUaNeO@0E?AK^~s(empE04t#Vq;TySwQ9&bKi9b zS;mXe`!NpHP0RX~`G~sR!o=@oz(P$yA>Xg1G#?LBC*1=yXyiLg)WQ@cA)$R`)eL55 zq?dr*CxHI|l4>-HP>w5gj1G90{lE8?6C&n-&_)F?H|jnIyg->*dTs%JgWcz(4@%%XF6s@Lj z;&2v9mh^=E<FDVbfA>Tw*|>? z)`8h$lHu0_5Mp?FgOAqFPxKkU5mp9z!zv7YaaQ#Fx;_=!L~ofS$rFfJ4e}XPfXh!+ z$~s_}3XY5cl}X!2x%Vp)@15o;o4u#r%A*rzqSTdo*Fh6zg8lFQmrFs01TwmG|2lj+ z{|RQGTjWbBf$xf8UXZFWyVevKQ}B=y2aZw5^`m-~U)h+(Vcx)q8f|E;JyVdM(v zFT)1?YP|jEm+HH0a&_V?8?U}IFWxhF$a=b;Cf4~Y?S*8_g-V@_)mglh9>LWJbN)TT z08Zz&5DJEGU0ORtOPZc|NeFd%$DRA8MUouKAvgsRt8a8EH^TiPsQ-qNRR!qL08JdK zmj=YcSP<#1HW?XRD?kNP`$}Z+vI3~Z?%jzQ0<2WM+w8k+vXY#fDuu(bmR88vtdMyN z_7DW2hQQ5l;ap)uUjk0Os%~=%-2B=Sk{h>Y8^5DGck&-Ak;ALz*2 zy?*X)_=3o;NqJ5f_P!B3k4BzIQ`dq3Peew3KKn7Z6OqzZUV1Z3 zXqmNt{JqG>+7;@@s3x7+$dpIrlfok)z#8oLt6fHUoUI4}v<6tU0D-SrS{hJ~^d0?j z09RGQA!|tv!<$(N-@8c%lnnuN;OY#zS*O>EyXQ*nM|iNsT6;7)#wZa{L-~67`HAPi znSq0+`1%28)E~U7{z&lix@BtX0_BmXt5$r+XXlnsqH<8sDyyj6{pr3V6$EFBFOZfn z9g|LTdB5ZGgJfrOVpmDGr>dk1H>l&d-9sW6SKKZ7XK!%qZK3z~K56KxJN`(2sP+`n z@eN$hXznw?J1XSY9Ghg^M8m4gOiWUq&wl;-wW|;c(3IDBBRuaJuU&t$BO`rN`Mv2K zjJ7sU6XRiPXpBzX79h-YJRQS8C=*)_jR`+w6V1}G*}jQt3<@6Zz9RH2swf6tc*AgI zqm^s~ft{wjprc{5BCr7R;>znW1sI4Uk9il#Uo9yaEvM}#Qlv`VuWtY~E3n<7$;S** zxXJ6}xwUD3c+op{1iFdw=qTRBxdh4-2mIY+t^<+>w3~9yOQkd`w>b|xMpKJ>E2QMN z(`-4nF-b@=ZkQ&VuD0Qb=}t?3;!ocX+%_m68vqwj(CW3lKSBp1bm=V30os>^``8_w z+v%zVaVx)GhQ)WJYoZ894#~My=m_A+NofN#7&AIdL~(I(t2xO|kEZr%tbr*?uVovsUlHsK7!o7? zLQPF7o&J8k(*WFkm_`EYG7_HEe0eeNGtkH*oVsPk-Uc6pesNGdZoX^tBew)TPsDB-fN>9%ox5~S&A3I{>QNziwF9qiiWgFHpOkz+_pN`MAcB#Dw*cGeTH9Hvp!>*8V6T))m>0&bVH(!i% z&79bKCxZ@+%=-!a571z+o*s#p1gPFxiL(&c(?IbQN({;;?@mG}7$RBjg6%9b_hz>{ zDt9eb^6APxc`t%SI8$%+C72W|yd`fezcMcN=`QnD4Q2{k4_1P!Y7zxDO0SUoN?^Bp z*8Gqj5}T~_p$(8HKe7II*B~#kI?+enkx1U6^1Yae#%Sa*x3y=5lS^?~WjQw3ESmS*C(Z*&oS3 zQ5{Z$RUf#E4`g}$1N-d0&(<+K)5LU#M+vUZSMs5c`Nc{9utrH641LDJtuWwbM`AH4 ztH`O@EPS=U2Xy~EKfu5=$~>6`crK|afZD~+7oA_m-=NEpcJdFFaROZcXBTjK6qO$g zm`CAW9?mJ(hRGN@8pX;Ry~#rDcEjb&!As^Ne;AtbZ5_MPPK zMRH;}5ou9TQD8b=5pj7IyuY5AnaS}Hjz)&(%xVgpJ-6!i)J|L2{E0#P4PrFwnkr+E z!tR{yWIA@EC9DgW_dRk6N?Rb8npsx?mQLAlFO#QPme#5qgmd1`W}VZ#!Vj-We1CeJ zS~6hbPdefxIf@D14(bn+2{Z`K-)9H-l3;1ft1}iuQ5@Zt2J`=-+=S$&Sr(-gIA|&9 zu#Rm25r3_y6ke0%^Ftw{rc7ts_}1#<@e6!>;{D8u_h?7J&CV`}=ruEQCb_@m_A@-C z?!tq0z>lmG|B)u8{!u+mH*^k|#=NtH8fwEhc7}ly-v^N5RC{@GT1b8QI}-#ic^2I# z#&cy2>#lN|QU+l|9|{TzTszdu!N)5V1M-!PC82S%(N5fF^56K)%Q?goG0xGUtgIKn+FWrK&T^M}l!>WigFIy-&HmCDAbGfS^z@ph%!kEh#ml>xnrpg| z$^uS3UNLpjQz4lwc-`vS<$YUwp1@>9b}Vd8yJie|K zVsqm?THERV+ub4?_HymG{2R*CIA+}F8$CeEdiz6pp*slp1uSrIdZDON<`e42B4_sAi!J|XX-P1n1Dz*5dDaP)rSYIJ%KAp zXPwP;T9Y9V;)x&om4AGRr6AonBk=nT3bkSU!`r}a>&E;NQ_})~JU?SV=Eq!tp0L(! zDI5d1pYBH=%rih^OZ0ao=kEZq8x`en*H?2j?{73r^4!0ZRr_wrKd$WHTxcBR^Gdr#?1?hAK*6plX9?&h<{h{-CBk=^-b+QeHwcP_^77PS%YE+GE0T(8)Uu7ftkCks z3H{WNnPz%6oAFeJq@X8DN7U8dxU<4?gRwJ!%aiAWjnG8O`BAN8uk+17C&sdXUXwKY zic5-xanDA}%QfQwo*=ag|3XDNY_PjWdx24%JV%3AdZL)ne1^JeAk^`ySFLb!5Az=@?715*w zyCIMVUB}J^EUDlsx#7~^GL37KHx5u6=9I^_JgHRJ4oLNId~4^hur|sCTY#w?gu@lw zt6D;^y|8d_a$N!*;exp@%N`Qv!U4jef!;}CC^p3b28%CaYu8rEYC|Gl%}a`owzpWn zor{KjKD!L8S7Zo~DbKzc<^&`+-!y*&1D{>mJ$Q97BP3Ob*?5E*pr+{-RRK3+nW6D<<-oHAMxBNz zYExJ+@TS(ewKsFV3AUCId}6Cpl;dRLObUh=yaqtk@JZ?)bg);D7k`>9;wgA=yA)fs*nbdlyN~w%=*3!z*Xa4^Kd& zzhb@)8>TqJHRu2AbYf-zSO>14#0@WAVC5AQWPyI)YlzdtS++iBZ;Kwtp<*7x&-5s9Ix*FSP zx!WfMiW%7l-+XrQm%njXtH-}Z-t={o5n6JAkl0|$2kz0HrwnC_pY|ATqt2~{Yc`JC zj$kZ^{vM0bL-K}0nyd4?=fBVMl|rB@FE4o6ERC^38pYl4eD8rGKn$m6e*suzUZ;0? z?90Lwxn6Eu%loi&%}84+Q&I*#11RnCnyO^S=3Ard#wdRU11+tld0}i^ z9A$NhKG)hkpVXwJPj0^c`~3>|(TekKJNwbMkd~ml?P6vD?VL^b14dBeW(y)mU5lc; z+(lXsQ_-J{>82RA#iN`tox&T&^yJbak@HC4*&B&F~fm41Zw811y)o=E|gR~l7v&& zSQ?DqV`eapPnv?m5ex2kd?*a zHux;dKz`%KQ;?6S0B${U15FF(aeB5#zr`-()XN2#6Wv73YdG7egF6%m;Zex>=kJCg zCtE2IwzTj|w?uEetJiO0cNE89`48IVg(}@iPc)tT=L?uvu|1ggXwaO&sPE5st}Z-u zz()J(!t+-_Tf>Wq(2P=@5f)S~-nf%KKdz>h^-h{@4`iWEU&97mFRn1X3HTnX;OExy)edw`K#xlK~n$MEb zk!Fx3e(VtKRWUzRYruh81%GAw;r+QdH|EDKMhNwmzAUFG)?3z2r1a+@c?d8NaSUY8 z@&Vnee{lUSOzBPlc}wC&?wNDT#?WfMTx4=g%oexcE>2-Fk{hV8lKhdA^ z4Ui`Pjiui}2tE0Ys~?~sRqt6HyEcBh3XD-U7_Q4G#mIj)1L_wdC*b`aMoUjYChN?| z@iD|fG2ebYyVxPMH?&+NoM?}M7t|#7Mu1=Q$D}GshyKaq=`N+_8S`1!w|ih)lN<0q z+)@k|Xea5gF*rK8g{p!9Ztwt51{h{RL!SVMnSF5f_t3PDYaClE}%IA0q>6lUU>NZ#vt{Mc~v;1g}>)F2mr6)`YY$H_VQz z7!B?V`d`0%Su}8wCBwJ=2UVL#TfUyR*!OVTRWW}r!Lj^>yHuFBLS)2;q2(alZhheR znr7bZt@u{Yj?RD%x zVu|;ht4XMRObi3irBN~faIZXcxpb|qO_7{)(bai9RqplR`R-N;7Pg4wSEu4)bds7g zCsQjV9wuUjG513

n1wTvagaC*vrBM$vbj}!M%k~hk_kc3 znfRx>cmSvry$=T!Y}Qxk=?X1cLRL<_xgYJcwms$m_XnTMWc#Mfk2XQdbYiO-cRF6# z1SODJru!wTV4SeylhE1+#gCo_FsEr+y9?h#hA$+sYZ8i6W$oIy`=5MRk5&QvM8gQc zYv+dUpcZL3!+A@2GShnS{OzZkH$E6qebf;2^R9j;-boz{FV9vdSYH+X(rwEh5|zA1 zZs-0iRwlUT>9H4#-)XD$-_!zn#YE><^zQO2!2rtI{+~9+f6W_BQZE>8 z<;3p1mSg5`m`A9sGAeR@e8PqQnLiSsX3j3|q%cCF*Rd=amjugJqMBn}eU{M>gEvau zcP)!qGv07w03V~`X(T8tZ0v#AOKB?62Geo!`I1L=HbR=lVY-#6kgLwK;+O*|qBA5P zXrb}5Up!0jlnn7D>ShdBW<|r7vK`=-^|uBPTx!im{&A_jqTmA#;D0%iujhk6DjjOz zOC0F$67wj78`TtzWCNt8y-;Cr@bI+|2h)1e=RECriF2~(K*ar?S``42zxwVB zm!K?Q)`#eTNDJw}4NL=u%W?|en4VR?0{1ZXq>gB7`iwh**PAkfPA3(Aq%3m9n`z2W zZ`Nt3+vFMA>8L>i0#taG4R+~pC9W{ynVppR|1i%2+hN+(b_j(|o>I=5D75_1V4<3Y zU_PVT5LX(k27IWm=-kE_=jQ&Ndbkpypb^#Welaxtd&w7ri+a#*v< z_dQ=!Bo4DBN)f&&DD`VC;q-atiz~l^zfA6?eI{~=SX`#1t?3HPj3Q1SeWii&E*}^t zURz79?dNA>jXfJ3$|xuroLjE`e0P8>t9>vmNa0>cM&?rC`;Gd65*n2a?D-YDIaF*f9cZlvT*$7;9ZzOb4yW1D>SLCsEi%tBj-%OouLR)E8O&^j+n z^mastLXFaZboao)ro`n_PTaGKs`zG6XN6}^S+d(Adng4_L*);wYqsK=Yk7RvU07M= zU-q@w3$U{>y>AJ|jwHP%A2{UVo&VYZA0U+Ph!iPZe;Hz78$np4MI*c=(fIZ524aJTCqmUzXugxOMY_ zfAn}v|Gf)#OlQaoy%2uHT6_`cFH>n~&9T$%NDu@sykW`M3pB(tUhzcs3=aAeCZqTL zcEgDaPcd9_?XuK+S~K?j z&{*RaazD2pK3+CLwiP}VnzVQ<24vT;r2TP{tnR-j30y`ZHZ2($BLfKO88LAz9US;> zaxpRCEmg;QRfu+seJhJ|U&E6yKae=$9`Yzi+DhFT`&4wAdRI%wWN64ly*~Zq0$8Pq z5q12o8k>I=s87>&Lb9~Xz3h&MytX+7^0Et;=T0OSudRJZoaQ%tJxRTeucdQAu+9A1 ztds-!SWW~!tUg^Qogzc7{XXe_+O&cEOU1J-Lx8$^)rUSFSwij6sNlHkAP6hu)PJgv z7Xq1|`+D#I6;myP`Vw-AQGX5D7Y`D#S8q1SIMbRN8&bmRU^yn}2)ji$n61K{%@ESb zG7vqc-CE;_Gn*bbK>($rb6LOs#Il%I>7)4Yk{0c5Mft(lC-NG}W=$;E3mKiuA0V|% zD&ui+8ok|&Qiyy9)>(jy>KI|PJhbOPPo$|>sx6bN0o2f2c z6J9ZFy^{B?pA&dZ6&#tMqMgwp7|`k&^4au*i(2BVNUpDvB(lw?SC0T)FGV9!1?gPx zh(W@&ks?iH;Wg;-yUQb60)`+`sMM7Fkpovop*5}P8a@&kYqf=a7ab83W|s$N>y4{k zrkBnJv0Pgdh7Xx72Y-r_r6#dqK!4?R#TH*fUMpM#nO44TxzIy;ze6j|dbiqyE_5{& zfjD-~JHtNFY4*A}5aNe|uq9)02FI1m;C`i(Mn)rrp_)5Rq8i{O9PSG9;G4>5J_jQrn2UhDQ03XL zb9ph{85N`JQfI>zKIKAELnh}ALs zAck{}#sNy0kN+mK{YvPq7if`))HuznmD)R1Cs*+Hpn>3OHi0ZP?*I&FIr{yPtI1?Z zionVV%tt+DYJz?cJO?CktKx!hxLF7%bTJ_gwzTxg(ju>Ki_M5BGQRZgAij?n_%6!} z=%FwrfurY1LAZf-4ch@;xaT|CoDA}xPd0vHQHJNBK_vS*F@<%1;F*_z$in+?Sz!i2 z3bt}ovvWV)@y`_rr042iM8Eo&jI+|<$QqBqd`@Uef|_0~^SdXhn!XGExD1~*v*F$e z{gt~9IUaid+TqKe6Yuk#U5C}6tkF@E3$;XMFN}rvBj9it%q8GD3CRxfu@T)7t}gfc zTW?<1mX$H~wZ8E5?AvYxkA?SVvh635wr3B44(?B`dk0Yi?r+m4KpD-GQ0Q` z`sHkptj4SK%ao4}`B;HiNH^7X?c)(Tl&6wd^MO2u&ac~AYEPkZJ}d=kU;1w9VZpHO z7+;&d-NcM_tM^mOF*(d$x>q*29)u!x2~4f|2bhi^M1O+kYPJ`s~+$G&B-NtUk}HXVd?FH+XD@ z6SW!48Njh&wjjQ<&jTbPj!8F{INqD(7Zb${(P6B2Esc3b9HkZi-{N%UHrWY@h1JQJ%0+PPTySxYHZ-u;Ux zqw9ulW;%!OeSsXW*QDu|?&81gXI}#TkNX)BjPU0BA)_D$h3Li*wu8Xa=>tU(y5+%9 zZV;_FpF|0BX^--vVM~+7*n3yWByB}GuA8Kkq_h(s^d6E9Kt<_ntJ!7JS<>n!d-WhY zQ!B-Mar>B|nQ7Sbbu3ZznYwdP7T*2qhg5{+`V6oV(`}R0^yRs^uf0rFh25E_LX@9e zla9i!dO;1&5#0ZLDd(t{Lh<)Y*>Dd|nz`Dc=L`b>`=#{X6;SG>Z_FdqT~#XGS7lLA zRei-&LQ)Ktg-UD<^>=*eF$OHr%khZ4-lO(44|BN=m9$|Yud>e0!k9iJ{8ke)1qY5d zF*@Yy>XUsQbcmYu32E(`*-Z6wmxo$NWyKu7DvCk&VepG@WV5sm7{b11qv5m_8CUa4 zU^;&h=J9x>dU}0|kOZL+-OY?6novzA1d2ujqvvLEDCmR~6}E`luD1?6Wg20yS8&`B z+#TfAd;?#$2=)P|N(;>E92r>*1Zd7{X=#xI2VPAF2QD2wy+KqM3T5y2?|myP>?x7~ zhMUWd$vyHQs5Lu093LwCm5)TFX?FIeNv%g1u=NYDNwuoM#XPqNVveNTCsWCjQM-CvL6cC4^D|Geegfj@4VBqy$C zqji}p6Vw6M;nA4we+6ZSub-|I5-^n4aD_-#WKv9fxl)AGv0I>+C{h#>2!rh}|2hB| z*_&kO@H`lz1O{&6QVL_;Qj6Y0In_}~%2446q)u&@3 zKT#icz#43{aqOK)CGe2C_QGDx5H+s+2w(I~$d5T}x+tgO63V0Qfc zYRcfj9)9gKfosTL?sl=#6gZSuiNT#r<5YxL3J!I!V8@T-{J6=26jV?7QXFYN-0i_c z?!LVxG`y*wfQ?9_34d*B2b|x*?4N@xnv2PTvk90RrLX!>`iQ9s9^`AlgyXXYJE{^i zlr88h4#%)z{`yN8*pRrvvY$dCYEu3cp=7{999CDw0e|Gk4>TRNl9_?*zL2u!|2di@ zHG<$mWGiA<^W??+SX06B)v`hsd;#Tx92U%0OqK=tn3wp=RFSmaIY_Jiu)Dh}N`e?M z3rsw6&~j$+ADu7&sh1_3p)FUw8< zy-#gtXQ%6KYgzE`@k%n}ENv|{U-CZn>3VK0U&5C08+GAk7fPGQli(oEZ?`R$!$9V) z)2D|PktVdB;m>wdTPB8=k=c2ghU4cqyDo-sV?dwlIPGkc&z8c7OnO17skLxx_hDVY zCzS^SQ#v*KN-xY#(0n-F`N^Y($Q%sO$gJZCJo>Se&mR65n@v1?immER?!`z!sPjlA z`9|%(msM%S|0t`#YPuRK7qbu4U`>&sYAUd%klC)&uZxO!PR4ql$pcR`_ojtUA5${` z#UrZWeA9XG-93BlD3Va-MiA753N*Ud+P;XI4mdK&D=f?=q7&-NQB7u-k}`W)ezN7= zn7``>Jsh>Sh|pl#CI zyxotOh1((BT29;AV|A|ewBno%Pivk#GMNYi}-oNqb9RacrSWdo!?Rd};VZNWKlte&en|EC!Q(hx)#AhwNlMluqc{aj# zvNdxnOGlbZFdg*61wKz$8V^ z!t%EGN2pyQYLR$Y$#9hp!{V)y58tAG~?I`t3g& zt~P9D?<0%cl!MJZvcGCynA0GPNZYfD?h-aJ-$}(6AkW2+V&UjD$| zt(t?^5h<{O%N5V){Hle7?t)P0!jp+bDVLzbeVJwc)3v*l)-Hj^cMS-NsEyeo_mO8# zgwRkVW<4ad>j#Os>S+@eS|^{0?bb&D7)%@eR{@S7ekJ=XI&X%@i@Gr3Ye`faH39X! zGz|VJY-FYjYt5d|Pp=hGr*rt5UZ8i(wkW@x82bL5YX>n*`vSYpwCzbmOMppwg96|A zrA31)iGS}r5s**7p{*`BZAKZw#a4@0md}^i3-UngQgu3X$utm{J4dP8UGR=$PF8uxub=}j~BS)yFp{Q4VuOmp~aHfmo%>LdmO z0vLd47!V-Aci&EPemT>P!;KqB?C{g@2dj{fAuZh)8reh9@jex2vyCkG&N1Z8<`@^k zLmF(&I-)h;VjF&=6L1luZ8rkFmE7i-P^Sg$e0SQD77Skp^iPLXebhDG3E6 z1SA|9q(ov!K_oB)@y`dEVc9-tT=uY-(!G?&G_`DtR>%qx_+Gmi8$ay}&C4$!AE&QP;uKsg_ zE$=n|J2tYipc(CI7?_9|G&DZ1X5HX{u7Ha0ZA?D^EvOm^CS>dHJ5zH=rEk2v3{2{< zpeE}Le}9%j`VJccR1w!C_j(2PkNhu>y1lJf{T$GFn}+|1PMzB-<@vny1+z;!8L87( z(CCneLiez^XJ4KnE{mdlS2Dx$K7Paqt-Ur{^{l2pjgP*+kB_QDtZkGcfx_x?k;enr^LC0(iBSLmwr!1+_i!oWHkxGEgcsJ?EJ%qw(HSFOYVN%} z;eo+wnp2oYBJQ@&I|c7VN!~3W($2pppvB6cu`O|YqWWWY_EF+z�DbWDw$JS+V%w z^@l1duXlG1Q#c2uLiU7Q(sO`iy2)@6p?fm$ku$IEvvxh@ApVAni#xIdq;Z7gdq9kw zCVIvMCnD~`V%NumRIKocmLC=_PpnQqns$?x`JwzwfPv;eQb8azaX3+fG+)UAwe4Xvr#4&1mC{gboM_ph( z$%Bg|A57r<#csr)HID%N;l5D^Fbx zywtsKqM|;7Zo8|ALuzVj`_=xZ)o#dU%)~ad{IAMkTozbRbRS=)ZTsLUOeF3nmimN@ z(RFSgqKI~oT0coc8-Lq1~ znB;)hl z?z;cN9zB@w^V6eYdZ+r#xLASS?|prrb#m1QfkDBD>NMJiy~Lze)&`OO89gZx8Hi^K znzTnICm&t@$+%QrU0vM=bD~UJNQK@0=oDc<$CB@dydP|m_DGxw4eN^fyxPt`CPJHw z;EV-(;@L_9eH$YPm0(S;!(+3xhQzeYmWYnrU{gvx5J;d3oA1VHx80`CDq*s@pdbnM z30SDjLhYC7j5doFE1J$;TY9YQ(rI}NGVr#rdyn?DSun{C$6yzKmi00aVjt-A!9>uZ zo%ya+@LY<532;$hUf6O%T6((vyu81ElNUD_$OEde{K7(_&iRLRKzTiKeE$enS|7wL z(S;%VWl&_v-8zU;9hiSroVix7i(`xft10c8O-Fj)^`+7*^V zK>#f=Yfu3rl}2V})Oj2B<5G%GkwIh}H7yDSz$oF_$L^jU9fBWX2{d6$7G>q$M=xkf zg7-X~Z41G?1we|I^U%&L-iNh)hvkfs}&J5cvHDX;aba_ zSkTCy1R|(=y{eydVRIv|h&i`OvYc8wW5tmCWOOdR(#wm6ddUjY7&oUu=_zfEZ=spu zz3JBYEa3i5Om}k@;U5)IPw_CZom^1QDt<;WP_Z`$wHb_WdMwV4PED!8r7vo3@`6E} ztIN`tVw>X?VO79CzV+6c%C0wEsK5&HOdWJ8b6lJI5zj`$QVZN@SF>)N=lRt2T7_j&$ zf5VN$>=giBgQJmZn2@EqTBuYRlZ_=P^U-%=$_s=i-{g`Y7zkv1qj|IwPXB;TS)gdS z0-fF{A<^C7abxjWjg9G@ot?VS1CWQ+ff*ut$#I}!IqBf_%Y=&EWn&Akmfi{1AZKG= zzENj#lb(L{2U|uq(RChjxwx7dQ7<6*NyIG5%Tv-pATISWAW*q#%-S1f;=}4fn{xZ_ zrx)Fr5mTyZ{+%HhWb-Q2KbnIkAL7Y;UtM}|^NYkiX~|fRlKxMy;F`CsMNj-eyz|#3 zMDWLAK|8y;^zOA)&v-ow`EoT-4+^DA5kOhjXgz+cOw7N;N!)%TRr+8=XU!0IBapff zn@j?V<9F;uauBIHv{p}ja*cQg=eaN@M2ch3GN2287iNO1d-7+}fLwtu@I@0C?)W7? z`P0BHA{2_rBe;>Jxy?jGKLF3dvIQicL_BBdwOfa0zx8E}o}aAzTO3pTTO2F*m?~<3 z8t3LeHBMz^WgfXMv4kj-82vJxVVNRc8%g^6o-XIs$D}r`lc~8u^HqBeraWh6hm^Bt z5Qd7hHUpPPkMzOy_wD-eL&r@t0eFZ3$(gY*x(!o&3&96ZE|r9eU%yhkV|{`E7$sdH z6i}o04+SpS`E(^qKr~nVD;Ya zq?C5cns;TV!o$K0^fEgz$odmof6V&-F~g3F($INkcHj4)WPb@-c^&N71W4gsTII|1b zuIOEmA|5UiO_K@R_O;SUhWjNjogHwT1$;m9c=>WwHkbG|wWZ@S-}&w|u8QKD2E5tn z@)AB8qyVm1kkm)5eTpba=8;eznZS3p!SjU=^XmCoMqkL`OFjwNQ!1kfKUkK2!ip_+ zR|OMAFRo~NE%VuH?nRW@EK@9k%0a6cdlqZhfuDL=QF`@{SkV!u&E$&ct|zMEM~1%} zcVg=#GvipcRXLY#DFQvt)Z#nQJG{YIwNfn27kW zCcP_i-Dh*^mkoJ$uj**O^wb<}@h8X-#dk zna+^|k*&S3_gyJch<2$>65!1V_Z;vZQldnCPbznJ&5=8`2;Uc^u(B@PuqsPr3lo_n z(b4(_!FTiE%h1qJT~cx>DGm<4dG3seOY7O8X2&@%8eth%QpO9&BR!*&jqj%;YW`5a z!~#t5MwmCvvo;I}9)1htRvTY|$Q=_)V}B$F!}E!lx~dp3x8{nLJe0frQS%YSYPgGT zYNC?bbXK=O-;owklhNzOs6a(mxYO|$)QvaV4&{}&;^la%K9T-2&Lzuf!GTRB_HWX~ zhE%T`P%Z4KH8W?wa-(G83d2lzeGQW5;KR*e#(AT2<1?2DVjP7y zN+apk=Ku*kseQZSPdk8^VURVTOJP9n&6WhAQC?B!1&6L*A_Q2`6VUQo}8~4=t0;>ZH|H4 z6X(a4nVXGqF=WKVnx>|V4X9Qk4u(5yqE9NUqp=Vx0w zsUTTVl?Yu3L|L~K3VnU#$F7La-dG~<4ZAI^e^d6dqcwOMac+IxJD877G!W4NmZ12aE2Y_>7+s4IY6p$0;%B7=0Cq(3#_#IwPHQ1@tB% z-f{vQ<004(ut^A7%FsdT0XTwtxmG+rUMxm?ef%K6qN3eSiR<_x=W zG1wh?w62%h?EUfwR4rQQaQK$Gi5>*oJEmz~M?z)EJa++wDj|sYF`JnYwT_w%mGY|2 z`LKrJ;$g5jRBZ2>2j%?X1Z)FQHP?7!{k{c_xdyjAeyPjX>Dy~*$;X@_={`qM67v9V zGbm@Yh;?uLH9lg|vr(q1FQw~FjJ=@vucFcPgkUc$GPXi6SQdbv|Mv$wmK55_FYyJF zN!)K&A&OA`W!DLGB6{E<5i6HXJ`Rk|Koqc+`TC-g(5>gTq-$k}s3HM;{MMx5$4*C59BbWyr@DFNJFE61aA&LQ zv+qawMHLu+y?kn!V(mP9JWVVShYX2JA(wj}zGL?RvueE-e9C-=nNb{Au)%N5j4MvP zL7m|LGBAMk^NMjkfm(Y?x#WcxP`q84=?kgkVCyIiE&%x~XDVP7ya`<9Casd)p~P*E zDP`9kN_#&M2iNQh2_)-LAuUW^wKlM62jH!@pYMUhGqJi8*z%MAvZbwf;|L~wsDo6G z7tBI0JSUa~$o!k6CIH6j(Q)1_LXf6vE#AH7vG{hwx(_jaF=nQ=t2X}`XbWy zPuuz`3&q0@^%njQ{2q`Gc;@e{(MbUz zL!8}@O9GVP%OBSd0?}po3XRfVQsNc3)POWP#pmQf7wo8_BXH5LPS48 zOhQF*?R4e9m9f%FkJgt`SyLcJ)4kF8VO=jeXR1%q$Ab7A48IA{9_Cl&e)CnDQ0^WZ zAMeBalhi>2wph^m^T)`U*h|Q@IK`#?!ri3ukt6=g~K-w(w3kc zsULmJ9d7!^kBH1^{^&kc$hF0H_Oi6QX+}>h^obn;@jR(Pq(kEIhlRtB)J3h?Nl%9; zE!jo5(_h9^Fym-S(9Zazw#msF^-a&PKBhpHv)m8ckh@w*&iKET*_Jq3x^k7W5rQvf zA8-GQcKkzCGp;tzGsL}X^evC*7d#r?6rmoldBKrIcMWw&@n!PAL=r;CmRe}2C;`t$ zMahe|QzHg0AH}Oq{9-K2%8LbGjc-d&wKb$JvZ#V3gHRS4_?68vVCk;3cBy{;HA+F3A zz=8dJj~@qv5`LuDLRCrb%!<8jY>*nAy%^VKwS~*u@)iT$EN@LN#n1m>ety2&n;py$ zZFzBsyPz3X64G$(&)AP2$|>pTzo027@;0*o;^BjVHznKeo&Mf;zrQLUbRqy>$Aem1 zTkAeSP<<4A$fMym7p@5vMv2ZohB+Xm`!Bmf;LH4hUAR(GG0*^qCn>3^56oH!5b*Mm zs;k_A=6~i6AViS-xInB@54$zn z#E$+Gd#_YUuSO;b-n zTY`ZtH$~7ALFqioN`_bLW1ldX(Q2V4l4WcQw8Vc-g|RGU30@Oz$;=Z?#3KbgM#qgP zo8>!PG;+42T8YHS!Dy7e0IJ^#5p8?sJUT1*qO|*<1sU`}@dy=+b+;IWeDo$FM;5m0 za8Esp8{gD0;oWWJo(3oPF*CsYCs#VO+c`L7XDPx9G(*o+5wj#BPBW_CJT|pw{7Y;Y z=;$<=C=sb*asWc;4(RAC6|(=8#}}Tu%^m~QxQZ1AkNy)YOr(*Z3V(p6F-3m+!~?V3 z5m=eayaLTcReimQQ=Q!pt1d9gV`U^?hr{Xi<-57^fQGK^+GWVx{0*ODV^BG(5TLKa zxb@#6+WC-z;FyHI`wJE$-(}9b-ApX5F5)?3INU0fxmAK|*|MU;BBzBg*v=*IvBQPW z=qRtpz#iL#?n|l+_Wz`b1Si?i@LF!7jhZ_VXq{OxlrZ-v&~IX zrz|d{iDSvO3%`>;TgXHowz$}B(q~ESw-B?7+Tbl~S{}#JT@R^OF2{GL(Rh#l_68I@H}wcX+#?# zYKCvzpk!oJ1Cx~3-q)3t#T;&o%hm5!Uxl1en!mi^lsh@n#Ww&CPKNg5WE6K(T0~hP zNVoRH7BcsiIX-4_(h?z|Sd!azIvyLFk0jO-2? zMTbsCg1B}iRRf?sT58jWt<8c(mSY61*n{UzuE5z!hP-;)o7^2Cn|a^&jpae2t^FA2 zQ|?du(fyA8bzpAI&)#;^+mppY9~Fj(R1pOKz@2RhX#9fpEebKoLK!`3W-oi}lb(}% z-u5tmCmpow10$)S#e|gD*{(<6KuS_PFr3@(0E8~17sJ`vg7+J{102&5CB7tmTUs%J zP`<;A;e_nS1omvfdMs~71KF~i-s*d+%@^pN8r5N;sAV5&NT$f_MJeva9Jz7I;{Z6R z6MrEPITQf6x)cv!(5wI}zanYI1m?@TAUdJN06K|4Gd5_bGa-;eTH1f>m-85>uJn`ykxM*fanT7*Mb<0veB^{wkk62OW!G=q&%{OoMTY70yaFD|qy4%ogTBX(0;! zi23_*j=Jedz`DrwxY+y=PN%|QGLk{Q<()G&S^D>81eZBu>RarlPvllN{il{pEgtd# zWv9nxtp%Z(k4N2*mbY!|r=-)h@3X z|30C0{N3oAIVo8E!&v=lHAA=JU1+tG_R$9?&m4x_sIfl8lj_Xf!=N~?M z#yah_UTnuOFv$leF&X<7lu_vA?VX>K6N;8`2=Vv;g#Q;z42sDxpraUxO0Q<1G_%x?~|ausQ@J-BJ!RemDn1+%%~$lmj@b^lru4K>n&D^V{HkF!;vSt6`+ zRi*1*YeuAwp2bbd)w^0AFQ-z?(dmuhF1Xs6iBopXS=f#zh5&;0%#7cSrJBkkt)0BD@n0SYiTXa;UMsna#iL2_DXffDI0DOKRQkWHU8Cewid5Ly78tMx6UZO<@>y$tS8mn^hCk~&$* zs`NWQ`9u0@67bjoVP;I|$c~S49(@qdHH1y34(+$X4$HITZI(W*kk*0tLaiA@odW>e z&JHHJdt%<7;^T04cW!j%@hTe_CNMn?zQl!I|s0j@CBJ9yD; z6!ov(mu_3zHju;Yvf#S_HdsL@HtP zvo+L>zO$boGE@H-ldv$ZCqpXL+`CUw&MUH#e?*UziN6dF59@8^fcIY8$|?)%HhNI) z?h@)u-GP3tJP_`Sc1|8E0}cCiv!V1*GNGv@S5>vXJBl0Gv;6vFEq`o;j;*Ho+!N-9(AvXkPSSM-jesP`n7$XdBpU5l?7F7ZQ)rwd`-P`b6v*h)@6| zsf2W>Z~f(S4L#Cn!-Os0Sth@$BmLd{?~!K0!G`xF@#5h?Pfkx0wIWH3z})D4Fj_j1 zl9Ez)!^3}@^)fVBUSigzweA^CYip5iDA6x43L~RI^cDuab5RNQDBg?fpMqAJGnL0r zpR@OjjV0ft=P|3#yIsVFvXy;7+CRUaui@LxhBBAwu<8NA3yrT|zuGzEm6U{P@yu-Z zAnOqGSk>5^*CiF-CX!70T-ItV%nq)Jm(flb)?zsZWn3>h?fv+Yd9Jo)P271B*`x_x zJc!+H0Cl)>k68X{yrS{SeQTtmg~!(DR^F$$-iOtqzaiQ%$A1*z0J5ijZFOGFRJ%Ez ze8}Emj)aDb61fOx>+12fAl)bLfdpa~tPpB)EluRz2T37IctdRjX&_-o1BN2=g zKL}9P0AY)o&Z^)YBEs zxE3Y~&%B_$AmI;(KGf0qRghb9f{MJTsj;P_wc*|#2k?k!`cKDaWMslGT)$IpeX~K5 zy!d%X-1e0et>+lb<5c?{C>0XDgW9xQN^*fub&o4k@r>s(*ilx$E$H{czZc%w2R_PI~clct$I7`}IdC!!n^MstHx>JqXU zC>|}UUy|r=UaoRx-q9)R_a-^nxtG@j!`t(&tO_B*&vfFw5vET^8G{`w60M!xZml`L zM)~gd*YcRd;vbpxF%vgUxP4`o6nM4j;1B%6TG3=LiRIF`2p@Wh{QJFaOPQYcPfaG39h*#Wl}Ontk}bEXF)L+JRS;gefK)yRu-xAD>~+(|!1~-9&7l-aa>@A1i-rI!5EYa$v^*cpyyvfCp+K((3Lc zO)zx!akD^Kz*d2*rEvfp+Dl9ee(v8|iw-_NzXIU>xA4Plv#p$J#H)eJ+GmNtS5$dt zvlWmi-_qr8q6~?6GX#5k8A2W$N&n8zB@O0%y0SCYm#7;TE1FdC!#KR7!BRi#a<0V4 zyZY}%NvG&4pJ>`k+s=#8O-&XS5=u1lKX*?|ns?1OWpErT3j{{<0fV{}^Cd<4lG3-{-fX>DFee8w+>RD%>MpeBKLZbuFlFA;@H;ftq#4ZL;)V$ci_+Y@Z3-m z4|9~Kl2rS8q(#TLawP|^JZm*NmjAcqgw0#BF~087XS}^+K#uEzXYN@K?0_-Iw!LV> zo0;inylyp@ok5`f(Zc&$r_G|i#52;yJpy@LoIi|%$?L&V`s4F3Rw(t|=wAmxXFBg- zw}-b-be*9(E#BhGb-d*{B+C-eV~_m&DgXZc`|g^KN#Mi5;F3pmNIt8nA08fVhs(=5 zj<0WIw02ZXeZ}N({THv+Y_%GQ_Ztiy6kRx!>dbvKXaO3>jj=v zx`2i)u>t?t%h~cSUs%_`wau_2L|_UJM?g{+w|yncQfdW(aBvJ5hIuZ>^!o4N{Pm#$ zYGiD@diH0JLzPB)*mWiDtNkbkHceY}PR`xMMJ*GPBJ=N$cpI`?)5>NeTJYiTiB;m_ z;?TlwZ86ES25@u$py>XO${7tPn%qLRyvoeY4O?4VqefOuZgx|Z6%?qnM1oN;Xos@T zxw)KUTDrOqi4kJeRLkecawc){6wy^-Y_k6O7SHrEptu$M{C6z{{x@rR(@SC1+>y7z zJ3m6$igs!FNWY+-P>av#nl_r`Wd#-22M^dQLAR(mr(k`W>>(Z&i5cu5L&9B8bcV_? zWqg$g0+y~V`tjN6;JT15T-YQrL)QOG?Hdl)IFb%(@7d?5gT zwskLm*4(!YneXxK$F>sz*;N^`4UZz=pKJ1(Wj>s~Kc9@tUQ|y5eJWq^J5s=BTb^5` zPs_gaDt!==H_!J*g5!Q{M3-nd5Xx;&(5yDg9YK7T42eG9ZD%j@m557b%R-PnyQ+q7 zUWvC@vhvntXEvTkv1pPZ+zzA-V7KD@>pe2)X`Z0#l0UbI-~&6D^1g46k#; zpJCLv<&>G|JiJ^+b>zfOs3HW){j1NhbkjPF>~>O@axX@ehN{*BYf8zw>ep|F9PsUF zjI5GR+3dmgq!xgkvZHwWRp}Z8s%~;RP#7dM2Zbh0;I4KIZ&F8*%V*5!DSUn(o&eRD zVLK#r={3tzfKgW+!Ev~R=sgVD=pBf~a*ezdeH;B*p?Ecph+dPn-$e+kzZI&gJAR?a zeMtRaIhGkW)cO~*zj7HXWuT(4tWk&0N(+C~>3|UQfd=GxPD!RRXim=3*y8#u8(ee0 z`=GVv!#4Bjo8ySaKD&Lgs+pQbMA0ZuGxKp{*TKaH7XVm#jDp<-Q5szffl^T5a6R*+ zAALt)zgYie?f>bLLyO7ESe#5&ve`(5Tay!HMX+I0+G+F&FF{uEj0)stBnV2U)e0SM z;!rIuEw{@m%L&6&1)RNJ$|I>q&Y;iFdF^gNB&})fBoy#QFc~kWW#1o`3qJ27eDR+k``eT5(|&>b)Z&w9GqI?>C3ZO z+$}#hUimQrkS<&wFvy%7t<9SRz_)@+w6*n3d_V!-dQh(u=*L>BANJt{T=2jG?2-|a6v z#PON_yZiqCbN4}OLYZvT_sN~54t1|(+3S+Q41^+j*4oMnmYUr_Z}<+-q1D1ryyVH@ zXE0b9Q{rq_S9Q`*;~GPEGuNy$C=}E|4Njr8{_+1+JdPMtbTK zM~LFnR|J5Suq0oAFc!?@1!K0al5LOYQ(@ZN!W;9Q+eTC12~MISJ_ zHAW7!S$7SKWThhSNZ+nS$GK;KYBrD(l~Qv&_Yf!2Aj5q|Q>(0tS=wm0VC@1P8Izxe zFw=mp)|=e9%rGF_=RvGh+g)XsNiq89rd%|J3h;;mE9@tKg^~vVJo;byLu0Q&b0~5a zIs_cu7zVPOp1yAMJi2N0A)_E}0GBxps2qQSH_3h;*Tb zz4n(!0-wTnevll3i%bY)j8_+#5hjT3A?RjRB?Yah(zPD6>;0t>4L8#i$ArvKJ_ap6 zZI5i5rR3Q@oW#QXQikH@z)s1By9^eTj{XEUjdS+5c0icFICm1zsgVPw)GiA|X#hd~ zWu(eYIt$l#B(EOVBA|ZzU&%feWJ~DMrC({f9fkEBCZ4w!8}C#KzN?cOp~LqOIFi3Y zU4KL}rRuFWit^(V0MZKz< z0+yek0{k#e@Sqt}abl7+dXa|dlNtUBM(OL|`?@njRrZD*6DV&9utj6Q#n{h`Kxvw! z+Ou>U{nYGtgU&N_1KzhQ74eF1FwIrk0sHk|La2X3Dj^D)Jdr9e`^2n}iIlyv@m}J^ zQ&$R_Y}RYVDPTJQNljcIF(?rX!yFB`?F&BV&D(BV>N{USiTgYyO0ISawfcmcPnXBe}^o%e_| zy}4g{Qd_h1E~0;rsm7AGd_b4a8dno&Bn4U0SFkncUa911HQ_TBb z2>huw0BxUa;KFdrmeb}pXHl7-5x3rg)C|e_wo&QErDeB1e#YAMhZP-j-vhD>*{e7u zRpJ(Xn`;7}1gexD zMR{an!2MX#8-nRJG#H;}61NZe9p_MT^r#r=;xmEcMWc?s^!17&XK7u%zpY4o-3rR# zThrRA-ugB=tdx_Xb>Nn8aQt&iXkeA3(Zk+Jb*m5Mc-7PqLrXx)7J{cAmtnCCj>0HU z!|z9dq2;KTM3uKmu16tywV7KVx+5=~n}mZj69r)0F|9}ZB5eu>n{C~D0x?HxT`#4- zfc7v3e7&Do$^1`N8QpLD%-%B%?b4K@oGI;o^hq1)U(_xJX!_jLBPnnfQ@ECas1N{^ z>$(3a&Hne4ZTM77^=UzYXQ4kU^wrOCH|`!OI@Zasfw45?ZZI zHD~MSa#Kw-XH_t6;$r($O*i&KWSRcB+i0i{%U4qZtK{WxuYaQ(&%q+=L}(VtbD(Tx z{L-$gn|+>$rU0FQ%BKac>=Zw`&lv@-mahfwKQC?KEPW-bEs1sdF) z`L7nI=g6Hf>9asIn&0aj`5E}X;qcKt^*OA__-y*kW3avbn&i=xtJ_>V0eS!^aD1I; z^p%i2Mg|=ZKGOj!WZqcCi~|FmOrMrDzUGTg7?X#cm-{Aiz*{XHy0M@>Kj}8nfolQ< z0nN>^g%kvi8Ipd96S$pulmqj7-kjyq@5bn83()BVz`(B330zyI1@M^`mKQj#zEg_T}Z_~;9?H$#@5t} zODF!K%^4JjodVtKE8m?1upCbcxPF727~B;5|Nol;MZuQSUad_2z7Pg7FHIkxGZXLp z($d`DXGA)iR%1#o%AGPz##^KjMGU&7YilTe1>1ebt zI1?P|73*NO#|~)7;v)$EjxabU$}n)XX`Zj_g3LPpNlVc#OK_hjU}K6ol|COQ=l#)G zST+Nzkoix30WvEdx@@=z$$-=E;@nh0`nW_k9Z!$@cWI7GlR?ZZE+U4G^;pqf_M0+( z%z;R#F&%Z~>=I9qYQWVN9|O#~Faj+;K2CTx-UuEsz?F!BLhv811k?u&@Ul7ZDge&N zi}yc?5;n4Bh7oN%x*Dqp$uxdZEAJVwe{e8}h9HibE+x+wpIopyPE`J=@clCteGNGn zJ~qB>vXzqy5P|6rM9-b{qVL~5tw&;*p}8dh*8KhC$ePWm{+Ytn%%HE5ZlvM8(getI zfKsw5In#qC`?h>=hW|;bT_`fcYPcJ5N((tya!PQ0R5c<$W5DnT0K#AjtV8N;x4hgNcaK6dLO!2xohKw3jWl%dSWXH~}NPt~9T+UNeyD$X8I_RqF>ih=$N zy=cyxd|rHt(A@kwJ5 zW;J|u^~TS1Uq-9XqjVUnp(mQAB0&kFBaFYi*dIAL@d^nG59RCR>f*O0Bv3E5RHG+` z_V;_7a*Ph(dwF^3*0h1vg1j?zsI|j%UE9Z zwoR{(y-^M)9SN@nNRP1NMqBSSlye0Y?CQkmu<-X93^rtSWlvw*+|F)!j>iWV z!L0V(dnEiKZjyhr_6E!aSNr8K<-NZzsT~9HLc>Y<)Qkak=+5!*(B`E;vuL`8=#%06 zPCuD)+d7Ja_1I~e_F0novkeJQNQ{0p?i~U(lyXllt?Q)P`Hby?)gvV^Q_9Nd{QZd~ z?am^&D|2Z016@nN<=r^{-$pHuu*pKNJJs)mc8|8abZ*^UcuJ>yw8aWUq5gX!{&M~Y z2LAH5PRF_gzoITbCz*ZP_TBcrBKg5kQU0S7A5L+Uc@`FZ&pX$_xazjsa~5aE^ZA8t z7@dU*y%XmVr@{kO-9=)|u4SWbhm{lo__&Y*QKvj2wjbQG_lG;Tw7zKI9?He8V_nZW zr3pD-w)q z=G-+rr#h6DR;cNC42iq>uUJ%@u{+0w{7j>Tk+(JE^oh-`^*%qRTa14OZdpb1JZ z{q9V3R8)uyYapP*Ax70N(&*cf>y9s8=sPc*AN|gqm@q;cQcMHMCr7o8r6m#~4@#Sw z2&BjH#*f1N{?9Lh8B?^Hv!D{ni{A+s8Ug*J&pD1eV4SKxEFiE_jqRUqjON~BffIGMLsSy4Nx>kloS2L z7T5$T`e|;EGW@6PQa$&~YXXTjxkqEjk8X-6Z)OW(2jkJq~x-gj=wJhfG*IUe_FTC!twyv~i zD%2t04@I5QN5`emDXt@DW3#Of>=I+`H!$`KHW@O1Gd|ZR=yj4cEc_-+jp4=B&&+=J zZc2@BBz%v{$Eu;#rMPD^mAC~~#X1`HLs{{A_GAQJyG z5a6KvutpcDG-mwgdc*_e;=GBwuWkLo+hvT24cEhAr=#l3=fzL%b*{k*Z#-4JtM}VM zfs9Q58Ksqe)AWPfloJBIXb+~|B}aSLeByY9Gj@;}p1L{`0jpimhe$Ezx*>beta=LW z@+-8K3`oWQ7C?MD{*bk84)m*NlZHl2(OncRL(NvW0xX_YJcy;AHk(qQI|&#S5Qy?; z){8a%>2n%Ndo`19eR`k46HG~?q5jkVsxeD8879p4WYR&`3Y1M-C_BWCXyj9GoCA$?wXQ|?9m zj=~N~X5Mnl1*dr@WY`f^LZ2C>#9njE9ZMGFy zWLu+*E9;0mPpHDwB5`6adQ0w4Xs4(X+)_70=_CHU1x>j9ocMly|6o(Wm2X=s45q@U zR;J|0@P0EVZ>ItCEAO1ECeW}yMlLIjz=jOmv9HSi-mxAmGF%3SnxVD>)Crgyq$m3l zOknFQLQBui7=d!|6PQ|)I66O&DYs8bndbTeey~33UB#O*32ay#>eo6|2QFc`>38|t zF0({v2i|>A1sLj{XK^4%fZ7cC|7PUO$d=PFI*%`&0i+`y!_V72e}@ChI{jzEQ60~z zNyu`{>*KG%%Dx!Q`Uy}5bOGMIyQ3vDzXoyHZP54$DhQ^U*d|sVLel~$eM09*D3K;Fz9k7`6qOb!x=1n(-&FC)pw5>OT zIBzFnim+s~r_-}PQ82(2m+BXMFIKnp+ryr(3ljUcN1qAbEW1#EINbP-r?yB)o-dQh% z9*?gl>B(;BE{u-rrBOM5d3jzTcBXx!m6G(1s_8588RDt_9t;jTm|Jf=UU;eTH@p+J zZ@k0&SyiH(6yc4Vf_3;=R{7mlvLlgu*NiD+{e$+HU7|l-Xpu_ZFx(k&%d{5}_x4bM z?%aAp#704u<19td*feDTL~l5*go%oUnCTDkcs;Z+TLottLHA>|Q({W*7tIm1L$`qm z6V!oZ9&ZEj%+pT$A?(sM4ZFeD-1y=p=P+8zwmij(}3_oCw#@BYkd% zsRid6ea^Ef@$i8O4{zAZXDRX;SLDii!N26nJ0L8cZpl^g`<_w@VM`}J^F zYd(ASnb74W=#95?bW9_9-Vrmu^ua0Te(%XM4RU`%G9_!0=RdE_|11QCQL>ZdiEVs4 z%hkm>u;2*%PVzW@{O-BKW1ooyaTqXChd^3F**_$we7*^L zaJJEBGzXP}T2tGwXzP*(#6J7AtH#yZhMi#??n4uCh*EkTrnogH3GGJC1}YNoppMH( zT%^Akl93%Q(Lca%Qx9IY)PTPxrkAWK4(9k0PodB^MlW;p5(zauv-vz%@8RlMedU$| zhOvT}6tC~%pgox6}0pKa(6_F(uG036i+s>y(-iZZgr+{(>OwfUO`$Z!%IKd5hDKowR4GUu$kdzX~!DKxNNSvFk8Ch>th*=vqG zJs+i~bxN$&y*#*DUVzR?{lD0i4HL4ZOVzwnM}+cJ%KwX6Uw?GCnKIfn>L4UPA!z)^ zUZVZj531=Ksm|doz2XqjF*;}vN+g0Ex|eKI(0Zs$)F*4!yBxgU0PYEl0r_;1p)sb% z3ND#*@(1+WquWql&vbNjxPjS|rwR8HK<8eM?H>zTgK8f?E$Jt2OU^08-NV_83d`|o z*jF7URV-=3Oc||s5hz-hK9NB&@)|r01pX7#7!|8z%+ZN;iKmp+a-r{`>@D|1G!(u> zb??Q2o(WqmreY5A#_)!lYZ9U7^~^J2K!V|<_Q@rKihOP5XT|1Iyfedyi}UD%KOCcm zTqizHLe_DmF^mTT?0(rNF`!L3#>`Ald3R6)BmcuWW$ahyd7vJVpHZI8#P~Q_LRxEq z_{u04jBsVI7Q`ADHbeK$?zujaA6Ns%o|v5ww8j^4tK>@JtG&D)iJu9m`^cZ5rUfT< z2M>mF(FvfkDJ310NRn8k-X$#JRL?c0n6YDf>D8Nru)WDOH@u?5Gxth8s1qY6o<+w+9m%cgzyruyY;S&CX^?M64znm}x=$3-yaX zO*%DAFZTgFm#2qdq0h5ACqn(#(I6vz1iI`U`DJg=Jaw*gSp{&jb|?IJx^M_xp>Ds1l$2RbpTd*^%)a`vwmfXowtzg!x?$e_@gCbU=R$vW**a$AgwUZUlj>0j1K2zWj%-3rWFkbON2=MEkKU+$H$nqaQk>((8ssB6g zL~v&r>{qe?(y{NSR-M9Ko68aQCEgeDj#wYSx1DH$?N{j0F%fjX!nr2RwOFq5((-yA zhGD|fy90ecYjvX^wyuVkpIEr|xCGa%KK!(BGuVB;RpAb)@4O7wQ__g)m_^jLC0v>mJja}pB;H|*Ck??V-8Z&@3-fHuws7)?r*Z_I+v=ETEPz5?9N^8 z6}@{$>)s2D-*l6k;wTqL^71}L(Tm)~qRcw&g~(ZxKJVCk4)b}NE;+8E$Y(tj;H>`* zgBma-ZZ|gB#>kyPZf*}0K~8G>7j8Ifvx|ooUYkA=admL!FxC6ho^qJQ3Kuj89|#(v zed3EO{f{9FSU@Q7s%k3z+f+_*951s_4^AH1d`kFVWcD_Qnjyg!labAB(eF1?kC1$_ zMlKus(oGd9FJxP7qF+J&+Zjuj3B)^nTBdcF=*sAZm05hE$oAY`{_dt(n%p`$DJx{Q zz{Ca<1j%30aRGQwp1HbKbkFY$J>q4;-4K0dV>1ktUx{ION54;xw%OFp%)tEXj|#@d z^bMfDe!rE7_qKk4aK+m_aTn1dgwK*dsF-vlwU7h~X(A@{{ZWf!VZL{Ql#33#UR%W5 z2K3R|u3G>cREzx-yh!2q`d@x?O9FcgG+tvbQ0(srr7`bsgcl0F^?@WRQC~Lyx&t_f zPohazi-mVPVm9+1V<9wTiHuhJU#(TI%Zv~V5~rwWQ`5s#1K+YU|RvA zu&ljgii{+?ERBtOneKe%A+)am5yw{o1F`GttR&h^3?Uen|3zbnX@O2ud-M^uVQII< zXU4?GmDnUSI%p7dn=){-C3 zClFjq24uiX1W=2=3H<4dL3Y9yJS&m(jl9!2V1nOb{_cYP#8>eT!p()z@tv+f7V^aR zkNm}d0u^x31?6GogMS@#W8pYCe&4RF>uhjn|0(1EWOLOHKOWE}C|fV+PBMJSU@K$z zh9L1 zrV$fP295W{IzSY#-b6elAh`HCs`TsL&Ghf#;VuO{&QfB9wExB}N16Zfux@jQ0yaJ$ z#D27UfIU#&)q&+2SfFOC8wtPhjq&*ZVeGBLqVB$SaS;#@Bt$}q0V$D?P&xz@L`p>I z9w}+5p`|1xrRz};L^`BvNXe0sW`=GUYH0ZF(dYaA&U?;vo%j5qTwKh2V(+!rx>wzc zQ;p9sKHq^n?}#6=hSlo;*8{zt0a$37XfRxN9^Kh`T%H%A&R}CklV{^oS-U1-2P`Spgw*cG{DE;;CW46POFtU z>IR8&PIPOi$;`tGkvDqMCtq}Am>XBc$Lo6 zEZv>oec-*DClEX*Iz6nG###fqr7_KxdRMbXNFv@mvTgOMX64bkZ+Qs>D1^fQwIFVk z*usWLAlkv+VCAuD8h5R)5(QPuisub%Lb8}1R0$jqa-dOaDR|##ucV1wSBr{UL8jt7 z7SNcpl9bi64XWzA20LhEPB zW`phOJWHZgy#@X3RRJ;hJ$Vn4R8u9YXy0ln}UY3l?^$*|cJtcO7KAEA0A z`(HvO2jMu7@;k-<059i792IqHn_$b55&^e}jIA&wIwUMKC#8tuWK@e+oy2F@p1bcK z#1^+kSGQag;4AC&8d3X`vSx&>SS*)_t298JKifvXt&<<=o#qa#zAtZ?v2aA&yPy8` zN$>FMYrNbHk;ygnH%>&a8q~6nFOqYcgZ!|pXD1-_6&XgrCm4Zc;%L!P8MIv|UYYrb zf4?4atDp(2+IlE9dkILOj)rJ$%E6?^Naou2X>SV8=V6sPinmwh_XKZp;xN*dt^{b! zsku8b>5r@|JiPId*=wXNVs{Hw0ohqO)j%zF`zq4X+?@Y1>^{~SASv0w&r8Cx@C)>? zp2)Mm)_y`7uN@QjWaKC1Ym(yF>?2Dz950)~$2ku#c+aMOZgP#a)I1;Cd&8!R5^Vu} zoSGx+djKAQl7kd1L*t*4gFgW55C6np4c9(5>l|-WLmt#LiHiYt#Da z!Q)%whSEuLY;iC^dH~#HZMvCq;Mt6ptNC4kdUNmISJKl0k8P92=~@L{=Aki2TwleI zp2%n|#iW{3oO-EO%G{%rc-5eZzslHVMM+Wd#q4!22t{&n3I(i$-*t*#=|Q?})@XD| z{X>rAE&WV2&*<&Y9@dFZSI7=eK$_ej>gyH86An_A{fXE6>%r@ud8M7I=U1HR%feJKx)@jUy=dL^QH=m(P|g|ARxVOZ{y_r(1Jv$`U0eiKSu6OTUJ zAd$GH=dt-Pfn8RiN=UkCvn6NQHaNb*pycB7{Bt=nJgE;Lwr>g#A@j*)HY#&AbKRCD)*JwyY zVOGP37P;e}IG*veu)5xTXer)e`snTgoiuI^bCb$bJAwG-p@6s)&r<`-35TQt0s2m& z!8-JXu@dQSC>mxK-f@Vb%?GUN`D+L6fM*-jWcLBT;6KfTKscpZ!j%4o39#&jfBG`9 zrKDhlK;Kn~BhN<1yzrUg&9APs9*`LWc~7ln5V-q47x09`@d|}d$U%haH=SlJ@|nUM z@4yW{DM!Wkodm%GCIM7*ZG(KLi555nDM&!~5j(UF9%ksS$@SfQb z9c^6F$H;V%(9+BL9A5qFJz8f&UBJI7W0q*~01hQQw6C!u`b5UpGIQ6De@mjKYZVl4X{QNk0wR0FwdOqVf!}by{-8C4W&F=tB6v*P>M3eot^YW+As7 z*QvX5E7o&~sdO2zNn2?sdeGi-%m8AhL5u*U0~uk}_QANYY9D`wYo#CT#2M-bzmjMM z@IC&>Tqz#RYw|ND;a2g4;(e6DRoUP+_=|QT>vO=;C!rtj3fhhN2++pckr^>WCySmR zwN>v*%UqSL1?5s2l*1(Mjai_^=s?#9>?_x2o?_6oqIS5r$cKZ7T+iLM(}7=Vpk=4 zaU@PQNm>0EL7L;OtX-;h?Tyc5_OcmQRagFYp7sM`A1vxvZ4M}oDJ6=6Y-|qX$m)Om zMc6^{VSWVP3Lv`>N0vyk*PuqBDDV*M&yv+zq4Gl0&5xMaXmT~u&We-pGcJsG5D)-^ z|M1iVZ!@;uDgH~pFa(khe@NS~_1D-*0oPFQa%Uq+q@qPkNwS=%*X+{u`%j()KIzpb zv%pphfcjF9Ge^9<5~ce7a?7l$xpBjtW)c*0po~e@2vh7}|acd++>R&Uq=(8D5evl@z`kKGg z_@|5Ey}~WF7D1b<%)2?{K8WvNWn7nCK%F)rn7U`wj18#({C)nvaZ_R55ip*~)ql45 zbg}%HMU*eU;l6b81!C)Zd>!<2@>+O2$j_Ae|JATcHzY*xo^wa2lfvXg$+zBKl@{{E zk@mnLCcyrJ3Xp4c99({Q#?%+c9KPqp%Df$XgSli5nzjRc^`pkBs}c#q=wD7#^wonZ zAcCw#lxA;`s&Hs`Kl>i+QH_`owv=EVt1L=yf>-yt3MGiTts?2V)_Me=4Wo^qX&nma zj8JagJ$N6Irj?C5QwgW;nx!as*R$_x^{ZD7FhrXq7BN$RuSy|jJx zI$HMh3WeyQ0@*tsJiwQLmp`@Z`PT%1=9T|96Obs578#d#Oz^gD6=ndLE-(DFHKYCb zHlbP2REi03TqD>(0U-#W)yy=@UAmG;jWO~2(Lon4l@ zaX7?M9~?I;jhk(I>e!7fHrnH>-$HBNBD-Y|ouini>a*%aa>=tTy`ZH0m~yX!Wx(>q z!@KIF>f|zyNo#bp6P#!;jc{M@{JiOmndI^0>0~fL$;g}5qwaL`(0e`aJ90~x8#I z9H!rgJ*(L6o{aNa?yeg=AWq26T_{w{@ZQf@jh@c6n6tGVFS4LTtvGg*OL#O7%&QPG zN}|R#RC2E~_6fh$yZPq#+0&jO1F|CSa+si6ylbkYsO0K<(bcwd^RJQ?%DvemIl+>` zmyH^ipb_m?rLr&~qxol}I@Ij`CKq)!r+a>-1*Ftk%wt=}>ZGl-!JopvbE%~5dQ?VI zAZmazD&88Rs8o(BW}mlI}BWwkg$)-+WOA~ZDqK-p26J_m@G_2jBBzGzrFVetV7}Q5#-oj4oy2DwBihh${G5- zJ1`*2bt=-2X4J10V~9CjzpXY_7o9J@Q)sGfd=#?}C(WLFwC_0W_3m++tq1=3x*U#Z8FWT7;AlSi1}-P%UgP}f zV!Z63bjAJRw__&+#Td6jJ93GXZAkJ6tor!-nOBs{Q#_q`EnlWDy&co`{RypQlrl<#qpv(+xn@}NKh|qy83tw1*`^ZA=8&O(;(lyP^zoLa;}`^ zy`KFH$Ur4R#?+E;m)GH0cL!iM;8`4uGZb8yNpD@<6z?|wdVyc9eWCR0Aq-E^uxzhN zcvHFB&g~tj3I<_aR?=vGo^|ZvJ%d@>v07_m7-|$(Q{8h-dFj=&rE~NRfk$!XHi>y$ z`t`Mq)rhUP>mEg;Z6;QZ9{fkjIxBS&wk}-$iW%zv5Hl4t-}+f){r%Z8J({nOa}Seb zeApUuB}a0MxpLp+`oj6=KU+c?L@tqV>)w4*>+)wimWDq{e*{T7@REIL*k2+Tv_0fe z;@WMsKKyCg$-ig*l><_uF=5qxwEIifv)auRNQ$N2R}Fl!y}s$m<56U)kLzB*YJz7% zj-XmvVkFW{bAl%>_dK3lLP!B+|D;wggT5FNT*iToN8ZX7j=3GyQ#B zVhP2%MwL7@TU%_akp!ARBQmO#myJ1&We5(=x^u;zFE3DO)fBr-m;$XTB(xZPmZgCo zHF7MoSSfWj@zpK6j=J!?OL<3w|B>R9wqE|t{SAR=G;^eW zca+d7sH!$)?<(fCwXt8lVK0lmr-B@~oQG%@>gqk)ifkM(sjuN5M=JLo1I@q;TQQGc z5#~MV9{Nx!?%JF8@A~nlzr(X*{bLsD4E_(Za2J+T{A{CoYb$stsHsMJI>}-^Mg3wp zz*RMPc{7+CpOQU-7|t?(%fBv@EdhwFV#Rd+Iu}e@^tmiMr)M?B%%-1 z6?{0Uf^7|EXZ1sJ1NLyuI+sUY^^~nRda`HR)w@~MvJ}^QIE+s`bU#Zf!|(D-*3PIK zT6o9-LDm!0IYqp|%I?7S6F9D8Eo%0)85;_*_dGjP2TzI(K`!k&)B8|ddf7^e4KJ#X z0vvA+b~!d!Z!c!2nZA|Vpr+D>Zfx&9T!y&H^TS13HhWKF_uAtbGb{L9{CHJ_%IOl1a%KrKtztAH)aoRVKUH$L z{#YV?e_MN&g6of<2B>_0;!DVQ(t1?S)tXWvby~FfgGo5oJhQ4HzN}2pUcJ$@eQmRF zO>&LSUjgjD*b^Vh|6O2n2^lf(eT>Ib_WOFam8+)eBoJ4;ygbeoPnRqRlsWP8zXziR zR;~aMxzC`LG6T;JlH=)vc52oy8Lrh(l3yVHJNVcro|4lG-gE%pJ z#2UisS&~_Dx#9dKBVPOgF~oc`vg`2CAmR|5F-uQ9tp45=vTmyPRzF!o*dY+OFnuxC z%<LJ1%Y?wHQO13~DUq|hnOsm^u{aS+W$j^@9p$z-JEPN9-U4lf za!FwN5xJ%By4-6WgA|-zyLIXHZ#JzDKjiOpUl*XLEXDyA z3m4cYU4@@~_1m}L^B4lHPvf;TNSIMd#^HNOq2eu(MO6AwM16y*x8`F)#*d`nJ#zeh z<@pEOe#RUc@1MPJCWA4ol}#3ec2PT2y`hlJ6Cqi=9(5lkB0XUKdPeQybNu@5^C+s- z34F3#?m~m13_*^ZJof_yjzn^a4^sWB3mCh`s`@x1ng?L^!*hyV_4lE^+x^asHxgLS7M@(Q$;%8Q;h9Tkg%#*GF;6=z&pBVX943Iq!Q%U3o8PAQ zW-bNemL+af1fohsU;h8gCQR?&nbdjfIWhCL-rMl}_|*^fL35jj57hE^-;zl!{;F@E zyKv9X2MF}}69mRHzOU5s{Ex2tvpU8!00L`whROZGgoPLHJUt*>65vnPzGUz$zh^)j z0_beXz}$-VVZ|paZ%tf0XYh5L3^=w|uVq23iQ6H^S2+oK6&1GAA-m%OuZ8iVua zbm;LntR{$hfN;HS2e3wFOgQPby#mx zhsF@C%GYzm0yycvuSGT<*{DHM)oIOJ zpLyoR42lv@!vV(=e$Q-g@KjSvlXJi<|Er?_qIL`FWM9x2f7v7F4C$ZLpFaP!w%;R8 z{Z+5r^4MV}*GG27*Qbfwi$23*iBZr^b3AzZVsG;v_U*gVnP6xd;l+`ciPM!L2I%#= zp|mrS_fP?xlPMNgrMR+U+PYTMi6)TCLjXnpvj*0|;1t#SLpvSCb50@sT#{SVkeS3S z!}{+>bcisI37NWVIZV=TM?L+Z|I#mU%&^BMl%%CCESj)~9&MQ8OYEvxZXN@{CkL*B zpBy1$A6u_t&X`bHrz zMc3{EMZI>L85WU-QrCl5I&|u<%SHK$Zr3pV=gPE&$}`V}!e_3T z{QR3j(3XzdwFifC=XZdwbXP3apTM`&`QXIa2}9FVyZ+f(VP?zRg}O8IQ|7qiRDJUC zIKM{K_cCxRQavoJ0FMiB?GHILY6$-_U$a<=Yypr0FBDQ1BM{+b-g5!&r$Y_pD~_n5 zp+OnlzjO2wH`VE_rN8P zr1jL5h_SL+C%uYOJLB+;VMYDUukqAvgN%g5Y)mxwJ92RwE#p-GzORw;?Lb!phZAUC z@ZV2j##CJvd#8Aajn8)M$m;hxiD55A-J~G0%)S%>sm)|agoT>Pg${zT%MM zGsEtCb|E(k!XMk!6{GF!Y}^G<+qJM>@oRx zn18bH?9C99Vu*ga&#_gmG4VipDh;ypVlM`q*FV~#0B!7vRjR0el`6|@ocLnOpJP>l zY5#9N&tT6fU~?3$S$0%N*{E>5>I!FYqwo(CR25A}hW&bM)L zx-5INIuopwTL&?Wr+}!S zT-Y4Ye1j~_vGEfD-mSBZA(;Mxp(*Ex7+;HL_>sX3d&Mf$@BvjyM2z)W!KwcE2{k)W zsk$J%^guVp4l$`W?QywVzh?cqlzxcxS;O($hIsD}?5`VLicNd%^;vbrvRU;e@mm1`A7wSK zIm(_L(7v*{lX@|OCNnQ8>d*gCH7dX!zD>yysfOKh6Ovb7q%~n}*U8RJShZjh`@iH? z0WHn_<7U8x6z<(g(FJjxakr=%%|hP*&6O6lYv1$3?4#9`)5U%)kkxIJDczCw@rs&1 z^=ut2=%S?3ECA7&67a9IB`XpjoIk+_Y$!%d;KY6LCvW4?+{e%!Qt^%GXg!dVq8#MR zO^bD%a_qe8zwdHg9ww)Hw~C!laNW)zqifS8plRdYsKwyh=?@CsHudf9@`wIu(Y!w= zDW=lfNmE~|^n~W|5Z)2oW#@RZ{1||@8`;2|4nsjKMIQ(c*H=>rV>g+wg64D@#AeGK zLdI(lr&)}Q?n*>b-?i;nU0*L!f5UZ@BV4XR!|JICFSyWn+1| z`uqW^!onqV`@92b9G=_?raN(WZ5aF3{pc)5Xc@Yj z)t>G4gnv9VYypF-_V??TB_A+&q2cWvqkBr4tRhWE?GFaAHQKU1irVaI{bZ-!6GMZa zgBep?k=}Y9>sE|ug`9( zJZZ^idV~T~i+O*V4jFO|MCmx^>HLEuZ|dnj`T+J!(h*1tOL$n-4uXdBq zdB@poGQ!JT3>-|)1v1@__SJJ?T!Ze*=~eu`e2QWAB6A@uVSF=|(>#~R13C1w#pE|7 zgxDa0*ju2!n1I`X^(fYUuFO-_xU7Cn%qi~|<7(J)DOLg#xNO+xJ8}>{m~u7~(fJ6$ zFn=U6Vn)8K+{M2$!2QRE+mjhxCdCKAT7_y#yBFPL+r zqIb6&d{(xGx_{%|wCGwk#ux*`F+c&t?;#Udcv84r_{e6FMDNs|S3;3ts$HL;i#=k} zpwFm6AWk!X7dH>WDHLEpo2rOc3Dwm(D1{oH?~HXvNm#oL!t$ketuK7^FDCgXV;RoO z1gw?Wt8&Z-@VFXzrBPz3U9ul)8uunhtxPZajFsx}$tuT@G(f1Fr(H&==jL3wd_!*IWoD~SA9$!|xYyO5&1|#saAbPzcFYs(Mio*? zgxPmtGQX(@e!MXuiNJLG%+7NA@O1f-Sv2iDHpGV+8J^GkwFQ#dKIADr6MeURdv&G3 z;_JCv@=MKAOATA#6C*TJldC?YCGyv@Nef!&bU0aK_cw<4kLGg;L%|a)%3rdNN<>5Z z^tOx=iZU)8#$_GVD_Jzfq7XtE#4|0yq5$=<3Y-Qm_S~^=%gqJjZ*wZKlF`YrhfB6#Jg94>1SRzhsvgxuebhQvpp7 zNFmkooJ^|KqS(F9I*iXS3ONWQkQp{Cg>^cC7v(XB1v7+VQBXbVPf0)=81&r<`;_bj9V=**DbU*QlyYTd$8$Uaxc7pGsa$YM{%< zKXd)(>$E??&K%%pRYqQ5s+4x&9eNEG)DP&S?Puzpk7k2uKG*&Bt5)A^vb~`uG8^dM z1;&gdNrCpl#5eeyLP=$h{DXOVdAktElBZO&lcK%NKCIyeZDe{w1-={Gj>qcsn%l4s zakhP~8A8mPDT>_&yVQ@w&6?mwmboezV5tE4Fd<`~<--eG|Mq_OoXbMu#GKbPm$oWc zoi{A@6#dN&v{@-0Q&2iE_970@9=?W>&y*MCqNUD0%w0&H1}7PMD;V&H>?Nl^9SKnB z?$Rro&~@Z918B+dqTz5Rb>T`S9kW9c>W%z1K8^khO>26WVRbX>eBDHRV(MErBOa8_ zAvA+4f5KA#;+`q7eR|=F8WPRPlvO6o? z9UjfQemf~nMm02m{+W!vBHx2PGDs75IOFwL^}C{?;q*g$l~>DmF%N%!pEg%j27uO9 z@JH1TKJsUTrwg^)v%J=V{8jg)?Tt-l49&jv3`+#KtFmLZy7asYyT{0KBDw@AZ5vCZ zI8GX<+BUYz+0E`U5lATg-go^eyCI<7 zPSy@9>lr!bUn~&yY(GUNeM4SOyoy+Tt%G{}ipQ`N#Hanq%XoQu5NFIK9+;>RoJlcE zRJt&ieV(v*UzaKOp!GjNo5`PSZ^sle;3u0c6^`p{h|$?gW9qgW>&9S6M7p@JBx+{oj1dB$sV^h9|>|JuaSywnAb{gPhU9+)P%2ydr*;A(NtW@pK zm(t4pI_^eV`4GCMBOQ`;u{JY$oU68D^UqGZZ$Y1sne}yMRRf^~p4lw~f_ZX6Ky-3w z+FbemVcFfo8oy7Si;e@jhv|Fe{T&NQTN!6wsYuKW)rsW6hD0O#67BO|lh~f$xAYFt z)?7{`l_KHS_4LdaFyoTYmd>%4-)laN+;*qRI5PK+G`XfBA>7@-)63N%A-?64A60&7 zkl|QWYoo-Ht|oFnd^UJPsIcJL?cN`3cJsSVxf43d9@t4aVb!Gwsncw&hPBs=yXGqs zzoW0%Eeg-pQM=+A?R&_zOrLpvJVBpp`%{n3zWA$O>sV~Q9YTb>If7X96cf=pRv+tNYN#{T zZ@QRy<`=!Gy9|WD-M!UgZl@fENT_+12o}A>Ho=&QHuW2kE1U>LF>4LDU zrfK`^CHfvGuC8Q7@h;!Cym+58+gi1}EDnEd)2wy}8=$i4R5HNmuH z&8S(iCZ|Nq&nzpEYp+&$T0bKArp0YO+1VjKkd|yhEB)GxFYMbMo!G8w)!>dE_P>;( z>s|E_6>_p!6ou%OLp^`UG^Dxyls0XW6d`vv%a;{uWQUleZ~oXEx)@Asbe{jARiGUs zbuti@5d2$ghTE{|pdgpb3x&JNspkH?tff_x-9>Y>17bf52`FXL?JIcOH2yMm)y!dp zaq*zkw`xYU-G}dRz$0?$aLZ8-@p{YZii=I7-Ck4hch!DDR+lbe;akh&2~IX#Ip~qx zGkd+Qth6s_mXnCq4AK`-ZsUeMm6&+jbMJ<{&u=p?@J4OxMmxf!Y>^TjRd0fa)to4A z{}?qsmupxK(-1c-+(OfnO0`7jPik$rNltlv1If~F8fh&5e!-Hw1R}0JwI_TH z@UJbfKsW_GLFz8^e8b}DEu=0;47|N%L4>_D6Zx1XUIC_vGRK2bqTqzxwdy+KE`g|A zK5FMPnfEtB#@#UZb;e2E#3OH}Ki6(Xk<-5R4~}Pe62(C-o16TWd2O7~=lDpcp02WSsV*cRQ6i#_5tGaDL7%$C??hyux7^-Xz0Y+AzW3t z{_9>$OeUopXQ1Z8aXkFo*4|SuS;x%tzR*l#=CdLTiTT@fTx_L)Qb0;WGmxo#W1Uyj zk?~2wvInfhHiUtWIo$WpX8npM97{c~oU~IyUS1qxV=CdcS`?Gh6Lsn7ha_ZQ6nG++ zS%7=d+I37Qer}kQiNA825zEmL#>Xi2ri9@x-*-H+ za(A{znHT%HL*g?#k-Oxw-%ppN4r}J3Gfswca{@@kzD2*8G|^Lt|FeTDx_BG8*72QM zV0X*Bsp!<|F-)>TGX(}jKXC}?OG+be#ycS-g~!+0Ts0By{Z8FN!GwG*B906A4`A?) z`FY4+F}OM%`u_FQ6Ed=tN1me_dUzvGX$(I39JNBIJ$>6K6l}csYIIY^dlb-AfONxc zhk}@z`&puqk2^qSUd!U1gsjt{%2O_XgkbW))m;L_{^^o%lTKx2tn>ze_o0P}()8{N zF{?-OQECK?FjU9L9XztR39xA{iH z1L03d!4e<8<^_`ilmAc1#)S+?qBOa%SEuw(h)w*K$+A~~X;4V~TqnJgGKFLgNkkLFmO+cIU+;0)0 zv+udTFmk+{X=HAvXxaO_tnf2l=Z>a_NJlRqU8%tT{fSefmL}rg8(j7KNXYbqke0^C z%W(&PW-@0jkW%%YREv!P*BJ(oZI{hWazS<)w!I%1IKc7S70AU1XT1XB?>>q9&yGxg ze9z-RM8E6Drj&5&l-Czc!r_|1R0gIS)5t7D%aL+6!gr7-zpKLR(fZoRrjwCk)kcnp zC;#fi6&pPHbQH5AzhDopO^gX7?M5Y+>U%bz8O8iVkbI*H7!ry=eYj{$s+D!*^G>E|uTE zB-hb&MN^ywgJjy3OH};5IhhKda^TLEeI;V{s+x9H0^z#p>UPEDQK>DyzbgKp2Y6#{ zT*nKzZNwOZi^pS_jmX-QR7Az9{LtzAMD5M-qR&)GuQ^OvIRu zYdfX*uL}GhepC?qkxNVjIqP%$z3Kn(al8*Vz~?{Qm=JONpFa6lNdCS4K6JFS>1^5! znGTpcI?9Bzz5T)HlEa6}jCOG*H; zcZ~C-ZPizo_22QXB}Td1=>)u++*<<|0}ki{oYN3Z`VHo3-F>1?IF8-gKM;CwHWy{m z*1jC6dbYwFMs)^j%;2gmsY3v~fEy5B53kF`~}gmZa;HFWm&0fNj@O zw@R^cI5x%^wz-5G3Fh2X9)DhHtZul}(?ciE5&Gy*glnDZ%@>7f9CXbQHBqF72yUGF zfXIP;gv#2^^zK`340RSYbm`?hkvkbl8>x*5eF`*g3F+M0L_nAIXq1Q@jHxgR zt!dZ9M)SIsb?0lrAJ>}Ndrtzqp3|)#GOp=6^~_{AqG%CM$S1=dQMm{2ys>ef5BR4Y z>VV2`w_L04;jOcY7;o?EYu|Zi?4E{%57VUtxu{>Zm%<5 z=at{gZ@k}=-6Ua{rYVYl@T*vlSbPmu!_`|MsrP=8V!2{s z;5X83&2ux@>3x9fK^i50D#rff>+u)!nbXE(N7pd2sXa)B;!9^JTrQ7>epq9&MaI{1 z(I{n|Kv0{OEJMb%g@_{?gzi3F414KUozam6*}o5virg#U*D!KrbnUp7Y0AAy>BC|8 z-b9$%R>#rd^5pR**@?W930=xw;~JfD379vLcwwyX0-fDH@`lk)V$&U6RwwyNi-pIE zLH2JT#v-)hpyJB+9$Bj!Rxdu^z3=xr`Wp#qFXOQO=E6g9*L22JkAbJ4n(gwaGpN2; zW*FEwO|k0=Z~4-EFOFBi7=Z`@2&*u1=E4gX4=q*@!9~Ntg9i-tVYMAbI31CsV2)-;) zXG;loZY{SqAuB6I2|BpiT-jtTO5Kn1YS*@!=;EiF4u{m)_L_doC(WqhZ1@x9|8N0_ z(Ei#QZID>xR8z!;*o9khaGqT`1%T%DRWsJgD?8%|A6F~;rV$Ri>e&y@0Kievvucyz zF6XIP9_kt|onk|Xt8?KGcq5MwihaFnTqSc1iYF>e2d311r22es5FuK3FO*2s`s%h5QzL{v~VO6`^%|$%B?g^DK0&a%j^+>8> zJNLqthuk5I4v#k&Kp>CJoMYwTJX2*xX3z@^4*wdg8iflIf7P-1E?M4>Uv;a5GQJ~m zMPvC9hXgZrA`DZ@Iz*6wA?tb<*Ni%fonUECw|&7-?O_X~49A83C)N#6*=J_lX>3*c%f#-029G_WCq`tSMDV z*E6DJWN;E7MBVgO?_B1B_nKuS)!XxWQiq_lbOyE*K;248I-0R;eNVKD`TPT3dO>KR~OJG4Th|=adQ(s`s`-CZe4K^#x_2 zOv`m-deAw)sx+-xQLKNlEPd%dn>Z$6dp~!zFoeo@$M^Ekm(8#xY7KI>mY18MyRl}x z0SYD>K1+~fT3Px6I=D++e*>aAB`6>|( zo~#DP5#sU;@vfK4=(szUR`Axf@W-tYIPftJ>Eo`sKtSfTFc(OE@8_#gp{(q5czmP{ z`f^D6T!T3-20=e7+_>{`ZUs9oIq~*p-He>xA`BmR)m4dtvHr?xxY3y@v*Wk) z6QUiN)D;eM7a_{tG`~PPQj*NtRvA+wN+R6Y7pL!19HQTU6Qn0(w8(H@>NtV>(dHnY zwbA|_1z96o8j0aLj7F%DwX}DiwPCqqhng+fK|M%Gh5ck}ekgBj@;k(1m2zV2^zta` z^4^i9kxWpa29jSs#P{mK<#FaEXJqhhQByTXvjQOxU$I`!pIYJgLNgZ>ZA;Q)!=GlD7g5l zlF}e64sGAl-qs=(3i9ySG=LP5b0=9aeG=QW(1v!p*mp#nnGwA*Z--6Iv&Np#h0(RK zo4S>W2`A%&~uK!O8s9>mIhV<01{ha?c?xGN`H} zBA=n^waTQXx%ca@gfZ{!`7k4tq#{(_+0>;h{ZD(1v|RR5JAy*%nojGQCgU+U)bDOn z8dZSD%G^>y^X0WI;LvkQhb^Nh(fX$Ll;w`EaCtxt*R4ET3Dx>-X}! zuCmO1KwflZo+(lU8#5;b1}%ig{0W=*bgsU;OJ9y0ZtJ~r(g`AY?;wP%+7G#kT7$x+ zOg;pNHOq)wLPeex%o>|}JGC$+zfcf)1;-_Qa#PUc0vt~mG&9<`RYrg<+SJ)(_X|zK zHxYdi!sis{X<^na{(OOtZ7pOh?>dA^Z^giJGvB)1rRF|UBz-G`YE?zj+!{7c_FLfF zC-QsBz~b`&E@0jKmN0ag4tdn!A7$OzDT=3iQ^Xrjp1#z$fZ=XZ>HU>}fYW#qJrlU7 zZu^|z`IFS&U;0o?OvZBi#NJn3hj*mUhopHh@=ZIPcH}<$k1)Y3W?XobHiO9XX(SZ~ zE4iC(WvfWpLj&Ip9_{?Yo5gZb?;j@>@`<;=z~^L7r1h9}iq1_}ilxddKHbWzd#{Gx z!!ilAOWBh76HG!QPN3mOa>X6@WIh#}7LTa<*AlA1L%$E8 zRnccP;h3=Dl+QnqUAXIgYs~m>e)Vi;4Y$EV7z7>6kOUIxu&!cTu*t3Lr2@NEV<2DlO#15 z`n4l>LYJ{4!^*;z)6j%?UF6%ju0D%VTwIUf@wJ0JPx_crR)XyuVAS(H7Y5(mVr`&b z+$cxzN|l@h>pp-Q+K|!clOUUU-@4U@ln&cEHeM8~deu8#34Xr6PIiV*PdHr|q((7G zsWzKqKU<(oxFrM+KnCOD^aAyCk!eIuGs5pzmG?C5HAiT(`gD8ayDQs{uP$oyN&*~? zUM@io?03YG#)AZ@>W<_rzh&_{mP;wwb0^%d4Uo}!uK<|jl!>Xx$kH$}VfJ|mX_PrX zxhc{15%$)x{NjPCsYP2Pu*{eGKEe3`%a5NEGUCcu5k^vw6M6C0qg!s$5?^ulkymMX z!^cucd!*ZoIoi*aHb~1g#({Tn3WWGGKM|Tka#IA|^KW}Y?@Vawk4)x={z{fnx1bcA zc~1$et+dU?GuXTz0vr86z%7DvILnBC-QTe7;ngbY$X5-~2PI!foRYAPM7YfHPX(!$ z{hd0rS4zm0Y4x$e>K@U)HrX6uM1{#KJY=Ma7oL8}uvDwTK2hL@5ncz>7`f-Ox1oNg zfpUVSQ1e^4I0P;-nATZ2$jJ--YlboN{-j+(^mxYR%HLR)d!8K?BBG~5sE7*YZ_{!; zp5TG;?QVVjk$K&R*5h1`36NguqKqTHWl7mYG`A#}KlAkVkE42_^z6rjLBrCMplH*G zXJYu7zNb~bdavG`2bw&ZF_tCdD>}R3<_NioFH)_gn0*yjn~Tj|YKHt>?UXGe~Pv@K+x;mOVTh8?l2y)cJ}D~#?GU%d&3lSyN*VEhVy zU7H9iMBmK+T1777(nU4c_GJ+Z0}CjT=sMMkxlUm8Y2TJ zv0F&}T--;s(pTyK{6pr8!iC(EN`}}gq=~)?85tk*Qgz}TFpBs+`6H(Fq_TQ+V|yvo zuz>+-mHDXCGURP(^`KEihg~>l4E?Um5yiDJzDDIs%YG%X!v2QosPUh>>hrQj^7~v9 z@x?;C(U1DF6UH=qIjf+pA31`OxP&R}U5An!w&(b2LL5zqStx^U-DUDZF=ZrF{Wc{@ zs$UW>O`THf@33PE=$*5rezvw+8&r@IP*9OZaFj4&lnMxfY~%<5>5ftF%{k}!eBSfE=lML( zUt^!K-MjBybzj%-`@ND#rIcD9h^rh~WE~Tq->m*-aY_S3S`^MrXE zog8Rl2&kn8F_Gr?h7P?T0XGo6Gy6*}eC&4KkeTpQG0vkaeyTLiMzXiQPJkd%G*yDr zHWRZ-*p9QSV{7?=Pv%XNxKy~4*6z*)ofAPi^<+}R{0-9US0Dt5%8h#-fd-8se$yrq zkyC0%gQj2yw|4>GSvvkAAgv~7vG#Wpg5O7)o;$#?GOZC8n>t&bH0?AOH!OLt%vBv_ zpn<`L2wcw7x4$eZr|K7B6W}9YS3exeR2M5D`AhhWJROr{>4)L(%Ww^=Yg}i`nmR;V zFJ6Bwmb~d}FbB7>1^WU(gIzCzJL--W=z3?wmC?sEH}7Lk0%@1L@?2LXLnkUpC=Ttm zI#jBA@SQ5QPn5E7)2Bb5a#(TSn^J4~O$64yM=Y86Ms?dGs)~>$KX3l%fpQFiy0lJN z_yt751;j0;&MNCKOOh-zpKk}uO>l=JN%<%l5F-`!leLdykggFKN~MC@G~rFAvo^R~ zg==XskvKeiS~e4b12DhS8F49vQa4yrbOJfxJ=K6^HiECm*((Dj?h#wvkTp9l_+gN@ zC5bt0fm+9ocZf=eyA>JSeX#L*%20vz+X9~7dkiK|!n7-jlc3kN?3~}YHc%tW=B)cZ zE=gP;pIq|fl>;ZZ!1!T6@-asGiuZfqrNYN?VFylOMo4f^yYj>s|0AmiKK4_}*0_=s z#yV;-yfqX3yP*>qgHM)fzxaxhkP#L^`qfTHOw#Ymm?aLXh5*B zE7Y216MUfZ5s8VHA&X;Vgj30O51=n?oxqT<-xSo>Q*P~J10wY3*SnFyq9?B3bMAWT zm{v3`yo`U?uMM{~cH_-gJJ{}Xs~6_KSgATM#RvwMHk6qq1a`Dpd5E*l8NbP~tD9bN zpVx5A#%a|gN#1ktdhA7Di((E3CmBodHa;}}-wsI=Ia5p!e3Ad|O zPp0%He39cEs;FYyydCz8eWvaFv2d?6ch{f11`Y%w)$6CQ_l%yro70ZWJexC9V~Jw@g9vPT_4U z$@LHo?kBnGm?1CKkDFltA0Pp2RBr0 zxUEX;$;=m|T0K&Ru;O;6<|&gSv6w8|Mn?mCERktabx3qLS{f_OCCZd9) zn}0;TIiDvUu?-m(v|#TkBwN3o`l3jK!Be>{xOiGiBxRdo_hjO=QzCx6Xzoy%bbnD4 zta`EBeM`SRQohcxOq@Sc{F8DG{oQgt>5Q^xD>VKJjopiC@L+PY)a6%Jtb7|5Zqq^m zTf}qBFGtu#XC%oLfGI~N_B_peL*R}#B;0+8+RW#QFEWx{o$K1^o{{dx0$bf3I<09l zpWW${%@JVv^V@!nm-lV=M5pw!8Zz%?nI|gpdpxb}@Z9T}(2ML6Tm>@Lu!caI+q?94 zaLrs|2`AGx;o&K^#@*W9;B=u&gk;-hm)cs(d?!L6<+`D{G;?LYT{duZFxOaNn>d&> zbl|8RhbLN4!iZ0@nBgjbK`3U#%yhP$6QQ99v%*Vskp)*!u895OD%EOzuK-vAGNG*R zHfc@X7!%n$zKgB!w5JEhm*1~=P{uO*nLOd~1c^%bgROaK@_`dzA$$%2>ZcKSpz2+2 zzyc!AYB?sG&l9G9xh<|$TG9c%Gw_AXS>}H8UD`cs5^B=?PCGnV>V|RK*w^CM&h0h< zzr*<{Q|RL_WAOqF0h>WHW=7XMg`((9j#}Csf<)Wn+RT35NK+zW)6blI61!rZ+Z8?A zt$IdlSxm>iM|?;|5%D6ZGQtCJmvth!*lC{mMv!)}Q94SY6?pLPf;*Jou;?JN-ipq8 zb5J((tIqWm2I__X(u|`975QB?v}cmrGjO-pcr|RL82v_^H%>*0g|E6guru=ZKIQ&x z11&2t%Ov71lodwAE{bn1F5cZM3jBcVfN@>0{hT@D)`;*jMQ5G7+zb&C?zFQz_N5TA{ z0OlC{c&Kud`{YfPnP=O_M>B17CXMfxmyUE1)n}vrgaHq%ns0d-+mTi%v4S9K4&MCa zVR+yu(Cnz@y>AUhnkWy%4oaYsnC0HY6Z#qES8oRf0nDKEqnKHV0VVyYa{R)Y+4p1Z zr|av2+!~g7d9U3^-~9?olNx>ueLr*?rPL=O$MP^ax#5q})d!Jn+~R4iuU^v{s9mM& zi@{Uj%m8(*9N8>QrF$v@=f@a1^<|crI)d(FY>9>(b4QXvDn}~ME7dA1P5wHn zSB>H9Zp=hZh;}4*n?80kuU6@b4?BChk{Z4r%*U8^eSKO`^`wkJ6HE~gwIia4K%UG( zb0X!n=_!<;X_AEd7u#!eXKg=V?)@eu*VtJ=#3ixy3_W|Kl#Su+mL%|~hR}Ca^z8Wd z*%9svRHtXlT_g-_#NN=FA$&LN>=nzb@;s6x1j`Z;?Soy>ol&BpF8xv)Y7{MR_8!VM z>zV}CI*myyPW>cJ4AwwG?ti%B#U{f3V|+|%{O8S-yS6@lNQw|kZ^|N51QDVnaRw@g z59dAw7DSAZu6_}1q!h%D7@nRoE2UmnO`5P zvZu_n8{#IzgXSQ4)?D*v6C3Ikp-pLfRV~45u%LDVbiT+Ky58Eez8*;LRmT1$@u)_y z;*`I@B{(M!U&T}td1UeKL)GWOgn*eSff~wpxnb*>5A7roCc^S*EET`+<=se8vJX@s z*2Qd1nUJ#;UG1^e7njL(XNPM&@T2`p%V1~PIwq{1Vyp7vJiNM+pHn6Ajg$yxai`35 zp-ON*{=pxf?$~*Z_?)5FM=UDWQ)#hOlpSO3+m$L6n@ZRo>p%adCOhHl>@U@_=v6Il z(_iY=vwH{}>SjQ%>xl9FD#ejjTVzqd;hW81r#@*JLm~+jPHK{LK*Oz4c%L%FbWH^P zDtFZ6UcQLc%c8%c!KBT2=?0FkDZ#azGqmfe_2H4B>ofg#s8XoV;YFo(MUD5hto$N8 zpcCJo$1B+uJcZBIeOs+r_iU5zAB3ClQMjknw^v>F9NG|6#&_-ctUo5vfQIs1B^jC4DTnE#YOx5-atb+G%R2irlRf>tD$Zg-8mKZ?$|`psyyn2yA2%}EePgl98sZ#}t>m*0G@r+pVjP7V@6Flp!DRnA7< z1P+ADFh>eC_=T|4n~9HJ1Nk1ThW5x#KcLBL-RTkytwCs$bJF#;&aTz?tNZN~p8eXsN*f1FkYq&lqEA=JH&F*FOUT-wpj zg?7%R=!2>JL~IJGR8LH3=?WXoy_^-9U3e)_4x&+b>^3yXb+53bb`LXU%TN$MdhAl8 zU8^)q%d*d06fc3Hu4n|+3`Ft2)aS46r3#4WX-fY&eBV>dz_8pjx`4H)=9jO^-Q*#x z$aeiER#N=SpxgR;s0@_TQ7N&e>3tm6G5@@Z?i2FLld;V|+_#O~Enzg$A<=Qp=G;&B zU~sl1>L}<*%EEFcGV6+JXM3^CotSg{ot&+R$k1W8+W5nrDH(0bt3uu4#M&vESEBWr zeTLt51Q#M>C!>`dgSn6JJrpa{bNPydBE_5Y?+m=eQe2y1^;=hMCCMo2DQKN9wW%elZNK9e4?&T(Jd zcs;9n6q8^q-^ykQWHTbyJG(r+Z%36M-K*?oYE#LtjQfjy(AY9#$U76o{8DI-13eVB zB|C+TKjNsjrzt5o509+oO)F{FbXj!-NQ$ngs(@>q9KT6iX)iDlWtG4k01bArCv$O^QEGerif2Bm)bLemgFr(16>cUqoqSMYs1pe-%DGa$A-(B^|0OgWg?vRw*w%DCViSeskqX zn?y{tSoP=_Y3&_(7b%Kwe<=&E2CDgWMW$bo>lh~53c6bo$Vx*)DTFZZj(Lk$6Mp-; zTuU;oi5#|M5bxF=t7uZ!S=gaW@`D&^;erHF_}WkAdMR~K7sBcC3UU17Y;;j1h-C(( zmUfi&-8cMis)th32%|N>rI?GM4>eZa{^{0Q|9D=}Qr8mtgLwI)Vc%^#rGlShaHesc zDQg>{>+}#`>4Ea3p=qQDdS0z1M_W}{^A_dry{mlhs|gF z8td+cdvz~m5(2AQ-N@KiylqXy&Iyw2b&XzR6#GNnE6!`4pGj!6qlwt*Ecc1cOevdi z%<(a;#Z|n%b=0~=br9l^4lBmLSY5jaU4GW*73@ zkJ1689E@*g!v+r$*pBVJm=t>{_!=;FwhZD?^H|<(zGeZx*_Q%kYqcz-*&juB`=(G2 zAD#hSWBk1&Ge0)EV8$7;Yum}#mN$((`g=@>J;tIZR%dT-YZ#0zk|aJ2i=kl0I?t;F z-$AkMusmCx;@33-za5vRkGiFqCKUAPi?04kCrGm=xg+AV z-CEwBb@g{QofDCU-FCc|);ow7s1l<)l0q!2_U1(>B>5JvOilQHaY!CpVCrs}0)qqH zib+I|sV^!Doc$TZTAa+fzG&(7JjZ%{Jb5mjz;aJSG}RyN?OAi@g%Q^nB#HQ}!)l)v z#MS!tfM+s=Mels{Uf0=4nJjtT;&mf;=o#Lcrj3YGFyAF;5;VhI$uKw<>h{F&M7Q3W znDmTzMrk2DvVmjlgJLz=j!Pqoup3hCEG&4NA!c?lpe9s0BO#J>l9#uu(C{U)fQ{-aoUY;i9U)?BIt=po6LdJZ*1+` zZeU`lFPo919HW|FWaLrxDp;4Hn6VaGrU)kWGT~a1J`N7J;TC?Rq$pMs7oc?-5kE5@ zD({+wW^o2+u|h4{AulkSMv{;H){kHt=qF!x^kc4GBVvZm!Q<>tm3CkuT5pYxwbjPQ z#nxKB(Apo*s7QOoN%SZgy=oBjrQ2Tgz(DT`Rb<|z{s$u(jDRc(Q5AGGw-TgTh1 z?c`uLsq9?z+Xv6;ikyx4CD=#w{rWgl6b8={K^65O-#?O;*!>-Db@X223opn;1hSGwxV=G@2;z~$I z)|{60tbEcQrQIOQs{q8u3?VUJ8e2+oLNv%?Mna@68gtKjxRO7~N5V2Wq@9=@B+p1O z7aK}Lfs706i12hIixub~M9n8dW`a`7e-`lDdPYUos9uSTBv2yO-mkF^6rtO3x*)1% zyHk<7Cor*%FC1oX^{A2idLXf&X<=o&b($U5Wqx{?i%gqPUDGR~C3sxDm^~VK$NwYO zcRH4(mBGwJ=A?O<^Eg733CdIQi~Q&CH;W%}&(41oWNFdctAKLlb5282l#ob7kxoxB#nA5i*dxlip&3)-}E|5Q@*;K)8i`VzjL&O1QuAQqjG$(i;wfx}D z1>Pt{-79yh1Iz~|*kI#-8=PIYsf5zZ=5EVH=b47#du;g7nFd+GWU>hEmac&6c2b1p z^u$djKVI@R#ar~oor|*;dk!y|a585|T4+5hh1=V0TSn+i8@dhIHh=PzopfB?%Bbo$ zySf?cl3)%isb`zbHm$djd9sXaP?)!eTFK-Gw!~A@7JOmFmx^;D3RJ;G6lrDEeQTFW zr+RA6FCudR?BwiwUU_Wn7%GI^SK1l0T%X7||^al9R`sFo9b6eU!v0>>ssW>&S<9SGqbi>07{gSw~mzYgl+zN89 z3bK?I%h?WlyfK>8?eT$WB(JY3-it;?oN+Lu z^do`WGCla!1H>(omDIIc`Y!sIxYBDv`~oR9T6t_JB)o$}my9<Mf+kW%qX3G?;US{vVdL`j+$1FU$aEj?!_VGy zdU5u&wP7P8b`j*$1MjT@HbpOM)O6VeUbHS~pX;;(i0tw`jB+2A9-T0GWHoP$UemC( z=63I*bM~1ZZ*bo?UKvce+FbMr>VbO_nnU{#D=khvbN$IM1uFI(q%vU9RqoU^m&M+Quzcu1h>)*-h z79$xU;gNxl*cTcI34?edNGnpW!V4{P(z?@h>MYIF_*JHcVXbw$(xZ0&wv@hTjY_}k zKG}S9n6F&YqGM?48OuNF1Y3~qq|g5@PQRzb4NB$o#N_@96!{+>mNh_tl%U%vF^KM; zDA+&2g#SM3&j|+bV$zfVhX3gw|9Rl4IKav_g>~^7{1>hPu6!$-^8RUMvaY@ghIi#OXI`(u^0KbA5 z0onlY=flJAbrR*L-Rq}@7y4eFlrQk5$~{~=jG<*qm~up)eAWrcFV;bq_&T{>!k(9@ zeT;_URvYOPKp634W3sW!PsF6U@F?eo!3X{TKb6PLe(u|_mxA|hhNgrpL4x3?wF+JU z$B`kkqeyxqxFYn~pA6#$r9sY?=AC z0LJ#iYGrdJlyAQ0pHNnK-|=r3KEesF`$|pRCm^<84rWaaJDvXpU{O2XXReivf;=Jj zW&RdNWi@SeQ2zq-HKtl+&vzF`3sRTiJad8oR`bYze3P z1&5mY4rt2vYK8~79GeHXpjIl94SzDt5?a0CTtH!1Q5 zSl&RIg+njh|5%ilE(`ino%&>-6nFS?NwFSWd4AW_6kS#T*&F?VznoBpt2Jk1^nw7z z%zfE)$)5!tas%=(y)>z_sb5N<)Q|(*HDRmPuh3Anv{`en&ov~ZM-+2^fn|le|KRcp zaE&dazOH1DGPldb{N>ijjdc`nNwpb~Jw&Y6=qN!lL=kVR`!UqDySPkB2EkX19wCOw zZ{#jccfTi)`{kZ(c&KYxE&VMXq*&1*=M5M!bc^?}1BT6O&%zsG|L^MkuS!ZD541XwAR#&~8IW6%7l4F( zoOs$?@ncQ%Jl8kTdD|)Gldyo}V7`Tj3uBvw|5QdkkfIdiZ>+fUwDovVB^U~E)7*}_ zCij*-2;fYw43nhWOr*@G$W}tl9KEKW{krF%0|DVM@eJQ-eqKVTc|Es(_a_4xe; zuni;^>d^DeWjZ$c(I>bZ-JOLrZ#w??lZ^`Q#VJwoclibu5ClH_bMi~!?8%S2eA#Xv zZMtGyJ)T6zu3CodkG^l++R=RF#c`p5M@Wko519DUf>?y0Y8X;X!McT;7m23Cld}(1 zDyNNS2NS<85g$igSB9m1*(I;(%UHZaVkuCEZ^7j9k1*FVPexKuvnom*YRyOW1kR!WM#Wk#&Msu?h@-VSwIRggliw*c4Vn_mFxz(+(1=l9c3uW~+cWx?l=D0jtd7C*i*cxTq`L~LojqAjf3Xu=otvS^8-B=|+6mrIY12IjCl5@R+=*qqBy9z04DT4k?y_ zg#oR5#h1C-|4`;+xPYEZ2A!<&hl5u#O^120BI~Aj^q#UacS~?;iE<#1?yE4u$FQ3V z-~SQd{Cxfzed<6c05agbG~9L2hXCG6O%)&GtT}$d{%Nm+xwSg&E{HxX!(4MROMC?f zaXbxOlqk3nm3G*Ru&0{EU-BwE0cj6Xlz(tPi@Q~6=Xzs7&uXHmL2ts1+iN8Cr%KY6 zE}dHcKYUW3j|ZNo-vKlCxM^=G@rL|?TisBD(kGbgoFAgmX|`ZCdzf3=T?}tllLu%X zKxrRoagM3&v{CWIUk{w#%{T7-FfCJfqNZ!%-6!xjR`JxP(dm$Q^P2o$?LYDzg9qH6 z>gLBAd%yHV)p8#Hj*}hRy)z6EkMA9S0XWTizg}jLqDOe=+6M1f0ug>7LuwY;nk5CAO)u-8HFaamV|yLY*wK!-hJH`b(r)*H^hbun9+ zyVb2$Pejq!-clroA7q6*OFhlqg`LLBdU{W_f*=8>cnZbqucax8^2fh#mY3qG%d$wM zNu-F8VP004EAGpo=3L~bal38PXLU?Ho$Vnwk_T2>SGjJGGOWFMM);+cHZuCQQj$S@dRK$5*m1+|ywG(&=vopZ*V{kDnZuBQcJ3$(0TI$C2#E zsQ_TGH$K*iilfw`!NkgU#gm%R%U$kA{XrDSSpQ|L3Q!O1mdJkq4&wg~_-oS67d_4e z|B-7C{AQ5<5KOQ3{j&K`ar?UFAPNUDA-_BI!X%#S$?uPND}cWBT`Mq;qOs37)Z)aX ztY^nDJ4W#~mHv!)rc$?eJ95+`?Pf2cSZ;^*`R+W|MFUu&(vF(8fG0jpv$q)NL66OZ z1E4Z_FS+sO6(q_gFlR8|%-M!NwYHl5Lr5{B*PlxkBXCJ}=JAFBM-bc-HS>H*vEXM^ z)Hz0daB3fTGBIPR210Q~tef`kUGmz{A>cQ+46pd$Ci^iiIs+ROzw%Vdk2k8*O$|Y=N7AmRe^?p!R$7Y zqCirb+TgT2uz@a21-i8cY3&!^k_SA5R4JnaX1&Bjc}+xS+%YtBzCM%LYWE`ieCrY~aOk2iujdcgvI~BvFw5!@(8+d}D>_#S z5G#&}uyB$8{{!Bi+m}Ud`<|qX$Im3)DDW`ICOJ*Hm^%h~D=Hi)xV^`hIbvNfZ!z@{ z@e_|lMel{nv?Wg+)WRs8yDT`CMR|v>dU45+yq8zv8BF5xLRrQIA3ob^r(oWiDs#;~ zi%$|KWm1leQzbHdhel`e29$`}4kpfw4F~qbk?|=8`4@7T@O%fEt)jwD6_5(W+{N%cqk(h$>#u*-}FA zGF3ophP!Dj%^u(38m^*$t);Z2+y;{atEXH5eAVme(?#jm**#j_9wDn{?^DK0727*& zqF@pY{XeBh%`M_2!DUc6!fN!k1-F)d6dWFoaUR?!IN# z*UD3`2zVr}bmUdo#-<+|MN~^v03eA6U_#7&^Mw^tN`y+fXD=_{uU}J@njfY78BUpl(kK3 z3rx77*h>?kH`aMe6t1S)dCwtrM9(AYJUBpQYp1#G1nDY$Tj z=Db<*7*);l^kzygXQ{KuZVKM;DbVo<{FQt6&9T~9#2`PfyY`l+MaV2sHZtf6w`h;_@C#Q#QG&S(5LHc+|3ZEwh(JVg^^70Dtgmrcvw3W%xnG9Osc6 zH>*4f=8VSMM8{@uaRKdbVuP|84?XvzG zyuPK*$@9q+@JYXb*{rC^eHKoZ@}xVAJzCS-@+_Zsb9JO~+%>WK>Tp=nl^ zri4NXXvslG=EF;8SYpTtK$lt=$w9fxHy&b{P$|_93Vv+?%vJ@KoP^j+9b}`LzKq#k zWaJE{8fGOP4CNVk5nRyYmLd)ss@RS zn`7x|W)BrkG_ymy6L#+e!Us*m)PCCvZ#V<$%T`v86$3gkks z%+P7Jb~b)(;v}ZX2a39QY&G%4B`VeRu^lEA1uauV@dx}EWZ*mp__xMA*j!eq3ejvc z_~B`>@wUo;87}_4plm1u(;6F3${zTBL=~x+9|{JTI4Er?DPaRCpGWpqyO6d&ZKhX= zVr1wQc^7_$VYDSyS=M>31Ni&P9RY97`v~@$j&LO;)c-!2R}@BNp&@4UiX%7Q7EIic zW?~14w-NmNn~HPA%qf}I>&iP)xb+WaS6|b zk1_*AWwQB1qa^!w(t_$-woOtvpAw86AS==m$8D;C9%*X=60)rN9%3>YDWOCQo?t+=s}U=A zCnFqw1X_@3@B9J=g-~){Y+jt9dF7xXz|hbixp>O6$;oR&Pr&S|y;dVGwYh02u{ z2#OiDcb2jpOrT6bkaL*eKTeXs&^(1ki76AOVAcqysX%jZWG1{kJ|Mx;-YI1s9KV`C zym#9+>j){T0I;?6H5x+n0{>|`rZ5N!%+>^ryF8k@@va@k?r30o`$55z2xp}{Gh$n# z_fB$IeIB_mvjQls+uD^{ZDJ~~R-l^1689=RLR?`F(*8ISk3Ig{%UGKV zWG>a%-WF1EVps}z^4vykjFvMKW}5xgvYU+BJIl=_3@K%!z)N*G^ScEX!7#owZIq_+ zIkz2o?R&#AJh9KopJuw9!P_G^A^R{bb>xf3jVMF$Uk$)LMVvrwbUY^&$xxD|8skpy z54$q?^UEN%wLK)*%mT+s)_$Dq5nNOkd37?u$&>p!N9}t?&H=rz!+v59>V)4Vw5k74 zHt#Ndyyn>mg3t7 z8VZ0PrA!Iyq4L#~PSLP`{4CD#NMX#9BRI1~x>Q)C+qr+TOV$-%1^WivFz9 z;d}JG@wqQ`^NKuL7R$)F#m@wjn=E4FG~B9of4B5vi_2)bgt=K)=rb~Xy(wJ& zcjB!GcmKy~-OFJggUfd8;I;ozB3a9*9qp;K!^cs+wKXkdT1H6@4;aA}frTWV$?p>1 zFd~DDeYw@fbi?uZ;95YIc7lD41^G^IW148MfIT&`vVQnAJ|bAPgvSyr>zK{^GVP)_ zXz|033?d@1xwe|}BW%D%w>~u|SbRbY_9D%oSF;$>K38US=0fOHJnaMq9R?m`;_uHf z6zhLlDWwNAPphY>+ex(@4p4?%aq^fC*}tMVeN}~cq48P+4t{=NNKKE!ISGCjxy~Zd zXLGws)(bFaMme_`j9)N7Y)&81KL{6OB?9-($uD8dfvRa@0GNVwye=u^}#w%PW$H; z(T-*}T9I0tUqNPY3OVOys$PuGc_kV+`v>(452dk9oMC-~JHjZDg^4(X>Wu(sDVQdh zLQz9<4ss-9o9PtWAZ1nAZ<^S&%I4{Z1~IzNa~?k~GnrJ>{cm{p8814mrC{T1dX!*`iX=V39&%6IPWBiQyvO6~pO3rCk_s;s182l;7kxv_{f%>q; zPOcV{oe!e4C+F=E(hrKwg}LaIMU-!q6gK9si~OL|c!hX97Z`VI!iRg{gh38^J=B%F zs-+Vq)+FC6n`T@s^ca&V$$L%Pheve3(foONN|*zn${->lBV5% z{K-egxzf3@(-npE1T}`RI3Zic*&ZowN0E~s{zl2rJ5bMjTI62Y;CcA_!SuV;s&v3C zNYb-YSttt!xQ>cb?Ex>jtgSj%?zhS0p)sL+Q$z$$)>a)6|6 z2X`EHHWnr<)xQmX1_uQ@`Lfx(BJ#epN1Qk^#$-fAnRdX%k+hBwoFwlC08MmMx_-t* zQTp0Zr0-$8CXOCAs^nGQM5d)q`g5Fjx{#OMC%}P|G?JGQwIU%MvoVOLHC%{gP`18K z2AN3M<}yMD1jr5{<2o~&A#k$ML=XMJ-|rxZl&YTo2&-_bJxPXKe=&z?mO)ef)xGhI1 z5d>rD<>r^;C5?yxD_inp$T>4Tclhve=DHRa|M2Ol*uz>^n823?&KFz}(S^!&*Nr%^ zgB*PhMy0scIJipUYJ)Ud+y|QgLi-M)?mj3tueQa=H;qjLZFCraN)u1y6%ZFqUSeEP zXfM03ci!&tv`0F^5mg%5baKBXq_VYg^K``qB`im&9>s4~ilDIVd!GKh(&;uOjm=w2 z$8LIMsJcN(zJDbJnsn|JL3I8vAbLm){?-}D8;bT*3Zpr;AV^l_iW3d)9L3=ZrO+3(q<3brJ7@voMvz= zQn@X=SA*7BQ}&m9q{jW-xSD(Dn(|fLd^u5Ar!`i#A1T#O2Atpmey>`56b>o~?5K%N zEUJkkBT(jdV_sy7Kg4JEu7*PN(Y(J~=BiAL#X{^zGn%B#<-(?S1HQ82v*bHCu$qrk z+xLM~3u?8!5RHtUsUGySM#Dugz(ze(Lyfu`TiJvYd2!8?l6skKf%7BQ&8b-7D^~lZ z#*DM?=5VIc>#M#az2SYlG z2rgOw<+=Lz;;<}oxqwl5kkCvEiUAQXm@s-nW5CjC^uv_1K7_v?Uq2pH^#;Ow|D1Df zD^UwqQZ}z32CTEvuj6n&bk4D(qL)C(tvj zSb5B(Vw@ajb8Z9!`jl4{T9bFHYnW*rj2eZNtGry~Dh zNHU-S3@Zno7Bn=AD78uHA23!;R7%c#7FJs8f669ecH8%^G6*+-`E8CuY;zvlO~5AN zvXWhMg@TF>H6G!nzfW(0=r1@+Z70|u)F{zrTt`J0>L#kQ#{Wd$vVLD?Tj3wa^y9NO zjH-B7o>XmU;A681rr@M{npkoFrW#!<=4@9Wp`y@j$RSs>Ajpx@ra07Ub4KdXrM&Rd zOX1Hkr6#@|so3eES{>8G^=h~0zQfwrXalLce*1Kt{QD63U(W_qE>FoNwINqTt&K@v z>!w*CHt}mC6bk0xY;Atug3Aq)9=;HigL=zpv1E^$rg?B4tY-5b7;}}{{-H!B1Vr(> z3WF8-Gk`_lKfY#F44eP(_Bl(FpqTAX=VLx@O7!N%aNqr|`}q)?36RATX3$DV*s4`NQ)Deybtx z-jo04Wu-zAx>T3m|NLI1@V58io%7yO? Date: Tue, 3 May 2022 12:40:15 -0700 Subject: [PATCH 13/16] rst link correction --- use-cases/index.rst | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/use-cases/index.rst b/use-cases/index.rst index 83f8da4199..0b026c27c4 100644 --- a/use-cases/index.rst +++ b/use-cases/index.rst @@ -35,9 +35,9 @@ Computer Vision for Medical Imaging .. toctree:: :maxdepth: 1 - + computer_vision/metastases-detection.ipynb computer_vision/metastases-detection-pipeline.ipynb - use-cases/computer_vision/metastases-detection.ipynb + From be2ebbe342148cd34c18509eb4748d18b81f3861 Mon Sep 17 00:00:00 2001 From: atqy Date: Tue, 3 May 2022 13:39:26 -0700 Subject: [PATCH 14/16] remove .ipynb --- use-cases/index.rst | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/use-cases/index.rst b/use-cases/index.rst index 0b026c27c4..b9a82919a4 100644 --- a/use-cases/index.rst +++ b/use-cases/index.rst @@ -35,8 +35,8 @@ Computer Vision for Medical Imaging .. toctree:: :maxdepth: 1 - computer_vision/metastases-detection.ipynb - computer_vision/metastases-detection-pipeline.ipynb + computer_vision/metastases-detection + computer_vision/metastases-detection-pipeline From b2b5e076bc7ff1cbe0b71d7cef327bd7087d489e Mon Sep 17 00:00:00 2001 From: atqy Date: Tue, 3 May 2022 17:41:33 -0700 Subject: [PATCH 15/16] fix rst --- use-cases/index.rst | 1 - 1 file changed, 1 deletion(-) diff --git a/use-cases/index.rst b/use-cases/index.rst index b9a82919a4..b581b0e38c 100644 --- a/use-cases/index.rst +++ b/use-cases/index.rst @@ -37,7 +37,6 @@ Computer Vision for Medical Imaging :maxdepth: 1 computer_vision/metastases-detection computer_vision/metastases-detection-pipeline - From 4ecbb8557cc8c2fd0dd60e279c28f501225d1754 Mon Sep 17 00:00:00 2001 From: atqy Date: Tue, 3 May 2022 17:44:22 -0700 Subject: [PATCH 16/16] fix rst --- use-cases/index.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/use-cases/index.rst b/use-cases/index.rst index b581b0e38c..8e2cae295e 100644 --- a/use-cases/index.rst +++ b/use-cases/index.rst @@ -35,11 +35,11 @@ Computer Vision for Medical Imaging .. toctree:: :maxdepth: 1 + computer_vision/metastases-detection computer_vision/metastases-detection-pipeline - Pipelines with NLP for Product Rating Prediction ------------------------------------------------